1
|
Song X, Chen J, Xu C, Cai X, Song W, Chang A, Zhang Y, Luo C. Physiological and molecular mechanisms of exogenous salicylic acid in enhancing salt tolerance in tobacco seedlings by regulating antioxidant defence system and gene expression. FRONTIERS IN PLANT SCIENCE 2025; 16:1545865. [PMID: 39959351 PMCID: PMC11825763 DOI: 10.3389/fpls.2025.1545865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 01/07/2025] [Indexed: 02/18/2025]
Abstract
Introduction Salt stress has emerged as a predominant abiotic factor that jeopardizes global crop growth and yield. The plant hormone salicylic acid (SA) has notable potential in mitigating salt toxicity, yet its mechanism in enhancing the salinity tolerance of tobacco plants is not well explored. Methods This study aimed to assess the potential benefits of exogenous SA application (1.0 mM) on tobacco seedlings subjected to saline soil conditions. Results The foliar spray of SA partially mitigated these salt-induced effects, as evidenced by a reduction of malondialdehyde content, and improvements of leaf K+/Na+ ratios, pigment biosynthesis, and electron transport efficiency under NaCl stress. Additionally, SA increased the contents of total phenolic compound and soluble protein by 16.2% and 28.7% to alleviate NaCl-induced oxidative damage. Under salt stressed conditions, the activities of antioxidant enzymes, including superoxide dismutase, ascorbate peroxidase, catalase, and peroxidase increased by 4.2%~14.4% in SA sprayed tobacco seedlings. Exogenous SA also increased ascorbate and glutathione levels and reduced their reduced forms by increasing the activities of glutathione reductase, ascorbate peroxidase, monodehydroascorbate reductase and dehydroascorbate reductase. qRT-PCR analysis revealed that the key genes regulating SA biosynthesis, carbon assimilation, the antioxidant system and the ascorbate-glutathione cycle were activated by SA under conditions of salt stress. Discussion Our study elucidates the physiological and molecular mechanisms of exogenous SA in enhancing plant salt tolerance and provides a practical basis for crop improvement in saline environments.
Collapse
Affiliation(s)
- Xiliang Song
- College of Life Sciences, Dezhou University, Dezhou, China
| | - Jian Chen
- Shanghai Tobacco Group Co. Ltd, Shanghai, China
| | - Can Xu
- College of Life Sciences, Dezhou University, Dezhou, China
| | - Xianjie Cai
- Shanghai Tobacco Group Co. Ltd, Shanghai, China
| | - Wenjing Song
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences China, Qingdao, China
| | - Aixia Chang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences China, Qingdao, China
| | - Yu Zhang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences China, Qingdao, China
| | - Chenggang Luo
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences China, Qingdao, China
| |
Collapse
|
2
|
Qu M, Huang X, García-Caparrós P, Shabala L, Fuglsang AT, Yu M, Shabala S. Understanding the role of boron in plant adaptation to soil salinity. PHYSIOLOGIA PLANTARUM 2024; 176:e14358. [PMID: 38783511 DOI: 10.1111/ppl.14358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 05/25/2024]
Abstract
Soil salinity is a major environmental constraint affecting the sustainability and profitability of agricultural production systems. Salinity stress tolerance has been present in wild crop relatives but then lost, or significantly weakened, during their domestication. Given the genetic and physiological complexity of salinity tolerance traits, agronomical solutions may be a suitable alternative to crop breeding for improved salinity stress tolerance. One of them is optimizing fertilization practices to assist plants in dealing with elevated salt levels in the soil. In this review, we analyse the causal relationship between the availability of boron (an essential metalloid micronutrient) and plant's adaptive responses to salinity stress at the whole-plant, cellular, and molecular levels, and a possibility of using boron for salt stress mitigation. The topics covered include the impact of salinity and the role of boron in cell wall remodelling, plasma membrane integrity, hormonal signalling, and operation of various membrane transporters mediating plant ionic and water homeostasis. Of specific interest is the role of boron in the regulation of H+-ATPase activity whose operation is essential for the control of a broad range of voltage-gated ion channels. The complex relationship between boron availability and expression patterns and the operation of aquaporins is also discussed.
Collapse
Affiliation(s)
- Mei Qu
- International Research Center for Environmental Membrane Biology, Foshan University, Foshan, China
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Australia
- Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Xin Huang
- International Research Center for Environmental Membrane Biology, Foshan University, Foshan, China
| | - Pedro García-Caparrós
- Agronomy Department of Superior School Engineering, University of Almería, Almería, Spain
| | - Lana Shabala
- International Research Center for Environmental Membrane Biology, Foshan University, Foshan, China
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Australia
| | - Anja Thoe Fuglsang
- Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Min Yu
- International Research Center for Environmental Membrane Biology, Foshan University, Foshan, China
| | - Sergey Shabala
- International Research Center for Environmental Membrane Biology, Foshan University, Foshan, China
- School of Biological Sciences, University of Western Australia, Perth, Australia
| |
Collapse
|
3
|
Wei H, Wang X, Wang K, Tang X, Zhang N, Si H. Transcription factors as molecular switches regulating plant responses to drought stress. PHYSIOLOGIA PLANTARUM 2024; 176:e14366. [PMID: 38812034 DOI: 10.1111/ppl.14366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 05/31/2024]
Abstract
Plants often experience abiotic stress, which severely affects their growth. With the advent of global warming, drought stress has become a pivotal factor affecting crop yield and quality. Increasing numbers of studies have focused on elucidating the molecular mechanisms underlying plant responses to drought stress. As molecular switches, transcription factors (TFs) are key participants in drought-resistance regulatory networks in crops. TFs regulate the transcription of downstream genes and are regulated by various upstream regulatory factors. Therefore, understanding the mechanisms of action of TFs in regulating drought stress can help enhance the adaptive capacity of crops under drought conditions. In this review, we summarize the structural characteristics of several common TFs, their multiple drought-response pathways, and recently employed research strategies. We describe the application of new technologies such as analysis of stress granule dynamics and function, multi-omics data, gene editing, and molecular crosstalk between TFs in drought resistance. This review aims to familiarize readers with the regulatory network of TFs in drought resistance and to provide a reference for examining the molecular mechanisms of drought resistance in plants and improving agronomic traits.
Collapse
Affiliation(s)
- Han Wei
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, People's Republic of China
- College of Agronomy, Gansu Agricultural University, Lanzhou, People's Republic of China
| | - Xiao Wang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, People's Republic of China
- College of Agronomy, Gansu Agricultural University, Lanzhou, People's Republic of China
| | - Kaitong Wang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, People's Republic of China
- College of Agronomy, Gansu Agricultural University, Lanzhou, People's Republic of China
| | - Xun Tang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, People's Republic of China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, People's Republic of China
| | - Ning Zhang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, People's Republic of China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, People's Republic of China
| | - Huaijun Si
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, People's Republic of China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, People's Republic of China
| |
Collapse
|
4
|
Zhang Z, Xia Z, Zhou C, Wang G, Meng X, Yin P. Insights into Salinity Tolerance in Wheat. Genes (Basel) 2024; 15:573. [PMID: 38790202 PMCID: PMC11121000 DOI: 10.3390/genes15050573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 04/26/2024] [Accepted: 04/27/2024] [Indexed: 05/26/2024] Open
Abstract
Salt stress has a detrimental impact on food crop production, with its severity escalating due to both natural and man-made factors. As one of the most important food crops, wheat is susceptible to salt stress, resulting in abnormal plant growth and reduced yields; therefore, damage from salt stress should be of great concern. Additionally, the utilization of land in coastal areas warrants increased attention, given diminishing supplies of fresh water and arable land, and the escalating demand for wheat. A comprehensive understanding of the physiological and molecular changes in wheat under salt stress can offer insights into mitigating the adverse effects of salt stress on wheat. In this review, we summarized the genes and molecular mechanisms involved in ion transport, signal transduction, and enzyme and hormone regulation, in response to salt stress based on the physiological processes in wheat. Then, we surveyed the latest progress in improving the salt tolerance of wheat through breeding, exogenous applications, and microbial pathways. Breeding efficiency can be improved through a combination of gene editing and multiple omics techniques, which is the fundamental strategy for dealing with salt stress. Possible challenges and prospects in this process were also discussed.
Collapse
Affiliation(s)
| | | | | | | | | | - Pengcheng Yin
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China; (Z.Z.); (Z.X.); (C.Z.); (G.W.); (X.M.)
| |
Collapse
|
5
|
Di Baccio D, Lorenzi A, Scartazza A, Rosellini I, Franchi E, Barbafieri M. Morphophysiological Characterisation of Guayule ( Parthenium argentatum A. Gray) in Response to Increasing NaCl Concentrations: Phytomanagement and Phytodesalinisation in Arid and Semiarid Areas. PLANTS (BASEL, SWITZERLAND) 2024; 13:378. [PMID: 38337911 PMCID: PMC10856980 DOI: 10.3390/plants13030378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024]
Abstract
Water and soil salinity continuously rises due to climate change and irrigation with reused waters. Guayule (Parthenium argentatum A. Gray) is a desert perennial shrub native to northern Mexico and the southwestern United States; it is known worldwide for rubber production and is suitable for cultivation in arid and semiarid regions, such as the Mediterranean. In the present study, we investigated the effects of high and increasing concentrations of sodium chloride (NaCl) on the growth and the morphophysiological and biochemical characteristics of guayule to evaluate its tolerance to salt stress and suitability in phytomanagement and, eventually, the phytodesalinisation of salt-affected areas. Guayule originates from desert areas, but has not been found in salt-affected soils; thus, here, we tested the potential tolerance to salinity of this species, identifying the toxicity threshold and its possible sodium (Na) accumulation capacity. In a hydroponic floating root system, guayule seedlings were subjected to salinity-tolerance tests using increasing NaCl concentrations (from 2.5 to 40 g L-1 and from 43 to 684 mM). The first impairments in leaf morphophysiological traits appeared after adding 15 g L-1 (257 mM) NaCl, but the plants survived up to the hypersaline conditions of 35-40 g L-1 NaCl (about 600 mM). The distribution of major cell cations modulated the high Na content in the leaves, stems and roots; Na bioconcentration and translocation factors were close to one and greater than one, respectively. This is the first study on the morphophysiological and (bio)chemical response of guayule to different high and increasing levels of NaCl, showing the parameters and indices useful for identifying its salt tolerance threshold, adaptative mechanisms and reclamation potential in high-saline environments.
Collapse
Affiliation(s)
- Daniela Di Baccio
- Research Institute on Terrestrial Ecosystems, National Research Council of Italy (IRET-CNR), Via G. Moruzzi 1, 56124 Pisa, Italy; (A.L.); (A.S.); (I.R.)
| | - Aurora Lorenzi
- Research Institute on Terrestrial Ecosystems, National Research Council of Italy (IRET-CNR), Via G. Moruzzi 1, 56124 Pisa, Italy; (A.L.); (A.S.); (I.R.)
| | - Andrea Scartazza
- Research Institute on Terrestrial Ecosystems, National Research Council of Italy (IRET-CNR), Via G. Moruzzi 1, 56124 Pisa, Italy; (A.L.); (A.S.); (I.R.)
- National Biodiversity Future Center (NBFC), Piazza Marina 61, 90133 Palermo, Italy
| | - Irene Rosellini
- Research Institute on Terrestrial Ecosystems, National Research Council of Italy (IRET-CNR), Via G. Moruzzi 1, 56124 Pisa, Italy; (A.L.); (A.S.); (I.R.)
| | - Elisabetta Franchi
- Eni S.p.A., R&D Environmental & Biological Laboratories, Via Maritano 26, San Donato Milanese, 20097 Milan, Italy;
| | - Meri Barbafieri
- Research Institute on Terrestrial Ecosystems, National Research Council of Italy (IRET-CNR), Via G. Moruzzi 1, 56124 Pisa, Italy; (A.L.); (A.S.); (I.R.)
- National Biodiversity Future Center (NBFC), Piazza Marina 61, 90133 Palermo, Italy
| |
Collapse
|
6
|
Lu Y, Fricke W. Diurnal changes in apoplast bypass flow of water and ions in salt-stressed wheat (Triticum aestivum L.) and barley (Hordeum vulgare L.). PHYSIOLOGIA PLANTARUM 2023; 175:e13955. [PMID: 37323067 DOI: 10.1111/ppl.13955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/29/2023] [Accepted: 06/14/2023] [Indexed: 06/17/2023]
Abstract
The aim of the present study was to quantify the contribution of apoplastic bypass flow to the uptake of water and salt across the root cylinder of wheat and barley during day and night. Plants were grown on hydroponics until they were 14-17 days old and then analysed over a single day (16 h) or night (8 h) period while being exposed to different concentrations of NaCl (50, 100, 150 and 200 mM NaCl). Exposure to salt started just before the experiment (short-term stress) or had started 6d before (longer-term stress). Bypass flow was quantified using the apoplastic tracer dye 8-hydroxy-1,3,6-pyrenesulphonic acid (PTS). The percent contribution of bypass flow to root water uptake increased in response to salt stress and during the night and amounted to up to 4.4%. Bypass flow across the root cylinder of Na+ and Cl- made up 2%-12% of the net delivery of these ions to the shoot; this percentage changed little (wheat) or decreased (barley) during the night. Changes in the contribution of bypass flow to the net uptake of water, Na+ and Cl- in response to salt stress and day/night are the combined result of changes in xylem tension, the contribution of alternative cell-to-cell flow path and the requirement to generate xylem osmotic pressure.
Collapse
Affiliation(s)
- Yingying Lu
- School of Biology and Environmental Sciences, University College Dublin, Dublin, Republic of Ireland
| | - Wieland Fricke
- School of Biology and Environmental Sciences, University College Dublin, Dublin, Republic of Ireland
| |
Collapse
|
7
|
Guo H, Cui Y, Li Z, Nie C, Xu Y, Hu T. Photosynthesis, Water Status and K +/Na + Homeostasis of Buchoe dactyloides Responding to Salinity. PLANTS (BASEL, SWITZERLAND) 2023; 12:2459. [PMID: 37447020 DOI: 10.3390/plants12132459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 06/17/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023]
Abstract
Soil salinization is one of the most serious abiotic stresses restricting plant growth. Buffalograss is a C4 perennial turfgrass and forage with an excellent resistance to harsh environments. To clarify the adaptative mechanisms of buffalograss in response to salinity, we investigated the effects of NaCl treatments on photosynthesis, water status and K+/Na+ homeostasis of this species, then analyzed the expression of key genes involved in these processes using the qRT-PCR method. The results showed that NaCl treatments up to 200 mM had no obvious effects on plant growth, photosynthesis and leaf hydrate status, and even substantially stimulated root activity. Furthermore, buffalograss could retain a large amount of Na+ in roots to restrict Na+ overaccumulation in shoots, and increase leaf K+ concentration to maintain a high K+/Na+ ratio under NaCl stresses. After 50 and 200 mM NaCl treatments, the expressions of several genes related to chlorophyll synthesis, photosynthetic electron transport and CO2 assimilation, as well as aquaporin genes (BdPIPs and BdTIPs) were upregulated. Notably, under NaCl treatments, the increased expression of BdSOS1, BdHKT1 and BdNHX1 in roots might have helped Na+ exclusion by root tips, retrieval from xylem sap and accumulation in root cells, respectively; the upregulation of BdHAK5 and BdSKOR in roots likely enhanced K+ uptake and long-distance transport from roots to shoots, respectively. This work finds that buffalograss possesses a strong ability to sustain high photosynthetic capacity, water balance and leaf K+/Na+ homeostasis under salt stress, and lays a foundation for elucidating the molecular mechanism underlying the salt tolerance of buffalograss.
Collapse
Affiliation(s)
- Huan Guo
- College of Grassland Agriculture, Northwest A&F University, Xianyang 712100, China
| | - Yannong Cui
- College of Grassland Agriculture, Northwest A&F University, Xianyang 712100, China
| | - Zhen Li
- College of Grassland Agriculture, Northwest A&F University, Xianyang 712100, China
| | - Chunya Nie
- College of Grassland Agriculture, Northwest A&F University, Xianyang 712100, China
| | - Yuefei Xu
- College of Grassland Agriculture, Northwest A&F University, Xianyang 712100, China
| | - Tianming Hu
- College of Grassland Agriculture, Northwest A&F University, Xianyang 712100, China
| |
Collapse
|
8
|
Acevedo O, Contreras RA, Stange C. The Carrot Phytoene Synthase 2 ( DcPSY2) Promotes Salt Stress Tolerance through a Positive Regulation of Abscisic Acid and Abiotic-Related Genes in Nicotiana tabacum. PLANTS (BASEL, SWITZERLAND) 2023; 12:1925. [PMID: 37653842 PMCID: PMC10220825 DOI: 10.3390/plants12101925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/09/2023] [Accepted: 04/24/2023] [Indexed: 08/13/2023]
Abstract
Background: Carotenoids, which are secondary metabolites derived from isoprenoids, play a crucial role in photo-protection and photosynthesis, and act as precursors for abscisic acid, a hormone that plays a significant role in plant abiotic stress responses. The biosynthesis of carotenoids in higher plants initiates with the production of phytoene from two geranylgeranyl pyrophosphate molecules. Phytoene synthase (PSY), an essential catalytic enzyme in the process, regulates this crucial step in the pathway. In Daucus carota L. (carrot), two PSY genes (DcPSY1 and DcPSY2) have been identified but only DcPSY2 expression is induced by ABA. Here we show that the ectopic expression of DcPSY2 in Nicotiana tabacum L. (tobacco) produces in L3 and L6 a significant increase in total carotenoids and chlorophyll a, and a significant increment in phytoene in the T1L6 line. Tobacco transgenic T1L3 and T1L6 lines subjected to chronic NaCl stress showed an increase of between 2 and 3- and 6-fold in survival rate relative to control lines, which correlates directly with an increase in the expression of endogenous carotenogenic and abiotic-related genes, and with ABA levels. Conclusions: These results provide evidence of the functionality of DcPSY2 in conferring salt stress tolerance in transgenic tobacco T1L3 and T1L6 lines.
Collapse
Affiliation(s)
- Orlando Acevedo
- Centro de Biología Molecular Vegetal, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago 7750000, Chile
- Laboratorio de Biología Vegetal e Innovación en Sistemas Agroalimentario, Instituto de Nutrición de los Alimentos (INTA), Universidad de Chile, El Líbano 5524, Macul, Santiago 7750000, Chile
| | - Rodrigo A. Contreras
- Research Unit, Department of R&D, The Not Company SpA (NotCo), Avenida Quilin 3550, Macul, Santiago 7750000, Chile
| | - Claudia Stange
- Centro de Biología Molecular Vegetal, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago 7750000, Chile
| |
Collapse
|
9
|
Weng H, Wu M, Li X, Wu L, Li J, Atoba TO, Zhao J, Wu R, Ye D. High-throughput phenotyping salt tolerance in JUNCAOs by combining prompt chlorophyll a fluorescence with hyperspectral spectroscopy. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 330:111660. [PMID: 36822504 DOI: 10.1016/j.plantsci.2023.111660] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 02/15/2023] [Accepted: 02/19/2023] [Indexed: 06/18/2023]
Abstract
The planting of salt-tolerant plants is regarded as the one of important measurements to improve the saline-alkali lands. The outstanding biological properties of JUNCAOs have made them candidates to improve and utilize saline-alkali lands. At present, little attention has been paid to developing a non-destructive and high throughput approach to evaluate the salt tolerance of JUNCAO. To close the gaps, three typical JUNCAOs (A.donax. No.1, A.donax. No.5 and A.donax. No.10) were evaluated by combining prompt chlorophyll a fluorescence (ChlF) with hyperspectral spectroscopy (HS). The results showed that salt stress reduced relative stem growth, water content, and total chlorophyll content but enhanced the malondialdehyde (MDA) content. It caused a significant change in chlorophyll a fluorescence kinetics with an appearance of L-, K- and J-band, implying damaging energetic connectivity between PSII units, uncoupling of the oxygen evolving complex (OEC) and inhibition of the QA-reoxidation. The negative impact of salt stress on JUNCAOs increased with the increasing level of salt concentration. Effect on spectral reflectance in the in the visible region with shifts on red edge position (REP) and blue edge position (BEP) to shorter wavelength was also found in salt stress plants. Combining principal component analysis (PCA) with the membership function method based on spectral indices and JIP-test parameters could well screen JUNCAOs salt tolerant ability with the highest for A.donax. NO.10 but lowest for A.donax. NO.1, which was the same as that of using conventional approach. The results demonstrate that prompt ChlF coupling with HS could provide potentials for non-invasively and high-throughput phenotyping salt tolerance in JUNCAOs.
Collapse
Affiliation(s)
- Haiyong Weng
- College of Mechanical and Electrical Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Key Laboratory of Agricultural Information Sensoring Technology, College of Mechanical and Electrical Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Mingyang Wu
- College of Mechanical and Electrical Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Key Laboratory of Agricultural Information Sensoring Technology, College of Mechanical and Electrical Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Xiaobin Li
- College of Mechanical and Electrical Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Key Laboratory of Agricultural Information Sensoring Technology, College of Mechanical and Electrical Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Libin Wu
- College of Mechanical and Electrical Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Key Laboratory of Agricultural Information Sensoring Technology, College of Mechanical and Electrical Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Jiayi Li
- College of Mechanical and Electrical Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Key Laboratory of Agricultural Information Sensoring Technology, College of Mechanical and Electrical Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Tolulope Opeyemi Atoba
- College of Mechanical and Electrical Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Key Laboratory of Agricultural Information Sensoring Technology, College of Mechanical and Electrical Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Jining Zhao
- College of Mechanical and Electrical Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Key Laboratory of Agricultural Information Sensoring Technology, College of Mechanical and Electrical Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - RenYe Wu
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Dapeng Ye
- College of Mechanical and Electrical Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Key Laboratory of Agricultural Information Sensoring Technology, College of Mechanical and Electrical Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
| |
Collapse
|
10
|
Lu Y, Fricke W. Salt Stress-Regulation of Root Water Uptake in a Whole-Plant and Diurnal Context. Int J Mol Sci 2023; 24:ijms24098070. [PMID: 37175779 PMCID: PMC10179082 DOI: 10.3390/ijms24098070] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 04/25/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
This review focuses on the regulation of root water uptake in plants which are exposed to salt stress. Root water uptake is not considered in isolation but is viewed in the context of other potential tolerance mechanisms of plants-tolerance mechanisms which relate to water relations and gas exchange. Plants spend between one third and half of their lives in the dark, and salt stress does not stop with sunset, nor does it start with sunrise. Surprisingly, how plants deal with salt stress during the dark has received hardly any attention, yet any growth response to salt stress over days, weeks, months and years is the integrative result of how plants perform during numerous, consecutive day/night cycles. As we will show, dealing with salt stress during the night is a prerequisite to coping with salt stress during the day. We hope to highlight with this review not so much what we know, but what we do not know; and this relates often to some rather basic questions.
Collapse
Affiliation(s)
- Yingying Lu
- School of Biology and Environmental Science, University College Dublin (UCD), Belfield, D04 N2E5 Dublin, Ireland
| | - Wieland Fricke
- School of Biology and Environmental Science, University College Dublin (UCD), Belfield, D04 N2E5 Dublin, Ireland
| |
Collapse
|
11
|
Xu L, Zhang L, Liu Y, Sod B, Li M, Yang T, Gao T, Yang Q, Long R. Overexpression of the elongation factor MtEF1A1 promotes salt stress tolerance in Arabidopsis thaliana and Medicago truncatula. BMC PLANT BIOLOGY 2023; 23:138. [PMID: 36907846 PMCID: PMC10009949 DOI: 10.1186/s12870-023-04139-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Elongation factor 1 A (EF1A), an essential regulator for protein synthesis, has been reported to participate in abiotic stress responses and environmental adaption in plants. However, the role of EF1A in abiotic stress response was barely studied in Medicago truncatula. Here, we identified elongation factor (EF) genes of M. truncatula and studied the salt stress response function of MtEF1A1 (MTR_6g021805). RESULTS A total of 34 EF genes were identified in the M. truncatula genome. Protein domains and motifs of EFs were highly conserved in plants. MtEF1A1 has the highest expression levels in root nodules and roots, followed by the leaves and stems. Transgenic Arabidopsis thaliana overexpressing MtEF1A1 was more resistant to salt stress treatment, with higher germination rate, longer roots, and more lateral roots than wild type plant. In addition, lower levels of H2O2 and malondialdehyde (MDA) were also detected in transgenic Arabidopsis. Similarly, MtEF1A1 overexpressing M. truncatula was more resistant to salt stress and had lower levels of reactive oxygen species (ROS) in leaves. Furthermore, the expression levels of abiotic stress-responsive genes (MtRD22A and MtCOR15A) and calcium-binding genes (MtCaM and MtCBL4) were upregulated in MtEF1A1 overexpressing lines of M. truncatula. CONCLUSION These results suggested that MtEF1A1 play a positive role in salt stress regulation. MtEF1A1 may realize its function by binding to calmodulin (CaM) or by participating in Ca2+-dependent signaling pathway. This study revealed that MtEF1A1 is an important regulator for salt stress response in M. truncatula, and provided potential strategy for salt-tolerant plant breeding.
Collapse
Affiliation(s)
- Lei Xu
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, China
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100000, China
| | - Lixia Zhang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100000, China
| | - Yajiao Liu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100000, China
| | - Bilig Sod
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100000, China
| | - Mingna Li
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100000, China
| | - Tianhui Yang
- Institute of Animal Sciences, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, 750000, China
| | - Ting Gao
- Institute of Animal Sciences, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, 750000, China
| | - Qingchuan Yang
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, China
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100000, China
| | - Ruicai Long
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100000, China.
| |
Collapse
|
12
|
Lu Y, Fricke W. Changes in root hydraulic conductivity in wheat (Triticum aestivum L.) in response to salt stress and day/night can best be explained through altered activity of aquaporins. PLANT, CELL & ENVIRONMENT 2023; 46:747-763. [PMID: 36600451 PMCID: PMC10107167 DOI: 10.1111/pce.14535] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 12/07/2022] [Accepted: 01/01/2023] [Indexed: 05/27/2023]
Abstract
Salt stress reduces plant water flow during day and night. It is not known to which extent root hydraulic properties change in parallel. To test this idea, hydroponically grown wheat plants were grown at four levels of salt stress (50, 100, 150 and 200 mM NaCl) for 5-8d before harvest (d14-18) and subjected to a range of analyses to determine diurnal changes in hydraulic conductivity (Lp) at cell, root and plant level. Cell pressure probe analyses showed that the Lp of cortex cells was differentially affected by salt stress during day and night, and that the response to salt stress differed between the main axis of roots and lateral roots. The Aquaporin (AQP) inhibitor H2 O2 reduced Lp to a common, across treatments, level as observed in salt-stressed plants during the night. Analyses of transpiring plants and exuding root systems provided values of root Lp which were in the same range as values modeled based on cell-Lp. The results can best be explained through a change in root Lp in response to salt stress and day/night, which results from an altered activity of AQPs. qPCR gene expression analyses point to possible candidate AQP isoforms.
Collapse
Affiliation(s)
- Yingying Lu
- School of Biology and Environmental SciencesUniversity College DublinDublinIreland
| | - Wieland Fricke
- School of Biology and Environmental SciencesUniversity College DublinDublinIreland
| |
Collapse
|
13
|
Lu Y, Jeffers R, Raju A, Kenny T, Ratchanniyasamu E, Fricke W. Does night-time transpiration provide any benefit to wheat (Triticum aestivum L.) plants which are exposed to salt stress? PHYSIOLOGIA PLANTARUM 2023; 175:e13839. [PMID: 36511643 PMCID: PMC10107941 DOI: 10.1111/ppl.13839] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 12/09/2022] [Indexed: 05/27/2023]
Abstract
The study aimed to test whether night-time transpiration provides any potential benefit to wheat plants which are subjected to salt stress. Hydroponically grown wheat plants were grown at four levels of salt stress (50, 100, 150, and 200 mM NaCl) for 5-8 days prior to harvest (day 14-18). Salt stress caused large decreases in transpiration and leaf elongation rates during day and night. The quantitative relation between the diurnal use of water for transpiration and leaf growth was comparatively little affected by salt. Night-time transpirational water loss occurred predominantly through stomata in support of respiration. Diurnal gas exchange and leaf growth were functionally linked to each other through the provision of resources (carbon, energy) and an increase in leaf surface area. Diurnal rates of water use associated with leaf cell expansive growth were highly correlated with the water potential of the xylem, which was dominated by the tension component. The tissue-specific expression level of nine candidate aquaporin genes in elongating and mature leaf tissue was little affected by salt stress or day/night changes. Growing plants under conditions of reduced night-time transpirational water loss by increasing the relative humidity (RH) during the night to 95% had little effect on the growth response to salt stress, nor was the accumulation of Na+ and Cl- in shoot tissue altered. We conclude that night-time gas exchange supports the growth in leaf area over a 24 h day/night period. Night-time transpirational water loss neither decreases nor increases the tolerance to salt stress in wheat.
Collapse
Affiliation(s)
- Yingying Lu
- School of Biology and Environmental SciencesUniversity College DublinDublinRepublic of Ireland
| | - Ruth Jeffers
- School of Biology and Environmental SciencesUniversity College DublinDublinRepublic of Ireland
| | - Anakha Raju
- School of Biology and Environmental SciencesUniversity College DublinDublinRepublic of Ireland
| | - Tamara Kenny
- School of Biology and Environmental SciencesUniversity College DublinDublinRepublic of Ireland
| | | | - Wieland Fricke
- School of Biology and Environmental SciencesUniversity College DublinDublinRepublic of Ireland
| |
Collapse
|
14
|
Sharipova G, Ivanov R, Veselov D, Akhiyarova G, Seldimirova O, Galin I, Fricke W, Vysotskaya L, Kudoyarova G. Effect of Salinity on Stomatal Conductance, Leaf Hydraulic Conductance, HvPIP2 Aquaporin, and Abscisic Acid Abundance in Barley Leaf Cells. Int J Mol Sci 2022; 23:ijms232214282. [PMID: 36430758 PMCID: PMC9694007 DOI: 10.3390/ijms232214282] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022] Open
Abstract
The stomatal closure of salt-stressed plants reduces transpiration bringing about the maintenance of plant tissue hydration. The aim of this work was to test for any involvement of aquaporins (AQPs) in stomatal closure under salinity. The changes in the level of aquaporins in the cells were detected with the help of an immunohistochemical technique using antibodies against HvPIP2;2. In parallel, leaf sections were stained for abscisic acid (ABA). The effects of salinity were compared to those of exogenously applied ABA on leaf HvPIP2;2 levels and the stomatal and leaf hydraulic conductance of barley plants. Salinity reduced the abundance of HvPIP2;2 in the cells of the mestome sheath due to it being the more likely hydraulic barrier due to the deposition of lignin, accompanied by a decline in the hydraulic conductivity, transpiration, and ABA accumulation. The effects of exogenous ABA differed from those of salinity. This hormone decreased transpiration but increased the shoot hydraulic conductivity and PIP2;2 abundance. The difference in the action of the exogenous hormone and salinity may be related to the difference in the ABA distribution between leaf cells, with the hormone accumulating mainly in the mesophyll of salt-stressed plants and in the cells of the bundle sheaths of ABA-treated plants. The obtained results suggest the following succession of events: salinity decreases water flow into the shoots due to the decreased abundance of PIP2;2 and hydraulic conductance, while the decline in leaf hydration leads to the production of ABA in the leaves and stomatal closure.
Collapse
Affiliation(s)
- Guzel Sharipova
- Ufa Institute of Biology of Ufa Federal Research Centre of the Russian Academy of Sciences, pr. Octyabrya 69, 450054 Ufa, Russia
| | - Ruslan Ivanov
- Ufa Institute of Biology of Ufa Federal Research Centre of the Russian Academy of Sciences, pr. Octyabrya 69, 450054 Ufa, Russia
| | - Dmitriy Veselov
- Ufa Institute of Biology of Ufa Federal Research Centre of the Russian Academy of Sciences, pr. Octyabrya 69, 450054 Ufa, Russia
| | - Guzel Akhiyarova
- Ufa Institute of Biology of Ufa Federal Research Centre of the Russian Academy of Sciences, pr. Octyabrya 69, 450054 Ufa, Russia
| | - Oksana Seldimirova
- Ufa Institute of Biology of Ufa Federal Research Centre of the Russian Academy of Sciences, pr. Octyabrya 69, 450054 Ufa, Russia
| | - Ilshat Galin
- Ufa Institute of Biology of Ufa Federal Research Centre of the Russian Academy of Sciences, pr. Octyabrya 69, 450054 Ufa, Russia
| | - Wieland Fricke
- School of Biology and Environmental Science, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland
| | - Lidiya Vysotskaya
- Ufa Institute of Biology of Ufa Federal Research Centre of the Russian Academy of Sciences, pr. Octyabrya 69, 450054 Ufa, Russia
| | - Guzel Kudoyarova
- Ufa Institute of Biology of Ufa Federal Research Centre of the Russian Academy of Sciences, pr. Octyabrya 69, 450054 Ufa, Russia
- Correspondence: ; Tel.: +7-347-235-53-62
| |
Collapse
|
15
|
Overview of Identified Genomic Regions Associated with Various Agronomic and Physiological Traits in Barley under Abiotic Stresses. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12105189] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Climate change has caused breeders to focus on varieties that are able to grow under unfavorable conditions, such as drought, high and low temperatures, salinity, and other stressors. In recent decades, progress in biotechnology and its related tools has provided opportunities to dissect and decipher the genetic basis of tolerance to various stress conditions. One such approach is the identification of genomic regions that are linked with specific or multiple characteristics. Cereal crops have a key role in supplying the energy required for human and animal populations. However, crop products are dramatically affected by various environmental stresses. Barley (Hordeum vulgare L.) is one of the oldest domesticated crops that is cultivated globally. Research has shown that, compared with other cereals, barley is well adapted to various harsh environmental conditions. There is ample literature regarding these responses to abiotic stressors, as well as the genomic regions associated with the various morpho-physiological and biochemical traits of stress tolerance. This review focuses on (i) identifying the tolerance mechanisms that are important for stable growth and development, and (ii) the applicability of QTL mapping and association analysis in identifying genomic regions linked with stress-tolerance traits, in order to help breeders in marker-assisted selection (MAS) to quickly screen tolerant germplasms in their breeding cycles. Overall, the information presented here will inform and assist future barley breeding programs.
Collapse
|
16
|
Mohseni A, Fan L, Roddick FA. Impact of microalgae species and solution salinity on algal treatment of wastewater reverse osmosis concentrate. CHEMOSPHERE 2021; 285:131487. [PMID: 34273703 DOI: 10.1016/j.chemosphere.2021.131487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 06/24/2021] [Accepted: 07/06/2021] [Indexed: 06/13/2023]
Abstract
Six common microalgal species, including freshwater microalgae Scenedesmus abundans, Chlorella vulgaris, Chlamydomonas reinhardtii and Coelastrum microporum, and marine microalgae Nannochloropsis salina and Dunaliella tertiolecta, were tested in batch treatment to identify the most promising species for remediating a municipal wastewater reverse osmosis concentrate (ROC). Selected species were then studied at different ROC salinity levels (5, 10, and 15 g TDS/L) in semi-continuous treatment to evaluate their potential for nutrient remediation, and biogas production through anaerobic digestion. S. abundans, C. vulgaris, and N. salina showed higher potential for growth and nutrient remediation under salinity stress. Further tests revealed that N. salina adapted well to ROC conditions, and S. abundans could grow better and had higher tolerance to the elevated salinity than C. vulgaris. S. abundans and N. salina performed better for removing nutrients and organic matter (11.5-18 mg/L/d TN, 7.1-8.2 mg/L/d TP, and 8.6-12.4 mg/L/d DOC). Increasing salinity led to growth inhibition and N uptake reduction for freshwater species but had no significant effect on TP removal. Biochemical methane potential tests showed the algal biomass produced a significant amount of methane (e.g., up to 422 mL CH4/g VS for N. salina), suggesting the algae generated from the ROC treatment could produce significant amounts of energy through anaerobic digestion without the need for pretreatment. This study showed the environmental and economic potential of the algal system for future applications.
Collapse
Affiliation(s)
- Arash Mohseni
- WETT Research Centre, School of Engineering, RMIT University, Melbourne, VIC, 3001, Australia
| | - Linhua Fan
- WETT Research Centre, School of Engineering, RMIT University, Melbourne, VIC, 3001, Australia.
| | - Felicity A Roddick
- WETT Research Centre, School of Engineering, RMIT University, Melbourne, VIC, 3001, Australia
| |
Collapse
|
17
|
Burke S, Sadaune E, Rognon L, Fontana A, Jourdrin M, Fricke W. A redundant hydraulic function of root hairs in barley plants grown in hydroponics. FUNCTIONAL PLANT BIOLOGY : FPB 2021; 48:448-459. [PMID: 33347805 DOI: 10.1071/fp20287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 11/25/2020] [Indexed: 06/12/2023]
Abstract
The root hair-less brb of Hordeum vulgare L. (bald root barley) mutant was used to assess the significance that root hairs have for the hydraulic properties of roots and response to a limited supply of mineral nutrients in plants grown on hydroponics. The barley brb mutant and its parent wild-type (H. vulgare cv. Pallas) were grown under nutrient sufficient control conditions, and under conditions of low supply of P and N. Plants were analysed when they were 14-18 days old. Root hydraulic conductivity (Lp) was determined for excised root systems and intact transpiring plants, and cell Lp was determined through cell pressure probe measurements. The formation of Casparian bands and suberin lamellae was followed through staining of cross-sections. The presence or absence of root hairs had no effect on the overall hydraulic response of plants to nutritional treatments. Root and cell Lp did not differ between the two genotypes. The most apparent difference between brb and wild-type plants was the consistently reduced formation of apoplastic barriers in brb plants. Any hydraulic function of root hairs can be redundant in barley, at least under the hydroponic conditions tested.
Collapse
Affiliation(s)
- Shannon Burke
- School of Biology and Environmental Sciences, University College Dublin, Belfield, Dublin 4, Republic of Ireland
| | - Emma Sadaune
- School of Biology and Environmental Sciences, University College Dublin, Belfield, Dublin 4, Republic of Ireland
| | - Lisa Rognon
- School of Biology and Environmental Sciences, University College Dublin, Belfield, Dublin 4, Republic of Ireland
| | - Alexane Fontana
- School of Biology and Environmental Sciences, University College Dublin, Belfield, Dublin 4, Republic of Ireland
| | - Marianne Jourdrin
- School of Biology and Environmental Sciences, University College Dublin, Belfield, Dublin 4, Republic of Ireland
| | - Wieland Fricke
- School of Biology and Environmental Sciences, University College Dublin, Belfield, Dublin 4, Republic of Ireland; and Corresponding author.
| |
Collapse
|
18
|
Hussain MI, Reigosa MJ. Secondary Metabolites, Ferulic Acid and p-Hydroxybenzoic Acid Induced Toxic Effects on Photosynthetic Process in Rumex acetosa L. Biomolecules 2021; 11:biom11020233. [PMID: 33562880 PMCID: PMC7915730 DOI: 10.3390/biom11020233] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 01/30/2021] [Accepted: 02/02/2021] [Indexed: 11/26/2022] Open
Abstract
The elimination of broadleaf weeds from agricultural fields has become an urgent task in plant and environment protection. Allelopathic control is considered a potential approach because of its exclusive and ecological safety measures. Plant secondary metabolites also called allelochemicals are released from plant leaves, roots, stem, bark, flowers and play significant roles in soil rhizosphere signaling, chemical ecology, and plant defense. The present study was carried out to evaluate the impact of two allelochemicals; ferulic acid (FA) and p-hydroxybenzoic acid (pHBA) on photosynthetic characteristics; Fv/Fm: efficiency of photosystem II photochemistry in the dark-adapted state; ΦPSII: photosynthetic quantum yield; NPQ, non-photochemical quenching; qP, photochemical quenching, and photon energy dissipation (1−qP)/NPQ in Rumex acetosa following 6 days exposure. R. acetosa seedlings were grown in perlite culture, irrigated with Hoagland solution and treated with allelopathic compounds FA and pHBA and were evaluated against the photosynthetic attributes. Both compounds behaved as potent inhibitors of photosynthetic traits such as Fv/Fm, ΦPSII, qP, and NPQ in R. acetosa. Photon energy dissipation (1−qP)/NPQ increased significantly from days 3 to 6. Higher dissipation of absorbed energy indicates the inactivation state of reaction centers and their inability to effectively use the absorbed energy in photosynthesis. These results indicated the potential allelopathic application of FA and pHBA for control of broadleaf weed, Rumex acetosa.
Collapse
Affiliation(s)
- M. Iftikhar Hussain
- Department of Plant Biology and Soil Science, Faculty of Biology, University of Vigo, Campus Lagoas-Marcosende, 36310 Vigo, Spain;
- CITACA, Agri-Food Research and Transfer Cluster, Campus da Auga, University of Vigo, 32004 Ourense, Spain
- Correspondence:
| | - Manuel J. Reigosa
- Department of Plant Biology and Soil Science, Faculty of Biology, University of Vigo, Campus Lagoas-Marcosende, 36310 Vigo, Spain;
| |
Collapse
|
19
|
Knipfer T, Danjou M, Vionne C, Fricke W. Salt stress reduces root water uptake in barley (Hordeum vulgare L.) through modification of the transcellular transport path. PLANT, CELL & ENVIRONMENT 2021; 44:458-475. [PMID: 33140852 DOI: 10.1111/pce.13936] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 10/24/2020] [Indexed: 05/21/2023]
Abstract
The aim of the study was to understand the hydraulic response to salt stress of the root system of the comparatively salt-tolerant crop barley (Hordeum vulgare L.). We focused on the transcellular path of water movement across the root cylinder that involves the crossing of membranes. This path allows for selective water uptake, while excluding salt ions. Hydroponically grown plants were exposed to 100 mM NaCl for 5-7 days and analysed when 15-17 days old. A range of complementary and novel approaches was used to determine hydraulic conductivity (Lp). This included analyses at cell, root and plant level and modelling of water flow. Apoplastic barrier formation and gene expression level of aquaporins (AQPs) was analysed. Salt stress reduced the Lp of root system through reducing water flow along the transcellular path. This involved changes in the activity and gene expression level of AQPs. Modelling of root-Lp showed that the reduction in root-Lp did not require added hydraulic resistances through apoplastic barriers at the endodermis. The bulk of data points to a near-perfect semi-permeability of roots of control plants (solute reflection coefficient σ ~1.0). Roots of salt-stressed plants are almost as semi-permeable (σ > 0.8).
Collapse
Affiliation(s)
- Thorsten Knipfer
- School of Biology and Environmental Sciences, University College Dublin, Dublin, Ireland
- Department of Viticulture & Enology, University of California, Davis, California, USA
- Faculty of Land and Food Systems, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Mathieu Danjou
- School of Biology and Environmental Sciences, University College Dublin, Dublin, Ireland
| | - Charles Vionne
- School of Biology and Environmental Sciences, University College Dublin, Dublin, Ireland
| | - Wieland Fricke
- School of Biology and Environmental Sciences, University College Dublin, Dublin, Ireland
| |
Collapse
|
20
|
Silva BRS, Batista BL, Lobato AKS. Anatomical changes in stem and root of soybean plants submitted to salt stress. PLANT BIOLOGY (STUTTGART, GERMANY) 2021; 23:57-65. [PMID: 32841475 DOI: 10.1111/plb.13176] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 08/03/2020] [Indexed: 06/11/2023]
Abstract
The soybean is a legume that is widely cultivated in many countries due to the high levels of protein and oil contained in its seed, and is used for human and animal nutrition. However, salinity affects more than 800 million hectares worldwide, limiting global agricultural production. The aim of this research was to evaluate the structural behaviour of the roots and stems under progressive salt stress, detailing the possible anatomical modifications to these organs in soybean plants during this stress. The plants were randomized into five treatments (0, 50, 100, 150 and 200 mm NaCl). All the root regions studied and exposed to 100 mm Na+ exhibited increases in the epidermis and endodermis and formation of lysogenic aerenchyma with increasing salinity, revealing the protective roles of these structures in reducing Na+ influx. In the stem, increases in the cortex and pith in the first internode subject to 100 mm Na+ suggest anatomical responses that aim to minimize oxidative stress. Soybean plants subjected to progressive salt stress (>50 mm Na+ ) avoided cavitation and loss of function linked to vessel elements, reducing the metaxylem in all the root and stem regions analysed. Finally, our results confirm anatomical changes to the roots and stems.
Collapse
Affiliation(s)
- B R S Silva
- Núcleo de Pesquisa Vegetal Básica e Aplicada, Universidade Federal Rural da Amazônia. Paragominas, Pará, Brazil
| | - B L Batista
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, São Paulo, Brazil
| | - A K S Lobato
- Núcleo de Pesquisa Vegetal Básica e Aplicada, Universidade Federal Rural da Amazônia. Paragominas, Pará, Brazil
| |
Collapse
|
21
|
Knipfer T, Bambach N, Hernandez MI, Bartlett MK, Sinclair G, Duong F, Kluepfel DA, McElrone AJ. Predicting Stomatal Closure and Turgor Loss in Woody Plants Using Predawn and Midday Water Potential. PLANT PHYSIOLOGY 2020; 184:881-894. [PMID: 32764130 PMCID: PMC7536669 DOI: 10.1104/pp.20.00500] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 07/21/2020] [Indexed: 05/03/2023]
Abstract
Knowledge about physiological stress thresholds provides crucial information about plant performance and survival under drought. In this study, we report on the triphasic nature of the relationship between plant water potential (Ψ) at predawn and midday and describe a method that predicts Ψ at stomatal closure and turgor loss exclusively from this water potential curve (WP curve). The method is based on a piecewise linear regression model that was developed to predict the boundaries (termed Θ1 and Θ2) separating the three phases of the curve and corresponding slope values. The method was tested for three economically important woody species. For all species, midday Ψ was much more negative than predawn Ψ during phase I (mild drought), reductions in midday Ψ were minor while predawn Ψ continued to decline during phase II (moderate drought), and midday and predawn Ψ reached similar values during phase III (severe drought). Corresponding measurement of leaf gas exchange indicated that boundary Θ1 between phases I and II coincided with Ψ at stomatal closure. Data from pressure-volume curves demonstrated that boundary Θ2 between phases II and III predicted Ψ at leaf turgor loss. The WP curve method described here is an advanced application of the Scholander-type pressure chamber to categorize plant dehydration under drought into three distinct phases and to predict Ψ thresholds of stomatal closure and turgor loss.
Collapse
Affiliation(s)
- Thorsten Knipfer
- Department of Viticulture and Enology, University of California, Davis, California 95616
- Faculty of Land and Food Systems, The University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Nicolas Bambach
- Department of Viticulture and Enology, University of California, Davis, California 95616
| | - M Isabel Hernandez
- Department of Viticulture and Enology, University of California, Davis, California 95616
| | - Megan K Bartlett
- Department of Viticulture and Enology, University of California, Davis, California 95616
| | - Gabriela Sinclair
- Department of Viticulture and Enology, University of California, Davis, California 95616
| | - Fiona Duong
- Department of Viticulture and Enology, University of California, Davis, California 95616
| | - Daniel A Kluepfel
- United States Department of Agriculture-Agricultural Research Service, Crops Pathology and Genetics Research Unit, Davis, California 95616
| | - Andrew J McElrone
- Department of Viticulture and Enology, University of California, Davis, California 95616
- United States Department of Agriculture-Agricultural Research Service, Crops Pathology and Genetics Research Unit, Davis, California 95616
| |
Collapse
|
22
|
Li P, Zhu Y, Song X, Song F. Negative effects of long-term moderate salinity and short-term drought stress on the photosynthetic performance of Hybrid Pennisetum. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 155:93-104. [PMID: 32745934 DOI: 10.1016/j.plaphy.2020.06.033] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/19/2020] [Accepted: 06/19/2020] [Indexed: 05/24/2023]
Abstract
Plants are always suffering periods of soil water deficit and sustained soil salinity during their life cycle. Unraveling the mechanisms underpinning the responses of plants, especially the photosynthesis, to drought, salinity, and co-occurring stresses is critical for both the protection of natural vegetation and the stabilization of crop production. To better understand the downregulation of photosynthetic capability induced by soil salinity and drought, gas exchange parameters, leaf pigment contents, and chlorophyll (Chl) a fluorescence transients were analyzed in leaves of Hybrid Pennisetum. Our results showed that long-term moderate salinity, short-term drought, and the combination of these stressors decreased leaf pigment content by 11.4-31.5% and net photosynthetic rate (Pn) by 14.6-67.6% compared to those in untreated plants. The reduction of Pn in Hybrid Pennisetum under long-term salinity stress mainly occurred by stomatal limitation, whereas non-stomatal limitation played a dominant role under short-term drought stress. The changes in Chl a fluorescence kinetics (especially the appearance of the L-band and K-band) in both stress treatments showed that salinity and drought stress damaged the structural stability of photosystem II (PSII) and disturbed the equilibrium between the electrons at the acceptor and donor sides of PSII. Furthermore, although the negative effect of drought stress on leaf photosynthesis was much greater than that of salinity stress, moderate salt stress alleviated the negative effect of drought stress on the photosynthetic performance of Hybrid Pennisetum after long acclimation times.
Collapse
Affiliation(s)
- Peidong Li
- College of Resources and Environment, Shandong Agricultural University, Tai'an, 271018, People's Republic of China
| | - Yufei Zhu
- College of Resources and Environment, Shandong Agricultural University, Tai'an, 271018, People's Republic of China
| | - Xiliang Song
- College of Resources and Environment, Shandong Agricultural University, Tai'an, 271018, People's Republic of China.
| | - Fupeng Song
- College of Resources and Environment, Shandong Agricultural University, Tai'an, 271018, People's Republic of China.
| |
Collapse
|
23
|
Baca Cabrera JC, Hirl RT, Zhu J, Schäufele R, Schnyder H. Atmospheric CO 2 and VPD alter the diel oscillation of leaf elongation in perennial ryegrass: compensation of hydraulic limitation by stored-growth. THE NEW PHYTOLOGIST 2020; 227:1776-1789. [PMID: 32369620 DOI: 10.1111/nph.16639] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 04/26/2020] [Indexed: 06/11/2023]
Abstract
We explored the effects of atmospheric CO2 concentration (Ca ) and vapor pressure deficit (VPD) on putative mechanisms controlling leaf elongation in perennial ryegrass. Plants were grown in stands at a Ca of 200, 400 or 800 μmol mol-1 combined with high (1.17 kPa) or low (0.59 kPa) VPD during the 16 h-day in well-watered conditions with reduced nitrogen supply. We measured day : night-variation of leaf elongation rate (LERday : LERnight ), final leaf length and width, epidermal cell number and length, stomatal conductance, transpiration, leaf water potential and water-soluble carbohydrates and osmotic potential in the leaf growth-and-differentiation zone (LGDZ). Daily mean LER or morphometric parameters did not differ between treatments, but LERnight strongly exceeded LERday , particularly at low Ca and high VPD. Across treatments LERday was negatively related to transpiration (R2 = 0.75) and leaf water potential (R2 = 0.81), while LERnight was independent of leaf water potential or turgor. Enhancement of LERnight over LERday was proportional to the turgor-change between day and night (R2 = 0.93). LGDZ sugar concentration was high throughout diel cycles, providing no evidence of source limitation in any treatment. Our data indicate a mechanism of diel cycling between daytime hydraulic and night-time stored-growth controls of LER, buffering Ca and daytime VPD effects on leaf elongation.
Collapse
Affiliation(s)
- Juan C Baca Cabrera
- Lehrstuhl für Grünlandlehre, Technische Universität München, Alte Akademie 12, Freising-Weihenstephan, 85354, Germany
| | - Regina T Hirl
- Lehrstuhl für Grünlandlehre, Technische Universität München, Alte Akademie 12, Freising-Weihenstephan, 85354, Germany
| | - Jianjun Zhu
- Lehrstuhl für Grünlandlehre, Technische Universität München, Alte Akademie 12, Freising-Weihenstephan, 85354, Germany
| | - Rudi Schäufele
- Lehrstuhl für Grünlandlehre, Technische Universität München, Alte Akademie 12, Freising-Weihenstephan, 85354, Germany
| | - Hans Schnyder
- Lehrstuhl für Grünlandlehre, Technische Universität München, Alte Akademie 12, Freising-Weihenstephan, 85354, Germany
| |
Collapse
|
24
|
Ghassemi-Golezani K, Hosseinzadeh-Mahootchi A, Farhangi-Abriz S. Chlorophyll a fluorescence of safflower affected by salt stress and hormonal treatments. SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-3133-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
25
|
Huang L, Wu DZ, Zhang GP. Advances in studies on ion transporters involved in salt tolerance and breeding crop cultivars with high salt tolerance. J Zhejiang Univ Sci B 2020; 21:426-441. [PMID: 32478490 PMCID: PMC7306632 DOI: 10.1631/jzus.b1900510] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 12/27/2019] [Accepted: 12/27/2019] [Indexed: 11/11/2022]
Abstract
Soil salinity is a global major abiotic stress threatening crop productivity. In salty conditions, plants may suffer from osmotic, ionic, and oxidative stresses, resulting in inhibition of growth and development. To deal with these stresses, plants have developed a series of tolerance mechanisms, including osmotic adjustment through accumulating compatible solutes in the cytoplasm, reactive oxygen species (ROS) scavenging through enhancing the activity of anti-oxidative enzymes, and Na+/K+ homeostasis regulation through controlling Na+ uptake and transportation. In this review, recent advances in studies of the mechanisms of salt tolerance in plants are described in relation to the ionome, transcriptome, proteome, and metabolome, and the main factor accounting for differences in salt tolerance among plant species or genotypes within a species is presented. We also discuss the application and roles of different breeding methodologies in developing salt-tolerant crop cultivars. In particular, we describe the advantages and perspectives of genome or gene editing in improving the salt tolerance of crops.
Collapse
|
26
|
Huang X, Soolanayakanahally RY, Guy RD, Shunmugam ASK, Mansfield SD. Differences in growth and physiological and metabolic responses among Canadian native and hybrid willows (Salix spp.) under salinity stress. TREE PHYSIOLOGY 2020; 40:652-666. [PMID: 32083671 DOI: 10.1093/treephys/tpaa017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 01/22/2020] [Accepted: 01/31/2020] [Indexed: 06/10/2023]
Abstract
Globally, soil salinization is becoming increasingly prevalent, due to local hydrogeologic phenomena, climate change and anthropogenic activities. This has significantly curtailed current world food production and limits future production potential. In the prairie region of North America, sulfate salts, rather than sodium chloride, are often the predominant cause of soil degradation. In order to amend soil quality, revegetate salt-affected sites and recover economic loss associated with soil salinization, the establishment of short-rotation coppice plantations with willows (Salix spp.) has been suggested as a possible solution. To screen for the best candidates for such an application, 20 hybrid and 16 native willow genotypes were treated with three different salt conditions for 3 months. The treatments were designed to reflect the salt composition and concentrations on North American prairies. Under moderate salinity treatment (7 dS m-1), hybrid willows had better growth, as they established quickly while managing salt transport and mineral nutrition balance. However, native willows showed higher potential for long-term survival under severe salinity treatment (14 dS m-1), showing a lower sodium:potassium ratio in roots and better photosynthetic performance. Two native willow genotypes with high osmotic and salinity tolerance indices, specifically LAR-10 and MJW-9, are expected to show superior potential for remediating salt-affected sites. In addition, we observed significantly higher sulfate/sulfur concentrations in both leaf and root tissues in response to the severe salinity treatment, shedding light on the effect of sulfate salinity on sulfate uptake, and potentially sulfur metabolism in plants.
Collapse
Affiliation(s)
- Xinyi Huang
- Department of Wood Science, Faculty of Forestry, University of British Columbia, 2424 Main Mall, Vancouver, BC V6T 1Z4, Canada
| | | | - Robert D Guy
- Department of Forest and Conservation Sciences, Faculty of Forestry, University of British Columbia, 2424 Main Mall, Vancouver, BC V6T 1Z4, Canada
| | - Arun S K Shunmugam
- Department of Jobs, Precincts and Regions, Agriculture Victoria Research, 110 Natimuk Road, Horsham, VIC 3400, Australia
| | - Shawn D Mansfield
- Department of Wood Science, Faculty of Forestry, University of British Columbia, 2424 Main Mall, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
27
|
Fricke W. Energy costs of salinity tolerance in crop plants: night-time transpiration and growth. THE NEW PHYTOLOGIST 2020; 225:1152-1165. [PMID: 30834533 DOI: 10.1111/nph.15773] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 02/25/2019] [Indexed: 05/28/2023]
Abstract
Plants grow and transpire during the night. The aim of the present work was to assess the relative flows of carbon, water and solutes, and the energy involved, in sustaining night-time transpiration and leaf expansive growth under control and salt-stress conditions. Published and unpublished data were used, for barley plants grown in presence of 0.5-1 mM NaCl (control) and 100 mM NaCl. Night-time leaf growth presents a more efficient use of taken-up water compared with day-time growth. This efficiency increases several-fold with salt stress. Night-time transpiration cannot be supported entirely through osmotically driven uptake of water through roots under salt stress. Using a simple three- (root medium/cytosol/vacuole) compartment approach, the energy required to support cell expansion during the night is in the lower percentage region (0.03-5.5%) of the energy available through respiration, under both, control and salt-stress conditions. Use of organic (e.g. hexose equivalents) rather than inorganic (e.g. Na+ , Cl- , K+ ) solutes for generation of osmotic pressure in growing cells, increases the energy demand by orders of magnitude, yet requires only a small portion of carbon assimilated during the day. Night-time transpiration and leaf expansive growth should be considered as a potential acclimation mechanism to salinity.
Collapse
Affiliation(s)
- Wieland Fricke
- School of Biology and Environmental Sciences, University College Dublin (UCD), Belfield, Dublin 4, Ireland
| |
Collapse
|
28
|
Armand T, Cullen M, Boiziot F, Li L, Fricke W. Cortex cell hydraulic conductivity, endodermal apoplastic barriers and root hydraulics change in barley (Hordeum vulgare L.) in response to a low supply of N and P. ANNALS OF BOTANY 2019; 124:1091-1107. [PMID: 31309230 PMCID: PMC7145705 DOI: 10.1093/aob/mcz113] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 06/28/2019] [Indexed: 05/09/2023]
Abstract
BACKGROUND Mineral nutrient limitation affects the water flow through plants. We wanted to test on barley whether any change in root-to-shoot ratio in response to low supply of nitrogen and phosphate is accompanied by changes in root and cell hydraulic properties and involves changes in aquaporin (AQP) gene expression and root apoplastic barriers (suberin lamellae, Casparian bands). METHODS Plants were grown hydroponically on complete nutrient solution or on solution containing only 3.3 % or 2.5 % of the control level of nutrient. Plants were analysed when they were 14-18 d old. RESULTS Nutrient-limited plants adjusted water flow to an increased root-to-shoot surface area ratio through a reduction in root hydraulic conductivity (Lp) as determined through exudation analyses. Cortex cell Lp (cell pressure probe analyses) decreased in the immature but not the mature region of the main axis of seminal roots and in primary lateral roots. The aquaporin inhibitor HgCl2 reduced root Lp most in nutrient-sufficient control plants. Exchange of low-nutrient for control media caused a rapid (20-80 min) and partial recovery in Lp, though cortex cell Lp did not increase in any of the root regions analysed. The gene expression level (qPCR analyses) of five plasma membrane-localized AQP isoforms did not change in bulk root extracts, while the formation of apoplastic barriers increased considerably along the main axis of root and lateral roots in low-nutrient treatments. CONCLUSIONS Decrease in root and cortex cell Lp enables the adjustment of root water uptake to increased root-to-shoot area ratio in nutrient-limited plants. Aquaporins are the prime candidate to play a key role in this response. Modelling of water flow suggests that some of the reduction in root Lp is due to increased formation of apoplastic barriers.
Collapse
Affiliation(s)
- Thomas Armand
- School of Biology and Environmental Sciences, University College Dublin, Belfield, Dublin, Republic of Ireland
| | - Michelle Cullen
- School of Biology and Environmental Sciences, University College Dublin, Belfield, Dublin, Republic of Ireland
| | - Florentin Boiziot
- School of Biology and Environmental Sciences, University College Dublin, Belfield, Dublin, Republic of Ireland
| | - Lingyu Li
- School of Biology and Environmental Sciences, University College Dublin, Belfield, Dublin, Republic of Ireland
- College of Life Sciences, Shanxi Agricultural University, Taigu, China
| | - Wieland Fricke
- School of Biology and Environmental Sciences, University College Dublin, Belfield, Dublin, Republic of Ireland
- For correspondence. E-mail
| |
Collapse
|
29
|
Coffey O, Bonfield R, Corre F, Althea Sirigiri J, Meng D, Fricke W. Root and cell hydraulic conductivity, apoplastic barriers and aquaporin gene expression in barley (Hordeum vulgare L.) grown with low supply of potassium. ANNALS OF BOTANY 2018; 122:1131-1141. [PMID: 29961877 PMCID: PMC6324746 DOI: 10.1093/aob/mcy110] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 05/29/2018] [Indexed: 05/02/2023]
Abstract
BACKGROUND AND AIMS Limited supply of mineral nutrients often reduces plant growth and transpirational water flow while increasing the ratio of water-absorbing root to water-losing shoot surface. This could potentially lead to an imbalance between water uptake (too much) and water loss (too little). The aim of the present study was to test whether, as a countermeasure, the hydraulic properties (hydraulic conductivity, Lp) of roots decrease at organ and cell level and whether any decreases in Lp are accompanied by decreases in the gene expression level of aquaporins (AQPs) or increases in apoplastic barriers to radial water movement. METHODS Barley plants were grown hydroponically on complete nutrient solution, containing 2 mm K+ (100 %), or on low-K solution (0.05 mm K+; 2.5 %), and analysed when they were 15-18 d old. Transpiration, fresh weight, surface area, shoot water potential (ψ), K and Ca concentrations, root (exudation) and cortex cell Lp (cell pressure probe), root anatomy (cross-sections) and AQP gene expression (qPCR) were analysed. KEY RESULTS The surface area ratio of root to shoot increased significantly in response to low K. This was accompanied by a small decrease in the rate of water loss per unit shoot surface area, but a large (~50 %) and significant decrease in Lp at root and cortex cell levels. Aquaporin gene expression in roots did not change significantly, due to some considerable batch-to-batch variation in expression response, though HvPIP2;5 expression decreased on average by almost 50 %. Apoplastic barriers in the endodermis did not increase in response to low K. CONCLUSIONS Barley plants that are exposed to low K adjust to an increased ratio of root (water uptake) to shoot (water loss) surface primarily through a decrease in root and cell Lp. Reduced gene expression of HvPIP2;5 may contribute to the decrease in Lp.
Collapse
Affiliation(s)
- Orla Coffey
- School of Biology and Environmental Sciences, University College Dublin, Belfield, Republic of Ireland
| | - Ronan Bonfield
- School of Biology and Environmental Sciences, University College Dublin, Belfield, Republic of Ireland
| | - Florine Corre
- School of Biology and Environmental Sciences, University College Dublin, Belfield, Republic of Ireland
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
| | - Jane Althea Sirigiri
- School of Biology and Environmental Sciences, University College Dublin, Belfield, Republic of Ireland
| | - Delong Meng
- School of Biology and Environmental Sciences, University College Dublin, Belfield, Republic of Ireland
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
| | - Wieland Fricke
- School of Biology and Environmental Sciences, University College Dublin, Belfield, Republic of Ireland
- For correspondence. E-mail
| |
Collapse
|
30
|
Asif MA, Schilling RK, Tilbrook J, Brien C, Dowling K, Rabie H, Short L, Trittermann C, Garcia A, Barrett-Lennard EG, Berger B, Mather DE, Gilliham M, Fleury D, Tester M, Roy SJ, Pearson AS. Mapping of novel salt tolerance QTL in an Excalibur × Kukri doubled haploid wheat population. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2018; 131:2179-2196. [PMID: 30062653 PMCID: PMC6154029 DOI: 10.1007/s00122-018-3146-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 07/14/2018] [Indexed: 05/04/2023]
Abstract
KEY MESSAGE Novel QTL for salinity tolerance traits have been detected using non-destructive and destructive phenotyping in bread wheat and were shown to be linked to improvements in yield in saline fields. Soil salinity is a major limitation to cereal production. Breeding new salt-tolerant cultivars has the potential to improve cereal crop yields. In this study, a doubled haploid bread wheat mapping population, derived from the bi-parental cross of Excalibur × Kukri, was grown in a glasshouse under control and salinity treatments and evaluated using high-throughput non-destructive imaging technology. Quantitative trait locus (QTL) analysis of this population detected multiple QTL under salt and control treatments. Of these, six QTL were detected in the salt treatment including one for maintenance of shoot growth under salinity (QG(1-5).asl-7A), one for leaf Na+ exclusion (QNa.asl-7A) and four for leaf K+ accumulation (QK.asl-2B.1, QK.asl-2B.2, QK.asl-5A and QK:Na.asl-6A). The beneficial allele for QG(1-5).asl-7A (the maintenance of shoot growth under salinity) was present in six out of 44 mainly Australian bread and durum wheat cultivars. The effect of each QTL allele on grain yield was tested in a range of salinity concentrations at three field sites across 2 years. In six out of nine field trials with different levels of salinity stress, lines with alleles for Na+ exclusion and/or K+ maintenance at three QTL (QNa.asl-7A, QK.asl-2B.2 and QK:Na.asl-6A) excluded more Na+ or accumulated more K+ compared to lines without these alleles. Importantly, the QK.asl-2B.2 allele for higher K+ accumulation was found to be associated with higher grain yield at all field sites. Several alleles at other QTL were associated with higher grain yields at selected field sites.
Collapse
Affiliation(s)
- Muhammad A Asif
- Australian Centre for Plant Functional Genomics, PMB 1, Glen Osmond, SA, 5064, Australia
- School of Agriculture, Food and Wine, The University of Adelaide, PMB 1, Glen Osmond, SA, 5064, Australia
| | - Rhiannon K Schilling
- Australian Centre for Plant Functional Genomics, PMB 1, Glen Osmond, SA, 5064, Australia
- School of Agriculture, Food and Wine, The University of Adelaide, PMB 1, Glen Osmond, SA, 5064, Australia
| | - Joanne Tilbrook
- Australian Centre for Plant Functional Genomics, PMB 1, Glen Osmond, SA, 5064, Australia
- School of Agriculture, Food and Wine, The University of Adelaide, PMB 1, Glen Osmond, SA, 5064, Australia
- Plant Industries Development, Department of Primary Industry and Resources, PO Box 3000, Darwin, NT, 0801, Australia
| | - Chris Brien
- Australian Centre for Plant Functional Genomics, PMB 1, Glen Osmond, SA, 5064, Australia
- The Plant Accelerator, Australian Plant Phenomics Facility, The University of Adelaide, Urrbrae, SA, 5064, Australia
- Phenomics and Bioinformatics Research Center, The University of South Australia, GPO Box 2471, Mawson Lakes, 5001, SA, Australia
| | - Kate Dowling
- Australian Centre for Plant Functional Genomics, PMB 1, Glen Osmond, SA, 5064, Australia
- The Plant Accelerator, Australian Plant Phenomics Facility, The University of Adelaide, Urrbrae, SA, 5064, Australia
| | - Huwaida Rabie
- Phenomics and Bioinformatics Research Center, The University of South Australia, GPO Box 2471, Mawson Lakes, 5001, SA, Australia
- Bethlehem University, Rue de Freres #9, Bethlehem, West Bank, Palestine
| | - Laura Short
- Australian Centre for Plant Functional Genomics, PMB 1, Glen Osmond, SA, 5064, Australia
- School of Agriculture, Food and Wine, The University of Adelaide, PMB 1, Glen Osmond, SA, 5064, Australia
| | - Christine Trittermann
- Australian Centre for Plant Functional Genomics, PMB 1, Glen Osmond, SA, 5064, Australia
- School of Agriculture, Food and Wine, The University of Adelaide, PMB 1, Glen Osmond, SA, 5064, Australia
| | - Alexandre Garcia
- Australian Centre for Plant Functional Genomics, PMB 1, Glen Osmond, SA, 5064, Australia
- School of Agriculture, Food and Wine, The University of Adelaide, PMB 1, Glen Osmond, SA, 5064, Australia
- The Plant Accelerator, Australian Plant Phenomics Facility, The University of Adelaide, Urrbrae, SA, 5064, Australia
| | - Edward G Barrett-Lennard
- School of Agriculture and Environment (M084), The University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia
- Department of Primary Industries and Regional Development, 3 Baron-Hay Court, South Perth, 6151, WA, Australia
| | - Bettina Berger
- School of Agriculture, Food and Wine, The University of Adelaide, PMB 1, Glen Osmond, SA, 5064, Australia
- The Plant Accelerator, Australian Plant Phenomics Facility, The University of Adelaide, Urrbrae, SA, 5064, Australia
| | - Diane E Mather
- School of Agriculture, Food and Wine, The University of Adelaide, PMB 1, Glen Osmond, SA, 5064, Australia
| | - Matthew Gilliham
- School of Agriculture, Food and Wine, The University of Adelaide, PMB 1, Glen Osmond, SA, 5064, Australia
- ARC Centre of Excellence in Plant Energy Biology, The University of Adelaide, PMB 1, Glen Osmond, SA, 5064, Australia
| | - Delphine Fleury
- Australian Centre for Plant Functional Genomics, PMB 1, Glen Osmond, SA, 5064, Australia
- School of Agriculture, Food and Wine, The University of Adelaide, PMB 1, Glen Osmond, SA, 5064, Australia
| | - Mark Tester
- Australian Centre for Plant Functional Genomics, PMB 1, Glen Osmond, SA, 5064, Australia
- School of Agriculture, Food and Wine, The University of Adelaide, PMB 1, Glen Osmond, SA, 5064, Australia
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Stuart J Roy
- Australian Centre for Plant Functional Genomics, PMB 1, Glen Osmond, SA, 5064, Australia.
- School of Agriculture, Food and Wine, The University of Adelaide, PMB 1, Glen Osmond, SA, 5064, Australia.
| | - Allison S Pearson
- Australian Centre for Plant Functional Genomics, PMB 1, Glen Osmond, SA, 5064, Australia
- School of Agriculture, Food and Wine, The University of Adelaide, PMB 1, Glen Osmond, SA, 5064, Australia
- ARC Centre of Excellence in Plant Energy Biology, The University of Adelaide, PMB 1, Glen Osmond, SA, 5064, Australia
| |
Collapse
|
31
|
Gitto A, Fricke W. Zinc treatment of hydroponically grown barley plants causes a reduction in root and cell hydraulic conductivity and isoform-dependent decrease in aquaporin gene expression. PHYSIOLOGIA PLANTARUM 2018; 164:176-190. [PMID: 29381217 DOI: 10.1111/ppl.12697] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 01/19/2018] [Accepted: 01/25/2018] [Indexed: 05/18/2023]
Affiliation(s)
- Aurora Gitto
- School of Biology and Environmental Sciences; University College Dublin; Dublin 4 Republic of Ireland
| | - Wieland Fricke
- School of Biology and Environmental Sciences; University College Dublin; Dublin 4 Republic of Ireland
| |
Collapse
|
32
|
Even M, Sabo M, Meng D, Kreszies T, Schreiber L, Fricke W. Night-time transpiration in barley (Hordeum vulgare) facilitates respiratory carbon dioxide release and is regulated during salt stress. ANNALS OF BOTANY 2018; 122:569-582. [PMID: 29850772 PMCID: PMC6153476 DOI: 10.1093/aob/mcy084] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 04/26/2018] [Indexed: 05/24/2023]
Abstract
Background and Aims Night-time transpiration accounts for a considerable amount of water loss in crop plants. Despite this, there remain many questions concerning night-time transpiration - its biological function, regulation and response to stresses such as salinity. The aim of the present study was to address these questions on 14- to 18-d-old, hydroponically grown barley plants. Methods Plants were either stressed for the last 4-7 d prior to, and during subsequent continuous (24 h), diurnal gravimetric transpiration analyses; or subjected to salt stress just before analyses; or stressed for 4-7 d and then transferred to control medium before analyses. The idea behind this experimental setup was to distinguish between a longer- (cuticle, stomata) and shorter-term (stomata) response of transpiration to treatments. Cuticular conductance was assessed through residual transpiration measurements in detached leaves. Cuticle wax load and dark respiration rate of leaves were determined. Leaf conductance to CO2 was calculated. Key Results Night-time and daytime transpiration rates were highly, and positively, correlated with each other, across all treatments. Night-time transpiration rates accounted for 9-17 % of daytime rates (average: 13.8 %). Despite minor changes in the ratio of night- to daytime transpiration rates, the contribution of cuticular and stomatal conductance to leaf (epidermal) conductance to water vapour differed considerably between treatments. Salt stress did not affect cuticle wax load. The conductance for CO2 of the cuticle was insufficient to support rates of dark respiratory CO2 release. Conclusions The main biological function of night-time transpiration is the release of respiratory CO2 from leaves. Night-time transpiration is regulated in the short and long term, also under salt stress. Stomata play a key role in this process. We propose to refer, in analogy to water use efficiency (WUE) during the day, to a CO2 release efficiency ('CORE') during the night.
Collapse
Affiliation(s)
- Margaux Even
- School of Biology and Environmental Sciences, University College Dublin, Belfield, Dublin 4, Republic of Ireland
| | - Marine Sabo
- School of Biology and Environmental Sciences, University College Dublin, Belfield, Dublin 4, Republic of Ireland
| | - Delong Meng
- School of Biology and Environmental Sciences, University College Dublin, Belfield, Dublin 4, Republic of Ireland
| | - Tino Kreszies
- Ecophysiology of Plants, IZMB, University of Bonn, Bonn, Germany
| | - Lukas Schreiber
- Ecophysiology of Plants, IZMB, University of Bonn, Bonn, Germany
| | - Wieland Fricke
- School of Biology and Environmental Sciences, University College Dublin, Belfield, Dublin 4, Republic of Ireland
| |
Collapse
|
33
|
Soares ALC, Geilfus CM, Carpentier SC. Genotype-Specific Growth and Proteomic Responses of Maize Toward Salt Stress. FRONTIERS IN PLANT SCIENCE 2018; 9:661. [PMID: 29899749 PMCID: PMC5989331 DOI: 10.3389/fpls.2018.00661] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 04/30/2018] [Indexed: 05/20/2023]
Abstract
Salt stress in plants triggers complex physiological responses that are genotype specific. Many of these responses are either not yet described or not fully understood or both. In this work, we phenotyped three maize genotypes of the CIMMYT gene bank alongside the reference B73 genotype (NCRPIS - United States) under both control and salt-stressed conditions. We have ranked their growth potential and we observed significant differences in Na+ and Cl- ion accumulation. Genotype CML421 showed the slowest growth, while CML451 had the lowest accumulation of ions in its leaves. The phenotyping defined the right timing for the proteomics analysis, allowing us to compare the contrasting genotypes. In general 1,747 proteins were identified, of which 209 were significantly more abundant in response to salt stress. The five most significantly enriched annotations that positively correlated with stress were oxidation reduction, catabolic process, response to chemical stimulus, translational elongation and response to water. We observed a higher abundance of proteins involved in reactions to oxidative stress, dehydration, respiration, and translation. The five most significantly enriched annotations negatively correlated with stress were nucleosome organization, chromatin assembly, protein-DNA complex assembly, DNA packaging and nucleosome assembly. The genotypic analysis revealed 52 proteins that were correlated to the slow-growing genotype CML421. Their annotations point toward cellular dehydration and oxidative stress. Three root proteins correlated to the CML451 genotype were annotated to protein synthesis and ion compartmentalization. In conclusion, our results highlight the importance of the anti-oxidative system for acclimatization to salt stress and identify potential genotypic marker proteins involved in salt-stress responses.
Collapse
Affiliation(s)
- Ana L. C. Soares
- Laboratory of Tropical Crop Improvement, Division of Crop Biotechnics, KU Leuven, Leuven, Belgium
| | - Christoph-Martin Geilfus
- Controlled Environment Horticulture, Faculty of Life Sciences, Albrecht Daniel Thaer-Institute of Agricultural and Horticultural Sciences, Humboldt University of Berlin, Berlin, Germany
| | - Sebastien C. Carpentier
- Laboratory of Tropical Crop Improvement, Division of Crop Biotechnics, KU Leuven, Leuven, Belgium
- Genetic Resources, Bioversity International, Leuven, Belgium
- SYBIOMA, KU Leuven, Leuven, Belgium
- *Correspondence: Sebastien C. Carpentier,
| |
Collapse
|
34
|
Wang G, Bi A, Amombo E, Li H, Zhang L, Cheng C, Hu T, Fu J. Exogenous Calcium Enhances the Photosystem II Photochemistry Response in Salt Stressed Tall Fescue. FRONTIERS IN PLANT SCIENCE 2017; 8:2032. [PMID: 29250091 PMCID: PMC5715236 DOI: 10.3389/fpls.2017.02032] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 11/14/2017] [Indexed: 05/29/2023]
Abstract
Calcium enhances turfgrass response to salt stress. However, little is known about PSII photochemical changes when exogenous calcium was applied in salinity-stressed turfgrass. Here, we probe into the rearrangements of PSII electron transport and endogenous ion accumulation in tall fescue (Festuca arundinacea Schreber) treated with exogenous calcium under salt stress. Three-month-old seedlings of genotype "TF133" were subjected to the control (CK), salinity (S), salinity + calcium nitrate (SC), and salinity + ethylene glycol tetraacetic acid (SE). Calcium nitrate and ethylene glycol tetraacetic acid was used as exogenous calcium donor and calcium chelating agent respectively. At the end of a 5-day duration treatment, samples in SC regime had better photochemistry performance on several parameters than salinity only. Such as the Area (equal to the plastoquinone pool size), N (number of [Formula: see text] redox turnovers until Fm is reached), ψE0, or δRo (Efficiencdy/probability with which a PSII trapped electron is transferred from QA to QB or PSI acceptors), ABS/RC (Absorbed photon flux per RC). All the above suggested that calcium enhanced the electron transfer of PSII (especially beyond [Formula: see text]) and prevented reaction centers from inactivation in salt-stressed tall fescue. Furthermore, both grass shoot and root tissues generally accumulated more C, N, Ca2+, and K+ in the SC regime than S regime. Interrelated analysis indicated that ψE0, δRo, ABS/RC, C, and N content in shoots was highly correlated to each other and significantly positively related to Ca2+ and K+ content in roots. Besides, high salt increased ATP6E and CAMK2 transcription level in shoot at 1 and 5 day, respectively while exogenous calcium relieved it. In root, CAMK2 level was reduced by Salinity at 5 day and exogenous calcium recovered it. These observations involved in electron transport capacity and ion accumulation assist in understanding better the protective role of exogenous calcium in tall fescue under salt stress.
Collapse
Affiliation(s)
- Guangyang Wang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Aoyue Bi
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Erick Amombo
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Huiying Li
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Liang Zhang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Cheng Cheng
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Tao Hu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Jinmin Fu
- School of Resources and Environmental Engineering, Ludong University, Yantai, China
| |
Collapse
|
35
|
Tilbrook J, Schilling RK, Berger B, Garcia AF, Trittermann C, Coventry S, Rabie H, Brien C, Nguyen M, Tester M, Roy SJ. Variation in shoot tolerance mechanisms not related to ion toxicity in barley. FUNCTIONAL PLANT BIOLOGY : FPB 2017; 44:1194-1206. [PMID: 32480644 DOI: 10.1071/fp17049] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 07/26/2017] [Indexed: 06/11/2023]
Abstract
Soil salinity can severely reduce crop growth and yield. Many studies have investigated salinity tolerance mechanisms in cereals using phenotypes that are relatively easy to measure. The majority of these studies measured the accumulation of shoot Na+ and the effect this has on plant growth. However, plant growth is reduced immediately after exposure to NaCl before Na+ accumulates to toxic concentrations in the shoot. In this study, nondestructive and destructive measurements are used to evaluate the responses of 24 predominately Australian barley (Hordeum vulgare L.) lines at 0, 150 and 250mM NaCl. Considerable variation for shoot tolerance mechanisms not related to ion toxicity (shoot ion-independent tolerance) was found, with some lines being able to maintain substantial growth rates under salt stress, whereas others stopped growing. Hordeum vulgare spp. spontaneum accessions and barley landraces predominantly had the best shoot ion independent tolerance, although two commercial cultivars, Fathom and Skiff, also had high tolerance. The tolerance of cv. Fathom may be caused by a recent introgression from H. vulgare L. spp. spontaneum. This study shows that the most salt-tolerant barley lines are those that contain both shoot ion-independent tolerance and the ability to exclude Na+ from the shoot (and thus maintain high K+:Na+ ratios).
Collapse
Affiliation(s)
- Joanne Tilbrook
- Australian Centre for Plant Functional Genomics, University of Adelaide, PMB1, Glen Osmond, SA 5064, Australia
| | - Rhiannon K Schilling
- Australian Centre for Plant Functional Genomics, University of Adelaide, PMB1, Glen Osmond, SA 5064, Australia
| | - Bettina Berger
- School of Agriculture, Food and Wine, University of Adelaide, PMB1, Glen Osmond, SA 5064, Australia
| | - Alexandre F Garcia
- Australian Centre for Plant Functional Genomics, University of Adelaide, PMB1, Glen Osmond, SA 5064, Australia
| | - Christine Trittermann
- Australian Centre for Plant Functional Genomics, University of Adelaide, PMB1, Glen Osmond, SA 5064, Australia
| | - Stewart Coventry
- School of Agriculture, Food and Wine, University of Adelaide, PMB1, Glen Osmond, SA 5064, Australia
| | - Huwaida Rabie
- School of Information Technology and Mathematical Services, University of South Australia, Mawson Lakes, SA 5095, Australia
| | - Chris Brien
- School of Information Technology and Mathematical Services, University of South Australia, Mawson Lakes, SA 5095, Australia
| | - Martin Nguyen
- School of Information Technology and Mathematical Services, University of South Australia, Mawson Lakes, SA 5095, Australia
| | - Mark Tester
- King Abdullah University of Science and Technology, Biological and Environmental Sciences and Engineering, Thuwal 23955-6900, Saudi Arabia
| | - Stuart J Roy
- Australian Centre for Plant Functional Genomics, University of Adelaide, PMB1, Glen Osmond, SA 5064, Australia
| |
Collapse
|
36
|
Jalili M, Shahmirzadi MN, Hazrati MK, Ahmadi H. Laboratory investigation of steam transmission in unsaturated clayey soil under osmotic potential. MethodsX 2017; 4:218-228. [PMID: 28794994 PMCID: PMC5537427 DOI: 10.1016/j.mex.2017.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 06/28/2017] [Indexed: 11/29/2022] Open
Abstract
Liquids coming from different sources like wastewaters, agricultural and industrial activities and leakages of chemical substances often have high concentration of chemical compositions and the osmotic gradient generated around such sources causes a considerable transmission of the Contamination. The steam transmitted by non-polluted soils moves to polluted masses, causing an increase in the volume of pollution zone and movement of pollutants. Therefore, such physical and chemical processes should be taken into account in pollution transmission models. Using Crumb method, laboratory investigations were conducted on non-dispersive and dispersive clayey soil samples obtained from three areas in Zanjan Province of Iran. A simple experimental setup has been used and hereby introduced. The impact of osmotic force from salinities of 0.5, 1, and 1.5% on steam transmission in clayey soil was examined. Results indicate that for all samples between 5 to 15 days, the moisture content increased in the pollutant zone and decreased in the non-pollutant area. Also it was observed that for dispersive clayey soil, movement of steam among layers was observed to be orderly and its amount was higher than that of non-dispersive clayey soil.
Collapse
Affiliation(s)
- Mehdi Jalili
- Department of Civil Engineering, Technical & Engineering Faculty, Semnan Branch, Islamic Azad University, P.O. Box: 35135-179 Semnan, Iran
| | - Mahmoud Nikkhah Shahmirzadi
- Department of Civil Engineering, Technical & Engineering Faculty, Semnan Branch, Islamic Azad University, P.O. Box: 35135-179 Semnan, Iran
| | - Mahdi Kaseb Hazrati
- Geotechnical Engineering, Department of Civil Engineering, Technical & Engineering Faculty, Semnan Branch, Islamic Azad University, Semnan, Iran
| | - Hamed Ahmadi
- Geotechnical Engineering, Department of Civil Engineering, Technical & Engineering Faculty, Semnan Branch, Islamic Azad University, Semnan, Iran
| |
Collapse
|
37
|
Hussain MI, Reigosa MJ. Evaluation of photosynthetic performance and carbon isotope discrimination in perennial ryegrass (Lolium perenne L.) under allelochemicals stress. ECOTOXICOLOGY (LONDON, ENGLAND) 2017; 26:613-624. [PMID: 28378127 DOI: 10.1007/s10646-017-1794-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/18/2017] [Indexed: 05/18/2023]
Abstract
Ferulic (FA) and p-hydroxybenzoic acid (pHBA) are commonly found as phenolic compounds (PHC) in many forage and cereal crops. Although the effects of these PHC on seedling growth are relatively explored, not many information is available regarding the phytotoxicity on ecophysiological processes of perennial ryegrass adult plants. The experiment was conducted with the aim to evaluate the phytotoxic potential of PHC on the seedling growth, leaf water relation, chlorophyll fluorescence attributes and carbon isotope discrimination adult plants of perennial ryegrass (Lolium perenne L.). The results clearly indicated that PHC behaved as potent inhibitors of chlorophyll fluorescence yield (Fv/Fm) in leaves of L. perenne and plants showed poor tolerance against allelochemicals stress. Quantum yield (ΦPSII), chlorophyll fluorescence quenching (qP) and non-photochemical quenching (NPQ) were decreased following exposure to FA and pHBA. The portion of absorbed photon energy that was thermally dissipated (D) in L. perenne was decreased. Exposure of the L. perenne seedlings to FA and pHBA stress led to a decrease in fresh/dry weight, relative water content and leaf osmotic potential. Carbon isotope composition ratio (δ13C) was significantly less negative than the control following treatment with FA or pHBA. The results suggested that PHC uptake was a key step for the effectiveness of these secondary metabolites and their phytotoxicity on L. perenne adult plants was mainly due to the alteration of leaf water status accompanied by photosystem II damage. Acquisition of such knowledge may ultimately provide a better understanding about the mode of action of the tested compounds.
Collapse
Affiliation(s)
- M Iftikhar Hussain
- Department of Plant Biology and Soil Science, Universidad de Vigo, Campus Lagoas-Marcosende, E-36310, Vigo, Spain.
| | - Manuel J Reigosa
- Department of Plant Biology and Soil Science, Universidad de Vigo, Campus Lagoas-Marcosende, E-36310, Vigo, Spain
| |
Collapse
|
38
|
Ferreira C, Simioni C, Schmidt ÉC, Ramlov F, Maraschin M, Bouzon ZL. The influence of salinity on growth, morphology, leaf ultrastructure, and cell viability of the seagrass Halodule wrightii Ascherson. PROTOPLASMA 2017; 254:1529-1537. [PMID: 27838782 DOI: 10.1007/s00709-016-1041-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 11/04/2016] [Indexed: 06/06/2023]
Abstract
Halodule wrightii is an ecologically important seagrass; however, little is known about the adaptation of this species in the context of environmental change, particularly changes arising from alterations in salinity of coastal ecosystems. This study aimed to determine the effects of different salinities on growth, morphology, leaf ultrastructure, and cell viability of H. wrightii. To accomplish this, plants were cultivated for 21 days in salinities of 25, 35, and 45. More hydropotens were observed in samples exposed to salinity of 45 with increased invagination of the plasma membrane and cell wall. These invaginations were also observed in other epidermal cells of the leaf blade. In particular, a significant retraction of plasma membrane was seen in samples exposed to salinity of 45, with possible deposition of compounds between the membrane and cell wall. Osmotic stress in samples exposed to salinity of 45 affected the chloroplasts through an increase in plastoglobules and thylakoids by granum in the epidermal chloroplasts of the leaf and decrease in the number of chloroplasts. Overall, this study showed that H. wrightii can survive within salinities that range between 25 and 45 without changing growth rate. However, the plant did have higher cell viability at salinity of 35. Salt stress in mesocosms, at both salinity of 25 and 45, decreased cell viability in this species. H . wrightii had greater changes in salinity of 45; this showed that the species is more tolerant of salinities below this value.
Collapse
Affiliation(s)
- Chirle Ferreira
- Postgraduate Program in Cell Biology and Development, Department of Cell Biology, Embryology and Genetics, Federal University of Santa Catarina, 88049-900CP 476, Florianopolis, SC, Brazil.
| | - Carmen Simioni
- Plant Cell Biology Laboratory, Department of Cell Biology, Embryology and Genetics, Federal University of Santa Catarina, 88049-900CP 476, Florianopolis, SC, Brazil
| | - Éder C Schmidt
- Plant Cell Biology Laboratory, Department of Cell Biology, Embryology and Genetics, Federal University of Santa Catarina, 88049-900CP 476, Florianopolis, SC, Brazil
| | - Fernanda Ramlov
- Plant Morphogenesis and Biochemistry Laboratory, Federal University of Santa Catarina, 88049-900CP 476, Florianopolis, SC, Brazil
| | - Marcelo Maraschin
- Plant Morphogenesis and Biochemistry Laboratory, Federal University of Santa Catarina, 88049-900CP 476, Florianopolis, SC, Brazil
| | - Zenilda L Bouzon
- Plant Cell Biology Laboratory, Department of Cell Biology, Embryology and Genetics, Federal University of Santa Catarina, 88049-900CP 476, Florianopolis, SC, Brazil
| |
Collapse
|
39
|
Fricke W. Water transport and energy. PLANT, CELL & ENVIRONMENT 2017; 40:977-994. [PMID: 27756100 DOI: 10.1111/pce.12848] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 10/08/2016] [Accepted: 10/10/2016] [Indexed: 05/10/2023]
Abstract
Water transport in plants occurs along various paths and is driven by gradients in its free energy. It is generally considered that the mode of transport, being either diffusion or bulk flow, is a passive process, although energy may be required to sustain the forces driving water flow. This review aims at putting water flow at the various organisational levels (cell, organ, plant) in the context of the energy that is required to maintain these flows. In addition, the question is addressed (1) whether water can be transported against a difference in its chemical free energy, 'water potential' (Ψ), through, directly or indirectly, active processes; and (2) whether the energy released when water is flowing down a gradient in its energy, for example during day-time transpiration and cell expansive growth, is significant compared to the energy budget of plant and cell. The overall aim of review is not so much to provide a definite 'Yes' and 'No' to these questions, but rather to stimulate discussion and raise awareness that water transport in plants has its real, associated, energy costs and potential energy gains.
Collapse
Affiliation(s)
- Wieland Fricke
- School of Biology and Environmental Sciences, University College Dublin (UCD), Belfield, Dublin, 4, Ireland
| |
Collapse
|
40
|
Gharbi E, Martínez JP, Benahmed H, Hichri I, Dobrev PI, Motyka V, Quinet M, Lutts S. Phytohormone profiling in relation to osmotic adjustment in NaCl-treated plants of the halophyte tomato wild relative species Solanum chilense comparatively to the cultivated glycophyte Solanum lycopersicum. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2017; 258:77-89. [PMID: 28330565 DOI: 10.1016/j.plantsci.2017.02.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 02/13/2017] [Accepted: 02/15/2017] [Indexed: 05/14/2023]
Abstract
A holistic approach was used to investigate the hormonal profile in relation with osmotic adjustment under salinity in Solanum lycopersicum and its halophyte wild relative Solanum chilense. Plants were subjected to 125mM NaCl for 7days. Solanum chilense displayed a contrasting behaviour comparatively to S. lycopersicum, not only for mineral nutrition, but also regarding the modalities of osmotic adjustment and phytohormonal profiling. The extent of osmotic adjustment was higher in S. chilense than in S. lycopersicum. Ions K+ and Na+ were the major contributors of osmotic adjustment in S. chilense, accounting respectively for 47 and 60% of osmotic potential. In contrast the contributions of proline and soluble sugars remained marginal for the two species although salt-induced accumulation of proline was higher in S. lycopersicum than in S. chilense. Both species also differed for their hormonal status under salinity and concentrations of most hormonal compounds were higher in S. chilense than in S. lycopersicum. Interestingly, salicylic acid, ethylene and cytokinins were positively correlated with osmotic potential in S. chilense under salinity while these hormones were negatively correlated with osmotic adjustment in S. lycopersicum. Our results suggested that the capacity to use inorganic ions as osmotica may improve salt resistance in S.chilense and that phytohormones could be involved in this process.
Collapse
Affiliation(s)
- Emna Gharbi
- Groupe de Recherche en Physiologie végétale (GRPV), Earth and Life Institute - Agronomy (ELI-A), Université catholique de Louvain, Louvain-la-Neuve, Belgium; Laboratoire d'Ecologie végétale, Faculté des Sciences, Université de Tunis El Manar, Tunisia
| | | | - Hela Benahmed
- Laboratoire d'Ecologie végétale, Faculté des Sciences, Université de Tunis El Manar, Tunisia
| | - Imène Hichri
- Groupe de Recherche en Physiologie végétale (GRPV), Earth and Life Institute - Agronomy (ELI-A), Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Petre I Dobrev
- Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Prague, Czechia
| | - Václav Motyka
- Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Prague, Czechia
| | - Muriel Quinet
- Groupe de Recherche en Physiologie végétale (GRPV), Earth and Life Institute - Agronomy (ELI-A), Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Stanley Lutts
- Groupe de Recherche en Physiologie végétale (GRPV), Earth and Life Institute - Agronomy (ELI-A), Université catholique de Louvain, Louvain-la-Neuve, Belgium.
| |
Collapse
|
41
|
Dassanayake M, Larkin JC. Making Plants Break a Sweat: the Structure, Function, and Evolution of Plant Salt Glands. FRONTIERS IN PLANT SCIENCE 2017; 8:406. [PMID: 28400779 PMCID: PMC5368257 DOI: 10.3389/fpls.2017.00406] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 03/09/2017] [Indexed: 05/25/2023]
Abstract
Salt stress is a complex trait that poses a grand challenge in developing new crops better adapted to saline environments. Some plants, called recretohalophytes, that have naturally evolved to secrete excess salts through salt glands, offer an underexplored genetic resource for examining how plant development, anatomy, and physiology integrate to prevent excess salt from building up to toxic levels in plant tissue. In this review we examine the structure and evolution of salt glands, salt gland-specific gene expression, and the possibility that all salt glands have originated via evolutionary modifications of trichomes. Salt secretion via salt glands is found in more than 50 species in 14 angiosperm families distributed in caryophyllales, asterids, rosids, and grasses. The salt glands of these distantly related clades can be grouped into four structural classes. Although salt glands appear to have originated independently at least 12 times, they share convergently evolved features that facilitate salt compartmentalization and excretion. We review the structural diversity and evolution of salt glands, major transporters and proteins associated with salt transport and secretion in halophytes, salt gland relevant gene expression regulation, and the prospect for using new genomic and transcriptomic tools in combination with information from model organisms to better understand how salt glands contribute to salt tolerance. Finally, we consider the prospects for using this knowledge to engineer salt glands to increase salt tolerance in model species, and ultimately in crops.
Collapse
Affiliation(s)
- Maheshi Dassanayake
- Department of Biological Sciences, Louisiana State University, Baton RougeLA, USA
| | - John C. Larkin
- Department of Biological Sciences, Louisiana State University, Baton RougeLA, USA
| |
Collapse
|
42
|
Ranathunge K, Kim YX, Wassmann F, Kreszies T, Zeisler V, Schreiber L. The composite water and solute transport of barley (Hordeum vulgare) roots: effect of suberized barriers. ANNALS OF BOTANY 2017; 119:629-643. [PMID: 28065927 PMCID: PMC5604597 DOI: 10.1093/aob/mcw252] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 10/26/2016] [Indexed: 05/23/2023]
Abstract
BACKGROUND AND AIMS Roots have complex anatomical structures, and certain localized cell layers develop suberized apoplastic barriers. The size and tightness of these barriers depend on the growth conditions and on the age of the root. Such complex anatomical structures result in a composite water and solute transport in roots. METHODS Development of apoplastic barriers along barley seminal roots was detected using various staining methods, and the suberin amounts in the apical and basal zones were analysed using gas chromatography-mass spectometry (GC-MS). The hydraulic conductivity of roots ( Lp r ) and of cortical cells ( Lp c ) was measured using root and cell pressure probes. KEY RESULTS When grown in hydroponics, barley roots did not form an exodermis, even at their basal zones. However, they developed an endodermis. Endodermal Casparian bands first appeared as 'dots' as early as at 20 mm from the apex, whereas a patchy suberin lamellae appeared at 60 mm. The endodermal suberin accounted for the total suberin of the roots. The absolute amount in the basal zone was significantly higher than in the apical zone, which was inversely proportional to the Lp r . Comparison of Lp r and Lp c suggested that cell to cell pathways dominate for water transport in roots. However, the calculation of Lp r from Lp c showed that at least 26 % of water transport occurs through the apoplast. Roots had different solute permeabilities ( P sr ) and reflection coefficients ( σ sr ) for the solutes used. The σ sr was below unity for the solutes, which have virtually zero permeability for semi-permeable membranes. CONCLUSIONS Suberized endodermis significantly reduces Lp r of seminal roots. The water and solute transport across barley roots is composite in nature and they do not behave like ideal osmometers. The composite transport model should be extended by adding components arranged in series (cortex, endodermis) in addition to the currently included components arranged in parallel (apoplastic, cell to cell pathways).
Collapse
Affiliation(s)
- Kosala Ranathunge
- Department of Ecophysiology, Institute of Cellular and Molecular Botany, University of Bonn, Kirschallee 1, D-53115 Bonn, Germany
| | - Yangmin X. Kim
- Department of Soil Hydrology, George-August-University of Göttingen, Büsgenweg 2, D-37077 Göttingen, Germany
| | - Friedrich Wassmann
- Department of Ecophysiology, Institute of Cellular and Molecular Botany, University of Bonn, Kirschallee 1, D-53115 Bonn, Germany
| | - Tino Kreszies
- Department of Ecophysiology, Institute of Cellular and Molecular Botany, University of Bonn, Kirschallee 1, D-53115 Bonn, Germany
| | - Viktoria Zeisler
- Department of Ecophysiology, Institute of Cellular and Molecular Botany, University of Bonn, Kirschallee 1, D-53115 Bonn, Germany
| | - Lukas Schreiber
- Department of Ecophysiology, Institute of Cellular and Molecular Botany, University of Bonn, Kirschallee 1, D-53115 Bonn, Germany
| |
Collapse
|
43
|
Chen Y, Wang H, Hu W, Wang S, Wang Y, Snider JL, Zhou Z. Combined elevated temperature and soil waterlogging stresses inhibit cell elongation by altering osmolyte composition of the developing cotton (Gossypium hirsutum L.) fiber. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2017; 256:196-207. [PMID: 28167033 DOI: 10.1016/j.plantsci.2017.01.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Revised: 12/21/2016] [Accepted: 01/01/2017] [Indexed: 06/06/2023]
Abstract
Soil waterlogging events and high temperature conditions occur frequently in the Yangtze River Valley, yet the effects of these co-occurring stresses on fiber elongation have received little attention. In the current study, the combined effect of elevated temperature (ET) and soil waterlogging (SW) more negatively affected final fiber length (reduced by 5.4%-11.3%) than either stress alone by altering the composition of osmotically active solutes (sucrose, malate, and K+), where SW had the most pronounced effect. High temperature accelerated early fiber development, but limited the duration of elongation, thereby limiting final fiber length. Treatment of ET alone altered fiber sucrose content mainly through decreased source strength and the expression of the sucrose transporter gene GhSUT-1, making sucrose availability the primary determinant of final fiber length under ET. Waterlogging stress alone decreased source strength, down-regulated GhSUT-1 expression and enhanced SuSy catalytic activity for sucrose reduction. Waterlogging treatment alone also limited fiber malate production by down-regulating GhPEPC-1 & -2. However, combined elevated temperature and waterlogging limited primary cell wall synthesis by affecting GhCESAs genes and showed a negative impact on all three major osmotic solutes through the regulation of GhSUT-1, GhPEPC-1 & -2 and GhKT-1 expression and altered SuSy activity, which functioned together to produce a shorter fiber length.
Collapse
Affiliation(s)
- Yinglong Chen
- Key Laboratory of Crop Physiology & Ecology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, PR China.
| | - Haimiao Wang
- Key Laboratory of Crop Physiology & Ecology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, PR China.
| | - Wei Hu
- Key Laboratory of Crop Physiology & Ecology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, PR China.
| | - Shanshan Wang
- Key Laboratory of Crop Physiology & Ecology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, PR China.
| | - Youhua Wang
- Key Laboratory of Crop Physiology & Ecology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, PR China.
| | - John L Snider
- Department of Crop and Soil Sciences, University of Georgia, Tifton, GA, 31794, USA.
| | - Zhiguo Zhou
- Key Laboratory of Crop Physiology & Ecology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, PR China.
| |
Collapse
|
44
|
Sharipova G, Veselov D, Kudoyarova G, Fricke W, Dodd IC, Katsuhara M, Furuichi T, Ivanov I, Veselov S. Exogenous application of abscisic acid (ABA) increases root and cell hydraulic conductivity and abundance of some aquaporin isoforms in the ABA-deficient barley mutant Az34. ANNALS OF BOTANY 2016; 118:777-785. [PMID: 27358289 PMCID: PMC5055630 DOI: 10.1093/aob/mcw117] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 05/16/2016] [Indexed: 05/03/2023]
Abstract
Background and Aims Regulation of water channel aquaporins (AQPs) provides another mechanism by which abscisic acid (ABA) may influence water flow through plants. To the best of our knowledge, no studies have addressed the changes in ABA levels, the abundance of AQPs and root cell hydraulic conductivity (LpCell) in the same tissues. Thus, we followed the mechanisms by which ABA affects root hydraulics in an ABA-deficient barley mutant Az34 and its parental line 'Steptoe'. We compared the abundance of AQPs and ABA in cells to determine spatial correlations between AQP abundance and local ABA concentrations in different root tissues. In addition, abundance of AQPs and ABA in cortex cells was related to LpCell. Methods Root hydraulic conductivity (LpRoot) was measured by means of root exudation analyses and LpCell using a cell pressure probe. The abundance of ABA and AQPs in root tissues was assessed through immunohistochemical analyses. Isoform-specific antibodies raised against HvPIP2;1, HvPIP2;2 and HvPIP2;5 were used. Key Results Immunolocalization revealed lower ABA levels in root tissues of Az34 compared with 'Steptoe'. Root hydraulic conductivity (LpRoot) was lower in Az34, yet the abundance of HvPIPs in root tissues was similar in the two genotypes. Root hair formation occurred closer to the tip, while the length of the root hair zone was shorter in Az34 than in 'Steptoe'. Application of external ABA to the root medium of Az34 and 'Steptoe' increased the immunostaining of root cells for ABA and for HvPIP2;1 and HvPIP2;2 especially in root epidermal cells and the cortical cell layer located beneath, parallel to an increase in LpRoot and LpCell. Treatment of roots with Fenton reagent, which inhibits AQP activity, prevented the ABA-induced increase in root hydraulic conductivity. Conclusion Shortly after (<2 h) ABA application to the roots of ABA-deficient barley, increased tissue ABA concentrations and AQP abundance (especially the plasma-membrane localized isoforms HvPIP2;1 and HvPIP2;2) were spatially correlated in root epidermal cells and the cortical cell layer located beneath, in conjunction with increased LpCell of the cortical cells. In contrast, long-term ABA deficiency throughout seedling development affects root hydraulics through other mechanisms, in particular the developmental timing of the formation of root hairs closer to the root tip and the length of the root hair zone.
Collapse
Affiliation(s)
- Guzel Sharipova
- Institute of Biology, Russian Academy of Sciences, pr. Oktyabrya, 69, 450054 Ufa, Russia
| | - Dmitriy Veselov
- Institute of Biology, Russian Academy of Sciences, pr. Oktyabrya, 69, 450054 Ufa, Russia
| | - Guzel Kudoyarova
- Institute of Biology, Russian Academy of Sciences, pr. Oktyabrya, 69, 450054 Ufa, Russia
- *For correspondence. E-mail
| | - Wieland Fricke
- University College Dublin, School of Biology and Environmental Science, Science Centre West, Belfield, Dublin 4, Ireland
| | - Ian C. Dodd
- The Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
| | - Maki Katsuhara
- Okayama University, Institute of Plant Science and Resources, Kurashiki, Okayama 710-0046, Japan
| | - Takuya Furuichi
- Nagoya University of Economics, School of Human Life Science, Inuyama, Aichi 484-8504, Japan
| | - Igor Ivanov
- Institute of Biology, Russian Academy of Sciences, pr. Oktyabrya, 69, 450054 Ufa, Russia
| | - Stanislav Veselov
- Bashkir State University, Zaki-Validi Street, 32, 450074 Ufa, Russia
| |
Collapse
|
45
|
Hamouda I, Badri M, Mejri M, Cruz C, Siddique KHM, Hessini K. Salt tolerance of Beta macrocarpa is associated with efficient osmotic adjustment and increased apoplastic water content. PLANT BIOLOGY (STUTTGART, GERMANY) 2016; 18:369-75. [PMID: 26588061 DOI: 10.1111/plb.12419] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 11/13/2015] [Indexed: 05/12/2023]
Abstract
The chenopod Beta macrocarpa Guss (wild Swiss chard) is known for its salt tolerance, but the mechanisms involved are still debated. In order to elucidate the processes involved, we grew wild Swiss chard exposed to three salinity levels (0, 100 and 200 mm NaCl) for 45 days, and determined several physiological parameters at the end of this time. All plants survived despite reductions in growth, photosynthesis and stomatal conductance in plants exposed to salinity (100 and 200 mm NaCl). As expected, the negative effects of salinity were more pronounced at 200 mm than at 100 mm NaCl: (i) leaf apoplastic water content was maintained or increased despite a significant reduction in leaf water potential, revealing the halophytic character of B. macrocarpa; (ii) osmotic adjustment occurred, which presumably enhanced the driving force for water extraction from soil, and avoided toxic build up of Na(+) and Cl(-) in the mesophyll apoplast of leaves. Osmotic adjustment mainly occurred through accumulation of inorganic ions and to a lesser extent soluble sugars; proline was not implicated in osmotic adjustment. Overall, two important mechanisms of salt tolerance in B. macrocarpa were identified: osmotic and apoplastic water adjustment.
Collapse
Affiliation(s)
- I Hamouda
- Laboratory of Extremophile Plants, Centre of Biotechnology of Borj Cedria, Hammam-Lif, Tunisia
| | - M Badri
- Laboratory of Extremophile Plants, Centre of Biotechnology of Borj Cedria, Hammam-Lif, Tunisia
| | - M Mejri
- Laboratory of Extremophile Plants, Centre of Biotechnology of Borj Cedria, Hammam-Lif, Tunisia
| | - C Cruz
- Departamento de Biologia Vegetal, Faculdade de Ciencias de Lisboa, Centro de Biologia Ambiental-CBA, Campo Grande, Lisbon, Portugal
| | - K H M Siddique
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, Australia
| | - K Hessini
- Laboratory of Extremophile Plants, Centre of Biotechnology of Borj Cedria, Hammam-Lif, Tunisia
- Biology Department, Faculty of Science, Taif University, Al-Haweiah, Taif, Saudi Arabia
| |
Collapse
|
46
|
Reinhardt H, Hachez C, Bienert MD, Beebo A, Swarup K, Voß U, Bouhidel K, Frigerio L, Schjoerring JK, Bennett MJ, Chaumont F. Tonoplast Aquaporins Facilitate Lateral Root Emergence. PLANT PHYSIOLOGY 2016; 170:1640-54. [PMID: 26802038 PMCID: PMC4775129 DOI: 10.1104/pp.15.01635] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 01/19/2016] [Indexed: 05/18/2023]
Abstract
Aquaporins (AQPs) are water channels allowing fast and passive diffusion of water across cell membranes. It was hypothesized that AQPs contribute to cell elongation processes by allowing water influx across the plasma membrane and the tonoplast to maintain adequate turgor pressure. Here, we report that, in Arabidopsis (Arabidopsis thaliana), the highly abundant tonoplast AQP isoforms AtTIP1;1, AtTIP1;2, and AtTIP2;1 facilitate the emergence of new lateral root primordia (LRPs). The number of lateral roots was strongly reduced in the triple tip mutant, whereas the single, double, and triple tip mutants showed no or minor reduction in growth of the main root. This phenotype was due to the retardation of LRP emergence. Live cell imaging revealed that tight spatiotemporal control of TIP abundance in the tonoplast of the different LRP cells is pivotal to mediating this developmental process. While lateral root emergence is correlated to a reduction of AtTIP1;1 and AtTIP1;2 protein levels in LRPs, expression of AtTIP2;1 is specifically needed in a restricted cell population at the base, then later at the flanks, of developing LRPs. Interestingly, the LRP emergence phenotype of the triple tip mutants could be fully rescued by expressing AtTIP2;1 under its native promoter. We conclude that TIP isoforms allow the spatial and temporal fine-tuning of cellular water transport, which is critically required during the highly regulated process of LRP morphogenesis and emergence.
Collapse
Affiliation(s)
- Hagen Reinhardt
- Institut des Sciences de la Vie, Université Catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium (H.R., C.H., F.C.);Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, DK-1871 Frederiksberg C, Denmark (M.D.B., J.K.S.);Université de Bourgogne, UMR1347 Agroécologie IPM, F-21000 Dijon, France (A.B., K.B.);Centre for Plant Integrative Biology, University of Nottingham, Sutton Bonington LE12 5RD, United Kingdom (K.S., U.V., M.J.B.); andSchool of Life Sciences, University of Warwick, Coventry CV47AL, United Kingdom (L.F.)
| | - Charles Hachez
- Institut des Sciences de la Vie, Université Catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium (H.R., C.H., F.C.);Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, DK-1871 Frederiksberg C, Denmark (M.D.B., J.K.S.);Université de Bourgogne, UMR1347 Agroécologie IPM, F-21000 Dijon, France (A.B., K.B.);Centre for Plant Integrative Biology, University of Nottingham, Sutton Bonington LE12 5RD, United Kingdom (K.S., U.V., M.J.B.); andSchool of Life Sciences, University of Warwick, Coventry CV47AL, United Kingdom (L.F.)
| | - Manuela Désirée Bienert
- Institut des Sciences de la Vie, Université Catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium (H.R., C.H., F.C.);Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, DK-1871 Frederiksberg C, Denmark (M.D.B., J.K.S.);Université de Bourgogne, UMR1347 Agroécologie IPM, F-21000 Dijon, France (A.B., K.B.);Centre for Plant Integrative Biology, University of Nottingham, Sutton Bonington LE12 5RD, United Kingdom (K.S., U.V., M.J.B.); andSchool of Life Sciences, University of Warwick, Coventry CV47AL, United Kingdom (L.F.)
| | - Azeez Beebo
- Institut des Sciences de la Vie, Université Catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium (H.R., C.H., F.C.);Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, DK-1871 Frederiksberg C, Denmark (M.D.B., J.K.S.);Université de Bourgogne, UMR1347 Agroécologie IPM, F-21000 Dijon, France (A.B., K.B.);Centre for Plant Integrative Biology, University of Nottingham, Sutton Bonington LE12 5RD, United Kingdom (K.S., U.V., M.J.B.); andSchool of Life Sciences, University of Warwick, Coventry CV47AL, United Kingdom (L.F.)
| | - Kamal Swarup
- Institut des Sciences de la Vie, Université Catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium (H.R., C.H., F.C.);Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, DK-1871 Frederiksberg C, Denmark (M.D.B., J.K.S.);Université de Bourgogne, UMR1347 Agroécologie IPM, F-21000 Dijon, France (A.B., K.B.);Centre for Plant Integrative Biology, University of Nottingham, Sutton Bonington LE12 5RD, United Kingdom (K.S., U.V., M.J.B.); andSchool of Life Sciences, University of Warwick, Coventry CV47AL, United Kingdom (L.F.)
| | - Ute Voß
- Institut des Sciences de la Vie, Université Catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium (H.R., C.H., F.C.);Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, DK-1871 Frederiksberg C, Denmark (M.D.B., J.K.S.);Université de Bourgogne, UMR1347 Agroécologie IPM, F-21000 Dijon, France (A.B., K.B.);Centre for Plant Integrative Biology, University of Nottingham, Sutton Bonington LE12 5RD, United Kingdom (K.S., U.V., M.J.B.); andSchool of Life Sciences, University of Warwick, Coventry CV47AL, United Kingdom (L.F.)
| | - Karim Bouhidel
- Institut des Sciences de la Vie, Université Catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium (H.R., C.H., F.C.);Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, DK-1871 Frederiksberg C, Denmark (M.D.B., J.K.S.);Université de Bourgogne, UMR1347 Agroécologie IPM, F-21000 Dijon, France (A.B., K.B.);Centre for Plant Integrative Biology, University of Nottingham, Sutton Bonington LE12 5RD, United Kingdom (K.S., U.V., M.J.B.); andSchool of Life Sciences, University of Warwick, Coventry CV47AL, United Kingdom (L.F.)
| | - Lorenzo Frigerio
- Institut des Sciences de la Vie, Université Catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium (H.R., C.H., F.C.);Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, DK-1871 Frederiksberg C, Denmark (M.D.B., J.K.S.);Université de Bourgogne, UMR1347 Agroécologie IPM, F-21000 Dijon, France (A.B., K.B.);Centre for Plant Integrative Biology, University of Nottingham, Sutton Bonington LE12 5RD, United Kingdom (K.S., U.V., M.J.B.); andSchool of Life Sciences, University of Warwick, Coventry CV47AL, United Kingdom (L.F.)
| | - Jan K Schjoerring
- Institut des Sciences de la Vie, Université Catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium (H.R., C.H., F.C.);Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, DK-1871 Frederiksberg C, Denmark (M.D.B., J.K.S.);Université de Bourgogne, UMR1347 Agroécologie IPM, F-21000 Dijon, France (A.B., K.B.);Centre for Plant Integrative Biology, University of Nottingham, Sutton Bonington LE12 5RD, United Kingdom (K.S., U.V., M.J.B.); andSchool of Life Sciences, University of Warwick, Coventry CV47AL, United Kingdom (L.F.)
| | - Malcolm J Bennett
- Institut des Sciences de la Vie, Université Catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium (H.R., C.H., F.C.);Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, DK-1871 Frederiksberg C, Denmark (M.D.B., J.K.S.);Université de Bourgogne, UMR1347 Agroécologie IPM, F-21000 Dijon, France (A.B., K.B.);Centre for Plant Integrative Biology, University of Nottingham, Sutton Bonington LE12 5RD, United Kingdom (K.S., U.V., M.J.B.); andSchool of Life Sciences, University of Warwick, Coventry CV47AL, United Kingdom (L.F.)
| | - Francois Chaumont
- Institut des Sciences de la Vie, Université Catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium (H.R., C.H., F.C.);Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, DK-1871 Frederiksberg C, Denmark (M.D.B., J.K.S.);Université de Bourgogne, UMR1347 Agroécologie IPM, F-21000 Dijon, France (A.B., K.B.);Centre for Plant Integrative Biology, University of Nottingham, Sutton Bonington LE12 5RD, United Kingdom (K.S., U.V., M.J.B.); andSchool of Life Sciences, University of Warwick, Coventry CV47AL, United Kingdom (L.F.)
| |
Collapse
|
47
|
Shabala S, Bose J, Fuglsang AT, Pottosin I. On a quest for stress tolerance genes: membrane transporters in sensing and adapting to hostile soils. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:1015-31. [PMID: 26507891 DOI: 10.1093/jxb/erv465] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Abiotic stresses such as salinity, drought, and flooding severely limit food and fibre production and result in penalties of in excess of US$100 billion per annum to the agricultural sector. Improved abiotic stress tolerance to these environmental constraints via traditional or molecular breeding practices requires a good understanding of the physiological and molecular mechanisms behind roots sensing of hostile soils, as well as downstream signalling cascades to effectors mediating plant adaptive responses to the environment. In this review, we discuss some common mechanisms conferring plant tolerance to these three major abiotic stresses. Central to our discussion are: (i) the essentiality of membrane potential maintenance and ATP production/availability and its use for metabolic versus adaptive responses; (ii) reactive oxygen species and Ca(2+) 'signatures' mediating stress signalling; and (iii) cytosolic K(+) as the common denominator of plant adaptive responses. We discuss in detail how key plasma membrane and tonoplast transporters are regulated by various signalling molecules and processes observed in plants under stress conditions (e.g. changes in membrane potential; cytosolic pH and Ca(2+); reactive oxygen species; polyamines; abscisic acid) and how these stress-induced changes are related to expression and activity of specific ion transporters. The reported results are then discussed in the context of strategies for breeding crops with improved abiotic stress tolerance. We also discuss a classical trade-off between tolerance and yield, and possible avenues for resolving this dilemma.
Collapse
Affiliation(s)
- Sergey Shabala
- School of Land and Food, University of Tasmania, Private Bag 54, Hobart, Tas 7001, Australia
| | - Jayakumar Bose
- School of Land and Food, University of Tasmania, Private Bag 54, Hobart, Tas 7001, Australia ARC Centre of Excellence in Plant Energy Biology, School of Agriculture, Food and Wine, University of Adelaide, PMB 1, Glen Osmond, SA 5064, Australia
| | - Anja Thoe Fuglsang
- Department of Plant and Environmental Science, University of Copenhagen, DK-1871 Frederiksberg, Denmark
| | - Igor Pottosin
- School of Land and Food, University of Tasmania, Private Bag 54, Hobart, Tas 7001, Australia Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, 28045 Colima, México
| |
Collapse
|
48
|
Yang J, Hu W, Zhao W, Chen B, Wang Y, Zhou Z, Meng Y. Fruiting Branch K(+) Level Affects Cotton Fiber Elongation Through Osmoregulation. FRONTIERS IN PLANT SCIENCE 2016; 7:13. [PMID: 26834777 PMCID: PMC4722289 DOI: 10.3389/fpls.2016.00013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 01/07/2016] [Indexed: 05/08/2023]
Abstract
Potassium (K) deficiency in cotton plants results in reduced fiber length. As one of the primary osmotica, K(+) contributes to an increase in cell turgor pressure during fiber elongation. Therefore, it is hypothesized that fiber length is affected by K deficiency through an osmotic pathway, so in 2012 and 2013, an experiment was conducted to test this hypothesis by imposing three potassium supply regimes (0, 125, 250 kg K ha(-1)) on a low-K-sensitive cultivar, Siza 3, and a low-K-tolerant cultivar, Simian 3. We found that fibers were longer in the later season bolls than in the earlier ones in cotton plants grown under normal growth conditions, but later season bolls showed a greater sensitivity to low-K stress, especially the low-K sensitive genotype. We also found that the maximum velocity of fibre elongation (V max) is the parameter that best reflects the change in fiber elongation under K deficiency. This parameter mostly depends on cell turgor, so the content of the osmotically active solutes was analyzed accordingly. Statistical analysis showed that K(+) was the major osmotic factor affecting fiber length, and malate was likely facilitating K(+) accumulation into fibers, which enabled the low-K-tolerant genotype to cope with low-K stress. Moreover, the low-K-tolerant genotype tended to have greater K(+) absorptive capacities in the upper fruiting branches. Based on our findings, we suggest a fertilization scheme for Gossypium hirsutum that adds extra potash fertilizer or distributes it during the development of late season bolls to mitigate K deficiency in the second half of the growth season and to enhance fiber length in late season bolls.
Collapse
Affiliation(s)
| | | | | | | | | | - Zhiguo Zhou
- Key Laboratory of Crop Physiology and Ecology, Department of Agronomy, College of Agriculture, Nanjing Agricultural UniversityNanjing, China
| | - Yali Meng
- Key Laboratory of Crop Physiology and Ecology, Department of Agronomy, College of Agriculture, Nanjing Agricultural UniversityNanjing, China
| |
Collapse
|
49
|
Campbell MT, Knecht AC, Berger B, Brien CJ, Wang D, Walia H. Integrating Image-Based Phenomics and Association Analysis to Dissect the Genetic Architecture of Temporal Salinity Responses in Rice. PLANT PHYSIOLOGY 2015; 168:1476-89. [PMID: 26111541 PMCID: PMC4528749 DOI: 10.1104/pp.15.00450] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 06/25/2015] [Indexed: 05/18/2023]
Abstract
Salinity affects a significant portion of arable land and is particularly detrimental for irrigated agriculture, which provides one-third of the global food supply. Rice (Oryza sativa), the most important food crop, is salt sensitive. The genetic resources for salt tolerance in rice germplasm exist but are underutilized due to the difficulty in capturing the dynamic nature of physiological responses to salt stress. The genetic basis of these physiological responses is predicted to be polygenic. In an effort to address this challenge, we generated temporal imaging data from 378 diverse rice genotypes across 14 d of 90 mm NaCl stress and developed a statistical model to assess the genetic architecture of dynamic salinity-induced growth responses in rice germplasm. A genomic region on chromosome 3 was strongly associated with the early growth response and was captured using visible range imaging. Fluorescence imaging identified four genomic regions linked to salinity-induced fluorescence responses. A region on chromosome 1 regulates both the fluorescence shift indicative of the longer term ionic stress and the early growth rate decline during salinity stress. We present, to our knowledge, a new approach to capture the dynamic plant responses to its environment and elucidate the genetic basis of these responses using a longitudinal genome-wide association model.
Collapse
Affiliation(s)
- Malachy T Campbell
- Department of Agronomy and Horticulture (M.T.C., H.W.), Holland Computing Center (A.C.K.), and Department of Statistics (D.W.), University of Nebraska, Lincoln, Nebraska 68583;The Plant Accelerator, Australian Plant Phenomics Facility, University of Adelaide, Urrbrae, South Australia 5064, Australia (B.B.); andPhenomics and Bioinformatics Research Centre, University of South Australia, Adelaide, South Australia 5001, Australia (C.J.B.)
| | - Avi C Knecht
- Department of Agronomy and Horticulture (M.T.C., H.W.), Holland Computing Center (A.C.K.), and Department of Statistics (D.W.), University of Nebraska, Lincoln, Nebraska 68583;The Plant Accelerator, Australian Plant Phenomics Facility, University of Adelaide, Urrbrae, South Australia 5064, Australia (B.B.); andPhenomics and Bioinformatics Research Centre, University of South Australia, Adelaide, South Australia 5001, Australia (C.J.B.)
| | - Bettina Berger
- Department of Agronomy and Horticulture (M.T.C., H.W.), Holland Computing Center (A.C.K.), and Department of Statistics (D.W.), University of Nebraska, Lincoln, Nebraska 68583;The Plant Accelerator, Australian Plant Phenomics Facility, University of Adelaide, Urrbrae, South Australia 5064, Australia (B.B.); andPhenomics and Bioinformatics Research Centre, University of South Australia, Adelaide, South Australia 5001, Australia (C.J.B.)
| | - Chris J Brien
- Department of Agronomy and Horticulture (M.T.C., H.W.), Holland Computing Center (A.C.K.), and Department of Statistics (D.W.), University of Nebraska, Lincoln, Nebraska 68583;The Plant Accelerator, Australian Plant Phenomics Facility, University of Adelaide, Urrbrae, South Australia 5064, Australia (B.B.); andPhenomics and Bioinformatics Research Centre, University of South Australia, Adelaide, South Australia 5001, Australia (C.J.B.)
| | - Dong Wang
- Department of Agronomy and Horticulture (M.T.C., H.W.), Holland Computing Center (A.C.K.), and Department of Statistics (D.W.), University of Nebraska, Lincoln, Nebraska 68583;The Plant Accelerator, Australian Plant Phenomics Facility, University of Adelaide, Urrbrae, South Australia 5064, Australia (B.B.); andPhenomics and Bioinformatics Research Centre, University of South Australia, Adelaide, South Australia 5001, Australia (C.J.B.)
| | - Harkamal Walia
- Department of Agronomy and Horticulture (M.T.C., H.W.), Holland Computing Center (A.C.K.), and Department of Statistics (D.W.), University of Nebraska, Lincoln, Nebraska 68583;The Plant Accelerator, Australian Plant Phenomics Facility, University of Adelaide, Urrbrae, South Australia 5064, Australia (B.B.); andPhenomics and Bioinformatics Research Centre, University of South Australia, Adelaide, South Australia 5001, Australia (C.J.B.)
| |
Collapse
|
50
|
Campbell MT, Knecht AC, Berger B, Brien CJ, Wang D, Walia H. Integrating Image-Based Phenomics and Association Analysis to Dissect the Genetic Architecture of Temporal Salinity Responses in Rice. PLANT PHYSIOLOGY 2015; 168:1476-1489. [PMID: 26111541 DOI: 10.1104/pp15.00450] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 06/25/2015] [Indexed: 05/26/2023]
Abstract
Salinity affects a significant portion of arable land and is particularly detrimental for irrigated agriculture, which provides one-third of the global food supply. Rice (Oryza sativa), the most important food crop, is salt sensitive. The genetic resources for salt tolerance in rice germplasm exist but are underutilized due to the difficulty in capturing the dynamic nature of physiological responses to salt stress. The genetic basis of these physiological responses is predicted to be polygenic. In an effort to address this challenge, we generated temporal imaging data from 378 diverse rice genotypes across 14 d of 90 mm NaCl stress and developed a statistical model to assess the genetic architecture of dynamic salinity-induced growth responses in rice germplasm. A genomic region on chromosome 3 was strongly associated with the early growth response and was captured using visible range imaging. Fluorescence imaging identified four genomic regions linked to salinity-induced fluorescence responses. A region on chromosome 1 regulates both the fluorescence shift indicative of the longer term ionic stress and the early growth rate decline during salinity stress. We present, to our knowledge, a new approach to capture the dynamic plant responses to its environment and elucidate the genetic basis of these responses using a longitudinal genome-wide association model.
Collapse
Affiliation(s)
- Malachy T Campbell
- Department of Agronomy and Horticulture (M.T.C., H.W.), Holland Computing Center (A.C.K.), and Department of Statistics (D.W.), University of Nebraska, Lincoln, Nebraska 68583;The Plant Accelerator, Australian Plant Phenomics Facility, University of Adelaide, Urrbrae, South Australia 5064, Australia (B.B.); andPhenomics and Bioinformatics Research Centre, University of South Australia, Adelaide, South Australia 5001, Australia (C.J.B.)
| | - Avi C Knecht
- Department of Agronomy and Horticulture (M.T.C., H.W.), Holland Computing Center (A.C.K.), and Department of Statistics (D.W.), University of Nebraska, Lincoln, Nebraska 68583;The Plant Accelerator, Australian Plant Phenomics Facility, University of Adelaide, Urrbrae, South Australia 5064, Australia (B.B.); andPhenomics and Bioinformatics Research Centre, University of South Australia, Adelaide, South Australia 5001, Australia (C.J.B.)
| | - Bettina Berger
- Department of Agronomy and Horticulture (M.T.C., H.W.), Holland Computing Center (A.C.K.), and Department of Statistics (D.W.), University of Nebraska, Lincoln, Nebraska 68583;The Plant Accelerator, Australian Plant Phenomics Facility, University of Adelaide, Urrbrae, South Australia 5064, Australia (B.B.); andPhenomics and Bioinformatics Research Centre, University of South Australia, Adelaide, South Australia 5001, Australia (C.J.B.)
| | - Chris J Brien
- Department of Agronomy and Horticulture (M.T.C., H.W.), Holland Computing Center (A.C.K.), and Department of Statistics (D.W.), University of Nebraska, Lincoln, Nebraska 68583;The Plant Accelerator, Australian Plant Phenomics Facility, University of Adelaide, Urrbrae, South Australia 5064, Australia (B.B.); andPhenomics and Bioinformatics Research Centre, University of South Australia, Adelaide, South Australia 5001, Australia (C.J.B.)
| | - Dong Wang
- Department of Agronomy and Horticulture (M.T.C., H.W.), Holland Computing Center (A.C.K.), and Department of Statistics (D.W.), University of Nebraska, Lincoln, Nebraska 68583;The Plant Accelerator, Australian Plant Phenomics Facility, University of Adelaide, Urrbrae, South Australia 5064, Australia (B.B.); andPhenomics and Bioinformatics Research Centre, University of South Australia, Adelaide, South Australia 5001, Australia (C.J.B.)
| | - Harkamal Walia
- Department of Agronomy and Horticulture (M.T.C., H.W.), Holland Computing Center (A.C.K.), and Department of Statistics (D.W.), University of Nebraska, Lincoln, Nebraska 68583;The Plant Accelerator, Australian Plant Phenomics Facility, University of Adelaide, Urrbrae, South Australia 5064, Australia (B.B.); andPhenomics and Bioinformatics Research Centre, University of South Australia, Adelaide, South Australia 5001, Australia (C.J.B.)
| |
Collapse
|