1
|
Kim S, Oh S, Kwak SJ, Noh G, Choi M, Lee J, Kim Y, Kim MG, Kim TS, Jo MK, Lee WB, Yoo J, Hong YJ, Song S, Kwak JY, Kim Y, Jeong HY, Kang K. Sequential multidimensional heteroepitaxy of chalcogen-sharing 3D ZnSe and 2D MoSe 2 with quasi van der Waals interface engineering. SCIENCE ADVANCES 2025; 11:eads4573. [PMID: 39982993 PMCID: PMC11844737 DOI: 10.1126/sciadv.ads4573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 01/21/2025] [Indexed: 02/23/2025]
Abstract
Two-dimensional (2D) materials are emerging as a promising platform for epitaxial growth, largely free from the constraints of lattice constant and thermal expansion coefficient mismatches. Among them, transition metal dichalcogenides (TMDs), known for their superior electrical properties, are ideal for ultrathin semiconductor applications. Their unique epitaxial characteristics enable seamless integration with 3D materials, facilitating the development of gate stacks and heterojunction devices. In this regard, developing a process for growing high-quality 3D epitaxial materials before and after the growth of 2D TMDs and understanding the 2D/3D interface are crucial. This study demonstrates the sequential growth of fully epitaxial ZnSe/MoSe2/ZnSe heterostructures using metal-organic chemical vapor deposition. ZnSe and MoSe2, sharing chalcogen elements, enable large-area quasi van der Waals epitaxy with sharp interfaces without intermediate phase. Multiscale analysis involving transmission electron microscopy and density functional theory calculation reveals lattice commensurability, van der Waals gaps, termination, and interfacial reconstruction. Understanding these interactions is crucial for advancing multidimensional integration of 2D and 3D materials.
Collapse
Affiliation(s)
- Suhyun Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Saeyoung Oh
- Graduate School of Semiconductor Technology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Seung Jae Kwak
- School of Chemical and Biological Engineering and Institute of Chemical Process, Seoul National University, Seoul 08826, Republic of Korea
| | - Gichang Noh
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Minhyuk Choi
- Operando Methodology and Measurement Team, Korea Research Institute of Standards and Science (KRISS), Daejeon 34113, Republic of Korea
| | - Jaehyun Lee
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Yuseok Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Min-gyu Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Tae Soo Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Min-kyung Jo
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Operando Methodology and Measurement Team, Korea Research Institute of Standards and Science (KRISS), Daejeon 34113, Republic of Korea
| | - Won Bo Lee
- School of Chemical and Biological Engineering and Institute of Chemical Process, Seoul National University, Seoul 08826, Republic of Korea
| | - Jinkyoung Yoo
- Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Young Joon Hong
- Department of Nano Engineering and Department of Nano Science and Technology, SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Seungwoo Song
- Operando Methodology and Measurement Team, Korea Research Institute of Standards and Science (KRISS), Daejeon 34113, Republic of Korea
| | - Joon Young Kwak
- Division of Electronic and Semiconductor Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - YongJoo Kim
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Hu Young Jeong
- Graduate School of Semiconductor Materials and Devices Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Kibum Kang
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Graduate School of Semiconductor Technology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| |
Collapse
|
2
|
Kang WH, Barth M, Costa A, Garcia-Ruiz A, Mreńca-Kolasińska A, Liu MH, Kochan D. Magnetotransport and Spin-Relaxation Signatures of the Radial Rashba and Dresselhaus Spin-Orbit Coupling in Proximitized Graphene. PHYSICAL REVIEW LETTERS 2024; 133:216201. [PMID: 39642523 DOI: 10.1103/physrevlett.133.216201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 08/03/2024] [Accepted: 10/04/2024] [Indexed: 12/09/2024]
Abstract
Graphene-based van der Waals heterostructures take advantage of tailoring spin-orbit coupling (SOC) in the graphene layer by the proximity effect. At long wavelength-saddled by the electronic states near the Dirac points-the proximitized features can be effectively modeled by the Hamiltonian involving novel SOC terms and allow for an admixture of the tangential and radial spin-textures-by the so-called Rashba angle θ_{R}. Taking such effective models we perform realistic large-scale magnetotransport calculations-transverse magnetic focusing and Dyakonov-Perel spin relaxation-and show that there are unique qualitative and quantitative features allowing for an unbiased experimental disentanglement of the conventional Rashba SOC from its novel radial counterpart, called here the radial Rashba SOC. Along with that, we propose a scheme for a direct estimation of the Rashba angle by exploring the magneto response symmetries when swapping an in-plane magnetic field. To complete the story, we analyze the magnetotransport and spin-relaxation signatures in the presence of an emergent Dresselhaus SOC and also provide some generic ramifications about possible scenarios of the radial superconducting diode effect.
Collapse
|
3
|
Yang H, Martín-García B, Kimák J, Schmoranzerová E, Dolan E, Chi Z, Gobbi M, Němec P, Hueso LE, Casanova F. Twist-angle-tunable spin texture in WSe 2/graphene van der Waals heterostructures. NATURE MATERIALS 2024; 23:1502-1508. [PMID: 39191981 DOI: 10.1038/s41563-024-01985-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 07/30/2024] [Indexed: 08/29/2024]
Abstract
Twist engineering has emerged as a powerful approach for modulating electronic properties in van der Waals heterostructures. While theoretical works have predicted the modulation of spin texture in graphene-based heterostructures by twist angle, experimental studies are lacking. Here, by performing spin precession experiments, we demonstrate tunability of the spin texture and associated spin-charge interconversion with twist angle in WSe2/graphene heterostructures. For specific twist angles, we detect a spin component radial with the electron's momentum, in addition to the standard orthogonal component. Our results show that the helicity of the spin texture can be reversed by twist angle, highlighting the critical role of the twist angle in the spin-orbit properties of WSe2/graphene heterostructures and paving the way for the development of spin-twistronic devices.
Collapse
Affiliation(s)
- Haozhe Yang
- CIC nanoGUNE BRTA, Donostia-San Sebastian, Spain.
- Fert Beijing Institute, MIIT Key Laboratory of Spintronics, School of Integrated Circuit Science and Engineering, Beihang University, Beijing, China.
| | - Beatriz Martín-García
- CIC nanoGUNE BRTA, Donostia-San Sebastian, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Jozef Kimák
- Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic
| | - Eva Schmoranzerová
- Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic
| | - Eoin Dolan
- CIC nanoGUNE BRTA, Donostia-San Sebastian, Spain
| | - Zhendong Chi
- CIC nanoGUNE BRTA, Donostia-San Sebastian, Spain
| | - Marco Gobbi
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
- Centro de Física de Materiales and Materials Physics Center, Donostia-San Sebastian, Spain
| | - Petr Němec
- Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic
| | - Luis E Hueso
- CIC nanoGUNE BRTA, Donostia-San Sebastian, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Fèlix Casanova
- CIC nanoGUNE BRTA, Donostia-San Sebastian, Spain.
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.
| |
Collapse
|
4
|
Masseroni M, Gull M, Panigrahi A, Jacobsen N, Fischer F, Tong C, Gerber JD, Niese M, Taniguchi T, Watanabe K, Levitov L, Ihn T, Ensslin K, Duprez H. Spin-orbit proximity in MoS 2/bilayer graphene heterostructures. Nat Commun 2024; 15:9251. [PMID: 39461982 PMCID: PMC11513027 DOI: 10.1038/s41467-024-53324-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 10/07/2024] [Indexed: 10/28/2024] Open
Abstract
Van der Waals heterostructures provide a versatile platform for tailoring electronic properties through the integration of two-dimensional materials. Among these combinations, the interaction between bilayer graphene and transition metal dichalcogenides (TMDs) stands out due to its potential for inducing spin-orbit coupling (SOC) in graphene. Future devices concepts require the understanding of the precise nature of SOC in TMD/bilayer graphene heterostructures and its influence on electronic transport phenomena. Here, we experimentally confirm the presence of two distinct types of SOC - Ising (ΔI = 1.55 meV) and Rashba (ΔR = 2.5 meV) - in bilayer graphene when interfaced with molybdenum disulfide. Furthermore, we reveal a non-monotonic trend in conductivity with respect to the electric displacement field at charge neutrality. This phenomenon is ascribed to the existence of single-particle gaps induced by the Ising SOC, which can be closed by a critical displacement field. Our findings also unveil sharp peaks in the magnetoconductivity around the critical displacement field, challenging existing theoretical models.
Collapse
Affiliation(s)
- Michele Masseroni
- Solid State Physics Laboratory, ETH Zürich, 8093, Zürich, Switzerland.
| | - Mario Gull
- Solid State Physics Laboratory, ETH Zürich, 8093, Zürich, Switzerland
| | - Archisman Panigrahi
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Nils Jacobsen
- 1st Physical Institute, Faculty of Physics, University of Göttingen, 37077, Göttingen, Germany
| | - Felix Fischer
- Solid State Physics Laboratory, ETH Zürich, 8093, Zürich, Switzerland
| | - Chuyao Tong
- Solid State Physics Laboratory, ETH Zürich, 8093, Zürich, Switzerland
| | - Jonas D Gerber
- Solid State Physics Laboratory, ETH Zürich, 8093, Zürich, Switzerland
| | - Markus Niese
- Solid State Physics Laboratory, ETH Zürich, 8093, Zürich, Switzerland
| | - Takashi Taniguchi
- Research Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, 305-0044, Japan
| | - Kenji Watanabe
- Research Center for Electronic and Optical Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, 305-0044, Japan
| | - Leonid Levitov
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Thomas Ihn
- Solid State Physics Laboratory, ETH Zürich, 8093, Zürich, Switzerland
| | - Klaus Ensslin
- Solid State Physics Laboratory, ETH Zürich, 8093, Zürich, Switzerland.
| | - Hadrien Duprez
- Solid State Physics Laboratory, ETH Zürich, 8093, Zürich, Switzerland
| |
Collapse
|
5
|
Wu R, Zhang H, Ma H, Zhao B, Li W, Chen Y, Liu J, Liang J, Qin Q, Qi W, Chen L, Li J, Li B, Duan X. Synthesis, Modulation, and Application of Two-Dimensional TMD Heterostructures. Chem Rev 2024; 124:10112-10191. [PMID: 39189449 DOI: 10.1021/acs.chemrev.4c00174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Two-dimensional (2D) transition metal dichalcogenide (TMD) heterostructures have attracted a lot of attention due to their rich material diversity and stack geometry, precise controllability of structure and properties, and potential practical applications. These heterostructures not only overcome the inherent limitations of individual materials but also enable the realization of new properties through appropriate combinations, establishing a platform to explore new physical and chemical properties at micro-nano-pico scales. In this review, we systematically summarize the latest research progress in the synthesis, modulation, and application of 2D TMD heterostructures. We first introduce the latest techniques for fabricating 2D TMD heterostructures, examining the rationale, mechanisms, advantages, and disadvantages of each strategy. Furthermore, we emphasize the importance of characteristic modulation in 2D TMD heterostructures and discuss some approaches to achieve novel functionalities. Then, we summarize the representative applications of 2D TMD heterostructures. Finally, we highlight the challenges and future perspectives in the synthesis and device fabrication of 2D TMD heterostructures and provide some feasible solutions.
Collapse
Affiliation(s)
- Ruixia Wu
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha 410082, China
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Hongmei Zhang
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Huifang Ma
- Innovation Center for Gallium Oxide Semiconductor (IC-GAO), National and Local Joint Engineering Laboratory for RF Integration and Micro-Assembly Technologies, College of Integrated Circuit Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
- School of Flexible Electronics (Future Technologies) Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| | - Bei Zhao
- School of Physics and Key Laboratory of Quantum Materials and Devices of Ministry of Education, Southeast University, Nanjing 211189, China
| | - Wei Li
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Yang Chen
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Jianteng Liu
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Jingyi Liang
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Qiuyin Qin
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Weixu Qi
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Liang Chen
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Jia Li
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Bo Li
- Changsha Semiconductor Technology and Application Innovation Research Institute, School of Physics and Electronics, College of Semiconductors (College of Integrated Circuits), Hunan University, Changsha 410082, China
| | - Xidong Duan
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| |
Collapse
|
6
|
Zhang RW, Cui C, Li R, Duan J, Li L, Yu ZM, Yao Y. Predictable Gate-Field Control of Spin in Altermagnets with Spin-Layer Coupling. PHYSICAL REVIEW LETTERS 2024; 133:056401. [PMID: 39159119 DOI: 10.1103/physrevlett.133.056401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 01/22/2024] [Accepted: 06/06/2024] [Indexed: 08/21/2024]
Abstract
Spintronics, a technology harnessing electron spin for information transmission, offers a promising avenue to surpass the limitations of conventional electronic devices. While the spin directly interacts with the magnetic field, its control through the electric field is generally more practical, and has become a focal point in the field. Here, we propose a mechanism to realize static and almost uniform effective magnetic field by gate-electric field. Our method employs two-dimensional altermagnets with valley-mediated spin-layer coupling (SLC), in which electronic states display valley-contrasted spin and layer polarization. For the low-energy valley electrons, a uniform gate field is approximately identical to a uniform magnetic field, leading to predictable control of spin. Through symmetry analysis and ab initio calculations, we predict altermagnetic monolayer Ca(CoN)_{2} and its family materials as potential candidates hosting SLC. We show that an almost uniform magnetic field (B_{z}) indeed is generated by gate field (E_{z}) in Ca(CoN)_{2} with B_{z}∝E_{z} in a wide range, and B_{z} reaches as high as about 10^{3} T when E_{z}=0.2 eV/Å. Furthermore, owing to the clean band structure and SLC, one can achieve perfect and switchable spin and valley currents and significant tunneling magnetoresistance in Ca(CoN)_{2} solely using the gate field. Our work provides new opportunities to generate predictable control of spin and design spintronic devices that can be controlled by purely electric means.
Collapse
Affiliation(s)
| | - Chaoxi Cui
- Key Lab of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), Beijing Key Lab of Nanophotonics & Ultrafine Optoelectronic Systems, and School of Physics, Beijing Institute of Technology, Beijing 100081, China
| | - Runze Li
- Key Lab of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), Beijing Key Lab of Nanophotonics & Ultrafine Optoelectronic Systems, and School of Physics, Beijing Institute of Technology, Beijing 100081, China
| | - Jingyi Duan
- Key Lab of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), Beijing Key Lab of Nanophotonics & Ultrafine Optoelectronic Systems, and School of Physics, Beijing Institute of Technology, Beijing 100081, China
| | - Lei Li
- Key Lab of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), Beijing Key Lab of Nanophotonics & Ultrafine Optoelectronic Systems, and School of Physics, Beijing Institute of Technology, Beijing 100081, China
| | | | | |
Collapse
|
7
|
Liu S, Xu K, Li X, Li Q, Yang J. Obtaining giant Rashba-Dresselhaus spin splitting in two-dimensional chiral metal-organic frameworks. Chem Sci 2024; 15:6916-6923. [PMID: 38725518 PMCID: PMC11077538 DOI: 10.1039/d3sc06636c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 04/04/2024] [Indexed: 05/12/2024] Open
Abstract
Two-dimensional (2D) nonmagnetic semiconductors with large Rashba-Dresselhaus (R-D) spin splitting at valence or conduction bands are attractive for magnetic-field-free spintronic applications. However, so far, the number of 2D R-D inorganic semiconductors has been quite limited, and the factors that determine R-D spin splitting as well as rational design of giant spin splitting, remain unclear. For this purpose, by exploiting 2D chiral metal-organic frameworks (CMOFs) as a platform, we theoretically develop a three-step screening method to obtain a series of candidate 2D R-D semiconductors with valence band spin splitting up to 97.2 meV and corresponding R-D coupling constants up to 1.37 eV Å. Interestingly, the valence band spin texture is reversible by flipping the chirality of CMOFs. Furthermore, five keys for obtaining giant R-D spin splitting in 2D CMOFs are successfully identified: (i) chirality, (ii) large spin-orbit coupling, (iii) narrow band gap, (iv) valence and conduction bands having the same symmetry at the Γ point, and (v) strong ligand field.
Collapse
Affiliation(s)
- Shanshan Liu
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China Hefei Anhui 230026 China
| | - Ke Xu
- Hubei Key Laboratory of Low Dimensional Optoelectronic Materials and Devices, School of Physics and Electronic Engineering, Hubei University of Arts and Science Xiangyang 441053 China
| | - Xingxing Li
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China Hefei Anhui 230026 China
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China Hefei Anhui 230026 China
| | - Qunxiang Li
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China Hefei Anhui 230026 China
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China Hefei Anhui 230026 China
| | - Jinlong Yang
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China Hefei Anhui 230026 China
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China Hefei Anhui 230026 China
| |
Collapse
|
8
|
Zhumagulov Y, Kochan D, Fabian J. Emergent Correlated Phases in Rhombohedral Trilayer Graphene Induced by Proximity Spin-Orbit and Exchange Coupling. PHYSICAL REVIEW LETTERS 2024; 132:186401. [PMID: 38759183 DOI: 10.1103/physrevlett.132.186401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 11/28/2023] [Accepted: 03/22/2024] [Indexed: 05/19/2024]
Abstract
The impact of proximity-induced spin-orbit and exchange coupling on the correlated phase diagram of rhombohedral trilayer graphene (RTG) is investigated theoretically. By employing ab initio-fitted effective models of RTG encapsulated by transition metal dichalcogenides (spin-orbit proximity effect) and ferromagnetic Cr_{2}Ge_{2}Te_{6} (exchange proximity effect), we incorporate the Coulomb interactions within the random-phase approximation to explore potential correlated phases at different displacement fields and doping. We find a rich spectrum of spin-valley resolved Stoner and intervalley coherence instabilities induced by the spin-orbit proximity effects, such as the emergence of a spin-valley-coherent phase due to the presence of valley-Zeeman coupling. Similarly, proximity exchange removes the phase degeneracies by biasing the spin direction, enabling a magnetocorrelation effect-strong sensitivity of the correlated phases to the relative magnetization orientations (parallel or antiparallel) of the encapsulating ferromagnetic layers.
Collapse
Affiliation(s)
- Yaroslav Zhumagulov
- Institute for Theoretical Physics, University of Regensburg, 93040 Regensburg, Germany
| | - Denis Kochan
- Institute for Theoretical Physics, University of Regensburg, 93040 Regensburg, Germany
- Institute of Physics, Slovak Academy of Sciences, 84511 Bratislava, Slovakia
- Center for Quantum Frontiers of Research and Technology (QFort), National Cheng Kung University, Tainan 70101, Taiwan
| | - Jaroslav Fabian
- Institute for Theoretical Physics, University of Regensburg, 93040 Regensburg, Germany
| |
Collapse
|
9
|
Ortiz Jimenez V, Pham YTH, Zhou D, Liu M, Nugera FA, Kalappattil V, Eggers T, Hoang K, Duong DL, Terrones M, Rodriguez Gutiérrez H, Phan M. Transition Metal Dichalcogenides: Making Atomic-Level Magnetism Tunable with Light at Room Temperature. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2304792. [PMID: 38072638 PMCID: PMC10870067 DOI: 10.1002/advs.202304792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 11/04/2023] [Indexed: 02/17/2024]
Abstract
The capacity to manipulate magnetization in 2D dilute magnetic semiconductors (2D-DMSs) using light, specifically in magnetically doped transition metal dichalcogenide (TMD) monolayers (M-doped TX2 , where M = V, Fe, and Cr; T = W, Mo; X = S, Se, and Te), may lead to innovative applications in spintronics, spin-caloritronics, valleytronics, and quantum computation. This Perspective paper explores the mediation of magnetization by light under ambient conditions in 2D-TMD DMSs and heterostructures. By combining magneto-LC resonance (MLCR) experiments with density functional theory (DFT) calculations, we show that the magnetization can be enhanced using light in V-doped TMD monolayers (e.g., V-WS2 , V-WSe2 ). This phenomenon is attributed to excess holes in the conduction and valence bands, and carriers trapped in magnetic doping states, mediating the magnetization of the semiconducting layer. In 2D-TMD heterostructures (VSe2 /WS2 , VSe2 /MoS2 ), the significance of proximity, charge-transfer, and confinement effects in amplifying light-mediated magnetism is demonstrated. We attributed this to photon absorption at the TMD layer that generates electron-hole pairs mediating the magnetization of the heterostructure. These findings will encourage further research in the field of 2D magnetism and establish a novel design of 2D-TMDs and heterostructures with optically tunable magnetic functionalities, paving the way for next-generation magneto-optic nanodevices.
Collapse
Affiliation(s)
- Valery Ortiz Jimenez
- Department of PhysicsUniversity of South FloridaTampaFL33620USA
- Nanoscale Device Characterization DivisionNational Institute of Standards and TechnologyGaithersburgMD20899USA
| | | | - Da Zhou
- Department of PhysicsThe Pennsylvania State UniversityUniversity ParkPA16802USA
| | - Mingzu Liu
- Department of PhysicsThe Pennsylvania State UniversityUniversity ParkPA16802USA
| | | | | | - Tatiana Eggers
- Department of PhysicsUniversity of South FloridaTampaFL33620USA
| | - Khang Hoang
- Center for Computationally Assisted Science and Technology and Department of PhysicsNorth Dakota State UniversityFargoND58108USA
| | - Dinh Loc Duong
- Department of PhysicsMontana State UniversityBozemanMT59717USA
| | - Mauricio Terrones
- Department of PhysicsThe Pennsylvania State UniversityUniversity ParkPA16802USA
| | | | - Manh‐Huong Phan
- Department of PhysicsUniversity of South FloridaTampaFL33620USA
| |
Collapse
|
10
|
Szary MJ. Rashba effect: a chemical physicist's approach. Phys Chem Chem Phys 2023; 25:30099-30115. [PMID: 37920992 DOI: 10.1039/d3cp04242a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
Understanding the mechanisms underlying the emergence of giant spin splitting (GSS) is fundamental in the pursuit of more robust strategies for designing materials with desired spin splitting. This drive for material innovation continues to captivate a burgeoning community of early-career researchers with backgrounds in chemistry and material science. However, new to the field, they are often equipped only with the insight provided by the original Bychkov-Rashba model. Furthermore, daunted by the tight-binding perspective on the non-vanishing orbital angular momentum (OAM), they struggle to accurately account for the atomic spin-orbit interaction (SOI) in the formation of GSS. To address these challenges and equip young chemists with better-suited tools, this review aims to provide a more intuitive perspective on atomic interactions (orbital hybridization), structure symmetry, and atomic SOI in the formation of GSS. In pursuit of this goal, the review explores the Bychkov-Rashba model, its advantages, and limitations. Subsequently, it introduces the orbital framework, wherein GSS is modulated by atomic SOI and the interplay of OAM with the surface electrostatic field. Given the explicit dependence of both these factors on OAM, the review examines why OAM is typically quenched in crystal structures and how chemical bonds involving different orbital types can lead to its non-zero values in the presence of inversion symmetry breaking. Finally, with this chemistry-focused perspective, the review examines the rise of GSS in selected examples.
Collapse
Affiliation(s)
- Maciej J Szary
- Institute of Physics, Poznan University of Technology, ul. Piotrowo 3, 61-138 Poznan, Poland.
| |
Collapse
|
11
|
Kedves M, Szentpéteri B, Márffy A, Tóvári E, Papadopoulos N, Rout PK, Watanabe K, Taniguchi T, Goswami S, Csonka S, Makk P. Stabilizing the Inverted Phase of a WSe 2/BLG/WSe 2 Heterostructure via Hydrostatic Pressure. NANO LETTERS 2023; 23:9508-9514. [PMID: 37844301 PMCID: PMC10603803 DOI: 10.1021/acs.nanolett.3c03029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/06/2023] [Indexed: 10/18/2023]
Abstract
Bilayer graphene (BLG) was recently shown to host a band-inverted phase with unconventional topology emerging from the Ising-type spin-orbit interaction (SOI) induced by the proximity of transition metal dichalcogenides with large intrinsic SOI. Here, we report the stabilization of this band-inverted phase in BLG symmetrically encapsulated in tungsten diselenide (WSe2) via hydrostatic pressure. Our observations from low temperature transport measurements are consistent with a single particle model with induced Ising SOI of opposite sign on the two graphene layers. To confirm the strengthening of the inverted phase, we present thermal activation measurements and show that the SOI-induced band gap increases by more than 100% due to the applied pressure. Finally, the investigation of Landau level spectra reveals the dependence of the level-crossings on the applied magnetic field, which further confirms the enhancement of SOI with pressure.
Collapse
Affiliation(s)
- Máté Kedves
- Department
of Physics, Institute of Physics, Budapest
University of Technology and Economics, Műegyetem rkp. 3, Budapest H-1111, Hungary
- MTA-BME
Correlated van der Waals Structures Momentum Research Group, Műegyetem rkp. 3, Budapest H-1111, Hungary
| | - Bálint Szentpéteri
- Department
of Physics, Institute of Physics, Budapest
University of Technology and Economics, Műegyetem rkp. 3, Budapest H-1111, Hungary
- MTA-BME
Correlated van der Waals Structures Momentum Research Group, Műegyetem rkp. 3, Budapest H-1111, Hungary
| | - Albin Márffy
- MTA-BME
Correlated van der Waals Structures Momentum Research Group, Műegyetem rkp. 3, Budapest H-1111, Hungary
- MTA-BME
Superconducting Nanoelectronics Momentum Research Group, Műegyetem rkp. 3, H-1111 Budapest, Hungary
| | - Endre Tóvári
- Department
of Physics, Institute of Physics, Budapest
University of Technology and Economics, Műegyetem rkp. 3, Budapest H-1111, Hungary
- MTA-BME
Correlated van der Waals Structures Momentum Research Group, Műegyetem rkp. 3, Budapest H-1111, Hungary
| | - Nikos Papadopoulos
- QuTech
and Kavli Institute of Nanoscience, Delft
University of Technology, Delft 2600 GA, The Netherlands
| | - Prasanna K. Rout
- QuTech
and Kavli Institute of Nanoscience, Delft
University of Technology, Delft 2600 GA, The Netherlands
| | - Kenji Watanabe
- Research
Center for Functional Materials, National
Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Takashi Taniguchi
- International
Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Srijit Goswami
- QuTech
and Kavli Institute of Nanoscience, Delft
University of Technology, Delft 2600 GA, The Netherlands
| | - Szabolcs Csonka
- Department
of Physics, Institute of Physics, Budapest
University of Technology and Economics, Műegyetem rkp. 3, Budapest H-1111, Hungary
- MTA-BME
Superconducting Nanoelectronics Momentum Research Group, Műegyetem rkp. 3, H-1111 Budapest, Hungary
| | - Péter Makk
- Department
of Physics, Institute of Physics, Budapest
University of Technology and Economics, Műegyetem rkp. 3, Budapest H-1111, Hungary
- MTA-BME
Correlated van der Waals Structures Momentum Research Group, Műegyetem rkp. 3, Budapest H-1111, Hungary
| |
Collapse
|
12
|
Rao Q, Kang WH, Xue H, Ye Z, Feng X, Watanabe K, Taniguchi T, Wang N, Liu MH, Ki DK. Ballistic transport spectroscopy of spin-orbit-coupled bands in monolayer graphene on WSe 2. Nat Commun 2023; 14:6124. [PMID: 37777513 PMCID: PMC10542375 DOI: 10.1038/s41467-023-41826-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 09/20/2023] [Indexed: 10/02/2023] Open
Abstract
Van der Waals interactions with transition metal dichalcogenides were shown to induce strong spin-orbit coupling (SOC) in graphene, offering great promises to combine large experimental flexibility of graphene with unique tuning capabilities of the SOC. Here, we probe SOC-driven band splitting and electron dynamics in graphene on WSe2 by measuring ballistic transverse magnetic focusing. We found a clear splitting in the first focusing peak whose evolution in charge density and magnetic field is well reproduced by calculations using the SOC strength of ~ 13 meV, and no splitting in the second peak that indicates stronger Rashba SOC. Possible suppression of electron-electron scatterings was found in temperature dependence measurement. Further, we found that Shubnikov-de Haas oscillations exhibit a weaker band splitting, suggesting that it probes different electron dynamics, calling for a new theory. Our study demonstrates an interesting possibility to exploit ballistic electron motion pronounced in graphene for emerging spin-orbitronics.
Collapse
Affiliation(s)
- Qing Rao
- Department of Physics and HK Institute of Quantum Science & Technology, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Wun-Hao Kang
- Department of Physics and Center for Quantum Frontiers of Research and Technology (QFort), National Cheng Kung University, Tainan, 70101, Taiwan
| | - Hongxia Xue
- Department of Physics and HK Institute of Quantum Science & Technology, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Ziqing Ye
- Department of Physics and Center for Quantum Materials, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, 999077, Hong Kong, China
| | - Xuemeng Feng
- Department of Physics and Center for Quantum Materials, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, 999077, Hong Kong, China
| | - Kenji Watanabe
- Research Center for Electronic and Optical Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, 305-0044, Japan
| | - Takashi Taniguchi
- Research Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, 305-0044, Japan
| | - Ning Wang
- Department of Physics and Center for Quantum Materials, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, 999077, Hong Kong, China
| | - Ming-Hao Liu
- Department of Physics and Center for Quantum Frontiers of Research and Technology (QFort), National Cheng Kung University, Tainan, 70101, Taiwan.
| | - Dong-Keun Ki
- Department of Physics and HK Institute of Quantum Science & Technology, The University of Hong Kong, Pokfulam Road, Hong Kong, China.
| |
Collapse
|
13
|
Anderson CR, Natera-Cordero N, Guarochico-Moreira VH, Grigorieva IV, Vera-Marun IJ. Exploring room temperature spin transport under band gap opening in bilayer graphene. Sci Rep 2023; 13:10343. [PMID: 37365221 PMCID: PMC10293296 DOI: 10.1038/s41598-023-36800-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 06/12/2023] [Indexed: 06/28/2023] Open
Abstract
We study the room-temperature electrical control of charge and spin transport in high-quality bilayer graphene, fully encapsulated with hBN and contacted via 1D spin injectors. We show that spin transport in this device architecture is measurable at room temperature and its spin transport parameters can be modulated by opening of a band gap via a perpendicular displacement field. The modulation of the spin current is dominated by the control of the spin relaxation time with displacement field, demonstrating the basic operation of a spin-based field-effect transistor.
Collapse
Affiliation(s)
| | - Noel Natera-Cordero
- Department of Physics and Astronomy, University of Manchester, Manchester, M13 9PL, UK
- Consejo Nacional de Ciencia y Tecnología (CONACyT), Mexico City, Mexico
| | - Victor H Guarochico-Moreira
- Department of Physics and Astronomy, University of Manchester, Manchester, M13 9PL, UK
- Facultad de Ciencias Naturales y Matemáticas, Escuela Superior Politécnica del Litoral, ESPOL, Campus Gustavo Galindo, Km. 30.5 Vía Perimetral, P.O. Box 09-01-5863, 090902, Guayaquil, Ecuador
- Center of Nanotechnology Research and Development (CIDNA), Escuela Superior Politécnica del Litoral, ESPOL, Campus Gustavo Galindo Km 30.5 Vía Perimetral, Guayaquil, Ecuador
| | - Irina V Grigorieva
- Department of Physics and Astronomy, University of Manchester, Manchester, M13 9PL, UK
- National Graphene Institute, University of Manchester, Manchester, M13 9PL, UK
| | - Ivan J Vera-Marun
- Department of Physics and Astronomy, University of Manchester, Manchester, M13 9PL, UK
- National Graphene Institute, University of Manchester, Manchester, M13 9PL, UK
| |
Collapse
|
14
|
Ghising P, Biswas C, Lee YH. Graphene Spin Valves for Spin Logic Devices. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2209137. [PMID: 36618004 DOI: 10.1002/adma.202209137] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/23/2022] [Indexed: 06/09/2023]
Abstract
An alternative to charge-based electronics identifies the spin degree of freedom for information communication and processing. The long spin-diffusion length in graphene at room temperature demonstrates its ability for highly scalable spintronics. The development of the graphene spin valve (SV) has inspired spin devices in graphene including spin field-effect transistors and spin majority logic gates. A comprehensive picture of spin transport in graphene SVs is required for further development of spin logic. This review examines the advances in graphene SVs and their role in the development of spin logic devices. Different transport and scattering mechanisms in charge and spin are discussed. Furthermore, the on/off switching energy between graphene SVs and charge-based FETs is compared to highlight their prospects for low-power devices. The challenges and perspectives that need to be addressed for the future development of spin logic devices are then outlined.
Collapse
Affiliation(s)
- Pramod Ghising
- Center for Integrated Nanostructure Physics, Institute for Basic Science (IBS), Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Chandan Biswas
- Center for Integrated Nanostructure Physics, Institute for Basic Science (IBS), Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Young Hee Lee
- Center for Integrated Nanostructure Physics, Institute for Basic Science (IBS), Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
- Department of Energy Science, Department of Physics, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| |
Collapse
|
15
|
Meng Y, Jiang L, Zheng Y. Spin filters based on two-dimensional materials Co 2Si and Cu 2Si. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2023; 35:195001. [PMID: 36863029 DOI: 10.1088/1361-648x/acc0c0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 03/02/2023] [Indexed: 02/17/2024]
Abstract
Spintronic devices have several advantages compared with conventional electronic devices, including non-volatility, faster data processing speed, higher integration densities, less electric power consumption and so on. However, we still face challenges for efficiently generating and injecting pure spin polarized current. In this work, we utilize two kinds of two-dimensional materials Co2Si and Cu2Si with both lattice match and band match to construct devices and then research their spin filter efficiency. The spin filter efficiency can be improved effectively either by an appropriate gate voltage at Co2Si region, or by series connection. In both cases the filter efficiencies are much larger than two-dimensional prepared Fe3GeTe2spin valve and ferromagnetic metallic chairlike O-graphene-H. Also at a quite small bias, we obtain a comparable spin polarized current as those obtained in Fe3GeTe2spin valve and O-graphene-H obtained at a much larger bias.
Collapse
Affiliation(s)
- Yexuan Meng
- Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun 130012, People's Republic of China
| | - Liwei Jiang
- Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun 130012, People's Republic of China
| | - Yisong Zheng
- Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun 130012, People's Republic of China
| |
Collapse
|
16
|
Bisswanger T, Winter Z, Schmidt A, Volmer F, Watanabe K, Taniguchi T, Stampfer C, Beschoten B. CVD Bilayer Graphene Spin Valves with 26 μm Spin Diffusion Length at Room Temperature. NANO LETTERS 2022; 22:4949-4955. [PMID: 35649273 DOI: 10.1021/acs.nanolett.2c01119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
We present inverted spin-valve devices fabricated from chemical vapor deposition (CVD)-grown bilayer graphene (BLG) that show more than a doubling in device performance at room temperature compared to state-of-the-art bilayer graphene spin valves. This is made possible by a polydimethylsiloxane droplet-assisted full-dry transfer technique that compensates for previous process drawbacks in device fabrication. Gate dependent Hanle measurements reveal spin lifetimes of up to 5.8 ns and a spin diffusion length of up to 26 μm at room temperature combined with a charge carrier mobility of about 24 000 cm2(V s)-1 for the best device. Our results demonstrate that CVD-grown BLG shows equally good room temperature spin transport properties as both CVD-grown single-layer graphene and even exfoliated single-layer graphene.
Collapse
Affiliation(s)
- Timo Bisswanger
- 2nd Institute of Physics and JARA-FIT, RWTH Aachen University, 52074 Aachen, Germany
| | - Zachary Winter
- 2nd Institute of Physics and JARA-FIT, RWTH Aachen University, 52074 Aachen, Germany
| | - Anne Schmidt
- 2nd Institute of Physics and JARA-FIT, RWTH Aachen University, 52074 Aachen, Germany
| | - Frank Volmer
- 2nd Institute of Physics and JARA-FIT, RWTH Aachen University, 52074 Aachen, Germany
| | - Kenji Watanabe
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Takashi Taniguchi
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Christoph Stampfer
- 2nd Institute of Physics and JARA-FIT, RWTH Aachen University, 52074 Aachen, Germany
- Peter Grünberg Institute (PGI-9) Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Bernd Beschoten
- 2nd Institute of Physics and JARA-FIT, RWTH Aachen University, 52074 Aachen, Germany
| |
Collapse
|
17
|
Pal A, Zhang S, Chavan T, Agashiwala K, Yeh CH, Cao W, Banerjee K. Quantum-Engineered Devices Based on 2D Materials for Next-Generation Information Processing and Storage. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022:e2109894. [PMID: 35468661 DOI: 10.1002/adma.202109894] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 04/11/2022] [Indexed: 06/14/2023]
Abstract
As an approximation to the quantum state of solids, the band theory, developed nearly seven decades ago, fostered the advance of modern integrated solid-state electronics, one of the most successful technologies in the history of human civilization. Nonetheless, their rapidly growing energy consumption and accompanied environmental issues call for more energy-efficient electronics and optoelectronics, which necessitate the exploration of more advanced quantum mechanical effects, such as band-to-band tunneling, spin-orbit coupling, spin-valley locking, and quantum entanglement. The emerging 2D layered materials, featured by their exotic electrical, magnetic, optical, and structural properties, provide a revolutionary low-dimensional and manufacture-friendly platform (and many more opportunities) to implement these quantum-engineered devices, compared to the traditional electronic materials system. Here, the progress in quantum-engineered devices is reviewed and the opportunities/challenges of exploiting 2D materials are analyzed to highlight their unique quantum properties that enable novel energy-efficient devices, and useful insights to quantum device engineers and 2D-material scientists are provided.
Collapse
Affiliation(s)
- Arnab Pal
- ECE Department, University of California, Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Shuo Zhang
- ECE Department, University of California, Santa Barbara, Santa Barbara, CA, 93106, USA
- College of ISEE, Zhejiang University, Hangzhou, 310027, China
| | - Tanmay Chavan
- ECE Department, University of California, Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Kunjesh Agashiwala
- ECE Department, University of California, Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Chao-Hui Yeh
- ECE Department, University of California, Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Wei Cao
- ECE Department, University of California, Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Kaustav Banerjee
- ECE Department, University of California, Santa Barbara, Santa Barbara, CA, 93106, USA
| |
Collapse
|