1
|
Braham A, Lemelle L, Ducasse R, Toukabri H, Mottin E, Fabrèges B, Calvez V, Place C. Surface conversion of the dynamics of bacteria escaping chemorepellents. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2024; 47:56. [PMID: 39278991 PMCID: PMC11402855 DOI: 10.1140/epje/s10189-024-00450-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 09/03/2024] [Indexed: 09/18/2024]
Abstract
Flagellar swimming hydrodynamics confers a recognized advantage for attachment on solid surfaces. Whether this motility further enables the following environmental cues was experimentally explored. Motile E. coli (OD ~ 0.1) in a 100 µm-thick channel were exposed to off-equilibrium gradients set by a chemorepellent Ni(NO3)2-source (250 mM). Single bacterial dynamics at the solid surface was analyzed by dark-field videomicroscopy at a fixed position. The number of bacteria indicated their congregation into a wave escaping from the repellent source. Besides the high velocity drift in the propagation direction within the wave, an unexpectedly high perpendicular component drift was also observed. Swimming hydrodynamics CW-bends the bacteria trajectories during their primo approach to the surface (< 2 µm), and a high enough tumbling frequency likely preserves a notable lateral drift. This comprehension substantiates a survival strategy tailored to toxic environments, which involves drifting along surfaces, promoting the inception of colonization at the most advantageous sites.
Collapse
Affiliation(s)
- Asma Braham
- Laboratoire de Géologie de Lyon-Terre Planètes Et Environnement, ENS de Lyon, University Claude Bernard, CNRS, 69342, Lyon, France
- Laboratoire de Physique, ENS de Lyon, CNRS, 69342, Lyon, France
| | - Laurence Lemelle
- Laboratoire de Géologie de Lyon-Terre Planètes Et Environnement, ENS de Lyon, University Claude Bernard, CNRS, 69342, Lyon, France.
| | - Romain Ducasse
- Laboratoire Jacques-Louis Lions, Université Paris Cité, Sorbonne University, CNRS, 75005, Paris, France
| | - Houyem Toukabri
- Laboratoire de Géologie de Lyon-Terre Planètes Et Environnement, ENS de Lyon, University Claude Bernard, CNRS, 69342, Lyon, France
- Centre for Genomic Regulation, C/ Dr Aiguader, 88, 08003, Barcelone, Spain
| | - Eleonore Mottin
- Laboratoire de Géologie de Lyon-Terre Planètes Et Environnement, ENS de Lyon, University Claude Bernard, CNRS, 69342, Lyon, France
| | - Benoit Fabrèges
- Institut Camille Jordan, University Claude Bernard, CNRS, 69100, Villeurbanne, France
| | - Vincent Calvez
- Institut Camille Jordan, University Claude Bernard, CNRS, 69100, Villeurbanne, France
| | - Christophe Place
- Laboratoire de Physique, ENS de Lyon, CNRS, 69342, Lyon, France.
| |
Collapse
|
2
|
Tiribocchi A, Durve M, Lauricella M, Montessori A, Succi S. Spontaneous motion of a passive fluid droplet in an active microchannel. SOFT MATTER 2023; 19:6556-6568. [PMID: 37599649 PMCID: PMC10467333 DOI: 10.1039/d3sm00561e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 08/08/2023] [Indexed: 08/22/2023]
Abstract
We numerically study the dynamics of a passive fluid droplet confined within a microchannel whose walls are covered with a thin layer of active gel. The latter represents a fluid of extensile material modelling, for example, a suspension of cytoskeletal filaments and molecular motors. Our results show that the layer is capable of producing a spontaneous flow triggering a rectilinear motion of the passive droplet. For a hybrid design (a single wall covered by the active layer), at the steady state the droplet attains an elliptical shape, resulting from an asymmetric saw-toothed structure of the velocity field. In contrast, if the active gel covers both walls, the velocity field exhibits a fully symmetric pattern considerably mitigating morphological deformations. We further show that the structure of the spontaneous flow in the microchannel can be controlled by the anchoring conditions of the active gel at the wall. These findings are also confirmed by selected 3D simulations. Our results may stimulate further research addressed to design novel microfludic devices whose functioning relies on the collective properties of active gels.
Collapse
Affiliation(s)
- Adriano Tiribocchi
- Istituto per le Applicazioni del Calcolo CNR, via dei Taurini 19, 00185 Rome, Italy.
| | - Mihir Durve
- Center for Life Nano Science@La Sapienza, Istituto Italiano di Tecnologia, 00161, Roma, Italy
| | - Marco Lauricella
- Istituto per le Applicazioni del Calcolo CNR, via dei Taurini 19, 00185 Rome, Italy.
| | - Andrea Montessori
- Dipartimento di Ingegneria Civile, Informatica e delle Tecnologie Aeronautiche (DICITA), Università degli studi Roma Tre, Via Vito Volterra 62, 00146 Rome, Italy
| | - Sauro Succi
- Istituto per le Applicazioni del Calcolo CNR, via dei Taurini 19, 00185 Rome, Italy.
- Center for Life Nano Science@La Sapienza, Istituto Italiano di Tecnologia, 00161, Roma, Italy
- Department of Physics, Harvard University, Cambridge, MA, 02138, USA
| |
Collapse
|
3
|
Elius M, Boyle K, Chang WS, Moisander PH, Ling H. Comparison of three-dimensional motion of bacteria with and without wall accumulation. Phys Rev E 2023; 108:014409. [PMID: 37583224 DOI: 10.1103/physreve.108.014409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 07/01/2023] [Indexed: 08/17/2023]
Abstract
A comparison of the movement characteristics between bacteria with and without wall accumulation could potentially elucidate the mechanisms of biofilm formation. However, authors of previous studies have mostly focused on the motion of bacteria that exhibit wall accumulation. Here, we applied digital holographic microscopy to compare the three-dimensional (3D) motions of two bacterial strains (Shewanella japonica UMDC19 and Shewanella sp. UMDC1): one exhibiting higher concentrations near the solid surfaces, and the other showing similar concentrations in near-wall and bulk regions. We found that the movement characteristics of the two strains are similar in the near-wall region but are distinct in the bulk region. Near the wall, both strains have small velocities and mostly perform subdiffusive motions. In the bulk, however, the bacteria exhibiting wall accumulation have significantly higher motility (including faster swimming speeds and longer movement trajectories) than the one showing no wall accumulation. Furthermore, we found that bacteria exhibiting wall accumulation slowly migrate from the bulk region to the near-wall region, and the hydrodynamic effect alone is insufficient to generate this migration speed. Future studies are required to test if the current findings apply to other bacterial species and strains.
Collapse
Affiliation(s)
- Md Elius
- Department of Mechanical Engineering, University of Massachusetts Dartmouth, Dartmouth, Massachusetts 02747, USA
| | - Kenneth Boyle
- Department of Biology, University of Massachusetts Dartmouth, Dartmouth, Massachusetts 02747, USA
| | - Wei-Shun Chang
- Department of Chemistry & Biochemistry, University of Massachusetts Dartmouth, Dartmouth, Massachusetts 02747, USA
| | - Pia H Moisander
- Department of Biology, University of Massachusetts Dartmouth, Dartmouth, Massachusetts 02747, USA
| | - Hangjian Ling
- Department of Mechanical Engineering, University of Massachusetts Dartmouth, Dartmouth, Massachusetts 02747, USA
| |
Collapse
|
4
|
Wang Y, Gao YW, Tian WD, Chen K. Obstacle-induced giant jammed aggregation of active semiflexible filaments. Phys Chem Chem Phys 2022; 24:23779-23789. [PMID: 36156612 DOI: 10.1039/d2cp02819k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Filaments driven by bound motor proteins and chains of self-propelled colloidal particles are a typical example of active polymers (APs). Due to deformability, APs exhibit very rich dynamic behaviors and collective assembling structures. Here, we are concerned with a basic question: how APs behave near a single obstacle? We find that, in the presence of a big single obstacle, the assembly of APs becomes a two-state system, i.e. APs either gather nearly completely together into a giant jammed aggregate (GJA) on the surface of the obstacle or distribute freely in space. No partial aggregation is observed. Such a complete aggregation/collection is unexpected since it happens on a smooth convex surface instead of, e.g., a concave wedge. We find that the formation of a GJA experiences a process of nucleation and the curves of the transition between the GJA and the non-aggregate state form hysteresis-like loops. Statistical analysis of massive data on the growing time, chirality and angular velocity of both the GJAs and the corresponding nuclei shows the strong random nature of the phenomenon. Our results provide new insights into the behavior of APs in contact with porous media and also a reference for the design and application of polymeric active materials.
Collapse
Affiliation(s)
- Ying Wang
- Center for Soft Condensed Matter Physics & Interdisciplinary Research, School of Physical Science and Technology, Soochow University, Suzhou 215006, China.
| | - Yi-Wen Gao
- Center for Soft Condensed Matter Physics & Interdisciplinary Research, School of Physical Science and Technology, Soochow University, Suzhou 215006, China.
| | - Wen-de Tian
- Center for Soft Condensed Matter Physics & Interdisciplinary Research, School of Physical Science and Technology, Soochow University, Suzhou 215006, China.
| | - Kang Chen
- Center for Soft Condensed Matter Physics & Interdisciplinary Research, School of Physical Science and Technology, Soochow University, Suzhou 215006, China. .,School of Physics and Information Engineering, Shanxi Normal University, Linfen 041004, China.
| |
Collapse
|
5
|
Shave MK, Santore MM. Motility Increases the Numbers and Durations of Cell-Surface Engagements for Escherichia coli Flowing near Poly(ethylene glycol)-Functionalized Surfaces. ACS APPLIED MATERIALS & INTERFACES 2022; 14:34342-34353. [PMID: 35857760 PMCID: PMC9674025 DOI: 10.1021/acsami.2c05936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Bacteria are keenly sensitive to properties of the surfaces they contact, regulating their ability to form biofilms and initiate infections. This study examines how the presence of flagella, interactions between the cell body and the surface, or motility itself guides the dynamic contact between bacterial cells and a surface in flow, potentially enabling cells to sense physicochemical and mechanical properties of surfaces. This work focuses on a poly(ethylene glycol) biomaterial coating, which does not retain cells. In a comparison of four Escherichia coli strains with different flagellar expressions and motilities, cells with substantial run-and-tumble swimming motility exhibited increased flux to the interface (3 times the calculated transport-limited rate which adequately described the non-motile cells), greater proportions of cells engaging in dynamic nanometer-scale surface associations, extended times of contact with the surface, increased probability of return to the surface after escape and, as evidenced by slow velocities during near-surface travel, closer cellular approach. All these metrics, reported here as distributions of cell populations, point to a greater ability of motile cells, compared with nonmotile cells, to interact more closely, forcefully, and for greater periods of time with interfaces in flow. With contact durations of individual cells exceeding 10 s in the window of observation and trends suggesting further interactions beyond the field of view, the dynamic contact of individual cells may approach the minute timescales reported for mechanosensing and other cell recognition pathways. Thus, despite cell translation and the dynamic nature of contact, flow past a surface, even one rendered non-cell arresting by use of an engineered coating, may produce a subpopulation of cells already upregulating virulence factors before they arrest on a downstream surface and formally initiate biofilm formation.
Collapse
Affiliation(s)
| | - Maria M. Santore
- corresponding author: Maria Santore, Department of Polymer Science and Engineering, University of Massachusetts, 120 Governors Drive, Amherst, MA 01003, 413-577-1417,
| |
Collapse
|
6
|
Motility Suppression and Trapping Bacteria by ZnO Nanostructures. CRYSTALS 2022. [DOI: 10.3390/cryst12081027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Regulating the swimming motility of bacteria near surfaces is essential to suppress or avoid bacterial contamination and infection in catheters and medical devices with wall surfaces. However, the motility of bacteria near walls strongly depends on the combination of the local physicochemical properties of the surfaces. To unravel how nanostructures and their local chemical microenvironment dynamically affect the bacterial motility near surfaces, here, we directly visualize the bacterial swimming and systematically analyze the motility of Escherichia coli swimming on ZnO nanoparticle films and nanowire arrays with further ultraviolet irradiation. The results show that the ZnO nanowire arrays reduce the swimming motility, thus significantly enhancing the trapping ability for motile bacteria. Additionally, thanks to the wide bandgap nature of a ZnO semiconductor, the ultraviolet irradiation rapidly reduces the bacteria locomotion due to the hydroxyl and singlet oxygen produced by the photodynamic effects of ZnO nanowire arrays in an aqueous solution. The findings quantitatively reveal how the combination of geometrical nanostructured surfaces and local tuning of the steric microenvironment are able to regulate the motility of swimming bacteria and suggest the efficient inhibition of bacterial translocation and infection by nanostructured coatings.
Collapse
|
7
|
Salazar-Sánchez A, Baztarrika I, Alonso R, Fernández-Astorga A, Martínez-Ballesteros I, Martinez-Malaxetxebarria I. Arcobacter butzleri Biofilms: Insights into the Genes Beneath Their Formation. Microorganisms 2022; 10:1280. [PMID: 35888999 PMCID: PMC9324650 DOI: 10.3390/microorganisms10071280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 06/17/2022] [Accepted: 06/22/2022] [Indexed: 12/19/2022] Open
Abstract
Arcobacter butzleri, the most prevalent species of the genus, has the demonstrated ability to adhere to various surfaces through biofilm production. The biofilm formation capability has been related to the expression of certain genes, which have not been characterized in A. butzleri. In order to increase the knowledge of this foodborne pathogen, the aim of this study was to assess the role of six biofilm-associated genes in campylobacteria (flaA, flaB, fliS, luxS, pta and spoT) in the biofilm formation ability of A. butzleri. Knockout mutants were constructed from different foodborne isolates, and static biofilm assays were conducted on polystyrene (PS), reinforced glass and stainless steel. Additionally, motility and Congo red binding assays were performed. In general, mutants in flaAB, fliS and luxS showed a decrease in the biofilm production irrespective of the surface; mutants in spoT showed an increase on stainless steel, and mutants in pta and spoT showed a decrease on reinforced glass but an increase on PS. Our work sheds light on the biofilm-related pathogenesis of A. butzleri, although future studies are necessary to achieve a satisfactory objective.
Collapse
Affiliation(s)
- Adrián Salazar-Sánchez
- MikroIker Research Group, Department of Immunology, Microbiology and Parasitology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (A.S.-S.); (I.B.); (R.A.); (A.F.-A.); (I.M.-B.)
| | - Itsaso Baztarrika
- MikroIker Research Group, Department of Immunology, Microbiology and Parasitology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (A.S.-S.); (I.B.); (R.A.); (A.F.-A.); (I.M.-B.)
| | - Rodrigo Alonso
- MikroIker Research Group, Department of Immunology, Microbiology and Parasitology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (A.S.-S.); (I.B.); (R.A.); (A.F.-A.); (I.M.-B.)
- Bioaraba, Microbiology, Infectious Disease, Antimicrobial Agents, and Gene Therapy, 01006 Vitoria-Gasteiz, Spain
| | - Aurora Fernández-Astorga
- MikroIker Research Group, Department of Immunology, Microbiology and Parasitology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (A.S.-S.); (I.B.); (R.A.); (A.F.-A.); (I.M.-B.)
| | - Ilargi Martínez-Ballesteros
- MikroIker Research Group, Department of Immunology, Microbiology and Parasitology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (A.S.-S.); (I.B.); (R.A.); (A.F.-A.); (I.M.-B.)
- Bioaraba, Microbiology, Infectious Disease, Antimicrobial Agents, and Gene Therapy, 01006 Vitoria-Gasteiz, Spain
| | - Irati Martinez-Malaxetxebarria
- MikroIker Research Group, Department of Immunology, Microbiology and Parasitology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (A.S.-S.); (I.B.); (R.A.); (A.F.-A.); (I.M.-B.)
- Bioaraba, Microbiology, Infectious Disease, Antimicrobial Agents, and Gene Therapy, 01006 Vitoria-Gasteiz, Spain
| |
Collapse
|
8
|
Dubay MM, Johnston N, Wronkiewicz M, Lee J, Lindensmith CA, Nadeau JL. Quantification of Motility in Bacillus subtilis at Temperatures Up to 84°C Using a Submersible Volumetric Microscope and Automated Tracking. Front Microbiol 2022; 13:836808. [PMID: 35531296 PMCID: PMC9069135 DOI: 10.3389/fmicb.2022.836808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 03/10/2022] [Indexed: 11/13/2022] Open
Abstract
We describe a system for high-temperature investigations of bacterial motility using a digital holographic microscope completely submerged in heated water. Temperatures above 90°C could be achieved, with a constant 5°C offset between the sample temperature and the surrounding water bath. Using this system, we observed active motility in Bacillus subtilis up to 66°C. As temperatures rose, most cells became immobilized on the surface, but a fraction of cells remained highly motile at distances of >100 μm above the surface. Suspended non-motile cells showed Brownian motion that scaled consistently with temperature and viscosity. A novel open-source automated tracking package was used to obtain 2D tracks of motile cells and quantify motility parameters, showing that swimming speed increased with temperature until ∼40°C, then plateaued. These findings are consistent with the observed heterogeneity of B. subtilis populations, and represent the highest reported temperature for swimming in this species. This technique is a simple, low-cost method for quantifying motility at high temperatures and could be useful for investigation of many different cell types, including thermophilic archaea.
Collapse
Affiliation(s)
- Megan M. Dubay
- Department of Physics, Portland State University, Portland, OR, United States
| | - Nikki Johnston
- Department of Physics, Portland State University, Portland, OR, United States
| | - Mark Wronkiewicz
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, United States
| | - Jake Lee
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, United States
| | | | - Jay L. Nadeau
- Department of Physics, Portland State University, Portland, OR, United States
- *Correspondence: Jay L. Nadeau,
| |
Collapse
|
9
|
Torrik A, Naji A, Zarif M. Dimeric colloidal inclusion in a chiral active bath: Effective interactions and chirality-induced torque. Phys Rev E 2021; 104:064610. [PMID: 35030934 DOI: 10.1103/physreve.104.064610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 11/29/2021] [Indexed: 06/14/2023]
Abstract
Colloidal inclusions suspended in a bath of smaller particles experience an effective bath-mediated attraction at small intersurface separations, which is known as the depletion interaction. In an active bath of nonchiral self-propelled particles, the effective force changes from attraction to repulsion, an effect that is suppressed when the active bath particles are chiral. Using Brownian dynamics simulations, we study the effects of channel confinement and bath chirality on the effective forces and torques that are mediated between two inclusions that may be fixed within the channel or may be allowed to rotate freely as a rigid dimer around its center of mass. We show that the confinement has a strong effect on the effective interactions, depending on the orientation of the dimer relative to the channel walls. The active particle chirality leads to a force imbalance and, hence, a net torque on the inclusion dimer, which we investigate as a function of the bath chirality strength and the channel height.
Collapse
Affiliation(s)
- Abdolhalim Torrik
- Department of Physical and Computational Chemistry, Shahid Beheshti University, Tehran 19839-9411, Iran
| | - Ali Naji
- School of Nano Science, Institute for Research in Fundamental Sciences (IPM), Tehran 19395-5531, Iran
- School of Physics, Institute for Research in Fundamental Sciences (IPM), Tehran 19395-5531, Iran
| | - Mahdi Zarif
- Department of Physical and Computational Chemistry, Shahid Beheshti University, Tehran 19839-9411, Iran
| |
Collapse
|
10
|
Colin R, Ni B, Laganenka L, Sourjik V. Multiple functions of flagellar motility and chemotaxis in bacterial physiology. FEMS Microbiol Rev 2021; 45:fuab038. [PMID: 34227665 PMCID: PMC8632791 DOI: 10.1093/femsre/fuab038] [Citation(s) in RCA: 147] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 07/02/2021] [Indexed: 12/13/2022] Open
Abstract
Most swimming bacteria are capable of following gradients of nutrients, signaling molecules and other environmental factors that affect bacterial physiology. This tactic behavior became one of the most-studied model systems for signal transduction and quantitative biology, and underlying molecular mechanisms are well characterized in Escherichia coli and several other model bacteria. In this review, we focus primarily on less understood aspect of bacterial chemotaxis, namely its physiological relevance for individual bacterial cells and for bacterial populations. As evident from multiple recent studies, even for the same bacterial species flagellar motility and chemotaxis might serve multiple roles, depending on the physiological and environmental conditions. Among these, finding sources of nutrients and more generally locating niches that are optimal for growth appear to be one of the major functions of bacterial chemotaxis, which could explain many chemoeffector preferences as well as flagellar gene regulation. Chemotaxis might also generally enhance efficiency of environmental colonization by motile bacteria, which involves intricate interplay between individual and collective behaviors and trade-offs between growth and motility. Finally, motility and chemotaxis play multiple roles in collective behaviors of bacteria including swarming, biofilm formation and autoaggregation, as well as in their interactions with animal and plant hosts.
Collapse
Affiliation(s)
- Remy Colin
- Max Planck Institute for Terrestrial Microbiology & Center for Synthetic Microbiology (SYNMIKRO), Karl-von-Frisch Strasse 16, Marburg D-35043, Germany
| | - Bin Ni
- Max Planck Institute for Terrestrial Microbiology & Center for Synthetic Microbiology (SYNMIKRO), Karl-von-Frisch Strasse 16, Marburg D-35043, Germany
- College of Resources and Environmental Science, National Academy of Agriculture Green Development, China Agricultural University, Yuanmingyuan Xilu No. 2, Beijing 100193, China
| | - Leanid Laganenka
- Institute of Microbiology, D-BIOL, ETH Zürich, Vladimir-Prelog-Weg 4, Zürich 8093, Switzerland
| | - Victor Sourjik
- Max Planck Institute for Terrestrial Microbiology & Center for Synthetic Microbiology (SYNMIKRO), Karl-von-Frisch Strasse 16, Marburg D-35043, Germany
| |
Collapse
|
11
|
Interactions of E. coli with cylindrical micro-pillars of different geometric modifications. Colloids Surf B Biointerfaces 2021; 209:112190. [PMID: 34749195 DOI: 10.1016/j.colsurfb.2021.112190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/24/2021] [Accepted: 10/26/2021] [Indexed: 11/20/2022]
Abstract
Understanding the behavior of bacteria at the proximity of different surfaces is of great importance and interest. Despite recent exciting progress in geometric control of bacterial behavior around surfaces, a detailed comparison on the interaction of bacteria with cylindrical surfaces of different geometric modifications is still missing. Here, we investigated how bacteria interacted with cylindrical micro-pillars and modified cylindrical micro-pillars with sprocket, gear, and flower-like wall surface features. Using phase-contrast microscopy, we examined the motion of bacteria around the micro-pillars, and observed different responses of bacteria to each geometric modification. In addition, we extracted the trajectories of the bacteria and characterized several parameters (instantaneous velocity v, change of direction δ, approaching angle ϕ) to quantitatively compare the effects of the geometric modifications on the micro-pillars. We found that sharp spikes showed the largest effect, compared to smooth surface, convex and concave ripples. Lastly, we carried out numerical simulations, which explained the experimental observations and showed that the observed effects were due to the geometric modifications.
Collapse
|
12
|
Okuyama K, Nishigami Y, Ohmura T, Ichikawa M. Accumulation of Tetrahymena pyriformis on Interfaces. MICROMACHINES 2021; 12:mi12111339. [PMID: 34832750 PMCID: PMC8622496 DOI: 10.3390/mi12111339] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 11/29/2022]
Abstract
The behavior of ciliates has been studied for many years through environmental biology and the ethology of microorganisms, and recent hydrodynamic studies of microswimmers have greatly advanced our understanding of the behavioral dynamics at the single-cell level. However, the association between single-cell dynamics captured by microscopic observation and pattern dynamics obtained by macroscopic observation is not always obvious. Hence, to bridge the gap between the two, there is a need for experimental results on swarming dynamics at the mesoscopic scale. In this study, we investigated the spatial population dynamics of the ciliate, Tetrahymena pyriformis, based on quantitative data analysis. We combined the image processing of 3D micrographs and machine learning to obtain the positional data of individual cells of T. pyriformis and examined their statistical properties based on spatio-temporal data. According to the 3D spatial distribution of cells and their temporal evolution, cells accumulated both on the solid wall at the bottom surface and underneath the air–liquid interface at the top. Furthermore, we quantitatively clarified the difference in accumulation levels between the bulk and the interface by creating a simple behavioral model that incorporated quantitative accumulation coefficients in its solution. The accumulation coefficients can be compared under different conditions and between different species.
Collapse
Affiliation(s)
- Kohei Okuyama
- Department of Physics, Kyoto University, Kyoto 606-8502, Japan;
| | - Yukinori Nishigami
- Research Institute for Electronic Science, Hokkaido University, Sapporo 001-0020, Japan;
| | - Takuya Ohmura
- Biozentrum, University of Basel, 4056 Basel, Switzerland;
| | - Masatoshi Ichikawa
- Department of Physics, Kyoto University, Kyoto 606-8502, Japan;
- Correspondence: ; Tel.: +81-75-753-3749
| |
Collapse
|
13
|
Singh C. Guided run-and-tumble active particles: wall accumulation and preferential deposition. SOFT MATTER 2021; 17:8858-8866. [PMID: 34541594 DOI: 10.1039/d1sm00775k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Bacterial biofilms cost an enormous amount of resources in the health, medical, and industrial sectors. To understand early biofilm formation, beginning from planktonic states of active suspensions (such as Escherichia coli) to micro-colonization, it is vital to study the mechanics of cell accumulation near surfaces and subsequent deposition. Variability in bacterial motion strategies and the presence of taxis fields make the problem even more multifaceted. In this study, analytical expressions for the density and angular distributions, mean orientation, and deposition rates in such bacterial suspensions are derived, with and without the effects of external guiding or taxis fields. The derived results are closely verified by simulations of confined active particles using run-and-tumble statistics from multiple past experiments and utilizing a preferential sticking probability model for deposition. The behavioral changes in cell running strategies are modeled by varying the run-time distribution from an exponential to a heavy-tailed one. It is found that the deposition rates can be altered significantly by a guiding torque but are less affected by a change in the cell running behavior. However, both the mechanisms alter the pair correlation function of the deposited structures. The factor behind the changes in the architecture of deposited biomass under a torque generating guiding field turns out to be an asymmetrical rotational drift of planktonic cells, which can be an important physical mechanism behind the organization in confined active particle suspensions.
Collapse
Affiliation(s)
- Chamkor Singh
- Department of Physics, Central University of Punjab, Bathinda 151401, India.
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA
| |
Collapse
|
14
|
Assessment of a Weak Mode of Bacterial Adhesion by Applying an Electric Field. Appl Microbiol 2021. [DOI: 10.3390/applmicrobiol1020019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Microbial attachment to surfaces is ubiquitous in nature. Most species of bacteria attach and adhere to surfaces via special appendages such as pili and fimbriae, the roles of which have been extensively studied. Here, we report an experiment on pilus-less mutants of Caulobacter crescentus weakly attached to polyethylene surface. We find that some individual cells transiently but repeatedly adhere to the surface in a stick-slip fashion in the presence of an electric field parallel to the surface. These bacteria move significantly slower than the unattached ones in the same field of view undergoing electrophoretic motion. We refer this behavior of repeated and transient attachment as “quasi-attachment”. The speed of the quasi-attached bacteria exhibits large variation, frequently dropping close to zero for short intervals of time. We propose a polymeric tethering model to account for the experimental findings. This study sheds light on bacteria–surface interaction, which is significant in broader contexts such as infection and environmental control.
Collapse
|
15
|
Raveshi MR, Abdul Halim MS, Agnihotri SN, O'Bryan MK, Neild A, Nosrati R. Curvature in the reproductive tract alters sperm-surface interactions. Nat Commun 2021; 12:3446. [PMID: 34103509 PMCID: PMC8187733 DOI: 10.1038/s41467-021-23773-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 05/17/2021] [Indexed: 01/21/2023] Open
Abstract
The fallopian tube is lined with a highly complex folded epithelium surrounding a lumen that progressively narrows. To study the influence of this labyrinthine complexity on sperm behavior, we use droplet microfluidics to create soft curved interfaces over a range of curvatures corresponding to the in vivo environment. We reveal a dynamic response mechanism in sperm, switching from a progressive surface-aligned motility mode at low curvatures (larger droplets), to an aggressive surface-attacking mode at high curvatures (smaller droplets of <50 µm-radius). We show that sperm in the attacking mode swim ~33% slower, spend 1.66-fold longer at the interface and have a 66% lower beating amplitude than in the progressive mode. These findings demonstrate that surface curvature within the fallopian tube alters sperm motion from a faster surface aligned locomotion in distal regions to a prolonged physical contact with the epithelium near the site of fertilization, the latter being known to promote capacitation and fertilization competence.
Collapse
Affiliation(s)
- Mohammad Reza Raveshi
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton, VIC, Australia
| | - Melati S Abdul Halim
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton, VIC, Australia
| | - Sagar N Agnihotri
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton, VIC, Australia
- IITB-Monash Research Academy, IIT Bombay, Mumbai, India
| | - Moira K O'Bryan
- School of Biological Sciences, Monash University, Clayton, VIC, Australia
- School of BioSciences, Faculty of Science, University of Melbourne, Parkville, VIC, Australia
| | - Adrian Neild
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton, VIC, Australia.
| | - Reza Nosrati
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton, VIC, Australia.
| |
Collapse
|
16
|
Shave MK, Xu Z, Raman V, Kalasin S, Tuominen MT, Forbes NS, Santore MM. Escherichia coli Swimming back Toward Stiffer Polyetheylene Glycol Coatings, Increasing Contact in Flow. ACS APPLIED MATERIALS & INTERFACES 2021; 13:17196-17206. [PMID: 33821607 PMCID: PMC8503937 DOI: 10.1021/acsami.1c00245] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Bacterial swimming in flow near surfaces is critical to the spread of infection and device colonization. Understanding how material properties affect flagella- and motility-dependent bacteria-surface interactions is a first step in designing new medical devices that mitigate the risk of infection. We report that, on biomaterial coatings such as polyethylene glycol (PEG) hydrogels and end-tethered layers that prevent adhesive bacteria accumulation, the coating mechanics and hydration control the near-surface travel and dynamic surface contact of E. coli cells in gentle shear flow (order 10 s-1). Along relatively stiff (order 1 MPa) PEG hydrogels or end-tethered layers of PEG chains of similar polymer correlation length, run-and-tumble E. coli travel nanometrically close to the coating's surface in the flow direction in distinguishable runs or "engagements" that persist for several seconds, after which cells leave the interface. The duration of these engagements was greater along stiff hydrogels and end-tethered layers compared with softer, more-hydrated hydrogels. Swimming cells that left stiff hydrogels or end-tethered layers proceeded out to distances of a few microns and then returned to engage the surface again and again, while cells engaging the soft hydrogel tended not to return after leaving. As a result of differences in the duration of engagements and tendency to return to stiff hydrogel and end-tethered layers, swimming E. coli experienced 3 times the integrated dynamic surface contact with stiff coatings compared with softer hydrogels. The striking similarity of swimming behaviors near 16-nm-thick end-tethered layers and 100-μm-thick stiff hydrogels argues that only the outermost several nanometers of a highly hydrated coating influence cell travel. The range of material stiffnesses, cell-surface distance during travel, and time scales of travel compared with run-and-tumble time scales suggests the influence of the coating derives from its interactions with flagella and its potential to alter flagellar bundling. Given that restriction of flagellar rotation is known to trigger increased virulence, bacteria influenced by surfaces in one region may become predisposed to form a biofilm downstream.
Collapse
Affiliation(s)
- Molly K. Shave
- Department of Polymer Science and Engineering, University of Massachusetts, Amherst, MA 01003
| | - Zhou Xu
- Department of Physics, University of Massachusetts, Amherst, MA 01003
| | - Vishnu Raman
- Department of Chemical Engineering, University of Massachusetts, Amherst, MA 01003
| | - Surachate Kalasin
- Department of Polymer Science and Engineering, University of Massachusetts, Amherst, MA 01003
| | - Mark T. Tuominen
- Department of Physics, University of Massachusetts, Amherst, MA 01003
| | - Neil S. Forbes
- Department of Chemical Engineering, University of Massachusetts, Amherst, MA 01003
| | - Maria M. Santore
- Department of Polymer Science and Engineering, University of Massachusetts, Amherst, MA 01003
| |
Collapse
|
17
|
Fazli Z, Naji A. Active particles with polar alignment in ring-shaped confinement. Phys Rev E 2021; 103:022601. [PMID: 33736018 DOI: 10.1103/physreve.103.022601] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 01/13/2021] [Indexed: 12/17/2022]
Abstract
We study steady-state properties of active, nonchiral and chiral Brownian particles with polar alignment and steric interactions confined within a ring-shaped confinement (annulus) in two dimensions. Exploring possible interplays between polar interparticle alignment, geometric confinement and the surface curvature, being incorporated here on minimal levels, we report a surface-population reversal effect, whereby active particles migrate from the outer concave boundary of the annulus to accumulate on its inner convex boundary. This contrasts the conventional picture, implying stronger accumulation of active particles on concave boundaries relative to the convex ones. The population reversal is caused by both particle alignment and surface curvature, disappearing when either of these factors is absent. We explore the ensuing consequences for the chirality-induced current and swim pressure of active particles and analyze possible roles of system parameters, such as the mean number density of particles and particle self-propulsion, chirality, and alignment strengths.
Collapse
Affiliation(s)
- Zahra Fazli
- School of Physics, Institute for Research in Fundamental Sciences (IPM), Tehran 19395-5531, Iran
| | - Ali Naji
- School of Physics, Institute for Research in Fundamental Sciences (IPM), Tehran 19395-5531, Iran.,School of Nano Science, Institute for Research in Fundamental Sciences (IPM), Tehran 19395-5531, Iran
| |
Collapse
|
18
|
Yuan S, Qi M, Peng Q, Huang G, Liu J, Xu Z, Gong X, Zhang G. Adaptive behaviors of planktonic Pseudomonas aeruginosa in response to the surface-deposited dead siblings. Colloids Surf B Biointerfaces 2020; 197:111408. [PMID: 33099147 DOI: 10.1016/j.colsurfb.2020.111408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/23/2020] [Accepted: 10/08/2020] [Indexed: 11/27/2022]
Abstract
In this study, the 3D motion behaviors and the underlying adaptation mechanism of planktonic Pseudomonas aeruginosa (PAO1) in response to the deposited dead siblings nearby were explored. Utilizing a real-time 3D tracking technique, digital holographic microscopy (DHM), we demonstrate that planktonic cells near the surface covered with dead siblings have a lower density and a reduced 3D velocity compared with those upon viable ones. As a sign of chemosensory responses, bacteria swimming near the dead siblings exhibit increase in frequency of the 'flick' motion. Transcriptomic analysis by RNA-seq reveals an upregulated expression of dgcM and dgcE inhibited the movement of PAO1, accompanied by increased transcriptional levels of the virulence factor-related genes hcp1, clpV1, and vgrG1. Moreover, the decrease in l-glutamate and the increase in succinic acid in the metabolites of the dead bacteria layer promote the dispersion of planktonic bacteria. As a result, the dead siblings on a surface inhibit the bacterial accumulation and activate the adaptive defensive responses of planktonic PAO1 in the vicinity.
Collapse
Affiliation(s)
- Shuo Yuan
- Faculty of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, PR China
| | - Meng Qi
- Faculty of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, PR China
| | - Qingmei Peng
- Faculty of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, PR China
| | - Gui Huang
- Faculty of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, PR China
| | - Jun Liu
- Faculty of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, PR China
| | - Zhenbo Xu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, PR China
| | - Xiangjun Gong
- Faculty of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, PR China; Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates (South China University of Technology), PR China.
| | - Guangzhao Zhang
- Faculty of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, PR China
| |
Collapse
|
19
|
Zarif M, Naji A. Confinement-induced alternating interactions between inclusions in an active fluid. Phys Rev E 2020; 102:032613. [PMID: 33075886 DOI: 10.1103/physreve.102.032613] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 09/08/2020] [Indexed: 11/07/2022]
Abstract
In a system of colloidal inclusions suspended in an equilibrium bath of smaller particles, the particulate bath engenders effective, short-ranged, primarily attractive interactions between the inclusions, known as depletion interactions, that originate from the steric depletion of bath particles from the immediate vicinity of the inclusions. In a bath of active (self-propelled) particles, the nature of such bath-mediated interactions can qualitatively change from attraction to repulsion, and they become stronger in magnitude and range of action as compared with typical equilibrium depletion interactions, especially as the bath activity (particle self-propulsion) is increased. We study effective interactions mediated by a bath of active Brownian particles between two fixed, impenetrable, and disk-shaped inclusions in a planar (channel) confinement in two dimensions. Confinement is found to strongly influence the effective interaction between the inclusions, specifically by producing alternating interaction profiles with possible attractive and repulsive regions in sufficiently narrow channels. We study the dependence of the ensuing interactions on different system parameters and the orientational (parallel versus perpendicular) configuration of the inclusion pair relative to the channel walls. The confinement effects are largely regulated by the layering of active particles next to the surface boundaries, both of the inclusions and the channel walls that counteract one another in accumulating the active particles in their own proximities. In narrow channels, the combined effects due to the channel walls and the inclusions lead to peculiar structuring of active particles (reminiscent of wavelike interference patterns) within the channel.
Collapse
Affiliation(s)
- Mahdi Zarif
- Department of Physical and Computational Chemistry, Shahid Beheshti University, Tehran 19839-9411, Iran
| | - Ali Naji
- School of Physics, Institute for Research in Fundamental Sciences (IPM), Tehran 19395-5531, Iran.,School of Nano Science, Institute for Research in Fundamental Sciences (IPM), Tehran 19395-5531, Iran
| |
Collapse
|
20
|
Shi SJ, Li HS, Feng GQ, Tian WD, Chen K. Transport of self-propelled particles across a porous medium: trapping, clogging, and the Matthew effect. Phys Chem Chem Phys 2020; 22:14052-14060. [PMID: 32568323 DOI: 10.1039/d0cp01923b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We study the transport of self-propelled particles from one free chamber to another across two stripe-like areas of dense porous medium. The medium is mimicked by arrays of obstacles. We find that active motion could greatly speed up the transport of particles. However, more and more particles become trapped in the obstacle arrays with the enhancement of activity. At high persistence (low rotational diffusion rate) and moderate particle concentration, we observe the Matthew effect in the aggregation of particles in the two obstacle arrays. This effect is weakened by introduction of randomness or deformability into the obstacle arrays. Moreover, the dependence on deformability shows the characteristics of first-order phase transition. In rare situations, the system could be stuck in a dynamic unstable state, e.g. the particles alternatively gather more in one of the two obstacle arrays, exhibiting oscillation of particle number between the arrays. Our results reveal new features in the transport of active objects in a complex medium and have implications for manipulating their collective assembly.
Collapse
Affiliation(s)
- Shen-Jia Shi
- Center for Soft Condensed Matter Physics & Interdisciplinary Research, School of Physical Science and Technology, Soochow University, Suzhou 215006, China.
| | | | | | | | | |
Collapse
|
21
|
Pan JX, Wei H, Qi MJ, Wang HF, Zhang JJ, Tian WD, Chen K. Vortex formation of spherical self-propelled particles around a circular obstacle. SOFT MATTER 2020; 16:5545-5551. [PMID: 32510067 DOI: 10.1039/d0sm00277a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A vortex is a common ratchet phenomenon in active systems. The spatial symmetry is usually broken by introducing asymmetric shapes or spontaneously by collective motion in the presence of hydrodynamic interactions or other alignment effects. Unexpectedly, we observe, by simulations, the formation of a vortex in the simplest model of a circular obstacle immersed in a bath of spherical self-propelled particles. No symmetry-breaking factors mentioned above are included in this model. The vortex forms only when the particle activity is high, i.e. large persistence. The obstacle size is also a key factor and the vortex only forms in a limited range of obstacle sizes. The sustainment of the vortex originates from the bias of the rotating particle cluster around the obstacle in accepting the incoming particles based on their propelling directions. Our results provide new understanding of and insights into the spontaneous symmetry-breaking and ratchet phenomena in active matter.
Collapse
Affiliation(s)
- Jun-Xing Pan
- School of Physics and Information Engineering, Shanxi Normal University, Linfen 041004, China.
| | | | | | | | | | | | | |
Collapse
|
22
|
Peng YS, Sheng YJ, Tsao HK. Partition of nanoswimmers between two immiscible phases: a soft and penetrable boundary. SOFT MATTER 2020; 16:5054-5061. [PMID: 32452505 DOI: 10.1039/d0sm00298d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The behavior of run-and-tumble nanoswimmers which can self-propel in two immiscible liquids such as water-oil systems and are able to cross the interface is investigated by dissipative particle dynamics. At the steady-state, the partition ratio (φ) of nanoswimmers between the two immiscible liquids is obtained, and it depends on the active force (Fa), run time (τ), and swimmer-solvent interactions. The partition ratio φ is found to grow generally with increasing Fa2τ. At sufficiently large Fa, it is surprising to find that hydrophilic nanoswimmers prefer to stay in the oil phase rather than in the water phase. The partition ratio is also influenced by the hydrophobicity of swimmers in the oil phase. Two simple models are proposed to describe the partition ratio, including a near-equilibrium model and a kinetic model. Surface accumulation appearing at an impenetrable interface is also observed at the fluid-fluid interface for small Fa but it vanishes for sufficiently large Fa.
Collapse
Affiliation(s)
- Ying-Shuo Peng
- Department of Chemical Engineering, National Taiwan University, Taipei 106, Taiwan.
| | | | | |
Collapse
|
23
|
Shabanniya MR, Naji A. Active dipolar spheroids in shear flow and transverse field: Population splitting, cross-stream migration, and orientational pinning. J Chem Phys 2020; 152:204903. [PMID: 32486664 DOI: 10.1063/5.0002757] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
We study the steady-state behavior of active, dipolar, Brownian spheroids in a planar channel subjected to an imposed Couette flow and an external transverse field, applied in the "downward" normal-to-flow direction. The field-induced torque on active spheroids (swimmers) is taken to be of magnetic form by assuming that they have a permanent magnetic dipole moment, pointing along their self-propulsion (swim) direction. Using a continuum approach, we show that a host of behaviors emerges over the parameter space spanned by the particle aspect ratio, self-propulsion and shear/field strengths, and the channel width. The cross-stream migration of the model swimmers is shown to involve a regime of linear response (quantified by a linear-response factor) in weak fields. For prolate swimmers, the weak-field behavior crosses over to a regime of full swimmer migration to the bottom half of the channel in strong fields. For oblate swimmers, a counterintuitive regime of reverse migration arises in intermediate fields, where a macroscopic fraction of swimmers reorient and swim to the top channel half at an acute "upward" angle relative to the field axis. The diverse behaviors reported here are analyzed based on the shear-induced population splitting (bimodality) of the swim orientation, giving two distinct, oppositely polarized, swimmer subpopulations (albeit very differently for prolate/oblate swimmers) in each channel half. In strong fields, swimmers of both types exhibit net upstream currents relative to the laboratory frame. The onsets of full migration and net upstream current depend on the aspect ratio, enabling efficient particle separation strategies in microfluidic setups.
Collapse
Affiliation(s)
- Mohammad Reza Shabanniya
- School of Physics, Institute for Research in Fundamental Sciences (IPM), P.O. Box 19395-5531, Tehran, Iran
| | - Ali Naji
- School of Physics, Institute for Research in Fundamental Sciences (IPM), P.O. Box 19395-5531, Tehran, Iran
| |
Collapse
|
24
|
Mousavi SM, Gompper G, Winkler RG. Wall entrapment of peritrichous bacteria: a mesoscale hydrodynamics simulation study. SOFT MATTER 2020; 16:4866-4875. [PMID: 32424390 DOI: 10.1039/d0sm00571a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Microswimmers such as E. coli bacteria accumulate and exhibit an intriguing dynamics near walls, governed by hydrodynamic and steric interactions. Insight into the underlying mechanisms and predominant interactions demand a detailed characterization of the entrapment process. We employ a mesoscale hydrodynamics simulation approach to study entrapment of an E. coli-type cell at a no-slip wall. The cell is modeled by a spherocylindrical body with several explicit helical flagella. Three stages of the entrapment process can be distinguished: the approaching regime, where a cell swims toward a wall on a nearly straight trajectory; a scattering regime, where the cell touches the wall and reorients; and a surface-swimming regime. Our simulations show that steric interactions may dominate the entrapment process, yet, hydrodynamic interactions slow down the adsorption dynamics close to the boundary and imply a circular motion on the wall. The locomotion of the cell is characterized by a strong wobbling dynamics, with cells preferentially pointing toward the wall during surface swimming.
Collapse
Affiliation(s)
- S Mahdiyeh Mousavi
- Theoretical Soft Matter and Biophysics, Institute of Complex Systems and Institute for Advanced Simulation, Forschungszentrum Jülich and JARA, D-52425 Jülich, Germany.
| | | | | |
Collapse
|
25
|
Wang C, Jiang H. Different-shaped micro-objects driven by active particle aggregations. SOFT MATTER 2020; 16:4422-4430. [PMID: 32364209 DOI: 10.1039/d0sm00160k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The dynamics of passive micro-objects in an active bath has been receiving much attention. However, the influence of the shapes of micro-objects remains unclear. Here, we use 2D simulation to investigate the interaction between active Brownian particles and different-shaped passive micro-objects. We show that active particles accumulate around micro-objects and self-assemble into living aggregations at a high active velocity and high volume fraction. The shapes of micro-objects affect the distributions of the aggregations. In turn, the different distribution of aggregations influences the motion of micro-objects and induces abnormal diffusive behaviors. We further demonstrate that polar distributed aggregations at a high active velocity and the inhibition of the active bath at a low active velocity induce the counterintuitive anisotropic enhanced diffusion of rods, and the steric interaction between active particles induces the reverse translation-rotation coupled diffusion of chevrons.
Collapse
Affiliation(s)
- Chen Wang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Hefei National Laboratory for Physical Science at the Microscale, CAS Center for Excellence in Complex System Mechanics, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | - Hongyuan Jiang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Hefei National Laboratory for Physical Science at the Microscale, CAS Center for Excellence in Complex System Mechanics, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230026, China.
| |
Collapse
|
26
|
Bettera Marcat MA, Gallea MN, Miño GL, Cubilla MA, Banchio AJ, Giojalas LC, Marconi VI, Guidobaldi HA. Hitting the wall: Human sperm velocity recovery under ultra-confined conditions. BIOMICROFLUIDICS 2020; 14:024108. [PMID: 32266047 PMCID: PMC7105397 DOI: 10.1063/1.5143194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 03/08/2020] [Indexed: 05/12/2023]
Abstract
Infertility is a common medical condition encountered by health systems throughout the world. Despite the development of complex in vitro fertilization techniques, only one-third of these procedures are successful. New lab-on-a-chip systems that focus on spermatozoa selection require a better understanding of sperm behavior under ultra-confined conditions in order to improve outcomes. Experimental studies combined with models and simulations allow the evaluation of the efficiency of different lab-on-a-chip devices during the design process. In this work, we provide experimental evidence of the dynamics of sperm interacting with a lateral wall in a shallow chamber. We observe a decrease in average sperm velocity during initial wall interaction and partial recovery after the alignment of the trajectory of the cell. To describe this phenomenon, we propose a simple model for the sperm alignment process with a single free parameter. By incorporating experimental motility characterization into the model, we achieve an accurate description of the average velocity behavior of the sperm population close to walls. These results will contribute to the design of more efficient lab-on-a-chip devices for the treatment of human infertility.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Héctor A. Guidobaldi
- Author to whom correspondence should be addressed:. Telephone: +54 351 535-3800 ext. 30307
| |
Collapse
|
27
|
Abstract
Several prokaryotes and eukaryotic cells swim in the presence of deformable and rigid surfaces that form confinement. The most commonly observed examples from biological systems are motility of leukocytes and pathogens present within the blood suspension through a microvascular network, and locomotion of eukaryotic cells such as immune system cells and cancerous cells through interstices between soft interstitial cells and the extracellular matrix within the interstitial tissue. This motivated us to investigate numerically the flow dynamics of amoeboid swimming in a flexible channel. The effects of wall stiffness and channel confinement on the flow dynamics and swimmer motion are studied. The swimmer motion through the flexible channel is substantially decelerated compared to the rigid channel. The strong confinement in the amply flexible channel imprisons the swimmer by severely restricting its forward motion. The swimmer velocity in a stiff channel displays nonmonotonic variation with the confinement while it shows monotonic reduction in a highly flexible channel. The physical rationale behind such distinct velocity behaviour in flexible and rigid channels is illustrated using an instantaneous flow field and flow history displayed by the swimmer. This behavior follows from a subtle interplay between the shape changes exhibited by the swimmer and the wall compliance. This study may aid in understanding the influence of elasticity of the surrounding environment on cell motility in immunological surveillance and invasiveness of cancer cells.
Collapse
Affiliation(s)
- Swapnil Dalal
- Univ. Grenoble Alpes, CNRS, LIPhy, F-38000 Grenoble, France.
| | | | | |
Collapse
|
28
|
Negro G, Carenza LN, Lamura A, Tiribocchi A, Gonnella G. Rheology of active polar emulsions: from linear to unidirectional and inviscid flow, and intermittent viscosity. SOFT MATTER 2019; 15:8251-8265. [PMID: 31553342 DOI: 10.1039/c9sm01288e] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
The rheological behaviour of an emulsion made of an active polar component and an isotropic passive fluid is studied by lattice Boltzmann methods. Different flow regimes are found by varying the values of the shear rate and extensile activity (occurring, e.g., in microtubule-motor suspensions). By increasing the activity, a first transition occurs from the linear flow regime to spontaneous persistent unidirectional macro-scale flow, followed by another transition either to a (low shear) intermittent flow regime with the coexistence of states with positive, negative, and vanishing apparent viscosity, or to a (high shear) symmetric shear thinning regime. The different behaviours can be explained in terms of the dynamics of the polarization field close to the walls. A maximum entropy production principle selects the most likely states in the intermittent regime.
Collapse
Affiliation(s)
- G Negro
- Dipartimento di Fisica, Università degli Studi di Bari and INFN, Sezione di Bari, via Amendola 173, Bari, I-70126, Italy.
| | | | | | | | | |
Collapse
|
29
|
Das S, Cacciuto A. Colloidal swimmers near curved and structured walls. SOFT MATTER 2019; 15:8290-8301. [PMID: 31616894 DOI: 10.1039/c9sm01432b] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We present systematic numerical simulations to understand the behavior of colloidal swimmers near a wall. We extend previous theoretical calculations based on lubrication theory to include walls with arbitrary curvature, and show how to extract from simulations a set of parameters crucial to accurately estimate the leading hydrodynamic contributions associated with the curvature of a wall. Our results show explicitly how introducing curvature to the wall not only affects the average incident angle the swimmer acquires when swimming near it, but it also leads to much broader angular distributions. This suggests an increasingly leading role of thermal fluctuations with curvature, which in turn results in significantly different motility of the swimmers. We also show how the backwards motion previously reported for pushers also extends to puller-like swimmers under the appropriate conditions. Finally, aiming at understanding the behavior of colloidal swimmers near a colloidal crystal, we also considered the case of a wall built from colloidal particles that are either free to rotate, representing a crystal held together by isotropic forces, or have their rotational degrees of freedom locked-in, representing a crystal held together by directional interactions. In both cases, we find that puller-like swimmers follow a stochastic run-and-tumble-like dynamics.
Collapse
Affiliation(s)
- S Das
- Department of Chemistry, Columbia University, 3000 Broadway, New York, NY 10027, USA.
| | | |
Collapse
|
30
|
Hook AL, Flewellen JL, Dubern JF, Carabelli AM, Zaid IM, Berry RM, Wildman RD, Russell N, Williams P, Alexander MR. Simultaneous Tracking of Pseudomonas aeruginosa Motility in Liquid and at the Solid-Liquid Interface Reveals Differential Roles for the Flagellar Stators. mSystems 2019; 4:e00390-19. [PMID: 31551402 PMCID: PMC6759568 DOI: 10.1128/msystems.00390-19] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 09/01/2019] [Indexed: 01/19/2023] Open
Abstract
Bacteria sense chemicals, surfaces, and other cells and move toward some and away from others. Studying how single bacterial cells in a population move requires sophisticated tracking and imaging techniques. We have established quantitative methodology for label-free imaging and tracking of individual bacterial cells simultaneously within the bulk liquid and at solid-liquid interfaces by utilizing the imaging modes of digital holographic microscopy (DHM) in three dimensions (3D), differential interference contrast (DIC), and total internal reflectance microscopy (TIRM) in two dimensions (2D) combined with analysis protocols employing bespoke software. To exemplify and validate this methodology, we investigated the swimming behavior of a Pseudomonas aeruginosa wild-type strain and isogenic flagellar stator mutants (motAB and motCD) within the bulk liquid and at the surface at the single-cell and population levels. Multiple motile behaviors were observed that could be differentiated by speed and directionality. Both stator mutants swam slower and were unable to adjust to the near-surface environment as effectively as the wild type, highlighting differential roles for the stators in adapting to near-surface environments. A significant reduction in run speed was observed for the P. aeruginosa mot mutants, which decreased further on entering the near-surface environment. These results are consistent with the mot stators playing key roles in responding to the near-surface environment.IMPORTANCE We have established a methodology to enable the movement of individual bacterial cells to be followed within a 3D space without requiring any labeling. Such an approach is important to observe and understand how bacteria interact with surfaces and form biofilm. We investigated the swimming behavior of Pseudomonas aeruginosa, which has two flagellar stators that drive its swimming motion. Mutants that had only either one of the two stators swam slower and were unable to adjust to the near-surface environment as effectively as the wild type. These results are consistent with the mot stators playing key roles in responding to the near-surface environment and could be used by bacteria to sense via their flagella when they are near a surface.
Collapse
Affiliation(s)
- Andrew L Hook
- Advanced Materials and Healthcare Technologies Division, School of Pharmacy, University of Nottingham, Nottingham, United Kingdom
| | - James L Flewellen
- Immune Receptor Activation Laboratory, The Francis Crick Institute, London, United Kingdom
- Division of Immunology and Inflammation, Department of Medicine, Imperial College London, London, United Kingdom
- Department of Physics, Clarendon Laboratory, University of Oxford, Oxford, United Kingdom
| | - Jean-Frédéric Dubern
- Centre for Biomolecular Sciences, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Alessandro M Carabelli
- Advanced Materials and Healthcare Technologies Division, School of Pharmacy, University of Nottingham, Nottingham, United Kingdom
- Centre for Biomolecular Sciences, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Irwin M Zaid
- Department of Physics, Clarendon Laboratory, University of Oxford, Oxford, United Kingdom
| | - Richard M Berry
- Department of Physics, Clarendon Laboratory, University of Oxford, Oxford, United Kingdom
| | - Ricky D Wildman
- Department of Chemical and Environmental Engineering, School of Engineering, University of Nottingham, Nottingham, United Kingdom
| | - Noah Russell
- Marine Biological Association, The Laboratory, Plymouth, United Kingdom
| | - Paul Williams
- Centre for Biomolecular Sciences, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Morgan R Alexander
- Advanced Materials and Healthcare Technologies Division, School of Pharmacy, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
31
|
Makarchuk S, Braz VC, Araújo NAM, Ciric L, Volpe G. Enhanced propagation of motile bacteria on surfaces due to forward scattering. Nat Commun 2019; 10:4110. [PMID: 31511558 PMCID: PMC6739365 DOI: 10.1038/s41467-019-12010-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 08/16/2019] [Indexed: 12/25/2022] Open
Abstract
How motile bacteria move near a surface is a problem of fundamental biophysical interest and is key to the emergence of several phenomena of biological, ecological and medical relevance, including biofilm formation. Solid boundaries can strongly influence a cell's propulsion mechanism, thus leading many flagellated bacteria to describe long circular trajectories stably entrapped by the surface. Experimental studies on near-surface bacterial motility have, however, neglected the fact that real environments have typical microstructures varying on the scale of the cells' motion. Here, we show that micro-obstacles influence the propagation of peritrichously flagellated bacteria on a flat surface in a non-monotonic way. Instead of hindering it, an optimal, relatively low obstacle density can significantly enhance cells' propagation on surfaces due to individual forward-scattering events. This finding provides insight on the emerging dynamics of chiral active matter in complex environments and inspires possible routes to control microbial ecology in natural habitats.
Collapse
Affiliation(s)
- Stanislaw Makarchuk
- Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK
| | - Vasco C Braz
- Centro de Física Teórica e Computacional, Faculdade de Ciências, Universidade de Lisboa, P-1749-016, Lisboa, Portugal
- Departamento de Física, Faculdade de Ciências, Universidade de Lisboa, P-1749-016, Lisboa, Portugal
| | - Nuno A M Araújo
- Centro de Física Teórica e Computacional, Faculdade de Ciências, Universidade de Lisboa, P-1749-016, Lisboa, Portugal
- Departamento de Física, Faculdade de Ciências, Universidade de Lisboa, P-1749-016, Lisboa, Portugal
| | - Lena Ciric
- Department of Civil, Environmental and Geomatic Engineering, University College London, Gower Street, London, WC1E 6BT, UK
| | - Giorgio Volpe
- Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK.
| |
Collapse
|
32
|
Araujo G, Chen W, Mani S, Tang JX. Orbiting of Flagellated Bacteria within a Thin Fluid Film around Micrometer-Sized Particles. Biophys J 2019; 117:346-354. [PMID: 31248602 DOI: 10.1016/j.bpj.2019.06.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 05/31/2019] [Accepted: 06/05/2019] [Indexed: 10/26/2022] Open
Abstract
Bacterial motility under confinement is relevant to both environmental control and the spread of infection. Here, we report observations on Escherichia coli, Enterobacter sp., Pseudomonas aeruginosa, and Bacillus subtilis when they are confined within a thin layer of water around dispersed micrometer-sized particles sprinkled over a semisolid agar gel. In this setting, E. coli and Enterobacteria orbit around the dispersed particles. The liquid layer is shaped like a shallow tent with its height at the center set by the seeding particle, and the meniscus profile set by the strong surface tension of water. The tent-shaped confinement and the left handedness of the flagellar filaments result in exclusively clockwise circular trajectories. The thin fluid layer is resilient because of a balance between evaporation and reinforcement of fluid that permeated out of the agar. The latter is driven by the Laplace pressure caused by the concave meniscus. In short, we explain the physical mechanism of a convenient method to entrap bacteria within localized thin fluid film near a permeable surface.
Collapse
Affiliation(s)
- George Araujo
- Department of Physics, Brown University, Providence, Rhode Island
| | - Weijie Chen
- Department of Physics, Brown University, Providence, Rhode Island; Department of Genetics, Albert Einstein College of Medicine, Bronx, New York
| | - Sridhar Mani
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York
| | - Jay X Tang
- Department of Physics, Brown University, Providence, Rhode Island.
| |
Collapse
|
33
|
Mok R, Dunkel J, Kantsler V. Geometric control of bacterial surface accumulation. Phys Rev E 2019; 99:052607. [PMID: 31212480 DOI: 10.1103/physreve.99.052607] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Indexed: 06/09/2023]
Abstract
Controlling and suppressing bacterial accumulation at solid surfaces is essential for preventing biofilm formation and biofouling. Whereas various chemical surface treatments are known to reduce cell accumulation and attachment, the role of complex surface geometries remains less well understood. Here, we report experiments and simulations that explore the effects of locally varying boundary curvature on the scattering and accumulation dynamics of swimming Escherichia coli bacteria in quasi-two-dimensional microfluidic channels. Our experimental and numerical results show that a concave periodic boundary geometry can decrease the average cell concentration at the boundary by more than 50% relative to a flat surface.
Collapse
Affiliation(s)
- Rachel Mok
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139-4307, USA
- Department of Mathematics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139-4307, USA
| | - Jörn Dunkel
- Department of Mathematics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139-4307, USA
| | - Vasily Kantsler
- Department of Physics, University of Warwick, Coventry CV4 7AL, United Kingdom
| |
Collapse
|
34
|
Li K, Ma H. Rotation and Retention Dynamics of Rod-Shaped Colloids with Surface Charge Heterogeneity in Sphere-in-Cell Porous Media Model. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:5471-5483. [PMID: 30925063 DOI: 10.1021/acs.langmuir.9b00748] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Colloid surface charge heterogeneity was incorporated into a three-dimensional trajectory model, which simulated particle translation and rotation via a force/torque analysis, to study the transport and retention dynamics of rod-shaped colloids over a wide size range in porous media under unfavorable conditions (energy barriers to deposition exist). Our previous study Li , K. ; Ma , H. Deposition Dynamics of Rod-Shaped Colloids during Transport in Porous Media under Favorable Conditions , Langmuir , 2018 , 34 , 9 , 2967 - 2980 , 10.1021/acs.langmuir.7b03983 for rod transport under favorable conditions (lacking energy barriers) demonstrated that particle rotation due to the coupled effect of flow hydrodynamics and Brownian rotation governed rod transport and retention. In this work, we showed that the shape of a colloid affected both transport process and colloid-collector interactions, but shape alone could not make rods to overcome energy barriers of over tens of kT for attachment under unfavorable conditions. The location of colloid surface heterogeneity did not affect transport but predominantly affected colloid-surface interactions by influencing the likelihood of heterogeneity patches facing the collector due to particle rotation. For surface heterogeneity located on the end(s) of a colloid, rods displayed enhanced retention compared with spheres; for surface heterogeneity located on the middle band, rods showed less retention compared with spheres. It was more effective to arrest a traveling rod when surface heterogeneity was located on the end relative to the side, because the tumbling motion greatly increased the likelihood of the end to intercept collector surfaces, and also because a rod would experience less repulsion with an end-on orientation relative to the collector surface compared to a side-on orientation due to the curvature effect. The influences of the particle aspect ratio on retention strongly depended upon the location of colloid surface heterogeneity. Our findings demonstrated that rods had distinct rotation and retention behaviors from spheres under conditions typically encountered in the environment; thus, particle rotation should be considered when studying the transport process of nonspherical colloids or spherical particles with inhomogeneous surface properties.
Collapse
Affiliation(s)
- Ke Li
- Department of Geology and Geophysics , University of Utah , Salt Lake City , Utah 84112 , United States
| | - Huilian Ma
- Department of Geology and Geophysics , University of Utah , Salt Lake City , Utah 84112 , United States
| |
Collapse
|
35
|
Colloid Transport in Porous Media: A Review of Classical Mechanisms and Emerging Topics. Transp Porous Media 2019. [DOI: 10.1007/s11242-019-01270-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
36
|
Desai N, Shaik VA, Ardekani AM. Hydrodynamic Interaction Enhances Colonization of Sinking Nutrient Sources by Motile Microorganisms. Front Microbiol 2019; 10:289. [PMID: 30915037 PMCID: PMC6422982 DOI: 10.3389/fmicb.2019.00289] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 02/04/2019] [Indexed: 11/30/2022] Open
Abstract
In this study, we document hydrodynamics-mediated trapping of microorganisms around a moving spherical nutrient source such as a settling marine snow aggregate. There exists a range of size and excess density of the nutrient source, and motility and morphology of the microorganism under which hydrodynamic interactions enable the passive capture of approaching microorganisms onto a moving nutrient source. We simulate trajectories of chemotactic and non-chemotactic bacteria encountering a sinking marine snow particle effusing soluble nutrients. We calculate the average nutrient concentration to which the bacteria are exposed, under regimes of strong and weak hydrodynamic trapping. We find that hydrodynamic trapping can significantly amplify (by ≈40%) the nutrient exposure of bacteria, both chemotactic and non-chemotactic. The subtle interactions between hydrodynamic and chemotactic effects reveal non-trivial variations in this “hydrodynamic amplification,” as a function of relevant biophysical parameters. Our study provides a consistent description of how microorganism motility, fluid flow and nutrient distribution affect foraging by marine microbes, and the formation of biofilms on spherical nutrient sources under the influence of fluid flow.
Collapse
Affiliation(s)
- Nikhil Desai
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, United States
| | - Vaseem A Shaik
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, United States
| | - Arezoo M Ardekani
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
37
|
Zhai C, Zhang W, Zhang J, Ma LZ, Zhao K. Overshadow Effect of Psl on Bacterial Response to Physiochemically Distinct Surfaces Through Motility-Based Characterization. Front Cell Infect Microbiol 2018; 8:383. [PMID: 30420944 PMCID: PMC6215810 DOI: 10.3389/fcimb.2018.00383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 10/10/2018] [Indexed: 11/24/2022] Open
Abstract
Biofilms of Pseudomonas aeruginosa are ubiquitously found on surfaces of many medical devices, which are the major cause of hospital-acquired infections. A large amount of work has been focused on bacterial attachment on surfaces. However, how bacterial cells evolve on surfaces after their attachment is the key to get better understanding and further control of biofilm formation. In this work, by employing both single-cell- and collective-motility of cells, we characterized the bacterial surface movement on physiochemically distinct surfaces. The measurement of cell surface motility showed consistent results that gold and especially platinum surfaces displayed a stronger capability in microcolony formation than polyvinyl chloride and polycarbonate surfaces. More interestingly, we found that overproduction of Psl led to a narrower variance in cell surface motility among tested surfaces, indicating an overshadow effect of Psl for bacteria by screening the influence of physicochemical properties of solid surfaces. Our results provide insights into how Pseudomonas aeruginosa cells adapt their motion to physiochemically distinct surfaces, and thus would be beneficial for developing new anti-biofouling techniques in biomedical engineering.
Collapse
Affiliation(s)
- Chunhui Zhai
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Wenchao Zhang
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Jingchao Zhang
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Luyan Z. Ma
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Kun Zhao
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| |
Collapse
|
38
|
Desai N, Ardekani AM. Combined influence of hydrodynamics and chemotaxis in the distribution of microorganisms around spherical nutrient sources. Phys Rev E 2018; 98:012419. [PMID: 30110747 DOI: 10.1103/physreve.98.012419] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Indexed: 06/08/2023]
Abstract
We study how the interaction between hydrodynamics and chemotaxis affects the colonization of nutrient sources by microorganisms. We use an individual-based model and perform probabilistic simulations to ascertain the impact of important environmental and motility characteristics on the spatial distribution of microorganisms around a spherical nutrient source. In general, we unveil four distinct regimes based on the distribution of the microorganisms: (i) strong surface colonization, (ii) rotary-diffusion-induced "off-surface" accumulation, (iii) a depletion zone in the spatial distribution, and (iv) no appreciable aggregation, with their occurrence being contingent on the relative strengths of hydrodynamic and chemotactic effects. More specifically, we show that the extent of surface colonization first increases, then reaches a plateau, and finally decreases as the nutrient availability is increased. We also show that surface colonization reduces monotonically as the mean run length of the chemotactic microorganisms increases. Our study provides insight into the interplay of two important mechanisms governing microorganism behavior near nutrient sources, isolates each of their effects, and thus offers greater predictability of this nontrivial phenomenon.
Collapse
Affiliation(s)
- Nikhil Desai
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907, USA
| | - Arezoo M Ardekani
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907, USA
| |
Collapse
|
39
|
Jamali T, Naji A. Active fluids at circular boundaries: swim pressure and anomalous droplet ripening. SOFT MATTER 2018; 14:4820-4834. [PMID: 29845128 DOI: 10.1039/c8sm00338f] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We investigate the swim pressure exerted by non-chiral and chiral active particles on convex or concave circular boundaries. Active particles are modeled as non-interacting and non-aligning self-propelled Brownian particles. The convex and concave circular boundaries are used to model a fixed inclusion immersed in an active bath and a cavity (or container) enclosing the active particles, respectively. We first present a detailed analysis of the role of convex versus concave boundary curvature and of the chirality of active particles in their spatial distribution, chirality-induced currents, and the swim pressure they exert on the bounding surfaces. The results will then be used to predict the mechanical equilibria of suspended fluid enclosures (generically referred to as 'droplets') in a bulk with active particles being present either inside the bulk fluid or within the suspended droplets. We show that, while droplets containing active particles behave in accordance with standard capillary paradigms when suspended in a normal bulk, those containing a normal fluid exhibit anomalous behaviors when suspended in an active bulk. In the latter case, the excess swim pressure results in non-monotonic dependence of the inside droplet pressure on the droplet radius; hence, revealing an anomalous regime of behavior beyond a threshold radius, in which the inside droplet pressure increases upon increasing the droplet size. Furthermore, for two interconnected droplets, mechanical equilibrium can occur also when the droplets have different sizes. We thus identify a regime of anomalous droplet ripening, where two unequal-sized droplets can reach a final state of equal size upon interconnection, in stark contrast with the standard Ostwald ripening phenomenon, implying shrinkage of the smaller droplet in favor of the larger one.
Collapse
Affiliation(s)
- Tayeb Jamali
- School of Physics, Institute for Research in Fundamental Sciences (IPM), Tehran 19395-5531, Iran.
| | | |
Collapse
|
40
|
Conrad JC, Poling-Skutvik R. Confined Flow: Consequences and Implications for Bacteria and Biofilms. Annu Rev Chem Biomol Eng 2018; 9:175-200. [DOI: 10.1146/annurev-chembioeng-060817-084006] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Bacteria overwhelmingly live in geometrically confined habitats that feature small pores or cavities, narrow channels, or nearby interfaces. Fluid flows through these confined habitats are ubiquitous in both natural and artificial environments colonized by bacteria. Moreover, these flows occur on time and length scales comparable to those associated with motility of bacteria and with the formation and growth of biofilms, which are surface-associated communities that house the vast majority of bacteria to protect them from host and environmental stresses. This review describes the emerging understanding of how flow near surfaces and within channels and pores alters physical processes that control how bacteria disperse, attach to surfaces, and form biofilms. This understanding will inform the development and deployment of technologies for drug delivery, water treatment, and antifouling coatings and guide the structuring of bacterial consortia for production of chemicals and pharmaceuticals.
Collapse
Affiliation(s)
- Jacinta C. Conrad
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204, USA
| | - Ryan Poling-Skutvik
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204, USA
| |
Collapse
|
41
|
Nili H, Naji A. Re-entrant bimodality in spheroidal chiral swimmers in shear flow. Sci Rep 2018; 8:8328. [PMID: 29844481 PMCID: PMC5974238 DOI: 10.1038/s41598-018-26771-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 05/18/2018] [Indexed: 12/17/2022] Open
Abstract
We use a continuum model to report on the behavior of a dilute suspension of chiral swimmers subject to externally imposed shear in a planar channel. Swimmer orientation in response to the imposed shear can be characterized by two distinct phases of behavior, corresponding to unimodal or bimodal distribution functions for swimmer orientation along the channel. These phases indicate the occurrence (or not) of a population splitting phenomenon changing the swimming direction of a macroscopic fraction of active particles to the exact opposite of that dictated by the imposed flow. We present a detailed quantitative analysis elucidating the complexities added to the population splitting behavior of swimmers when they are chiral. In particular, the transition from unimodal to bimodal and vice versa are shown to display a re-entrant behavior across the parameter space spanned by varying the chiral angular speed. We also present the notable effects of particle aspect ratio and self-propulsion speed on system phase behavior and discuss potential implications of our results in applications such as swimmer separation/sorting.
Collapse
Affiliation(s)
- Hossein Nili
- School of Physics, Institute for Research in Fundamental Sciences (IPM), Tehran, 19395-5531, Iran.
| | - Ali Naji
- School of Physics, Institute for Research in Fundamental Sciences (IPM), Tehran, 19395-5531, Iran
| |
Collapse
|
42
|
Uppal G, Vural DC. Shearing in flow environment promotes evolution of social behavior in microbial populations. eLife 2018; 7:34862. [PMID: 29785930 PMCID: PMC6002248 DOI: 10.7554/elife.34862] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 05/10/2018] [Indexed: 11/23/2022] Open
Abstract
How producers of public goods persist in microbial communities is a major question in evolutionary biology. Cooperation is evolutionarily unstable, since cheating strains can reproduce quicker and take over. Spatial structure has been shown to be a robust mechanism for the evolution of cooperation. Here we study how spatial assortment might emerge from native dynamics and show that fluid flow shear promotes cooperative behavior. Social structures arise naturally from our advection-diffusion-reaction model as self-reproducing Turing patterns. We computationally study the effects of fluid advection on these patterns as a mechanism to enable or enhance social behavior. Our central finding is that flow shear enables and promotes social behavior in microbes by increasing the group fragmentation rate and thereby limiting the spread of cheating strains. Regions of the flow domain with higher shear admit high cooperativity and large population density, whereas low shear regions are devoid of life due to opportunistic mutations. According to the principle of the ‘survival of the fittest’, selfish individuals should be better off compared to peers that cooperate with each other. Indeed, even though a population of organisms benefits from working together, selfish members can exploit the cooperative behavior of others without doing their part. These ‘cheaters’ then use their advantage to reproduce faster and take over the population. Yet, social cooperation is widespread in the natural world, and occurs in creatures as diverse as bacteria and whales. How can it arise and persist then? One idea is that when individuals form distinct groups, the ones with cheaters will perish. Even though a selfish individual will fare better than the rest of its team, overall, cooperating groups will survive more and reproduce faster; ultimately, they will be favored by evolution. This is called group selection. Here, Uppal and Vural examine how the physical properties of the environment can influence the evolution of social interactions between bacteria. To this end, mathematical models are used to simulate how bacteria grow, evolve and drift in a flowing fluid. These are based on equations worked out from the behavior of real-life populations. The results show that flow patterns in a fluid habitat govern the social behavior of bacteria. When different regions of the fluid are moving at different speeds, ‘shear forces’ are created that cause bacterial colonies to distort and occasionally break apart to form two groups. As such, cooperative groups will rapidly form new cooperating colonies, whereas groups with cheaters will reproduce slower or perish. Furthermore, results show that when different areas of the fluid have different shear forces, social cooperation will only prevail in certain places. This makes it possible to use flow patterns to fine tune social evolution so that cooperating bacteria will be confined in a certain region. Outside of this area, these bacteria would be taken over by cheaters and go extinct. Bacteria are both useful and dangerous to humans: for example, certain species can break down pollutants in the water, when others cause deadly infections. These results show it could be possible to control the activity of these microorganisms to our advantage by changing the flow of the fluids in which they live. More broadly, the simulations developed by Uppal and Vural can be applied to a variety of ecosystems where microscopic organisms inhabit fluids, such as plankton flowing in oceanic currents.
Collapse
Affiliation(s)
- Gurdip Uppal
- Department of Physics, University of Notre Dame, Notre Dame, United States
| | - Dervis Can Vural
- Department of Physics, University of Notre Dame, Notre Dame, United States
| |
Collapse
|
43
|
Sartori P, Chiarello E, Jayaswal G, Pierno M, Mistura G, Brun P, Tiribocchi A, Orlandini E. Wall accumulation of bacteria with different motility patterns. Phys Rev E 2018; 97:022610. [PMID: 29548231 DOI: 10.1103/physreve.97.022610] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Indexed: 06/08/2023]
Abstract
We systematically investigate the role of different swimming patterns on the concentration distribution of bacterial suspensions confined between two flat walls, by considering wild-type motility Escherichia coli and Pseudomonas aeruginosa, which perform Run and Tumble and Run and Reverse patterns, respectively. The experiments count motile bacteria at different distances from the bottom wall. In agreement with previous studies, an accumulation of motile bacteria close to the walls is observed. Different wall separations, ranging from 100 to 250μm, are tested. The concentration profiles result to be independent on the motility pattern and on the walls' separation. These results are confirmed by numerical simulations, based on a collection of self-propelled dumbbells-like particles interacting only through steric interactions. The good agreement with the simulations suggests that the behavior of the investigated bacterial suspensions is determined mainly by steric collisions and self-propulsion, as well as hydrodynamic interactions.
Collapse
Affiliation(s)
- Paolo Sartori
- Dipartimento di Fisica e Astronomia "Galileo Galilei," Università di Padova, via Marzolo 8, 35131 Padova PD, Italy
| | - Enrico Chiarello
- Dipartimento di Fisica e Astronomia "Galileo Galilei," Università di Padova, via Marzolo 8, 35131 Padova PD, Italy
| | - Gaurav Jayaswal
- Dipartimento di Fisica e Astronomia "Galileo Galilei," Università di Padova, via Marzolo 8, 35131 Padova PD, Italy
| | - Matteo Pierno
- Dipartimento di Fisica e Astronomia "Galileo Galilei," Università di Padova, via Marzolo 8, 35131 Padova PD, Italy
| | - Giampaolo Mistura
- Dipartimento di Fisica e Astronomia "Galileo Galilei," Università di Padova, via Marzolo 8, 35131 Padova PD, Italy
| | - Paola Brun
- Dipartimento di Medicina Molecolare, Università di Padova, via Gabelli 63, 35121 Padova PD, Italy
| | - Adriano Tiribocchi
- Dipartimento di Fisica e Astronomia "Galileo Galilei," Università di Padova and INFN, via Marzolo 8, 35131 Padova PD, Italy
| | - Enzo Orlandini
- Dipartimento di Fisica e Astronomia "Galileo Galilei," Università di Padova and INFN, via Marzolo 8, 35131 Padova PD, Italy
| |
Collapse
|
44
|
Yan W, Brady JF. The curved kinetic boundary layer of active matter. SOFT MATTER 2018; 14:279-290. [PMID: 29242866 DOI: 10.1039/c7sm01643c] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A body submerged in active matter feels the swim pressure through a kinetic accumulation boundary layer on its surface. The boundary layer results from a balance between translational diffusion and advective swimming and occurs on the microscopic length scale . Here , DT is the Brownian translational diffusivity, τR is the reorientation time and l = U0τR is the swimmer's run length, with U0 the swim speed [Yan and Brady, J. Fluid. Mech., 2015, 785, R1]. In this work we analyze the swim pressure on arbitrary shaped bodies by including the effect of local shape curvature in the kinetic boundary layer. When δ ≪ L and l ≪ L, where L is the body size, the leading order effects of curvature on the swim pressure are found analytically to scale as JSλδ2/L, where JS is twice the (non-dimensional) mean curvature. Particle-tracking simulations and direct solutions to the Smoluchowski equation governing the probability distribution of the active particles show that λδ2/L is a universal scaling parameter not limited to the regime δ, l ≪ L. The net force exerted on the body by the swimmers is found to scale as Fnet/(n∞ksTsL2) = f(λδ2/L), where f(x) is a dimensionless function that is quadratic when x ≪ 1 and linear when x ∼ 1. Here, ksTs= ζU02τR/6 defines the 'activity' of the swimmers, with ζ the drag coefficient, and n∞ is the uniform number density of swimmers far from the body. We discuss the connection of this boundary layer to continuum mechanical descriptions of active matter and briefly present how to include hydrodynamics into this purely kinetic study.
Collapse
Affiliation(s)
- Wen Yan
- Department of Mechanical & Civil Engineering, Division of Engineering & Applied Science, California Institute of Technology, Pasadena, CA 91125, USA
| | | |
Collapse
|
45
|
Miño GL, Baabour M, Chertcoff R, Gutkind G, Clément E, Auradou H, Ippolito I. <i>E coli</i> Accumulation behind an Obstacle. ACTA ACUST UNITED AC 2018. [DOI: 10.4236/aim.2018.86030] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
46
|
Zaeifi Yamchi M, Naji A. Effective interactions between inclusions in an active bath. J Chem Phys 2017; 147:194901. [DOI: 10.1063/1.5001505] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Affiliation(s)
- Mahdi Zaeifi Yamchi
- School of Physics, Institute for Research in Fundamental Sciences (IPM), Tehran 19395-5531, Iran
| | - Ali Naji
- School of Physics, Institute for Research in Fundamental Sciences (IPM), Tehran 19395-5531, Iran
| |
Collapse
|
47
|
Ishimoto K. Guidance of microswimmers by wall and flow: Thigmotaxis and rheotaxis of unsteady squirmers in two and three dimensions. Phys Rev E 2017; 96:043103. [PMID: 29347500 DOI: 10.1103/physreve.96.043103] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Indexed: 06/07/2023]
Abstract
The motions of an unsteady circular-disk squirmer and a spherical squirmer have been investigated in the presence of a no-slip infinite wall and a background shear flow in order to clarify the similarities and differences between two- and three-dimensional motions. Despite the similar bifurcation structure of the dynamical system, the stability of the fixed points differs due to the Hamiltonian structure of the disk squirmer. Once the unsteady oscillating surface velocity profile is considered, the disk squirmer can behave in a chaotic manner and cease to be confined in a near-wall region. In contrast, in an unsteady spherical squirmer, the dynamics is well attracted by a stable fixed point. Additional wall contact interactions lead to stable fixed points for the disk squirmer, and, in turn, the surface entrapment of the disk squirmer can be stabilized, regardless of the existence of the background flow. Finally, we consider spherical motion under a background flow. The separated time scales of the surface entrapment (thigmotaxis) and the turning toward the flow direction (rheotaxis) enable us to reduce the dynamics to two-dimensional phase space, and simple weather-vane mechanics can predict squirmer rheotaxis. The analogous structure of the phase plane with the wall contact in two and three dimensions implies that the two-dimensional disk swimmer successfully captures the nonlinear interactions, and thus two-dimensional approximation could be useful in designing microfluidic devices for the guidance of microswimmers and for clarifying the locomotions in a complex geometry.
Collapse
Affiliation(s)
- Kenta Ishimoto
- Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford, Oxford OX2 6GG, United Kingdom; The Hakubi Center for Advanced Research, Kyoto University, Kyoto 606-8501, Japan; and Research Institute for Mathematical Sciences, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
48
|
Films of bacteria at interfaces. Adv Colloid Interface Sci 2017; 247:561-572. [PMID: 28778342 DOI: 10.1016/j.cis.2017.07.016] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 07/14/2017] [Accepted: 07/14/2017] [Indexed: 11/21/2022]
Abstract
Bacteria are often discussed as active colloids, self-propelled organisms whose collective motion can be studied in the context of non-equilibrium statistical mechanics. In such studies, the behavior of bacteria confined to interfaces or in the proximity of an interface plays an important role. For instance, many studies have probed collective behavior of bacteria in quasi two-dimensional systems such as soap films. Since fluid interfaces can adsorb surfactants and other materials, the stress and velocity boundary conditions at interfaces can alter bacteria motion; hydrodynamic studies of interfaces with differing boundary conditions are reviewed. Also, bacteria in bulk can become trapped at or near fluid interfaces, where they colonize and form structures comprising secretions like exopolysaccharides, surfactants, living and dead bacteria, thereby creating Films of Bacteria at Interfaces (FBI). The formation of FBI is discussed at air-water, oil-water, and water-water interfaces, with an emphasis on film mechanics, and with some allusion to genetic functions guiding bacteria to restructure fluid interfaces. At air-water interfaces, bacteria form pellicles or interfacial biofilms. Studies are reviewed that reveal that pellicle material properties differ for different strains of bacteria, and that pellicle physicochemistry can act as a feedback mechanism to regulate film formation. At oil-water interfaces, a range of FBI form, depending on bacteria strain. Some bacteria-laden interfaces age from an initial active film, with dynamics dominated by motile bacteria, through viscoelastic states, to form an elastic film. Others remain active with no evidence of elastic film formation even at significant interface ages. Finally, bacteria can adhere to and colonize ultra-low surface tension interfaces such as aqueous-aqueous systems common in food industries. Relevant literature is reviewed, and areas of interest for potential application are discussed, ranging from health to bioremediation.
Collapse
|
49
|
Nili H, Kheyri M, Abazari J, Fahimniya A, Naji A. Population splitting of rodlike swimmers in Couette flow. SOFT MATTER 2017; 13:4494-4506. [PMID: 28584884 DOI: 10.1039/c7sm00293a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We present a quantitative analysis on the response of a dilute active suspension of self-propelled rods (swimmers) in a planar channel subjected to an imposed shear flow. To best capture the salient features of the shear-induced effects, we consider the case of an imposed Couette flow, providing a constant shear rate across the channel. We argue that the steady-state behavior of swimmers can be understood in the light of a population splitting phenomenon, occurring as the shear rate exceeds a certain threshold, initiating the reversal of the swimming direction for a finite fraction of swimmers from down- to upstream or vice versa, depending on the swimmer position within the channel. Swimmers thus split into two distinct, statistically significant and oppositely swimming majority and minority populations. The onset of population splitting translates into a transition from a self-propulsion-dominated regime to a shear-dominated regime, corresponding to a unimodal-to-bimodal change in the probability distribution function of the swimmer orientation. We present a phase diagram in terms of the swim and flow Péclet numbers showing the separation of these two regimes by a discontinuous transition line. Our results shed further light on the behavior of swimmers in a shear flow and provide an explanation for the previously reported non-monotonic behavior of the mean, near-wall, parallel-to-flow orientation of swimmers with increasing shear strength.
Collapse
Affiliation(s)
- Hossein Nili
- School of Physics, Institute for Research in Fundamental Sciences (IPM), P.O. Box 19395-5531, Tehran, Iran.
| | | | | | | | | |
Collapse
|
50
|
Horstmann JA, Zschieschang E, Truschel T, de Diego J, Lunelli M, Rohde M, May T, Strowig T, Stradal T, Kolbe M, Erhardt M. Flagellin phase-dependent swimming on epithelial cell surfaces contributes to productive Salmonella gut colonisation. Cell Microbiol 2017; 19. [PMID: 28295924 DOI: 10.1111/cmi.12739] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 03/08/2017] [Indexed: 12/11/2022]
Abstract
The flagellum is a sophisticated nanomachine and an important virulence factor of many pathogenic bacteria. Flagellar motility enables directed movements towards host cells in a chemotactic process, and near-surface swimming on cell surfaces is crucial for selection of permissive entry sites. The long external flagellar filament is made of tens of thousands subunits of a single protein, flagellin, and many Salmonella serovars alternate expression of antigenically distinct flagellin proteins, FliC and FljB. However, the role of the different flagellin variants during gut colonisation and host cell invasion remains elusive. Here, we demonstrate that flagella made of different flagellin variants display structural differences and affect Salmonella's swimming behaviour on host cell surfaces. We observed a distinct advantage of bacteria expressing FliC-flagella to identify target sites on host cell surfaces and to invade epithelial cells. FliC-expressing bacteria outcompeted FljB-expressing bacteria for intestinal tissue colonisation in the gastroenteritis and typhoid murine infection models. Intracellular survival and responses of the host immune system were not altered. We conclude that structural properties of flagella modulate the swimming behaviour on host cell surfaces, which facilitates the search for invasion sites and might constitute a general mechanism for productive host cell invasion of flagellated bacteria.
Collapse
Affiliation(s)
- Julia A Horstmann
- Junior Research Group Infection Biology of Salmonella, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Erik Zschieschang
- Department for Structural Infection Biology, Center for Structural Systems Biology, Hamburg, Germany.,Department for Structural Infection Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | | | - Juana de Diego
- Department for Structural Infection Biology, Center for Structural Systems Biology, Hamburg, Germany.,Department for Structural Infection Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Michele Lunelli
- Department for Structural Infection Biology, Center for Structural Systems Biology, Hamburg, Germany.,Department for Structural Infection Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Manfred Rohde
- Central Facility for Microscopy, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | | | - Till Strowig
- Junior Research Group Microbial Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Theresia Stradal
- Department of Cell Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Michael Kolbe
- Department for Structural Infection Biology, Center for Structural Systems Biology, Hamburg, Germany.,Department for Structural Infection Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany.,MIN-Faculty University Hamburg, Hamburg, Germany
| | - Marc Erhardt
- Junior Research Group Infection Biology of Salmonella, Helmholtz Centre for Infection Research, Braunschweig, Germany
| |
Collapse
|