1
|
Grossmann L, Ringel E, Rastgoo-Lahrood A, King BT, Rosen J, Heckl WM, Opris D, Björk J, Lackinger M. Steering Self-Assembly of Three-Dimensional Iptycenes on Au(111) by Tuning Molecule-Surface Interactions. Angew Chem Int Ed Engl 2022; 61:e202201044. [PMID: 35287247 PMCID: PMC9325367 DOI: 10.1002/anie.202201044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Indexed: 11/10/2022]
Abstract
Self-assembly of three-dimensional molecules is scarcely studied on surfaces. Their modes of adsorption can exhibit far greater variability compared to (nearly) planar molecules that adsorb mostly flat on surfaces. This additional degree of freedom can have decisive consequences for the expression of intermolecular binding motifs, hence the formation of supramolecular structures. The determining molecule-surface interactions can be widely tuned, thereby providing a new powerful lever for crystal engineering in two dimensions. Here, we study the self-assembly of triptycene derivatives with anthracene blades on Au(111) by Scanning Tunneling Microscopy, Near Edge X-ray Absorption Fine Structure and Density Functional Theory. The impact of molecule-surface interactions was experimentally tested by comparing pristine with iodine-passivated Au(111) surfaces. Thereby, we observed a fundamental change of the adsorption mode that triggered self-assembly of an entirely different structure.
Collapse
Affiliation(s)
- Lukas Grossmann
- Deutsches Museum, Museumsinsel 1, 80538, Munich, Germany.,Department of Physics, Technische Universität München, James-Franck-Str. 1, 85748, Garching, Germany
| | - Eva Ringel
- Deutsches Museum, Museumsinsel 1, 80538, Munich, Germany.,Department of Physics, Technische Universität München, James-Franck-Str. 1, 85748, Garching, Germany
| | - Atena Rastgoo-Lahrood
- Deutsches Museum, Museumsinsel 1, 80538, Munich, Germany.,Department of Physics, Technische Universität München, James-Franck-Str. 1, 85748, Garching, Germany
| | - Benjamin T King
- Department of Chemistry, University of Nevada, Reno, NV 89557-0216, USA
| | - Johanna Rosen
- Department of Physics, Chemistry and Biology, Linköping University, IFM, 581 83, Linköping, Sweden
| | - Wolfgang M Heckl
- Deutsches Museum, Museumsinsel 1, 80538, Munich, Germany.,Department of Physics, Technische Universität München, James-Franck-Str. 1, 85748, Garching, Germany
| | - Dorina Opris
- Functional Polymers, Empa, Swiss Federal Laboratories for Materials Science and Technology, 8600, Dübendorf, Switzerland
| | - Jonas Björk
- Department of Physics, Chemistry and Biology, Linköping University, IFM, 581 83, Linköping, Sweden
| | - Markus Lackinger
- Deutsches Museum, Museumsinsel 1, 80538, Munich, Germany.,Department of Physics, Technische Universität München, James-Franck-Str. 1, 85748, Garching, Germany
| |
Collapse
|
2
|
Grossmann L, Ringel E, Rastgoo‐Lahrood A, King BT, Rosen J, Heckl WM, Opris D, Björk J, Lackinger M. Steuerung der Selbstassemblierung von dreidimensionalen Iptycenen auf Au(111) durch Abstimmung der Molekül‐Oberflächen‐Wechselwirkungen. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202201044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Lukas Grossmann
- Deutsches Museum Museumsinsel 1 80538 München Deutschland
- Physik Department Technische Universität München James-Franck-Str. 1 85748 Garching Deutschland
| | - Eva Ringel
- Deutsches Museum Museumsinsel 1 80538 München Deutschland
- Physik Department Technische Universität München James-Franck-Str. 1 85748 Garching Deutschland
| | - Atena Rastgoo‐Lahrood
- Deutsches Museum Museumsinsel 1 80538 München Deutschland
- Physik Department Technische Universität München James-Franck-Str. 1 85748 Garching Deutschland
| | - Benjamin T. King
- Department of Chemistry University of Nevada Reno NV 89557-0216 USA
| | - Johanna Rosen
- Department of Physics, Chemistry and Biology Linköping University IFM, 581 83 Linköping Schweden
| | - Wolfgang M. Heckl
- Deutsches Museum Museumsinsel 1 80538 München Deutschland
- Physik Department Technische Universität München James-Franck-Str. 1 85748 Garching Deutschland
| | - Dorina Opris
- Abteilung Funktionspolymere Empa Swiss Federal Laboratories for Materials Science and Technology 8600 Dübendorf Schweiz
| | - Jonas Björk
- Department of Physics, Chemistry and Biology Linköping University IFM, 581 83 Linköping Schweden
| | - Markus Lackinger
- Deutsches Museum Museumsinsel 1 80538 München Deutschland
- Physik Department Technische Universität München James-Franck-Str. 1 85748 Garching Deutschland
| |
Collapse
|
3
|
Wit B, Vranik R, Müllegger S. Enhanced conductance response in radio frequency scanning tunnelling microscopy. Sci Rep 2022; 12:6183. [PMID: 35418594 PMCID: PMC9007990 DOI: 10.1038/s41598-022-09820-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 03/23/2022] [Indexed: 11/13/2022] Open
Abstract
Diverse spectroscopic methods operating at radio frequency depend on a reliable calibration to compensate for the frequency dependent damping of the transmission lines. Calibration may be impeded by the existence of a sensitive interdependence of two or more experimental parameters. Here, we show by combined scanning tunnelling microscopy measurements and numerical simulations how a frequency-dependent conductance response is affected by different DC conductance behaviours of the tunnel junction. Distinct and well-defined DC-conductance behaviour is provided by our experimental model systems, which include C60 molecules on Au(111), exhibiting electronic configurations distinct from the well-known dim and bright C60's reported so far. We investigate specific combinations of experimental parameters. Variations of the modulation amplitude as small as only a few percent may result in systematic conductance deviations as large as one order of magnitude. We provide practical guidelines for calibrating respective measurements, which are relevant to RF spectroscopic measurements.
Collapse
Affiliation(s)
- Bareld Wit
- Institute of Semiconductor and Solid State Physics, Johannes Kepler University Linz, 4040, Linz, Austria.
| | - Radovan Vranik
- Institute of Semiconductor and Solid State Physics, Johannes Kepler University Linz, 4040, Linz, Austria
| | - Stefan Müllegger
- Institute of Semiconductor and Solid State Physics, Johannes Kepler University Linz, 4040, Linz, Austria
| |
Collapse
|
4
|
Chemical shielding of H 2O and HF encapsulated inside a C 60 cage. Commun Chem 2021; 4:135. [PMID: 36697850 PMCID: PMC9814403 DOI: 10.1038/s42004-021-00569-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 08/24/2021] [Indexed: 01/28/2023] Open
Abstract
Molecular surgery provides the opportunity to study relatively large molecules encapsulated within a fullerene cage. Here we determine the location of an H2O molecule isolated within an adsorbed buckminsterfullerene cage, and compare this to the intrafullerene position of HF. Using normal incidence X-ray standing wave (NIXSW) analysis, coupled with density functional theory and molecular dynamics simulations, we show that both H2O and HF are located at an off-centre position within the fullerene cage, caused by substantial intra-cage electrostatic fields generated by surface adsorption of the fullerene. The atomistic and electronic structure simulations also reveal significant internal rotational motion consistent with the NIXSW data. Despite this substantial intra-cage interaction, we find that neither HF or H2O contribute to the endofullerene frontier orbitals, confirming the chemical isolation of the encapsulated molecules. We also show that our experimental NIXSW measurements and theoretical data are best described by a mixed adsorption site model.
Collapse
|
5
|
Guo H, Martínez-Galera AJ, Gómez-Rodríguez JM. C 60 self-orientation on hexagonal boron nitride induced by intermolecular coupling. NANOTECHNOLOGY 2020; 32:025711. [PMID: 33073772 DOI: 10.1088/1361-6528/abbbb2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A deep grasp of the properties of the interface between organic molecules and hexagonal boron nitride (h-BN) is essential for the full implementation of these two building blocks in the next generation of electronic devices. Here, using scanning tunneling microscopy (STM) and scanning tunneling spectroscopy (STS), we report on the geometric and electronic features of C60 evaporated on a single layer of h-BN grown on a Rh(110) surface under ultra-high vacuum. Two different molecular assemblies of C60 on the h-BN/Rh(110) surface were observed. The first STM study at room temperature (RT) and at low temperatures (40 K) looked at the molecular orientation of C60 on a two-dimensional layered material. Intramolecular-resolution images demonstrate the existence of a phase transition of C60 over the h-BN/Rh(110) surface similar to that found on bulk solid C60. At RT molecules exhibit random orientations, while at 40 K such rotational disorder vanishes and they adopt a common orientation over the h-BN/Rh(110) surface. The decrease in thermal energy allows recognition between C60 molecules, and they become equally oriented in the configuration at which the van der Waals intermolecular interactions are optimized. Bias-dependent submolecular features obtained by means of high-resolution STM images are interpreted as the highest occupied and lowest unoccupied molecular orbitals. STS data showed that fullerenes are electronically decoupled from the substrate, with a negligible charge transfer effect if any. Finally, the very early stages of multilayer growth were also investigated.
Collapse
Affiliation(s)
- Haojie Guo
- Departamento de Física de la Materia Condensada, Universidad Autónoma de Madrid, Madrid E-28049, Spain
| | | | | |
Collapse
|
6
|
Shang Y, Wang Z, Yang D, Wang Y, Ma C, Tao M, Sun K, Yang J, Wang J. Orientation Ordering and Chiral Superstructures in Fullerene Monolayer on Cd (0001). NANOMATERIALS 2020; 10:nano10071305. [PMID: 32635309 PMCID: PMC7407170 DOI: 10.3390/nano10071305] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/21/2020] [Accepted: 06/30/2020] [Indexed: 12/11/2022]
Abstract
The structure of C60 thin films grown on Cd (0001) surface has been investigated from submonolayer to second monolayer regimes with a low-temperature scanning tunneling microscopy (STM). There are different C60 domains with various misorientation angles relative to the lattice directions of Cd (0001). In the (2√3 × 2√3) R30° domain, orientational disorder of the individual C60 molecules with either pentagon, hexagon, or 6:6 bond facing up has been observed. However, orientation ordering appeared in the R26° domain such that all the C60 molecules adopt the same orientation with the 6:6 bond facing up. In particular, complex chiral motifs composed of seven C60 molecules with clockwise or anticlockwise handedness have been observed in the R4° and R8° domains, respectively. Scanning tunneling spectroscopy (STS) measurements reveal a reduced HOMO–LOMO gap of 2.1 eV for the C60 molecules adsorbed on Cd (0001) due to the substrate screening and charge transfer from Cd to C60 molecules.
Collapse
|
7
|
Santos EJG, Scullion D, Chu XS, Li DO, Guisinger NP, Wang QH. Rotational superstructure in van der Waals heterostructure of self-assembled C 60 monolayer on the WSe 2 surface. NANOSCALE 2017; 9:13245-13256. [PMID: 28853477 DOI: 10.1039/c7nr03951d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Hybrid van der Waals (vdW) heterostructures composed of two-dimensional (2D) layered materials and self-assembled organic molecules are promising systems for electronic and optoelectronic applications with enhanced properties and performance. Control of molecular assembly is therefore paramount to fundamentally understand the nucleation, ordering, alignment, and electronic interaction of organic molecules with 2D materials. Here, we report the formation and detailed study of highly ordered, crystalline monolayers of C60 molecules self-assembled on the surface of WSe2 in well-ordered arrays with large grain sizes (∼5 μm). Using high-resolution scanning tunneling microscopy (STM), we observe a periodic 2 × 2 superstructure in the C60 monolayer and identify four distinct molecular appearances. Using vdW-corrected ab initio density functional theory (DFT) simulations, we determine that the interplay between vdW and Coulomb interactions as well as adsorbate-adsorbate and adsorbate-substrate interactions results in specific rotational arrangements of the molecules forming the superstructure. The orbital ordering through the relative positions of bonds in adjacent molecules creates a charge redistribution that links the molecule units in a long-range network. This rotational superstructure extends throughout the self-assembled monolayer and opens a pathway towards engineering aligned hybrid organic/inorganic vdW heterostructures with 2D layered materials in a precise and controlled way.
Collapse
Affiliation(s)
- Elton J G Santos
- School of Mathematics and Physics, Queen's University Belfast, BT7 1NN, UK.
| | | | | | | | | | | |
Collapse
|
8
|
Chutora T, Redondo J, de la Torre B, Švec M, Jelínek P, Vázquez H. Stable Au-C bonds to the substrate for fullerene-based nanostructures. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2017; 8:1073-1079. [PMID: 28685108 PMCID: PMC5480335 DOI: 10.3762/bjnano.8.109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 04/26/2017] [Indexed: 06/07/2023]
Abstract
We report on the formation of fullerene-derived nanostructures on Au(111) at room temperature and under UHV conditions. After low-energy ion sputtering of fullerene films deposited on Au(111), bright spots appear at the herringbone corner sites when measured using a scanning tunneling microscope. These features are stable at room temperature against diffusion on the surface. We carry out DFT calculations of fullerene molecules having one missing carbon atom to simulate the vacancies in the molecules resulting from the sputtering process. These modified fullerenes have an adsorption energy on the Au(111) surface that is 1.6 eV higher than that of C60 molecules. This increased binding energy arises from the saturation by the Au surface of the bonds around the molecular vacancy defect. We therefore interpret the observed features as adsorbed fullerene-derived molecules with C vacancies. This provides a pathway for the formation of fullerene-based nanostructures on Au at room temperature.
Collapse
Affiliation(s)
- Taras Chutora
- Institute of Physics, Academy of Sciences of the Czech Republic, Cukrovarnicka 10, Prague, Czech Republic
- Palacký University, RCPTM, Joint Laboratory of Optics, 17. listopadu 12, Olomouc, Czech Republic
| | - Jesús Redondo
- Institute of Physics, Academy of Sciences of the Czech Republic, Cukrovarnicka 10, Prague, Czech Republic
| | - Bruno de la Torre
- Institute of Physics, Academy of Sciences of the Czech Republic, Cukrovarnicka 10, Prague, Czech Republic
| | - Martin Švec
- Institute of Physics, Academy of Sciences of the Czech Republic, Cukrovarnicka 10, Prague, Czech Republic
| | - Pavel Jelínek
- Institute of Physics, Academy of Sciences of the Czech Republic, Cukrovarnicka 10, Prague, Czech Republic
| | - Héctor Vázquez
- Institute of Physics, Academy of Sciences of the Czech Republic, Cukrovarnicka 10, Prague, Czech Republic
| |
Collapse
|
9
|
Mezour MA, Choueiri RM, Lukoyanova O, Lennox RB, Perepichka DF. Hydrogen bonding vs. molecule-surface interactions in 2D self-assembly of [C60]fullerenecarboxylic acids. NANOSCALE 2016; 8:16955-16962. [PMID: 27714083 DOI: 10.1039/c6nr04115a] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The adsorption of C60-malonic derivatives C61(CO2H)2 and C66(CO2H)12 on Au(111) and a pentafluorobenzenethiol-modified Au substrate (PFBT@Au) has been investigated using scanning tunneling microscopy (STM) at a liquid-solid interface. Monofunctionalized C61(CO2H)2 forms a hexagonal close-packed overlayer on Au(111) and individual aligned dimers on PFBT@Au(111). The difference is attributed to the nature of the substrateC61(CO2H)2 interaction (isotropic π-Au bonding vs. anisotropic PFBTCOOH interactions). Surprisingly, in both cases, the directionality of the COOHCOOH motif is compromised in favor of synergistic van der Waals/H bonding interactions. Such van der Waals contacts are geometrically unfeasible in hexafunctionalized C66(CO2H)12 and its assembly on Au(111) leads to a 2D molecular network controlled exclusively by H bonding. For both molecules, the "free" CO2H groups on the monolayer surface can engage in out-of-plane H bonding interaction resulting in the epitaxial growth of subsequent molecular layers.
Collapse
Affiliation(s)
- Mohamed A Mezour
- Department of Chemistry and Centre for Self-Assembled Chemical Structures, McGill University, 801 Sherbrooke St. West, Montreal, QC H3A 0B8, Canada.
| | - Rachelle M Choueiri
- Department of Chemistry and Centre for Self-Assembled Chemical Structures, McGill University, 801 Sherbrooke St. West, Montreal, QC H3A 0B8, Canada.
| | - Olena Lukoyanova
- Department of Chemistry and Centre for Self-Assembled Chemical Structures, McGill University, 801 Sherbrooke St. West, Montreal, QC H3A 0B8, Canada.
| | - R Bruce Lennox
- Department of Chemistry and Centre for Self-Assembled Chemical Structures, McGill University, 801 Sherbrooke St. West, Montreal, QC H3A 0B8, Canada.
| | - Dmitrii F Perepichka
- Department of Chemistry and Centre for Self-Assembled Chemical Structures, McGill University, 801 Sherbrooke St. West, Montreal, QC H3A 0B8, Canada.
| |
Collapse
|
10
|
Fournée V, Gaudry É, Ledieu J, de Weerd MC, Diehl RD. Quasi-ordered C60 molecular films grown on the pseudo-ten-fold (1 0 0) surface of the Al13Co4 quasicrystalline approximant. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2016; 28:355001. [PMID: 27365317 DOI: 10.1088/0953-8984/28/35/355001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The growth of C60 films on the pseudo-ten-fold (1 0 0) surface of the orthorhombic Al13Co4 quasicrystalline approximant was studied experimentally by scanning tunneling microscopy, low-energy electron diffraction and photoemission spectroscopy. The (1 0 0) surface terminates at bulk-planes presenting local atomic configurations with five-fold symmetry-similar to quasicrystalline surfaces. While the films deposited at room temperature were found disordered, high-temperature growth (up to 693 K) led to quasi-ordered molecular films templated on the substrate rectangular unit mesh. The most probable adsorption sites and geometries were investigated by density functional theory (DFT) calculations. A large range of adsorption energies was determined, influenced by both symmetry and size matching at the molecule-substrate interface. The quasi-ordered structure of the film can be explained by C60 adsorption at the strongest adsorption sites which are too far apart compared to the distance minimizing the intermolecular interactions, resulting in some disorder in the film structure at a local scale. Valence band photoemission indicates a broadening of the molecular orbitals resulting from hybridization between the substrate and overlayer electronic states. Dosing the film at temperature above 693 K led to molecular damage and formation of carbide thin films possessing no azimuthal order with respect to the substrate.
Collapse
Affiliation(s)
- V Fournée
- Institut Jean Lamour (UMR7198 CNRS-Nancy-Université de Lorraine), Parc de Saurupt, 54011 Nancy Cedex, France
| | | | | | | | | |
Collapse
|
11
|
Fujii S, Ziatdinov M, Higashibayashi S, Sakurai H, Kiguchi M. Bowl Inversion and Electronic Switching of Buckybowls on Gold. J Am Chem Soc 2016; 138:12142-9. [DOI: 10.1021/jacs.6b04741] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Shintaro Fujii
- Department
of Chemistry, Graduate School of Science, Tokyo Institute of Technology, 2-12-1 W4-10 Ookayama, Meguro-ku, Tokyo 152-8511, Japan
| | - Maxim Ziatdinov
- Department
of Chemistry, Graduate School of Science, Tokyo Institute of Technology, 2-12-1 W4-10 Ookayama, Meguro-ku, Tokyo 152-8511, Japan
| | - Shuhei Higashibayashi
- Research Center of Integrative Molecular Systems, Institute for Molecular Science, Myodaiji, Okazaki 444-8787, Japan
| | - Hidehiro Sakurai
- Division
of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1
Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Manabu Kiguchi
- Department
of Chemistry, Graduate School of Science, Tokyo Institute of Technology, 2-12-1 W4-10 Ookayama, Meguro-ku, Tokyo 152-8511, Japan
| |
Collapse
|
12
|
Freund S, Hinaut A, Pawlak R, Liu SX, Decurtins S, Meyer E, Glatzel T. Morphology Change of C60 Islands on Organic Crystals Observed by Atomic Force Microscopy. ACS NANO 2016; 10:5782-5788. [PMID: 27219352 DOI: 10.1021/acsnano.5b07971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Organic-organic heterojunctions are nowadays highly regarded materials for light-emitting diodes, field-effect transistors, and photovoltaic cells with the prospect of designing low-cost, flexible, and efficient electronic devices.1-3 However, the key parameter of optimized heterojunctions relies on the choice of the molecular compounds as well as on the morphology of the organic-organic interface,4 which thus requires fundamental studies. In this work, we investigated the deposition of C60 molecules at room temperature on an organic layer compound, the salt bis(benzylammonium)bis(oxalato)cupurate(II), by means of noncontact atomic force microscopy. Three-dimensional molecular islands of C60 having either triangular or hexagonal shapes are formed on the substrate following a "Volmer-Weber" type of growth. We demonstrate the dynamical reshaping of those C60 nanostructures under the local action of the AFM tip at room temperature. The dissipated energy is about 75 meV and can be interpreted as the activation energy required for this migration process.
Collapse
Affiliation(s)
- Sara Freund
- Department of Physics, University of Basel , Klingelbergstraße 82, 4056 Basel, Switzerland
| | - Antoine Hinaut
- Department of Physics, University of Basel , Klingelbergstraße 82, 4056 Basel, Switzerland
| | - Rémy Pawlak
- Department of Physics, University of Basel , Klingelbergstraße 82, 4056 Basel, Switzerland
| | - Shi-Xia Liu
- Department of Chemistry and Biochemistry, University of Bern , Freiestraße 3, 3012 Bern, Switzerland
| | - Silvio Decurtins
- Department of Chemistry and Biochemistry, University of Bern , Freiestraße 3, 3012 Bern, Switzerland
| | - Ernst Meyer
- Department of Physics, University of Basel , Klingelbergstraße 82, 4056 Basel, Switzerland
| | - Thilo Glatzel
- Department of Physics, University of Basel , Klingelbergstraße 82, 4056 Basel, Switzerland
| |
Collapse
|
13
|
Balch AL, Winkler K. Two-Component Polymeric Materials of Fullerenes and the Transition Metal Complexes: A Bridge between Metal–Organic Frameworks and Conducting Polymers. Chem Rev 2016; 116:3812-82. [DOI: 10.1021/acs.chemrev.5b00553] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Alan L. Balch
- Department
of Chemistry, University of California, Davis, California 95616, United States
| | - Krzysztof Winkler
- Institute
of Chemistry, University of Bialystok, Hurtowa 1, 15-399 Bialystok, Poland
| |
Collapse
|
14
|
Hoff B, Henry CR, Barth C. Charging C60 islands with the AFM tip. NANOSCALE 2016; 8:411-419. [PMID: 26617348 DOI: 10.1039/c5nr04541j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We show that electrons can be transferred on demand from an AFM tip into single bulk-like C60 islands, which are supported on the insulating NaCl(001) surface. We exemplify this by controlled charge-manipulation experiments conducted in ultrahigh vacuum by noncontact AFM (nc-AFM), electrostatic force microscopy (EFM) and Kelvin probe force microscopy (KPFM). KPFM shows a homogeneous contrast at the islands, which is a signature for an equal distribution of the electrons in the T1u band. The charge dissipates during half a day due to an interaction of the charged C60 islands with defects in the near surface region of NaCl. Our results open the perspective in photo-voltaics to study charge attachment, stability and charge exchange with the environment of any C60 bulk-like system.
Collapse
Affiliation(s)
- Brice Hoff
- CNRS, Aix-Marseille University, CINaM UMR 7325, Campus de Luminy, Case 913, 13288 Marseille Cedex 09, France.
| | - Claude R Henry
- CNRS, Aix-Marseille University, CINaM UMR 7325, Campus de Luminy, Case 913, 13288 Marseille Cedex 09, France.
| | - Clemens Barth
- CNRS, Aix-Marseille University, CINaM UMR 7325, Campus de Luminy, Case 913, 13288 Marseille Cedex 09, France.
| |
Collapse
|
15
|
Müller K, Moreno-López JC, Gottardi S, Meinhardt U, Yildirim H, Kara A, Kivala M, Stöhr M. Cyano-Functionalized Triarylamines on Coinage Metal Surfaces: Interplay of Intermolecular and Molecule-Substrate Interactions. Chemistry 2015; 22:581-9. [PMID: 26636437 DOI: 10.1002/chem.201503205] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Indexed: 11/09/2022]
Abstract
The self-assembly of cyano-functionalized triarylamine derivatives on Cu(111), Ag(111) and Au(111) was studied by means of scanning tunnelling microscopy, low-energy electron diffraction, X-ray photoelectron spectroscopy and density functional theory calculations. Different bonding motifs, such as antiparallel dipolar coupling, hydrogen bonding and metal coordination, were observed. Whereas on Ag(111) only one hexagonally close-packed pattern stabilized by hydrogen bonding is observed, on Au(111) two different partially porous phases are present at submonolayer coverage, stabilized by dipolar coupling, hydrogen bonding and metal coordination. In contrast to the self-assembly on Ag(111) and Au(111), for which large islands are formed, on Cu(111), only small patches of hexagonally close-packed networks stabilized by metal coordination and areas of disordered molecules are found. The significant variety in the molecular self-assembly of the cyano-functionalized triarylamine derivatives on these coinage metal surfaces is explained by differences in molecular mobility and the subtle interplay between intermolecular and molecule-substrate interactions.
Collapse
Affiliation(s)
- Kathrin Müller
- Zernike Institute for Advanced Materials, Nijenborgh 4, 9747AG Groningen (The Netherlands), Fax: (+31) 503637208. .,Current Address: Max Planck Institute for Solid State Research, Heisenbergstrasse 1, 70569 Stuttgart (Germany).
| | - Juan Carlos Moreno-López
- Zernike Institute for Advanced Materials, Nijenborgh 4, 9747AG Groningen (The Netherlands), Fax: (+31) 503637208
| | - Stefano Gottardi
- Zernike Institute for Advanced Materials, Nijenborgh 4, 9747AG Groningen (The Netherlands), Fax: (+31) 503637208
| | - Ute Meinhardt
- Chair of Organic Chemistry 1, Department of Chemistry and Pharmacy, University of Erlangen-Nürnberg, Henkestrasse 42, 91054 Erlangen (Germany), Fax: (+49) 9131-8526865
| | - Handan Yildirim
- Department of Physics, University of Central Florida, Orlando, Florida 32816 (USA)
| | - Abdelkader Kara
- Department of Physics, University of Central Florida, Orlando, Florida 32816 (USA)
| | - Milan Kivala
- Chair of Organic Chemistry 1, Department of Chemistry and Pharmacy, University of Erlangen-Nürnberg, Henkestrasse 42, 91054 Erlangen (Germany), Fax: (+49) 9131-8526865.
| | - Meike Stöhr
- Zernike Institute for Advanced Materials, Nijenborgh 4, 9747AG Groningen (The Netherlands), Fax: (+31) 503637208.
| |
Collapse
|
16
|
Gruznev DV, Bondarenko LV, Tupchaya AY, Matetskiy AV, Zotov AV, Saranin AA. Incommensurate superstructure in heavily doped fullerene layer on Bi/Si(111) surface. J Chem Phys 2015; 143:074707. [DOI: 10.1063/1.4928866] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- D. V. Gruznev
- Institute of Automation and Control Processes, 690041 Vladivostok, Russia
- Far Eastern Federal University, 690950 Vladivostok, Russia
| | - L. V. Bondarenko
- Institute of Automation and Control Processes, 690041 Vladivostok, Russia
- Far Eastern Federal University, 690950 Vladivostok, Russia
| | - A. Y. Tupchaya
- Institute of Automation and Control Processes, 690041 Vladivostok, Russia
| | - A. V. Matetskiy
- Institute of Automation and Control Processes, 690041 Vladivostok, Russia
- Far Eastern Federal University, 690950 Vladivostok, Russia
| | - A. V. Zotov
- Institute of Automation and Control Processes, 690041 Vladivostok, Russia
- Far Eastern Federal University, 690950 Vladivostok, Russia
- Vladivostok State University of Economics and Service, 690600 Vladivostok, Russia
| | - A. A. Saranin
- Institute of Automation and Control Processes, 690041 Vladivostok, Russia
- Far Eastern Federal University, 690950 Vladivostok, Russia
| |
Collapse
|
17
|
Paßens M, Waser R, Karthäuser S. Enhanced fullerene-Au(111) coupling in (2√3 × 2√3)R30° superstructures with intermolecular interactions. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2015; 6:1421-1431. [PMID: 26199846 PMCID: PMC4505183 DOI: 10.3762/bjnano.6.147] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 06/01/2015] [Indexed: 06/07/2023]
Abstract
Disordered and uniform (2√3 × 2√3)R30° superstructures of fullerenes on the Au(111) surface have been studied using scanning tunneling microscopy and spectroscopy. It is shown that the deposition and growth process of a fullerene monolayer on the Au(111) surface determine the resulting superstructure. The supply of thermal energy is of importance for the activation of a Au vacancy forming process and thus, one criterion for the selection of the respective superstructure. However, here it is depicted that a vacancy-adatom pair can be formed even at room temperature. This latter process results in C60 molecules that appear slightly more bright in scanning tunnelling microscopy images and are identified in disordered (2√3 x 2√3)R30° superstructures based on a detailed structure analysis. In addition, these slightly more bright C60 molecules form uniform (2√3 x 2√3)R30° superstructures, which exhibit intermolecular interactions, likely mediated by Au adatoms. Thus, vacancy-adatom pairs forming at room temperature directly affect the resulting C60 superstructure. Differential conductivity spectra reveal a lifting of the degeneracy of the LUMO and LUMO+1 orbitals in the uniform (2√3 x 2√3)R30° superstructure and in addition, hybrid fullerene-Au(111) surface states suggest partly covalent interactions.
Collapse
Affiliation(s)
- Michael Paßens
- Peter Grünberg Institut (PGI-7) and JARA-FIT, Forschungszentrum Jülich GmbH, 52428 Jülich, Germany
| | - Rainer Waser
- Peter Grünberg Institut (PGI-7) and JARA-FIT, Forschungszentrum Jülich GmbH, 52428 Jülich, Germany
- IWE 2 and JARA-FIT, RWTH Aachen University, Sommerfeldstraße 24, 52056 Aachen, Germany
| | - Silvia Karthäuser
- Peter Grünberg Institut (PGI-7) and JARA-FIT, Forschungszentrum Jülich GmbH, 52428 Jülich, Germany
| |
Collapse
|
18
|
Jin W, Liu Q, Dougherty DB, Cullen WG, Reutt-Robey JE, Weeks J, Robey SW. C60 chain phases on ZnPc/Ag(111) surfaces: Supramolecular organization driven by competing interactions. J Chem Phys 2015; 142:101910. [DOI: 10.1063/1.4906044] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- W. Jin
- Department of Chemistry and Biochemistry, University of Maryland at College Park, College Park, Maryland 20742, USA
| | - Q. Liu
- Institute for Physical Science and Technology, University of Maryland, College Park, Maryland 20742, USA
| | - D. B. Dougherty
- Department of Physics, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - W. G. Cullen
- Department of Physics, University of Maryland at College Park, College Park, Maryland 20742, USA
| | - J. E. Reutt-Robey
- Department of Chemistry and Biochemistry, University of Maryland at College Park, College Park, Maryland 20742, USA
| | - J. Weeks
- Institute for Physical Science and Technology, University of Maryland, College Park, Maryland 20742, USA
| | - S. W. Robey
- National Institute of Standards and Technology, Gaithersburg, Maryland 20878-8372, USA
| |
Collapse
|
19
|
Randel JC, Niestemski FC, Botello-Mendez AR, Mar W, Ndabashimiye G, Melinte S, Dahl JEP, Carlson RMK, Butova ED, Fokin AA, Schreiner PR, Charlier JC, Manoharan HC. Unconventional molecule-resolved current rectification in diamondoid-fullerene hybrids. Nat Commun 2014; 5:4877. [PMID: 25202942 PMCID: PMC4164769 DOI: 10.1038/ncomms5877] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Accepted: 07/31/2014] [Indexed: 02/05/2023] Open
Abstract
The unimolecular rectifier is a fundamental building block of molecular electronics. Rectification in single molecules can arise from electron transfer between molecular orbitals displaying asymmetric spatial charge distributions, akin to p-n junction diodes in semiconductors. Here we report a novel all-hydrocarbon molecular rectifier consisting of a diamantane-C60 conjugate. By linking both sp(3) (diamondoid) and sp(2) (fullerene) carbon allotropes, this hybrid molecule opposingly pairs negative and positive electron affinities. The single-molecule conductances of self-assembled domains on Au(111), probed by low-temperature scanning tunnelling microscopy and spectroscopy, reveal a large rectifying response of the molecular constructs. This specific electronic behaviour is postulated to originate from the electrostatic repulsion of diamantane-C60 molecules due to positively charged terminal hydrogen atoms on the diamondoid interacting with the top electrode (scanning tip) at various bias voltages. Density functional theory computations scrutinize the electronic and vibrational spectroscopic fingerprints of this unique molecular structure and corroborate the unconventional rectification mechanism.
Collapse
Affiliation(s)
- Jason C Randel
- 1] SLAC National Accelerator Laboratory, Stanford Institute for Materials and Energy Sciences, Menlo Park, California 94025, USA [2] Department of Applied Physics, Stanford University, Stanford, California 94305, USA
| | - Francis C Niestemski
- 1] SLAC National Accelerator Laboratory, Stanford Institute for Materials and Energy Sciences, Menlo Park, California 94025, USA [2] Department of Physics, Stanford University, Stanford, California 94305, USA
| | - Andrés R Botello-Mendez
- Institute of Condensed Matter and Nanosciences, Université catholique de Louvain, B-1348 Louvain-La-Neuve, Belgium
| | - Warren Mar
- Department of Electrical Engineering, Stanford University, Stanford, California 94305, USA
| | - Georges Ndabashimiye
- 1] SLAC National Accelerator Laboratory, Stanford Institute for Materials and Energy Sciences, Menlo Park, California 94025, USA [2] Department of Applied Physics, Stanford University, Stanford, California 94305, USA
| | - Sorin Melinte
- Institute of Information and Communication Technologies, Electronics and Applied Mathematics, Université catholique de Louvain, B-1348 Louvain-La-Neuve, Belgium
| | - Jeremy E P Dahl
- SLAC National Accelerator Laboratory, Stanford Institute for Materials and Energy Sciences, Menlo Park, California 94025, USA
| | - Robert M K Carlson
- SLAC National Accelerator Laboratory, Stanford Institute for Materials and Energy Sciences, Menlo Park, California 94025, USA
| | - Ekaterina D Butova
- Institute of Organic Chemistry, Justus-Liebig University, Heinrich-Buff-Ring 58, 35392 Giessen, Germany
| | - Andrey A Fokin
- 1] Institute of Organic Chemistry, Justus-Liebig University, Heinrich-Buff-Ring 58, 35392 Giessen, Germany [2] Department of Organic Chemistry, Kiev Polytechnic Institute, UA-03056 Kiev, Ukraine
| | - Peter R Schreiner
- Institute of Organic Chemistry, Justus-Liebig University, Heinrich-Buff-Ring 58, 35392 Giessen, Germany
| | - Jean-Christophe Charlier
- Institute of Condensed Matter and Nanosciences, Université catholique de Louvain, B-1348 Louvain-La-Neuve, Belgium
| | - Hari C Manoharan
- 1] SLAC National Accelerator Laboratory, Stanford Institute for Materials and Energy Sciences, Menlo Park, California 94025, USA [2] Department of Physics, Stanford University, Stanford, California 94305, USA
| |
Collapse
|
20
|
Meyerbröker N, Zharnikov M. Ultraflexible, freestanding nanomembranes based on poly(ethylene glycol). ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2014; 26:3328-3332. [PMID: 24677589 DOI: 10.1002/adma.201305480] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 12/23/2013] [Indexed: 06/03/2023]
Abstract
Extremely elastic and highly stable nanomembranes of variable thickness (5-350 nm) made completely of poly(ethylene glycol) are prepared by a simple procedure. The membranes exhibit distinct biorepulsive and hydrogel properties. They offer new possibilities for applications such as supports in transmission electron microscopy, matrices for inorganic nanoparticles, and pressure-sensitive elements for sensors.
Collapse
Affiliation(s)
- Nikolaus Meyerbröker
- Institut für Angewandte Physikalische Chemie, Universität Heidelberg, INF 253, 69120, Heidelberg, Germany
| | | |
Collapse
|
21
|
Chen T, Wang D, Gan LH, Matsuo Y, Gu JY, Yan HJ, Nakamura E, Wan LJ. Direct Probing of the Structure and Electron Transfer of Fullerene/Ferrocene Hybrid on Au(111) Electrodes by in Situ Electrochemical STM. J Am Chem Soc 2014; 136:3184-91. [DOI: 10.1021/ja411813r] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Ting Chen
- Key
Laboratory of Molecular Nanostructure and Nanotechnology and Beijing
National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, People’s Republic of China
| | - Dong Wang
- Key
Laboratory of Molecular Nanostructure and Nanotechnology and Beijing
National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, People’s Republic of China
| | - Li-Hua Gan
- School
of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People’s Republic of China
| | - Yutaka Matsuo
- Department
of Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Jing-Ying Gu
- Key
Laboratory of Molecular Nanostructure and Nanotechnology and Beijing
National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, People’s Republic of China
- University of CAS, Beijing 100049, People’s Republic of China
| | - Hui-Juan Yan
- Key
Laboratory of Molecular Nanostructure and Nanotechnology and Beijing
National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, People’s Republic of China
| | - Eiichi Nakamura
- Department
of Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Li-Jun Wan
- Key
Laboratory of Molecular Nanostructure and Nanotechnology and Beijing
National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, People’s Republic of China
| |
Collapse
|
22
|
Sautet P, Bocquet ML. Imaging Molecules with the Scanning Tunneling Microscope: A Theoretical Interpretation of Benzene on Platinum. Isr J Chem 2013. [DOI: 10.1002/ijch.199600009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
23
|
Lutz T, Grosse C, Dette C, Kabakchiev A, Schramm F, Ruben M, Gutzler R, Kuhnke K, Schlickum U, Kern K. Molecular orbital gates for plasmon excitation. NANO LETTERS 2013; 13:2846-2850. [PMID: 23688309 DOI: 10.1021/nl401177b] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Future combinations of plasmonics with nanometer-sized electronic circuits require strategies to control the electrical excitation of plasmons at the length scale of individual molecules. A unique tool to study the electrical plasmon excitation with ultimate resolution is scanning tunneling microscopy (STM). Inelastic tunnel processes generate plasmons in the tunnel gap that partially radiate into the far field where they are detectable as photons. Here we employ STM to study individual tris-(phenylpyridine)-iridium complexes on a C60 monolayer, and investigate the influence of their electronic structure on the plasmon excitation between the Ag(111) substrate and an Ag-covered Au tip. We demonstrate that the highest occupied molecular orbital serves as a spatially and energetically confined nanogate for plasmon excitation. This opens the way for using molecular tunnel junctions as electrically controlled plasmon sources.
Collapse
Affiliation(s)
- Theresa Lutz
- Max-Planck-Institut für Festkörperforschung, Heisenbergstrasse 1, 70569 Stuttgart, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Bozhko SI, Krasnikov SA, Lübben O, Murphy BE, Radican K, Semenov VN, Wu HC, Levchenko EA, Chaika AN, Sergeeva NN, Shvets IV. Correlation between charge-transfer and rotation of C60 on WO2/W(110). NANOSCALE 2013; 5:3380-3386. [PMID: 23467592 DOI: 10.1039/c3nr34087b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Understanding molecular switching between different charge states is crucial to further progress in molecule-based nano-electronic devices. Herein we have employed scanning tunnelling microscopy to visualize different charge states of a single C60 molecule within a molecular layer grown on the WO2/W(110) surface. The results obtained demonstrate that individual C60 molecules within the layer switch between neutral and negatively charged states in the temperature range of 220-260 K over the time scale of the experiment. The charging of the C60 causes changes in the local density of electron states and consequently a variation in tunnelling current. Using density functional theory calculations, it was found that the charged state corresponds to the negatively charged C60(-), which has accepted an electron. The switching of the molecule into the charged state is triggered continuously by tunnelling electrons when the STM tip is static above an individual C60 molecule with a bias applied. Molecular movement accompanies the molecule's switching between these states.
Collapse
Affiliation(s)
- Sergey I Bozhko
- Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), School of Physics, Trinity College Dublin, Dublin 2, Ireland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Lörtscher E, Geskin V, Gotsmann B, Fock J, Sørensen JK, Bjørnholm T, Cornil J, van der Zant HSJ, Riel H. Bonding and electronic transport properties of fullerene and fullerene derivatives in break-junction geometries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2013; 9:209-214. [PMID: 23008229 DOI: 10.1002/smll.201201688] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Indexed: 06/01/2023]
Abstract
Fullerenes are considered anchoring groups for molecular electronics due to a large contact area and their affinity for noble metals. The conductances of fullerene-terminated molecules, however, are found to be even lower than for thiol termination. The effects of weak molecule-metal coupling and symmetry breaking are studied by transport measurements of C(60) and functionalized C(60). The results demonstrate highy efficient contacts between Au and C(60), despite of deposition from solution.
Collapse
Affiliation(s)
- Emanuel Lörtscher
- IBM Research-Zurich, Säumerstrasse 4, CH-8803 Rüschlikon, Switzerland.
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Yoshimoto S, Itaya K. Adsorption and assembly of ions and organic molecules at electrochemical interfaces: nanoscale aspects. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2013; 6:213-235. [PMID: 23772658 DOI: 10.1146/annurev-anchem-062012-092559] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
We describe the history of electrochemical scanning tunneling microscopy (STM) and advances made in this field during the past 20 years. In situ STM allows one to monitor various electrode processes, such as the underpotential deposition of copper and silver ions; the specific adsorption of iodine and sulfate/bisulfate ions; electrochemical dissolution processes of silicon and gold single-crystal surfaces in electrolyte solutions; and the molecular assembly of metalloporphyrins, metallophthalocyanines, and fullerenes, at atomic and/or molecular resolution. Furthermore, a laser confocal microscope, combined with a differential interference contrast microscope, enables investigation of the dynamics of electrochemical processes at atomic resolution.
Collapse
Affiliation(s)
- Soichiro Yoshimoto
- Priority Organization for Innovation and Excellence, Kumamoto University, Kumamoto 860-8555, Japan
| | | |
Collapse
|
27
|
Tang L, Xie Y, Guo Q. Probing the buried C60/Au(111) interface with atoms. J Chem Phys 2012; 136:214706. [PMID: 22697565 DOI: 10.1063/1.4726456] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
To characterize the C(60)/Au(111) interface, we send Au atoms "diving" through the C(60) layer and observe their behavior at the interface. Our observations show that the interfacial diffusion of gold atoms and the nucleation of small Au islands at the interface are strongly dependent on the local C(60)-Au(111) bonding which varies from one domain to another. The contrast-disordered domain consisting of a large fraction of molecules bonded to Au vacancies has a special structure at the interface allowing Au atoms to be inserted beneath the bright-looking molecules while the dim molecules present a much stronger resistance to the diffusing Au atoms. This leads to the formation of isolated Au islands with discrete sizes, with the smallest island just about 1 nm across.
Collapse
Affiliation(s)
- Lin Tang
- School of Physics and Astronomy, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | | | | |
Collapse
|
28
|
Burson KM, Wei Y, Cullen WG, Fuhrer MS, Reutt-Robey JE. Potential steps at C₆₀-TiOPc-Ag(111) interfaces: ultrahigh-vacuum-noncontact scanning probe metrology. NANO LETTERS 2012; 12:2859-2864. [PMID: 22563861 DOI: 10.1021/nl3004607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Nanoscale structure-electric potential relations in films of the organic molecular semiconductors C(60) and titanyl phthalocyanine (TiOPc) on Ag(111) have been measured under UHV conditions. Noncontact force methods were utilized to image domain structures and boundaries with molecular resolution, while simultaneously quantifying the local surface electric potential. Sensitivity and spatial resolution for the local potential measurement were first established on Ag(111) through direct observation of the electrical dipole and potential step, φ(step) = 10 ± 3 mV, of monatomic crystallographic steps. A local surface potential increase of 27 ± 11 mV occurs upon crossing the boundary between the neat Ag(111) surface and C(60) islands. Potential steps in binary C(60)-TiOPc films, nanophase-separated into crystalline C(60) and TiOPc domains, were then mapped quantitatively. The 207 ± 66 mV potential step across the C(60)-to-TiOPc domain boundary exhibits a 3.6 nm width that reflects the spatial resolution for electric potential across a material interface. The absence of potential asymmetry across this lateral interface sets the upper bound for the C(60)-TiOPc interface dipole moment as 0.012 e nm.
Collapse
Affiliation(s)
- Kristen M Burson
- Center for Nanophysics and Advanced Materials, University of Maryland, College Park, Maryland 20742-2111, United States
| | | | | | | | | |
Collapse
|
29
|
Nakayama M, Kautz NA, Wang T, Sibener SJ. Formation of rectangular packing and one-dimensional lines of C60 on 11-phenoxyundecanethiol self-assembled monolayers on Au(111). LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:4694-4701. [PMID: 22385008 DOI: 10.1021/la204986n] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The behavior of C(60) molecules deposited onto 11-phenoxyundecanethiol (phenoxy) self-assembled monolayers (SAMs) is studied using ultrahigh vacuum scanning tunneling microscopy (UHV-STM) and spectroscopy. We observe that after thermally annealing between 350 and 400 K in vacuum a combination of hexagonally close-packed islands, rectangularly packed islands, and isolated single lines of C(60) is observed when the C(60) is initially deposited on an unannealed phenoxy SAM. However, only rectangularly packed islands are found when they are deposited on a preannealed phenoxy SAM. We determine the rectangular packing to have a (2√3 × 4) rectangular unit cell with respect to the underlying Au(111) substrate. This type of C(60) structure has not been observed previously for multicomponent self-assemblies on a surface. We discuss the possible causes for the formation of this structure as well as the differences between starting on an unannealed SAM and an annealed one. This study demonstrates the capability of functionalized alkanethiol SAMs to control the growth and structure of C(60) islands during annealing depending on the structural changes of the SAM itself; by preannealing the SAM, the motion of the C(60) can be confined and unique structures resulting from interactions between the SAM molecules and C(60) can be produced.
Collapse
Affiliation(s)
- Miki Nakayama
- The James Franck Institute and Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | | | | | | |
Collapse
|
30
|
Yoshimoto S, Itaya K. Advances in supramolecularly assembled nanostructures of fullerenes and porphyrins at surfaces. J PORPHYR PHTHALOCYA 2012. [DOI: 10.1142/s1088424607000369] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The ‘bottom-up’ strategy is an attractive and promising approach for the construction of nanoarchitectures. Supramolecular assemblies based on non-covalent interactions have been explored in an attempt to control surface properties. In this minireview, we focus on advances made in the past three years in the field of scanning tunneling microscopy (STM) on supramolecular assembly and the function of porphyrins, phthalocyanines, and fullerenes, non-covalently bound on metal single crystal surfaces. Well-defined adlayers, consisting of porphyrin and phthalocyanine for the design of supramolecular nanoarchitectures, supramolecular traps of C 60 on hydrogen bond networks, a unique approach for controlling molecular orientation by a 1:1 supramolecularly assembled film consisting of C 60 and the related derivatives and metallooctaethylporphyrins, and nanoapplications of fullerenes, either induced by tip manipulation or driven by thermal fluctuations at surfaces, were clearly visualized by STM.
Collapse
Affiliation(s)
- Soichiro Yoshimoto
- National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | - Kingo Itaya
- Department of Applied Chemistry, Graduate School of Engineering, Tohoku University, 6-6-07 Aoba, Sendai 980-8579, Japan
| |
Collapse
|
31
|
Lee SL, Chu YC, Wu HJ, Chen CH. Template-assisted assembly: scanning tunneling microscopy study of solvent-dependent adlattices of alkyl-derivatized tetrathiafulvalene. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:382-388. [PMID: 22077481 DOI: 10.1021/la203148h] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The self-assembly of an adsorbate as a function of the strength of solvent-substrate adsorption is an important yet relatively unexplored subject. In this study, how the strength of solvent-substrate adsorption and solvent-solvent attraction affects the assembly of tetrakis(octadecylthio)tetrathiafulvalene (1) is scrutinized by scanning tunneling microscopy (STM). For solvents with strong intermolecular interactions and adsorption onto graphite, such as long n-alkanes (C(n)H(2n+2), n ≥ 13), STM reveals that the solvent molecules form lamellae which become a template to direct the assembly of 1 into one-dimensional arrays. The lengths of one of the unit cell vectors for the assemblies are increased and well correlated with the solvent sizes. In situ STM monitoring of 1 introduced onto graphite with preadsorbed n-tetradecane adlattices shows that the developed assemblies of 1 have striped features aligned parallel to the underlying template. In contrast, for solvents with weak adsorption, such as short n-alkanes (C(n)H(2n+2), n ≤ 12), toluene, and 1,2,4-trichlorobenzene, the adlattice structures of 1 are solvent-independent.
Collapse
Affiliation(s)
- Shern-Long Lee
- Department of Chemistry, Center for Emerging Material and Advanced Devices, National Taiwan University, Taipei, Taiwan 10617
| | | | | | | |
Collapse
|
32
|
Tang L, Xie Y, Guo Q. Complex orientational ordering of C60 molecules on Au(111). J Chem Phys 2012; 135:114702. [PMID: 21950878 DOI: 10.1063/1.3639106] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The orientation and adsorption site for C(60) molecules on Au(111) has been studied using low temperature scanning tunneling microscopy. A complex orientational ordering has been observed for molecules inside the "in-phase" (R0°) domain. A 7-molecule cluster consisting a central molecule sitting atop of a gold atom and 6 tilted surrounding molecules is identified as the structural motif. The 2√3 × 2√3-R30° phase consists of molecules bonding to a gold atomic vacancies with a preferred azimuthal orientation. The quasi-periodic R14° phase is composed of groups of similarly oriented molecules with the groups organized into a 4√3 × 4√3-R30° like super-lattice unit cell.
Collapse
Affiliation(s)
- Lin Tang
- School of Physics and Astronomy, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | | | | |
Collapse
|
33
|
Wei Y, Reutt-Robey JE. Directed Organization of C70 Kagome Lattice by Titanyl Phthalocyanine Monolayer Template. J Am Chem Soc 2011; 133:15232-5. [DOI: 10.1021/ja206175c] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yinying Wei
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Janice E. Reutt-Robey
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
34
|
Rud Y, Buchatskyy L, Prylutskyy Y, Marchenko O, Senenko A, Schütze C, Ritter U. Using C60 fullerenes for photodynamic inactivation of mosquito iridescent viruses. J Enzyme Inhib Med Chem 2011; 27:614-7. [PMID: 21883040 DOI: 10.3109/14756366.2011.601303] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
This article describes the photodynamic inactivation of mosquito iridescent virus (MIV) Aedes flavescens in the presence of water-soluble C(60) fullerenes. It has been observed that the photodynamic inactivation of MIV for about 1 h reduces the infectious titre of the virus in large wax-moth larvae Galleria mellonella to 4.5 lg ID(50)/mL. The influence of the C(60) concentration on its anti-viral activity was tested in the concentration range from 1 to 0.001 mg/mL. It has been found that C(60) is able to inactivate the iridovirus even in low concentrations. Consequently, the findings of this work suggest that photoexcited C(60) fullerenes can be successfully used for the inactivation of iridoviruses in biological systems.
Collapse
Affiliation(s)
- Yu Rud
- Kyiv National Taras Shevchenko University, Institute of Biology, Kyiv, Ukraine
| | | | | | | | | | | | | |
Collapse
|
35
|
Li B, Li Z, Yang J, Hou JG. STM studies of single molecules: molecular orbital aspects. Chem Commun (Camb) 2011; 47:2747-62. [DOI: 10.1039/c0cc03021j] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
36
|
Cheng HP. Working at the interface. Mol Phys 2010. [DOI: 10.1080/00268976.2010.524670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
37
|
Abstract
Molecular electronic devices currently serve as a platform for studying a variety of physical phenomena only accessible at the nanometer scale. One such phenomenon is the highly correlated electronic state responsible for the Kondo effect, manifested here as a "Kondo resonance" in the conductance. Because the Kondo effect results from strong electron-electron interactions, it is not captured by the usual quantum chemistry approaches traditionally applied to understand chemical electron transfer. In this review, we will discuss the origins and phenomenology of Kondo resonances observed in single-molecule devices, focusing primarily on the spin-1/2 Kondo state arising from a single unpaired electron. We explore the rich physical system of a single-molecule device, which offers a unique spectroscopic tool for investigating the interplay of emergent Kondo behavior and such properties as molecular orbital transitions and vibrational modes. We will additionally address more exotic systems, such as higher spin states in the Kondo regime, and we will review recent experimental advances in the ability to manipulate and exert control over these nanoscale devices.
Collapse
Affiliation(s)
- Gavin David Scott
- Department of Physics and Astronomy, Rice University, Houston, TX 77005, USA.
| | | |
Collapse
|
38
|
Su G, Jia M, Gan L, Shi R. ECSTM study of adsorption of C60, C70, C86 and Y@C82 on Au(111). Sci China Chem 2010. [DOI: 10.1007/s11426-010-3097-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
39
|
Wen J, Ma J. Oligothiophene template effects on packings and orientations of C60 molecules on Ag(111) surface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2010; 26:5595-5602. [PMID: 20014853 DOI: 10.1021/la903869g] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The packing conformations of sexithiophene (6T) and the orientations of the C(60) molecules on top of the preadsorbed 6T monolayer on Ag(111) surface have been investigated by the molecular dynamics simulations (on the basis of molecular mechanics) in conjunction with quantum mechanics calculations of the relative strength of intermolecular and interfacial interactions. It is demonstrated that the flat-lying oligothiophene (nT, n = 4 and 6) monolayer is formed on the Ag(111) surface, and the arrangement of 6T molecules is more ordered than that in 4T film. It is also shown that the underlying 6T stripes make C(60) molecules aggregate in chainlike arrays on the 6T covered Ag(111) surface, showing significant template effects on the directed self-assembly of C(60) cages. For the absorbed C(60) molecule on the 6T prepatterned Ag(111) surface, four typical orientations, hexagon, pentagon, 6:6 bond, and 5:6 bond, are found to appear with populations of 26.3%, 2.7%, 37.5%, and 18.8%, respectively. When the deposition order is changed, the 6T stripes are shown to tilt with corrugation on the underlying C(60) carpet, revealing the important role of the deposition order in modulation of the ordered supramolecular nanostructures.
Collapse
Affiliation(s)
- Jin Wen
- Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, PR China
| | | |
Collapse
|
40
|
Li L, Wu YN, Cheng HP. First-principles calculations of Fe-doped monolayer C60 on h-BN/Ni(111) surface. J Chem Phys 2010; 132:074702. [DOI: 10.1063/1.3291080] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
41
|
Abstract
Many large molecular complexes are limited in thin film applications by their insufficient thermal stability, which excludes deposition via commonly used vapour phase deposition methods. Here we demonstrate an alternative way of monolayer formation of large molecules by a simple spray coating method under ambient conditions. This technique has been successfully applied on C(60) dissolved in toluene and carbon disulfide. Monolayer thick C(60) films have been formed on graphite and gold surfaces at particular deposition parameters, as confirmed by atomic force and scanning tunnelling microscopies. Structural and electronic properties of spray coated C(60) films on Au(111) have been found comparable to thermally evaporated C(60). We attribute the monolayer formation in spray coating to a crystallization process mediated by an ultrathin solution film on a sample surface.
Collapse
Affiliation(s)
- J Cervenka
- Institute of Physics, Academy of Sciences of the Czech Republic, Prague 6, Czech Republic
| | | |
Collapse
|
42
|
Jin W, Dougherty DB, Cullen WG, Robey S, Reutt-Robey JE. C60-pentacene network formation by 2-D co-crystallization. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2009; 25:9857-9862. [PMID: 19456180 DOI: 10.1021/la900968d] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
We report experiments highlighting the mechanistic role of mobile pentacene precursors in the formation of a network C(60)-pentacene co-crystalline structure on Ag(111). This co-crystalline arrangement was first observed by low temperature scanning tunneling microscopy (STM) by Zhang et al. (Zhang, H. L.; Chen, W.; Huang, H.; Chen, L.; Wee, A. T. S. J. Am. Chem. Soc. 2008, 130, 2720-2721). We now show that this structure forms readily at room temperature from a two-dimensional (2-D) mixture. Pentacene, evaporated onto Ag(111) to coverages of 0.4-1.0 ML, produces a two-dimensional (2-D) gas. Subsequently deposited C(60) molecules combine with the pentacene 2-D gas to generate a network structure, consisting of chains of close-packed C(60) molecules, spaced by individual C(60) linkers and 1 nm x 2.5 nm pores containing individual pentacene molecules. Spontaneous formation of this stoichiometric (C(60))(4)-pentacene network from a range of excess pentacene surface coverage (0.4 to 1.0 ML) indicates a self-limiting assembly process. We refine the structure model for this phase and discuss the generality of this co-crystallization mechanism.
Collapse
Affiliation(s)
- Wei Jin
- Department of Chemistry and Biochemistry, University of Maryland, College Park 20742, USA
| | | | | | | | | |
Collapse
|
43
|
Li HI, Pussi K, Hanna KJ, Wang LL, Johnson DD, Cheng HP, Shin H, Curtarolo S, Moritz W, Smerdon JA, McGrath R, Diehl RD. Surface geometry of C(60) on Ag(111). PHYSICAL REVIEW LETTERS 2009; 103:056101. [PMID: 19792515 DOI: 10.1103/physrevlett.103.056101] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2009] [Indexed: 05/28/2023]
Abstract
The geometry of adsorbed C(60) influences its collective properties. We report the first dynamical low-energy electron diffraction study to determine the geometry of a C(60) monolayer, Ag(111)-(2 square root of 3 x 2 square root of 3) 30 degrees -C(60), and related density functional theory calculations. The stable monolayer has C(60) molecules in vacancies that result from the displacement of surface atoms. C(60) bonds with hexagons down, with their mirror planes parallel to that of the substrate. The results indicate that vacancy structures are the rule rather than the exception for C(60) monolayers on close-packed metal surfaces.
Collapse
Affiliation(s)
- H I Li
- Department of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Zhang EY, Wang CR. Fullerene self-assembly and supramolecular nanostructures. Curr Opin Colloid Interface Sci 2009. [DOI: 10.1016/j.cocis.2007.10.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
45
|
Sánchez L, Otero R, Gallego JM, Miranda R, Martín N. Ordering Fullerenes at the Nanometer Scale on Solid Surfaces. Chem Rev 2009; 109:2081-91. [DOI: 10.1021/cr800441b] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Luis Sánchez
- Departamento de Química Orgánica, Facultad de C.C. Químicas, Universidad Complutense de Madrid, 28040 Madrid, Departamento de Física de la Materia Condensada, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Instituto Madrileño de Estudios Avanzados en Nanociencia, IMDEA-Nanociencia, 28049 Madrid, and Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas, Cantoblanco, 28049 Madrid, Spain
| | - Roberto Otero
- Departamento de Química Orgánica, Facultad de C.C. Químicas, Universidad Complutense de Madrid, 28040 Madrid, Departamento de Física de la Materia Condensada, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Instituto Madrileño de Estudios Avanzados en Nanociencia, IMDEA-Nanociencia, 28049 Madrid, and Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas, Cantoblanco, 28049 Madrid, Spain
| | - José María Gallego
- Departamento de Química Orgánica, Facultad de C.C. Químicas, Universidad Complutense de Madrid, 28040 Madrid, Departamento de Física de la Materia Condensada, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Instituto Madrileño de Estudios Avanzados en Nanociencia, IMDEA-Nanociencia, 28049 Madrid, and Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas, Cantoblanco, 28049 Madrid, Spain
| | - Rodolfo Miranda
- Departamento de Química Orgánica, Facultad de C.C. Químicas, Universidad Complutense de Madrid, 28040 Madrid, Departamento de Física de la Materia Condensada, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Instituto Madrileño de Estudios Avanzados en Nanociencia, IMDEA-Nanociencia, 28049 Madrid, and Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas, Cantoblanco, 28049 Madrid, Spain
| | - Nazario Martín
- Departamento de Química Orgánica, Facultad de C.C. Químicas, Universidad Complutense de Madrid, 28040 Madrid, Departamento de Física de la Materia Condensada, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Instituto Madrileño de Estudios Avanzados en Nanociencia, IMDEA-Nanociencia, 28049 Madrid, and Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas, Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
46
|
Bubnis G, Cleary S, Mayne H. Self-assembly and structural behavior of a model rigid C60-terminated thiolate on Au(111). Chem Phys Lett 2009. [DOI: 10.1016/j.cplett.2009.01.071] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
47
|
Loske F, Bechstein R, Schütte J, Ostendorf F, Reichling M, Kühnle A. Growth of ordered C60 islands on TiO2(110). NANOTECHNOLOGY 2009; 20:065606. [PMID: 19417394 DOI: 10.1088/0957-4484/20/6/065606] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Non-contact atomic force microscopy is used to study C(60) molecules deposited on the rutile TiO(2)(110) surface in situ at room temperature. At submonolayer coverages, molecules adsorb preferentially at substrate step edges. Upon increasing coverage, ordered islands grow from the decorated step edges onto the lower terraces. Simultaneous imaging of bridging oxygen rows of the substrate and the C(60) island structure reveals that the C(60) molecules arrange themselves in a centered rectangular superstructure, with the molecules lying centered in the troughs formed by the bridging oxygen rows. Although the TiO(2)(110) surface exhibits a high density of surface defects, the observed C(60) islands are of high order. This indicates that the C(60) intermolecular interaction dominates over the molecule-substrate interactions that may cause structural perturbations on a defective surface. Slightly protruding C(60) strands on the islands are attributed to anti-phase boundaries due to stacking faults resulting from two islands growing together.
Collapse
Affiliation(s)
- Felix Loske
- Fachbereich Physik, Universität Osnabrück, Osnabrück, Germany
| | | | | | | | | | | |
Collapse
|
48
|
Diaconescu B, Yang T, Berber S, Jazdzyk M, Miller GP, Tománek D, Pohl K. Molecular self-assembly of functionalized fullerenes on a metal surface. PHYSICAL REVIEW LETTERS 2009; 102:056102. [PMID: 19257526 DOI: 10.1103/physrevlett.102.056102] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2008] [Indexed: 05/27/2023]
Abstract
We present a combined experimental and theoretical study of the self-assembly of C60 molecules functionalized with long alkane chains on the (111) surface of silver. We find that the conformation of the functionalized C60 changes upon adsorption on Ag(111) and that the unit cell size in the self-assembled monolayer is determined by the interactions between the functional groups. We show that C60 molecules can be assembled in ordered 2D arrays with intermolecular distances much larger than those in compact C60 layers, and propose a novel way to control the surface pattern by appropriate chemical functionalization.
Collapse
Affiliation(s)
- Bogdan Diaconescu
- Department of Physics and Materials Science Program, University of New Hampshire, Durham, New Hampshire 03824, USA.
| | | | | | | | | | | | | |
Collapse
|
49
|
Electrochemical STM investigation of C70, C60/C70 mixed fullerene and hydrogenated fullerene adlayers on Au(111) prepared using the electrochemical replacement method. J Electroanal Chem (Lausanne) 2008. [DOI: 10.1016/j.jelechem.2008.01.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
50
|
Glowatzki H, Bröker B, Blum RP, Hofmann OT, Vollmer A, Rieger R, Müllen K, Zojer E, Rabe JP, Koch N. "Soft" metallic contact to isolated C60 molecules. NANO LETTERS 2008; 8:3825-9. [PMID: 18954123 DOI: 10.1021/nl8021797] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
C60 adsorbed on a monolayer of hexaazatriphenylene-hexanitrile (HATCN) on Ag(111) is investigated by ultraviolet photoelectron spectroscopy (UPS) and scanning tunneling microscopy. UPS and quantum-mechanical modeling show that HATCN chemisorbed on Ag(111) displays metallic character. This metallic molecular layer decouples C60 electronically from the Ag substrate and simultaneously acts both as template for the stable adsorption of isolated C60 molecules at room temperature and as "soft" metallic contact for subsequently deposited molecules.
Collapse
Affiliation(s)
- Hendrik Glowatzki
- Humboldt-Universität zu Berlin, Institut fur Physik, Newtonstrasse 15, D-12489 Berlin, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|