1
|
Bayomy HM, Alamri ES, Alharbi BM, Almasoudi SE, Ozaybi NA, Mohammed GM, Genaidy EA, Atteya AKG. Oil Yield and Bioactive Compounds of Moringa oleifera Trees Grown Under Saline Conditions. PLANTS (BASEL, SWITZERLAND) 2025; 14:509. [PMID: 40006768 PMCID: PMC11859404 DOI: 10.3390/plants14040509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 02/01/2025] [Accepted: 02/05/2025] [Indexed: 02/27/2025]
Abstract
Moringa oleifera is a tree with various applications. Desertification and salinity are major constraints to crop productivity worldwide, especially in Saudi Arabia. Therefore, it is essential that plants alleviate and adapt to salt stress. Many physiological, pharmacological, and molecular strategies are employed by plants to lessen the effects of salinity stress. In this work, plants were grown under different salinity levels and treated with a foliar spray of seaweed extract to evaluate the fixed oil using GC/MS analysis, free proline and total soluble proteins using colorimetric methods, total phenolic content using Folin-Ciocalteu phenol reagent, total flavonoids using a spectrophotometric method, and antioxidant activity using the DPPH method. The study has shown that applying seaweed extract to plants grown under different salinity conditions improves seed oil yield, proline levels, soluble proteins, phenolic content, flavonoids, and antioxidant activity. As salinity increases, the oil yield decreases, but the levels of proline, phenols, flavonoids, and antioxidant activity rise. Seaweed extract application also reduces protein breakdown and boosts osmoprotectants. Salt stress decreases unsaturated fatty acids like oleic acid and increases saturated fatty acids like stearic acid. Overall, seaweed extract helps mitigate the adverse effects of salinity, enhancing oil yield and stress resistance in moringa trees.
Collapse
Affiliation(s)
- Hala M. Bayomy
- Food Science and Nutrition Department, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Eman S. Alamri
- Food Science and Nutrition Department, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Basmah M. Alharbi
- Biology Department, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Seham E. Almasoudi
- Food Science and Nutrition Department, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Nawal A. Ozaybi
- Food Science and Nutrition Department, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Ghena M. Mohammed
- Food Science and Nutrition Department, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Esmail A. Genaidy
- Pomology Department, Agricultural and Biology Research Institute, National Research Centre, Giza 12622, Egypt
| | | |
Collapse
|
2
|
Ahmed AA, Ghoneim M, Ali MAA, Amer A, Głowacka A, Ahmed MAA. Comparative studies of four cumin landraces grown in Egypt. Sci Rep 2024; 14:7990. [PMID: 38580717 PMCID: PMC10997781 DOI: 10.1038/s41598-024-57637-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 03/20/2024] [Indexed: 04/07/2024] Open
Abstract
One of the significant aromatic plants applied in food and pharma is cumin. Despite its massive trading in Egypt, there are no comprehensive reports on cumin landraces profile screening. This study aimed to investigate the variation in seeds' physical and biochemical profiles and genetic diversity as well as assess the efficiency of seeds' germination under salinity stress. Consequently, during the 2020/2021 growing season, four common cumin seed landraces were gathered from various agro-climatic regions: El Gharbia, El Menia, Assiut, and Qena. Results showed a significant variation in physical profile among the four seeds of landraces. In addition, Assiut had the highest percentage of essential oil at 8.04%, whilst Qena had the largest amount of cumin aldehyde, the primary essential oil component, at 25.19%. Lauric acid was found to be the predominant fatty acid (54.78 to 62.73%). According to ISSR amplification, El Menia presented a negative unique band, whereas other landraces offered a positive band. Additionally, the cumin genotypes were separated into two clusters by the dendrogram, with El Gharbia being located in an entirely separate cluster. There were two sub-clusters within the other cluster: El Menia in one and Assiut and Qena in the other. Moreover, the germination sensitivity to the diverse salinity concentrations (control, 4, 8, 12, and 16 dS/m) findings showed that landraces exhibited varying responses to increased salinity when El Gharbia and El Menia showed a moderate response at four dS/m. Whilst, Qena landraces showed supreme values among other landraces under 12 and 16 dS/m. The majority of the examined features had strong positive associations over a range of salinity levels, according to phenotypic correlation coefficient analysis. To accomplish the aims of sustainable agriculture in Egypt, it would be imperative that the potential breeding program for cumin landraces consider this screening study.
Collapse
Affiliation(s)
- Abeer A Ahmed
- Seed Technology Research Department, Field Crops Research Institute, Agriculture Research Center, Giza, Egypt
| | - Marwa Ghoneim
- Cell Department, Field Crops Research Institute, Agriculture Research Center, Giza, Egypt
| | - Mahmoud A A Ali
- Horticultural Department, Faculty of Agriculture, Ain Shams University, Cairo, Egypt
| | - Alia Amer
- Medicinal and Aromatic Plants Research Department, Horticulture Research Institute, Agricultural Research Center, Giza, Egypt.
| | - Aleksandra Głowacka
- Department of Plant Cultivation Technology and Commodity Sciences, University of Life Sciences in Lublin, 13 Akademicka Street, 20-950, Lublin, Poland
| | - Mohamed A A Ahmed
- Plant Production Department (Horticulture - Medicinal and Aromatic Plants), Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria, 21531, Egypt.
| |
Collapse
|
3
|
Kihika JK, Pearman JK, Wood SA, Rhodes LL, Smith KF, Miller MR, Butler J, Ryan KG. Fatty acid production and associated gene pathways are altered by increased salinity and dimethyl sulfoxide treatments during cryopreservation of Symbiodinium pilosum (Symbiodiniaceae). Cryobiology 2024; 114:104855. [PMID: 38301952 DOI: 10.1016/j.cryobiol.2024.104855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 01/29/2024] [Indexed: 02/03/2024]
Abstract
The Symbiodinium genus is ancestral among other Symbiodiniaceae lineages with species that are both symbiotic and free living. Changes in marine ecosystems threaten their existence and crucial ecological roles. Cryopreservation offers an avenue for their long-term storage for future habitat restoration after coral bleaching. In our previous study we demonstrated that high salinity treatments of Symbiodiniaceae isolates led to changes in their fatty acid (FA) profiles and higher cell viabilities after cryopreservation. In this study, we investigated the role of increased salinity on FA production and the genes involved in FA biosynthesis and degradation pathways during the cryopreservation of Symbiodinium pilosum. Overall, there was a twofold increase in mass of FAs produced by S. pilosum after being cultured in medium with increased salinity (54 parts per thousand; ppt). Dimethyl sulfoxide (Me2SO) led to a ninefold increase of FAs in standard salinity (SS) treatment, compared to a fivefold increase in increased salinity (IS) treatments. The mass of the FA classes returned to baseline during recovery. Transcriptomic analyses showed an acyl carrier protein gene was significantly upregulated after Me2SO treatment in the SS cultures. Cytochrome P450 reductase genes were significantly down regulated after Me2SO addition in SS treatment preventing FA degradation. These changes in the expression of FA biosynthesis and degradation genes contributed to more FAs in SS treated isolates. Understanding how increased salinity changes FA production and the roles of specific genes in regulating FA pathways will help improve current freezing protocols for Symbiodiniaceae and other marine microalgae.
Collapse
Affiliation(s)
- Joseph K Kihika
- Cawthron Institute, Private Bag 2, Nelson, 7042, New Zealand; School of Biological Sciences, Victoria University of Wellington, PO Box 600, Wellington, 6140, New Zealand.
| | - John K Pearman
- Cawthron Institute, Private Bag 2, Nelson, 7042, New Zealand
| | - Susanna A Wood
- Cawthron Institute, Private Bag 2, Nelson, 7042, New Zealand
| | - Lesley L Rhodes
- Cawthron Institute, Private Bag 2, Nelson, 7042, New Zealand
| | - Kirsty F Smith
- Cawthron Institute, Private Bag 2, Nelson, 7042, New Zealand; School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | | | - Juliette Butler
- Cawthron Institute, Private Bag 2, Nelson, 7042, New Zealand
| | - Ken G Ryan
- School of Biological Sciences, Victoria University of Wellington, PO Box 600, Wellington, 6140, New Zealand
| |
Collapse
|
4
|
Fierli D, Barone ME, Graceffa V, Touzet N. Cold stress combined with salt or abscisic acid supplementation enhances lipogenesis and carotenogenesis in Phaeodactylum tricornutum (Bacillariophyceae). Bioprocess Biosyst Eng 2022; 45:1967-1977. [PMID: 36264371 DOI: 10.1007/s00449-022-02800-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 10/07/2022] [Indexed: 11/02/2022]
Abstract
Compounds from microalgae such as ω3-fatty acids or carotenoid are commercially exploited within the pharmacology, nutraceutical, or cosmetic sectors. The co-stimulation of several compounds of interest may improve the cost-effectiveness of microalgal biorefinery pipelines. This study focussed on Phaeodactylum tricornutum to investigate the effects on lipogenesis and carotenogenesis of combined stressors, here cold temperature and addition of NaCl salt or the phytohormone abscisic acid, using a two-stage cultivation strategy. Cold stress with NaCl or phytohormone addition increased the neutral lipid content of the biomass (20 to 35%). These treatments also enhanced the proportions of EPA (22% greater than control) in the fatty acid profile. Also, these treatments had a stimulatory effect on carotenogenesis, especially the combination of cold stress with NaCl addition, which returned the highest production of fucoxanthin (33% increase). The gene expression of diacylglycerol acyltransferase (DGAT) and the ω-3 desaturase precursor (PTD15) were enhanced 4- and 16-fold relative to the control, respectively. In addition, zeaxanthin epoxidase 3 (ZEP3), was downregulated at low temperature when combined with abscisic acid. These results highlight the benefits of applying a combination of low temperature and salinity stress, to simultaneously enhance the yields of the valuable metabolites EPA and fucoxanthin in Phaeodactylum tricornutum.
Collapse
Affiliation(s)
- David Fierli
- School of Science, Department of Environmental Science, Centre for Environmental Research, Sustainability and Innovation, Atlantic Technological University, Ash Ln, Ballytivnan, Sligo, F91 YW50, Ireland.
| | - Maria Elena Barone
- School of Science, Department of Environmental Science, Centre for Environmental Research, Sustainability and Innovation, Atlantic Technological University, Ash Ln, Ballytivnan, Sligo, F91 YW50, Ireland
| | - Valeria Graceffa
- School of Science, Department of Life Sciences, Cellular Health and Toxicology Research Group (CHAT), Atlantic Technological University, Ash Ln, Ballytivnan, Sligo, F91 YW50, Ireland
| | - Nicolas Touzet
- School of Science, Department of Environmental Science, Centre for Environmental Research, Sustainability and Innovation, Atlantic Technological University, Ash Ln, Ballytivnan, Sligo, F91 YW50, Ireland
| |
Collapse
|
5
|
Exogenously Supplemented Proline and Phenylalanine Improve Growth, Productivity, and Oil Composition of Salted Moringa by Up-Regulating Osmoprotectants and Stimulating Antioxidant Machinery. PLANTS 2022; 11:plants11121553. [PMID: 35736704 PMCID: PMC9227737 DOI: 10.3390/plants11121553] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/01/2022] [Accepted: 06/08/2022] [Indexed: 11/29/2022]
Abstract
Salinity is linked to poor plant growth and a reduction in global food output. Therefore, there is an essential need for plant adaptation and mitigation of salinity stress conditions. Plants combat salinity stress influences by promoting a set of physiological, biochemical, and molecular actions. Tremendous mechanisms are being applied to induce plant stress tolerance, involving amino acid application. For evaluating the growth and productivity of Moringa oleifera trees grown under salt stress conditions, moringa has been cultivated under different levels of salinity and subjected to a foliar spray of proline (Pro) and phenylalanine (Phe) amino acids. Moringa plants positively responded to the lowest level of salinity as the leaves, inflorescences, seeds, and oil yields have been increased, but the growth and productivity slightly declined with increasing salinity levels after that. However, Pro and Phe applications significantly ameliorate these effects, particularly, Pro-treatments which decelerated chlorophyll and protein degradation and enhanced vitamin C, polyphenols, and antioxidant activity. A slight reduction in mineral content was observed under the high levels of salinity. Higher osmoprotectants (proline, protein, and total soluble sugars) content was given following Pro treatment in salted and unsalted plants. A significant reduction in oil yield was obtained as affected by salinity stress. Additionally, salinity exhibited a reduction in oleic acid (C18:1), linoleic (C18:2), and linolenic (C18:3) acids, and an increase in stearic (C18:0), palmitic (C16:0), eicosenoic (C20:2), and behenic (C22:0) acids. Generally, Pro and Phe treatments overcome the harmful effects of salinity in moringa trees by stimulating the osmoprotectants, polyphenols, and antioxidant activity, causing higher dry matter accumulation and better defense against salinity stress.
Collapse
|
6
|
Li J, Ma M, Sun Y, Lu P, Shi H, Guo Z, Zhu H. Comparative Physiological and Transcriptome Profiles Uncover Salt Tolerance Mechanisms in Alfalfa. FRONTIERS IN PLANT SCIENCE 2022; 13:931619. [PMID: 35755671 PMCID: PMC9218637 DOI: 10.3389/fpls.2022.931619] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
Salinity is a major limiting factor that affects crop production. Understanding of the mechanisms of plant salt tolerance is critical for improving crop yield on saline land. Alfalfa (Medicago sativa L.) is the most important forage crop, while its salt tolerance mechanisms are largely unknown. The physiological and transcriptomic responses in two contrasting salt tolerant cultivars to salinity stress were investigated in the present study. "Magnum Salt" showed higher salt tolerance than "Adrenalin," with higher relative germination rate, survival rate, biomass and K+/Na+ ratio after salt treatment. Activities of antioxidant enzymes SOD, CAT and GR, and proline concentrations were upregulated to higher levels in roots and shoots in Magnum Salt than in Adrenalin after salinity stress, except for no difference in GR activity in shoots, and lower levels of O2 ⋅- and H2O2 were accumulated in leaves. It was interesting to find that salinity caused a decrease in total unsaturated fatty acid in Adrenalin other than Magnum Salt, C18:2 was increased significantly after salinity in Magnum Salt, while it was unaltered in Adrenalin. High quality RNA sequencing (RNA-seq) data was obtained from samples of Magnum Salt and Adrenalin at different time points (0, 2, and 26 h). Generally, "phagosome," "TCA cycle" and "oxidative phosphorylation" pathways were inhibited by salinity stress. Upregulated DEGs in Magnum Salt were specifically enriched in "fatty acid metabolism," "MAPK signaling" and "hormone signal transduction" pathways. The DEGs involved in ionic homeostasis, reactive oxygen species (ROS) scavenging and fatty acid metabolism could partially explain the difference in salt tolerance between two cultivars. It is suggested that salt tolerance in alfalfa is associated with regulation of ionic homeostasis, antioxidative enzymes and fatty acid metabolism at both transcriptional and physiological level.
Collapse
|
7
|
Ren X, Liu Y, Fan C, Hong H, Wu W, Zhang W, Wang Y. Production, Processing, and Protection of Microalgal n-3 PUFA-Rich Oil. Foods 2022; 11:foods11091215. [PMID: 35563938 PMCID: PMC9101592 DOI: 10.3390/foods11091215] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/15/2022] [Accepted: 04/19/2022] [Indexed: 02/01/2023] Open
Abstract
Microalgae have been increasingly considered as a sustainable “biofactory” with huge potentials to fill up the current and future shortages of food and nutrition. They have become an economically and technologically viable solution to produce a great diversity of high-value bioactive compounds, including n-3 polyunsaturated fatty acids (PUFA). The n-3 PUFA, especially eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), possess an array of biological activities and positively affect a number of diseases, including cardiovascular and neurodegenerative disorders. As such, the global market of n-3 PUFA has been increasing at a fast pace in the past two decades. Nowadays, the supply of n-3 PUFA is facing serious challenges as a result of global warming and maximal/over marine fisheries catches. Although increasing rapidly in recent years, aquaculture as an alternative source of n-3 PUFA appears insufficient to meet the fast increase in consumption and market demand. Therefore, the cultivation of microalgae stands out as a potential solution to meet the shortages of the n-3 PUFA market and provides unique fatty acids for the special groups of the population. This review focuses on the biosynthesis pathways and recombinant engineering approaches that can be used to enhance the production of n-3 PUFA, the impact of environmental conditions in heterotrophic cultivation on n-3 PUFA production, and the technologies that have been applied in the food industry to extract and purify oil in microalgae and protect n-3 PUFA from oxidation.
Collapse
Affiliation(s)
- Xiang Ren
- INNOBIO Corporation Limited, No. 49, DDA, Dalian 116600, China; (Y.L.); (C.F.); (H.H.); (W.W.)
- Correspondence: (X.R.); (Y.W.); Tel.: +86-411-65864645 (X.R.); +1-902-566-7953 (Y.W.)
| | - Yanjun Liu
- INNOBIO Corporation Limited, No. 49, DDA, Dalian 116600, China; (Y.L.); (C.F.); (H.H.); (W.W.)
| | - Chao Fan
- INNOBIO Corporation Limited, No. 49, DDA, Dalian 116600, China; (Y.L.); (C.F.); (H.H.); (W.W.)
| | - Hao Hong
- INNOBIO Corporation Limited, No. 49, DDA, Dalian 116600, China; (Y.L.); (C.F.); (H.H.); (W.W.)
| | - Wenzhong Wu
- INNOBIO Corporation Limited, No. 49, DDA, Dalian 116600, China; (Y.L.); (C.F.); (H.H.); (W.W.)
| | - Wei Zhang
- DeOxiTech Consulting, 30 Cloverfield Court, Dartmouth, NS B2W 0B3, Canada;
| | - Yanwen Wang
- Aquatic and Crop Resource Development Research Centre, National Research Council of Canada, 550 University Avenue, Charlottetown, PE C1A 4P3, Canada
- Correspondence: (X.R.); (Y.W.); Tel.: +86-411-65864645 (X.R.); +1-902-566-7953 (Y.W.)
| |
Collapse
|
8
|
Mansour MMF, Hassan FAS. How salt stress-responsive proteins regulate plant adaptation to saline conditions. PLANT MOLECULAR BIOLOGY 2022; 108:175-224. [PMID: 34964081 DOI: 10.1007/s11103-021-01232-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 12/06/2021] [Indexed: 05/20/2023]
Abstract
An overview is presented of recent advances in our knowledge of candidate proteins that regulate various physiological and biochemical processes underpinning plant adaptation to saline conditions. Salt stress is one of the environmental constraints that restrict plant distribution, growth and yield in many parts of the world. Increased world population surely elevates food demands all over the globe, which anticipates to add a great challenge to humanity. These concerns have necessitated the scientists to understand and unmask the puzzle of plant salt tolerance mechanisms in order to utilize various strategies to develop salt tolerant crop plants. Salt tolerance is a complex trait involving alterations in physiological, biochemical, and molecular processes. These alterations are a result of genomic and proteomic complement readjustments that lead to tolerance mechanisms. Proteomics is a crucial molecular tool that indicates proteins expressed by the genome, and also identifies the functions of proteins accumulated in response to salt stress. Recently, proteomic studies have shed more light on a range of promising candidate proteins that regulate various processes rendering salt tolerance to plants. These proteins have been shown to be involved in photosynthesis and energy metabolism, ion homeostasis, gene transcription and protein biosynthesis, compatible solute production, hormone modulation, cell wall structure modification, cellular detoxification, membrane stabilization, and signal transduction. These candidate salt responsive proteins can be therefore used in biotechnological approaches to improve tolerance of crop plants to salt conditions. In this review, we provided comprehensive updated information on the proteomic data of plants/genotypes contrasting in salt tolerance in response to salt stress. The roles of salt responsive proteins that are potential determinants for plant salt adaptation are discussed. The relationship between changes in proteome composition and abundance, and alterations observed in physiological and biochemical features associated with salt tolerance are also addressed.
Collapse
Affiliation(s)
| | - Fahmy A S Hassan
- Department of Horticulture, Faculty of Agriculture, Tanta University, Tanta, Egypt
| |
Collapse
|
9
|
Omega-3 fatty acids of microalgae as a food supplement: A review of exogenous factors for production enhancement. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102542] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
10
|
Antacli JC, Hernando MP, De Troch M, Malanga G, Mendiolar M, Hernández DR, Varela DE, Antoni J, Sahade RJ, Schloss IR. Ocean warming and freshening effects on lipid metabolism in coastal Antarctic phytoplankton assemblages dominated by sub-Antarctic species. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 790:147879. [PMID: 34380283 DOI: 10.1016/j.scitotenv.2021.147879] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 04/04/2021] [Accepted: 05/14/2021] [Indexed: 06/13/2023]
Abstract
Marine phytoplankton can utilize different strategies to cope with ocean warming and freshening from glacial melting in polar regions, which are disproportionally impacted by global warming. In the present study, we investigated the individual and combined effects of a 4 °C increase in seawater temperature (T+) and a 4 psu decrease in salinity (S-) from ambient values on biomass, nutrient use, fatty acid composition and lipid damage biochemistry of natural phytoplankton assemblages from Potter Cove (25 de Mayo/King George Island, Antarctica). Experiments were conducted by exposing the assemblages to four treatments during a 7-day incubation period using microcosm located along shore from January 23 to 31, 2016. The N:P ratio decreased in all treatments from day 4 onwards, but especially under high temperature (T+). Lipid damage was mainly detected under S0T+ and S-T+ conditions, and it decreased when the production of the antioxidant α-tocopherol increased. This antioxidant protection resulted in a build-up of phytoplankton biomass, especially at T+. Under the combined effect of both stressors (S-T+), the concentration of ω3 fatty acids increased, potentially leading to higher-quality FA composition. These results, which were related to the dominance of sub-Antarctic species in phytoplankton assemblages, contribute to the understanding of the potential consequences of ocean warming and increase seawater freshening on the trophic webs of the Southern Ocean.
Collapse
Affiliation(s)
- J C Antacli
- Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales, Ecología Marina. Av. Vélez Sarsfield 299, 5000 Córdoba Capital, Argentina; Instituto de Diversidad y Ecología Animal (IDEA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba Capital, Argentina.
| | - M P Hernando
- Departamento de Radiobiología, Comisión Nacional de Energía Atómica, Av. Gral. Paz 1499, San Martín, Buenos Aires, Argentina; Red de Investigación de estresores Marinos-costeros en América Latina y el Caribe, REMARCO
| | - M De Troch
- Ghent University, Marine Biology, Krijgslaan 281-S8, B-9000 Ghent, Belgium
| | - G Malanga
- Instituto de Bioquímica y Medicina Molecular (IBIMOL), Universidad de Buenos Aires (UBA)- CONICET. Fisicoquímica, Facultad de Farmacia y Bioquímica, Junín 956 (C1113AAD), Buenos Aires, Argentina
| | - M Mendiolar
- Instituto Nacional de Investigación y Desarrollo Pesquero (INIDEP), Paseo Victoria Ocampo No 1, B7602HSA Mar del Plata, Argentina
| | - D R Hernández
- Instituto Nacional de Investigación y Desarrollo Pesquero (INIDEP), Paseo Victoria Ocampo No 1, B7602HSA Mar del Plata, Argentina
| | - D E Varela
- Department of Biology and School of Earth and Ocean Sciences, University of Victoria, Victoria, B.C., Canada
| | - J Antoni
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina; Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, Paseo del Bosque s/n, 1900 La Plata, Argentina
| | - R J Sahade
- Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales, Ecología Marina. Av. Vélez Sarsfield 299, 5000 Córdoba Capital, Argentina; Instituto de Diversidad y Ecología Animal (IDEA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba Capital, Argentina
| | - I R Schloss
- Instituto Antártico Argentino, 25 de Mayo 1143, San Martín, Buenos Aires, Argentina; Centro Austral de Investigaciones Científicas (CADIC, CONICET), Bernardo Houssay 200, Ushuaia, Tierra del Fuego, Argentina; Universidad Nacional de Tierra del Fuego, Ushuaia, Tierra del Fuego, Argentina
| |
Collapse
|
11
|
Lipid accumulation patterns and role of different fatty acid types towards mitigating salinity fluctuations in Chlorella vulgaris. Sci Rep 2021; 11:438. [PMID: 33432049 PMCID: PMC7801682 DOI: 10.1038/s41598-020-79950-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 12/15/2020] [Indexed: 12/12/2022] Open
Abstract
Mangrove-dwelling microalgae are well adapted to frequent encounters of salinity fluctuations across their various growth phases but are lesser studied. The current study explored the adaptive changes (in terms of biomass, oil content and fatty acid composition) of mangrove-isolated C. vulgaris UMT-M1 cultured under different salinity levels (5, 10, 15, 20, 30 ppt). The highest total oil content was recorded in cultures at 15 ppt salinity (63.5% of dry weight) with uncompromised biomass productivity, thus highlighting the ‘trigger-threshold’ for oil accumulation in C. vulgaris UMT-M1. Subsequently, C. vulgaris UMT-M1 was further assessed across different growth phases under 15 ppt. The various short, medium and long-chain fatty acids (particularly C20:0), coupled with a high level of C18:3n3 PUFA reported at early exponential phase represents their physiological importance during rapid cell growth. Accumulation of C18:1 and C18:2 at stationary growth phase across all salinities was seen as cells accumulating substrate for C18:3n3 should the cells anticipate a move from stationary phase into new growth phase. This study sheds some light on the possibility of ‘triggered’ oil accumulation with uninterrupted growth and the participation of various fatty acid types upon salinity mitigation in a mangrove-dwelling microalgae.
Collapse
|
12
|
Protection against salinity stress in black cumin involves karrikin and calcium by improving gas exchange attributes, ascorbate–glutathione cycle and fatty acid compositions. SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-03843-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
13
|
Yang Z, Yang X, Dong S, Ge Y, Zhang X, Zhao X, Han N. Overexpression of β-Ketoacyl-CoA Synthase From Vitis vinifera L. Improves Salt Tolerance in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2020; 11:564385. [PMID: 33281839 PMCID: PMC7688582 DOI: 10.3389/fpls.2020.564385] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 10/09/2020] [Indexed: 05/05/2023]
Abstract
Grape (Vitis vinifera L.) is a fruit tree with high salt tolerance and high nutritional value, medicinal value, and economic value. Suberin in roots is characterized by long-chain fatty acids and is thought to be related to the salt tolerance of grape. The key enzyme in the fatty acid elongation process is β-ketoacyl-CoA synthase (KCS). The function and the regulatory mechanism of VvKCS in response to salt stress in grape are unclear. In this study, VvKCS was isolated from V. vinifera L. A real-time quantitative polymerase chain reaction analysis showed that salt stress enhanced VvKCS transcription levels in grapes. Overexpression of VvKCS increased the tolerance to salt stress in Arabidopsis during the germination and seedling stages. The improved salt tolerance was the result of the combined contributions of multiple mechanisms including the regulation of expression of ion transporters and channels, accumulation of osmotic regulating substances, and maintenance of membrane stability. The results of this study are valuable information on plant salt tolerance and provide a theoretical basis for the molecular mechanism of grape salt tolerance.
Collapse
Affiliation(s)
- Zhen Yang
- Shandong Provincial Key Laboratory of Microbial Engineering, School of Biologic Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Xue Yang
- Shandong Provincial Key Laboratory of Microbial Engineering, School of Biologic Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
- State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Tai’an, China
| | - Shujia Dong
- School of Biology and Food Engineering, Bozhou University, Bozhou, China
| | - Yao Ge
- Shandong Provincial Key Laboratory of Microbial Engineering, School of Biologic Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Xuenan Zhang
- Shandong Provincial Key Laboratory of Microbial Engineering, School of Biologic Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Xinjie Zhao
- Shandong Provincial Key Laboratory of Microbial Engineering, School of Biologic Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Ning Han
- Shandong Provincial Key Laboratory of Microbial Engineering, School of Biologic Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| |
Collapse
|
14
|
Elloumi W, Jebali A, Maalej A, Chamkha M, Sayadi S. Effect of Mild Salinity Stress on the Growth, Fatty Acid and Carotenoid Compositions, and Biological Activities of the Thermal Freshwater Microalgae Scenedesmus sp. Biomolecules 2020; 10:E1515. [PMID: 33171918 PMCID: PMC7694606 DOI: 10.3390/biom10111515] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 10/31/2020] [Accepted: 11/03/2020] [Indexed: 02/07/2023] Open
Abstract
Carotenoids have strong antioxidant activity as well as therapeutic value. Their production has been induced in algae under stressful culture conditions. However, the extreme culture conditions lead to the Programmed Cell Death (PCD) of algae, which affects their growth and productivity. This study was performed to evaluate the effect of salinity on the physiological and biochemical traits of Scenedesmus sp., thermal freshwater microalgae from Northern Tunisia. It was cultured under different NaCl concentrations ranging from 0 to 60 g/L. Results showed a good growth and high contents of total chlorophyll and carotenoids in Scenedesmus sp. cultured at 10 g/L of NaCl (salt-stressed 10 (Ss10)). The pigment composition of the Ss10 extract was acquired using HPLC-MS, and showed that the carotenoid fraction is particularly rich in xanthophylls. Moreover, the antioxidant (DPPH and FRAP) and enzymatic inhibition (tyrosinase and elastase) activities of the Ss10 extract were higher compared to those of the control culture. In addition, the cytotoxicity test on B16 cells showed that the Ss10 extract was non-toxic for all tested concentrations below 100 µg/mL. It also showed a rich unsaturated fatty acid (FA) composition. Therefore, these findings suggest that Scenedesmus sp. strain cultivated under mild stress salinity could be a source of biomolecules that have potential applications in the nutraceutical and cosmeceutical industries.
Collapse
Affiliation(s)
- Wiem Elloumi
- Laboratory of Environmental Bioprocesses, Centre of Biotechnology of Sfax, P.O. Box 1177, 3018 Sfax, Tunisia; (W.E.); (A.J.); (A.M.); (M.C.)
| | - Ahlem Jebali
- Laboratory of Environmental Bioprocesses, Centre of Biotechnology of Sfax, P.O. Box 1177, 3018 Sfax, Tunisia; (W.E.); (A.J.); (A.M.); (M.C.)
| | - Amina Maalej
- Laboratory of Environmental Bioprocesses, Centre of Biotechnology of Sfax, P.O. Box 1177, 3018 Sfax, Tunisia; (W.E.); (A.J.); (A.M.); (M.C.)
| | - Mohamed Chamkha
- Laboratory of Environmental Bioprocesses, Centre of Biotechnology of Sfax, P.O. Box 1177, 3018 Sfax, Tunisia; (W.E.); (A.J.); (A.M.); (M.C.)
| | - Sami Sayadi
- Center for Sustainable Development, College of Arts and Sciences, Qatar University, Doha 2713, Qatar
| |
Collapse
|
15
|
Leung C, Rescan M, Grulois D, Chevin LM. Reduced phenotypic plasticity evolves in less predictable environments. Ecol Lett 2020; 23:1664-1672. [PMID: 32869431 PMCID: PMC7754491 DOI: 10.1111/ele.13598] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/22/2020] [Accepted: 08/06/2020] [Indexed: 01/16/2023]
Abstract
Phenotypic plasticity is a prominent mechanism for coping with variable environments, and a key determinant of extinction risk. Evolutionary theory predicts that phenotypic plasticity should evolve to lower levels in environments that fluctuate less predictably, because they induce mismatches between plastic responses and selective pressures. However, this prediction is difficult to test in nature, where environmental predictability is not controlled. Here, we exposed 32 lines of the halotolerant microalga Dunaliella salina to ecologically realistic, randomly fluctuating salinity, with varying levels of predictability, for 500 generations. We found that morphological plasticity evolved to lower degrees in lines that experienced less predictable environments. Evolution of plasticity mostly concerned phases with slow population growth, rather than the exponential phase where microbes are typically phenotyped. This study underlines that long‐term experiments with complex patterns of environmental change are needed to test theories about population responses to altered environmental predictability, as currently observed under climate change.
Collapse
Affiliation(s)
- Christelle Leung
- CEFE, Université de Montpellier, CNRS, EPHE, IRD, Université Paul Valéry Montpellier 3, Montpellier, France
| | - Marie Rescan
- CEFE, Université de Montpellier, CNRS, EPHE, IRD, Université Paul Valéry Montpellier 3, Montpellier, France
| | - Daphné Grulois
- CEFE, Université de Montpellier, CNRS, EPHE, IRD, Université Paul Valéry Montpellier 3, Montpellier, France
| | - Luis-Miguel Chevin
- CEFE, Université de Montpellier, CNRS, EPHE, IRD, Université Paul Valéry Montpellier 3, Montpellier, France
| |
Collapse
|
16
|
Lamine M, Gargouri M, Mliki A. Identification of the NaCl-responsive metabolites in Citrus roots: A lipidomic and volatomic signature. PLANT SIGNALING & BEHAVIOR 2020; 15:1777376. [PMID: 32508206 PMCID: PMC8570732 DOI: 10.1080/15592324.2020.1777376] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 05/06/2020] [Accepted: 05/11/2020] [Indexed: 06/11/2023]
Abstract
It is known that the first osmotic phase affects the growth rates of roots immediately upon addition of salt; thus, dissecting metabolites profiling provides an opportunity to throw light into the basis of plant tolerance by searching for altered signatures that may be associated with tolerance at this organ. This study examined the influence of salt treatment on fatty acid composition and chemical composition of the essential oil of C. aurantium roots. Results proved that, under salt treatment, an increase of double bond index and linoleic desaturation ratio was pointed out. On the other hand, the reduction of saturated fatty acids was spotted. Such treatment also induced quantitative changes in the chemical composition of the essential oils from C. aurantium roots and increased markedly the rates of monoterpenes, while the sesquiterpenes decreased significantly. Both primary and secondary metabolites were found to be significantly salt responsive, including one fatty acid (palmitoleic acid) and six volatiles (E-2-dodecenal, tetradecanal, γ-Elemene, trans-caryophyllene, α-Terpinene and germacrene D). Plasticity at the metabolic level may allow Citrus plants to acclimatize their metabolic ranges in response to changing environmental conditions.
Collapse
Affiliation(s)
- Myriam Lamine
- Laboratory of Plant Molecular Physiology, Biotechnology Center of Borj-Cedria, Hammam-Lif, Tunisia
| | - Mahmoud Gargouri
- Laboratory of Plant Molecular Physiology, Biotechnology Center of Borj-Cedria, Hammam-Lif, Tunisia
| | - Ahmed Mliki
- Laboratory of Plant Molecular Physiology, Biotechnology Center of Borj-Cedria, Hammam-Lif, Tunisia
| |
Collapse
|
17
|
Gupta J, Gupta R. Nutraceutical Status and Scientific Strategies for Enhancing Production of Omega-3 Fatty Acids from Microalgae and their Role in Healthcare. Curr Pharm Biotechnol 2020; 21:1616-1631. [PMID: 32619166 DOI: 10.2174/1389201021666200703201014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/28/2020] [Accepted: 06/16/2020] [Indexed: 11/22/2022]
Abstract
Adherence to Omega-3 fatty acids (O3FAs) as Nutraceuticals for medicinal applications provides health improvement. The prevention and treatment of diseases with O3FAs hold promise in clinical therapy and significantly reduces the risk of chronic disorders. Polyunsaturated fatty acids (PUFA) O3FAs have beneficial effects in the treatment of cardiovascular disorders, diabetic disease, foetal development, Alzheimer's disease, retinal problem, growth and brain development of infants and antitumor effects. Association to current analysis promotes the application of algal biomass for production of O3FAs, mode of action, fate, weight management, immune functions, pharmaceutical and therapeutic applications serving potent sources in healthcare management. A search of the literature was conducted in the databases of WHO website, Sci.org, PubMed, academics and Google. The authors performed search strategies and current scenario of O3FAs in health associated disorders. Promising outcomes and future strategies towards O3FAs may play a pivotal role in Nutraceutical industries in the cure of human health in the future.
Collapse
Affiliation(s)
- Jitendra Gupta
- Institute of Pharmaceutical Research, GLA University, Mathura-281406, Uttar Pradesh, India
| | - Reena Gupta
- Institute of Pharmaceutical Research, GLA University, Mathura-281406, Uttar Pradesh, India
| |
Collapse
|
18
|
Zhukov AV, Shumskaya M. Very-long-chain fatty acids (VLCFAs) in plant response to stress. FUNCTIONAL PLANT BIOLOGY : FPB 2020; 47:695-703. [PMID: 32513384 DOI: 10.1071/fp19100] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 03/25/2020] [Indexed: 06/11/2023]
Abstract
Plant growth is affected by various stresses leading to changes in metabolism. Stress conditions include a variety of biotic and abiotic factors such as pathogens, drought, high and low temperatures and heavy metals. Among multiple physiological responses to stress, there is an adaptive modification in membrane lipid constituents. In particular, the composition of membrane very-long-chain fatty acids (VLCFAs) changes both qualitatively and quantitatively. Here, we evaluate the current data on the effects of stress on plant VLCFAs composition. In summary, some stress conditions lead to an increase of the total amount of saturated and, in certain cases, unsaturated VLCFAs. Currently, it is not completely clear how these molecules participate in the biology of plant cell membranes. Their possible functional roles are discussed.
Collapse
Affiliation(s)
- Anatoly V Zhukov
- KA Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, 127276 Moscow, Russia
| | - Maria Shumskaya
- Department of Biology, School of Natural Sciences, Kean University, 1000 Morris Avenue, Union, NJ 07083, USA; and Corresponding author.
| |
Collapse
|
19
|
He Q, Lin Y, Tan H, Zhou Y, Wen Y, Gan J, Li R, Zhang Q. Transcriptomic profiles of Dunaliella salina in response to hypersaline stress. BMC Genomics 2020; 21:115. [PMID: 32013861 PMCID: PMC6998148 DOI: 10.1186/s12864-020-6507-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 01/20/2020] [Indexed: 11/24/2022] Open
Abstract
Background Dunaliella salina is a good model organism for studying salt stress. In order to have a global understanding of the expression profiles of Dunaliella salina in response to hypersaline stress, we performed quantitative transcriptomic analysis of Dunaliella salina under hypersaline stress (2.5 M NaCl) of different time duration by the second and third generation sequencing method. Results Functional enrichment of the up-regulated genes was used to analyze the expression profiles. The enrichment of photosynthesis was observed, accompanied by enrichments of carbon fixation, pigment biosynthetic process and heme biosynthetic process, which also imply the enhancement of photosynthesis. Genes responsible for starch hydrolysis and glycerol synthesis were significantly up-regulated. The enrichment of biosynthesis of unsaturated fatty acids implies the plasma membrane undergoes changes in desaturation pattern. The enrichment of endocytosis implies the degradation of plasma membrane and might help the synthesis of new glycerophospholipid with unsaturated fatty acids. Co-enrichments of protein synthesis and degradation imply a higher protein turnover rate. The enrichments of spliceosome and protein processing in endoplasmic reticulum imply the enhancement of regulations at post-transcriptional and post-translational level. No up-regulation of any Na+ or Cl− channels or transporters was detected, which implies that the extra exclusion of the ions by membrane transporters is possibly not needed. Voltage gated Na+ and Cl− channels, mechanosensitive ion channel are possible signal receptors of salt stress, and Ca2+ and MAP kinase pathways might play a role in signal transduction. Conclusion At global transcriptomic level, the response of Dunaliella salina to hypersaline stress is a systematic work, possibly involving enhancements of photosynthesis, carbon fixation, and heme biosynthetic process, acceleration of protein turnover, spliceosome, protein processing in endoplasmic reticulum, and endocytosis, as well as degradation of starch, synthesis of glycerol, membrane lipid desaturation. Altogether, the changes of these biological processes occurred at trancriptomic level will help understand how a new intracellular balance achieved in Dunaliella salina to adapt to hypersaline environment, which are worth being confirmed at the physiological levels.
Collapse
Affiliation(s)
- Qinghua He
- Key Laboratory of Qinghai-Tibetan Plateau Animal genetic Resource Reservation and Utilization, College of Life Science and Technology, Southwest Minzu University, Chengdu, People's Republic of China
| | - Yaqiu Lin
- Key Laboratory of Qinghai-Tibetan Plateau Animal genetic Resource Reservation and Utilization, College of Life Science and Technology, Southwest Minzu University, Chengdu, People's Republic of China
| | - Hong Tan
- Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, People's Republic of China
| | - Yu Zhou
- Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, People's Republic of China
| | - Yongli Wen
- Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, People's Republic of China
| | - Jiajia Gan
- Key Laboratory of Qinghai-Tibetan Plateau Animal genetic Resource Reservation and Utilization, College of Life Science and Technology, Southwest Minzu University, Chengdu, People's Republic of China
| | - Ruiwen Li
- Reproductive and endocrine laboratory, Chengdu Woman-Child Central Hospital, Chengdu, 610051, People's Republic of China.
| | - Qinglian Zhang
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, 610500, People's Republic of China.
| |
Collapse
|
20
|
Stamenković M, Steinwall E, Nilsson AK, Wulff A. Fatty acids as chemotaxonomic and ecophysiological traits in green microalgae (desmids, Zygnematophyceae, Streptophyta): A discriminant analysis approach. PHYTOCHEMISTRY 2020; 170:112200. [PMID: 31756679 DOI: 10.1016/j.phytochem.2019.112200] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 09/26/2019] [Accepted: 11/07/2019] [Indexed: 06/10/2023]
Abstract
Desmids (Zygnematophyceae) are a group of poorly studied green microalgae. The aim of the present study was to identify fatty acids (FAs) that could be used as biomarkers in desmids in general, and to determine FAs as traits within different ecophysiological desmid groups. FA profiles of 29 desmid strains were determined and analysed with respect to their geographic origin, trophic preference and age of cultivation. It appeared that merely FAs present in relatively large proportions such as palmitic, linoleic, α-linolenic and hexadecatrienoic acids could be used as biomarkers for reliable categorization of this microalgal group. Linear discriminant analysis applied to three a priori defined groups of desmids, revealed clear strain-specific characteristics regarding FA distribution, influenced by climate and trophic conditions at the source sites as well as by the age of culture and growth phase. Accordingly, when considering FAs for the determination of lower taxonomic ranks we recommend using the term "trait" instead of "biomarker", as the latter designates unchangeable "fingerprint" of a specific taxon. Furthermore, despite that desmids were regarded as microalgae having stable genomes, long-term cultivation appeared to cause modifications in FA metabolic pathways, evident as a larger proportion of stearidonic acid in desmid strains cultivated over extensive time periods (>35 years).
Collapse
Affiliation(s)
- Marija Stamenković
- Department of Biological and Environmental Sciences, University of Gothenburg, Box 461, SE40530, Göteborg, Sweden; Institute for Biological Research "Siniša Stanković", University of Belgrade, Bulevar despota Stefana 142, 11060, Belgrade, Serbia.
| | - Elin Steinwall
- Department of Biological and Environmental Sciences, University of Gothenburg, Box 461, SE40530, Göteborg, Sweden
| | - Anders K Nilsson
- Institute for Biological Research "Siniša Stanković", University of Belgrade, Bulevar despota Stefana 142, 11060, Belgrade, Serbia; Section for Ophthalmology, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Angela Wulff
- Department of Biological and Environmental Sciences, University of Gothenburg, Box 461, SE40530, Göteborg, Sweden
| |
Collapse
|
21
|
Sivaramakrishnan R, Incharoensakdi A. Plant hormone induced enrichment of Chlorella sp. omega-3 fatty acids. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:7. [PMID: 31969931 PMCID: PMC6966795 DOI: 10.1186/s13068-019-1647-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 12/29/2019] [Indexed: 05/21/2023]
Abstract
BACKGROUND Omega-3 fatty acids have various health benefits in combating against neurological problems, cancers, cardiac problems and hypertriglyceridemia. The main dietary omega-3 fatty acids are obtained from marine fish. Due to the pollution of marine environment, recently microalgae are considered as the promising source for the omega-3 fatty acid production. However, the demand and high production cost associated with microalgal biomass make it necessary to implement novel strategies in improving the biomass and omega-3 fatty acids from microalgae. RESULTS Four plant hormones zeatin, indole acetic acid (IAA), gibberellic acid (GBA) and abscisic acid (ABA) were investigated for their effect on the production of biomass and lipid in isolated Chlorella sp. The cells showed an increase of the biomass and lipid content after treatments with the plant hormones where the highest stimulatory effect was observed in ABA-treated cells. On the other hand, IAA showed the highest stimulatory effect on the omega-3 fatty acids content, eicosapentaenoic acid (EPA) (23.25%) and docosahexaenoic acid (DHA) (26.06%). On the other hand, cells treated with ABA had highest lipid content suitable for the biodiesel applications. The determination of ROS markers, antioxidant enzymes, and fatty acid biosynthesis genes after plant hormones treatment helped elucidate the mechanism underlying the improvement in biomass, lipid content and omega-3 fatty acids. All four plant hormones upregulated the fatty acid biosynthesis genes, whereas IAA particularly increased omega-3-fatty acids as a result of the upregulation of omega-3 fatty acid desaturase. CONCLUSIONS The contents of omega-3 fatty acids, the clinically important compounds, were considerably improved in IAA-treated cells. The highest lipid content obtained from ABA-treated biomass can be used for biodiesel application according to its biodiesel properties. The EPA and DHA enriched ethyl esters are an approved form of omega-3 fatty acids by US Food and Drug Administration (FDA) which can be utilized as the therapeutic treatment for the severe hypertriglyceridemia.
Collapse
Affiliation(s)
- Ramachandran Sivaramakrishnan
- Laboratory of Cyanobacterial Biotechnology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330 Thailand
| | - Aran Incharoensakdi
- Laboratory of Cyanobacterial Biotechnology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330 Thailand
- Academy of Science, Royal Society of Thailand, Bangkok, 10300 Thailand
| |
Collapse
|
22
|
Xu L, Liu H, Kilian A, Bhoite R, Liu G, Si P, Wang J, Zhou W, Yan G. QTL Mapping Using a High-Density Genetic Map to Identify Candidate Genes Associated With Metribuzin Tolerance in Hexaploid Wheat ( Triticum aestivum L.). FRONTIERS IN PLANT SCIENCE 2020; 11:573439. [PMID: 33042190 PMCID: PMC7527527 DOI: 10.3389/fpls.2020.573439] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 08/31/2020] [Indexed: 05/16/2023]
Abstract
Tolerance to metribuzin, a broad-spectrum herbicide, is an important trait for weed control in wheat breeding. However, the genetics of metribuzin tolerance in relation to the underlying quantitative trait loci (QTL) and genes is limited. This study developed F8 recombinant inbred lines (RILs) from a cross between a highly resistant genotype (Chuan Mai 25) and highly susceptible genotype (Ritchie), which were used for QTL mapping of metribuzin tolerance. Genotyping was done using a diversity arrays technology sequencing (DArTseq) platform, and phenotyping was done in controlled environments. Herbicide tolerance was measured using three traits, visual score (VS), reduction of chlorophyll content (RCC), and mean value of chlorophyll content for metribuzin-treated plants (MCC). A high-density genetic linkage map was constructed using 2,129 DArTseq markers. Inclusive composite interval mapping (ICIM) identified seven QTL, one each on chromosomes 2A, 2D, 3A, 3B, 4A, 5A, and 6A. Three major QTL-Qrcc.uwa.2AS, Qrcc.uwa.5AL, and Qrcc.uwa.6AL-explained 11.39%, 11.06%, and 11.45% of the phenotypic variation, respectively. The 5A QTL was further validated using kompetitive allele-specific PCR (KASP) assays in an F3 validation population developed from Chuan Mai 25 × Dagger. Blasting the single-nucleotide polymorphisms (SNPs) flanking the QTL in the wheat reference genome RefV1.0 revealed SNP markers within or very close to annotated genes which could be candidate genes responsible for metribuzin tolerance. Most of the candidate genes were related to metabolic detoxification, especially those of P450 pathway and xenobiotic transmembrane transporter activity, which are reportedly key molecules responsible for herbicide tolerance. This study is the first to use specially developed populations to conduct QTL mapping on the metribuzin tolerance trait. The three major QTL and candidate genes identified in this study could facilitate marker-assisted metribuzin breeding in wheat. The QTL could be fine-mapped to locate the genes responsible for metribuzin tolerance, which could be introgressed into elite wheat cultivars.
Collapse
Affiliation(s)
- Ling Xu
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
- Faculty of Science, UWA School of Agriculture and Environment and The UWA Institute of Agriculture, The University of Western Australia, Crawley, WA, Australia
| | - Hui Liu
- Faculty of Science, UWA School of Agriculture and Environment and The UWA Institute of Agriculture, The University of Western Australia, Crawley, WA, Australia
| | - Andrzej Kilian
- Faculty of Science and Technology, Diversity Arrays Technology Pty Ltd., University of Canberra, Bruce, ACT, Australia
| | - Roopali Bhoite
- Faculty of Science, UWA School of Agriculture and Environment and The UWA Institute of Agriculture, The University of Western Australia, Crawley, WA, Australia
| | - Guannan Liu
- Faculty of Science, UWA School of Agriculture and Environment and The UWA Institute of Agriculture, The University of Western Australia, Crawley, WA, Australia
| | - Ping Si
- Faculty of Science, UWA School of Agriculture and Environment and The UWA Institute of Agriculture, The University of Western Australia, Crawley, WA, Australia
| | - Jian Wang
- Faculty of Science, UWA School of Agriculture and Environment and The UWA Institute of Agriculture, The University of Western Australia, Crawley, WA, Australia
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, China
| | - Weijun Zhou
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, China
| | - Guijun Yan
- Faculty of Science, UWA School of Agriculture and Environment and The UWA Institute of Agriculture, The University of Western Australia, Crawley, WA, Australia
- *Correspondence: Guijun Yan,
| |
Collapse
|
23
|
Gallego-Cartagena E, Castillo-Ramírez M, Martínez-Burgos W. Effect of stressful conditions on the carotenogenic activity of a Colombian strain of Dunaliella salina. Saudi J Biol Sci 2019; 26:1325-1330. [PMID: 31762591 PMCID: PMC6864209 DOI: 10.1016/j.sjbs.2019.07.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Revised: 07/18/2019] [Accepted: 07/23/2019] [Indexed: 10/26/2022] Open
Abstract
The objective was evaluate the carotenogenic activity of Dunaliella salina isolated from the artificial salt flats of municipality of Manaure (Department of La Guajira, Colombia). Two experimental testings were designed, in triplicate, to induce the reversibility of the cell tonality depending on the culture conditions. In the first test (A), to induce the reversibility from green to red tonality in D. salina cells, these were cultured in J/1 medium at a concentration of 4.0 M NaCl, 390 µmol m-2 s-1, 0.50 mM KNO3. In the second test (B), to induce the reversibility from red to green cell tonality, the cultures were maintained in J/1 medium 1 M NaCl, 190 µmol m-2 s-1, 5.0 mM KNO3 and pH 8.2. The population growth was evaluated by cell count and the pigment content was performed by spectrophotometric techniques. It was found that in both tests the culture conditions influenced the population growth and the pigments production of D. salina. There was a significant difference between the mean values of total carotenoids in the test A with 9.67 ± 0.19 μg/ml and second test with 1.54 ± 0.08 μg/ml at a significance level of p < 0.05. It was demonstrated that the culture conditions of test A induce the production of lipophilic antioxidants, among these carotenoids. The knowledge of the stressful conditions for the production of carotenoids from D. salina isolated from artificial saline of Manaure opens a field in implementation of this biotic resource for biotechnological purposes, production of new antibiotics, nutraceuticals and/or biofuels production.
Collapse
Affiliation(s)
- Euler Gallego-Cartagena
- Department of Civil and Environmental, Universidad de la Costa, Calle 58 #55-66, 080002 Barranquilla, Colombia
| | - Margarita Castillo-Ramírez
- Department of Civil and Environmental, Universidad de la Costa, Calle 58 #55-66, 080002 Barranquilla, Colombia
| | - Walter Martínez-Burgos
- Department Bioprocess Engineering and Biotechnology, Federal University of Paraná, Av. Celador Francisco H. dos Santos 210, Curitiba, Paraná, Brazil
| |
Collapse
|
24
|
Arora N, Kumari P, Kumar A, Gangwar R, Gulati K, Pruthi PA, Prasad R, Kumar D, Pruthi V, Poluri KM. Delineating the molecular responses of a halotolerant microalga using integrated omics approach to identify genetic engineering targets for enhanced TAG production. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:2. [PMID: 30622644 PMCID: PMC6318984 DOI: 10.1186/s13068-018-1343-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 12/17/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Harnessing the halotolerant characteristics of microalgae provides a viable alternative for sustainable biomass and triacylglyceride (TAG) production. Scenedesmus sp. IITRIND2 is a fast growing fresh water microalga that has the capability to thrive in high saline environments. To understand the microalga's adaptability, we studied its physiological and metabolic flexibility by studying differential protein, metabolite and lipid expression profiles using metabolomics, proteomics, real-time polymerase chain reaction, and lipidomics under high salinity conditions. RESULTS On exposure to salinity, the microalga rewired its cellular reserves and ultrastructure, restricted the ions channels, and modulated its surface potential along with secretion of extrapolysaccharide to maintain homeostasis and resolve the cellular damage. The algal-omics studies suggested a well-organized salinity-driven metabolic adjustment by the microalga starting from increasing the negatively charged lipids, up regulation of proline and sugars accumulation, followed by direction of carbon and energy flux towards TAG synthesis. Furthermore, the omics studies indicated both de-novo and lipid cycling pathways at work for increasing the overall TAG accumulation inside the microalgal cells. CONCLUSION The salt response observed here is unique and is different from the well-known halotolerant microalga; Dunaliella salina, implying diversity in algal response with species. Based on the integrated algal-omics studies, four potential genetic targets belonging to two different metabolic pathways (salt tolerance and lipid production) were identified, which can be further tested in non-halotolerant algal strains.
Collapse
Affiliation(s)
- Neha Arora
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667 India
| | - Poonam Kumari
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667 India
| | - Amit Kumar
- Centre of Biomedical Research, SGPGIMS, Lucknow, Uttar Pradesh 226014 India
| | - Rashmi Gangwar
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667 India
| | - Khushboo Gulati
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667 India
| | - Parul A. Pruthi
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667 India
| | - Ramasare Prasad
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667 India
| | - Dinesh Kumar
- Centre of Biomedical Research, SGPGIMS, Lucknow, Uttar Pradesh 226014 India
| | - Vikas Pruthi
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667 India
- Centre for Transportation Systems, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667 India
| | - Krishna Mohan Poluri
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667 India
- Centre for Transportation Systems, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667 India
| |
Collapse
|
25
|
Jiang L, Sun J, Nie C, Li Y, Jenkins J, Pei H. Filamentous cyanobacteria triples oil production in seawater-based medium supplemented with industrial waste: monosodium glutamate residue. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:53. [PMID: 30911333 PMCID: PMC6417114 DOI: 10.1186/s13068-019-1391-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 03/06/2019] [Indexed: 05/21/2023]
Abstract
BACKGROUND To overcome the daunting technical and economic barriers of algal biofuels, we evaluated whether seawater can be a viable medium for economically producing filamentous Spirulina subsalsa as feedstock, using monosodium glutamate residue (MSGR) produced by the glutamate extraction process as an inexpensive nutrient source. RESULTS Spirulina subsalsa cannot grow in pure seawater, but exhibited faster biomass accumulation in seawater supplemented with MSGR than in freshwater medium (modified Zarrouk medium). Introducing seawater into media ensured this cyanobacterium obtained high lipid productivity (120 mg/L/day) and suffered limited bacterial infections during growth. Moreover, the yields of protein, carotenoids and phytols were also improved in seawater mixed with MSGR. S. subsalsa exhibited high biomass and lipid productivity in bag bioreactors with 5- and 10-L medium, demonstrating the potential of this cultivation method for scaling up. Moreover, seawater can produce more biomass through medium reuse. Reused seawater medium yielded 72% of lipid content compared to pristine medium. The reason that S. subsalsa grew well in seawater with MSGR is its proficient adaptation to salinity, which included elongation and desaturation of fatty acids, accumulation of lysine and methionine, and secretion of sodium. The nutrients provided by MSGR, like organic materials, played an important role in these responses. CONCLUSION Spirulina subsalsa has an efficient system to adapt to saline ambiance in seawater. When supplemented with MSGR, seawater is a great potential medium to produce S. subsalsa in large scale as biofuel feedstock. Meanwhile, value-added products can be derived from the ample protein and pigments that can broaden the range of biomass application and improve this biorefinery economics.
Collapse
Affiliation(s)
- Liqun Jiang
- School of Environmental Science and Engineering, Shandong University, No.27 Shanda Nan Road, Jinan, 250100 China
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218 USA
| | - Jiongming Sun
- School of Environmental Science and Engineering, Shandong University, No.27 Shanda Nan Road, Jinan, 250100 China
| | - Changliang Nie
- School of Environmental Science and Engineering, Shandong University, No.27 Shanda Nan Road, Jinan, 250100 China
| | - Yizhen Li
- School of Environmental Science and Engineering, Shandong University, No.27 Shanda Nan Road, Jinan, 250100 China
| | - Jackson Jenkins
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218 USA
| | - Haiyan Pei
- School of Environmental Science and Engineering, Shandong University, No.27 Shanda Nan Road, Jinan, 250100 China
- Shandong Provincial Engineering Centre for Environmental Science and Technology, No.17923 Jingshi Road, Jinan, 250061 China
| |
Collapse
|
26
|
John SP, Hasenstein KH. Biochemical responses of the desiccation-tolerant resurrection fern Pleopeltis polypodioides to dehydration and rehydration. JOURNAL OF PLANT PHYSIOLOGY 2018; 228:12-18. [PMID: 29803130 DOI: 10.1016/j.jplph.2018.05.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 05/15/2018] [Accepted: 05/15/2018] [Indexed: 05/14/2023]
Abstract
The epiphytic fern Pleopeltis polypodioides can tolerate repeated drying and rehydration events without conspicuous damage. To understand the biochemical principles of drought-tolerance, we analyzed the effect of dehydration and rehydration at 25 °C on hydroperoxide and lipid hydroperoxide, the activities of antioxidative (catalase and glutathione-oxidizing) enzymes and evaluated changes in fatty acid composition and saturation levels. Dehydration increased peroxide concentration and the activity of glutathione oxidases, but reduced catalase activity. During dehydration, the biosynthesis of palmitic (C16:0), linoleic (C18:2), linolenic (C18:3) and stearic acid (C18:0) increased 18, 12, 20, and 8-fold, respectively. In contrast, rehydration lowered levels of peroxides, the activity of glutathione-oxidizing enzymes, and fatty acids but increased catalase activity. The coordinated changes during de- and rehydration suggest that lipids and oxidative and antioxidative enzymes are components of the drought-resistance system.
Collapse
Affiliation(s)
- Susan P John
- Department of Biology, University of Louisiana at Lafayette, Louisiana 70503, United States
| | - Karl H Hasenstein
- Department of Biology, University of Louisiana at Lafayette, Louisiana 70503, United States.
| |
Collapse
|
27
|
de Jaeger L, Carreres BM, Springer J, Schaap PJ, Eggink G, Martins Dos Santos VAP, Wijffels RH, Martens DE. Neochloris oleoabundans is worth its salt: Transcriptomic analysis under salt and nitrogen stress. PLoS One 2018; 13:e0194834. [PMID: 29652884 PMCID: PMC5898717 DOI: 10.1371/journal.pone.0194834] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 03/09/2018] [Indexed: 11/19/2022] Open
Abstract
Neochloris oleoabundans is an oleaginous microalgal species that can be cultivated in fresh water as well as salt water. Using salt water gives the opportunity to reduce production costs and the fresh water footprint for large scale cultivation. Production of triacylglycerols (TAG) usually includes a biomass growth phase in nitrogen-replete conditions followed by a TAG accumulation phase under nitrogen-deplete conditions. This is the first report that provides insight in the saline resistance mechanism of a fresh water oleaginous microalgae. To better understand the osmoregulatory mechanism of N. oleoabundans during growth and TAG accumulating conditions, the transcriptome was sequenced under four different conditions: fresh water nitrogen-replete and -deplete conditions, and salt water (525 mM dissolved salts, 448mM extra NaCl) nitrogen-replete and -deplete conditions. In this study, several pathways are identified to be responsible for salt water adaptation of N. oleoabundans under both nitrogen-replete and -deplete conditions. Proline and the ascorbate-glutathione cycle seem to be of importance for successful osmoregulation in N. oleoabundans. Genes involved in Proline biosynthesis were found to be upregulated in salt water. This was supported by Nuclear magnetic resonance (NMR) spectroscopy, which indicated an increase in proline content in the salt water nitrogen-replete condition. Additionally, the lipid accumulation pathway was studied to gain insight in the gene regulation in the first 24 hours after nitrogen was depleted. Oil accumulation is increased under nitrogen-deplete conditions in a comparable way in both fresh and salt water. The mechanism behind the biosynthesis of compatible osmolytes can be used to improve N. oleoabundans and other industrially relevant microalgal strains to create a more robust and sustainable production platform for microalgae derived products in the future.
Collapse
Affiliation(s)
- Lenny de Jaeger
- Bioprocess Engineering and AlgaePARC, Wageningen University & Research, Wageningen, The Netherlands
| | - Benoit M. Carreres
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen, The Netherlands
| | - Jan Springer
- Food and Biobased Research and AlgaePARC, Wageningen University & Research, Wageningen, The Netherlands
| | - Peter J. Schaap
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen, The Netherlands
| | - Gerrit Eggink
- Bioprocess Engineering and AlgaePARC, Wageningen University & Research, Wageningen, The Netherlands
- Food and Biobased Research and AlgaePARC, Wageningen University & Research, Wageningen, The Netherlands
| | - Vitor A. P. Martins Dos Santos
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen, The Netherlands
- LifeGlimmer GmbH, Berlin, Germany
| | - Rene H. Wijffels
- Bioprocess Engineering and AlgaePARC, Wageningen University & Research, Wageningen, The Netherlands
- Nord University, Bodø, Norway
| | - Dirk E. Martens
- Bioprocess Engineering and AlgaePARC, Wageningen University & Research, Wageningen, The Netherlands
- * E-mail:
| |
Collapse
|
28
|
Characterization of 3-ketoacyl-coA synthase in a nervonic acid producing oleaginous microalgae Mychonastes afer. ALGAL RES 2018. [DOI: 10.1016/j.algal.2018.02.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
29
|
Gunde-Cimerman N, Plemenitaš A, Oren A. Strategies of adaptation of microorganisms of the three domains of life to high salt concentrations. FEMS Microbiol Rev 2018. [DOI: 10.1093/femsre/fuy009] [Citation(s) in RCA: 193] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Nina Gunde-Cimerman
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, SI-1000 Ljubljana, Slovenia
| | - Ana Plemenitaš
- Institute of Biochemistry, Medical Faculty, University of Ljubljana, Vrazov trg 1, SI-1000 Ljubljana, Slovenia
| | - Aharon Oren
- Department of Plant and Environmental Sciences, The Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem 9190401, Israel
| |
Collapse
|
30
|
Application of high-salinity stress for enhancing the lipid productivity of Chlorella sorokiniana HS1 in a two-phase process. J Microbiol 2018; 56:56-64. [DOI: 10.1007/s12275-018-7488-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 11/19/2017] [Accepted: 11/20/2017] [Indexed: 01/10/2023]
|
31
|
Gonzalez-Silvera D, Pérez S, Korbee N, Figueroa FL, Asencio AD, Aboal M, López-Jiménez JÁ. Effects of global change factors on fatty acids and mycosporine-like amino acid production in Chroothece richteriana (Rhodophyta). JOURNAL OF PHYCOLOGY 2017; 53:999-1009. [PMID: 28671727 DOI: 10.1111/jpy.12560] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 05/31/2017] [Indexed: 06/07/2023]
Abstract
Under natural conditions, Chroothece richteriana synthesizes a fairly high proportion of fatty acids. However, nothing is known about how environmental changes affect their production, or about the production of protective compounds, when colonies develop under full sunshine with high levels of UV radiation. In this study, wild colonies of C. richteriana were subjected to increasing temperature, conductivity, ammonium concentrations and photosynthetically active radiation (PAR), and UV radiations to assess the potential changes in lipid composition and mycosporine-like amino acids (MAAs) concentration. The PERMANOVA analysis detected no differences for the whole fatty acid profile among treatments, but the percentages of α-linolenic acid and total polyunsaturated fatty acids increased at the lowest assayed temperature. The percentages of linoleic and α-linolenic acids increased with lowering temperature. γ-linolenic and arachidonic acids decreased with increasing conductivity, and a high arachidonic acid concentration was related with increased conductivity. The samples exposed to UVB radiation showed higher percentages of eicosapentaenoic acid and total monounsaturated fatty acids, at the expense of saturated fatty acids. MAAs accumulation increased but not significantly at the lowest conductivity, and also with the highest PAR and UVR exposure, while ammonium and temperature had no effect. The observed changes are probably related with adaptations of both membrane fluidity to low temperature, and metabolism to protect cells against UV radiation damage. The results suggest the potential to change lipid composition and MAAs concentration in response to environmental stressful conditions due to climate change, and highlight the interest of the species in future research about the biotechnological production of both compound types.
Collapse
Affiliation(s)
- Daniel Gonzalez-Silvera
- Departamento de Fisiología, Facultad de Biología, Universidad de Murcia, E-30100, Murcia, Spain
| | - Sandra Pérez
- Laboratorio de Algología, Departamento de Biología Vegetal, Facultad de Biología, Universidad de Murcia, E-30100, Murcia, Spain
| | - Nathalie Korbee
- Departamento de Ecología, Universidad de Málaga, Avenida Cervantes, 2, 29071, Málaga, Spain
| | - Félix L Figueroa
- Departamento de Ecología, Universidad de Málaga, Avenida Cervantes, 2, 29071, Málaga, Spain
| | - Antonia D Asencio
- Departamento de Biología Aplicada, Facultad de Ciencias Experimentales, Universidad Miguel Hernández, Elche, E-03202, Alicante, Spain
| | - Marina Aboal
- Laboratorio de Algología, Departamento de Biología Vegetal, Facultad de Biología, Universidad de Murcia, E-30100, Murcia, Spain
| | | |
Collapse
|
32
|
Hegebarth D, Buschhaus C, Joubès J, Thoraval D, Bird D, Jetter R. Arabidopsis ketoacyl-CoA synthase 16 (KCS16) forms C 36 /C 38 acyl precursors for leaf trichome and pavement surface wax. PLANT, CELL & ENVIRONMENT 2017; 40:1761-1776. [PMID: 28477442 DOI: 10.1111/pce.12981] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 04/18/2017] [Accepted: 04/23/2017] [Indexed: 05/18/2023]
Abstract
The aliphatic waxes sealing plant surfaces against environmental stress are generated by fatty acid elongase complexes, each containing a β-ketoacyl-CoA synthase (KCS) enzyme that catalyses a crucial condensation forming a new C─C bond to extend the carbon backbone. The relatively high abundance of C35 and C37 alkanes derived from C36 and C38 acyl-CoAs in Arabidopsis leaf trichomes (relative to other epidermis cells) suggests differences in the elongation machineries of different epidermis cell types, possibly involving KCS16, a condensing enzyme expressed preferentially in trichomes. Here, KCS16 was found expressed primarily in Arabidopsis rosette leaves, flowers and siliques, and the corresponding protein was localized to the endoplasmic reticulum. The cuticular waxes on young leaves and isolated leaf trichomes of ksc16 loss-of-function mutants were depleted of C35 and C37 alkanes and alkenes, whereas expression of Arabidopsis KCS16 in yeast and ectopic overexpression in Arabidopsis resulted in accumulation of C36 and C38 fatty acid products. Taken together, our results show that KCS16 is the sole enzyme catalysing the elongation of C34 to C38 acyl-CoAs in Arabidopsis leaf trichomes and that it contributes to the formation of extra-long compounds in adjacent pavement cells.
Collapse
Affiliation(s)
- Daniela Hegebarth
- Department of Botany, University of British Columbia, 6270 University Boulevard, Vancouver, BC, V6T 1Z4, Canada
| | - Christopher Buschhaus
- Department of Botany, University of British Columbia, 6270 University Boulevard, Vancouver, BC, V6T 1Z4, Canada
| | - Jérôme Joubès
- Laboratoire de Biogenèse Membranaire, Université de Bordeaux, UMR5200, F-33000, Bordeaux, France
| | - Didier Thoraval
- Laboratoire de Biogenèse Membranaire, Université de Bordeaux, UMR5200, F-33000, Bordeaux, France
| | - David Bird
- Department of Biology, Mount Royal University, 4825 Mount Royal Gate SW, Calgary, Alberta, T3E 6K6, Canada
| | - Reinhard Jetter
- Department of Botany, University of British Columbia, 6270 University Boulevard, Vancouver, BC, V6T 1Z4, Canada
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, V6T 1Z1, Canada
| |
Collapse
|
33
|
Sánchez-Alvarez EL, González-Ledezma G, Bolaños Prats JA, Stephano-Hornedo JL, Hildebrand M. Evaluating Marinichlorella kaistiae KAS603 cell size variation, growth and TAG accumulation resulting from rapid adaptation to highly diverse trophic and salinity cultivation regimes. ALGAL RES 2017. [DOI: 10.1016/j.algal.2017.03.027] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
34
|
Pandit PR, Fulekar MH, Karuna MSL. Effect of salinity stress on growth, lipid productivity, fatty acid composition, and biodiesel properties in Acutodesmus obliquus and Chlorella vulgaris. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:13437-13451. [PMID: 28386901 DOI: 10.1007/s11356-017-8875-y] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 03/20/2017] [Indexed: 05/08/2023]
Abstract
Two microalgae strains including Chlorella vulgaris and Acutodesmus obliquus were grown on BG11 medium with salinity stress ranging from 0.06 to 0.4 M NaCl. Highest lipid content in C. vulgaris and A. obliquus was 49 and 43% in BG11 amended with 0.4 M NaCl. The microalgal strains C. vulgaris and A. obliquus grow better at 0.06 M NaCl concentration than control condition. At 0.06 M NaCl, improved dry biomass content in C. vulgaris and A. obliquus was 0.92 and 0.68 gL-1, respectively. Stress biomarkers like reactive oxygen species, antioxidant enzyme catalase, and ascorbate peroxidase were also lowest at 0.06 M NaCl concentration revealing that both the microalgal strains are well acclimatized at 0.06 M NaCl concentration. The fatty acid composition of the investigated microalgal strains was also improved by increased NaCl concentration. At 0.4 M NaCl, palmitic acid (37%), oleic acid (15.5%), and linoleic acid (20%) were the dominant fatty acids in C. vulgaris while palmitic acid (54%) and stearic acid (26.6%) were major fatty acids found in A. obliquus. Fatty acid profiling of C. vulgaris and A. obliquus significantly varied with salinity concentration. Therefore, the study showed that salt stress is an effective stress that could increase not only the lipid content but also improved the fatty acid composition which could make C. vulgaris and A. obliquus potential strains for biodiesel production.
Collapse
Affiliation(s)
- Priti Raj Pandit
- School of Environment and Sustainable Development, Central university of Gujarat, Gandhinagar, Gujarat, India
| | - Madhusudan H Fulekar
- School of Environment and Sustainable Development, Central university of Gujarat, Gandhinagar, Gujarat, India.
| | | |
Collapse
|
35
|
Bettaieb Rebey I, Bourgou S, Rahali FZ, Msaada K, Ksouri R, Marzouk B. Relation between salt tolerance and biochemical changes in cumin ( Cuminum cyminum L.) seeds. J Food Drug Anal 2017; 25:391-402. [PMID: 28911682 PMCID: PMC9332532 DOI: 10.1016/j.jfda.2016.10.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 09/29/2016] [Accepted: 10/04/2016] [Indexed: 11/12/2022] Open
Abstract
In this study, the effects of salinity on growth, fatty acid, essential oil, and phenolic composition of cumin (Cuminum cyminum L.) seeds as well as the antioxidant activities of their extracts were investigated. Plants were treated with different concentrations of NaCl treatment: 0, 50, 75, and 125 mmoL. Plant growth was significantly reduced with the severity of saline treatment. This also caused important reductions in the seed yield and yield components. Besides, NaCl treatments affected fatty acid composition. Petroselinic and linoleic acids proportions diminished consistently with the increase in NaCl concentration, whereas palmitic acid proportion increased. Furthermore, NaCl enhanced essential oil production in C. cyminum seeds and induced marked changes on the essential oil quality. Essential oil chemotype was modified from γ-terpinene/1-phenyl-1,2 ethanediol in control to γ-terpinene/β-pinene in salt stressed plants. Total polyphenol content was higher in treated seeds, and salinity improved the amount of individual phenolic compounds. Moreover, antioxidant activities of the extracts were determined by four different test systems, namely 2,2-diphenyl-1-picrylhydrazyl, β-carotene/linoleic acid chelating, and reducing power assays. The highest antioxidant activities were reveled in severe stressed plants. In this case, cumin seeds produced under saline conditions may function as a potential source of essential oil and antioxidant compounds, which could support the utilization of this plant in a large field of applications such as food industry.
Collapse
|
36
|
Lynch M, Marinov GK. Membranes, energetics, and evolution across the prokaryote-eukaryote divide. eLife 2017; 6:20437. [PMID: 28300533 PMCID: PMC5354521 DOI: 10.7554/elife.20437] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Accepted: 01/17/2017] [Indexed: 12/19/2022] Open
Abstract
The evolution of the eukaryotic cell marked a profound moment in Earth’s history, with most of the visible biota coming to rely on intracellular membrane-bound organelles. It has been suggested that this evolutionary transition was critically dependent on the movement of ATP synthesis from the cell surface to mitochondrial membranes and the resultant boost to the energetic capacity of eukaryotic cells. However, contrary to this hypothesis, numerous lines of evidence suggest that eukaryotes are no more bioenergetically efficient than prokaryotes. Thus, although the origin of the mitochondrion was a key event in evolutionary history, there is no reason to think membrane bioenergetics played a direct, causal role in the transition from prokaryotes to eukaryotes and the subsequent explosive diversification of cellular and organismal complexity. Over time, life on Earth has evolved into three large groups: archaea, bacteria, and eukaryotes. The most familiar forms of life – such as fungi, plants and animals – all belong to the eukaryotes. Bacteria and archaea are simpler, single-celled organisms and are collectively referred to as prokaryotes. The hallmark feature that distinguishes eukaryotes from prokaryotes is that eukaryotic cells contain compartments called organelles that are surrounded by membranes. Each organelle supports different activities in the cell. Mitochondria, for example, are organelles that provide eukaryotes with most of their energy by producing energy-rich molecules called ATP. Prokaryotes lack mitochondria and instead produce their ATP on their cell surface membrane. Some researchers have suggested that mitochondria might actually be one of the reasons that eukaryotic cells are typically larger than prokaryotes and more varied in their shape and structure. The thinking is that producing ATP on dedicated membranes inside the cell, rather than on the cell surface, boosted the amount of energy available to eukaryotic cells and allowed them to diversify more. However, other researchers are not convinced by this view. Moreover, some recent evidence suggested that eukaryotes are no more efficient in producing energy than prokaryotes. Lynch and Marinov have now used computational and comparative analysis to compare the energy efficiency of different organisms including prokaryotes and eukaryotes grown under defined conditions. To do the comparison, the results were scaled based on cell volume and the total surface area deployed in energy production. From their findings, Lynch and Marinov concluded that mitochondria did not enhance how much energy eukaryotes could produce per unit of cell volume in any substantial way. Although the origin of mitochondria was certainly a key event in evolutionary history, it is unlikely to have been responsible for the diversity and complexity of today’s life forms.
Collapse
Affiliation(s)
- Michael Lynch
- Department of Biology, Indiana University, Bloomington, United States
| | - Georgi K Marinov
- Department of Biology, Indiana University, Bloomington, United States
| |
Collapse
|
37
|
Nedbalová L, Střížek A, Sigler K, Řezanka T. Effect of salinity on the fatty acid and triacylglycerol composition of five haptophyte algae from the genera Coccolithophora, Isochrysis and Prymnesium determined by LC-MS/APCI. PHYTOCHEMISTRY 2016; 130:64-76. [PMID: 27298276 DOI: 10.1016/j.phytochem.2016.06.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 06/01/2016] [Accepted: 06/04/2016] [Indexed: 06/06/2023]
Abstract
Non-aqueous reversed-phase high-performance liquid chromatography (NARP-HPLC) with atmospheric pressure chemical ionization (APCI) was used for separation of triacylglycerols from five strains of haptophyte algae (genera Coccolithophora, Isochrysis, and Prymnesium). This study describes the separation and identification of C18 polyunsaturated triacylglycerols containing stearidonic and octadecapentaenoic fatty acids, including their regioisomers. Salinity affects the proportion of saturated and unsaturated fatty acids. The biosynthesis of C18 polyunsaturated triacylglycerols was found to be very stereospecific and to depend on the salinity of cultivation media, asymmetric regioisomers predominating at low salinity (sn-OpOpSt and/or PoStSt) and symmetric ones at high salinity (sn-OpStOp and or StPoSt).
Collapse
Affiliation(s)
- Linda Nedbalová
- Charles University in Prague, Faculty of Science, Department of Ecology, Viničná 7, 128 44 Prague, Czech Republic
| | - Antonín Střížek
- Charles University in Prague, Faculty of Science, Department of Ecology, Viničná 7, 128 44 Prague, Czech Republic
| | - Karel Sigler
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Vídeňská 1083, 142 20 Prague, Czech Republic
| | - Tomáš Řezanka
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Vídeňská 1083, 142 20 Prague, Czech Republic.
| |
Collapse
|
38
|
Minhas AK, Hodgson P, Barrow CJ, Adholeya A. A Review on the Assessment of Stress Conditions for Simultaneous Production of Microalgal Lipids and Carotenoids. Front Microbiol 2016; 7:546. [PMID: 27199903 PMCID: PMC4853371 DOI: 10.3389/fmicb.2016.00546] [Citation(s) in RCA: 202] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 04/04/2016] [Indexed: 11/22/2022] Open
Abstract
Microalgal species are potential resource of both biofuels and high-value metabolites, and their production is growth dependent. Growth parameters can be screened for the selection of novel microalgal species that produce molecules of interest. In this context our review confirms that, autotrophic and heterotrophic organisms have demonstrated a dual potential, namely the ability to produce lipids as well as value-added products (particularly carotenoids) under influence of various physico-chemical stresses on microalgae. Some species of microalgae can synthesize, besides some pigments, very-long-chain polyunsaturated fatty acids (VL-PUFA,>20C) such as docosahexaenoic acid and eicosapentaenoic acid, those have significant applications in food and health. Producing value-added by-products in addition to biofuels, fatty acid methyl esters (FAME), and lipids has the potential to improve microalgae-based biorefineries by employing either the autotrophic or the heterotrophic mode, which could be an offshoot of biotechnology. The review considers the potential of microalgae to produce a range of products and indicates future directions for developing suitable criteria for choosing novel isolates through bioprospecting large gene pool of microalga obtained from various habitats and climatic conditions.
Collapse
Affiliation(s)
- Amritpreet K. Minhas
- Biotechnology and Bioresources Division, TERI-Deakin Nanobiotechnology Centre, The Energy and Resources Institute, India Habitat CentreNew Delhi, India
| | - Peter Hodgson
- Institute for Frontier Materials, Deakin UniversityVictoria, VIC, Australia
| | - Colin J. Barrow
- School of Life and Environmental Sciences, Deakin UniversityVictoria, VIC, Australia
| | - Alok Adholeya
- Biotechnology and Bioresources Division, TERI-Deakin Nanobiotechnology Centre, The Energy and Resources Institute, India Habitat CentreNew Delhi, India
| |
Collapse
|
39
|
Shekh AY, Shrivastava P, Gupta A, Krishnamurthi K, Devi SS, Mudliar SN. Biomass and lipid enhancement in Chlorella sp. with emphasis on biodiesel quality assessment through detailed FAME signature. BIORESOURCE TECHNOLOGY 2016; 201:276-86. [PMID: 26679050 DOI: 10.1016/j.biortech.2015.11.058] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 11/19/2015] [Accepted: 11/21/2015] [Indexed: 05/21/2023]
Abstract
In this study, the concentrations of MgSO4, salinity and light intensity were optimised for maximum biomass productivity and lipid content in Chlorella sp. Lipid synthesized at varied experimental conditions was also assessed in detail for biodiesel properties through FAME analysis. FAMEs mainly composed of C16:0, C16:1(9), C16:3(7, 10, 13), C18:0, C18:1(11), C18:2(9, 12), C18:3(9, 12, 15). The optimum biomass productivity (372.50mgL(-1)d(-1)) and lipid content (32.57%) was obtained at MgSO4-150ppm; salinity-12.5ppm, and light intensity-25μmolm(-2)s(-1). However, at this condition the cetane number, a major biodiesel property was not complying with worldwide biodiesel standard. Therefore, further optimisations were done to check the suitability of biodiesel fuel. The optimum biomass productivity (348.47mgL(-1)d(-1)) and lipid content (12.43%) with suitable biodiesel fuel properties was obtained at MgSO4-50ppm, salinity-25ppm and light intensity-100μmolm(-2)s(-1). The validation experiments confirmed the closeness of predicted and measured response values.
Collapse
Affiliation(s)
- Ajam Yakub Shekh
- Environmental Health Division, CSIR-National Environmental Engineering Research Institute (NEERI), Nagpur, India
| | - Preeti Shrivastava
- Environmental Health Division, CSIR-National Environmental Engineering Research Institute (NEERI), Nagpur, India
| | - Ankit Gupta
- Environmental Systems Design and Modeling Division, CSIR-National Environmental Engineering Research Institute (NEERI), Nagpur, India
| | - Kannan Krishnamurthi
- Environmental Health Division, CSIR-National Environmental Engineering Research Institute (NEERI), Nagpur, India
| | - Sivanesan Saravana Devi
- Environmental Health Division, CSIR-National Environmental Engineering Research Institute (NEERI), Nagpur, India
| | - Sandeep N Mudliar
- Plant Cell Biotechnology Division, CSIR-Central Food Technological Research Institute, Mysore, India.
| |
Collapse
|
40
|
Enhancement of lipid production in marine microalga Tetraselmis sp. through salinity variation. KOREAN J CHEM ENG 2015. [DOI: 10.1007/s11814-015-0089-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
41
|
Thammapat P, Meeso N, Siriamornpun S. Effects of NaCl and soaking temperature on the phenolic compounds, α-tocopherol, γ-oryzanol and fatty acids of glutinous rice. Food Chem 2015; 175:218-24. [DOI: 10.1016/j.foodchem.2014.11.146] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 11/04/2014] [Accepted: 11/26/2014] [Indexed: 11/25/2022]
|
42
|
Davis RW, Carvalho BJ, Jones HDT, Singh S. The role of photo-osmotic adaptation in semi-continuous culture and lipid particle release from Dunaliella viridis. JOURNAL OF APPLIED PHYCOLOGY 2015; 27:109-123. [PMID: 25620852 PMCID: PMC4297879 DOI: 10.1007/s10811-014-0331-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 04/25/2014] [Accepted: 04/25/2014] [Indexed: 05/20/2023]
Abstract
Although great efforts have been made to elucidate the phenotypic responses of alga to varying levels of nutrients, osmotic environments, and photosynthetically active radiation intensities, the role of interactions among these variables is largely nebulous. Here, we describe a general method for establishing and maintaining semi-continuous cultures of the halophilic microalgal production strain, Dunaliella viridis, that is independent of variations in salinity and illumination intensity. Using this method, the cultures were evaluated to elucidate the overlapping roles of photosynthetic and osmotic adaptation on the accumulation and compositional variation of the biomass, photosynthetic productivity, and physiological biomarkers, as well as spectroscopic and morphological details at the single-cell level. Correlation matrices defining the relationships among the observables and based on variation of the illumination intensity and salinity were constructed for predicting bioproduct yields for varying culture conditions. Following maintenance of stable cultures for 6-week intervals, phenotypic responses to photo-osmotic drift were explored using a combination of single-cell hyperspectral fluorescence imaging and flow cytometry. In addition to morphological changes, release of lipid microparticles from the cells that is disproportionate to cell lysis was observed under hypotonic drift, indicating the existence of a reversible membrane permeation mechanism in Dunaliella. This phenomenon introduces the potential for low-cost strategies for recovering lipids and pigments from the microalgae by minimizing the requirement for energy intensive harvesting and dewatering of the biomass. The results should be applicable to outdoor culture, where seasonal changes resulting in variable solar flux and precipitation and evaporation rates are anticipated.
Collapse
Affiliation(s)
- Ryan W. Davis
- Sandia National Laboratories, Livermore, CA 94551 USA
| | | | - Howland D. T. Jones
- Sandia National Laboratories, Albuquerque, NM 87185 USA
- Present Address: HyperImage Solutions, Rio Rancho, NM 87144 USA
| | - Seema Singh
- Sandia National Laboratories, Livermore, CA 94551 USA
| |
Collapse
|
43
|
Yang H, He Q, Rong J, Xia L, Hu C. Rapid neutral lipid accumulation of the alkali-resistant oleaginous Monoraphidium dybowskii LB50 by NaCl induction. BIORESOURCE TECHNOLOGY 2014; 172:131-137. [PMID: 25255189 DOI: 10.1016/j.biortech.2014.08.066] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 08/11/2014] [Accepted: 08/13/2014] [Indexed: 05/24/2023]
Abstract
NaCl is an effective inducer of lipid accumulation in freshwater microalgae, but little is known on whether the enhanced lipid components are desired. To address this issue, Monoraphidium dybowskii LB50 from a freshwater habitat was selected, cultivated, and subjected to NaCl induction at different scales outdoors. Results showed that the optimal salt concentration reduced glycolipid (GL) content, as well as enhanced neutral lipid (NL) and phospholipid (PL) contents. Moreover, GL was preferentially converted to NL at 20gL(-1) NaCl. Total lipid and NL contents respectively increased to 41.7% and 17.48% in 1d. The highest NL productivity was also achieved at both the 5L (24.13mgL(-1)d(-1)) and 140L (13.05mgL(-1)d(-1), 3.43gm(-2)d(-1)) scales. These results suggest that NL accumulated effectively and rapidly at different scales, indicating that this strategy has broad application prospects for the scale-up cultivation of oily algae.
Collapse
Affiliation(s)
- Haijian Yang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Qiaoning He
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Junfeng Rong
- SINOPEC Research Institute of Petroleum Processing, Beijing 100083, China
| | - Ling Xia
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Chunxiang Hu
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| |
Collapse
|
44
|
Isolation, characterization and functional annotation of the salt tolerance genes through screening the high-quality cDNA library of the halophytic green alga Dunaliella salina (Chlorophyta). ANN MICROBIOL 2014. [DOI: 10.1007/s13213-014-0967-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
45
|
Venkata Mohan S, Devi MP. Salinity stress induced lipid synthesis to harness biodiesel during dual mode cultivation of mixotrophic microalgae. BIORESOURCE TECHNOLOGY 2014; 165:288-94. [PMID: 24709529 DOI: 10.1016/j.biortech.2014.02.103] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Revised: 02/13/2014] [Accepted: 02/16/2014] [Indexed: 05/03/2023]
Abstract
Influence of salinity as a stress factor to harness biodiesel was assessed during dual mode cultivation of microalgae by integrating biomass growth phase (BGP) and salinity induced lipid induction phase (LIP). BGP was evaluated in mixotrophic mode employing nutrients (NPK) and carbon (glucose) source while LIP was operated under stress environment with varying salt concentrations (0, 0.5, 1 and 2gNaCl/l). Salinity stress triggered both biomass growth and lipid synthesis in microalgae significantly. BGP showed higher increments in biomass growth (2.55g/l) while LIP showed higher lipid productivity (1gNaCl/l; total/neutral lipid, 23.4/9.2%) than BGP (total/neutral lipid, 15.2/6%). Lower concentrations of salinity showed positive influence on the process while higher concentrations showed marked inhibition. Salinity stress also facilitated in maintaining saturated fatty acid methyl esters in higher amounts which associates with the improved fuel properties. Efficient wastewater treatment was observed during BGP operation indicating the assimilation of carbon/nutrients by microalgae.
Collapse
Affiliation(s)
- S Venkata Mohan
- Bioengineering and Environmental Centre (BEEC), CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500 007, India.
| | - M Prathima Devi
- Bioengineering and Environmental Centre (BEEC), CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500 007, India
| |
Collapse
|
46
|
Adarme-Vega TC, Thomas-Hall SR, Lim DKY, Schenk PM. Effects of long chain fatty acid synthesis and associated gene expression in microalga Tetraselmis sp. Mar Drugs 2014; 12:3381-98. [PMID: 24901700 PMCID: PMC4071582 DOI: 10.3390/md12063381] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 05/09/2014] [Accepted: 05/15/2014] [Indexed: 12/03/2022] Open
Abstract
With the depletion of global fish stocks, caused by high demand and effective fishing techniques, alternative sources for long chain omega-3 fatty acids are required for human nutrition and aquaculture feeds. Recent research has focused on land-based cultivation of microalgae, the primary producers of omega-3 fatty acids in the marine food web. The effect of salinity on fatty acids and related gene expression was studied in the model marine microalga, Tetraselmis sp. M8. Correlations were found for specific fatty acid biosynthesis and gene expression according to salinity and the growth phase. Low salinity was found to increase the conversion of C18:4 stearidonic acid (SDA) to C20:4 eicosatetraenoic acid (ETA), correlating with increased transcript abundance of the Δ-6-elongase-encoding gene in salinities of 5 and 10 ppt compared to higher salinity levels. The expression of the gene encoding β-ketoacyl-coenzyme was also found to increase at lower salinities during the nutrient deprivation phase (Day 4), but decreased with further nutrient stress. Nutrient deprivation also triggered fatty acids synthesis at all salinities, and C20:5 eicosapentaenoic acid (EPA) increased relative to total fatty acids, with nutrient starvation achieving a maximum of 7% EPA at Day 6 at a salinity of 40 ppt.
Collapse
Affiliation(s)
- T Catalina Adarme-Vega
- Algae Biotechnology Laboratory, School of Agriculture and Food Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia.
| | - Skye R Thomas-Hall
- Algae Biotechnology Laboratory, School of Agriculture and Food Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia.
| | - David K Y Lim
- Algae Biotechnology Laboratory, School of Agriculture and Food Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia.
| | - Peer M Schenk
- Algae Biotechnology Laboratory, School of Agriculture and Food Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia.
| |
Collapse
|
47
|
Novoveská L, Henley WJ. Lab-Scale Testing of a Two-Stage Continuous Culture System for Microalgae. Ind Biotechnol (New Rochelle N Y) 2014. [DOI: 10.1089/ind.2013.0034] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Lucie Novoveská
- Department of Botany, Oklahoma State University, Stillwater, OK
| | | |
Collapse
|
48
|
|
49
|
Kirrolia A, Bishnoi NR, Singh R. Response surface methodology as a decision-making tool for optimization of culture conditions of green microalgae Chlorella spp. for biodiesel production. ANN MICROBIOL 2013. [DOI: 10.1007/s13213-013-0752-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
50
|
Plastids of marine phytoplankton produce bioactive pigments and lipids. Mar Drugs 2013; 11:3425-71. [PMID: 24022731 PMCID: PMC3806458 DOI: 10.3390/md11093425] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 07/02/2013] [Accepted: 07/24/2013] [Indexed: 12/20/2022] Open
Abstract
Phytoplankton is acknowledged to be a very diverse source of bioactive molecules. These compounds play physiological roles that allow cells to deal with changes of the environmental constrains. For example, the diversity of light harvesting pigments allows efficient photosynthesis at different depths in the seawater column. Identically, lipid composition of cell membranes can vary according to environmental factors. This, together with the heterogenous evolutionary origin of taxa, makes the chemical diversity of phytoplankton compounds much larger than in terrestrial plants. This contribution is dedicated to pigments and lipids synthesized within or from plastids/photosynthetic membranes. It starts with a short review of cyanobacteria and microalgae phylogeny. Then the bioactivity of pigments and lipids (anti-oxidant, anti-inflammatory, anti-mutagenic, anti-cancer, anti-obesity, anti-allergic activities, and cardio- neuro-, hepato- and photoprotective effects), alone or in combination, is detailed. To increase the cellular production of bioactive compounds, specific culture conditions may be applied (e.g., high light intensity, nitrogen starvation). Regardless of the progress made in blue biotechnologies, the production of bioactive compounds is still limited. However, some examples of large scale production are given, and perspectives are suggested in the final section.
Collapse
|