1
|
Beisteiner R, Matt E. Ultrasound neuromodulation - How deep can we stimulate? Brain Stimul 2025; 18:15-18. [PMID: 39674496 DOI: 10.1016/j.brs.2024.12.1189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/10/2024] [Accepted: 12/11/2024] [Indexed: 12/16/2024] Open
Affiliation(s)
- Roland Beisteiner
- Functional Brain Diagnostics and Therapy, Department of Neurology, Medical University of Vienna, Austria.
| | - Eva Matt
- Functional Brain Diagnostics and Therapy, Department of Neurology, Medical University of Vienna, Austria
| |
Collapse
|
2
|
Liu C, Dong JQ, Yu LC, Huang L. Continuum percolation of two-dimensional adaptive dynamics systems. Phys Rev E 2024; 110:024111. [PMID: 39295008 DOI: 10.1103/physreve.110.024111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 07/17/2024] [Indexed: 09/21/2024]
Abstract
The percolation phase transition of a continuum adaptive neuron system with homeostasis is investigated. In order to maintain their average activity at a particular level, each neuron (represented by a disk) varies its connection radius until the sum of overlapping areas with neighboring neurons (representing the overall connection strength in the network) has reached a fixed target area for each neuron. Tuning the two key parameters in the model, i.e., the density defined as the number of neurons (disks) per unit area and the sum of the overlapping area of each disk with its adjacent disks, can drive the system into the critical percolating state. These two parameters are inversely proportional to each other at the critical state, and the critical filling factors are fixed about 0.7157, which is much less than the case of the continuum percolation with uniform disks. It is also confirmed that the critical exponents in this model are the same as the two-dimensional standard lattice percolation. Although the critical state is relatively more sensitive and exhibits long-range spatial correlation, local fluctuations do not propagate in a long-range manner through the system by the adaptive dynamics, which renders the system overall robust against perturbations.
Collapse
Affiliation(s)
- Chang Liu
- Lanzhou Center for Theoretical Physics, Key Laboratory of Quantum Theory and Applications of MoE and Key Laboratory of Theoretical Physics of Gansu Province, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Jia-Qi Dong
- Lanzhou Center for Theoretical Physics, Key Laboratory of Quantum Theory and Applications of MoE and Key Laboratory of Theoretical Physics of Gansu Province, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Lian-Chun Yu
- Lanzhou Center for Theoretical Physics, Key Laboratory of Quantum Theory and Applications of MoE and Key Laboratory of Theoretical Physics of Gansu Province, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Liang Huang
- Lanzhou Center for Theoretical Physics, Key Laboratory of Quantum Theory and Applications of MoE and Key Laboratory of Theoretical Physics of Gansu Province, Lanzhou University, Lanzhou, Gansu 730000, China
| |
Collapse
|
3
|
Lecoq PE, Dupuis C, Mousset X, Benoit-Gonnin X, Peyrin JM, Aider JL. Influence of microgravity on spontaneous calcium activity of primary hippocampal neurons grown in microfluidic chips. NPJ Microgravity 2024; 10:15. [PMID: 38321051 PMCID: PMC10847089 DOI: 10.1038/s41526-024-00355-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 01/10/2024] [Indexed: 02/08/2024] Open
Abstract
The influence of variations of gravity, either hypergravity or microgravity, on the brain of astronauts is a major concern for long journeys in space, to the Moon or to Mars, or simply long-duration missions on the ISS (International Space Station). Monitoring brain activity, before and after ISS missions already demonstrated important and long term effects on the brains of astronauts. In this study, we focus on the influence of gravity variations at the cellular level on primary hippocampal neurons. A dedicated setup has been designed and built to perform live calcium imaging during parabolic flights. During a CNES (Centre National d'Etudes Spatiales) parabolic flight campaign, we were able to observe and monitor the calcium activity of 2D networks of neurons inside microfluidic devices during gravity changes over different parabolas. Our preliminary results clearly indicate a modification of the calcium activity associated to variations of gravity.
Collapse
Affiliation(s)
- Pierre-Ewen Lecoq
- PMMH, ESPCI Paris - PSL, Paris, 75005, France.
- Neurosciences Paris Seine IBPS, UMR8246, Inserm U1130, Sorbonne University, 4 Place Jussieu, Paris, 75005, France.
| | - Chloé Dupuis
- PMMH, ESPCI Paris - PSL, Paris, 75005, France
- Neurosciences Paris Seine IBPS, UMR8246, Inserm U1130, Sorbonne University, 4 Place Jussieu, Paris, 75005, France
| | - Xavier Mousset
- PMMH, ESPCI Paris - PSL, Paris, 75005, France
- Neurosciences Paris Seine IBPS, UMR8246, Inserm U1130, Sorbonne University, 4 Place Jussieu, Paris, 75005, France
| | | | - Jean-Michel Peyrin
- Neurosciences Paris Seine IBPS, UMR8246, Inserm U1130, Sorbonne University, 4 Place Jussieu, Paris, 75005, France.
| | | |
Collapse
|
4
|
Rodgers N, Tiňo P, Johnson S. Strong connectivity in real directed networks. Proc Natl Acad Sci U S A 2023; 120:e2215752120. [PMID: 36927153 PMCID: PMC10041124 DOI: 10.1073/pnas.2215752120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 02/14/2023] [Indexed: 03/17/2023] Open
Abstract
In many real, directed networks, the strongly connected component of nodes which are mutually reachable is very small. This does not fit with current theory, based on random graphs, according to which strong connectivity depends on mean degree and degree-degree correlations. And it has important implications for other properties of real networks and the dynamical behavior of many complex systems. We find that strong connectivity depends crucially on the extent to which the network has an overall direction or hierarchical ordering-a property measured by trophic coherence. Using percolation theory, we find the critical point separating weakly and strongly connected regimes and confirm our results on many real-world networks, including ecological, neural, trade, and social networks. We show that the connectivity structure can be disrupted with minimal effort by a targeted attack on edges which run counter to the overall direction. This means that many dynamical processes on networks can depend significantly on a small fraction of edges.
Collapse
Affiliation(s)
- Niall Rodgers
- School of Mathematics, University of Birmingham, BirminghamB15 2TT, United Kingdom
- Topological Design Centre for Doctoral Training, University of Birmingham, BirminghamB15 2TT, United Kingdom
| | - Peter Tiňo
- School of Computer Science, University of Birmingham, BirminghamB15 2TT, United Kingdom
| | - Samuel Johnson
- School of Mathematics, University of Birmingham, BirminghamB15 2TT, United Kingdom
- The Alan Turing Institute, British Library, LondonNW1 2DB, United Kingdom
| |
Collapse
|
5
|
Neuronal Cultures: Exploring Biophysics, Complex Systems, and Medicine in a Dish. BIOPHYSICA 2023. [DOI: 10.3390/biophysica3010012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Neuronal cultures are one of the most important experimental models in modern interdisciplinary neuroscience, allowing to investigate in a control environment the emergence of complex behavior from an ensemble of interconnected neurons. Here, I review the research that we have conducted at the neurophysics laboratory at the University of Barcelona over the last 15 years, describing first the neuronal cultures that we prepare and the associated tools to acquire and analyze data, to next delve into the different research projects in which we actively participated to progress in the understanding of open questions, extend neuroscience research on new paradigms, and advance the treatment of neurological disorders. I finish the review by discussing the drawbacks and limitations of neuronal cultures, particularly in the context of brain-like models and biomedicine.
Collapse
|
6
|
Ayasreh S, Jurado I, López-León CF, Montalà-Flaquer M, Soriano J. Dynamic and Functional Alterations of Neuronal Networks In Vitro upon Physical Damage: A Proof of Concept. MICROMACHINES 2022; 13:2259. [PMID: 36557557 PMCID: PMC9782595 DOI: 10.3390/mi13122259] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/06/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
There is a growing technological interest in combining biological neuronal networks with electronic ones, specifically for biological computation, human-machine interfacing and robotic implants. A major challenge for the development of these technologies is the resilience of the biological networks to physical damage, for instance, when used in harsh environments. To tackle this question, here, we investigated the dynamic and functional alterations of rodent cortical networks grown in vitro that were physically damaged, either by sequentially removing groups of neurons that were central for information flow or by applying an incision that cut the network in half. In both cases, we observed a remarkable capacity of the neuronal cultures to cope with damage, maintaining their activity and even reestablishing lost communication pathways. We also observed-particularly for the cultures cut in half-that a reservoir of healthy neurons surrounding the damaged region could boost resilience by providing stimulation and a communication bridge across disconnected areas. Our results show the remarkable capacity of neuronal cultures to sustain and recover from damage, and may be inspirational for the development of future hybrid biological-electronic systems.
Collapse
Affiliation(s)
- Sàlem Ayasreh
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, E-08028 Barcelona, Spain
- Universitat de Barcelona Institute of Complex Systems (UBICS), E-08028 Barcelona, Spain
| | - Imanol Jurado
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, E-08028 Barcelona, Spain
- Universitat de Barcelona Institute of Complex Systems (UBICS), E-08028 Barcelona, Spain
| | - Clara F. López-León
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, E-08028 Barcelona, Spain
- Universitat de Barcelona Institute of Complex Systems (UBICS), E-08028 Barcelona, Spain
| | - Marc Montalà-Flaquer
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, E-08028 Barcelona, Spain
- Universitat de Barcelona Institute of Complex Systems (UBICS), E-08028 Barcelona, Spain
| | - Jordi Soriano
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, E-08028 Barcelona, Spain
- Universitat de Barcelona Institute of Complex Systems (UBICS), E-08028 Barcelona, Spain
| |
Collapse
|
7
|
Adegoke MA, Teter O, Meaney DF. Flexibility of in vitro cortical circuits influences resilience from microtrauma. Front Cell Neurosci 2022; 16:991740. [PMID: 36589287 PMCID: PMC9803265 DOI: 10.3389/fncel.2022.991740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
Background Small clusters comprising hundreds to thousands of neurons are an important level of brain architecture that correlates single neuronal properties to fulfill brain function, but the specific mechanisms through which this scaling occurs are not well understood. In this study, we developed an in vitro experimental platform of small neuronal circuits (islands) to probe the importance of structural properties for their development, physiology, and response to microtrauma. Methods Primary cortical neurons were plated on a substrate patterned to promote attachment in clusters of hundreds of cells (islands), transduced with GCaMP6f, allowed to mature until 10-13 days in vitro (DIV), and monitored with Ca2+ as a non-invasive proxy for electrical activity. We adjusted two structural factors-island size and cellular density-to evaluate their role in guiding spontaneous activity and network formation in neuronal islands. Results We found cellular density, but not island size, regulates of circuit activity and network function in this system. Low cellular density islands can achieve many states of activity, while high cellular density biases islands towards a limited regime characterized by low rates of activity and high synchronization, a property we summarized as "flexibility." The injury severity required for an island to lose activity in 50% of its population was significantly higher in low-density, high flexibility islands. Conclusion Together, these studies demonstrate flexible living cortical circuits are more resilient to microtrauma, providing the first evidence that initial circuit state may be a key factor to consider when evaluating the consequences of trauma to the cortex.
Collapse
Affiliation(s)
- Modupe A. Adegoke
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, United States
| | - Olivia Teter
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, United States
| | - David F. Meaney
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, United States,Department of Neurosurgery, Penn Center for Brain Injury and Repair, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States,*Correspondence: David F. Meaney,
| |
Collapse
|
8
|
Tian Y, Tan Z, Hou H, Li G, Cheng A, Qiu Y, Weng K, Chen C, Sun P. Theoretical foundations of studying criticality in the brain. Netw Neurosci 2022; 6:1148-1185. [PMID: 38800464 PMCID: PMC11117095 DOI: 10.1162/netn_a_00269] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 07/12/2022] [Indexed: 05/29/2024] Open
Abstract
Criticality is hypothesized as a physical mechanism underlying efficient transitions between cortical states and remarkable information-processing capacities in the brain. While considerable evidence generally supports this hypothesis, nonnegligible controversies persist regarding the ubiquity of criticality in neural dynamics and its role in information processing. Validity issues frequently arise during identifying potential brain criticality from empirical data. Moreover, the functional benefits implied by brain criticality are frequently misconceived or unduly generalized. These problems stem from the nontriviality and immaturity of the physical theories that analytically derive brain criticality and the statistic techniques that estimate brain criticality from empirical data. To help solve these problems, we present a systematic review and reformulate the foundations of studying brain criticality, that is, ordinary criticality (OC), quasi-criticality (qC), self-organized criticality (SOC), and self-organized quasi-criticality (SOqC), using the terminology of neuroscience. We offer accessible explanations of the physical theories and statistical techniques of brain criticality, providing step-by-step derivations to characterize neural dynamics as a physical system with avalanches. We summarize error-prone details and existing limitations in brain criticality analysis and suggest possible solutions. Moreover, we present a forward-looking perspective on how optimizing the foundations of studying brain criticality can deepen our understanding of various neuroscience questions.
Collapse
Affiliation(s)
- Yang Tian
- Department of Psychology & Tsinghua Laboratory of Brain and Intelligence, Tsinghua University, Beijing, China
- Laboratory of Advanced Computing and Storage, Central Research Institute, 2012 Laboratories, Huawei Technologies Co. Ltd., Beijing, China
| | - Zeren Tan
- Institute for Interdisciplinary Information Science, Tsinghua University, Beijing, China
| | - Hedong Hou
- UFR de Mathématiques, Université de Paris, Paris, France
| | - Guoqi Li
- Institute of Automation, Chinese Academy of Science, Beijing, China
- University of Chinese Academy of Science, Beijing, China
| | - Aohua Cheng
- Tsien Excellence in Engineering Program, School of Aerospace Engineering, Tsinghua University, Beijing, China
| | - Yike Qiu
- Tsien Excellence in Engineering Program, School of Aerospace Engineering, Tsinghua University, Beijing, China
| | - Kangyu Weng
- Tsien Excellence in Engineering Program, School of Aerospace Engineering, Tsinghua University, Beijing, China
| | - Chun Chen
- Department of Psychology & Tsinghua Laboratory of Brain and Intelligence, Tsinghua University, Beijing, China
| | - Pei Sun
- Department of Psychology & Tsinghua Laboratory of Brain and Intelligence, Tsinghua University, Beijing, China
| |
Collapse
|
9
|
Tian Y, Sun P. Percolation may explain efficiency, robustness, and economy of the brain. Netw Neurosci 2022; 6:765-790. [PMID: 36605416 PMCID: PMC9810365 DOI: 10.1162/netn_a_00246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 03/11/2022] [Indexed: 01/09/2023] Open
Abstract
The brain consists of billions of neurons connected by ultra-dense synapses, showing remarkable efficiency, robust flexibility, and economy in information processing. It is generally believed that these advantageous properties are rooted in brain connectivity; however, direct evidence remains absent owing to technical limitations or theoretical vacancy. This research explores the origins of these properties in the largest yet brain connectome of the fruit fly. We reveal that functional connectivity formation in the brain can be explained by a percolation process controlled by synaptic excitation-inhibition (E/I) balance. By increasing the E/I balance gradually, we discover the emergence of these properties as byproducts of percolation transition when the E/I balance arrives at 3:7. As the E/I balance keeps increase, an optimal E/I balance 1:1 is unveiled to ensure these three properties simultaneously, consistent with previous in vitro experimental predictions. Once the E/I balance reaches over 3:2, an intrinsic limitation of these properties determined by static (anatomical) brain connectivity can be observed. Our work demonstrates that percolation, a universal characterization of critical phenomena and phase transitions, may serve as a window toward understanding the emergence of various brain properties.
Collapse
Affiliation(s)
- Yang Tian
- Department of Psychology and Tsinghua Laboratory of Brain and Intelligence, Tsinghua University, Beijing, China,Laboratory of Advanced Computing and Storage, Central Research Institute, 2012 Laboratories, Huawei Technologies Co. Ltd., Beijing, China,* Corresponding Author: ;
| | - Pei Sun
- Department of Psychology and Tsinghua Laboratory of Brain and Intelligence, Tsinghua University, Beijing, China,* Corresponding Author: ;
| |
Collapse
|
10
|
Mechanistic insights into ultrasonic neurostimulation of disconnected neurons using single short pulses. Brain Stimul 2022; 15:769-779. [PMID: 35561960 DOI: 10.1016/j.brs.2022.05.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 04/27/2022] [Accepted: 05/03/2022] [Indexed: 02/06/2023] Open
Abstract
Ultrasonic neurostimulation is a potentially potent noninvasive therapy, whose mechanism has yet to be elucidated. We designed a system capable of applying ultrasound with minimal reflections to neuronal cultures. Synaptic transmission was pharmacologically controlled, eliminating network effects, enabling examination of single-cell processes. Short single pulses of low-intensity ultrasound were applied, and time-locked responses were examined using calcium imaging. Low-pressure (0.35MPa) ultrasound directly stimulated ∼20% of pharmacologically disconnected neurons, regardless of membrane poration. Stimulation was resistant to the blockade of several purinergic receptor and mechanosensitive ion channel types. Stimulation was blocked, however, by suppression of action potentials. Surprisingly, even extremely short (4μs) pulses were effective, stimulating ∼8% of the neurons. Lower-pressure pulses (0.35MPa) were less effective than higher-pressure ones (0.65MPa). Attrition effects dominated, with no indication of compromised viability. Our results detract from theories implicating cavitation, heating, non-transient membrane pores >1.5nm, pre-synaptic release, or gradual effects. They implicate a post-synaptic mechanism upstream of the action potential, and narrow down the list of possible targets involved.
Collapse
|
11
|
Rapisardi G, Kryven I, Arenas A. Percolation in networks with local homeostatic plasticity. Nat Commun 2022; 13:122. [PMID: 35013243 PMCID: PMC8748765 DOI: 10.1038/s41467-021-27736-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 11/30/2021] [Indexed: 12/03/2022] Open
Abstract
Percolation is a process that impairs network connectedness by deactivating links or nodes. This process features a phase transition that resembles paradigmatic critical transitions in epidemic spreading, biological networks, traffic and transportation systems. Some biological systems, such as networks of neural cells, actively respond to percolation-like damage, which enables these structures to maintain their function after degradation and aging. Here we study percolation in networks that actively respond to link damage by adopting a mechanism resembling synaptic scaling in neurons. We explain critical transitions in such active networks and show that these structures are more resilient to damage as they are able to maintain a stronger connectedness and ability to spread information. Moreover, we uncover the role of local rescaling strategies in biological networks and indicate a possibility of designing smart infrastructures with improved robustness to perturbations.
Collapse
Affiliation(s)
- Giacomo Rapisardi
- Departament d'Enginyeria Informàtica i Matemàtiques, Universitat Rovira i Virgili, E-43007, Tarragona, Spain
- Barcelona Supercomputing Center (BSC), Barcelona, Spain
| | - Ivan Kryven
- Mathematical Institute, Utrecht University, Budapestlaan 6, 3508 TA, Utrecht, The Netherlands
- Centre for Complex Systems Studies, 3584 CE, Utrecht, The Netherlands
| | - Alex Arenas
- Departament d'Enginyeria Informàtica i Matemàtiques, Universitat Rovira i Virgili, E-43007, Tarragona, Spain.
| |
Collapse
|
12
|
Weistuch C, Mujica-Parodi LR, Dill K. The Refractory Period Matters: Unifying Mechanisms of Macroscopic Brain Waves. Neural Comput 2021; 33:1145-1163. [PMID: 33617741 DOI: 10.1162/neco_a_01371] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 11/16/2020] [Indexed: 11/04/2022]
Abstract
The relationship between complex brain oscillations and the dynamics of individual neurons is poorly understood. Here we utilize maximum caliber, a dynamical inference principle, to build a minimal yet general model of the collective (mean field) dynamics of large populations of neurons. In agreement with previous experimental observations, we describe a simple, testable mechanism, involving only a single type of neuron, by which many of these complex oscillatory patterns may emerge. Our model predicts that the refractory period of neurons, which has often been neglected, is essential for these behaviors.
Collapse
Affiliation(s)
- Corey Weistuch
- Laufer Center for Physical and Quantitative Biology and Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY 11794, U.S.A.
| | - Lilianne R Mujica-Parodi
- Laufer Center for Physical and Quantitative Biology, Departments of Biomedical Engineering and of Physics and Astronomy, Program in Neuroscience, and Department of Chemistry, Stony Brook University, Stony Brook, NY 11794, U.S.A., and Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129, U.S.A.
| | - Ken Dill
- Laufer Center for Physical and Quantitative Biology, Department of Physics and Astronomy, and Department of Chemistry, Stony Brook University, Stony Brook, NY 11794, U.S.A.
| |
Collapse
|
13
|
Mott RE, von Reyn CR, Firestein BL, Meaney DF. Regional Neurodegeneration in vitro: The Protective Role of Neural Activity. Front Comput Neurosci 2021; 15:580107. [PMID: 33854425 PMCID: PMC8039287 DOI: 10.3389/fncom.2021.580107] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 02/11/2021] [Indexed: 12/20/2022] Open
Abstract
Traumatic brain injury is a devastating public health problem, the eighth leading cause of death across the world. To improve our understanding of how injury at the cellular scale affects neural circuit function, we developed a protocol to precisely injure individual neurons within an in vitro neural network. We used high speed calcium imaging to estimate alterations in neural activity and connectivity that occur followed targeted microtrauma. Our studies show that mechanically injured neurons inactivate following microtrauma and eventually re-integrate into the network. Single neuron re-integration is dependent on its activity prior to injury and initial connections in the network: more active and integrated neurons are more resistant to microtrauma and more likely to re-integrate into the network. Micromechanical injury leads to neuronal death 6 h post-injury in a subset of both injured and uninjured neurons. Interestingly, neural activity and network participation after injury were associated with survival in linear discriminate analysis (77.3% correct prediction, Wilks' Lambda = 0.838). Based on this observation, we modulated neuronal activity to rescue neurons after microtrauma. Inhibition of neuronal activity provided much greater survivability than did activation of neurons (ANOVA, p < 0.01 with post-hoc Tukey HSD, p < 0.01). Rescue of neurons by blocking activity in the post-acute period is partially mediated by mitochondrial energetics, as we observed silencing neurons after micromechanical injury led to a significant reduction in mitochondrial calcium accumulation. Overall, the present study provides deeper insight into the propagation of injury within networks, demonstrating that together the initial activity, network structure, and post-injury activity levels contribute to the progressive changes in a neural circuit after mechanical trauma.
Collapse
Affiliation(s)
| | - Catherine R von Reyn
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, United States.,Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Bonnie L Firestein
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ, United States
| | - David F Meaney
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, United States.,Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
14
|
Pizzi A, Nunnenkamp A, Knolle J. Bistability and time crystals in long-ranged directed percolation. Nat Commun 2021; 12:1061. [PMID: 33594069 PMCID: PMC7886908 DOI: 10.1038/s41467-021-21259-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 01/19/2021] [Indexed: 11/09/2022] Open
Abstract
Stochastic processes govern the time evolution of a huge variety of realistic systems throughout the sciences. A minimal description of noisy many-particle systems within a Markovian picture and with a notion of spatial dimension is given by probabilistic cellular automata, which typically feature time-independent and short-ranged update rules. Here, we propose a simple cellular automaton with power-law interactions that gives rise to a bistable phase of long-ranged directed percolation whose long-time behaviour is not only dictated by the system dynamics, but also by the initial conditions. In the presence of a periodic modulation of the update rules, we find that the system responds with a period larger than that of the modulation for an exponentially (in system size) long time. This breaking of discrete time translation symmetry of the underlying dynamics is enabled by a self-correcting mechanism of the long-ranged interactions which compensates noise-induced imperfections. Our work thus provides a firm example of a classical discrete time crystal phase of matter and paves the way for the study of novel non-equilibrium phases in the unexplored field of driven probabilistic cellular automata.
Collapse
Affiliation(s)
- Andrea Pizzi
- Cavendish Laboratory, University of Cambridge, Cambridge, UK
| | - Andreas Nunnenkamp
- School of Physics and Astronomy and Centre for the Mathematics and Theoretical Physics of Quantum Non-Equilibrium Systems, University of Nottingham, Nottingham, UK
| | - Johannes Knolle
- Department of Physics, Technische Universität München, Garching, Germany.
- Munich Center for Quantum Science and Technology (MCQST), Munich, Germany.
- Blackett Laboratory, Imperial College London, London, UK.
| |
Collapse
|
15
|
Nemzer LR, Cravens GD, Worth RM, Motta F, Placzek A, Castro V, Lou JQ. Critical and Ictal Phases in Simulated EEG Signals on a Small-World Network. Front Comput Neurosci 2021; 14:583350. [PMID: 33488373 PMCID: PMC7820784 DOI: 10.3389/fncom.2020.583350] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 12/04/2020] [Indexed: 12/28/2022] Open
Abstract
Healthy brain function is marked by neuronal network dynamics at or near the critical phase, which separates regimes of instability and stasis. A failure to remain at this critical point can lead to neurological disorders such as epilepsy, which is associated with pathological synchronization of neuronal oscillations. Using full Hodgkin-Huxley (HH) simulations on a Small-World Network, we are able to generate synthetic electroencephalogram (EEG) signals with intervals corresponding to seizure (ictal) or non-seizure (interictal) states that can occur based on the hyperexcitability of the artificial neurons and the strength and topology of the synaptic connections between them. These interictal simulations can be further classified into scale-free critical phases and disjoint subcritical exponential phases. By changing the HH parameters, we can model seizures due to a variety of causes, including traumatic brain injury (TBI), congenital channelopathies, and idiopathic etiologies, as well as the effects of anticonvulsant drugs. The results of this work may be used to help identify parameters from actual patient EEG or electrocorticographic (ECoG) data associated with ictogenesis, as well as generating simulated data for training machine-learning seizure prediction algorithms.
Collapse
Affiliation(s)
- Louis R Nemzer
- Department of Chemistry and Physics, Halmos College of Arts and Sciences, Nova Southeastern University, Fort Lauderdale, FL, United States
| | - Gary D Cravens
- Department of Health Informatics, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, United States
| | - Robert M Worth
- Department of Mathematical Sciences, Indiana University - Purdue University Indianapolis, Indianapolis, IN, United States
| | - Francis Motta
- Department of Mathematical Sciences, Florida Atlantic University, Boca Raton, FL, United States
| | - Andon Placzek
- Department of Medical Education, Dr. Kiran C. Patel College of Allopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, United States
| | - Victor Castro
- Department of Chemistry and Physics, Halmos College of Arts and Sciences, Nova Southeastern University, Fort Lauderdale, FL, United States
| | - Jennie Q Lou
- College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates
| |
Collapse
|
16
|
Zhai X, Larkin JW, Süel GM, Mugler A. Spiral Wave Propagation in Communities with Spatially Correlated Heterogeneity. Biophys J 2020; 118:1721-1732. [PMID: 32105650 DOI: 10.1016/j.bpj.2020.02.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 02/03/2020] [Accepted: 02/06/2020] [Indexed: 12/29/2022] Open
Abstract
Many multicellular communities propagate signals in a directed manner via excitable waves. Cell-to-cell heterogeneity is a ubiquitous feature of multicellular communities, but the effects of heterogeneity on wave propagation are still unclear. Here, we use a minimal FitzHugh-Nagumo-type model to investigate excitable wave propagation in a two-dimensional heterogeneous community. The model shows three dynamic regimes in which waves either propagate directionally, die out, or spiral indefinitely, and we characterize how these regimes depend on the heterogeneity parameters. We find that in some parameter regimes, spatial correlations in the heterogeneity enhance directional propagation and suppress spiraling. However, in other regimes, spatial correlations promote spiraling, a surprising feature that we explain by demonstrating that these spirals form by a second, distinct mechanism. Finally, we characterize the dynamics using techniques from percolation theory. Despite the fact that percolation theory does not completely describe the dynamics quantitatively because it neglects the details of the excitable propagation, we find that it accounts for the transitions between the dynamic regimes and the general dependency of the spiral period on the heterogeneity and thus provides important insights. Our results reveal that the spatial structure of cell-to-cell heterogeneity can have important consequences for signal propagation in cellular communities.
Collapse
Affiliation(s)
- Xiaoling Zhai
- Department of Physics and Astronomy, Purdue University, West Lafayette, Indiana
| | - Joseph W Larkin
- Department of Biology and Department of Physics, Boston University, Boston, Massachusetts
| | - Gürol M Süel
- Division of Biological Sciences and San Diego Center for Systems Biology, University of California, San Diego, La Jolla, California
| | - Andrew Mugler
- Department of Physics and Astronomy, Purdue University, West Lafayette, Indiana.
| |
Collapse
|
17
|
Zhai X, Larkin JW, Kikuchi K, Redford SE, Roy U, Süel GM, Mugler A. Statistics of correlated percolation in a bacterial community. PLoS Comput Biol 2019; 15:e1007508. [PMID: 31790383 PMCID: PMC6907856 DOI: 10.1371/journal.pcbi.1007508] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 12/12/2019] [Accepted: 10/22/2019] [Indexed: 01/06/2023] Open
Abstract
Signal propagation over long distances is a ubiquitous feature of multicellular communities, but cell-to-cell variability can cause propagation to be highly heterogeneous. Simple models of signal propagation in heterogenous media, such as percolation theory, can potentially provide a quantitative understanding of these processes, but it is unclear whether these simple models properly capture the complexities of multicellular systems. We recently discovered that in biofilms of the bacterium Bacillus subtilis, the propagation of an electrical signal is statistically consistent with percolation theory, and yet it is reasonable to suspect that key features of this system go beyond the simple assumptions of basic percolation theory. Indeed, we find here that the probability for a cell to signal is not independent from other cells as assumed in percolation theory, but instead is correlated with its nearby neighbors. We develop a mechanistic model, in which correlated signaling emerges from cell division, phenotypic inheritance, and cell displacement, that reproduces the experimentally observed correlations. We find that the correlations do not significantly affect the spatial statistics, which we rationalize using a renormalization argument. Moreover, the fraction of signaling cells is not constant in space, as assumed in percolation theory, but instead varies within and across biofilms. We find that this feature lowers the fraction of signaling cells at which one observes the characteristic power-law statistics of cluster sizes, consistent with our experimental results. We validate the model using a mutant biofilm whose signaling probability decays along the propagation direction. Our results reveal key statistical features of a correlated signaling process in a multicellular community. More broadly, our results identify extensions to percolation theory that do or do not alter its predictions and may be more appropriate for biological systems.
Collapse
Affiliation(s)
- Xiaoling Zhai
- Department of Physics and Astronomy, Purdue University, West Lafayette, Indiana, United States of America
| | - Joseph W. Larkin
- Division of Biological Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Kaito Kikuchi
- Division of Biological Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Samuel E. Redford
- Division of Biological Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Ushasi Roy
- Department of Physics and Astronomy, Purdue University, West Lafayette, Indiana, United States of America
| | - Gürol M. Süel
- Division of Biological Sciences, University of California San Diego, La Jolla, California, United States of America
- San Diego Center for Systems Biology, University of California San Diego, La Jolla, California, United States of America
| | - Andrew Mugler
- Department of Physics and Astronomy, Purdue University, West Lafayette, Indiana, United States of America
- * E-mail:
| |
Collapse
|
18
|
Tyukin IY, Iudin D, Iudin F, Tyukina T, Kazantsev V, Mukhina I, Gorban AN. Simple model of complex dynamics of activity patterns in developing networks of neuronal cultures. PLoS One 2019; 14:e0218304. [PMID: 31246978 PMCID: PMC6597067 DOI: 10.1371/journal.pone.0218304] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 05/30/2019] [Indexed: 12/16/2022] Open
Abstract
Living neuronal networks in dissociated neuronal cultures are widely known for their ability to generate highly robust spatiotemporal activity patterns in various experimental conditions. Such patterns are often treated as neuronal avalanches that satisfy the power scaling law and thereby exemplify self-organized criticality in living systems. A crucial question is how these patterns can be explained and modeled in a way that is biologically meaningful, mathematically tractable and yet broad enough to account for neuronal heterogeneity and complexity. Here we derive and analyse a simple network model that may constitute a response to this question. Our derivations are based on few basic phenomenological observations concerning the input-output behavior of an isolated neuron. A distinctive feature of the model is that at the simplest level of description it comprises of only two variables, the network activity variable and an exogenous variable corresponding to energy needed to sustain the activity, and few parameters such as network connectivity and efficacy of signal transmission. The efficacy of signal transmission is modulated by the phenomenological energy variable. Strikingly, this simple model is already capable of explaining emergence of network spikes and bursts in developing neuronal cultures. The model behavior and predictions are consistent with published experimental evidence on cultured neurons. At the larger, cellular automata scale, introduction of the energy-dependent regulatory mechanism results in the overall model behavior that can be characterized as balancing on the edge of the network percolation transition. Network activity in this state shows population bursts satisfying the scaling avalanche conditions. This network state is self-sustainable and represents energetic balance between global network-wide processes and spontaneous activity of individual elements.
Collapse
Affiliation(s)
- Ivan Y. Tyukin
- Nizhny Novgorod State University, Nizhny Novgorod, Russia
- Saint-Petersburg State Electrotechnical University (LETI), Saint-Petersburg, Russia
- University of Leicester, Leicester, United Kingdom
- * E-mail:
| | - Dmitriy Iudin
- Nizhny Novgorod State University, Nizhny Novgorod, Russia
- Institute of Applied Physics of RAS, Nizhny Novgorod, Russia
| | - Feodor Iudin
- Nizhny Novgorod State University, Nizhny Novgorod, Russia
| | | | - Victor Kazantsev
- Nizhny Novgorod State University, Nizhny Novgorod, Russia
- Institute of Applied Physics of RAS, Nizhny Novgorod, Russia
| | - Irina Mukhina
- Nizhny Novgorod State University, Nizhny Novgorod, Russia
| | - Alexander N. Gorban
- Nizhny Novgorod State University, Nizhny Novgorod, Russia
- University of Leicester, Leicester, United Kingdom
| |
Collapse
|
19
|
Rago I, Rauti R, Bevilacqua M, Calaresu I, Pozzato A, Cibinel M, Dalmiglio M, Tavagnacco C, Goldoni A, Scaini D. Carbon Nanotubes, Directly Grown on Supporting Surfaces, Improve Neuronal Activity in Hippocampal Neuronal Networks. ACTA ACUST UNITED AC 2019; 3:e1800286. [PMID: 32627414 DOI: 10.1002/adbi.201800286] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 02/28/2019] [Indexed: 11/10/2022]
Abstract
Carbon nanotube (CNT)-modified surfaces unequivocally demonstrate their biocompatibility and ability to boost the electrical activity of neuronal cells cultured on them. Reasons for this effect are still under debate. However, the intimate contact at the membrane level between these thready nanostructures and cells, in combination with their unique electrical properties, seems to play an important role. The entire existing literature exploiting the effect of CNTs on modulating cellular behavior deals with cell cultures grown on purified multiwalled carbon nanotubes (MWNTs) deposited on a supporting surface via drop-casting or mechanical entrapment. Here, for the first time, it is demonstrated that CNTs directly grown on a supporting silicon surface by a chemical vapor deposition (CVD)-assisted technique have the same effect. It is shown that primary neuronal cells developed above a carpet of CVD CNTs form a healthy and functional network. The resulting neuronal network shows increased electrical activity when compared to a similar network developed on a control glass surface. The low cost and high versatility of the here presented CVD-based synthesis process, together with the possibility to create on supporting substrate patterns of any arbitrary shape of CNTs, open up new opportunities for brain-machine interfaces or neuroprosthetic devices.
Collapse
Affiliation(s)
- Ilaria Rago
- Department of Physics, University of Trieste, Piazzale Europa 1, 34127, Trieste, Italy
| | - Rossana Rauti
- Neurobiology Sector, International School for Advanced Studies (SISSA/ISAS), Via Bonomea 265, 34136, Trieste, Italy
| | - Manuela Bevilacqua
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via Giorgieri 1, 34127, Trieste, Italy.,CNR-ICCOM, Via Madonna del Piano 10, 50019, Sesto Fiorentino, Italy.,ICCOM-CNR Trieste Research Unit, Via Giorgieri 1, 34127, Trieste, Italy
| | - Ivo Calaresu
- Neurobiology Sector, International School for Advanced Studies (SISSA/ISAS), Via Bonomea 265, 34136, Trieste, Italy
| | - Alessandro Pozzato
- ThunderNIL srl, Via Foscolo 8, I-35131, Padova, Italy.,IOM-CNR Area Science Park, Basovizza, S.S. 14, km 163.5, 34149, Trieste, Italy
| | - Matteo Cibinel
- Department of Engineering and Architecture, University of Trieste, Via Valerio 6/1, 34127, Trieste, Italy
| | - Matteo Dalmiglio
- Elettra-Sincrotrone Trieste, Area Science Park, S.S. 14, km 163.5, 34149, Trieste, Italy
| | - Claudio Tavagnacco
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via Giorgieri 1, 34127, Trieste, Italy
| | - Andrea Goldoni
- Elettra-Sincrotrone Trieste, Area Science Park, S.S. 14, km 163.5, 34149, Trieste, Italy
| | - Denis Scaini
- Neurobiology Sector, International School for Advanced Studies (SISSA/ISAS), Via Bonomea 265, 34136, Trieste, Italy.,Elettra-Sincrotrone Trieste, Area Science Park, S.S. 14, km 163.5, 34149, Trieste, Italy
| |
Collapse
|
20
|
Rubinson M, Levit-Binnun N, Peled A, Naim-Feil J, Freche D, Moses E. Hierarchy measurement for modeling network dynamics under directed attacks. Phys Rev E 2017; 96:052307. [PMID: 29347771 DOI: 10.1103/physreve.96.052307] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Indexed: 11/07/2022]
Abstract
A fundamental issue in the dynamics of complex systems is the resilience of the network in response to targeted attacks. This paper explores the local dynamics of the network attack process by investigating the order of removal of the nodes that have maximal degree, and shows that this dynamic network response can be predicted from the graph's initial connectivity. We demonstrate numerically that the maximal degree M(τ) of the network at time step τ decays exponentially with τ via a topology-dependent exponent. Moreover, the order in which sites are removed can be approximated by considering the network's "hierarchy" function h, which measures for each node V_{i} how many of its initial nearest neighbors have lower degree versus those that have a higher one. Finally, we show that the exponents we identified for the attack dynamics are related to the exponential behavior of spreading activation dynamics. The results suggest that the function h, which has both local and global properties, is a novel nodal measurement for network dynamics and structure.
Collapse
Affiliation(s)
- M Rubinson
- Department of Physics of Complex Systems, The Weizmann Institute of Science, Rehovot, Israel
| | - N Levit-Binnun
- Sagol Center for Brain and Mind, Baruch Ivcher School of Psychology, Interdisciplinary Center (IDC), Herzliya, Israel
| | - A Peled
- Institute for Psychiatric Studies, Sha'ar Menashe Mental Health Center, Sha'ar Menashe, Israel.,Ruth and Bruce Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, Israel
| | - J Naim-Feil
- Department of Physics of Complex Systems, The Weizmann Institute of Science, Rehovot, Israel.,Sagol Center for Brain and Mind, Baruch Ivcher School of Psychology, Interdisciplinary Center (IDC), Herzliya, Israel
| | - D Freche
- Department of Physics of Complex Systems, The Weizmann Institute of Science, Rehovot, Israel.,Sagol Center for Brain and Mind, Baruch Ivcher School of Psychology, Interdisciplinary Center (IDC), Herzliya, Israel
| | - E Moses
- Department of Physics of Complex Systems, The Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
21
|
Orlandi JG, Casademunt J. Noise focusing in neuronal tissues: Symmetry breaking and localization in excitable networks with quenched disorder. Phys Rev E 2017; 95:052304. [PMID: 28618531 DOI: 10.1103/physreve.95.052304] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Indexed: 11/07/2022]
Abstract
We introduce a coarse-grained stochastic model for the spontaneous activity of neuronal cultures to explain the phenomenon of noise focusing, which entails localization of the noise activity in excitable networks with metric correlations. The system is modeled as a continuum excitable medium with a state-dependent spatial coupling that accounts for the dynamics of synaptic connections. The most salient feature is the emergence at the mesoscale of a vector field V(r), which acts as an advective carrier of the noise. This entails an explicit symmetry breaking of isotropy and homogeneity that stems from the amplification of the quenched fluctuations of the network by the activity avalanches, concomitant with the excitable dynamics. We discuss the microscopic interpretation of V(r) and propose an explicit construction of it. The coarse-grained model shows excellent agreement with simulations at the network level. The generic nature of the observed phenomena is discussed.
Collapse
Affiliation(s)
- Javier G Orlandi
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, E-08028 Barcelona, Spain.,Complexity Science Group, Department of Physics and Astronomy, University of Calgary, Calgary, Canada T2N 1N4
| | - Jaume Casademunt
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, E-08028 Barcelona, Spain.,Universitat de Barcelona Institute of Complex Systems (UBICS), Universitat de Barcelona, E-08028 Barcelona, Spain
| |
Collapse
|
22
|
Hernández-Navarro L, Orlandi JG, Cerruti B, Vives E, Soriano J. Dominance of Metric Correlations in Two-Dimensional Neuronal Cultures Described through a Random Field Ising Model. PHYSICAL REVIEW LETTERS 2017; 118:208101. [PMID: 28581813 DOI: 10.1103/physrevlett.118.208101] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Indexed: 06/07/2023]
Abstract
We introduce a novel random field Ising model, grounded on experimental observations, to assess the importance of metric correlations in cortical circuits in vitro. Metric correlations arise from both the finite axonal length and the heterogeneity in the spatial arrangement of neurons. The experiments consider the response of neuronal cultures to an external electric stimulation for a gradually weaker connectivity strength between neurons, and in cultures with different spatial configurations. The model can be analytically solved in the metric-free, mean-field scenario. The presence of metric correlations precipitates a strong deviation from the mean field. Null models of the same networks that preserve the distribution of connections recover the mean field. Our results show that metric-inherited correlations in spatial networks dominate the connectivity blueprint, mask the actual distribution of connections, and may emerge as the asset that shapes network dynamics.
Collapse
Affiliation(s)
- Lluís Hernández-Navarro
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, Barcelona 08028, Catalonia, Spain
- Universitat de Barcelona Institute of Complex Systems (UBICS), Barcelona, Catalonia, Spain
| | - Javier G Orlandi
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, Barcelona 08028, Catalonia, Spain
- Complexity Science Group, Department of Physics and Astronomy, University of Calgary, Calgary, Canada T2N 1N4
| | - Benedetta Cerruti
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, Barcelona 08028, Catalonia, Spain
- Center for Genomic Science of IIT@SEMM, Istituto Italiano di Tecnologia (IIT), 20139 Milan, Italy
| | - Eduard Vives
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, Barcelona 08028, Catalonia, Spain
- Universitat de Barcelona Institute of Complex Systems (UBICS), Barcelona, Catalonia, Spain
| | - Jordi Soriano
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, Barcelona 08028, Catalonia, Spain
- Universitat de Barcelona Institute of Complex Systems (UBICS), Barcelona, Catalonia, Spain
| |
Collapse
|
23
|
Stern S, Rotem A, Burnishev Y, Weinreb E, Moses E. External Excitation of Neurons Using Electric and Magnetic Fields in One- and Two-dimensional Cultures. J Vis Exp 2017. [PMID: 28518110 DOI: 10.3791/54357] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
A neuron will fire an action potential when its membrane potential exceeds a certain threshold. In typical activity of the brain, this occurs as a result of chemical inputs to its synapses. However, neurons can also be excited by an imposed electric field. In particular, recent clinical applications activate neurons by creating an electric field externally. It is therefore of interest to investigate how the neuron responds to the external field and what causes the action potential. Fortunately, precise and controlled application of an external electric field is possible for embryonic neuronal cells that are excised, dissociated and grown in cultures. This allows the investigation of these questions in a highly reproducible system. In this paper some of the techniques used for controlled application of external electric field on neuronal cultures are reviewed. The networks can be either one dimensional, i.e. patterned in linear forms or allowed to grow on the whole plane of the substrate, and thus two dimensional. Furthermore, the excitation can be created by the direct application of electric field via electrodes immersed in the fluid (bath electrodes) or by inducing the electric field using the remote creation of magnetic pulses.
Collapse
Affiliation(s)
- Shani Stern
- Laboratory of Genetics, The Salk Institute for Biological Studies
| | - Assaf Rotem
- Department of Physics and SEAS, Harvard University
| | - Yuri Burnishev
- Department of Physics of Complex Systems, Weizmann Institute of Science
| | - Eyal Weinreb
- Department of Physics of Complex Systems, Weizmann Institute of Science
| | - Elisha Moses
- Department of Physics of Complex Systems, Weizmann Institute of Science;
| |
Collapse
|
24
|
Monceau P, Renault R, Métens S, Bottani S. Effect of threshold disorder on the quorum percolation model. Phys Rev E 2016; 94:012316. [PMID: 27575157 DOI: 10.1103/physreve.94.012316] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Indexed: 11/07/2022]
Abstract
We study the modifications induced in the behavior of the quorum percolation model on neural networks with Gaussian in-degree by taking into account an uncorrelated Gaussian thresholds variability. We derive a mean-field approach and show its relevance by carrying out explicit Monte Carlo simulations. It turns out that such a disorder shifts the position of the percolation transition, impacts the size of the giant cluster, and can even destroy the transition. Moreover, we highlight the occurrence of disorder independent fixed points above the quorum critical value. The mean-field approach enables us to interpret these effects in terms of activation probability. A finite-size analysis enables us to show that the order parameter is weakly self-averaging with an exponent independent on the thresholds disorder. Last, we show that the effects of the thresholds and connectivity disorders cannot be easily discriminated from the measured averaged physical quantities.
Collapse
Affiliation(s)
- Pascal Monceau
- Laboratoire Matière et Systèmes Complexes, UMR 7057 CNRS, Université Denis Diderot-Paris 7, 10 rue A. Domon et L. Duquet, 75013 Paris Cedex, France.,Université d'Evry-Val d'Essonne, France
| | - Renaud Renault
- Laboratoire Matière et Systèmes Complexes, UMR 7057 CNRS, Université Denis Diderot-Paris 7, 10 rue A. Domon et L. Duquet, 75013 Paris Cedex, France
| | - Stéphane Métens
- Laboratoire Matière et Systèmes Complexes, UMR 7057 CNRS, Université Denis Diderot-Paris 7, 10 rue A. Domon et L. Duquet, 75013 Paris Cedex, France
| | - Samuel Bottani
- Laboratoire Matière et Systèmes Complexes, UMR 7057 CNRS, Université Denis Diderot-Paris 7, 10 rue A. Domon et L. Duquet, 75013 Paris Cedex, France
| |
Collapse
|
25
|
Yamamoto H, Kubota S, Chida Y, Morita M, Moriya S, Akima H, Sato S, Hirano-Iwata A, Tanii T, Niwano M. Size-dependent regulation of synchronized activity in living neuronal networks. Phys Rev E 2016; 94:012407. [PMID: 27575164 DOI: 10.1103/physreve.94.012407] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Indexed: 06/06/2023]
Abstract
We study the effect of network size on synchronized activity in living neuronal networks. Dissociated cortical neurons form synaptic connections in culture and generate synchronized spontaneous activity within 10 days in vitro. Using micropatterned surfaces to extrinsically control the size of neuronal networks, we show that synchronized activity can emerge in a network as small as 12 cells. Furthermore, a detailed comparison of small (∼20 cells), medium (∼100 cells), and large (∼400 cells) networks reveal that synchronized activity becomes destabilized in the small networks. A computational modeling of neural activity is then employed to explore the underlying mechanism responsible for the size effect. We find that the generation and maintenance of the synchronized activity can be minimally described by: (1) the stochastic firing of each neuron in the network, (2) enhancement in the network activity in a positive feedback loop of excitatory synapses, and (3) Ca-dependent suppression of bursting activity. The model further shows that the decrease in total synaptic input to a neuron that drives the positive feedback amplification of correlated activity is a key factor underlying the destabilization of synchrony in smaller networks. Spontaneous neural activity plays a critical role in cortical information processing, and our work constructively clarifies an aspect of the structural basis behind this.
Collapse
Affiliation(s)
- Hideaki Yamamoto
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Shigeru Kubota
- Graduate School of Science and Engineering, Yamagata University, Yamagata 992-8510, Japan
| | - Yudai Chida
- Research Institute of Electrical Communication, Tohoku University, Sendai 980-8577, Japan
| | - Mayu Morita
- School of Fundamental Science and Engineering, Waseda University, Tokyo 169-8555, Japan
| | - Satoshi Moriya
- Research Institute of Electrical Communication, Tohoku University, Sendai 980-8577, Japan
| | - Hisanao Akima
- Research Institute of Electrical Communication, Tohoku University, Sendai 980-8577, Japan
| | - Shigeo Sato
- Research Institute of Electrical Communication, Tohoku University, Sendai 980-8577, Japan
| | - Ayumi Hirano-Iwata
- Graduate School of Biomedical Engineering, Tohoku University, 980-8579 Sendai, Japan
| | - Takashi Tanii
- School of Fundamental Science and Engineering, Waseda University, Tokyo 169-8555, Japan
| | - Michio Niwano
- Research Institute of Electrical Communication, Tohoku University, Sendai 980-8577, Japan
| |
Collapse
|
26
|
Métens S, Monceau P, Renault R, Bottani S. Finite-size effects and dynamics of giant transition of a continuum quorum percolation model on random networks. Phys Rev E 2016; 93:032112. [PMID: 27078297 DOI: 10.1103/physreve.93.032112] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Indexed: 11/07/2022]
Abstract
We start from a continuous extension of a mean field approach of the quorum percolation model, accounting for the response of in vitro neuronal cultures, to carry out a normal form analysis of the critical behavior. We highlight the effects of nonlinearities associated with this mean field approach even in the close vicinity of the critical point. Statistical properties of random networks with Gaussian in-degree are related to the outcoming links distribution. Finite size analysis of explicit Monte Carlo simulations enables us to confirm the relevance of the mean field approach on such networks and to show that the order parameter is weakly self-averaging; dynamical relaxation is investigated. Furthermore we derive a mean field equation taking into account the effect of inhibitory neurons and discuss the equivalence with a purely excitatory network.
Collapse
Affiliation(s)
- S Métens
- Matière et Systèmes Complexes UMR CNRS 7057, Université Paris 7, Paris Diderot, France
| | - P Monceau
- Matière et Systèmes Complexes UMR CNRS 7057, Université Paris 7, Paris Diderot, France.,Université d'Evry-Val d'Essonne, France
| | - R Renault
- Matière et Systèmes Complexes UMR CNRS 7057, Université Paris 7, Paris Diderot, France
| | - S Bottani
- Matière et Systèmes Complexes UMR CNRS 7057, Université Paris 7, Paris Diderot, France
| |
Collapse
|
27
|
Vázquez P, Hristovski R, Balagué N. The Path to Exhaustion: Time-Variability Properties of Coordinative Variables during Continuous Exercise. Front Physiol 2016; 7:37. [PMID: 26913006 PMCID: PMC4753307 DOI: 10.3389/fphys.2016.00037] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 01/28/2016] [Indexed: 11/25/2022] Open
Abstract
The aim of this study was to detect qualitative changes in the structure of coordinative variable (elbow angle) fluctuations during a quasi-isometric exercise performed until exhaustion. Seven physical education students performed a quasi-isometric arm-curl exercise holding an Olympic bar (weight: 80% 1RM) with an initial elbow flexion of 90° three times over a period of 4 weeks. They were encouraged to persist, even if the elbow angle was lost, until the fatigue-induced spontaneous termination point (FISTP). Changes in both elbow angles were registered during the task through an electrogoniometer. Detrended Fluctuation Analysis (DFA) was conducted on the initial and final 1024 data points of the series and the associated Hurst exponents were obtained. Multi-way RM ANOVA analyses revealed a significant main effect of the Time on task on the Hurst exponent values but also revealed a significant Trial × Time on task interaction. In the initial (non-fatigue) condition participants tended to produce anti-persistent fBm fluctuations. In the final part before exhaustion a tendency toward persistent fBm was dominant. The trial to trial differences in time-variability structure points to an existence of a long-term variability in control strategies during exercise. The changes in the temporal structure of the elbow angle variability as effort accumulated reflected an increase in low-frequency fluctuations signifying a change in psychobiological mechanisms used to negotiate the task demands. The variability properties of the coordinative variable during exercise may provide information about the dynamic mechanisms that lead to exhaustion.
Collapse
Affiliation(s)
- Pablo Vázquez
- Institut Nacional d'Educació Física de Catalunya, Complex Systems in Sport Research Group, Universitat de Barcelona Barcelona, Spain
| | - Robert Hristovski
- Ss. Cyril and Methodius, Faculty of Physical Education, Sport and Health, Complex Systems in Sport Research Group Skopje, Macedonia
| | - Natàlia Balagué
- Institut Nacional d'Educació Física de Catalunya, Complex Systems in Sport Research Group, Universitat de Barcelona Barcelona, Spain
| |
Collapse
|
28
|
Kruscha A, Lindner B. Spike-count distribution in a neuronal population under weak common stimulation. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 92:052817. [PMID: 26651754 DOI: 10.1103/physreve.92.052817] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Indexed: 06/05/2023]
Abstract
We study the probability distribution of the number of synchronous action potentials (spike count) in a model network consisting of a homogeneous neural population that is driven by a common time-dependent stimulus. We derive two analytical approximations for the count statistics, which are based on linear response theory and hold true for weak input correlations. Comparison to numerical simulations of populations of integrate-and-fire neurons in different parameter regimes reveals that our theory correctly predicts how much a weak common stimulus increases the probability of common firing and of common silence in the neural population.
Collapse
Affiliation(s)
- Alexandra Kruscha
- Bernstein Center for Computational Neuroscience Berlin and Institute of Physics, Humboldt University Berlin, Germany
| | - Benjamin Lindner
- Bernstein Center for Computational Neuroscience Berlin and Institute of Physics, Humboldt University Berlin, Germany
| |
Collapse
|
29
|
Feldman JL, Kam K. Facing the challenge of mammalian neural microcircuits: taking a few breaths may help. J Physiol 2015; 593:3-23. [PMID: 25556783 DOI: 10.1113/jphysiol.2014.277632] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 11/01/2014] [Indexed: 12/27/2022] Open
Abstract
Breathing in mammals is a seemingly straightforward behaviour controlled by the brain. A brainstem nucleus called the preBötzinger Complex sits at the core of the neural circuit generating respiratory rhythm. Despite the discovery of this microcircuit almost 25 years ago, the mechanisms controlling breathing remain elusive. Given the apparent simplicity and well-defined nature of regulatory breathing behaviour, the identification of much of the circuitry, and the ability to study breathing in vitro as well as in vivo, many neuroscientists and physiologists are surprised that respiratory rhythm generation is still not well understood. Our view is that conventional rhythmogenic mechanisms involving pacemakers, inhibition or bursting are problematic and that simplifying assumptions commonly made for many vertebrate neural circuits ignore consequential detail. We propose that novel emergent mechanisms govern the generation of respiratory rhythm. That a mammalian function as basic as rhythm generation arises from complex and dynamic molecular, synaptic and neuronal interactions within a diverse neural microcircuit highlights the challenges in understanding neural control of mammalian behaviours, many (considerably) more elaborate than breathing. We suggest that the neural circuit controlling breathing is inimitably tractable and may inspire general strategies for elucidating other neural microcircuits.
Collapse
Affiliation(s)
- Jack L Feldman
- Systems Neurobiology Laboratory, Department of Neurobiology, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA, USA
| | | |
Collapse
|
30
|
Stern S, Agudelo-Toro A, Rotem A, Moses E, Neef A. Chronaxie Measurements in Patterned Neuronal Cultures from Rat Hippocampus. PLoS One 2015; 10:e0132577. [PMID: 26186201 PMCID: PMC4506053 DOI: 10.1371/journal.pone.0132577] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 06/16/2015] [Indexed: 11/18/2022] Open
Abstract
Excitation of neurons by an externally induced electric field is a long standing question that has recently attracted attention due to its relevance in novel clinical intervention systems for the brain. Here we use patterned quasi one-dimensional neuronal cultures from rat hippocampus, exploiting the alignment of axons along the linear patterned culture to separate the contribution of dendrites to the excitation of the neuron from that of axons. Network disconnection by channel blockers, along with rotation of the electric field direction, allows the derivation of strength-duration (SD) curves that characterize the statistical ensemble of a population of cells. SD curves with the electric field aligned either parallel or perpendicular to the axons yield the chronaxie and rheobase of axons and dendrites respectively, and these differ considerably. Dendritic chronaxie is measured to be about 1 ms, while that of axons is on the order of 0.1 ms. Axons are thus more excitable at short time scales, but at longer time scales dendrites are more easily excited. We complement these studies with experiments on fully connected cultures. An explanation for the chronaxie of dendrites is found in the numerical simulations of passive, realistically structured dendritic trees under external stimulation. The much shorter chronaxie of axons is not captured in the passive model and may be related to active processes. The lower rheobase of dendrites at longer durations can improve brain stimulation protocols, since in the brain dendrites are less specifically oriented than axonal bundles, and the requirement for precise directional stimulation may be circumvented by using longer duration fields.
Collapse
Affiliation(s)
- Shani Stern
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot, Israel
| | - Andres Agudelo-Toro
- Department of Non-linear Dynamics, Max Planck Institute for Dynamics and Self-Organization and Bernstein Group ‘Biophysics of Neural Computation’, Göttingen, Germany
| | - Assaf Rotem
- Department of Physics and School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, United States of America
| | - Elisha Moses
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot, Israel
- * E-mail:
| | - Andreas Neef
- Department of Non-linear Dynamics, Max Planck Institute for Dynamics and Self-Organization and Bernstein Group ‘Biophysics of Neural Computation’, Göttingen, Germany
| |
Collapse
|
31
|
Renault R, Sukenik N, Descroix S, Malaquin L, Viovy JL, Peyrin JM, Bottani S, Monceau P, Moses E, Vignes M. Combining microfluidics, optogenetics and calcium imaging to study neuronal communication in vitro. PLoS One 2015; 10:e0120680. [PMID: 25901914 PMCID: PMC4406441 DOI: 10.1371/journal.pone.0120680] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 02/05/2015] [Indexed: 11/19/2022] Open
Abstract
In this paper we report the combination of microfluidics, optogenetics and calcium imaging as a cheap and convenient platform to study synaptic communication between neuronal populations in vitro. We first show that Calcium Orange indicator is compatible in vitro with a commonly used Channelrhodopsine-2 (ChR2) variant, as standard calcium imaging conditions did not alter significantly the activity of transduced cultures of rodent primary neurons. A fast, robust and scalable process for micro-chip fabrication was developed in parallel to build micro-compartmented cultures. Coupling optical fibers to each micro-compartment allowed for the independent control of ChR2 activation in the different populations without crosstalk. By analyzing the post-stimuli activity across the different populations, we finally show how this platform can be used to evaluate quantitatively the effective connectivity between connected neuronal populations.
Collapse
Affiliation(s)
- Renaud Renault
- MSC (Université Paris-Diderot, CNRS-UMR 7057), 5 Rue Thomas Mann, 75013 Paris, France
- Physicochimie Curie (Institut Curie, CNRS-UMR 168, UPMC), Institut Curie, Centre de Recherche, 26 rue d’Ulm, 75248 Paris Cedex 05, France
- Department of Complex Systems, Weizmann Institute, Rehovot, Israel
| | - Nirit Sukenik
- Department of Complex Systems, Weizmann Institute, Rehovot, Israel
| | - Stéphanie Descroix
- Physicochimie Curie (Institut Curie, CNRS-UMR 168, UPMC), Institut Curie, Centre de Recherche, 26 rue d’Ulm, 75248 Paris Cedex 05, France
| | - Laurent Malaquin
- Physicochimie Curie (Institut Curie, CNRS-UMR 168, UPMC), Institut Curie, Centre de Recherche, 26 rue d’Ulm, 75248 Paris Cedex 05, France
| | - Jean-Louis Viovy
- Physicochimie Curie (Institut Curie, CNRS-UMR 168, UPMC), Institut Curie, Centre de Recherche, 26 rue d’Ulm, 75248 Paris Cedex 05, France
| | - Jean-Michel Peyrin
- Biological Adaptation and Ageing (CNRS, UMR 8256), F-75005, Paris, France
- Sorbonne Universités, UPMC Univ Paris 06, UMR 8256, B2A, Institut de Biologie Paris Seine, F-75005, Paris, France
| | - Samuel Bottani
- MSC (Université Paris-Diderot, CNRS-UMR 7057), 5 Rue Thomas Mann, 75013 Paris, France
| | - Pascal Monceau
- MSC (Université Paris-Diderot, CNRS-UMR 7057), 5 Rue Thomas Mann, 75013 Paris, France
| | - Elisha Moses
- Department of Complex Systems, Weizmann Institute, Rehovot, Israel
| | - Maéva Vignes
- Physicochimie Curie (Institut Curie, CNRS-UMR 168, UPMC), Institut Curie, Centre de Recherche, 26 rue d’Ulm, 75248 Paris Cedex 05, France
- Biological Adaptation and Ageing (CNRS, UMR 8256), F-75005, Paris, France
- Sorbonne Universités, UPMC Univ Paris 06, UMR 8256, B2A, Institut de Biologie Paris Seine, F-75005, Paris, France
| |
Collapse
|
32
|
Glutamate mediated astrocytic filtering of neuronal activity. PLoS Comput Biol 2014; 10:e1003964. [PMID: 25521344 PMCID: PMC4270452 DOI: 10.1371/journal.pcbi.1003964] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 10/06/2014] [Indexed: 02/02/2023] Open
Abstract
Neuron-astrocyte communication is an important regulatory mechanism in various brain functions but its complexity and role are yet to be fully understood. In particular, the temporal pattern of astrocyte response to neuronal firing has not been fully characterized. Here, we used neuron-astrocyte cultures on multi-electrode arrays coupled to Ca2+ imaging and explored the range of neuronal stimulation frequencies while keeping constant the amount of stimulation. Our results reveal that astrocytes specifically respond to the frequency of neuronal stimulation by intracellular Ca2+ transients, with a clear onset of astrocytic activation at neuron firing rates around 3-5 Hz. The cell-to-cell heterogeneity of the astrocyte Ca2+ response was however large and increasing with stimulation frequency. Astrocytic activation by neurons was abolished with antagonists of type I metabotropic glutamate receptor, validating the glutamate-dependence of this neuron-to-astrocyte pathway. Using a realistic biophysical model of glutamate-based intracellular calcium signaling in astrocytes, we suggest that the stepwise response is due to the supralinear dynamics of intracellular IP3 and that the heterogeneity of the responses may be due to the heterogeneity of the astrocyte-to-astrocyte couplings via gap junction channels. Therefore our results present astrocyte intracellular Ca2+ activity as a nonlinear integrator of glutamate-dependent neuronal activity.
Collapse
|
33
|
Abstract
We present a thermodynamic theory for a generic population of M individuals distributed into N groups (clusters). We construct the ensemble of all distributions with fixed M and N, introduce a selection functional that embodies the physics that governs the population, and obtain the distribution that emerges in the scaling limit as the most probable among all distributions consistent with the given physics. We develop the thermodynamics of the ensemble and establish a rigorous mapping to regular thermodynamics. We treat the emergence of a so-called giant component as a formal phase transition and show that the criteria for its emergence are entirely analogous to the equilibrium conditions in molecular systems. We demonstrate the theory by an analytic model and confirm the predictions by Monte Carlo simulation.
Collapse
Affiliation(s)
- Themis Matsoukas
- Department of Chemical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
34
|
Orlandi JG, Stetter O, Soriano J, Geisel T, Battaglia D. Transfer entropy reconstruction and labeling of neuronal connections from simulated calcium imaging. PLoS One 2014; 9:e98842. [PMID: 24905689 PMCID: PMC4048312 DOI: 10.1371/journal.pone.0098842] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Accepted: 05/08/2014] [Indexed: 11/23/2022] Open
Abstract
Neuronal dynamics are fundamentally constrained by the underlying structural network architecture, yet much of the details of this synaptic connectivity are still unknown even in neuronal cultures in vitro. Here we extend a previous approach based on information theory, the Generalized Transfer Entropy, to the reconstruction of connectivity of simulated neuronal networks of both excitatory and inhibitory neurons. We show that, due to the model-free nature of the developed measure, both kinds of connections can be reliably inferred if the average firing rate between synchronous burst events exceeds a small minimum frequency. Furthermore, we suggest, based on systematic simulations, that even lower spontaneous inter-burst rates could be raised to meet the requirements of our reconstruction algorithm by applying a weak spatially homogeneous stimulation to the entire network. By combining multiple recordings of the same in silico network before and after pharmacologically blocking inhibitory synaptic transmission, we show then how it becomes possible to infer with high confidence the excitatory or inhibitory nature of each individual neuron.
Collapse
Affiliation(s)
- Javier G. Orlandi
- Departament d'Estructura i Consituents de la Matèria, Universitat de Barcelona, Barcelona, Spain
| | - Olav Stetter
- Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany
- Georg-August-Universität, Physics Department, Göttingen, Germany
- Bernstein Center for Computational Neuroscience, Göttingen, Germany
| | - Jordi Soriano
- Departament d'Estructura i Consituents de la Matèria, Universitat de Barcelona, Barcelona, Spain
| | - Theo Geisel
- Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany
- Georg-August-Universität, Physics Department, Göttingen, Germany
- Bernstein Center for Computational Neuroscience, Göttingen, Germany
| | - Demian Battaglia
- Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany
- Bernstein Center for Computational Neuroscience, Göttingen, Germany
- Institut de Neurosciences des Systèmes, Inserm UMR1106, Aix-Marseille Université, Marseille, France
- * E-mail:
| |
Collapse
|
35
|
Lee KE, Lopes MA, Mendes JFF, Goltsev AV. Critical phenomena and noise-induced phase transitions in neuronal networks. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 89:012701. [PMID: 24580251 DOI: 10.1103/physreve.89.012701] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2013] [Indexed: 06/03/2023]
Abstract
We study numerically and analytically first- and second-order phase transitions in neuronal networks stimulated by shot noise (a flow of random spikes bombarding neurons). Using an exactly solvable cortical model of neuronal networks on classical random networks, we find critical phenomena accompanying the transitions and their dependence on the shot noise intensity. We show that a pattern of spontaneous neuronal activity near a critical point of a phase transition is a characteristic property that can be used to identify the bifurcation mechanism of the transition. We demonstrate that bursts and avalanches are precursors of a first-order phase transition, paroxysmal-like spikes of activity precede a second-order phase transition caused by a saddle-node bifurcation, while irregular spindle oscillations represent spontaneous activity near a second-order phase transition caused by a supercritical Hopf bifurcation. Our most interesting result is the observation of the paroxysmal-like spikes. We show that a paroxysmal-like spike is a single nonlinear event that appears instantly from a low background activity with a rapid onset, reaches a large amplitude, and ends up with an abrupt return to lower activity. These spikes are similar to single paroxysmal spikes and sharp waves observed in electroencephalographic (EEG) measurements. Our analysis shows that above the saddle-node bifurcation, sustained network oscillations appear with a large amplitude but a small frequency in contrast to network oscillations near the Hopf bifurcation that have a small amplitude but a large frequency. We discuss an amazing similarity between excitability of the cortical model stimulated by shot noise and excitability of the Morris-Lecar neuron stimulated by an applied current.
Collapse
Affiliation(s)
- K-E Lee
- Department of Physics & I3N, University of Aveiro, 3810-193 Aveiro, Portugal
| | - M A Lopes
- Department of Physics & I3N, University of Aveiro, 3810-193 Aveiro, Portugal
| | - J F F Mendes
- Department of Physics & I3N, University of Aveiro, 3810-193 Aveiro, Portugal
| | - A V Goltsev
- Department of Physics & I3N, University of Aveiro, 3810-193 Aveiro, Portugal and Ioffe Physical-Technical Institute, 194021 St. Petersburg, Russia
| |
Collapse
|
36
|
Schmeltzer C, Soriano J, Sokolov IM, Rüdiger S. Percolation of spatially constrained Erdős-Rényi networks with degree correlations. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 89:012116. [PMID: 24580181 DOI: 10.1103/physreve.89.012116] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Indexed: 06/03/2023]
Abstract
Motivated by experiments on activity in neuronal cultures [ J. Soriano, M. Rodríguez Martínez, T. Tlusty and E. Moses Proc. Natl. Acad. Sci. 105 13758 (2008)], we investigate the percolation transition and critical exponents of spatially embedded Erdős-Rényi networks with degree correlations. In our model networks, nodes are randomly distributed in a two-dimensional spatial domain, and the connection probability depends on Euclidian link length by a power law as well as on the degrees of linked nodes. Generally, spatial constraints lead to higher percolation thresholds in the sense that more links are needed to achieve global connectivity. However, degree correlations favor or do not favor percolation depending on the connectivity rules. We employ two construction methods to introduce degree correlations. In the first one, nodes stay homogeneously distributed and are connected via a distance- and degree-dependent probability. We observe that assortativity in the resulting network leads to a decrease of the percolation threshold. In the second construction methods, nodes are first spatially segregated depending on their degree and afterwards connected with a distance-dependent probability. In this segregated model, we find a threshold increase that accompanies the rising assortativity. Additionally, when the network is constructed in a disassortative way, we observe that this property has little effect on the percolation transition.
Collapse
Affiliation(s)
- C Schmeltzer
- Institut für Physik, Humboldt-Universität zu Berlin, 12489 Berlin, Germany
| | - J Soriano
- Departament d'ECM, Facultat de Física, Universitat de Barcelona, 08028 Barcelona, Spain
| | - I M Sokolov
- Institut für Physik, Humboldt-Universität zu Berlin, 12489 Berlin, Germany
| | - S Rüdiger
- Institut für Physik, Humboldt-Universität zu Berlin, 12489 Berlin, Germany
| |
Collapse
|
37
|
Sellitto M. Cooperative heterogeneous facilitation: multiple glassy states and glass-glass transition. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2012; 86:030502. [PMID: 23030856 DOI: 10.1103/physreve.86.030502] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Indexed: 06/01/2023]
Abstract
The formal structure of glass singularities in the mode-coupling theory (MCT) of supercooled liquids dynamics is closely related to that appearing in the analysis of heterogeneous bootstrap percolation on Bethe lattices, random graphs, and complex networks. Starting from this observation one can build up microscopic on-lattice realizations of schematic MCT based on cooperative facilitated spin mixtures. I discuss a microscopic implementation of the F(13) schematic model including multiple glassy states and the glass-glass transition. Results suggest that our approach is flexible enough to bridge alternative theoretical descriptions of glassy matter based on the notions of quenched disorder and dynamic facilitation.
Collapse
Affiliation(s)
- Mauro Sellitto
- Department of Information Engineering, Second University of Naples, I-81031 Aversa (CE), Italy
| |
Collapse
|
38
|
Pei S, Tang S, Yan S, Jiang S, Zhang X, Zheng Z. How to enhance the dynamic range of excitatory-inhibitory excitable networks. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2012; 86:021909. [PMID: 23005787 DOI: 10.1103/physreve.86.021909] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Indexed: 06/01/2023]
Abstract
We investigate the collective dynamics of excitatory-inhibitory excitable networks in response to external stimuli. How to enhance the dynamic range, which represents the ability of networks to encode external stimuli, is crucial to many applications. We regard the system as a two-layer network (E layer and I layer) and explore the criticality and dynamic range on diverse networks. Interestingly, we find that phase transition occurs when the dominant eigenvalue of the E layer's weighted adjacency matrix is exactly 1, which is only determined by the topology of the E layer. Meanwhile, it is shown that the dynamic range is maximized at a critical state. Based on theoretical analysis, we propose an inhibitory factor for each excitatory node. We suggest that if nodes with high inhibitory factors are cut out from the I layer, the dynamic range could be further enhanced. However, because of the sparseness of networks and passive function of inhibitory nodes, the improvement is relatively small compared to the original dynamic range. Even so, this provides a strategy to enhance the dynamic range.
Collapse
Affiliation(s)
- Sen Pei
- Key Laboratory of Mathematics, Informatics and Behavioral Semantics, Ministry of Education, and School of Mathematics and Systems Science, Beihang University, Beijing 100191, China.
| | | | | | | | | | | |
Collapse
|
39
|
Gollo LL, Mirasso C, Eguíluz VM. Signal integration enhances the dynamic range in neuronal systems. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2012; 85:040902. [PMID: 22680413 DOI: 10.1103/physreve.85.040902] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Revised: 12/09/2011] [Indexed: 06/01/2023]
Abstract
The dynamic range measures the capacity of a system to discriminate the intensity of an external stimulus. Such an ability is fundamental for living beings to survive: to leverage resources and to avoid danger. Consequently, the larger is the dynamic range, the greater is the probability of survival. We investigate how the integration of different input signals affects the dynamic range, and in general the collective behavior of a network of excitable units. By means of numerical simulations and a mean-field approach, we explore the nonequilibrium phase transition in the presence of integration. We show that the firing rate in random and scale-free networks undergoes a discontinuous phase transition depending on both the integration time and the density of integrator units. Moreover, in the presence of external stimuli, we find that a system of excitable integrator units operating in a bistable regime largely enhances its dynamic range.
Collapse
Affiliation(s)
- Leonardo L Gollo
- IFISC (CSIC-UIB), Instituto de Física Interdisciplinar y Sistemas Complejos, E-07122 Palma de Mallorca, Spain.
| | | | | |
Collapse
|
40
|
van den Berg D, Gong P, Breakspear M, van Leeuwen C. Fragmentation: loss of global coherence or breakdown of modularity in functional brain architecture? Front Syst Neurosci 2012; 6:20. [PMID: 22479239 PMCID: PMC3316147 DOI: 10.3389/fnsys.2012.00020] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Accepted: 03/14/2012] [Indexed: 11/29/2022] Open
Abstract
Psychiatric illnesses characterized by disorganized cognition, such as schizophrenia, have been described in terms of fragmentation and hence understood as reduction in functional brain connectivity, particularly in prefrontal and parietal areas. However, as graph theory shows, relatively small numbers of nonlocal connections are sufficient to ensure global coherence in the modular small-world network structure of the brain. We reconsider fragmentation in this perspective. Computational studies have shown that for a given level of connectivity in a model of coupled nonlinear oscillators, modular small-world networks evolve from an initially random organization. Here we demonstrate that with decreasing connectivity, the probability of evolving into a modular small-world network breaks down at a critical point, which scales to the percolation function of random networks with a universal exponent of α = 1.17. Thus, according to the model, local modularity systematically breaks down before there is loss of global coherence in network connectivity. We, therefore, propose that fragmentation may involve, at least in its initial stages, the inability of a dynamically evolving network to sustain a modular small-world structure. The result is in a shift in the balance in schizophrenia from local to global functional connectivity.
Collapse
Affiliation(s)
- Daan van den Berg
- Laboratory for Perceptual Dynamics, Brain Science Institute RIKEN, Wako-shi Saitama, Japan
| | | | | | | |
Collapse
|
41
|
Volpicelli-Daley LA, Luk KC, Patel TP, Tanik SA, Riddle DM, Stieber A, Meaney DF, Trojanowski JQ, Lee VMY. Exogenous α-synuclein fibrils induce Lewy body pathology leading to synaptic dysfunction and neuron death. Neuron 2011; 72:57-71. [PMID: 21982369 DOI: 10.1016/j.neuron.2011.08.033] [Citation(s) in RCA: 1170] [Impact Index Per Article: 83.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2011] [Indexed: 12/31/2022]
Abstract
Inclusions composed of α-synuclein (α-syn), i.e., Lewy bodies (LBs) and Lewy neurites (LNs), define synucleinopathies including Parkinson's disease (PD) and dementia with Lewy bodies (DLB). Here, we demonstrate that preformed fibrils generated from full-length and truncated recombinant α-syn enter primary neurons, probably by adsorptive-mediated endocytosis, and promote recruitment of soluble endogenous α-syn into insoluble PD-like LBs and LNs. Remarkably, endogenous α-syn was sufficient for formation of these aggregates, and overexpression of wild-type or mutant α-syn was not required. LN-like pathology first developed in axons and propagated to form LB-like inclusions in perikarya. Accumulation of pathologic α-syn led to selective decreases in synaptic proteins, progressive impairments in neuronal excitability and connectivity, and, eventually, neuron death. Thus, our data contribute important insights into the etiology and pathogenesis of PD-like α-syn inclusions and their impact on neuronal functions, and they provide a model for discovering therapeutics targeting pathologic α-syn-mediated neurodegeneration.
Collapse
Affiliation(s)
- Laura A Volpicelli-Daley
- Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, University of Pennsylvania School of Medicine, Philadelphia, PA 19104 USA
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Patel TP, Ventre SC, Meaney DF. Dynamic changes in neural circuit topology following mild mechanical injury in vitro. Ann Biomed Eng 2011; 40:23-36. [PMID: 21994056 DOI: 10.1007/s10439-011-0390-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2011] [Accepted: 08/24/2011] [Indexed: 11/26/2022]
Abstract
Despite its enormous incidence, mild traumatic brain injury is not well understood. One aspect that needs more definition is how the mechanical energy during injury affects neural circuit function. Recent developments in cellular imaging probes provide an opportunity to assess the dynamic state of neural networks with single-cell resolution. In this article, we developed imaging methods to assess the state of dissociated cortical networks exposed to mild injury. We estimated the imaging conditions needed to achieve accurate measures of network properties, and applied these methodologies to evaluate if mild mechanical injury to cortical neurons produces graded changes to either spontaneous network activity or altered network topology. We found that modest injury produced a transient increase in calcium activity that dissipated within 1 h after injury. Alternatively, moderate mechanical injury produced immediate disruption in network synchrony, loss in excitatory tone, and increased modular topology. A calcium-activated neutral protease (calpain) was a key intermediary in these changes; blocking calpain activation restored the network nearly completely to its pre-injury state. Together, these findings show a more complex change in neural circuit behavior than previously reported for mild mechanical injury, and highlight at least one important early mechanism responsible for these changes.
Collapse
Affiliation(s)
- Tapan P Patel
- Department of Bioengineering, University of Pennsylvania, 220 S 33rd St, Philadelphia, PA 19104, USA
| | | | | |
Collapse
|
43
|
Agliari E, Cioli C, Guadagnini E. Percolation on correlated random networks. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2011; 84:031120. [PMID: 22060341 DOI: 10.1103/physreve.84.031120] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Revised: 07/18/2011] [Indexed: 05/31/2023]
Abstract
We consider a class of random, weighted networks, obtained through a redefinition of patterns in an Hopfield-like model, and, by performing percolation processes, we get information about topology and resilience properties of the networks themselves. Given the weighted nature of the graphs, different kinds of bond percolation can be studied: stochastic (deleting links randomly) and deterministic (deleting links based on rank weights), each mimicking a different physical process. The evolution of the network is accordingly different, as evidenced by the behavior of the largest component size and of the distribution of cluster sizes. In particular, we can derive that weak ties are crucial in order to maintain the graph connected and that, when they are the most prone to failure, the giant component typically shrinks without abruptly breaking apart; these results have been recently evidenced in several kinds of social networks.
Collapse
Affiliation(s)
- E Agliari
- Dipartimento di Fisica, Università degli Studi di Parma, Parma, Italy
| | | | | |
Collapse
|
44
|
Herzog N, Shein-Idelson M, Hanein Y. Optical validation of in vitro extra-cellular neuronal recordings. J Neural Eng 2011; 8:056008. [PMID: 21841241 DOI: 10.1088/1741-2560/8/5/056008] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Simultaneous calcium imaging and extra-cellular recordings from cultured cortical rat neurons were performed to directly map the efficacy of extra-cellular recordings with microelectrodes. For the first time, we can associate extra-cellular recordings with neuronal activity of specific neurons in the vicinity of the electrode. We demonstrate that recorded cells can be identified by correlating the electrical signals and the calcium response. Our data demonstrate that in sparse cultures, microelectrodes record exclusively from cells which reside at very close proximity to the recording electrode. Moreover, we show that recording appears to be limited to only a partial subset of the cells residing in this range. We further show that even in cases of strong neuron-electrode coupling, extra-cellular signals recorded from single, well-identified neurons vary in shape over time rendering spike sorting and network activity rate analysis incongruous. As multi-electrode array technology is becoming increasingly widespread, the visualization technique we report here will help users better understand the limits of this versatile and useful method.
Collapse
Affiliation(s)
- Nitzan Herzog
- Department of Biomedical Engineering, Tel-Aviv University, Tel Aviv 69978, Israel.
| | | | | |
Collapse
|
45
|
Eckmann JP, Moses E, Stetter O, Tlusty T, Zbinden C. Leaders of neuronal cultures in a quorum percolation model. Front Comput Neurosci 2010; 4. [PMID: 20953239 PMCID: PMC2955434 DOI: 10.3389/fncom.2010.00132] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2010] [Accepted: 08/18/2010] [Indexed: 11/20/2022] Open
Abstract
We present a theoretical framework using quorum percolation for describing the initiation of activity in a neural culture. The cultures are modeled as random graphs, whose nodes are excitatory neurons with kin inputs and kout outputs, and whose input degrees kin = k obey given distribution functions pk. We examine the firing activity of the population of neurons according to their input degree (k) classes and calculate for each class its firing probability Φk(t) as a function of t. The probability of a node to fire is found to be determined by its in-degree k, and the first-to-fire neurons are those that have a high k. A small minority of high-k-classes may be called “Leaders,” as they form an interconnected sub-network that consistently fires much before the rest of the culture. Once initiated, the activity spreads from the Leaders to the less connected majority of the culture. We then use the distribution of in-degree of the Leaders to study the growth rate of the number of neurons active in a burst, which was experimentally measured to be initially exponential. We find that this kind of growth rate is best described by a population that has an in-degree distribution that is a Gaussian centered around k = 75 with width σ = 31 for the majority of the neurons, but also has a power law tail with exponent −2 for 10% of the population. Neurons in the tail may have as many as k = 4,700 inputs. We explore and discuss the correspondence between the degree distribution and a dynamic neuronal threshold, showing that from the functional point of view, structure and elementary dynamics are interchangeable. We discuss possible geometric origins of this distribution, and comment on the importance of size, or of having a large number of neurons, in the culture.
Collapse
|
46
|
Werner G. Fractals in the nervous system: conceptual implications for theoretical neuroscience. Front Physiol 2010; 1:15. [PMID: 21423358 PMCID: PMC3059969 DOI: 10.3389/fphys.2010.00015] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2010] [Accepted: 06/05/2010] [Indexed: 11/15/2022] Open
Abstract
This essay is presented with two principal objectives in mind: first, to document the prevalence of fractals at all levels of the nervous system, giving credence to the notion of their functional relevance; and second, to draw attention to the as yet still unresolved issues of the detailed relationships among power-law scaling, self-similarity, and self-organized criticality. As regards criticality, I will document that it has become a pivotal reference point in Neurodynamics. Furthermore, I will emphasize the not yet fully appreciated significance of allometric control processes. For dynamic fractals, I will assemble reasons for attributing to them the capacity to adapt task execution to contextual changes across a range of scales. The final Section consists of general reflections on the implications of the reviewed data, and identifies what appear to be issues of fundamental importance for future research in the rapidly evolving topic of this review.
Collapse
Affiliation(s)
- Gerhard Werner
- Department of Biomedical Engineering, University of Texas at Austin TX, USA.
| |
Collapse
|
47
|
Goltsev AV, de Abreu FV, Dorogovtsev SN, Mendes JFF. Stochastic cellular automata model of neural networks. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2010; 81:061921. [PMID: 20866454 DOI: 10.1103/physreve.81.061921] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2009] [Revised: 03/31/2010] [Indexed: 05/29/2023]
Abstract
We propose a stochastic dynamical model of noisy neural networks with complex architectures and discuss activation of neural networks by a stimulus, pacemakers, and spontaneous activity. This model has a complex phase diagram with self-organized active neural states, hybrid phase transitions, and a rich array of behaviors. We show that if spontaneous activity (noise) reaches a threshold level then global neural oscillations emerge. Stochastic resonance is a precursor of this dynamical phase transition. These oscillations are an intrinsic property of even small groups of 50 neurons.
Collapse
Affiliation(s)
- A V Goltsev
- Departamento de Física da Universidade de Aveiro, I3N, 3810-193 Aveiro, Portugal
| | | | | | | |
Collapse
|
48
|
Abstract
Spontaneous neuronal activity is a ubiquitous feature of cortex. Its spatiotemporal organization reflects past input and modulates future network output. Here we study whether a particular type of spontaneous activity is generated by a network that is optimized for input processing. Neuronal avalanches are a type of spontaneous activity observed in superficial cortical layers in vitro and in vivo with statistical properties expected from a network operating at "criticality." Theory predicts that criticality and, therefore, neuronal avalanches are optimal for input processing, but until now, this has not been tested in experiments. Here, we use cortex slice cultures grown on planar microelectrode arrays to demonstrate that cortical networks that generate neuronal avalanches benefit from a maximized dynamic range, i.e., the ability to respond to the greatest range of stimuli. By changing the ratio of excitation and inhibition in the cultures, we derive a network tuning curve for stimulus processing as a function of distance from criticality in agreement with predictions from our simulations. Our findings suggest that in the cortex, (1) balanced excitation and inhibition establishes criticality, which maximizes the range of inputs that can be processed, and (2) spontaneous activity and input processing are unified in the context of critical phenomena.
Collapse
|
49
|
Stetter O, Levina A, Geisel T. First-to-fire neurons induced by clustering in sparse networks. BMC Neurosci 2009. [DOI: 10.1186/1471-2202-10-s1-p153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
50
|
Jacobi S, Soriano J, Segal M, Moses E. BDNF and NT-3 increase excitatory input connectivity in rat hippocampal cultures. Eur J Neurosci 2009; 30:998-1010. [PMID: 19723292 DOI: 10.1111/j.1460-9568.2009.06891.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The neurotrophic factors brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3) have been shown to promote excitatory and inhibitory synapse development. However, a quantitative analysis of their influence on connectivity has proven in general difficult to achieve. In this work we use a novel experimental approach based on percolation concepts that provides a quantification of the average number of connections per neuron. In combination with electrophysiological measurements, we characterize the changes in network connectivity induced by BDNF and NT-3 in rat hippocampal cultures. We show that, on the one hand, BDNF and NT-3 accelerate the maturation of connectivity in the network by about 17 h. On the other hand, BDNF and NT-3 increase the number of excitatory input connections by a factor of about two, but without modifying the number of inhibitory input connections. This scenario of a dominant effect on the excitation is supported by the analysis of spontaneous population bursts in cultures treated with either BDNF or NT-3, which show burst amplitudes that are insensitive to the blockade of inhibition. A leaky integrate-and-fire model reproduces the experimental results well.
Collapse
Affiliation(s)
- Shimshon Jacobi
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot, 76100 Israel
| | | | | | | |
Collapse
|