1
|
Guo ZX, Feng TJ, Tao Y, Wang RW, Zheng XD. Evolutionary dynamics of cooperation coupled with ecological feedback compensation. Biosystems 2024; 244:105282. [PMID: 39147308 DOI: 10.1016/j.biosystems.2024.105282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/01/2024] [Accepted: 08/02/2024] [Indexed: 08/17/2024]
Abstract
A simple theoretical model (or a demonstrative example) was developed to illustrate how the evolution of cooperation can be affected by the density-dependent survival competition, in which we assume that the fertility of an individual depends only on the pairwise interaction between him and other individuals based on Prisoner's Dilemma game, while its viability is only related to the density-dependent survival competitiveness. Our results show that not only cooperation could be evolutionarily stable if the advantage of cooperators in viability can compensate for the cost they pay for their fertility, but also the long-term stable coexistence of cooperation and defection is possible if none of cooperation and defection is evolutionarily stable. Moreover, for the stochastic evolutionary dynamics in a finite population, our analysis shows that the increase (or decrease) of the survival competitiveness of cooperators (or defectors) should be conductive to the evolutionary emergence of cooperation.
Collapse
Affiliation(s)
- Zi-Xuan Guo
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710072, China
| | - Tian-Jiao Feng
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; National Fisheries Technology Extension Center, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
| | - Yi Tao
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710072, China; Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Rui-Wu Wang
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710072, China
| | - Xiu-Deng Zheng
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
2
|
Universal scaling of extinction time in stochastic evolutionary dynamics. Sci Rep 2022; 12:22403. [PMID: 36575301 PMCID: PMC9794815 DOI: 10.1038/s41598-022-27102-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 12/26/2022] [Indexed: 12/28/2022] Open
Abstract
Evolutionary dynamics is well captured by the replicator equations when the population is infinite and well-mixed. However, the extinction dynamics is modified with finite and structured populations. Experiments on the non-transitive ecosystem containing three populations of bacteria found that the ecological stability sensitively depends on the spatial structure of the populations. Based on the Reference-Gamble-Birth algorithm, we use agent-based Monte Carlo simulations to investigate the extinction dynamics in the rock-paper-scissors ecosystem with finite and structured populations. On the fully-connected network, the extinction time in stable and unstable regimes falls into two universal functions when plotted with the rescaled variables. On the two dimensional grid, the spatial structure changes the transition boundary between stable and unstable regimes but doesn't change its extinction trend. The finding of universal scaling in extinction dynamics is unexpected, and may provide a powerful method to classify different evolutionary dynamics into universal classes.
Collapse
|
3
|
Mendes PB, Boeger WA. Game dynamics as a driver for pathogen spillover pulses. Ecol Modell 2022. [DOI: 10.1016/j.ecolmodel.2022.110095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
4
|
|
5
|
Abstract
In simple dyadic games such as rock, paper, scissors (RPS), people exhibit peculiar sequential dependencies across repeated interactions with a stable opponent. These regularities seem to arise from a mutually adversarial process of trying to outwit their opponent. What underlies this process, and what are its limits? Here, we offer a novel framework for formally describing and quantifying human adversarial reasoning in the rock, paper, scissors game. We first show that this framework enables a precise characterization of the complexity of patterned behaviors that people exhibit themselves, and appear to exploit in others. This combination allows for a quantitative understanding of human opponent modeling abilities. We apply these tools to an experiment in which people played 300 rounds of RPS in stable dyads. We find that although people exhibit very complex move dependencies, they cannot exploit these dependencies in their opponents, indicating a fundamental limitation in people’s capacity for adversarial reasoning. Taken together, the results presented here show how the rock, paper, scissors game allows for precise formalization of human adaptive reasoning abilities.
Collapse
|
6
|
Kleshnina M, Streipert SS, Filar JA, Chatterjee K. Mistakes can stabilise the dynamics of rock-paper-scissors games. PLoS Comput Biol 2021; 17:e1008523. [PMID: 33844680 PMCID: PMC8062094 DOI: 10.1371/journal.pcbi.1008523] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 04/22/2021] [Accepted: 03/18/2021] [Indexed: 11/19/2022] Open
Abstract
A game of rock-paper-scissors is an interesting example of an interaction where none of the pure strategies strictly dominates all others, leading to a cyclic pattern. In this work, we consider an unstable version of rock-paper-scissors dynamics and allow individuals to make behavioural mistakes during the strategy execution. We show that such an assumption can break a cyclic relationship leading to a stable equilibrium emerging with only one strategy surviving. We consider two cases: completely random mistakes when individuals have no bias towards any strategy and a general form of mistakes. Then, we determine conditions for a strategy to dominate all other strategies. However, given that individuals who adopt a dominating strategy are still prone to behavioural mistakes in the observed behaviour, we may still observe extinct strategies. That is, behavioural mistakes in strategy execution stabilise evolutionary dynamics leading to an evolutionary stable and, potentially, mixed co-existence equilibrium.
Collapse
Affiliation(s)
- Maria Kleshnina
- Institute of Science and Technology Austria (IST Austria), Klosterneuburg, Austria
| | | | - Jerzy A. Filar
- School of Mathematics and Physics, University of Queensland, Brisbane, Australia
| | | |
Collapse
|
7
|
Knebel J, Geiger PM, Frey E. Topological Phase Transition in Coupled Rock-Paper-Scissors Cycles. PHYSICAL REVIEW LETTERS 2020; 125:258301. [PMID: 33416395 DOI: 10.1103/physrevlett.125.258301] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/19/2020] [Accepted: 11/05/2020] [Indexed: 06/12/2023]
Abstract
A hallmark of topological phases is the occurrence of topologically protected modes at the system's boundary. Here, we find topological phases in the antisymmetric Lotka-Volterra equation (ALVE). The ALVE is a nonlinear dynamical system and describes, for example, the evolutionary dynamics of a rock-paper-scissors cycle. On a one-dimensional chain of rock-paper-scissor cycles, topological phases become manifest as robust polarization states. At the transition point between left and right polarization, solitary waves are observed. This topological phase transition lies in symmetry class D within the "tenfold way" classification as also realized by 1D topological superconductors.
Collapse
Affiliation(s)
- Johannes Knebel
- Arnold-Sommerfeld-Center for Theoretical Physics and Center for NanoScience, Department of Physics, Ludwig-Maximilians-Universität München, Theresienstrasse 37, D-80333 Munich, Germany
| | - Philipp M Geiger
- Arnold-Sommerfeld-Center for Theoretical Physics and Center for NanoScience, Department of Physics, Ludwig-Maximilians-Universität München, Theresienstrasse 37, D-80333 Munich, Germany
| | - Erwin Frey
- Arnold-Sommerfeld-Center for Theoretical Physics and Center for NanoScience, Department of Physics, Ludwig-Maximilians-Universität München, Theresienstrasse 37, D-80333 Munich, Germany
| |
Collapse
|
8
|
Zeng HL, Dichio V, Rodríguez Horta E, Thorell K, Aurell E. Global analysis of more than 50,000 SARS-CoV-2 genomes reveals epistasis between eight viral genes. Proc Natl Acad Sci U S A 2020; 117:31519-31526. [PMID: 33203681 PMCID: PMC7733830 DOI: 10.1073/pnas.2012331117] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Genome-wide epistasis analysis is a powerful tool to infer gene interactions, which can guide drug and vaccine development and lead to deeper understanding of microbial pathogenesis. We have considered all complete severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) genomes deposited in the Global Initiative on Sharing All Influenza Data (GISAID) repository until four different cutoff dates, and used direct coupling analysis together with an assumption of quasi-linkage equilibrium to infer epistatic contributions to fitness from polymorphic loci. We find eight interactions, of which three are between pairs where one locus lies in gene ORF3a, both loci holding nonsynonymous mutations. We also find interactions between two loci in gene nsp13, both holding nonsynonymous mutations, and four interactions involving one locus holding a synonymous mutation. Altogether, we infer interactions between loci in viral genes ORF3a and nsp2, nsp12, and nsp6, between ORF8 and nsp4, and between loci in genes nsp2, nsp13, and nsp14. The paper opens the prospect to use prominent epistatically linked pairs as a starting point to search for combinatorial weaknesses of recombinant viral pathogens.
Collapse
Affiliation(s)
- Hong-Li Zeng
- New Energy Technology Engineering Laboratory of Jiangsu Province, School of Science, Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
- Nordic Institute for Theoretical Physics, Royal Institute of Technology and Stockholm University, 10691 Stockholm, Sweden
| | - Vito Dichio
- Nordic Institute for Theoretical Physics, Royal Institute of Technology and Stockholm University, 10691 Stockholm, Sweden
- Department of Physics, University of Trieste, 34151 Trieste, Italy
- Department of Computational Science and Technology, AlbaNova University Center, 10691 Stockholm, Sweden
| | - Edwin Rodríguez Horta
- Group of Complex Systems and Statistical Physics, Department of Theoretical Physics, Physics Faculty, University of Havana, 10400 Havana, Cuba
| | - Kaisa Thorell
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden
- Center for Translational Microbiome Research, Department of Microbiology, Cell and Tumor Biology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Erik Aurell
- Department of Computational Science and Technology, AlbaNova University Center, 10691 Stockholm, Sweden;
| |
Collapse
|
9
|
Wang L, Huang W, Li Y, Evans J, He S. Multi-AI competing and winning against humans in iterated Rock-Paper-Scissors game. Sci Rep 2020; 10:13873. [PMID: 32807813 PMCID: PMC7431549 DOI: 10.1038/s41598-020-70544-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 07/28/2020] [Indexed: 11/09/2022] Open
Abstract
Predicting and modeling human behavior and finding trends within human decision-making processes is a major problem of social science. Rock Paper Scissors (RPS) is the fundamental strategic question in many game theory problems and real-world competitions. Finding the right approach to beat a particular human opponent is challenging. Here we use an AI (artificial intelligence) algorithm based on Markov Models of one fixed memory length (abbreviated as "single AI") to compete against humans in an iterated RPS game. We model and predict human competition behavior by combining many Markov Models with different fixed memory lengths (abbreviated as "multi-AI"), and develop an architecture of multi-AI with changeable parameters to adapt to different competition strategies. We introduce a parameter called "focus length" (a positive number such as 5 or 10) to control the speed and sensitivity for our multi-AI to adapt to the opponent's strategy change. The focus length is the number of previous rounds that the multi-AI should look at when determining which Single-AI has the best performance and should choose to play for the next game. We experimented with 52 different people, each playing 300 rounds continuously against one specific multi-AI model, and demonstrated that our strategy could win against more than 95% of human opponents.
Collapse
Affiliation(s)
- Lei Wang
- National Engineering Research Center for Optical Instruments, Centre for Optical and Electromagnetic Research, Zhejiang University, Hangzhou, 310058, China
| | - Wenbin Huang
- National Engineering Research Center for Optical Instruments, Centre for Optical and Electromagnetic Research, Zhejiang University, Hangzhou, 310058, China.,Ningbo Research Institute, Zhejiang University, Ningbo, 315100, China
| | - Yuanpeng Li
- National Engineering Research Center for Optical Instruments, Centre for Optical and Electromagnetic Research, Zhejiang University, Hangzhou, 310058, China.,Ningbo Research Institute, Zhejiang University, Ningbo, 315100, China
| | - Julian Evans
- National Engineering Research Center for Optical Instruments, Centre for Optical and Electromagnetic Research, Zhejiang University, Hangzhou, 310058, China
| | - Sailing He
- National Engineering Research Center for Optical Instruments, Centre for Optical and Electromagnetic Research, Zhejiang University, Hangzhou, 310058, China. .,Ningbo Research Institute, Zhejiang University, Ningbo, 315100, China. .,Department of Electromagnetic Engineering, School of Electrical Engineering, Royal Institute of Technology, 100 44, Stockholm, Sweden.
| |
Collapse
|
10
|
How long do Red Queen dynamics survive under genetic drift? A comparative analysis of evolutionary and eco-evolutionary models. BMC Evol Biol 2020; 20:8. [PMID: 31931696 PMCID: PMC6958710 DOI: 10.1186/s12862-019-1562-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 12/12/2019] [Indexed: 11/26/2022] Open
Abstract
Background Red Queen dynamics are defined as long term co-evolutionary dynamics, often with oscillations of genotype abundances driven by fluctuating selection in host-parasite systems. Much of our current understanding of these dynamics is based on theoretical concepts explored in mathematical models that are mostly (i) deterministic, inferring an infinite population size and (ii) evolutionary, thus ecological interactions that change population sizes are excluded. Here, we recall the different mathematical approaches used in the current literature on Red Queen dynamics. We then compare models from game theory (evo) and classical theoretical ecology models (eco-evo), that are all derived from individual interactions and are thus intrinsically stochastic. We assess the influence of this stochasticity through the time to the first loss of a genotype within a host or parasite population. Results The time until the first genotype is lost (“extinction time”), is shorter when ecological dynamics, in the form of a changing population size, is considered. Furthermore, when individuals compete only locally with other individuals extinction is even faster. On the other hand, evolutionary models with a fixed population size and competition on the scale of the whole population prolong extinction and therefore stabilise the oscillations. The stabilising properties of intra-specific competitions become stronger when population size is increased and the deterministic part of the dynamics gain influence. In general, the loss of genotype diversity can be counteracted with mutations (or recombination), which then allow the populations to recurrently undergo negative frequency-dependent selection dynamics and selective sweeps. Conclusion Although the models we investigated are equal in their biological motivation and interpretation, they have diverging mathematical properties both in the derived deterministic dynamics and the derived stochastic dynamics. We find that models that do not consider intraspecific competition and that include ecological dynamics by letting the population size vary, lose genotypes – and thus Red Queen oscillations – faster than models with competition and a fixed population size.
Collapse
|
11
|
Erdakov LN, Panov VV, Litvinov YN. The Cyclicity in the Dynamics of Different Populations of the Common Shrew. RUSS J ECOL+ 2019. [DOI: 10.1134/s1067413619060043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Cremer J, Melbinger A, Wienand K, Henriquez T, Jung H, Frey E. Cooperation in Microbial Populations: Theory and Experimental Model Systems. J Mol Biol 2019; 431:4599-4644. [PMID: 31634468 DOI: 10.1016/j.jmb.2019.09.023] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 09/25/2019] [Accepted: 09/26/2019] [Indexed: 01/07/2023]
Abstract
Cooperative behavior, the costly provision of benefits to others, is common across all domains of life. This review article discusses cooperative behavior in the microbial world, mediated by the exchange of extracellular products called public goods. We focus on model species for which the production of a public good and the related growth disadvantage for the producing cells are well described. To unveil the biological and ecological factors promoting the emergence and stability of cooperative traits we take an interdisciplinary perspective and review insights gained from both mathematical models and well-controlled experimental model systems. Ecologically, we include crucial aspects of the microbial life cycle into our analysis and particularly consider population structures where ensembles of local communities (subpopulations) continuously emerge, grow, and disappear again. Biologically, we explicitly consider the synthesis and regulation of public good production. The discussion of the theoretical approaches includes general evolutionary concepts, population dynamics, and evolutionary game theory. As a specific but generic biological example, we consider populations of Pseudomonas putida and its regulation and use of pyoverdines, iron scavenging molecules, as public goods. The review closes with an overview on cooperation in spatially extended systems and also provides a critical assessment of the insights gained from the experimental and theoretical studies discussed. Current challenges and important new research opportunities are discussed, including the biochemical regulation of public goods, more realistic ecological scenarios resembling native environments, cell-to-cell signaling, and multispecies communities.
Collapse
Affiliation(s)
- J Cremer
- Department of Molecular Immunology and Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, the Netherlands
| | - A Melbinger
- Arnold-Sommerfeld-Center for Theoretical Physics and Center for Nanoscience, Ludwig-Maximilians-Universität München, Theresienstrasse 37, D-80333 Munich, Germany
| | - K Wienand
- Arnold-Sommerfeld-Center for Theoretical Physics and Center for Nanoscience, Ludwig-Maximilians-Universität München, Theresienstrasse 37, D-80333 Munich, Germany
| | - T Henriquez
- Microbiology, Department of Biology I, Ludwig-Maximilians-Universität München, Grosshaderner Strasse 2-4, Martinsried, Germany
| | - H Jung
- Microbiology, Department of Biology I, Ludwig-Maximilians-Universität München, Grosshaderner Strasse 2-4, Martinsried, Germany.
| | - E Frey
- Arnold-Sommerfeld-Center for Theoretical Physics and Center for Nanoscience, Ludwig-Maximilians-Universität München, Theresienstrasse 37, D-80333 Munich, Germany.
| |
Collapse
|
13
|
Park J. Emergence of oscillatory coexistence with exponentially decayed waiting times in a coupled cyclic competition system. CHAOS (WOODBURY, N.Y.) 2019; 29:071107. [PMID: 31370425 DOI: 10.1063/1.5118833] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 07/15/2019] [Indexed: 06/10/2023]
Abstract
Interpatch migration between two environments is generally considered as a spatial concept and can affect species biodiversity in each patch by inducing flux of population such as inflow and outflow quantities of species. In this paper, we explore the effect of interpatch migration, which can be generally considered as a spatial concept and may affect species biodiversity between two different patches in the perspective of the macroscopic level by exploiting the coupling of two systems, where each patch is occupied by cyclically competing three species who can stably coexist by exhibiting periodic orbits. For two simple scenarios of interpatch migration either single or all species migration, we found that two systems with independently stable coexisting species in each patch are eventually synchronized, and oscillatory behaviors of species densities in two patches become identical, i.e., the synchronized coexistence emerges. In addition, we find that, whether single or all species interpatch migration occurs, the waiting time for the synchronization is exponentially decreasing as the coupling strength is intensified. Our findings suggest that the synchronized behavior of species as a result of migration between different patches can be easily predicted by the coupling of systems and additional information such as waiting times and sensitivity of initial densities.
Collapse
Affiliation(s)
- Junpyo Park
- Department of Mathematical Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, South Korea
| |
Collapse
|
14
|
Park J. Nonlinear dynamics with Hopf bifurcations by targeted mutation in the system of rock-paper-scissors metaphor. CHAOS (WOODBURY, N.Y.) 2019; 29:033102. [PMID: 30927841 DOI: 10.1063/1.5081966] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Accepted: 02/05/2019] [Indexed: 06/09/2023]
Abstract
The role of mutation, which is an error process in gene evolution, in systems of cyclically competing species has been studied from various perspectives, and it is regarded as one of the key factors for promoting coexistence of all species. In addition to naturally occurring mutations, many experiments in genetic engineering have involved targeted mutation techniques such as recombination between DNA and somatic cell sequences and have studied genetic modifications through loss or augmentation of cell functions. In this paper, we investigate nonlinear dynamics with targeted mutation in cyclically competing species. In different ways to classic approaches of mutation in cyclic games, we assume that mutation may occur in targeted individuals who have been removed from intraspecific competition. By investigating each scenario depending on the number of objects for targeted mutation analytically and numerically, we found that targeted mutation can lead to persistent coexistence of all species. In addition, under the specific condition of targeted mutation, we found that targeted mutation can lead to emergences of bistable states for species survival. Through the linear stability analysis of rate equations, we found that those phenomena are accompanied by Hopf bifurcation which is supercritical. Our findings may provide more global perspectives on understanding underlying mechanisms to control biodiversity in ecological/biological sciences, and evidences with mathematical foundations to resolve social dilemmas such as a turnover of group members by resigning with intragroup conflicts in social sciences.
Collapse
Affiliation(s)
- Junpyo Park
- Department of Mathematical Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, South Korea
| |
Collapse
|
15
|
Nagatani T, Ichinose G, Tainaka KI. Metapopulation dynamics in the rock-paper-scissors game with mutation: Effects of time-varying migration paths. J Theor Biol 2019; 462:425-431. [DOI: 10.1016/j.jtbi.2018.11.030] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 11/24/2018] [Accepted: 11/27/2018] [Indexed: 12/19/2022]
|
16
|
Metapopulation model of rock-scissors-paper game with subpopulation-specific victory rates stabilized by heterogeneity. J Theor Biol 2018; 458:103-110. [PMID: 30213665 DOI: 10.1016/j.jtbi.2018.09.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 09/07/2018] [Accepted: 09/10/2018] [Indexed: 11/20/2022]
Abstract
Recently, metapopulation models for rock-paper-scissors games have been presented. Each subpopulation is represented by a node on a graph. An individual is either rock (R), scissors (S) or paper (P); it randomly migrates among subpopulations. In the present paper, we assume victory rates differ in different subpopulations. To investigate the dynamic state of each subpopulation (node), we numerically obtain the solutions of reaction-diffusion equations on the graphs with two and three nodes. In the case of homogeneous victory rates, we find each subpopulation has a periodic solution with neutral stability. However, when victory rates between subpopulations are heterogeneous, the solution approaches stable focuses. The heterogeneity of victory rates promotes the coexistence of species.
Collapse
|
17
|
Hilbe C, Schmid L, Tkadlec J, Chatterjee K, Nowak MA. Indirect reciprocity with private, noisy, and incomplete information. Proc Natl Acad Sci U S A 2018; 115:12241-12246. [PMID: 30429320 PMCID: PMC6275544 DOI: 10.1073/pnas.1810565115] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Indirect reciprocity is a mechanism for cooperation based on shared moral systems and individual reputations. It assumes that members of a community routinely observe and assess each other and that they use this information to decide who is good or bad, and who deserves cooperation. When information is transmitted publicly, such that all community members agree on each other's reputation, previous research has highlighted eight crucial moral systems. These "leading-eight" strategies can maintain cooperation and resist invasion by defectors. However, in real populations individuals often hold their own private views of others. Once two individuals disagree about their opinion of some third party, they may also see its subsequent actions in a different light. Their opinions may further diverge over time. Herein, we explore indirect reciprocity when information transmission is private and noisy. We find that in the presence of perception errors, most leading-eight strategies cease to be stable. Even if a leading-eight strategy evolves, cooperation rates may drop considerably when errors are common. Our research highlights the role of reliable information and synchronized reputations to maintain stable moral systems.
Collapse
Affiliation(s)
- Christian Hilbe
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria;
| | - Laura Schmid
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| | - Josef Tkadlec
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| | | | - Martin A Nowak
- Program for Evolutionary Dynamics, Harvard University, Cambridge, MA 02138
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138
- Department of Mathematics, Harvard University, Cambridge, MA 02138
| |
Collapse
|
18
|
Zheng XD, Li C, Lessard S, Tao Y. Environmental Noise Could Promote Stochastic Local Stability of Behavioral Diversity Evolution. PHYSICAL REVIEW LETTERS 2018; 120:218101. [PMID: 29883159 DOI: 10.1103/physrevlett.120.218101] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Indexed: 06/08/2023]
Abstract
In this Letter, we investigate stochastic stability in a two-phenotype evolutionary game model for an infinite, well-mixed population undergoing discrete, nonoverlapping generations. We assume that the fitness of a phenotype is an exponential function of its expected payoff following random pairwise interactions whose outcomes randomly fluctuate with time. We show that the stochastic local stability of a constant interior equilibrium can be promoted by the random environmental noise even if the system may display a complicated nonlinear dynamics. This result provides a new perspective for a better understanding of how environmental fluctuations may contribute to the evolution of behavioral diversity.
Collapse
Affiliation(s)
- Xiu-Deng Zheng
- Key Laboratory of Animal Ecology and Conservation Biology, Centre for Computational and Evolutionary Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Cong Li
- Department of Mathematics and Statistics, University of Montreal, Montreal QC H3C 3J7, Canada
| | - Sabin Lessard
- Department of Mathematics and Statistics, University of Montreal, Montreal QC H3C 3J7, Canada
| | - Yi Tao
- Key Laboratory of Animal Ecology and Conservation Biology, Centre for Computational and Evolutionary Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
19
|
Heterogeneous network promotes species coexistence: metapopulation model for rock-paper-scissors game. Sci Rep 2018; 8:7094. [PMID: 29728573 PMCID: PMC5935761 DOI: 10.1038/s41598-018-25353-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 04/19/2018] [Indexed: 11/08/2022] Open
Abstract
Understanding mechanisms of biodiversity has been a central question in ecology. The coexistence of three species in rock-paper-scissors (RPS) systems are discussed by many authors; however, the relation between coexistence and network structure is rarely discussed. Here we present a metapopulation model for RPS game. The total population is assumed to consist of three subpopulations (nodes). Each individual migrates by random walk; the destination of migration is randomly determined. From reaction-migration equations, we obtain the population dynamics. It is found that the dynamic highly depends on network structures. When a network is homogeneous, the dynamics are neutrally stable: each node has a periodic solution, and the oscillations synchronize in all nodes. However, when a network is heterogeneous, the dynamics approach stable focus and all nodes reach equilibriums with different densities. Hence, the heterogeneity of the network promotes biodiversity.
Collapse
|
20
|
Park J. Biodiversity in the cyclic competition system of three species according to the emergence of mutant species. CHAOS (WOODBURY, N.Y.) 2018; 28:053111. [PMID: 29857686 DOI: 10.1063/1.5021145] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Understanding mechanisms which promote or hinder existing ecosystems are important issues in ecological sciences. In addition to fundamental interactions such as competition and migration among native species, existing ecosystems can be easily disturbed by external factors, and the emergence of new species may be an example in such cases. The new species which does not exist in a current ecosystem can be regarded as either alien species entered from outside or mutant species born by mutation in existing normal species. Recently, as existing ecosystems are getting influenced by various physical/chemical external factors, mutation due to anthropogenic and environmental factors can occur more frequently and is thus attracting much attention for the maintenance of ecosystems. In this paper, we consider emergences of mutant species among self-competing three species in the cyclic dominance. By defining mutation as the birth of mutant species, we investigate how mutant species can affect biodiversity in the existing ecosystem. Through microscopic and macroscopic approaches, we have found that the society of existing normal species can be disturbed by mutant species either the society is maintained accompanying with the coexistence of all species or jeopardized by occupying of mutant species. Due to the birth of mutant species, the existing society may be more complex by constituting two different groups of normal and mutant species, and our results can be contributed to analyze complex ecosystems of many species. We hope our findings may propose a new insight on mutation in cyclic competition systems of many species.
Collapse
Affiliation(s)
- Junpyo Park
- Department of Mathematical Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, South Korea
| |
Collapse
|
21
|
Kim B, Park J. Basins of distinct asymptotic states in the cyclically competing mobile five species game. CHAOS (WOODBURY, N.Y.) 2017; 27:103117. [PMID: 29092432 DOI: 10.1063/1.4998984] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We study the dynamics of cyclic competing mobile five species on spatially extended systems originated from asymmetric initial populations and investigate the basins for the three possible asymptotic states, coexistence of all species, existences of only two independent species, and the extinction. Through extensive numerical simulations, we find a prosperous dependence on initial conditions for species biodiversity. In particular, for fixed given equal densities of two relevant species, we find that only five basins for the existence of two independent species exist and they are spirally entangled for high mobility. A basin of coexistence is outbreaking when the mobility parameter is decreased through a critical value and surrounded by the other five basins. For fixed given equal densities of two independent species, however, we find that basin structures are not spirally entangled. Further, final states of two independent species are totally different. For all possible considerations, the extinction state is not witnessed which is verified by the survival probability. To provide the validity of basin structures from lattice simulations, we analyze the system in mean-field manners. Consequently, results on macroscopic levels are matched to direct lattice simulations for high mobility regimes. These findings provide a good insight into the fundamental issue of the biodiversity among many species than previous cases.
Collapse
Affiliation(s)
- Beomseok Kim
- Department of Mathematics, KNU-Center for Nonlinear Dynamics, Kyungpook National University, Daegu 41566, South Korea
| | - Junpyo Park
- Department of Mathematical Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, South Korea
| |
Collapse
|
22
|
Zheng XD, Deng LL, Qiang WY, Cressman R, Tao Y. Limiting similarity of competitive species and demographic stochasticity. Phys Rev E 2017; 95:042404. [PMID: 28505868 DOI: 10.1103/physreve.95.042404] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Indexed: 11/07/2022]
Abstract
The limiting similarity of competitive species and its relationship with the competitive exclusion principle is still one of the most important concepts in ecology. In the 1970s, May [R. M. May, Stability and Complexity in Model Ecosystems (Princeton University, Princeton, NJ, 1973)] developed a concise theoretical framework to investigate the limiting similarity of competitive species. His theoretical results show that no limiting similarity threshold of competitive species can be identified in the deterministic model system whereby species more similar than this threshold never coexist. Theoretically, for competitive species coexisting in an unvarying environment, deterministic interspecific interactions and demographic stochasticity can be considered two sides of a coin. To investigate how the "tension" between these two forces affects the coexistence of competing species, a simple two-species competitive system based only on May's model system is transformed into an equivalent replicator equation. The effect of demographic stochasticity on the system stability is measured by the expected drift of the Lyapunov function. Our main results show that the limiting similarity of competitive species should not be considered to be an absolute measure. Specifically, very similar competitive species should be able to coexist in an environment with a high productivity level but big differences between competitive species should be necessary in an ecosystem with a low productivity level.
Collapse
Affiliation(s)
- Xiu-Deng Zheng
- Key Laboratory of Animal Ecology and Conservation Biology, Centre for Computational and Evolutionary Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China
| | - Ling-Ling Deng
- Key Laboratory of Animal Ecology and Conservation Biology, Centre for Computational and Evolutionary Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China
| | - Wei-Ya Qiang
- School of Life Science, Lanzhou University, Lanzhou, Gansu, 730000, People's Republic of China
| | - Ross Cressman
- Department of Mathematics, Wilfrid Laurier University, Waterloo, Ontario, N2L 3C5, Canada
| | - Yi Tao
- Key Laboratory of Animal Ecology and Conservation Biology, Centre for Computational and Evolutionary Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China.,International College, University of Chinese Academy of Science, 100101, Beijing, People's Republic of China
| |
Collapse
|
23
|
A novel procedure for the identification of chaos in complex biological systems. Sci Rep 2017; 7:44900. [PMID: 28322257 PMCID: PMC5359622 DOI: 10.1038/srep44900] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 02/14/2017] [Indexed: 12/15/2022] Open
Abstract
We demonstrate the presence of chaos in stochastic simulations that are widely used to study biodiversity in nature. The investigation deals with a set of three distinct species that evolve according to the standard rules of mobility, reproduction and predation, with predation following the cyclic rules of the popular rock, paper and scissors game. The study uncovers the possibility to distinguish between time evolutions that start from slightly different initial states, guided by the Hamming distance which heuristically unveils the chaotic behavior. The finding opens up a quantitative approach that relates the correlation length to the average density of maxima of a typical species, and an ensemble of stochastic simulations is implemented to support the procedure. The main result of the work shows how a single and simple experimental realization that counts the density of maxima associated with the chaotic evolution of the species serves to infer its correlation length. We use the result to investigate others distinct complex systems, one dealing with a set of differential equations that can be used to model a diversity of natural and artificial chaotic systems, and another one, focusing on the ocean water level.
Collapse
|
24
|
Uekermann F, Mathiesen J, Mitarai N. Characterization of phase transitions in a model ecosystem of sessile species. Phys Rev E 2017; 95:032409. [PMID: 28415313 DOI: 10.1103/physreve.95.032409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Indexed: 06/07/2023]
Abstract
We consider a model ecosystem of sessile species competing for space. In particular, we consider the system introduced by Mathiesen et al. [J. Mathiesen, N. Mitarai, K. Sneppen, and A. Trusina, Phys. Rev. Lett. 107, 188101 (2011)PRLTAO0031-900710.1103/PhysRevLett.107.188101] where species compete according to a fixed interaction network with links determined by a Bernoulli process. In the limit of a small introduction rate of new species, the model exhibits a discontinuous transition from a high-diversity state to a low-diversity state as the interaction probability between species, γ, is increased from zero. Here we explore the effects of finite introduction rates and system size on the phase transition by utilizing efficient parallel computing. We find that the low state appears for γ>γ_{c}. As γ is increased further, the high state approaches the low state, suggesting the possibility that the two states merge at a high γ. We find that the fraction of time spent in the high state becomes longer with higher introduction rates, but the availability of the two states is rather insensitive to the value of the introduction rate. Furthermore, we establish a relation between the introduction rate and the system size, which preserves the probability for the system to remain in the high-diversity state.
Collapse
Affiliation(s)
- Florian Uekermann
- Niels Bohr Institute, Copenhagen University, Blegdamsvej 17, 2100 Copenhagen, Denmark
| | - Joachim Mathiesen
- Niels Bohr Institute, Copenhagen University, Blegdamsvej 17, 2100 Copenhagen, Denmark
| | - Namiko Mitarai
- Niels Bohr Institute, Copenhagen University, Blegdamsvej 17, 2100 Copenhagen, Denmark
| |
Collapse
|
25
|
Zhang J, Weissing FJ, Cao M. Fixation of competing strategies when interacting agents differ in the time scale of strategy updating. Phys Rev E 2016; 94:032407. [PMID: 27739806 DOI: 10.1103/physreve.94.032407] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Indexed: 11/07/2022]
Abstract
A commonly used assumption in evolutionary game theory is that natural selection acts on individuals in the same time scale; e.g., players use the same frequency to update their strategies. Variation in learning rates within populations suggests that evolutionary game theory may not necessarily be restricted to uniform time scales associated with the game interaction and strategy adaption evolution. In this study, we remove this restricting assumption by dividing the population into fast and slow groups according to the players' strategy updating frequencies and investigate how different strategy compositions of one group influence the evolutionary outcome of the other's fixation probabilities of strategies within its own group. Analytical analysis and numerical calculations are performed to study the evolutionary dynamics of strategies in typical classes of two-player games (prisoner's dilemma game, snowdrift game, and stag-hunt game). The introduction of the heterogeneity in strategy-update time scales leads to substantial changes in the evolution dynamics of strategies. We provide an approximation formula for the fixation probability of mutant types in finite populations and study the outcome of strategy evolution under the weak selection. We find that although heterogeneity in time scales makes the collective evolutionary dynamics more complicated, the possible long-run evolutionary outcome can be effectively predicted under technical assumptions when knowing the population composition and payoff parameters.
Collapse
Affiliation(s)
- Jianlei Zhang
- Department of Automation, College of Computer and Control Engineering, Nankai University, People's Republic of China.,Theoretical Biology Group, Centre for Ecological and Evolutionary Studies, University of Groningen, The Netherlands.,Network Analysis and Control Group, Institute for Industrial Engineering, University of Groningen, The Netherlands
| | - Franz J Weissing
- Theoretical Biology Group, Centre for Ecological and Evolutionary Studies, University of Groningen, The Netherlands
| | - Ming Cao
- Network Analysis and Control Group, Institute for Industrial Engineering, University of Groningen, The Netherlands
| |
Collapse
|
26
|
Adami C, Schossau J, Hintze A. Evolutionary game theory using agent-based methods. Phys Life Rev 2016; 19:1-26. [PMID: 27617905 DOI: 10.1016/j.plrev.2016.08.015] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 08/02/2016] [Accepted: 08/25/2016] [Indexed: 10/21/2022]
Abstract
Evolutionary game theory is a successful mathematical framework geared towards understanding the selective pressures that affect the evolution of the strategies of agents engaged in interactions with potential conflicts. While a mathematical treatment of the costs and benefits of decisions can predict the optimal strategy in simple settings, more realistic settings such as finite populations, non-vanishing mutations rates, stochastic decisions, communication between agents, and spatial interactions, require agent-based methods where each agent is modeled as an individual, carries its own genes that determine its decisions, and where the evolutionary outcome can only be ascertained by evolving the population of agents forward in time. While highlighting standard mathematical results, we compare those to agent-based methods that can go beyond the limitations of equations and simulate the complexity of heterogeneous populations and an ever-changing set of interactors. We conclude that agent-based methods can predict evolutionary outcomes where purely mathematical treatments cannot tread (for example in the weak selection-strong mutation limit), but that mathematics is crucial to validate the computational simulations.
Collapse
Affiliation(s)
- Christoph Adami
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA; Department of Physics and Astronomy, Michigan State University, East Lansing, MI, USA; BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, MI, USA.
| | - Jory Schossau
- Department of Computer Science and Engineering, Michigan State University, East Lansing, MI, USA; BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, MI, USA.
| | - Arend Hintze
- Department of Integrative Biology, Michigan State University, East Lansing, MI, USA; Department of Computer Science and Engineering, Michigan State University, East Lansing, MI, USA; BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
27
|
A Five Species Cyclically Dominant Evolutionary Game with Fixed Direction: A New Way to Produce Self-Organized Spatial Patterns. ENTROPY 2016. [DOI: 10.3390/e18080284] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
28
|
Abstract
In this paper, we investigate the five-species Jungle game in the framework of evolutionary game theory. We address the coexistence and biodiversity of the system using mean-field theory and Monte Carlo simulations. Then, we find that the inhibition from the bottom-level species to the top-level species can be critical factors that affect biodiversity, no matter how it is distributed, whether homogeneously well mixed or structured. We also find that predators' different preferences for food affect species' coexistence.
Collapse
Affiliation(s)
- Yibin Kang
- School of Mathematical Science, Dalian University of Technology, Dalian, 116024, China
| | - Qiuhui Pan
- School of Mathematical Science, Dalian University of Technology, Dalian, 116024, China
- School of Innovation Experiment, Dalian University of Technology, Dalian, 116024, China
| | - Xueting Wang
- School of Mathematical Science, Dalian University of Technology, Dalian, 116024, China
| | - Mingfeng He
- School of Mathematical Science, Dalian University of Technology, Dalian, 116024, China
| |
Collapse
|
29
|
Verma G, Chan K, Swami A. Zealotry promotes coexistence in the rock-paper-scissors model of cyclic dominance. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 92:052807. [PMID: 26651744 DOI: 10.1103/physreve.92.052807] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Indexed: 06/05/2023]
Abstract
Cyclic dominance models, such as the classic rock-paper-scissors (RPS) game, have found real-world applications in biology, ecology, and sociology. A key quantity of interest in such models is the coexistence time, i.e., the time until at least one population type goes extinct. Much recent research has considered conditions that lengthen coexistence times in an RPS model. A general finding is that coexistence is promoted by localized spatial interactions (low mobility), while extinction is fostered by global interactions (high mobility). That is, there exists a mobility threshold which separates a regime of long coexistence from a regime of rapid collapse of coexistence. The key finding of our paper is that if zealots (i.e., nodes able to defeat others while themselves being immune to defeat) of even a single type exist, then system coexistence time can be significantly prolonged, even in the presence of global interactions. This work thus highlights a crucial determinant of system survival time in cyclic dominance models.
Collapse
Affiliation(s)
- Gunjan Verma
- Computational and Information Sciences Directorate, Army Research Laboratory, Adelphi, Maryland 20783, USA
| | - Kevin Chan
- Computational and Information Sciences Directorate, Army Research Laboratory, Adelphi, Maryland 20783, USA
| | - Ananthram Swami
- Computational and Information Sciences Directorate, Army Research Laboratory, Adelphi, Maryland 20783, USA
| |
Collapse
|
30
|
Hummert S, Bohl K, Basanta D, Deutsch A, Werner S, Theissen G, Schroeter A, Schuster S. Evolutionary game theory: cells as players. MOLECULAR BIOSYSTEMS 2015; 10:3044-65. [PMID: 25270362 DOI: 10.1039/c3mb70602h] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
In two papers we review game theory applications in biology below the level of cognitive living beings. It can be seen that evolution and natural selection replace the rationality of the actors appropriately. Even in these micro worlds, competing situations and cooperative relationships can be found and modeled by evolutionary game theory. Also those units of the lowest levels of life show different strategies for different environmental situations or different partners. We give a wide overview of evolutionary game theory applications to microscopic units. In this first review situations on the cellular level are tackled. In particular metabolic problems are discussed, such as ATP-producing pathways, secretion of public goods and cross-feeding. Further topics are cyclic competition among more than two partners, intra- and inter-cellular signalling, the struggle between pathogens and the immune system, and the interactions of cancer cells. Moreover, we introduce the theoretical basics to encourage scientists to investigate problems in cell biology and molecular biology by evolutionary game theory.
Collapse
Affiliation(s)
- Sabine Hummert
- Fachhochschule Schmalkalden, Faculty of Electrical Engineering, Blechhammer, 98574 Schmalkalden, Germany
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Information Transfer between Generations Linked to Biodiversity in Rock-Paper-Scissors Games. ACTA ACUST UNITED AC 2015. [DOI: 10.1155/2015/128980] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Ecological processes, such as reproduction, mobility, and interaction between species, play important roles in the maintenance of biodiversity. Classically, the cyclic dominance of species has been modelled using the nonhierarchical interactions among competing species, represented by the “Rock-Paper-Scissors” (RPS) game. Here we propose a cascaded channel model for analyzing the existence of biodiversity in the RPS game. The transition between successive generations is modelled as communication of information over a noisy communication channel. The rate of transfer of information over successive generations is studied using mutual information and it is found that “greedy” information transfer between successive generations may lead to conditions for extinction. This generalized framework can be used to study biodiversity in any number of interacting species, ecosystems with unequal rates for different species, and also competitive networks.
Collapse
|
32
|
Zhang L, Zou Y, Guan S, Liu Z. Analytical description for the critical fixations of evolutionary coordination games on finite complex structured populations. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 91:042807. [PMID: 25974547 DOI: 10.1103/physreve.91.042807] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2014] [Indexed: 06/04/2023]
Abstract
Evolutionary game theory is crucial to capturing the characteristic interaction patterns among selfish individuals. In a population of coordination games of two strategies, one of the central problems is to determine the fixation probability that the system reaches a state of networkwide of only one strategy, and the corresponding expectation times. The deterministic replicator equations predict the critical value of initial density of one strategy, which separates the two absorbing states of the system. However, numerical estimations of this separatrix show large deviations from the theory in finite populations. Here we provide a stochastic treatment of this dynamic process on complex networks of finite sizes as Markov processes, showing the evolutionary time explicitly. We describe analytically the effects of network structures on the intermediate fixations as observed in numerical simulations. Our theoretical predictions are validated by various simulations on both random and scale free networks. Therefore, our stochastic framework can be helpful in dealing with other networked game dynamics.
Collapse
Affiliation(s)
- Liye Zhang
- Department of Physics, East China Normal University, Shanghai 200062, China
| | - Yong Zou
- Department of Physics, East China Normal University, Shanghai 200062, China
- State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Shuguang Guan
- Department of Physics, East China Normal University, Shanghai 200062, China
- State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Zonghua Liu
- Department of Physics, East China Normal University, Shanghai 200062, China
- State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
33
|
Szolnoki A, Mobilia M, Jiang LL, Szczesny B, Rucklidge AM, Perc M. Cyclic dominance in evolutionary games: a review. J R Soc Interface 2014; 11:20140735. [PMID: 25232048 PMCID: PMC4191105 DOI: 10.1098/rsif.2014.0735] [Citation(s) in RCA: 143] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 08/22/2014] [Indexed: 11/12/2022] Open
Abstract
Rock is wrapped by paper, paper is cut by scissors and scissors are crushed by rock. This simple game is popular among children and adults to decide on trivial disputes that have no obvious winner, but cyclic dominance is also at the heart of predator-prey interactions, the mating strategy of side-blotched lizards, the overgrowth of marine sessile organisms and competition in microbial populations. Cyclical interactions also emerge spontaneously in evolutionary games entailing volunteering, reward, punishment, and in fact are common when the competing strategies are three or more, regardless of the particularities of the game. Here, we review recent advances on the rock-paper-scissors (RPS) and related evolutionary games, focusing, in particular, on pattern formation, the impact of mobility and the spontaneous emergence of cyclic dominance. We also review mean-field and zero-dimensional RPS models and the application of the complex Ginzburg-Landau equation, and we highlight the importance and usefulness of statistical physics for the successful study of large-scale ecological systems. Directions for future research, related, for example, to dynamical effects of coevolutionary rules and invasion reversals owing to multi-point interactions, are also outlined.
Collapse
Affiliation(s)
- Attila Szolnoki
- Institute of Technical Physics and Materials Science, Research Centre for Natural Sciences, Hungarian Academy of Sciences, PO Box 49, 1525 Budapest, Hungary
| | - Mauro Mobilia
- Department of Applied Mathematics, School of Mathematics, University of Leeds, Leeds LS2 9JT, UK
| | - Luo-Luo Jiang
- College of Physics and Electronic Information Engineering, Wenzhou University, 325035 Wenzhou, People's Republic of China
| | - Bartosz Szczesny
- Department of Applied Mathematics, School of Mathematics, University of Leeds, Leeds LS2 9JT, UK
| | - Alastair M Rucklidge
- Department of Applied Mathematics, School of Mathematics, University of Leeds, Leeds LS2 9JT, UK
| | - Matjaž Perc
- Faculty of Natural Sciences and Mathematics, University of Maribor, Koroška cesta 160, 2000 Maribor, Slovenia
| |
Collapse
|
34
|
Varga L, Vukov J, Szabó G. Self-organizing patterns in an evolutionary rock-paper-scissors game for stochastic synchronized strategy updates. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 90:042920. [PMID: 25375580 DOI: 10.1103/physreve.90.042920] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Indexed: 06/04/2023]
Abstract
We study a spatial evolutionary rock-paper-scissors game with synchronized strategy updating. Players gain their payoff from games with their four neighbors on a square lattice and can update their strategies simultaneously according to the logit rule, which is the noisy version of the best-response dynamics. For the synchronized strategy update two types of global oscillations (with an ordered strategy arrangement and periods of three and six generations) can occur in this system in the zero noise limit. At low noise values, all nine oscillating phases are present in the system by forming a self-organizing spatial pattern due to the comprising invasion and speciation processes along the interfaces separating the different domains.
Collapse
Affiliation(s)
- Levente Varga
- Institute of Technical Physics and Materials Science, Research Centre for Natural Sciences, Hungarian Academy of Sciences, P.O. Box 49, H-1525 Budapest, Hungary and Babeş-Bolyai University, RO-400084 Cluj-Napoca, Romania
| | - Jeromos Vukov
- Institute of Technical Physics and Materials Science, Research Centre for Natural Sciences, Hungarian Academy of Sciences, P.O. Box 49, H-1525 Budapest, Hungary
| | - György Szabó
- Institute of Technical Physics and Materials Science, Research Centre for Natural Sciences, Hungarian Academy of Sciences, P.O. Box 49, H-1525 Budapest, Hungary
| |
Collapse
|
35
|
Rulands S, Jahn D, Frey E. Specialization and bet hedging in heterogeneous populations. PHYSICAL REVIEW LETTERS 2014; 113:108102. [PMID: 25238387 DOI: 10.1103/physrevlett.113.108102] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Indexed: 06/03/2023]
Abstract
Phenotypic heterogeneity is a strategy commonly used by bacteria to rapidly adapt to changing environmental conditions. Here, we study the interplay between phenotypic heterogeneity and genetic diversity in spatially extended populations. By analyzing the spatiotemporal dynamics, we show that the level of mobility and the type of competition qualitatively influence the persistence of phenotypic heterogeneity. While direct competition generally promotes persistence of phenotypic heterogeneity, specialization dominates in models with indirect competition irrespective of the degree of mobility.
Collapse
Affiliation(s)
- Steffen Rulands
- Department of Physics, Arnold-Sommerfeld-Center for Theoretical Physics and Center for NanoScience, Ludwig-Maximilians-Universität München, Theresienstrasse 37, D-80333 Munich, Germany
| | - David Jahn
- Department of Physics, Arnold-Sommerfeld-Center for Theoretical Physics and Center for NanoScience, Ludwig-Maximilians-Universität München, Theresienstrasse 37, D-80333 Munich, Germany
| | - Erwin Frey
- Department of Physics, Arnold-Sommerfeld-Center for Theoretical Physics and Center for NanoScience, Ludwig-Maximilians-Universität München, Theresienstrasse 37, D-80333 Munich, Germany
| |
Collapse
|
36
|
Social cycling and conditional responses in the Rock-Paper-Scissors game. Sci Rep 2014; 4:5830. [PMID: 25060115 PMCID: PMC5376050 DOI: 10.1038/srep05830] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 07/07/2014] [Indexed: 11/20/2022] Open
Abstract
How humans make decisions in non-cooperative strategic interactions is a big question. For the fundamental Rock-Paper-Scissors (RPS) model game system, classic Nash equilibrium (NE) theory predicts that players randomize completely their action choices to avoid being exploited, while evolutionary game theory of bounded rationality in general predicts persistent cyclic motions, especially in finite populations. However as empirical studies have been relatively sparse, it is still a controversial issue as to which theoretical framework is more appropriate to describe decision-making of human subjects. Here we observe population-level persistent cyclic motions in a laboratory experiment of the discrete-time iterated RPS game under the traditional random pairwise-matching protocol. This collective behavior contradicts with the NE theory but is quantitatively explained, without any adjustable parameter, by a microscopic model of win-lose-tie conditional response. Theoretical calculations suggest that if all players adopt the same optimized conditional response strategy, their accumulated payoff will be much higher than the reference value of the NE mixed strategy. Our work demonstrates the feasibility of understanding human competition behaviors from the angle of non-equilibrium statistical physics.
Collapse
|
37
|
Botta F, Mitarai N. Disturbance accelerates the transition from low- to high-diversity state in a model ecosystem. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 89:022704. [PMID: 25353506 DOI: 10.1103/physreve.89.022704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Indexed: 06/04/2023]
Abstract
The effect of disturbance on a model ecosystem of sessile and mutually competitive species [Mathiesen et al., Phys. Rev. Lett. 107, 188101 (2011); Mitarai et al., Phys. Rev. E 86, 011929 (2012)] is studied. The disturbance stochastically removes individuals from the system, and the created empty sites are recolonized by neighboring species. We show that the stable high-diversity state, maintained by occasional cyclic species interactions that create isolated patches of metapopulations, is robust against small disturbance. We further demonstrate that finite disturbance can accelerate the transition from the low- to high-diversity state by helping the creation of small patches through diffusion of boundaries between species with standoff relations.
Collapse
Affiliation(s)
- Filippo Botta
- Center for Models of Life, Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, DK-2100 Copenhagen, Denmark
| | - Namiko Mitarai
- Center for Models of Life, Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, DK-2100 Copenhagen, Denmark
| |
Collapse
|
38
|
Dobrinevski A, Alava M, Reichenbach T, Frey E. Mobility-dependent selection of competing strategy associations. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 89:012721. [PMID: 24580271 DOI: 10.1103/physreve.89.012721] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Indexed: 06/03/2023]
Abstract
Standard models of population dynamics focus on the interaction, survival, and extinction of the competing species individually. Real ecological systems, however, are characterized by an abundance of species (or strategies, in the terminology of evolutionary-game theory) that form intricate, complex interaction networks. The description of the ensuing dynamics may be aided by studying associations of certain strategies rather than individual ones. Here we show how such a higher-level description can bear fruitful insight. Motivated from different strains of colicinogenic Escherichia coli bacteria, we investigate a four-strategy system which contains a three-strategy cycle and a neutral alliance of two strategies. We find that the stochastic, spatial model exhibits a mobility-dependent selection of either the three-strategy cycle or of the neutral pair. We analyze this intriguing phenomenon numerically and analytically.
Collapse
Affiliation(s)
- Alexander Dobrinevski
- CNRS-Laboratoire de Physique Théorique de l'Ecole Normale Supérieure, 24 rue Lhomond, 75005 Paris Cedex, France
| | - Mikko Alava
- Aalto University, School of Science, Department of Applied Physics, PO Box 11100, 00076 Aalto, Finland
| | - Tobias Reichenbach
- Department of Bioengineering, Imperial College London, South Kensington Campus, London, SW7 2AZ, United Kingdom
| | - Erwin Frey
- Arnold Sommerfeld Center for Theoretical Physics and Center for NanoScience, Department of Physics, Ludwig-Maximilians-Universität München, Theresienstrasse 37, D-80333 München, Germany
| |
Collapse
|
39
|
Vukov J, Szolnoki A, Szabó G. Diverging fluctuations in a spatial five-species cyclic dominance game. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2013; 88:022123. [PMID: 24032791 DOI: 10.1103/physreve.88.022123] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Indexed: 06/02/2023]
Abstract
A five-species predator-prey model is studied on a square lattice where each species has two prey and two predators on the analogy to the rock-paper-scissors-lizard-Spock game. The evolution of the spatial distribution of species is governed by site exchange and invasion between the neighboring predator-prey pairs, where the cyclic symmetry can be characterized by two different invasion rates. The mean-field analysis has indicated periodic oscillations in the species densities with a frequency becoming zero for a specific ratio of invasion rates. When varying the ratio of invasion rates, the appearance of this zero-eigenvalue mode is accompanied by neutrality between the species associations. Monte Carlo simulations of the spatial system reveal diverging fluctuations at a specific invasion rate, which can be related to the vanishing dominance between all pairs of species associations.
Collapse
Affiliation(s)
- Jeromos Vukov
- Institute of Technical Physics and Materials Science, Research Centre for Natural Sciences, Hungarian Academy of Sciences, P.O. Box 49, H-1525 Budapest, Hungary
| | | | | |
Collapse
|
40
|
Park J, Do Y, Huang ZG, Lai YC. Persistent coexistence of cyclically competing species in spatially extended ecosystems. CHAOS (WOODBURY, N.Y.) 2013; 23:023128. [PMID: 23822493 DOI: 10.1063/1.4811298] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
A fundamental result in the evolutionary-game paradigm of cyclic competition in spatially extended ecological systems, as represented by the classic Reichenbach-Mobilia-Frey (RMF) model, is that high mobility tends to hamper or even exclude species coexistence. This result was obtained under the hypothesis that individuals move randomly without taking into account the suitability of their local environment. We incorporate local habitat suitability into the RMF model and investigate its effect on coexistence. In particular, we hypothesize the use of "basic instinct" of an individual to determine its movement at any time step. That is, an individual is more likely to move when the local habitat becomes hostile and is no longer favorable for survival and growth. We show that, when such local habitat suitability is taken into account, robust coexistence can emerge even in the high-mobility regime where extinction is certain in the RMF model. A surprising finding is that coexistence is accompanied by the occurrence of substantial empty space in the system. Reexamination of the RMF model confirms the necessity and the important role of empty space in coexistence. Our study implies that adaptation/movements according to local habitat suitability are a fundamental factor to promote species coexistence and, consequently, biodiversity.
Collapse
Affiliation(s)
- Junpyo Park
- Department of Mathematics, Kyungpook National University, Daegu 702-701, South Korea
| | | | | | | |
Collapse
|
41
|
Rulands S, Zielinski A, Frey E. Global attractors and extinction dynamics of cyclically competing species. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2013; 87:052710. [PMID: 23767569 DOI: 10.1103/physreve.87.052710] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Indexed: 06/02/2023]
Abstract
Transitions to absorbing states are of fundamental importance in nonequilibrium physics as well as ecology. In ecology, absorbing states correspond to the extinction of species. We here study the spatial population dynamics of three cyclically interacting species. The interaction scheme comprises both direct competition between species as in the cyclic Lotka-Volterra model, and separated selection and reproduction processes as in the May-Leonard model. We show that the dynamic processes leading to the transient maintenance of biodiversity are closely linked to attractors of the nonlinear dynamics for the overall species' concentrations. The characteristics of these global attractors change qualitatively at certain threshold values of the mobility and depend on the relative strength of the different types of competition between species. They give information about the scaling of extinction times with the system size and thereby the stability of biodiversity. We define an effective free energy as the negative logarithm of the probability to find the system in a specific global state before reaching one of the absorbing states. The global attractors then correspond to minima of this effective energy landscape and determine the most probable values for the species' global concentrations. As in equilibrium thermodynamics, qualitative changes in the effective free energy landscape indicate and characterize the underlying nonequilibrium phase transitions. We provide the complete phase diagrams for the population dynamics and give a comprehensive analysis of the spatio-temporal dynamics and routes to extinction in the respective phases.
Collapse
Affiliation(s)
- Steffen Rulands
- Arnold Sommerfeld Center for Theoretical Physics and Center for NanoScience, Physics Department, Ludwig-Maximilians-Universität München, Theresienstrasse 33, D-80333 München, Germany
| | | | | |
Collapse
|
42
|
Lütz AF, Risau-Gusman S, Arenzon JJ. Intransitivity and coexistence in four species cyclic games. J Theor Biol 2013; 317:286-92. [DOI: 10.1016/j.jtbi.2012.10.024] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Revised: 09/06/2012] [Accepted: 10/18/2012] [Indexed: 11/29/2022]
|
43
|
Lamouroux D, Eule S, Geisel T, Nagler J. Discriminating the effects of spatial extent and population size in cyclic competition among species. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2012; 86:021911. [PMID: 23005789 DOI: 10.1103/physreve.86.021911] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Revised: 07/25/2012] [Indexed: 06/01/2023]
Abstract
We introduce a population model for species under cyclic competition. This model allows individuals to coexist and interact on single cells while migration takes place between adjacent cells. In contrast to the model introduced by Reichenbach, Mobilia, and Frey [Reichenbach, Mobilia, and Frey, Nature (London) 448, 1046 (2007)], we find that the emergence of spirals results in an ambiguous behavior regarding the stability of coexistence. The typical time until extinction exhibits, however, a qualitatively opposite dependence on the newly introduced nonunit carrying capacity in the spiraling and the nonspiraling regimes. This allows us to determine a critical mobility that marks the onset of this spiraling state sharply. In contrast, we demonstrate that the conventional finite size stability analysis with respect to spatial size is of limited use for identifying the onset of the spiraling regime.
Collapse
Affiliation(s)
- D Lamouroux
- Max Planck Institute for Dynamics & Self-Organization, 37077 Göttingen, Germany
| | | | | | | |
Collapse
|
44
|
Traulsen A, Claussen JC, Hauert C. Stochastic differential equations for evolutionary dynamics with demographic noise and mutations. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2012; 85:041901. [PMID: 22680492 DOI: 10.1103/physreve.85.041901] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Revised: 03/09/2012] [Indexed: 06/01/2023]
Abstract
We present a general framework to describe the evolutionary dynamics of an arbitrary number of types in finite populations based on stochastic differential equations (SDEs). For large, but finite populations this allows us to include demographic noise without requiring explicit simulations. Instead, the population size only rescales the amplitude of the noise. Moreover, this framework admits the inclusion of mutations between different types, provided that mutation rates μ are not too small compared to the inverse population size 1/N. This ensures that all types are almost always represented in the population and that the occasional extinction of one type does not result in an extended absence of that type. For μN≪1 this limits the use of SDEs, but in this case there are well established alternative approximations based on time scale separation. We illustrate our approach by a rock-scissors-paper game with mutations, where we demonstrate excellent agreement with simulation based results for sufficiently large populations. In the absence of mutations the excellent agreement extends to small population sizes.
Collapse
Affiliation(s)
- Arne Traulsen
- Evolutionary Theory Group, Max-Planck-Institute for Evolutionary Biology, August-Thienemann-Strasse 2, 24306 Plön, Germany
| | | | | |
Collapse
|
45
|
Han TA, Traulsen A, Gokhale CS. On equilibrium properties of evolutionary multi-player games with random payoff matrices. Theor Popul Biol 2012; 81:264-72. [PMID: 22406614 DOI: 10.1016/j.tpb.2012.02.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Revised: 02/07/2012] [Accepted: 02/16/2012] [Indexed: 10/28/2022]
Abstract
The analysis of equilibrium points in biological dynamical systems has been of great interest in a variety of mathematical approaches to biology, such as population genetics, theoretical ecology or evolutionary game theory. The maximal number of equilibria and their classification based on stability have been the primary subjects of these studies, for example in the context of two-player games with multiple strategies. Herein, we address a different question using evolutionary game theory as a tool. If the payoff matrices are drawn randomly from an arbitrary distribution, what are the probabilities of observing a certain number of (stable) equilibria? We extend the domain of previous results for the two-player framework, which corresponds to a single diploid locus in population genetics, by addressing the full complexity of multi-player games with multiple strategies. In closing, we discuss an application and illustrate how previous results on the number of equilibria, such as the famous Feldman-Karlin conjecture on the maximal number of isolated fixed points in a viability selection model, can be obtained as special cases of our results based on multi-player evolutionary games. We also show how the probability of realizing a certain number of equilibria changes as we increase the number of players and number of strategies.
Collapse
Affiliation(s)
- The Anh Han
- Center of Artificial Intelligence, Department of Informatics, Faculty of Science and Technologies, New University of Lisbon, P-2829-516 Caparica, Portugal
| | | | | |
Collapse
|
46
|
Adami C, Schossau J, Hintze A. Evolution and stability of altruist strategies in microbial games. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2012; 85:011914. [PMID: 22400598 DOI: 10.1103/physreve.85.011914] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Revised: 11/04/2011] [Indexed: 05/31/2023]
Abstract
When microbes compete for limited resources, they often engage in chemical warfare using bacterial toxins. This competition can be understood in terms of evolutionary game theory (EGT). We study the predictions of EGT for the bacterial "suicide bomber" game in terms of the phase portraits of population dynamics, for parameter combinations that cover all interesting games for two-players, and seven of the 38 possible phase portraits of the three-player game. We compare these predictions to simulations of these competitions in finite well-mixed populations, but also allowing for probabilistic rather than pure strategies, as well as Darwinian adaptation over tens of thousands of generations. We find that Darwinian evolution of probabilistic strategies stabilizes games of the rock-paper-scissors type that emerge for parameters describing realistic bacterial populations, and point to ways in which the population fixed point can be selected by changing those parameters.
Collapse
Affiliation(s)
- Christoph Adami
- Department of Microbiology and Molecular Genetics, and BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, Michigan 48824, USA.
| | | | | |
Collapse
|
47
|
Noble AE, Hastings A, Fagan WF. Multivariate Moran process with Lotka-Volterra phenomenology. PHYSICAL REVIEW LETTERS 2011; 107:228101. [PMID: 22182042 DOI: 10.1103/physrevlett.107.228101] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Indexed: 05/31/2023]
Abstract
For a population with any given number of types, we construct a new multivariate Moran process with frequency-dependent selection and establish, analytically, a correspondence to equilibrium Lotka-Volterra phenomenology. This correspondence, on the one hand, allows us to infer the phenomenology of our Moran process based on much simpler Lokta-Volterra phenomenology and, on the other, allows us to study Lotka-Volterra dynamics within the finite populations of a Moran process. Applications to community ecology, population genetics, and evolutionary game theory are discussed.
Collapse
Affiliation(s)
- Andrew E Noble
- Department of Environmental Science and Policy, University of California, Davis, California 95616, USA
| | | | | |
Collapse
|
48
|
Cremer J, Melbinger A, Frey E. Evolutionary and population dynamics: a coupled approach. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2011; 84:051921. [PMID: 22181458 DOI: 10.1103/physreve.84.051921] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Revised: 10/08/2011] [Indexed: 05/31/2023]
Abstract
We study the interplay of population growth and evolutionary dynamics using a stochastic model based on birth and death events. In contrast to the common assumption of an independent population size, evolution can be strongly affected by population dynamics in general. Especially for fast reproducing microbes which are subject to selection, both types of dynamics are often closely intertwined. We illustrate this by considering different growth scenarios. Depending on whether microbes die or stop to reproduce (dormancy), qualitatively different behaviors emerge. For cooperating bacteria, a permanent increase of costly cooperation can occur. Even if not permanent, cooperation can still increase transiently due to demographic fluctuations. We validate our analysis via stochastic simulations and analytic calculations. In particular, we derive a condition for an increase in the level of cooperation.
Collapse
Affiliation(s)
- Jonas Cremer
- Arnold Sommerfeld Center for Theoretical Physics (ASC), Department of Physics, Ludwig-Maximilians-Universität München, Munich, Germany
| | | | | |
Collapse
|
49
|
Wu B, Zhou D, Wang L. Evolutionary dynamics on stochastic evolving networks for multiple-strategy games. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2011; 84:046111. [PMID: 22181231 DOI: 10.1103/physreve.84.046111] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Revised: 08/19/2011] [Indexed: 05/31/2023]
Abstract
Evolutionary game theory on dynamical networks has received much attention. Most of the work has been focused on 2×2 games such as prisoner's dilemma and snowdrift, with general n×n games seldom addressed. In particular, analytical methods are still lacking. Here we generalize the stochastic linking dynamics proposed by Wu, Zhou, Fu, Luo, Wang, and Traulsen [PLoS ONE 5, e11187 (2010)] to n×n games. We analytically obtain that the fast linking dynamics results in the replicator dynamics with a rescaled payoff matrix. In the rescaled matrix, intuitively, each entry is the product of the original entry and the average duration time of the corresponding link. This result is shown to be robust to a wide class of imitation processes. As applications, we show both analytically and numerically that the biodiversity, modeled as the stability of a zero-sum rock-paper-scissors game, cannot be altered by the fast linking dynamics. In addition, we show that the fast linking dynamics can stabilize tit-for-tat as an evolutionary stable strategy in the repeated prisoner's dilemma game provided the interaction between the identical strategies happens sufficiently often. Our method paves the way for an analytical study of the multiple-strategy coevolutionary dynamics.
Collapse
Affiliation(s)
- Bin Wu
- Center for Systems and Control, State Key Laboratory for Turbulence and Complex Systems, College of Engineering, Peking University, Beijing 100871, China.
| | | | | |
Collapse
|
50
|
Jiang LL, Zhou T, Perc M, Wang BH. Effects of competition on pattern formation in the rock-paper-scissors game. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2011; 84:021912. [PMID: 21929025 DOI: 10.1103/physreve.84.021912] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2011] [Indexed: 05/31/2023]
Abstract
We investigate the impact of cyclic competition on pattern formation in the rock-paper-scissors game. By separately considering random and prepared initial conditions, we observe a critical influence of the competition rate p on the stability of spiral waves and on the emergence of biodiversity. In particular, while increasing values of p promote biodiversity, they may act detrimentally on spatial pattern formation. For random initial conditions, we observe a phase transition from biodiversity to an absorbing phase, whereby the critical value of mobility grows linearly with increasing values of p on a log-log scale but then saturates as p becomes large. For prepared initial conditions, we observe the formation of single-armed spirals, but only for values of p that are below a critical value. Once above that value, the spirals break up and form disordered spatial structures, mainly because of the percolation of vacant sites. Thus there exists a critical value of the competition rates p(c) for stable single-armed spirals in finite populations. Importantly though, p(c) increases with increasing system size because noise reinforces the disintegration of ordered patterns. In addition, we also find that p(c) increases with the mobility. These phenomena are reproduced by a deterministic model that is based on nonlinear partial differential equations. Our findings indicate that competition is vital for the sustenance of biodiversity and the emergence of pattern formation in ecosystems governed by cyclical interactions.
Collapse
Affiliation(s)
- Luo-Luo Jiang
- College of Physics and Electronic Information Engineering, Wenzhou University, Wenzhou 325027, China
| | | | | | | |
Collapse
|