1
|
Sheung J, Gunter C, Matic K, Sasanpour M, Ross JL, Katira P, Valentine MT, Robertson-Anderson RM. Kinesin-Driven De-Mixing of Cytoskeleton Composites Drives Emergent Mechanical Properties. Macromol Rapid Commun 2025:e2401128. [PMID: 40205878 DOI: 10.1002/marc.202401128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 03/27/2025] [Indexed: 04/11/2025]
Abstract
The cytoskeleton is an active composite of filamentous proteins that dictates diverse mechanical properties and processes in eukaryotic cells by generating forces and autonomously restructuring itself. Enzymatic motors that act on the comprising filaments play key roles in this activity, driving spatiotemporally heterogeneous mechanical responses that are critical to cellular multifunctionality, but also render mechanical characterization challenging. Here, we couple optical tweezers microrheology and fluorescence microscopy with simulations and mathematical modeling to robustly characterize the mechanics of active composites of actin filaments and microtubules restructured by kinesin motors. It is discovered that composites exhibit a rich ensemble of force response behaviors-elastic, yielding, and stiffening-with their propensity and properties tuned by motor concentration and strain rate. Moreover, intermediate kinesin concentrations elicit emergent mechanical stiffness and resistance while higher and lower concentrations exhibit softer, more viscous dissipation. It is further shown that composites transition from well-mixed interpenetrating double-networks of actin and microtubules to de-mixed states of microtubule-rich aggregates surrounded by relatively undisturbed actin phases. It is this de-mixing that leads to the emergent mechanical response, offering an alternate route that composites can leverage to achieve enhanced stiffness through coupling of structure and mechanics.
Collapse
Affiliation(s)
- Janet Sheung
- Department of Natural Sciences, Scripps and Pitzer Colleges, Claremont, CA, 92110, USA
- W. M. Keck Science Department, Claremont McKenna College, Claremont, CA, 91711, USA
| | - Christopher Gunter
- Department of Mechanical Engineering, San Diego State University, San Diego, CA, 92182, USA
| | - Katarina Matic
- Department of Physics and Biophysics, University of San Diego, San Diego, CA, 92110, USA
| | - Mehrzad Sasanpour
- Department of Physics and Biophysics, University of San Diego, San Diego, CA, 92110, USA
| | - Jennifer L Ross
- Department of Physics, Syracuse University, Syracuse, NY, 13244, USA
| | - Parag Katira
- Department of Mechanical Engineering, San Diego State University, San Diego, CA, 92182, USA
| | - Megan T Valentine
- Department of Mechanical Engineering, University of California, Santa Barbara, CA, 93106, USA
| | | |
Collapse
|
2
|
Pinchiaroli J, Saldanha R, Patteson AE, Robertson-Anderson RM, Gurmessa BJ. Scale-dependent interactions enable emergent microrheological stress response of actin-vimentin composites. SOFT MATTER 2024; 20:9007-9021. [PMID: 39495192 DOI: 10.1039/d4sm00988f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
The mechanical properties of the mammalian cell regulate many cellular functions and are largely dictated by the cytoskeleton, a composite network of protein filaments, including actin, microtubules, and intermediate filaments. Interactions between these distinct filaments give rise to emergent mechanical properties that are difficult to generate synthetically, and recent studies have made great strides in advancing our understanding of the mechanical interplay between actin and microtubule filaments. While intermediate filaments play critical roles in the stress response of cells, their effect on the rheological properties of the composite cytoskeleton remains poorly understood. Here, we use optical tweezers microrheology to measure the linear viscoelastic properties and nonlinear stress response of composites of actin and vimentin with varying molar ratios of actin to vimentin. We reveal a surprising, nearly opposite effect of actin-vimentin network mechanics compared to single-component networks in the linear versus nonlinear regimes. Namely, the linear elastic plateau modulus and zero-shear viscosity are markedly reduced in composites compared to single-component networks of actin or vimentin, whereas the initial response force and stiffness are maximized in composites versus single-component networks in the nonlinear regime. While these emergent trends are indicative of distinct interactions between actin and vimentin, nonlinear stiffening and long-time stress response appear to both be dictated primarily by actin, at odds with previous bulk rheology studies. We demonstrate that these complex, scale-dependent effects arise from the varied contributions of network density, filament stiffness, non-specific interactions, and poroelasticity to the mechanical response at different spatiotemporal scales. Cells may harness this complex behavior to facilitate distinct stress responses at different scales and in response to different stimuli to allow for their hallmark multifunctionality.
Collapse
Affiliation(s)
- Julie Pinchiaroli
- Department of Physics and Astronomy, Bucknell University, Lewisburg, PA 17837, USA.
| | - Renita Saldanha
- Department of Physics and BioInspired Institute, Syracuse University, Syracuse, NY 13210, USA
| | - Alison E Patteson
- Department of Physics and BioInspired Institute, Syracuse University, Syracuse, NY 13210, USA
| | | | - Bekele J Gurmessa
- Department of Physics and Astronomy, Bucknell University, Lewisburg, PA 17837, USA.
| |
Collapse
|
3
|
Peddireddy KR, McGorty R, Robertson-Anderson RM. Mapping deformation dynamics to composition of topologically-active DNA blends. SOFT MATTER 2024; 20:8909-8923. [PMID: 39492746 DOI: 10.1039/d4sm01065e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
Blends of circular and linear polymers have fascinated researchers for decades, and the role of topology on their stress response and dynamics remains fervently debated. While linear polymers adopt larger coil sizes and form stronger, more pervasive entanglements than their circular counterparts, threading of circular polymers by linear chains can introduce persistent constraints that dramatically decrease mobility, leading to emergent rheological properties in blends. However, the complex interplay between topology-dependent polymer overlap and threading propensity, along with the large amounts of material required to sample many compositions, has limited the ability to experimentally map stress response to composition with high resolution. Moreover, the role of supercoiling on the response of circular-linear blends remains poorly understood. Here, we leverage in situ enzymatic topological conversion to map the deformation dynamics of DNA blends with over 70 fractions of linear, ring and supercoiled molecules that span the phase space of possible topological compositions. We use OpTiDDM (optical tweezers integrating differential dynamic microscopy) to map strain-induced deformation dynamics to composition, revealing that strain-coupling, quantified by superdiffusive dynamics that are aligned with the strain, is maximized for blends with comparable fractions of ring and linear polymers. Increasing the supercoiled fraction dramatically reduces strain-coupling, while converting rings to linear chains offers more modest coupling reduction. We demonstrate that these results are a direct consequence of the interplay between increasing polymer overlap and decreasing threading probability as circular molecules are converted to linear chains, with a careful balance achieved for blends with ample ring fractions but devoid of supercoiled molecules.
Collapse
Affiliation(s)
- Karthik R Peddireddy
- Department of Physics and Biophysics, University of San Diego, 5998 Alcala Park, San Diego, CA 92110, USA.
| | - Ryan McGorty
- Department of Physics and Biophysics, University of San Diego, 5998 Alcala Park, San Diego, CA 92110, USA.
| | - Rae M Robertson-Anderson
- Department of Physics and Biophysics, University of San Diego, 5998 Alcala Park, San Diego, CA 92110, USA.
| |
Collapse
|
4
|
Robertson-Anderson RM. Optical tweezers microrheology maps micro-mechanics of complex systems. Trends Biochem Sci 2024; 49:649-650. [PMID: 38782700 PMCID: PMC11227381 DOI: 10.1016/j.tibs.2024.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/20/2024] [Accepted: 04/26/2024] [Indexed: 05/25/2024]
|
5
|
Pinchiaroli J, Saldanha R, Patteson AE, Robertson-Anderson RM, Gurmessa BJ. Switchable microscale stress response of actin-vimentin composites emerges from scale-dependent interactions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.07.597906. [PMID: 38895280 PMCID: PMC11185688 DOI: 10.1101/2024.06.07.597906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
The mechanical properties of the mammalian cell regulate many cellular functions and are largely dictated by the cytoskeleton, a composite network of protein filaments, including actin, microtubules, and intermediate filaments. Interactions between these distinct filaments give rise to emergent mechanical properties that are difficult to generate synthetically, and recent studies have made great strides in advancing our understanding of the mechanical interplay between actin and microtubule filaments. While intermediate filaments play critical roles in the stress response of cells, their effect on the rheological properties of the composite cytoskeleton remains poorly understood. Here, we use optical tweezers microrheology to measure the linear viscoelastic properties and nonlinear stress response of composites of actin and vimentin with varying molar ratios of actin to vimentin. We reveal a surprising, nearly opposite effect of actin-vimentin network mechanics compared to single-component networks in the linear versus nonlinear regimes. Namely, the linear elastic plateau modulus and zero-shear viscosity are markedly reduced in composites compared to single-component networks of actin or vimentin, whereas the initial response force and stiffness are maximized in composites versus single-component networks in the nonlinear regime. While these emergent trends are indicative of distinct interactions between actin and vimentin, nonlinear stiffening and longtime stress response appear to both be dictated primarily by actin, at odds with previous bulk rheology studies. We demonstrate that these complex, scale-dependent effects arise from the varied contributions of network density, filament stiffness, non-specific interactions, and poroelasticity to the mechanical response at different spatiotemporal scales. Cells may harness this complex behavior to facilitate distinct stress responses at different scales and in response to different stimuli to allow for their hallmark multifunctionality.
Collapse
|
6
|
Neill P, Crist N, McGorty R, Robertson-Anderson R. Enzymatic cleaving of entangled DNA rings drives scale-dependent rheological trajectories. SOFT MATTER 2024; 20:2750-2766. [PMID: 38440846 DOI: 10.1039/d3sm01641b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
DNA, which naturally occurs in linear, ring, and supercoiled topologies, frequently undergoes enzyme-driven topological conversion and fragmentation in vivo, enabling it to perform a variety of functions within the cell. In vitro, highly concentrated DNA polymers form entanglements that yield viscoelastic properties dependent on the topologies and lengths of the DNA. Enzyme-driven alterations of DNA size and shape therefore offer a means of designing active materials with programmable viscoelastic properties. Here, we incorporate multi-site restriction endonucleases into dense DNA solutions to linearize and fragment circular DNA molecules. We pair optical tweezers microrheology with differential dynamic microscopy and single-molecule tracking to measure the linear and nonlinear viscoelastic response and transport properties of entangled DNA solutions over a wide range of spatiotemporal scales throughout the course of enzymatic digestion. We show that, at short timescales, relative to the relaxation timescales of the polymers, digestion of these 'topologically-active' fluids initially causes an increase in elasticity and relaxation times followed by a gradual decrease. Conversely, for long timescales, linear viscoelastic moduli exhibit signatures of increasing elasticity. DNA diffusion, likewise, becomes increasingly slowed, in direct opposition to the short-time behavior. We hypothesize that this scale-dependent rheology arises from the population of small DNA fragments, which increases as digestion proceeds, driving self-association of larger fragments via depletion interactions, giving rise to slow relaxation modes of clusters of entangled chains, interspersed among shorter unentangled fragments. While these slow modes likely dominate at long times, they are presumably frozen out in the short-time limit, which instead probes the faster relaxation modes of the unentangled population.
Collapse
Affiliation(s)
- Philip Neill
- Department of Physics and Biophysics, University of San Diego, San Diego, CA 92104, USA.
| | - Natalie Crist
- Department of Physics and Biophysics, University of San Diego, San Diego, CA 92104, USA.
| | - Ryan McGorty
- Department of Physics and Biophysics, University of San Diego, San Diego, CA 92104, USA.
| | - Rae Robertson-Anderson
- Department of Physics and Biophysics, University of San Diego, San Diego, CA 92104, USA.
| |
Collapse
|
7
|
Krishna Kumar K, Caspers J, Ginot F, Krüger M, Bechinger C. Memory-induced alignment of colloidal dumbbells. Sci Rep 2023; 13:17409. [PMID: 37833487 PMCID: PMC10575873 DOI: 10.1038/s41598-023-44547-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 10/10/2023] [Indexed: 10/15/2023] Open
Abstract
When a colloidal probe is forced through a viscoelastic fluid which is characterized by a long stress-relaxation time, the fluid is excited out of equilibrium. This is leading to a number of interesting effects including a non-trivial recoil of the probe when the driving force is removed. Here, we experimentally and theoretically investigate the transient recoil dynamics of non-spherical particles, i.e., colloidal dumbbells. In addition to a translational recoil of the dumbbells, we also find a pronounced angular reorientation which results from the relaxation of the surrounding fluid. Our findings are in good agreement with a Langevin description based on the symmetries of a director (dumbbell) as well as a microscopic bath-rod model. Remarkably, we find an instability with amplified fluctuations when the dumbbell is oriented perpendicular to the direction of driving. Our results demonstrate the complex behavior of non-spherical objects within a relaxing environment which are of immediate interest for the motion of externally but also self-driven asymmetric objects in viscoelastic fluids.
Collapse
Affiliation(s)
| | - Juliana Caspers
- Institute for Theoretical Physics, Georg-August-Universität Göttingen, Göttingen, 37073, Germany
| | - Félix Ginot
- Fachbereich Physik, Universität Konstanz, Konstanz, 78457, Germany
| | - Matthias Krüger
- Institute for Theoretical Physics, Georg-August-Universität Göttingen, Göttingen, 37073, Germany
| | | |
Collapse
|
8
|
Nishizawa K, Honda N, Inokuchi S, Ebata H, Ariga T, Mizuno D. Measuring fluctuating dynamics of sparsely crosslinked actin gels with dual-feedback nonlinear microrheology. Phys Rev E 2023; 108:034601. [PMID: 37849150 DOI: 10.1103/physreve.108.034601] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 08/06/2023] [Indexed: 10/19/2023]
Abstract
We investigate the fluctuating dynamics of colloidal particles in weakly crosslinked F-actin networks with optical-trap-based microrheology. Using the dual-feedback technology, embedded colloidal particles were stably forced beyond the linear regime in a manner that does not suppress spontaneous fluctuations of particles. Upon forcing, a particle that was stably confined in a cage made of the network's crosslinks started to intermittently jump to the next caging microenvironments. By investigating the statistics of the jump dynamics, we discuss how heterogeneous relaxations observed in equilibrium systems became homogeneous when similar jumps were activated under constant forcing beyond the linear regime.
Collapse
Affiliation(s)
- Kenji Nishizawa
- Department of Physics, The University of Tokyo, Tokyo 113-8654, Japan
| | - Natsuki Honda
- Department of Physics, Kyushu University, Fukuoka 819-0395, Japan
| | - Shono Inokuchi
- Department of Physics, Kyushu University, Fukuoka 819-0395, Japan
| | - Hiroyuki Ebata
- Department of Physics, Kyushu University, Fukuoka 819-0395, Japan
| | - Takayuki Ariga
- Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871, Japan
| | - Daisuke Mizuno
- Department of Physics, Kyushu University, Fukuoka 819-0395, Japan
| |
Collapse
|
9
|
Yang H, Berthier E, Li C, Ronceray P, Han YL, Broedersz CP, Cai S, Guo M. Local response and emerging nonlinear elastic length scale in biopolymer matrices. Proc Natl Acad Sci U S A 2023; 120:e2304666120. [PMID: 37252962 PMCID: PMC10265995 DOI: 10.1073/pnas.2304666120] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 04/16/2023] [Indexed: 06/01/2023] Open
Abstract
Nonlinear stiffening is a ubiquitous property of major types of biopolymers that make up the extracellular matrices (ECM) including collagen, fibrin, and basement membrane. Within the ECM, many types of cells such as fibroblasts and cancer cells have a spindle-like shape that acts like two equal and opposite force monopoles, which anisotropically stretch their surroundings and locally stiffen the matrix. Here, we first use optical tweezers to study the nonlinear force-displacement response to localized monopole forces. We then propose an effective-probe scaling argument that a local point force application can induce a stiffened region in the matrix, which can be characterized by a nonlinear length scale R* that increases with the increasing force magnitude; the local nonlinear force-displacement response is a result of the nonlinear growth of this effective probe that linearly deforms an increasing portion of the surrounding matrix. Furthermore, we show that this emerging nonlinear length scale R* can be observed around living cells and can be perturbed by varying matrix concentration or inhibiting cell contractility.
Collapse
Affiliation(s)
- Haiqian Yang
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Estelle Berthier
- Arnold-Sommerfeld-Center for Theoretical Physics and Center for NanoScience, Ludwig-Maximilians-Universität München, MünchenD-80333, Germany
| | - Chenghai Li
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, CA92093
| | - Pierre Ronceray
- Aix Marseille University, CNRS, CINAM, Turing Center for Living Systems, 13288Marseille, France
| | - Yu Long Han
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Chase P. Broedersz
- Arnold-Sommerfeld-Center for Theoretical Physics and Center for NanoScience, Ludwig-Maximilians-Universität München, MünchenD-80333, Germany
- Department of Physics and Astronomy, Vrije Universiteit Amsterdam, Amsterdam1081 HV, The Netherlands
| | - Shengqiang Cai
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, CA92093
| | - Ming Guo
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
| |
Collapse
|
10
|
Ebata H, Umeda K, Nishizawa K, Nagao W, Inokuchi S, Sugino Y, Miyamoto T, Mizuno D. Activity-dependent glassy cell mechanics Ⅰ: Mechanical properties measured with active microrheology. Biophys J 2023; 122:1781-1793. [PMID: 37050875 PMCID: PMC10209042 DOI: 10.1016/j.bpj.2023.04.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 01/27/2023] [Accepted: 04/07/2023] [Indexed: 04/14/2023] Open
Abstract
Active microrheology was conducted in living cells by applying an optical-trapping force to vigorously fluctuating tracer beads with feedback-tracking technology. The complex shear modulus G(ω)=G'(ω)-iG″(ω) was measured in HeLa cells in an epithelial-like confluent monolayer. We found that G(ω)∝(-iω)1/2 over a wide range of frequencies (1 Hz < ω/2π < 10 kHz). Actin disruption and cell-cycle progression from G1 to S and G2 phases only had a limited effect on G(ω) in living cells. On the other hand, G(ω) was found to be dependent on cell metabolism; ATP-depleted cells showed an increased elastic modulus G'(ω) at low frequencies, giving rise to a constant plateau such that G(ω)=G0+A(-iω)1/2. Both the plateau and the additional frequency dependency ∝(-iω)1/2 of ATP-depleted cells are consistent with a rheological response typical of colloidal jamming. On the other hand, the plateau G0 disappeared in ordinary metabolically active cells, implying that living cells fluidize their internal states such that they approach the critical jamming point.
Collapse
Affiliation(s)
- Hiroyuki Ebata
- Department of Physics, Kyushu University, Fukuoka, Japan
| | | | - Kenji Nishizawa
- Institute of Developmental Biology of Marseille, Marseille, France
| | - Wataru Nagao
- Department of Physics, Kyushu University, Fukuoka, Japan
| | - Shono Inokuchi
- Department of Physics, Kyushu University, Fukuoka, Japan
| | - Yujiro Sugino
- Department of Physics, Kyushu University, Fukuoka, Japan
| | - Takafumi Miyamoto
- Department of Endocrinology and Metabolism, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan; Transborder Medical Research Center, University of Tsukuba, Ibaraki, Japan
| | - Daisuke Mizuno
- Department of Physics, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
11
|
Microrheological properties and local structure of ι-carrageenan gels probed by using optical tweezers. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
12
|
Zheng K, Zhang Z, Cao B, Granick S. Biopolymer Filament Entanglement Softens Then Hardens with Shear. PHYSICAL REVIEW LETTERS 2022; 129:147801. [PMID: 36240408 DOI: 10.1103/physrevlett.129.147801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 08/23/2022] [Indexed: 06/16/2023]
Abstract
It is unsatisfactory that regarding the problem of entangled macromolecules driven out of equilibrium, experimentally based understanding is usually inferred from the ensemble average of polydisperse samples. Here, confronting with single-molecule imaging this common but poorly understood situation, over a wide range of shear rate we use single-molecule fluorescence imaging to track alignment and stretching of entangled aqueous filamentous actin filaments in a homebuilt rheo-microscope. With increasing shear rate, tube "softening" is followed by "hardening." Physically, this means that dynamical localization first weakens from molecular alignment, then strengthens from filament stretching, even for semiflexible biopolymers shorter than their persistence length.
Collapse
Affiliation(s)
- Kaikai Zheng
- Center for Soft and Living Matter, Institute for Basic Science (IBS), Ulsan 44919, Korea
| | - Zitong Zhang
- School of Aerospace, Tsinghua University, Beijing 100084, People's Republic of China
| | - Bingyang Cao
- School of Aerospace, Tsinghua University, Beijing 100084, People's Republic of China
| | - Steve Granick
- Center for Soft and Living Matter, Institute for Basic Science (IBS), Ulsan 44919, Korea
- Departments of Chemistry and Physics, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea
| |
Collapse
|
13
|
Peddireddy KR, Clairmont R, Neill P, McGorty R, Robertson-Anderson RM. Optical-Tweezers-integrating-Differential-Dynamic-Microscopy maps the spatiotemporal propagation of nonlinear strains in polymer blends and composites. Nat Commun 2022; 13:5180. [PMID: 36056012 PMCID: PMC9440072 DOI: 10.1038/s41467-022-32876-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 08/15/2022] [Indexed: 11/08/2022] Open
Abstract
How local stresses propagate through polymeric fluids, and, more generally, how macromolecular dynamics give rise to viscoelasticity are open questions vital to wide-ranging scientific and industrial fields. Here, to unambiguously connect polymer dynamics to force response, and map the deformation fields that arise in macromolecular materials, we present Optical-Tweezers-integrating-Differential -Dynamic-Microscopy (OpTiDMM) that simultaneously imposes local strains, measures resistive forces, and analyzes the motion of the surrounding polymers. Our measurements with blends of ring and linear polymers (DNA) and their composites with stiff polymers (microtubules) uncover an unexpected resonant response, in which strain alignment, superdiffusivity, and elasticity are maximized when the strain rate is comparable to the entanglement rate. Microtubules suppress this resonance, while substantially increasing elastic storage, due to varying degrees to which the polymers buildup, stretch and flow along the strain path, and configurationally relax induced stress. More broadly, the rich multi-scale coupling of mechanics and dynamics afforded by OpTiDDM, empowers its interdisciplinary use to elucidate non-trivial phenomena that sculpt stress propagation dynamics-critical to commercial applications and cell mechanics alike.
Collapse
Affiliation(s)
- Karthik R Peddireddy
- Department of Physics and Biophysics, University of San Diego, San Diego, CA, 92110, USA
| | - Ryan Clairmont
- Department of Physics and Biophysics, University of San Diego, San Diego, CA, 92110, USA
| | - Philip Neill
- Department of Physics and Biophysics, University of San Diego, San Diego, CA, 92110, USA
| | - Ryan McGorty
- Department of Physics and Biophysics, University of San Diego, San Diego, CA, 92110, USA
| | | |
Collapse
|
14
|
Berezney JP, Valentine MT. A compact rotary magnetic tweezers device for dynamic material analysis. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2022; 93:093701. [PMID: 36182480 DOI: 10.1063/5.0090199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 07/18/2022] [Indexed: 06/16/2023]
Abstract
Here we present a new, compact magnetic tweezers design that enables precise application of a wide range of dynamic forces to soft materials without the need to raise or lower the magnet height above the sample. This is achieved through the controlled rotation of the permanent magnet array with respect to the fixed symmetry axis defined by a custom-built iron yoke. These design improvements increase the portability of the device and can be implemented within existing microscope setups without the need for extensive modification of the sample holders or light path. This device is particularly well-suited to active microrheology measurements using either creep analysis, in which a step force is applied to a micron-sized magnetic particle that is embedded in a complex fluid, or oscillatory microrheology, in which the particle is driven with a periodic waveform of controlled amplitude and frequency. In both cases, the motions of the particle are measured and analyzed to determine the local dynamic mechanical properties of the material.
Collapse
Affiliation(s)
- John P Berezney
- Mechanical Engineering Department, University of California, Santa Barbara, California 93106, USA
| | - Megan T Valentine
- Mechanical Engineering Department, University of California, Santa Barbara, California 93106, USA
| |
Collapse
|
15
|
Rafael EM, Tonti L, Daza FAG, Patti A. Active microrheology of colloidal suspensions of hard cuboids. Phys Rev E 2022; 106:034612. [PMID: 36266794 DOI: 10.1103/physreve.106.034612] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/31/2022] [Indexed: 06/16/2023]
Abstract
By performing dynamic Monte Carlo simulations, we investigate the microrheology of isotropic suspensions of hard-core colloidal cuboids. In particular, we infer the local viscoelastic behavior of these fluids by studying the dynamics of a probe spherical particle that is incorporated in the host phase and is dragged by an external force. This technique, known as active microrheology, allows one to characterize the microscopic response of soft materials upon application of a constant force, whose intensity spans here three orders of magnitude. By tuning the geometry of cuboids from oblate to prolate as well as the system density, we observe different responses that are quantified by measuring the effective friction perceived by the probe particle. The resulting friction coefficient exhibits a linear regime at forces that are much weaker and larger than the thermal forces, whereas a nonlinear, force-thinning regime is observed at intermediate force intensities.
Collapse
Affiliation(s)
- Effran Mirzad Rafael
- Department of Chemical Engineering, The University of Manchester, Manchester, M13 9PL, United Kingdom
| | - Luca Tonti
- Department of Chemical Engineering, The University of Manchester, Manchester, M13 9PL, United Kingdom
| | - Fabián A García Daza
- Department of Chemical Engineering, The University of Manchester, Manchester, M13 9PL, United Kingdom
| | - Alessandro Patti
- Department of Chemical Engineering, The University of Manchester, Manchester, M13 9PL, United Kingdom
- Department of Applied Physics, University of Granada, Avenida Fuente Nueva s/n, 18071 Granada, Spain
| |
Collapse
|
16
|
Michieletto D, Neill P, Weir S, Evans D, Crist N, Martinez VA, Robertson-Anderson RM. Topological digestion drives time-varying rheology of entangled DNA fluids. Nat Commun 2022; 13:4389. [PMID: 35902575 PMCID: PMC9334285 DOI: 10.1038/s41467-022-31828-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 07/04/2022] [Indexed: 11/17/2022] Open
Abstract
Understanding and controlling the rheology of polymeric complex fluids that are pushed out-of-equilibrium is a fundamental problem in both industry and biology. For example, to package, repair, and replicate DNA, cells use enzymes to constantly manipulate DNA topology, length, and structure. Inspired by this feat, here we engineer and study DNA-based complex fluids that undergo enzymatically-driven topological and architectural alterations via restriction endonuclease (RE) reactions. We show that these systems display time-dependent rheological properties that depend on the concentrations and properties of the comprising DNA and REs. Through time-resolved microrheology experiments and Brownian Dynamics simulations, we show that conversion of supercoiled to linear DNA topology leads to a monotonic increase in viscosity. On the other hand, the viscosity of entangled linear DNA undergoing fragmentation displays a universal decrease that we rationalise using living polymer theory. Finally, to showcase the tunability of these behaviours, we design a DNA fluid that exhibits a time-dependent increase, followed by a temporally-gated decrease, of its viscosity. Our results present a class of polymeric fluids that leverage naturally occurring enzymes to drive diverse time-varying rheology by performing architectural alterations to the constituents.
Collapse
Affiliation(s)
- D Michieletto
- School of Physics and Astronomy, University of Edinburgh, Peter Guthrie Road, Edinburgh, EH9 3FD, UK.
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU, UK.
| | - P Neill
- Department of Physics and Biophysics, University of San Diego, 5998 Alcala Park, San Diego, CA, 92110, USA
| | - S Weir
- Department of Physics and Biophysics, University of San Diego, 5998 Alcala Park, San Diego, CA, 92110, USA
| | - D Evans
- School of Physics and Astronomy, University of Edinburgh, Peter Guthrie Road, Edinburgh, EH9 3FD, UK
| | - N Crist
- Department of Physics and Biophysics, University of San Diego, 5998 Alcala Park, San Diego, CA, 92110, USA
| | - V A Martinez
- School of Physics and Astronomy, University of Edinburgh, Peter Guthrie Road, Edinburgh, EH9 3FD, UK
| | - R M Robertson-Anderson
- Department of Physics and Biophysics, University of San Diego, 5998 Alcala Park, San Diego, CA, 92110, USA.
| |
Collapse
|
17
|
Michieletto D, Marenda M. Rheology and Viscoelasticity of Proteins and Nucleic Acids Condensates. JACS AU 2022; 2:1506-1521. [PMID: 35911447 PMCID: PMC9326828 DOI: 10.1021/jacsau.2c00055] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Phase separation is as familiar as watching vinegar separating from oil in vinaigrette. The observation that phase separation of proteins and nucleic acids is widespread in living cells has opened an entire field of research into the biological significance and the biophysical mechanisms of phase separation and protein condensation in biology. Recent evidence indicates that certain proteins and nucleic acids condensates are not simple liquids and instead display both viscous and elastic behaviors, which in turn may have biological significance. The aim of this Perspective is to review the state-of-the-art of this quickly emerging field focusing on the material and rheological properties of protein condensates. Finally, we discuss the different techniques that can be employed to quantify the viscoelasticity of condensates and highlight potential future directions and opportunities for interdisciplinary cross-talk between chemists, physicists, and biologists.
Collapse
Affiliation(s)
- Davide Michieletto
- School
of Physics and Astronomy, University of
Edinburgh, Peter Guthrie
Tait Road, Edinburgh EH9
3FD, U.K.
- MRC
Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, U.K.
| | - Mattia Marenda
- School
of Physics and Astronomy, University of
Edinburgh, Peter Guthrie
Tait Road, Edinburgh EH9
3FD, U.K.
- MRC
Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, U.K.
| |
Collapse
|
18
|
Gupta SK, Lennon KR, Joens MA, Bandi H, Van Galen M, Han Y, Tang W, Li Y, Wasserman SC, Swan JW, Guo M. Optical tweezer measurements of asymptotic nonlinearities in complex fluids. Phys Rev E 2022; 104:064604. [PMID: 35030853 DOI: 10.1103/physreve.104.064604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 11/11/2021] [Indexed: 01/07/2023]
Abstract
This article presents micro-medium-amplitude oscillatory shear (μMAOS), a method to measure the frequency-dependent micromechanical properties of soft materials in the asymptotically nonlinear regime using optical tweezers. We have developed a theoretical framework to extract these nonlinear mechanical properties of the material from experimental measurements and also proposed a physical interpretation of the third-order nonlinearities measured in single-tone oscillatory tests. We validate the method using a well-characterized surfactant solution of wormlike micelles, and subsequently employ this technique to demonstrate that the cytoplasm of a living cell undergoes strain softening and shear thinning when locally subjected to weakly nonlinear oscillatory deformations.
Collapse
Affiliation(s)
- Satish Kumar Gupta
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Kyle R Lennon
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Mary A Joens
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Hari Bandi
- Operations Research Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Martijn Van Galen
- Physical Chemistry and Soft Matter, Wageningen University & Research, NL-6708 WE Wageningen, The Netherlands
| | - YuLong Han
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Wenhui Tang
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Yiwei Li
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Steven Charles Wasserman
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - James W Swan
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Ming Guo
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
19
|
Peddireddy KR, Michieletto D, Aguirre G, Garamella J, Khanal P, Robertson-Anderson RM. DNA Conformation Dictates Strength and Flocculation in DNA-Microtubule Composites. ACS Macro Lett 2021; 10:1540-1548. [PMID: 35549144 PMCID: PMC9239750 DOI: 10.1021/acsmacrolett.1c00638] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Polymer topology has been shown to play a key role in tuning the dynamics of complex fluids and gels. At the same time, polymer composites, ubiquitous in everyday life, have been shown to exhibit emergent desirable mechanical properties not attainable in single-species systems. Yet, how topology impacts the dynamics and structure of polymer composites remains poorly understood. Here, we create composites of rigid rods (microtubules) polymerized within entangled solutions of flexible linear and ring polymers (DNA) of equal length. We couple optical tweezers microrheology with confocal microscopy and scaled particle theory to show that composites with linear DNA exhibit a strongly nonmonotonic dependence of elasticity and stiffness on microtubule concentration due to depletion-driven polymerization and flocculation of microtubules. In contrast, composites containing ring DNA show a much more modest monotonic increase in elastic strength with microtubule concentration, which we demonstrate arises from the decreased conformational size and increased miscibility of rings.
Collapse
Affiliation(s)
- Karthik R Peddireddy
- Department of Physics and Biophysics, University of San Diego, 5998 Alcala Park, San Diego, California 92110, United States
| | - Davide Michieletto
- School of Physics and Astronomy, University of Edinburgh, Peter Guthrie Tait Road, Edinburgh, EH9 3FD, United Kingdom
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| | - Gina Aguirre
- Department of Physics and Biophysics, University of San Diego, 5998 Alcala Park, San Diego, California 92110, United States
| | - Jonathan Garamella
- Department of Physics and Biophysics, University of San Diego, 5998 Alcala Park, San Diego, California 92110, United States
| | - Pawan Khanal
- Department of Physics and Biophysics, University of San Diego, 5998 Alcala Park, San Diego, California 92110, United States
| | - Rae M Robertson-Anderson
- Department of Physics and Biophysics, University of San Diego, 5998 Alcala Park, San Diego, California 92110, United States
| |
Collapse
|
20
|
Vitali V, Nava G, Zanchetta G, Bragheri F, Crespi A, Osellame R, Bellini T, Cristiani I, Minzioni P. Integrated Optofluidic Chip for Oscillatory Microrheology. Sci Rep 2020; 10:5831. [PMID: 32242060 PMCID: PMC7118116 DOI: 10.1038/s41598-020-62628-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 03/05/2020] [Indexed: 11/24/2022] Open
Abstract
We propose and demonstrate an on-chip optofluidic device allowing active oscillatory microrheological measurements with sub-μL sample volume, low cost and high flexibility. Thanks to the use of this optofluidic microrheometer it is possible to measure the viscoelastic properties of complex fluids in the frequency range 0.01-10 Hz at different temperatures. The system is based on the optical forces exerted on a microbead by two counterpropagating infrared laser beams. The core elements of the optical part, integrated waveguides and an optical modulator, are fabricated by fs-laser writing on a glass substrate. The system performance is validated by measuring viscoelastic solutions of aqueous worm-like micelles composed by Cetylpyridinium Chloride (CPyCl) and Sodium Salicylate (NaSal).
Collapse
Affiliation(s)
- Valerio Vitali
- University of Pavia, Dept. of Electrical, Computer and Biomedical Engineering, Pavia, 27100, Italy
| | - Giovanni Nava
- University of Milano, Dept. of Medical Biotechnology and Translational Medicine, Milano, 20129, Italy
| | - Giuliano Zanchetta
- University of Milano, Dept. of Medical Biotechnology and Translational Medicine, Milano, 20129, Italy
| | - Francesca Bragheri
- Istituto di Fotonica e Nanotecnologie, Consiglio Nazionale delle Ricerche (IFN-CNR), Milano, 20133, Italy
| | - Andrea Crespi
- Istituto di Fotonica e Nanotecnologie, Consiglio Nazionale delle Ricerche (IFN-CNR), Milano, 20133, Italy
- Dipartimento di Fisica, Politecnico di Milano, Milano, 20133, Italy
| | - Roberto Osellame
- Istituto di Fotonica e Nanotecnologie, Consiglio Nazionale delle Ricerche (IFN-CNR), Milano, 20133, Italy
- Dipartimento di Fisica, Politecnico di Milano, Milano, 20133, Italy
| | - Tommaso Bellini
- University of Milano, Dept. of Medical Biotechnology and Translational Medicine, Milano, 20129, Italy
| | - Ilaria Cristiani
- University of Pavia, Dept. of Electrical, Computer and Biomedical Engineering, Pavia, 27100, Italy
| | - Paolo Minzioni
- University of Pavia, Dept. of Electrical, Computer and Biomedical Engineering, Pavia, 27100, Italy.
| |
Collapse
|
21
|
Peddireddy KR, Lee M, Zhou Y, Adalbert S, Anderson S, Schroeder CM, Robertson-Anderson RM. Unexpected entanglement dynamics in semidilute blends of supercoiled and ring DNA. SOFT MATTER 2020; 16:152-161. [PMID: 31774103 DOI: 10.1039/c9sm01767d] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Blends of polymers of different topologies, such as ring and supercoiled, naturally occur in biology and often exhibit emergent viscoelastic properties coveted in industry. However, due to their complexity, along with the difficulty of producing polymers of different topologies, the dynamics of topological polymer blends remains poorly understood. We address this void by using both passive and active microrheology to characterize the linear and nonlinear rheological properties of blends of relaxed circular and supercoiled DNA. We characterize the dynamics as we vary the concentration from below the overlap concentration c* to above (0.5c* to 2c*). Surprisingly, despite working at the dilute-semidilute crossover, entanglement dynamics, such as elastic plateaus and multiple relaxation modes, emerge. Finally, blends exhibit an unexpected sustained elastic response to nonlinear strains not previously observed even in well-entangled linear polymer solutions.
Collapse
Affiliation(s)
- Karthik R Peddireddy
- Department of Physics and Biophysics, University of San Diego, 5998 Alcala Park, San Diego, CA 92110, USA.
| | - Megan Lee
- Department of Physics and Biophysics, University of San Diego, 5998 Alcala Park, San Diego, CA 92110, USA.
| | - Yuecheng Zhou
- Department of Materials Science and Engineering, Beckman Institute for Advanced Science and Technology & Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Serenity Adalbert
- Department of Physics and Biophysics, University of San Diego, 5998 Alcala Park, San Diego, CA 92110, USA.
| | - Sylas Anderson
- Department of Physics and Biophysics, University of San Diego, 5998 Alcala Park, San Diego, CA 92110, USA.
| | - Charles M Schroeder
- Department of Materials Science and Engineering, Beckman Institute for Advanced Science and Technology & Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Rae M Robertson-Anderson
- Department of Physics and Biophysics, University of San Diego, 5998 Alcala Park, San Diego, CA 92110, USA.
| |
Collapse
|
22
|
Michieletto D, Fitzpatrick R, Robertson-Anderson RM. Maximally stiffening composites require maximally coupled rather than maximally entangled polymer species. SOFT MATTER 2019; 15:6703-6717. [PMID: 31386738 DOI: 10.1039/c9sm01461f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Polymer composites are ideal candidates for next generation biomimetic soft materials because of their exquisite bottom-up designability. However, the richness of behaviours comes at a price: the need for precise and extensive characterisation of material properties over a highly-dimensional parameter space, as well as a quantitative understanding of the physical principles underlying desirable features. Here we couple large-scale Molecular Dynamics simulations with optical tweezers microrheology to characterise the viscoelastic response of DNA-actin composites. We discover that the previously observed non-monotonic stress-stiffening of these composites is robust, yet tunable, in a broad range of the parameter space that spans two orders of magnitude in DNA length. Importantly, we discover that the most pronounced stiffening is achieved when the species are maximally coupled, i.e., have similar number of entanglements, and not when the number of entanglements per DNA chain is largest. We further report novel dynamical oscillations of the microstructure of the composites, alternating between mixed and bundled phases, opening the door to future investigations. The generic nature of our system renders our results applicable to the behaviour of a broad class of polymer composites.
Collapse
Affiliation(s)
- Davide Michieletto
- School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK.
| | | | | |
Collapse
|
23
|
Khan M, Regan K, Robertson-Anderson RM. Optical Tweezers Microrheology Maps the Dynamics of Strain-Induced Local Inhomogeneities in Entangled Polymers. PHYSICAL REVIEW LETTERS 2019; 123:038001. [PMID: 31386434 DOI: 10.1103/physrevlett.123.038001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Indexed: 06/10/2023]
Abstract
Optical tweezers microrheology (OTM) offers a powerful approach to probe the nonlinear response of complex soft matter systems, such as networks of entangled polymers, over wide-ranging spatiotemporal scales. OTM can also uniquely characterize the microstructural dynamics that lead to the intriguing nonlinear rheological properties that these systems exhibit. However, the strain in OTM measurements, applied by optically forcing a microprobe through the material, induces network inhomogeneities in and around the strain path, and the resultant flow field complicates the measured response of the system. Through a robust set of custom-designed OTM protocols, coupled with modeling and analytical calculations, we characterize the time-varying inhomogeneity fields induced by OTM measurements. We show that homogenization following strain does not interfere with the intrinsic stress relaxation dynamics of the system, rather it manifests as an independent component in the stress decay, even in highly nonlinear regimes such as with the microrheological large-amplitude-oscillatory-shear (MLAOS) protocols we introduce. Our specific results show that Rouse-like elastic retraction, rather than disentanglement and disengagement, dominates the nonlinear stress relaxation of entangled polymers at micro- and mesoscales. Thus, our study opens up possibilities of performing precision nonlinear microrheological measurements, such as MLAOS, on a wide range of complex macromolecular systems.
Collapse
Affiliation(s)
- Manas Khan
- Department of Physics and Biophysics, University of San Diego, San Diego, California 92110, USA
- Department of Physics, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Kathryn Regan
- Department of Physics and Biophysics, University of San Diego, San Diego, California 92110, USA
| | | |
Collapse
|
24
|
Fitzpatrick R, Michieletto D, Peddireddy KR, Hauer C, Kyrillos C, Gurmessa BJ, Robertson-Anderson RM. Synergistic Interactions Between DNA and Actin Trigger Emergent Viscoelastic Behavior. PHYSICAL REVIEW LETTERS 2018; 121:257801. [PMID: 30608839 DOI: 10.1103/physrevlett.121.257801] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 09/10/2018] [Indexed: 05/12/2023]
Abstract
Composites of flexible and rigid polymers are ubiquitous in biology and industry alike, yet the physical principles determining their mechanical properties are far from understood. Here, we couple force spectroscopy with large-scale Brownian dynamics simulations to elucidate the unique viscoelastic properties of custom-engineered blends of entangled flexible DNA molecules and semiflexible actin filaments. We show that composites exhibit enhanced stress stiffening and prolonged mechanomemory compared to systems of actin or DNA alone, and that these nonlinear features display a surprising nonmonotonic dependence on the fraction of actin in the composite. Simulations reveal that these counterintuitive results arise from synergistic microscale interactions between the two biopolymers. Namely, DNA entropically drives actin filaments to form bundles that stiffen the network but reduce the entanglement density, while a uniform well-connected actin network is required to reinforce the DNA network against yielding and flow. The competition between bundling and connectivity triggers an unexpected stress response that leads equal mass DNA-actin composites to exhibit the most pronounced stress stiffening and the most long-lived entanglements.
Collapse
Affiliation(s)
- Robert Fitzpatrick
- Department of Physics and Biophysics, University of San Diego, San Diego, California 92110, USA
| | - Davide Michieletto
- School of Physics and Astronomy, University of Edinburgh, Edinburgh EH9 3FD, United Kingdom
| | - Karthik R Peddireddy
- Department of Physics and Biophysics, University of San Diego, San Diego, California 92110, USA
| | - Cole Hauer
- Department of Physics and Biophysics, University of San Diego, San Diego, California 92110, USA
| | - Carl Kyrillos
- Department of Physics and Biophysics, University of San Diego, San Diego, California 92110, USA
| | - Bekele J Gurmessa
- Department of Physics and Biophysics, University of San Diego, San Diego, California 92110, USA
| | | |
Collapse
|
25
|
Ricketts SN, Ross JL, Robertson-Anderson RM. Co-Entangled Actin-Microtubule Composites Exhibit Tunable Stiffness and Power-Law Stress Relaxation. Biophys J 2018; 115:1055-1067. [PMID: 30177441 PMCID: PMC6139891 DOI: 10.1016/j.bpj.2018.08.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 07/19/2018] [Accepted: 08/06/2018] [Indexed: 12/25/2022] Open
Abstract
We use optical tweezers microrheology and fluorescence microscopy to characterize the nonlinear mesoscale mechanics and mobility of in vitro co-entangled actin-microtubule composites. We create a suite of randomly oriented, well-mixed networks of actin and microtubules by co-polymerizing varying ratios of actin and tubulin in situ. To perturb each composite far from equilibrium, we use optical tweezers to displace an embedded microsphere a distance greater than the lengths of the filaments at a speed much faster than their intrinsic relaxation rates. We simultaneously measure the force the filaments exert on the bead and the subsequent force relaxation. We find that the presence of a large fraction of microtubules (>0.7) is needed to substantially increase the measured force, which is accompanied by large heterogeneities in force response. Actin minimizes these heterogeneities by reducing the mesh size of the composites and supporting microtubules against buckling. Composites also undergo a sharp transition from strain softening to stiffening when the fraction of microtubules (ϕT) exceeds 0.5, which we show arises from faster poroelastic relaxation and suppressed actin bending fluctuations. The force after bead displacement relaxes via power-law decay after an initial period of minimal relaxation. The short-time relaxation profiles (t < 0.06 s) arise from poroelastic and bending contributions, whereas the long-time power-law relaxation is indicative of filaments reptating out of deformed entanglement constraints. The scaling exponents for the long-time relaxation exhibit a nonmonotonic dependence on ϕT, reaching a maximum for equimolar composites (ϕT = 0.5), suggesting that reptation is fastest in ϕT = 0.5 composites. Corresponding mobility measurements of steady-state actin and microtubules show that both filaments are indeed the most mobile in ϕT = 0.5 composites. This nonmonotonic dependence of mobility on ϕT demonstrates the important interplay between mesh size and filament rigidity in polymer networks and highlights the surprising emergent properties that can arise in composites.
Collapse
Affiliation(s)
- Shea N Ricketts
- Department of Physics and Biophysics, University of San Diego, San Diego, California
| | - Jennifer L Ross
- Department of Physics, University of Massachusetts Amherst, Amherst, Massachusetts
| | | |
Collapse
|
26
|
Xie SJ, Schweizer KS. Entangled chain polymer liquids under continuous shear deformation: consequences of a microscopically anharmonic confining tube. SOFT MATTER 2018; 14:7052-7063. [PMID: 30112537 DOI: 10.1039/c8sm01182f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We generalize our non-classical theory for the shear rheology of entangled flexible polymer liquids to address the consequences of a deformation-modified anharmonic tube confinement field. Numerical results for stress-strain curves, orientational relaxation time, primitive path (PP) step orientational order parameter, dynamic tube diameter and transverse entropic barrier under nonequilibrium conditions are presented as a function of dimensionless shear rate, strain and degree of entanglement. Deformation-induced changes of the tube field have essentially no effect on rheology under fast deformations conditions corresponding to Rouse Weissenberg numbers WiR > 1 because of the dominance of PP chain stretch. However, the scaling behavior of the effective orientational relaxation time and rheological response at low deformation rates WiR < 1 are significantly modified, with the stress overshoot coordinates predicted to become shear rate and degree of entanglement dependent. Stress-assisted transverse activated barrier hopping as a new channel of orientational relaxation is found to be potentially important when WiR < 1. The dynamic tube diameter and transverse entropic barrier that confines chains in a tube are rich functions of strain, shear rate and degree of entanglement. Deformation can increase or decrease the tube diameter, and non-monotonic changes with strain are possible due to competing consequences of PP orientation, chain stretch and stress. The transverse barrier is relatively high for all strains below the stress overshoot, for weaker entanglement, and for WiR > 1, corresponding to a dynamically stable tube. But for high enough degrees of entanglement and WiR < 1, although the barrier still exists it can become very low.
Collapse
Affiliation(s)
- Shi-Jie Xie
- Departments of Materials Science, University of Illinois, 1304 West Green Street, Urbana, IL 61801, USA.
| | | |
Collapse
|
27
|
Robertson-Anderson RM. Optical Tweezers Microrheology: From the Basics to Advanced Techniques and Applications. ACS Macro Lett 2018; 7:968-975. [PMID: 35650960 DOI: 10.1021/acsmacrolett.8b00498] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Over the past few decades, microrheology has emerged as a widely used technique to measure the mechanical properties of soft viscoelastic materials. Optical tweezers offer a powerful platform for performing microrheology measurements and can measure rheological properties at the level of single molecules out to near macroscopic scales. Unlike passive microrheology methods, which use diffusing microspheres to extract rheological properties, optical tweezers can probe the nonlinear viscoelastic response, and measure the space- and time-dependent rheological properties of heterogeneous, nonequilibrium materials. In this Viewpoint, I describe the basic principles underlying optical tweezers microrheology, the instrumentation and material requirements, and key applications to widely studied soft biological materials. I also describe several sophisticated approaches that include coupling optical tweezers to fluorescence microscopy and microfluidics. The described techniques can robustly characterize noncontinuum mechanics, nonlinear mechanical responses, strain-field heterogeneities, stress propagation, force relaxation dynamics, and time-dependent mechanics of active materials.
Collapse
Affiliation(s)
- Rae M. Robertson-Anderson
- University of San Diego, Physics and Biophysics Department, 5998 Alcala Park, San Diego, California 92110, United States
| |
Collapse
|
28
|
Xie SJ, Schweizer KS. Consequences of Delayed Chain Retraction on the Rheology and Stretch Dynamics of Entangled Polymer Liquids under Continuous Nonlinear Shear Deformation. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b00671] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Shi-Jie Xie
- Departments of Materials Science, Chemistry, and Chemical & Biomolecular Engineering, University of Illinois, 1304 West Green Street, Urbana, Illinois 61801, United States
| | - Kenneth S. Schweizer
- Departments of Materials Science, Chemistry, and Chemical & Biomolecular Engineering, University of Illinois, 1304 West Green Street, Urbana, Illinois 61801, United States
| |
Collapse
|
29
|
Weigand WJ, Messmore A, Tu J, Morales-Sanz A, Blair DL, Deheyn DD, Urbach JS, Robertson-Anderson RM. Active microrheology determines scale-dependent material properties of Chaetopterus mucus. PLoS One 2017; 12:e0176732. [PMID: 28562662 PMCID: PMC5451080 DOI: 10.1371/journal.pone.0176732] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 04/15/2017] [Indexed: 12/24/2022] Open
Abstract
We characterize the lengthscale-dependent rheological properties of mucus from the ubiquitous Chaetopterus marine worm. We use optically trapped probes (2-10 μm) to induce microscopic strains and measure the stress response as a function of oscillation amplitude. Our results show that viscoelastic properties are highly dependent on strain scale (l), indicating three distinct lengthscale-dependent regimes at l1 ≤4 μm, l2≈4-10 μm, and l3≥10 μm. While mucus response is similar to water for l1, suggesting that probes rarely contact the mucus mesh, the response for l2 is distinctly more viscous and independent of probe size, indicative of continuum mechanics. Only for l3 does the response match the macroscopic elasticity, likely due to additional stiffer constraints that strongly resist probe displacement. Our results suggest that, rather than a single lengthscale governing crossover from viscous to elastic, mucus responds as a hierarchical network with a loose biopolymer mesh coupled to a larger scaffold responsible for macroscopic gel-like mechanics.
Collapse
Affiliation(s)
- W. J. Weigand
- Department of Physics and Biophysics, University of San Diego, San Diego, California, United States of America
| | - A. Messmore
- Department of Physics and Biophysics, University of San Diego, San Diego, California, United States of America
| | - J. Tu
- Marine Biology Research Division, Scripps Institution of Oceanography, La Jolla, California, United States of America
| | - A. Morales-Sanz
- Department of Physics and Institute for Soft Matter Synthesis and Metrology, Georgetown University, Washington DC, United States of America
| | - D. L. Blair
- Department of Physics and Institute for Soft Matter Synthesis and Metrology, Georgetown University, Washington DC, United States of America
| | - D. D. Deheyn
- Marine Biology Research Division, Scripps Institution of Oceanography, La Jolla, California, United States of America
| | - J. S. Urbach
- Department of Physics and Institute for Soft Matter Synthesis and Metrology, Georgetown University, Washington DC, United States of America
| | - R. M. Robertson-Anderson
- Department of Physics and Biophysics, University of San Diego, San Diego, California, United States of America
| |
Collapse
|
30
|
Yang T, Nava G, Vitali V, Bragheri F, Osellame R, Bellini T, Cristiani I, Minzioni P. Integrated Optofluidic Chip for Low-Volume Fluid Viscosity Measurement. MICROMACHINES 2017. [PMCID: PMC6190167 DOI: 10.3390/mi8030065] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In the present work, an integrated optofluidic chip for fluid viscosity measurements in the range from 1 mPa·s to 100 mPa·s is proposed. The device allows the use of small sample volumes (<1 µL) and the measurement of viscosity as a function of temperature. Thanks to the precise control of the force exerted on dielectric spheres by optical beams, the viscosity of fluids is assessed by comparing the experimentally observed movement of dielectric beads produced by the optical forces with that expected by numerical calculations. The chip and the developed technique are validated by analyzing several fluids, such as Milli-Q water, ethanol and water–glycerol mixtures. The results show a good agreement between the experimental values and those reported in the literature. The extremely reduced volume of the sample required and the high flexibility of this technique make it a good candidate for measuring a wide range of viscosity values as well as for the analysis of nonlinear viscosity in complex fluids.
Collapse
Affiliation(s)
- Tie Yang
- Department of Electrical, Computer, and Biomedical Engineering, Università di Pavia, Via Ferrata 5A, 27100 Pavia, Italy; (T.Y.); (V.V.); (I.C.)
| | - Giovanni Nava
- Department of Biomedical Science and Translational Medicine, Università di Milano, Via F.lli Cervi 91, 20090 Segrate, Italy; (G.N.); (T.B.)
| | - Valerio Vitali
- Department of Electrical, Computer, and Biomedical Engineering, Università di Pavia, Via Ferrata 5A, 27100 Pavia, Italy; (T.Y.); (V.V.); (I.C.)
| | - Francesca Bragheri
- Institute of Photonics and Nanotechnology, CNR & Department of Physics, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy; (F.B.); (R.O.)
| | - Roberto Osellame
- Institute of Photonics and Nanotechnology, CNR & Department of Physics, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy; (F.B.); (R.O.)
| | - Tommaso Bellini
- Department of Biomedical Science and Translational Medicine, Università di Milano, Via F.lli Cervi 91, 20090 Segrate, Italy; (G.N.); (T.B.)
| | - Ilaria Cristiani
- Department of Electrical, Computer, and Biomedical Engineering, Università di Pavia, Via Ferrata 5A, 27100 Pavia, Italy; (T.Y.); (V.V.); (I.C.)
| | - Paolo Minzioni
- Department of Electrical, Computer, and Biomedical Engineering, Università di Pavia, Via Ferrata 5A, 27100 Pavia, Italy; (T.Y.); (V.V.); (I.C.)
- Correspondence: ; Tel.: +39-0382-985221; Fax: +39-0382-422583
| |
Collapse
|
31
|
Abstract
Microrheology provides a technique to probe the local viscoelastic properties and dynamics of soft materials at the microscopic level by observing the motion of tracer particles embedded within them. It is divided into passive and active microrheology according to the force exerted on the embedded particles. Particles are driven by thermal fluctuations in passive microrheology, and the linear viscoelasticity of samples can be obtained on the basis of the generalized Stokes-Einstein equation. In active microrheology, tracer particles are controlled by external forces, and measurements can be extended to the nonlinear regime. Microrheology techniques have many advantages such as the need for only small sample amounts and a wider measurable frequency range. In particular, microrheology is able to examine the spatial heterogeneity of samples at the microlevel, which is not possible using traditional rheology. Therefore, microrheology has considerable potential for studying the local mechanical properties and dynamics of soft matter, particularly complex fluids, including solutions, dispersions, and other colloidal systems. Food products such as emulsions, foams, or gels are complex fluids with multiple ingredients and phases. Their macroscopic properties, such as stability and texture, are closely related to the structure and mechanical properties at the microlevel. In this article, the basic principles and methods of microrheology are reviewed, and the latest developments and achievements of microrheology in the field of food science are presented.
Collapse
Affiliation(s)
- Nan Yang
- Glyn O. Phillips Hydrocolloid Research Centre, School of Food and Biological Engineering, and Hubei Collaborative Innovation Centre for Industrial Fermentation, Hubei University of Technology, Wuhan 430068, China;
| | - Ruihe Lv
- Glyn O. Phillips Hydrocolloid Research Centre, School of Food and Biological Engineering, and Hubei Collaborative Innovation Centre for Industrial Fermentation, Hubei University of Technology, Wuhan 430068, China;
| | - Junji Jia
- School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Katsuyoshi Nishinari
- Glyn O. Phillips Hydrocolloid Research Centre, School of Food and Biological Engineering, and Hubei Collaborative Innovation Centre for Industrial Fermentation, Hubei University of Technology, Wuhan 430068, China;
| | - Yapeng Fang
- Glyn O. Phillips Hydrocolloid Research Centre, School of Food and Biological Engineering, and Hubei Collaborative Innovation Centre for Industrial Fermentation, Hubei University of Technology, Wuhan 430068, China;
| |
Collapse
|
32
|
Schweizer KS, Sussman DM. A force-level theory of the rheology of entangled rod and chain polymer liquids. I. Tube deformation, microscopic yielding, and the nonlinear elastic limit. J Chem Phys 2016; 145:214903. [DOI: 10.1063/1.4968516] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Kenneth S. Schweizer
- Department of Materials Science and Department of Chemistry, University of Illinois, 1304 West Green Street, Urbana, Illinois 61801, USA
| | - Daniel M. Sussman
- Department of Physics, Syracuse University, Syracuse, New York 13244, USA
| |
Collapse
|
33
|
Regan K, Ricketts S, Robertson-Anderson RM. DNA as a Model for Probing Polymer Entanglements: Circular Polymers and Non-Classical Dynamics. Polymers (Basel) 2016; 8:E336. [PMID: 30974610 PMCID: PMC6432451 DOI: 10.3390/polym8090336] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 08/25/2016] [Accepted: 08/25/2016] [Indexed: 02/04/2023] Open
Abstract
Double-stranded DNA offers a robust platform for investigating fundamental questions regarding the dynamics of entangled polymer solutions. The exceptional monodispersity and multiple naturally occurring topologies of DNA, as well as a wide range of tunable lengths and concentrations that encompass the entanglement regime, enable direct testing of molecular-level entanglement theories and corresponding scaling laws. DNA is also amenable to a wide range of techniques from passive to nonlinear measurements and from single-molecule to bulk macroscopic experiments. Over the past two decades, researchers have developed methods to directly visualize and manipulate single entangled DNA molecules in steady-state and stressed conditions using fluorescence microscopy, particle tracking and optical tweezers. Developments in microfluidics, microrheology and bulk rheology have also enabled characterization of the viscoelastic response of entangled DNA from molecular levels to macroscopic scales and over timescales that span from linear to nonlinear regimes. Experiments using DNA have uniquely elucidated the debated entanglement properties of circular polymers and blends of linear and circular polymers. Experiments have also revealed important lengthscale and timescale dependent entanglement dynamics not predicted by classical tube models, both validating and refuting new proposed extensions and alternatives to tube theory and motivating further theoretical work to describe the rich dynamics exhibited in entangled polymer systems.
Collapse
Affiliation(s)
- Kathryn Regan
- Department of Physics and Biophysics, University of San Diego, San Diego, CA 92110, USA.
| | - Shea Ricketts
- Department of Physics and Biophysics, University of San Diego, San Diego, CA 92110, USA.
| | | |
Collapse
|
34
|
Gupta S, Wang WS, Vanapalli SA. Microfluidic viscometers for shear rheology of complex fluids and biofluids. BIOMICROFLUIDICS 2016; 10:043402. [PMID: 27478521 PMCID: PMC4947045 DOI: 10.1063/1.4955123] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Accepted: 06/21/2016] [Indexed: 05/20/2023]
Abstract
The rich diversity of man-made complex fluids and naturally occurring biofluids is opening up new opportunities for investigating their flow behavior and characterizing their rheological properties. Steady shear viscosity is undoubtedly the most widely characterized material property of these fluids. Although widely adopted, macroscale rheometers are limited by sample volumes, access to high shear rates, hydrodynamic instabilities, and interfacial artifacts. Currently, microfluidic devices are capable of handling low sample volumes, providing precision control of flow and channel geometry, enabling a high degree of multiplexing and automation, and integrating flow visualization and optical techniques. These intrinsic advantages of microfluidics have made it especially suitable for the steady shear rheology of complex fluids. In this paper, we review the use of microfluidics for conducting shear viscometry of complex fluids and biofluids with a focus on viscosity curves as a function of shear rate. We discuss the physical principles underlying different microfluidic viscometers, their unique features and limits of operation. This compilation of technological options will potentially serve in promoting the benefits of microfluidic viscometry along with evincing further interest and research in this area. We intend that this review will aid researchers handling and studying complex fluids in selecting and adopting microfluidic viscometers based on their needs. We conclude with challenges and future directions in microfluidic rheometry of complex fluids and biofluids.
Collapse
Affiliation(s)
- Siddhartha Gupta
- Department of Chemical Engineering, Texas Tech University , Lubbock, Texas 79409, USA
| | - William S Wang
- Department of Chemical Engineering, Texas Tech University , Lubbock, Texas 79409, USA
| | - Siva A Vanapalli
- Department of Chemical Engineering, Texas Tech University , Lubbock, Texas 79409, USA
| |
Collapse
|
35
|
Waigh TA. Advances in the microrheology of complex fluids. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2016; 79:074601. [PMID: 27245584 DOI: 10.1088/0034-4885/79/7/074601] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
New developments in the microrheology of complex fluids are considered. Firstly the requirements for a simple modern particle tracking microrheology experiment are introduced, the error analysis methods associated with it and the mathematical techniques required to calculate the linear viscoelasticity. Progress in microrheology instrumentation is then described with respect to detectors, light sources, colloidal probes, magnetic tweezers, optical tweezers, diffusing wave spectroscopy, optical coherence tomography, fluorescence correlation spectroscopy, elastic- and quasi-elastic scattering techniques, 3D tracking, single molecule methods, modern microscopy methods and microfluidics. New theoretical techniques are also reviewed such as Bayesian analysis, oversampling, inversion techniques, alternative statistical tools for tracks (angular correlations, first passage probabilities, the kurtosis, motor protein step segmentation etc), issues in micro/macro rheological agreement and two particle methodologies. Applications where microrheology has begun to make some impact are also considered including semi-flexible polymers, gels, microorganism biofilms, intracellular methods, high frequency viscoelasticity, comb polymers, active motile fluids, blood clots, colloids, granular materials, polymers, liquid crystals and foods. Two large emergent areas of microrheology, non-linear microrheology and surface microrheology are also discussed.
Collapse
Affiliation(s)
- Thomas Andrew Waigh
- Biological Physics Group, School of Physics and Astronomy, University of Manchester, Oxford Rd., Manchester, M13 9PL, UK. Photon Science Institute, University of Manchester, Oxford Rd., Manchester, M13 9PL, UK
| |
Collapse
|
36
|
Chapman CD, Gorczyca S, Robertson-Anderson RM. Crowding induces complex ergodic diffusion and dynamic elongation of large DNA molecules. Biophys J 2016; 108:1220-8. [PMID: 25762333 DOI: 10.1016/j.bpj.2015.02.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 01/28/2015] [Accepted: 02/02/2015] [Indexed: 01/15/2023] Open
Abstract
Despite the ubiquity of molecular crowding in living cells, the effects of crowding on the dynamics of genome-sized DNA are poorly understood. Here, we track single, fluorescent-labeled large DNA molecules (11, 115 kbp) diffusing in dextran solutions that mimic intracellular crowding conditions (0-40%), and determine the effects of crowding on both DNA mobility and conformation. Both DNAs exhibit ergodic Brownian motion and comparable mobility reduction in all conditions; however, crowder size (10 vs. 500 kDa) plays a critical role in the underlying diffusive mechanisms and dependence on crowder concentration. Surprisingly, in 10-kDa dextran, crowder influence saturates at ∼20% with an ∼5× drop in DNA diffusion, in stark contrast to exponentially retarded mobility, coupled to weak anomalous subdiffusion, with increasing concentration of 500-kDa dextran. Both DNAs elongate into lower-entropy states (compared to random coil conformations) when crowded, with elongation states that are gamma distributed and fluctuate in time. However, the broadness of the distribution of states and the time-dependence and length scale of elongation length fluctuations depend on both DNA and crowder size with concentration having surprisingly little impact. Results collectively show that mobility reduction and coil elongation of large crowded DNAs are due to a complex interplay between entropic effects and crowder mobility. Although elongation and initial mobility retardation are driven by depletion interactions, subdiffusive dynamics, and the drastic exponential slowing of DNA, up to ∼300×, arise from the reduced mobility of larger crowders. Our results elucidate the highly important and widely debated effects of cellular crowding on genome-sized DNA.
Collapse
Affiliation(s)
- Cole D Chapman
- Department of Physics, University of California San Diego, La Jolla, California
| | | | | |
Collapse
|
37
|
Falzone TT, Blair S, Robertson-Anderson RM. Entangled F-actin displays a unique crossover to microscale nonlinearity dominated by entanglement segment dynamics. SOFT MATTER 2015; 11:4418-4423. [PMID: 25920523 DOI: 10.1039/c5sm00155b] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We drive optically trapped microspheres through entangled F-actin at constant speeds and distances well beyond the linear regime, and measure the microscale force response of the entangled filaments during and following strain. Our results reveal a unique crossover to appreciable nonlinearity at a strain rate of [small gamma, Greek, dot above]c ≈ 3 s(-1) which corresponds remarkably well with the theoretical rate of relaxation of entanglement length deformations 1/τent. Above [small gamma, Greek, dot above]c, we observe stress stiffening which occurs over very short time scales comparable to the predicted timescale over which mesh size deformations relax. Stress softening then takes over, yielding to an effectively viscous regime over a timescale comparable to the entanglement length relaxation time, τent. The viscous regime displays shear thinning but with a less pronounced viscosity scaling with strain rate compared to flexible polymers. The relaxation of induced force on filaments following strain shows that the relative relaxation proceeds more quickly for increasing strain rates; and for rates greater than [small gamma, Greek, dot above]c, the relaxation displays a complex power-law dependence on time. Our collective results reveal that molecular-level nonlinear viscoelasticity is driven by non-classical dynamics of individual entanglement segments that are unique to semiflexible polymers.
Collapse
Affiliation(s)
- Tobias T Falzone
- Department of Physics, University of San Diego, 5998 Alcala Park, San Diego, CA 92110, USA.
| | | | | |
Collapse
|