1
|
Hu H, Jiang Y, Liu C, Zhang Y, Chen M, Liu Z. Genome-Wide Identification and Characterization of Basic Pentacysteine Transcription Factors in Brassica napus. PLANTS (BASEL, SWITZERLAND) 2025; 14:1136. [PMID: 40219204 PMCID: PMC11991588 DOI: 10.3390/plants14071136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 03/26/2025] [Accepted: 04/01/2025] [Indexed: 04/14/2025]
Abstract
BARLEY B-RECOMBINANT/BASIC PENTACYSTEINE (BBR/BPC), a plant-specific transcription factor family, is a group of GAGA_motif binding factors controlling multiple developmental processes of growth and response to abiotic stresses. BPCs recruit histone remodeling factors for transcriptional repression of downstream targets. However, the information about BnaBPCs from Brassica napus remains unclear. Here, we identified 25 BnaBPC genes that were mainly localized in the nucleus, randomly localized on 16 chromosomes, and grouped into three subfamilies based on phylogenetic analysis. Twenty-five BnaBPC genes exhibit syntenic relationships with AtBPC genes, and the polypeptides encoded by BnaBPC genes within the same subfamily share similar conserved motifs and protein domains. The expansion of BnaBPC genes underwent whole-genome duplication events and purifying selection in genomes, and all the BnaBPC genes had the same conserved GAGA binding domains. Additionally, the promoter of each BnaBPC gene consisted of various cis-elements associated with stresses, phytohormones, and growth and development. Notably, the seed-specific regulatory element was found only in the BnaC04.BPC4 promoter. Further expression pattern analysis showed that BnaBPC members are widely expressed in stems, buds, developing seeds and siliques. These findings provide insights into BnaBPC genes and enrich our understanding of their functional characterization in B. napus.
Collapse
Affiliation(s)
- Huan Hu
- Shaanxi Key Laboratory of Crop Heterosis, College of Agronomy, Northwest A&F University, Yangling 712100, China; (H.H.); (Y.J.); (C.L.)
| | - Yuqin Jiang
- Shaanxi Key Laboratory of Crop Heterosis, College of Agronomy, Northwest A&F University, Yangling 712100, China; (H.H.); (Y.J.); (C.L.)
| | - Chiyuan Liu
- Shaanxi Key Laboratory of Crop Heterosis, College of Agronomy, Northwest A&F University, Yangling 712100, China; (H.H.); (Y.J.); (C.L.)
| | - Ying Zhang
- Department of Ecological and Environmental Engineering, Yangling Vocational & Technical College, Yangling 712100, China;
| | - Mingxun Chen
- Shaanxi Key Laboratory of Crop Heterosis, College of Agronomy, Northwest A&F University, Yangling 712100, China; (H.H.); (Y.J.); (C.L.)
| | - Zijin Liu
- Shaanxi Key Laboratory of Crop Heterosis, College of Agronomy, Northwest A&F University, Yangling 712100, China; (H.H.); (Y.J.); (C.L.)
| |
Collapse
|
2
|
Zhang S, Zhong H, Zhang F, Zheng J, Zhang C, Yadav V, Zhou X, Nocker SV, Wu X, Wang X. Identification of grapevine BASIC PENTACYSTEINE transcription factors and functional characterization of VvBPC1 in ovule development. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 356:112491. [PMID: 40189153 DOI: 10.1016/j.plantsci.2025.112491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 03/17/2025] [Accepted: 03/29/2025] [Indexed: 04/11/2025]
Abstract
Seedless grapes are gaining increasingly attention in the market because of their desirable traits. Therefore, understanding the molecular genetic regulation of seed development and abortion is crucial for the advancement of seedless cultivars. Recent studies have shown that AGAMOUS-LIKE11 (VvAGL11), an ortholog of Arabidopsis SEEDSTICK (STK), plays a key role in grape ovule development, and amino acid substitution mutations result in seed abortion. However, the regulatory pathways involved in this process are poorly understood in grapevines. In this study, we identified four BASIC PENTACYSTEINE (BPC) genes in the grapevine (Vitis vinifera L.) genome and analyzed their evolutionary relationships, subcellular localization, and expression patterns. VvBPC1 was identified as an upstream regulatory factor of VvAGL11 in a yeast one-hybrid assay. Dual-luciferase assays confirmed that VvAGL11 is negatively regulated by VvBPC1, and the production of small seeds by heterologous overexpression of VvBPC1 in tomatoes results from the suppression of VvAGL11 expression. Furthermore, assays in yeast cells demonstrated that VvBPC1 interacts with VvBELL1. Taken together, this study not only establishes the foundation for further exploration of the molecular mechanisms of the VvBPC1-VvBELL1-VvAGL11 module in regulating grape seed development but also provides new insights into the genetic improvement of seedless grapes.
Collapse
Affiliation(s)
- Songlin Zhang
- The State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions (Preparation), Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China; State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Haixia Zhong
- The State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions (Preparation), Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China.
| | - Fuchun Zhang
- The State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions (Preparation), Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China.
| | - Jinling Zheng
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Chuan Zhang
- The State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions (Preparation), Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China.
| | - Vivek Yadav
- The State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions (Preparation), Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China.
| | - Xiaoming Zhou
- The State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions (Preparation), Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China.
| | - Steve van Nocker
- Department of Horticulture, Michigan State University, East Lansing, MI, USA.
| | - Xinyu Wu
- The State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions (Preparation), Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China.
| | - Xiping Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China; Turpan Research Institute of Agricultural Sciences, Xinjiang Academy of Agricultural Sciences, Turpan, Xinjiang 838000, China.
| |
Collapse
|
3
|
Wang L, Chen W, Zhao Z, Li H, Pei D, Huang Z, Wang H, Xiao L. Genome-Wide Identification, Conservation, and Expression Pattern Analyses of the BBR-BPC Gene Family Under Abiotic Stress in Brassica napus L. Genes (Basel) 2024; 16:36. [PMID: 39858583 PMCID: PMC11764527 DOI: 10.3390/genes16010036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 12/18/2024] [Accepted: 12/18/2024] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND The BBR-BPC gene family is a relatively conservative group of transcription factors, playing a key role in plant morphogenesis, organ development, and responses to abiotic stress. Brassica napus L. (B. napus), commonly known as oilseed rape, is an allopolyploid plant formed by the hybridization and polyploidization of Brassica rapa L. (B. rapa) and Brassica oleracea L. (B. oleracea), and is one of the most important oil crops. However, little is known about the characteristics, conservation, and expression patterns of this gene family in B. napus, especially under abiotic stress. METHODS To explore the characteristics and potential biological roles of the BBR-BPC gene family members in B. napus, we conducted identification based on bioinformatics and comparative genomics methods. We further analyzed the expression patterns through RNA-seq and qRT-PCR. RESULTS We identified 25 BBR-BPC members, which were classified into three subfamilies based on phylogenetic analysis, and found them to be highly conserved in both monocots and dicots. The conserved motifs revealed that most members contained Motif 1, Motif 2, Motif 4, and Motif 8. After whole-genome duplication (WGD), collinearity analysis showed that BBR-BPC genes underwent significant purifying selection. The promoters of most BBR-BPC genes contained cis-acting elements related to light response, hormone induction, and stress response. RNA-seq and qRT-PCR further indicated that BnBBR-BPC7, BnBBR-BPC15, BnBBR-BPC20, and BnBBR-BPC25 might be key members of this family. CONCLUSIONS This study provides a theoretical foundation for understanding the potential biological functions and roles of the BBR-BPC gene family, laying the groundwork for resistance breeding in B. napus.
Collapse
Affiliation(s)
- Long Wang
- Academy of Agricultural and Forestry Sciences, Qinghai University, Xining 810016, China; (L.W.); (W.C.); (Z.Z.); (H.L.); (D.P.)
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Xining 810016, China
- Key Laboratory of Spring Rapeseed Genetic Improvement of Qinghai Province, Xining 810016, China
- Qinghai Spring Rape Engineering Research Center, Xining 810016, China
| | - Wei Chen
- Academy of Agricultural and Forestry Sciences, Qinghai University, Xining 810016, China; (L.W.); (W.C.); (Z.Z.); (H.L.); (D.P.)
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Xining 810016, China
- Key Laboratory of Spring Rapeseed Genetic Improvement of Qinghai Province, Xining 810016, China
- Qinghai Spring Rape Engineering Research Center, Xining 810016, China
| | - Zhi Zhao
- Academy of Agricultural and Forestry Sciences, Qinghai University, Xining 810016, China; (L.W.); (W.C.); (Z.Z.); (H.L.); (D.P.)
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Xining 810016, China
- Key Laboratory of Spring Rapeseed Genetic Improvement of Qinghai Province, Xining 810016, China
- Qinghai Spring Rape Engineering Research Center, Xining 810016, China
| | - Huaxin Li
- Academy of Agricultural and Forestry Sciences, Qinghai University, Xining 810016, China; (L.W.); (W.C.); (Z.Z.); (H.L.); (D.P.)
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Xining 810016, China
- Key Laboratory of Spring Rapeseed Genetic Improvement of Qinghai Province, Xining 810016, China
- Qinghai Spring Rape Engineering Research Center, Xining 810016, China
| | - Damei Pei
- Academy of Agricultural and Forestry Sciences, Qinghai University, Xining 810016, China; (L.W.); (W.C.); (Z.Z.); (H.L.); (D.P.)
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Xining 810016, China
- Key Laboratory of Spring Rapeseed Genetic Improvement of Qinghai Province, Xining 810016, China
- Qinghai Spring Rape Engineering Research Center, Xining 810016, China
| | - Zhen Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Xianyang 712100, China;
| | - Hongyan Wang
- Laboratory of Plant Epigenetics and Evolution, School of Life Science, Liaoning University, Shenyang 110036, China
| | - Lu Xiao
- Academy of Agricultural and Forestry Sciences, Qinghai University, Xining 810016, China; (L.W.); (W.C.); (Z.Z.); (H.L.); (D.P.)
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Xining 810016, China
- Key Laboratory of Spring Rapeseed Genetic Improvement of Qinghai Province, Xining 810016, China
- Qinghai Spring Rape Engineering Research Center, Xining 810016, China
| |
Collapse
|
4
|
Lao Z, Mao J, Chen R, Xu R, Yang Z, Wang Y, Zhou J, Mu Z, Xu H, Li F, Huang D, Xiao Y, Luo J, Xia W. Genome-wide identification and characterization of BASIC PENTACYSTEINE transcription factors and their binding motifs in coconut palm. FRONTIERS IN PLANT SCIENCE 2024; 15:1491139. [PMID: 39719939 PMCID: PMC11666369 DOI: 10.3389/fpls.2024.1491139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 11/18/2024] [Indexed: 12/26/2024]
Abstract
Introduction BASIC PENTACYSTEINE (BPC) is a small transcription factor family known for its role in various developmental processes in plants, particularly in binding GA motifs and regulating flower and seed development. However, research on the functional characteristics and target genes of BPCs in coconut (Cocos nucifera) is limited. Methods In this study, we systematically characterized the gene structure, conserved protein domains, gene expansion, and target genes of CnBPCs in the coconut genome. We conducted yeast one-hybrid (Y1H) and dual-luciferase assay to explore gene interactions. We identified genes with the GA motif in their promoter regions and combined this information with a weighted gene co-expression network to identify the target genes of CnBPCs. Results Eight CnBPCs were identified, including three Class I CnBPCs from triplication, four Class II CnBPCs (with CnBPC6A and CnBPC6B resulting from segmental duplication), and one Class III CnBPC (CnBPC7). Three conserved DNA-binding motifs were detected, exhibiting variation in certain sites. Widespread BPC gene expansion was detected in coconut and other plant species, while only three BPCs were found in the most basal extant flowering plant. Notably, 92% of protein-coding genes contained at least one GA motif, with the (GA)3 motif being most prevalent. Genes containing the GA motif that exhibit a high expression correlation with CnBPCs, tend to interact strongly with the corresponding CnBPCs. Additionally, promoters rich in the GA motif tend to interact with all members of CnBPC. The dual-luciferase assay showed that CnBPCs could activate or repress the transcriptional activities of promoters containing either (GA)3 or (GA)11 motif but with a bias toward certain genes. Furthermore, we constructed co-expressed networks identifying 426 genes with GA motifs as potential CnBPC targets. Discussion Our findings suggest that CnBPCs may play significant roles in seed germination, flower development, and mesocarp development by interacting with genes such as CnAG1, CnAG2, CnSTK, CnMFT, and CnCS. This study characterized CnBPCs' binding motif and possible target genes, laying a theoretical foundation to reveal CnBPCs' function in flower and seed development.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Yong Xiao
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication)/College of Tropical Agriculture and Forestry, Hainan University, Sanya, Hainan, China
| | - Jie Luo
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication)/College of Tropical Agriculture and Forestry, Hainan University, Sanya, Hainan, China
| | - Wei Xia
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication)/College of Tropical Agriculture and Forestry, Hainan University, Sanya, Hainan, China
| |
Collapse
|
5
|
Liang Y, Hao J, Wang J, Zhang G, Su Y, Liu Z, Wang T. Statistical Genomics Analysis of Simple Sequence Repeats from the Paphiopedilum Malipoense Transcriptome Reveals Control Knob Motifs Modulating Gene Expression. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2304848. [PMID: 38647414 PMCID: PMC11200097 DOI: 10.1002/advs.202304848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 02/26/2024] [Indexed: 04/25/2024]
Abstract
Simple sequence repeats (SSRs) are found in nonrandom distributions in genomes and are thought to impact gene expression. The distribution patterns of 48 295 SSRs of Paphiopedilum malipoense are mined and characterized based on the first full-length transcriptome and comprehensive transcriptome dataset from 12 organs. Statistical genomics analyses are used to investigate how SSRs in transcripts affect gene expression. The results demonstrate the correlations between SSR distributions, characteristics, and expression level. Nine expression-modulating motifs (expMotifs) are identified and a model is proposed to explain the effect of their key features, potency, and gene function on an intra-transcribed region scale. The expMotif-transcribed region combination is the most predominant contributor to the expression-modulating effect of SSRs, and some intra-transcribed regions are critical for this effect. Genes containing the same type of expMotif-SSR elements in the same transcribed region are likely linked in function, regulation, or evolution aspects. This study offers novel evidence to understand how SSRs regulate gene expression and provides potential regulatory elements for plant genetic engineering.
Collapse
Affiliation(s)
- Yingyi Liang
- College of Life SciencesSouth China Agricultural UniversityGuangzhou510642China
| | - Jing Hao
- College of Life SciencesSouth China Agricultural UniversityGuangzhou510642China
| | - Jieyu Wang
- College of Forestry and Landscape ArchitectureSouth China Agricultural UniversityGuangzhou510642China
| | - Guoqiang Zhang
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture and ArtFujian Agriculture and Forestry UniversityFuzhou350002China
| | - Yingjuan Su
- School of Life SciencesSun Yat‐sen UniversityGuangzhou510275China
- Research Institute of Sun Yat‐sen University in ShenzhenShenzhen518107China
| | - Zhong‐Jian Liu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture and ArtFujian Agriculture and Forestry UniversityFuzhou350002China
| | - Ting Wang
- College of Life SciencesSouth China Agricultural UniversityGuangzhou510642China
| |
Collapse
|
6
|
Zhao H, Wan S, Huang Y, Li X, Jiao T, Zhang Z, Ma B, Zhu L, Ma F, Li M. The transcription factor MdBPC2 alters apple growth and promotes dwarfing by regulating auxin biosynthesis. THE PLANT CELL 2024; 36:585-604. [PMID: 38019898 PMCID: PMC10896295 DOI: 10.1093/plcell/koad297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/24/2023] [Accepted: 11/26/2023] [Indexed: 12/01/2023]
Abstract
Auxin plays important roles throughout plant growth and development. However, the mechanisms of auxin regulation of plant structure are poorly understood. In this study, we identified a transcription factor (TF) of the BARLEY B RECOMBINANT/BASIC PENTACYSTEINE (BBR/BPC) family in apple (Malus × domestica), MdBPC2. It was highly expressed in dwarfing rootstocks, and it negatively regulated auxin biosynthesis. Overexpression of MdBPC2 in apple decreased plant height, altered leaf morphology, and inhibited root system development. These phenotypes were due to reduced auxin levels and were restored reversed after exogenous indole acetic acid (IAA) treatment. Silencing of MdBPC2 alone had no obvious phenotypic effect, while silencing both Class I and Class II BPCs in apple significantly increased auxin content in plants. Biochemical analysis demonstrated that MdBPC2 directly bound to the GAGA-rich element in the promoters of the auxin synthesis genes MdYUC2a and MdYUC6b, inhibiting their transcription and reducing auxin accumulation in MdBPC2 overexpression lines. Further studies established that MdBPC2 interacted with the polycomb group (PcG) protein LIKE HETEROCHROMATIN PROTEIN 1 (LHP1) to inhibit MdYUC2a and MdYUC6b expression via methylation of histone 3 lysine 27 (H3K27me3). Silencing MdLHP1 reversed the negative effect of MdBPC2 on auxin accumulation. Our results reveal a dwarfing mechanism in perennial woody plants involving control of auxin biosynthesis by a BPC transcription factor, suggesting its use for genetic improvement of apple rootstock.
Collapse
Affiliation(s)
- Haiyan Zhao
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Shuyuan Wan
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Yanni Huang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Xiaoqiang Li
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Tiantian Jiao
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Zhijun Zhang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Baiquan Ma
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Lingcheng Zhu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Fengwang Ma
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Mingjun Li
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi, China
| |
Collapse
|
7
|
Meng D, Li S, Feng X, Di Q, Zhou M, Yu X, He C, Yan Y, Wang J, Sun M, Li Y. CsBPC2 is essential for cucumber survival under cold stress. BMC PLANT BIOLOGY 2023; 23:566. [PMID: 37968586 PMCID: PMC10652477 DOI: 10.1186/s12870-023-04577-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 11/02/2023] [Indexed: 11/17/2023]
Abstract
Cold stress affects the growth and development of cucumbers. Whether the BPC2 transcription factor participates in cold tolerance and its regulatory mechanism in plants have not been reported. Here, we used wild-type (WT) cucumber seedlings and two mutant Csbpc2 lines as materials. The underlying mechanisms were studied by determining the phenotype, physiological and biochemical indicators, and transcriptome after cold stress. The results showed that CsBPC2 knockout reduced cucumber cold tolerance by increasing the chilling injury index, relative electrical conductivity and malondialdehyde (MDA) content and decreasing antioxidant enzyme activity. We then conducted RNA sequencing (RNA-seq) to explore transcript-level changes in Csbpc2 mutants. A large number of differentially expressed genes (1032) were identified and found to be unique in Csbpc2 mutants. However, only 489 down-regulated genes related to the synthesis and transport of amino acids and vitamins were found to be enriched through GO analysis. Moreover, both RNA-seq and qPT-PCR techniques revealed that CsBPC2 knockout also decreased the expression of some key cold-responsive genes, such as CsICE1, CsCOR413IM2, CsBZR1 and CsBZR2. These results strongly suggested that CsBPC2 knockout not only affected cold function genes but also decreased the levels of some key metabolites under cold stress. In conclusion, this study reveals for the first time that CsBPC2 is essential for cold tolerance in cucumber and provides a reference for research on the biological function of BPC2 in other plants.
Collapse
Affiliation(s)
- Di Meng
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Shuzhen Li
- Ganzhou Key Laboratory of Greenhouse Vegetable, College of Life Science, Gannan Normal University, Ganzhou, 341000, China
| | - Xiaojie Feng
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Qinghua Di
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Mengdi Zhou
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xianchang Yu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Chaoxing He
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yan Yan
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jun Wang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Mintao Sun
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Yansu Li
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
8
|
Sahu A, Singh R, Verma PK. Plant BBR/BPC transcription factors: unlocking multilayered regulation in development, stress and immunity. PLANTA 2023; 258:31. [PMID: 37368167 DOI: 10.1007/s00425-023-04188-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 06/17/2023] [Indexed: 06/28/2023]
Abstract
MAIN CONCLUSION This review provides a detailed structural and functional understanding of BBR/BPC TF, their conservation across the plant lineage, and their comparative study with animal GAFs. Plant-specific Barley B Recombinant/Basic PentaCysteine (BBR/BPC) transcription factor (TF) family binds to "GA" repeats similar to animal GAGA Factors (GAFs). These GAGA binding proteins are among the few TFs that regulate the genes at multiple steps by modulating the chromatin structure. The hallmark of the BBR/BPC TF family is the presence of a conserved C-terminal region with five cysteine residues. In this review, we present: first, the structural distinct yet functional similar relation of plant BBR/BPC TF with animal GAFs, second, the conservation of BBR/BPC across the plant lineage, third, their role in planta, fourth, their potential interacting partners and structural insights. We conclude that BBR/BPC TFs have multifaceted roles in plants. Besides the earliest identified function in homeotic gene regulation and developmental processes, presently BBR/BPC TFs were identified in hormone signaling, stress, circadian oscillation, and sex determination processes. Understanding how plants' development and stress processes are coordinated is central to divulging the growth-immunity trade-off regulation. The BBR/BPC TFs may hold keys to divulge the interactions between development and immunity. Moreover, the conservation of BBR/BPC across plant lineage makes it an evolutionary vital gene family. Consequently, BBR/BPCs are prospective to attract the increasing attention of the scientific communities as they are probably at the crossroads of diverse fundamental processes.
Collapse
Affiliation(s)
- Anubhav Sahu
- Plant Immunity Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Ritu Singh
- Plant Immunity Laboratory, National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Praveen Kumar Verma
- Plant Immunity Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
9
|
Vavilova VY, Konopatskaia ID, Blinov AG, Kondratenko EY, Kruchinina YV, Goncharov NP. Genetic Variability of Btr1 Genes in Tetraploid Wheat Species and Aegilops speltoides Tausch. RUSS J GENET+ 2022. [DOI: 10.1134/s1022795422060138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
10
|
Lee YC, Tsai PT, Huang XX, Tsai HL. Family Members Additively Repress the Ectopic Expression of BASIC PENTACYSTEINE3 to Prevent Disorders in Arabidopsis Circadian Vegetative Development. FRONTIERS IN PLANT SCIENCE 2022; 13:919946. [PMID: 35693178 PMCID: PMC9182635 DOI: 10.3389/fpls.2022.919946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 04/29/2022] [Indexed: 06/15/2023]
Abstract
BARLEY B-RECOMBINANT/BASIC PENTACYSTEINE (BBR/BPC) family members are plant-specific GAGA-motif binding factors (GAFs) controlling multiple developmental processes of growth and propagation. BPCs recruit histone remodeling factors for transcriptional repression of downstream targets. It has been revealed that BPCs have an overlapping and antagonistic relationship in regulating development. In this study, we showed disturbances interfering with the homeostasis of BPC expressions impede growth and development. The ectopic expression of BPC3 results in the daily growth defect shown by higher-order bpc mutants. Oscillations of multiple circadian clock genes are phase-delayed in the quadruple mutant of bpc1 bpc2 bpc4 bpc6 (bpc1,2,4,6). By introducing the overexpression of BPC3 into wild-type Arabidopsis, we found that BPC3 is a repressor participating in its repression and repressing multiple regulators essential to the circadian clock. However, the induction of BPC3 overexpression did not fully replicate clock defects shown by the quadruple mutant, indicating that in addition to the BPC3 antagonization, BPC members also cofunction in the circadian clock regulation. A leaf edge defect similar to that shown by bpc1,2,4,6 is also observed under BPC3 induction, accompanied by repression of a subset of TCPs required for the edge formation. This proves that BPC3 is a repressor that must be confined during the vegetative phase. Our findings demonstrate that BPCs form a meticulous repressor network for restricting their repressive functions to molecular mechanisms controlling plant growth and development.
Collapse
|
11
|
Iwasaki M, Kajiwara T, Yasui Y, Yoshitake Y, Miyazaki M, Kawamura S, Suetsugu N, Nishihama R, Yamaoka S, Wanke D, Hashimoto K, Kuchitsu K, Montgomery SA, Singh S, Tanizawa Y, Yagura M, Mochizuki T, Sakamoto M, Nakamura Y, Liu C, Berger F, Yamato KT, Bowman JL, Kohchi T. Identification of the sex-determining factor in the liverwort Marchantia polymorpha reveals unique evolution of sex chromosomes in a haploid system. Curr Biol 2021; 31:5522-5532.e7. [PMID: 34735792 PMCID: PMC8699743 DOI: 10.1016/j.cub.2021.10.023] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/02/2021] [Accepted: 10/08/2021] [Indexed: 12/18/2022]
Abstract
Sex determination is a central process for sexual reproduction and is often regulated by a sex determinant encoded on a sex chromosome. Rules that govern the evolution of sex chromosomes via specialization and degeneration following the evolution of a sex determinant have been well studied in diploid organisms. However, distinct predictions apply to sex chromosomes in organisms where sex is determined in the haploid phase of the life cycle: both sex chromosomes, female U and male V, are expected to maintain their gene functions, even though both are non-recombining. This is in contrast to the X-Y (or Z-W) asymmetry and Y (W) chromosome degeneration in XY (ZW) systems of diploids. Here, we provide evidence that sex chromosomes diverged early during the evolution of haploid liverworts and identify the sex determinant on the Marchantia polymorpha U chromosome. This gene, Feminizer, encodes a member of the plant-specific BASIC PENTACYSTEINE transcription factor family. It triggers female differentiation via regulation of the autosomal sex-determining locus of FEMALE GAMETOPHYTE MYB and SUPPRESSOR OF FEMINIZATION. Phylogenetic analyses of Feminizer and other sex chromosome genes indicate dimorphic sex chromosomes had already been established 430 mya in the ancestral liverwort. Feminizer also plays a role in reproductive induction that is shared with its gametolog on the V chromosome, suggesting an ancestral function, distinct from sex determination, was retained by the gametologs. This implies ancestral functions can be preserved after the acquisition of a sex determination mechanism during the evolution of a dominant haploid sex chromosome system.
Collapse
Affiliation(s)
- Miyuki Iwasaki
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Tomoaki Kajiwara
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Yukiko Yasui
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | | | - Motoki Miyazaki
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Shogo Kawamura
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Noriyuki Suetsugu
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Ryuichi Nishihama
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan; Faculty of Science and Technology, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Shohei Yamaoka
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Dierk Wanke
- Department Biologie I, Ludwig-Maximilians-University (LMU), München 80638, Germany
| | - Kenji Hashimoto
- Faculty of Science and Technology, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Kazuyuki Kuchitsu
- Faculty of Science and Technology, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Sean A Montgomery
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), 1030 Vienna, Austria
| | - Shilpi Singh
- School of Biological Sciences, Monash University, Melbourne, VIC 3800, Australia
| | - Yasuhiro Tanizawa
- National Institute of Genetics, Research Organization of Information and Systems, Mishima, Shizuoka 411-8540, Japan
| | - Masaru Yagura
- National Institute of Genetics, Research Organization of Information and Systems, Mishima, Shizuoka 411-8540, Japan
| | - Takako Mochizuki
- National Institute of Genetics, Research Organization of Information and Systems, Mishima, Shizuoka 411-8540, Japan
| | - Mika Sakamoto
- National Institute of Genetics, Research Organization of Information and Systems, Mishima, Shizuoka 411-8540, Japan
| | - Yasukazu Nakamura
- National Institute of Genetics, Research Organization of Information and Systems, Mishima, Shizuoka 411-8540, Japan
| | - Chang Liu
- Institute of Biology, University of Hohenheim, Stuttgart 70599, Germany
| | - Frédéric Berger
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), 1030 Vienna, Austria
| | - Katsuyuki T Yamato
- Faculty of Biology-Oriented Science and Technology (BOST), Kindai University, Kinokawa, Wakayama 649-6493, Japan
| | - John L Bowman
- School of Biological Sciences, Monash University, Melbourne, VIC 3800, Australia.
| | - Takayuki Kohchi
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan.
| |
Collapse
|
12
|
Li Q, Wang M, Fang L. BASIC PENTACYSTEINE2 negatively regulates osmotic stress tolerance by modulating LEA4-5 expression in Arabidopsis thaliana. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 168:373-380. [PMID: 34710757 DOI: 10.1016/j.plaphy.2021.10.030] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 10/05/2021] [Accepted: 10/20/2021] [Indexed: 05/28/2023]
Abstract
Osmotic stress substantially affects plant growth and development. Study of plant transcription factors involved in osmotic stress can enhance our understanding of the mechanisms of plant osmotic stress tolerance and how the tolerance of plants to osmotic stress can be improved. Here, we identified the specific function of Arabidopsis thaliana BARLEY B RECOMBINANT/BASIC PENTACYSTEINE transcription factor, BPC2, in the osmotic stress response. Phenotypic analysis showed that loss-of-function of BPC2 led to an increase in osmotic stress tolerance in the seedling growth stage. Physiological analysis showed that mutation of BPC2 in Arabidopsis alleviated osmotic-induced increases in H2O2 accumulation, the malondialdehyde (MDA) content, and percent electrolyte leakage. BPC2 was localized in the nucleus. RNA-seq and qRT-PCR analysis showed that BPC2 could negatively regulate the expression of late embryogenesis abundant (LEA) genes (LEA3, LEA4-2, and LEA4-5). Further analysis showed that BPC2 could directly bind to the promoter of LEA4-5 in vitro and in vivo. Overexpression of BPC2 enhanced hypersensitivity to osmotic stress in the seedling growth stage. Overexpression of BPC2 led to decreases in LEA4-5 expression and aggravated osmotic-induced increases in H2O2 accumulation, the MDA content, and percent electrolyte leakage. Overall, our results indicate that BPC2 negatively regulates LEA4-5 expression to modulate osmotic-induced H2O2 accumulation, the MDA content, and percent electrolyte leakage, all of which affect the osmotic stress response in Arabidopsis thaliana.
Collapse
Affiliation(s)
- Qiaolu Li
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong, 510650, China
| | - Mengmeng Wang
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment of the People's Republic of China, Nanjing, 210042, China
| | - Lin Fang
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong, 510650, China.
| |
Collapse
|
13
|
Alizadeh M, Hoy R, Lu B, Song L. Team effort: Combinatorial control of seed maturation by transcription factors. CURRENT OPINION IN PLANT BIOLOGY 2021; 63:102091. [PMID: 34343847 DOI: 10.1016/j.pbi.2021.102091] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 05/07/2021] [Accepted: 06/13/2021] [Indexed: 06/13/2023]
Abstract
Seed development is under tight spatiotemporal regulation. Here, we summarize how transcriptional regulation helps shape the major traits during seed maturation, which include storage reserve accumulation, dormancy, desiccation tolerance, and longevity. The regulation is rarely a solo task by an individual transcription factor (TF). Rather, it often involves coordinated recruitment or replacement of multiple TFs to achieve combinatorial regulation. We highlight recent progress on the transcriptional integration of activation and repression of seed maturation genes, and discuss potential research directions to further understand the TF networks of seed maturation.
Collapse
Affiliation(s)
- Milad Alizadeh
- Department of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Ryan Hoy
- Department of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Bailan Lu
- Department of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Liang Song
- Department of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada.
| |
Collapse
|
14
|
Yan J, Liu Y, Yang L, He H, Huang Y, Fang L, Scheller HV, Jiang M, Zhang A. Cell wall β-1,4-galactan regulated by the BPC1/BPC2-GALS1 module aggravates salt sensitivity in Arabidopsis thaliana. MOLECULAR PLANT 2021; 14:411-425. [PMID: 33276159 DOI: 10.1016/j.molp.2020.11.023] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 10/12/2020] [Accepted: 11/30/2020] [Indexed: 06/12/2023]
Abstract
Salinity severely reduces plant growth and limits agricultural productivity. Dynamic changes and rearrangement of the plant cell wall is an important response to salt stress, but relatively little is known about the biological importance of specific cell wall components in the response. Here, we demonstrate a specific function of β-1,4-galactan in salt hypersensitivity. We found that salt stress induces the accumulation of β-1,4-galactan in root cell walls by up regulating the expression of GALACTAN SYNTHASE 1 (GALS1), which encodes a β-1,4-galactan synthase. The accumulation of β-1,4-galactan negatively affects salt tolerance. Exogenous application of D-galactose (D-Gal) causes an increase in β-1,4-galactan levels in the wild type and GALS1 mutants, especially in GALS1 overexpressors, which correlated with the aggravated salt hypersensitivity. Furthermore, we discovered that the BARLEY B RECOMBINANT/BASIC PENTACYSTEINE transcription factors BPC1/BPC2 positively regulate plant salt tolerance by repressing GALS1 expression and β-1,4-galactan accumulation. Genetic analysis suggested that GALS1 is genetically epistatic to BPC1/BPC2 with respect to the control of salt sensitivity as well as accumulation of β-1,4-galactan. Taken together, our results reveal a new regulatory mechanism by which β-1,4-galactan regulated by the BPC1/BPC2-GALS1 module aggravates salt sensitivity in Arabidopsis thaliana.
Collapse
Affiliation(s)
- Jingwei Yan
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China; State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Ya Liu
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Lan Yang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Huan He
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Yun Huang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Lin Fang
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong 510650, China
| | - Henrik Vibe Scheller
- Joint Bioenergy Institute and Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Mingyi Jiang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China; State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Aying Zhang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China; State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China.
| |
Collapse
|
15
|
Integrative genome-wide analysis reveals the role of WIP proteins in inhibition of growth and development. Commun Biol 2020; 3:239. [PMID: 32415243 PMCID: PMC7229033 DOI: 10.1038/s42003-020-0969-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 04/23/2020] [Indexed: 11/09/2022] Open
Abstract
In cucurbits, CmWIP1 is a master gene controlling sex determination. To bring new insight in the function of CmWIP1, we investigated two Arabidopsis WIP transcription factors, AtWIP1/TT1 and AtWIP2/NTT. Using an inducible system we showed that WIPs are powerful inhibitor of growth and inducer of cell death. Using ChIP-seq and RNA-seq we revealed that most of the up-regulated genes bound by WIPs display a W-box motif, associated with stress signaling. In contrast, the down-regulated genes contain a GAGA motif, a known target of polycomb repressive complex. To validate the role of WIP proteins in inhibition of growth, we expressed AtWIP1/TT1 in carpel primordia and obtained male flowers, mimicking CmWIP1 function in melon. Using other promoters, we further demonstrated that WIPs can trigger growth arrest of both vegetative and reproductive organs. Our data supports an evolutionary conserved role of WIPs in recruiting gene networks controlling growth and adaptation to stress. Maria V Gomez Roldan, Farhaj Izhaq et al. study the role of WIP transcription factors in Arabidopsis thaliana. Using an inducible system, they generate ChIP-seq and RNA-seq data that reveal how WIP proteins repress development and growth. Through ectopic expression of WIP in Arabidopsis carpels, they obtain male flower, mimicking sex determination in melon.
Collapse
|
16
|
Petrella R, Caselli F, Roig-Villanova I, Vignati V, Chiara M, Ezquer I, Tadini L, Kater MM, Gregis V. BPC transcription factors and a Polycomb Group protein confine the expression of the ovule identity gene SEEDSTICK in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 102:582-599. [PMID: 31909505 DOI: 10.1111/tpj.14673] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 12/05/2019] [Accepted: 12/20/2019] [Indexed: 05/26/2023]
Abstract
The BASIC PENTACYSTEINE (BPC) GAGA (C-box) binding proteins belong to a small plant transcription factor family. We previously reported that class I BPCs bind directly to C-boxes in the SEEDSTICK (STK) promoter and the mutagenesis of these cis-elements affects STK expression in the flower. The MADS-domain factor SHORT VEGETATIVE PHASE (SVP) is another key regulator of STK. Direct binding of SVP to CArG-boxes in the STK promoter are required to repress its expression during the first stages of flower development. Here we show that class II BPCs directly interact with SVP and that MADS-domain binding sites in the STK promoter region are important for the correct spatial and temporal expression of this homeotic gene. Furthermore, we show that class I and class II BPCs act redundantly to repress STK expression in the flower, most likely by recruiting TERMINAL FLOWER 2/LIKE HETEROCHROMATIN PROTEIN 1 (TFL2/LHP1) and mediating the establishment and the maintenance of H3K27me3 repressive marks on DNA. We investigate the role of LHP1 in the regulation of STK expression. In addition to providing a better understanding of the role of BPC transcription factors in the regulation of STK expression, our results suggest the existence of a more general regulatory complex composed of BPCs, MADS-domain factors and Polycomb Repressive Complexes that co-operate to regulate gene expression in reproductive tissues. We believe that our data along with the molecular model described here could provide significant insights for a more comprehensive understanding of gene regulation in plants.
Collapse
Affiliation(s)
- Rosanna Petrella
- Dipartimento di Bioscienze, Università Degli Studi di Milano, Via Celoria 26, 20133, Milan, Italy
| | - Francesca Caselli
- Dipartimento di Bioscienze, Università Degli Studi di Milano, Via Celoria 26, 20133, Milan, Italy
| | - Irma Roig-Villanova
- Dipartimento di Bioscienze, Università Degli Studi di Milano, Via Celoria 26, 20133, Milan, Italy
- Department of Agri-Food Engineering and Biotechnology, Barcelona School of Agricultural Engineering, UPC, Esteve Terrades 8, Building 4, 08860, Castelldefels, Spain
| | - Valentina Vignati
- Dipartimento di Bioscienze, Università Degli Studi di Milano, Via Celoria 26, 20133, Milan, Italy
| | - Matteo Chiara
- Dipartimento di Bioscienze, Università Degli Studi di Milano, Via Celoria 26, 20133, Milan, Italy
| | - Ignacio Ezquer
- Dipartimento di Bioscienze, Università Degli Studi di Milano, Via Celoria 26, 20133, Milan, Italy
| | - Luca Tadini
- Dipartimento di Bioscienze, Università Degli Studi di Milano, Via Celoria 26, 20133, Milan, Italy
| | - Martin M Kater
- Dipartimento di Bioscienze, Università Degli Studi di Milano, Via Celoria 26, 20133, Milan, Italy
| | - Veronica Gregis
- Dipartimento di Bioscienze, Università Degli Studi di Milano, Via Celoria 26, 20133, Milan, Italy
| |
Collapse
|
17
|
Genome-Wide Identification and Characterization of Cucumber BPC Transcription Factors and Their Responses to Abiotic Stresses and Exogenous Phytohormones. Int J Mol Sci 2019; 20:ijms20205048. [PMID: 31614627 PMCID: PMC6829308 DOI: 10.3390/ijms20205048] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 09/27/2019] [Accepted: 10/02/2019] [Indexed: 12/24/2022] Open
Abstract
BASIC PENTACYSTEINE (BPC) is a small transcription factor family that functions in diverse growth and development processes in plants. However, the roles of BPCs in plants, especially cucumber (Cucumis sativus L.), in response to abiotic stress and exogenous phytohormones are still unclear. Here, we identified four BPC genes in the cucumber genome, and classified them into two groups according to phylogenetic analysis. We also investigated the gene structures and detected five conserved motifs in these CsBPCs. Tissue expression pattern analysis revealed that the four CsBPCs were expressed ubiquitously in both vegetative and reproductive organs. Additionally, the transcriptional levels of the four CsBPCs were induced by various abiotic stress and hormone treatments. Overexpression of CsBPC2 in tobacco (Nicotiana tabacum) inhibited seed germination under saline, polyethylene glycol, and abscisic acid (ABA) conditions. The results suggest that the CsBPC genes may play crucial roles in cucumber growth and development, as well as responses to abiotic stresses and plant hormones. CsBPC2 overexpression in tobacco negatively affected seed germination under hyperosmotic conditions. Additionally, CsBPC2 functioned in ABA-inhibited seed germination and hypersensitivity to ABA-mediated responses. Our results provide fundamental information for further research on the biological functions of BPCs in development and abiotic stress responses in cucumber and other plant species.
Collapse
|
18
|
Theune ML, Bloss U, Brand LH, Ladwig F, Wanke D. Phylogenetic Analyses and GAGA-Motif Binding Studies of BBR/BPC Proteins Lend to Clues in GAGA-Motif Recognition and a Regulatory Role in Brassinosteroid Signaling. FRONTIERS IN PLANT SCIENCE 2019; 10:466. [PMID: 31057577 PMCID: PMC6477699 DOI: 10.3389/fpls.2019.00466] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 03/28/2019] [Indexed: 05/21/2023]
Abstract
Plant GAGA-motif binding factors are encoded by the BARLEY B RECOMBINANT / BASIC PENTACYSTEINE (BBR/BPC) family, which fulfill indispensable functions in growth and development. BBR/BPC proteins control flower development, size of the stem cell niche and seed development through transcriptional regulation of homeotic transcription factor genes. They are responsible for the context dependent recruitment of Polycomb repressive complexes (PRC) or other repressive proteins to GAGA-motifs, which are contained in Polycomb repressive DNA-elements (PREs). Hallmark of the protein family is the highly conserved BPC domain, which is required for DNA binding. Here we study the evolution and diversification of the BBR/BPC family and its DNA-binding domain. Our analyses supports a further division of the family into four main groups (I-IV) and several subgroups, to resolve a strict monophyletic descent of the BPC domain. We prove a polyphyletic origin for group III proteins, which evolved from group I and II members through extensive loss of domains in the N-terminus. Conserved motif searches lend to the identification of a WAR/KHGTN consensus and a TIR/K motif at the very C-terminus of the BPC-domain. We could show by DPI-ELISA that this signature is required for DNA-binding in AtBPC1. Additional binding studies with AtBPC1, AtBPC6 and mutated oligonucleotides consolidated the binding to GAGA tetramers. To validate these findings, we used previously published ChIP-seq data from GFP-BPC6. We uncovered that many genes of the brassinosteroid signaling pathway are targeted by AtBPC6. Consistently, bpc6, bpc4 bpc6, and lhp1 bpc4 bpc4 mutants display brassinosteroid-dependent root growth phenotypes. Both, a function in brassinosteroid signaling and our phylogenetic data supports a link between BBR/BPC diversification in the land plant lineage and the complexity of flower and seed plant evolution.
Collapse
Affiliation(s)
- Marius L. Theune
- Molecular Plant Biology, Saarland University, Saarbrücken, Germany
| | - Ulrich Bloss
- ZMBP-Plant Physiology, Tübingen University, Tübingen, Germany
| | - Luise H. Brand
- ZMBP-Plant Physiology, Tübingen University, Tübingen, Germany
| | | | - Dierk Wanke
- Molecular Plant Biology, Saarland University, Saarbrücken, Germany
- ZMBP-Plant Physiology, Tübingen University, Tübingen, Germany
- *Correspondence: Dierk Wanke,
| |
Collapse
|
19
|
Shanks CM, Hecker A, Cheng CY, Brand L, Collani S, Schmid M, Schaller GE, Wanke D, Harter K, Kieber JJ. Role of BASIC PENTACYSTEINE transcription factors in a subset of cytokinin signaling responses. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 95:458-473. [PMID: 29763523 DOI: 10.1111/tpj.13962] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 04/26/2018] [Accepted: 04/30/2018] [Indexed: 06/08/2023]
Abstract
Cytokinin plays diverse roles in plant growth and development, generally acting by modulating gene transcription in target tissues. The type-B Arabidopsis response regulators (ARR) transcription factors have emerged as primary targets of cytokinin signaling and are required for essentially all cytokinin-mediated changes in gene expression. The diversity of cytokinin function is likely imparted by the activity of various transcription factors working with the type-B ARRs to alter specific sets of target genes. One potential set of co-regulators modulating the cytokinin response are the BARLEY B-RECOMBINANT/BASIC PENTACYSTEINE (BBR/BPC) family of plant-specific transcription factors. Here, we show that disruption of multiple BPCs results in reduced sensitivity to cytokinin. Further, the BPCs are necessary for the induction of a subset of genes in response to cytokinin. We identified direct in vivo targets of BPC6 using ChIP-Seq and found an enrichment of promoters of genes differentially expressed in response to cytokinin. Further, a significant number of BPC6 regulated genes are also direct targets of the type-B ARRs. Potential cis-binding elements for a number of other transcription factors linked to cytokinin action are enriched in the BPC binding fragments, including those for the cytokinin response factors (CRFs). In addition, several BPCs interact with a subset of type-A ARRs. Consistent with these results, a significant number of genes whose expression is altered in bpc mutant roots are also mis-expressed in crf1,3,5,6 and type-A arr3,4,5,6,7,8,9,15 mutant roots. These results suggest that the BPCs are part of a complex network of transcription factors that are involved in the response to cytokinin.
Collapse
Affiliation(s)
- Carly M Shanks
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Andreas Hecker
- Center for Plant Molecular Biology, Plant Physiology, University of Tübingen, 72076, Tübingen, Germany
| | - Chia-Yi Cheng
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Luise Brand
- Center for Plant Molecular Biology, Plant Physiology, University of Tübingen, 72076, Tübingen, Germany
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, 50829, Köln, Germany
| | - Silvio Collani
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, SE-901 87, Umeå, Sweden
- Max Planck Institute for Developmental Biology, 72076, Tübingen, Germany
| | - Markus Schmid
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, SE-901 87, Umeå, Sweden
| | - G Eric Schaller
- Department of Biological Sciences, Dartmouth College, Hanover, NH, 03755 (603) 646-1347, USA
| | - Dierk Wanke
- Center for Plant Molecular Biology, Plant Physiology, University of Tübingen, 72076, Tübingen, Germany
- Saarland University, Molecular Plant Biology, Campus A2.4, 66123, Saarbrücken, Germany
| | - Klaus Harter
- Center for Plant Molecular Biology, Plant Physiology, University of Tübingen, 72076, Tübingen, Germany
| | - Joseph J Kieber
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| |
Collapse
|
20
|
Gong R, Cao H, Zhang J, Xie K, Wang D, Yu S. Divergent functions of the GAGA-binding transcription factor family in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 94:32-47. [PMID: 29383786 DOI: 10.1111/tpj.13837] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Revised: 12/09/2017] [Accepted: 01/08/2018] [Indexed: 05/07/2023]
Abstract
OsGBPs are a small family of four genes in rice (Oryza sativa L.) that function as transcription factors recognizing the GAGA motif; however, their functions in plant growth and development remain unclear. Here we report the functions of OsGBPs in plant growth and grain development. Knock-down and knock-out of OsGBP1 promoted seedling growth and enhanced grain length, whereas overexpression of OsGBP1 exhibited the opposite effect on seedling growth and grain length, indicating that OsGBP1 repressed grain length and seedling growth. In addition, overexpression of OsGBP1 led to delayed flowering time and suppressed plant height. OsGBP1 could regulate OsLFL1 expression through binding to the (GA)12 element of its promoter. In contrast, OsGBP3 induced grain length and plant height. Grain length and plant height were decreased in OsGBP3RNAi lines and were increased in OsGBP3 overexpression lines. We also found a synergistic effect of these two genes on grain width and plant growth. RNAi of both OsGBP1 and OsGBP3 resulted in severe dwarfism, compared with RNAi of a single gene. These results suggest the presence of functional divergence of OsGBPs in the regulation of grain size and plant growth; these results enrich our understanding of the roles of GAGA-binding transcription factors in the regulatory pathways of plant development.
Collapse
Affiliation(s)
- Rong Gong
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Huasheng Cao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jianing Zhang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Kun Xie
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Dianwen Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Sibin Yu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
21
|
Liu M, Lei L, Miao F, Powers C, Zhang X, Deng J, Tadege M, Carver BF, Yan L. The STENOFOLIA gene from Medicago alters leaf width, flowering time and chlorophyll content in transgenic wheat. PLANT BIOTECHNOLOGY JOURNAL 2018; 16:186-196. [PMID: 28509374 PMCID: PMC5785358 DOI: 10.1111/pbi.12759] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 04/20/2017] [Accepted: 05/11/2017] [Indexed: 05/15/2023]
Abstract
Molecular genetic analyses revealed that the WUSCHEL-related homeobox (WOX) gene superfamily regulates several programs in plant development. Many different mechanisms are reported to underlie these alterations. The WOX family member STENOFOLIA (STF) is involved in leaf expansion in the eudicot Medicago truncutula. Here, we report that when this gene was ectopically expressed in a locally adapted hard red winter wheat cultivar (Triticum aestivum), the transgenic plants showed not only widened leaves but also accelerated flowering and increased chlorophyll content. These desirable traits were stably inherited in the progeny plants. STF binds to wheat genes that have the (GA)n /(CT)n DNA cis element, regardless of sequences flanking the DNA repeats, suggesting a mechanism for its pleiotropic effects. However, the amino acids between position 91 and 262 in the STF protein that were found to bind with the (GA)n motif have no conserved domain with any other GAGA-binding proteins in animals or plants. We also found that STF interacted with a variety of proteins in wheat in yeast 2 hybrid assays. We conclude that the eudicot STF gene binds to (GA)n /(CT)n DNA elements and can be used to regulate leaf width, flowering time and chlorophyll content in monocot wheat.
Collapse
Affiliation(s)
- Meiyan Liu
- Department of Plant and Soil SciencesOklahoma State UniversityStillwaterOKUSA
- Present address:
School of Life ScienceJiangsu Normal UniversityXuzhouJiangsuChina
| | - Lei Lei
- Department of Plant and Soil SciencesOklahoma State UniversityStillwaterOKUSA
| | - Fang Miao
- Department of Plant and Soil SciencesOklahoma State UniversityStillwaterOKUSA
- Present address:
College of Life ScienceNorthwest A&F UniversityYanglingShaanxi712100China
| | - Carol Powers
- Department of Plant and Soil SciencesOklahoma State UniversityStillwaterOKUSA
| | - Xiaoyu Zhang
- Department of Plant and Soil SciencesOklahoma State UniversityStillwaterOKUSA
| | - Jungpeng Deng
- Department of Biochemistry and Molecular BiologyOklahoma State UniversityStillwaterOKUSA
| | - Million Tadege
- Department of Plant and Soil SciencesOklahoma State UniversityStillwaterOKUSA
| | - Brett F. Carver
- Department of Plant and Soil SciencesOklahoma State UniversityStillwaterOKUSA
| | - Liuling Yan
- Department of Plant and Soil SciencesOklahoma State UniversityStillwaterOKUSA
| |
Collapse
|
22
|
Hajiebrahimi A, Owji H, Hemmati S. Genome-wide identification, functional prediction, and evolutionary analysis of the R2R3-MYB superfamily in Brassica napus. Genome 2017; 60:797-814. [PMID: 28732175 DOI: 10.1139/gen-2017-0059] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
R2R3-MYB transcription factors (TFs) have been shown to play important roles in plants, including in development and in various stress conditions. Phylogenetic analysis showed the presence of 249 R2R3-MYB TFs in Brassica napus, called BnaR2R3-MYB TFs, clustered into 38 clades. BnaR2R3-MYB TFs were distributed on 19 chromosomes of B. napus. Sixteen gene clusters were identified. BnaR2R3-MYB TFs were characterized by motif prediction, gene structure analysis, and gene ontology. Evolutionary analysis revealed that BnaR2R3-MYB TFs are mainly formed as a result of whole-genome duplication. Orthologs and paralogs of BnaR2R3-MYB TFs were identified in B. napus, B. rapa, B. oleracea, and Arabidopsis thaliana using synteny-based methods. Purifying selection was pervasive within R2R3-MYB TFs. Kn/Ks values lower than 0.3 indicated that BnaR2R3-MYB TFs are being functionally converged. The role of gene conversion in the formation of BnaR2R3-MYB TFs was significant. Cis-regulatory elements in the upstream regions of BnaR2R3-MYB genes, miRNA targeting BnaR2R3MYB TFs, and post translational modifications were identified. Digital expression data revealed that BnaR2R3-MYB genes were highly expressed in the roots and under high salinity treatment after 24 h. BnaMYB21, BnaMYB141, and BnaMYB148 have been suggested for improving salt-tolerant B. napus. BnaR2R3-MYB genes were mostly up regulated on the 14th day post inoculation with Leptosphaeria biglobosa and L. maculan. BnaMYB150 is a candidate for increased tolerance to Leptospheria in B. napus.
Collapse
Affiliation(s)
- Ali Hajiebrahimi
- a Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hajar Owji
- a Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shiva Hemmati
- a Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.,b Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
23
|
Sztafrowski D, Aksamit-Stachurska A, Kostyn K, Mackiewicz P, Łukaszewicz M. Electromagnetic Field Seems to Not Influence Transcription via CTCT Motif in Three Plant Promoters. FRONTIERS IN PLANT SCIENCE 2017; 8:178. [PMID: 28326086 PMCID: PMC5339303 DOI: 10.3389/fpls.2017.00178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 01/27/2017] [Indexed: 06/06/2023]
Abstract
It was proposed that magnetic fields (MFs) can influence gene transcription via CTCT motif located in human HSP70 promoter. To check the universality of this mechanism, we estimated the potential role of this motif on plant gene transcription in response to MFs using both bioinformatics and experimental studies. We searched potential promoter sequences (1000 bp upstream) in the potato Solanum tuberosum and thale cress Arabidopsis thaliana genomes for the CTCT sequence. The motif was found, on average, 3.6 and 4.3 times per promoter (148,487 and 134,361 motifs in total) in these two species, respectively; however, the CTCT sequences were not randomly distributed in the promoter regions but were preferentially located near the transcription initiation site and were closely packed. The closer these CTCT sequences to the transcription initiation site, the smaller distance between them in both plants. One can assume that genes with many CTCT motifs in their promoter regions can be potentially regulated by MFs. To check this assumption, we tested the influence of MFs on gene expression in a transgenic potato with three promoters (16R, 20R, and 5UGT) containing from 3 to 12 CTCT sequences and starting expression of β-glucuronidase as a reported gene. The potatoes were exposed to a 50 Hz 60-70 A/m MF for 30 min and the reporter gene activity was measured for up to 24 h. Although other factors induced the reporter gene activity, the MF did not. It implies the CTCT motif does not mediate in response to MF in the tested plant promoters.
Collapse
Affiliation(s)
- Dariusz Sztafrowski
- Faculty of Electrical Engineering, Wrocław University of Science and TechnologyWrocław, Poland
| | | | - Kamil Kostyn
- Faculty of Biotechnology, University of WrocławWrocław, Poland
| | | | | |
Collapse
|
24
|
Mu Y, Liu Y, Bai L, Li S, He C, Yan Y, Yu X, Li Y. Cucumber CsBPCs Regulate the Expression of CsABI3 during Seed Germination. FRONTIERS IN PLANT SCIENCE 2017; 8:459. [PMID: 28421094 PMCID: PMC5376566 DOI: 10.3389/fpls.2017.00459] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 03/16/2017] [Indexed: 05/11/2023]
Abstract
Cucumber seeds with shallow dormancy start to germinate in fruit that are harvested late. ABSCISIC ACID INSENSITIVE3 (ABI3), a transcription factor in the abscisic acid (ABA) signaling pathway, is one of the most important regulators in the transition from late embryogenesis to germination. Our analysis found a candidate cis-regulatory motif for cucumber BASIC PENTACYSTEINE (CsBPC) in the promoter of CsABI3. Yeast one-hybrid and chromatin immunoprecipitation (ChIP) assays showed that CsBPCs bound to the promoter of CsABI3. Examination of β-glucuronidase (GUS) activity driven by the CsABI3 promoter in transgenic Arabidopsis thaliana plants overexpressing CsBPCs and a Nicotiana benthamiana (tobacco) luciferase assay indicated that CsBPCs inhibited the expression of CsABI3. Transgenic plants overexpressing CsBPCs were constructed to confirm that CsBPCs participates in the control of seed germination. This study of the cucumber BPC-ABI3 pathway will help to explore and characterize the molecular mechanisms underlying seed germination and will provide necessary information for seed conservation in agriculture and forestry.
Collapse
|
25
|
Kumar S, Bhatia S. A polymorphic (GA/CT)n- SSR influences promoter activity of Tryptophan decarboxylase gene in Catharanthus roseus L. Don. Sci Rep 2016; 6:33280. [PMID: 27623355 PMCID: PMC5020687 DOI: 10.1038/srep33280] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 08/17/2016] [Indexed: 12/31/2022] Open
Abstract
Simple Sequence Repeats (SSRs) of polypurine-polypyrimidine type motifs occur very frequently in the 5' flanks of genes in plants and have recently been implicated to have a role in regulation of gene expression. In this study, 2 accessions of Catharanthus roseus having (CT)8 and (CT)21 varying motifs in the 5'UTR of Tryptophan decarboxylase (Tdc) gene, were investigated for its role in regulation of gene expression. Extensive Tdc gene expression analysis in the 2 accessions was carried out both at the level of transcription and translation. Transcript abundance was estimated using Northern analysis and qRT-PCR, whereas the rate of Tdc gene transcription was assessed using in-situ nuclear run-on transcription assay. Translation status of Tdc gene was monitored by quantification of polysome associated Tdc mRNA using qRT-PCR. These observations were validated through transient expression analysis using the fusion construct [CaM35S:(CT)8-21:GUS]. Our study demonstrated that not only does the length of (CT)n -SSRs influences the promoter activity, but the presence of SSRs per se in the 5'-UTR significantly enhances the level of gene expression. We termed this phenomenon as "microsatellite mediated enhancement" (MME) of gene expression. Results presented here will provide leads for engineering plants with enhanced amounts of medicinally important alkaloids.
Collapse
Affiliation(s)
- Santosh Kumar
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, PO Box 10531, New Delhi 110067, India
| | - Sabhyata Bhatia
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, PO Box 10531, New Delhi 110067, India
| |
Collapse
|
26
|
Hecker A, Brand LH, Peter S, Simoncello N, Kilian J, Harter K, Gaudin V, Wanke D. The Arabidopsis GAGA-Binding Factor BASIC PENTACYSTEINE6 Recruits the POLYCOMB-REPRESSIVE COMPLEX1 Component LIKE HETEROCHROMATIN PROTEIN1 to GAGA DNA Motifs. PLANT PHYSIOLOGY 2015; 168:1013-24. [PMID: 26025051 PMCID: PMC4741334 DOI: 10.1104/pp.15.00409] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 05/26/2015] [Indexed: 05/19/2023]
Abstract
Polycomb-repressive complexes (PRCs) play key roles in development by repressing a large number of genes involved in various functions. Much, however, remains to be discovered about PRC-silencing mechanisms as well as their targeting to specific genomic regions. Besides other mechanisms, GAGA-binding factors in animals can guide PRC members in a sequence-specific manner to Polycomb-responsive DNA elements. Here, we show that the Arabidopsis (Arabidopsis thaliana) GAGA-motif binding factor protein basic pentacysteine6 (BPC6) interacts with like heterochromatin protein1 (LHP1), a PRC1 component, and associates with vernalization2 (VRN2), a PRC2 component, in vivo. By using a modified DNA-protein interaction enzyme-linked immunosorbant assay, we could show that BPC6 was required and sufficient to recruit LHP1 to GAGA motif-containing DNA probes in vitro. We also found that LHP1 interacts with VRN2 and, therefore, can function as a possible scaffold between BPC6 and VRN2. The lhp1-4 bpc4 bpc6 triple mutant displayed a pleiotropic phenotype, extreme dwarfism and early flowering, which disclosed synergistic functions of LHP1 and group II plant BPC members. Transcriptome analyses supported this synergy and suggested a possible function in the concerted repression of homeotic genes, probably through histone H3 lysine-27 trimethylation. Hence, our findings suggest striking similarities between animal and plant GAGA-binding factors in the recruitment of PRC1 and PRC2 components to Polycomb-responsive DNA element-like GAGA motifs, which must have evolved through convergent evolution.
Collapse
Affiliation(s)
- Andreas Hecker
- Center for Plant Molecular Biology, Plant Physiology, and Biophysical Chemistry, University of Tübingen, 72076 Tuebingen, Germany (A.H., L.H.B., S.P., J.K., K.H., D.W.);Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1318 AgroParisTech, Institut J.-P. Bourgin, Institut National de la Recherche Agronomique Centre de Versailles-Grignon, F-78026 Versailles, France (N.S., V.G.); andUniversität des Saarlandes, Molekulare Pflanzenbiologie, 66123 Saarbruecken, Germany (D.W.)
| | - Luise H Brand
- Center for Plant Molecular Biology, Plant Physiology, and Biophysical Chemistry, University of Tübingen, 72076 Tuebingen, Germany (A.H., L.H.B., S.P., J.K., K.H., D.W.);Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1318 AgroParisTech, Institut J.-P. Bourgin, Institut National de la Recherche Agronomique Centre de Versailles-Grignon, F-78026 Versailles, France (N.S., V.G.); andUniversität des Saarlandes, Molekulare Pflanzenbiologie, 66123 Saarbruecken, Germany (D.W.)
| | - Sébastien Peter
- Center for Plant Molecular Biology, Plant Physiology, and Biophysical Chemistry, University of Tübingen, 72076 Tuebingen, Germany (A.H., L.H.B., S.P., J.K., K.H., D.W.);Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1318 AgroParisTech, Institut J.-P. Bourgin, Institut National de la Recherche Agronomique Centre de Versailles-Grignon, F-78026 Versailles, France (N.S., V.G.); andUniversität des Saarlandes, Molekulare Pflanzenbiologie, 66123 Saarbruecken, Germany (D.W.)
| | - Nathalie Simoncello
- Center for Plant Molecular Biology, Plant Physiology, and Biophysical Chemistry, University of Tübingen, 72076 Tuebingen, Germany (A.H., L.H.B., S.P., J.K., K.H., D.W.);Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1318 AgroParisTech, Institut J.-P. Bourgin, Institut National de la Recherche Agronomique Centre de Versailles-Grignon, F-78026 Versailles, France (N.S., V.G.); andUniversität des Saarlandes, Molekulare Pflanzenbiologie, 66123 Saarbruecken, Germany (D.W.)
| | - Joachim Kilian
- Center for Plant Molecular Biology, Plant Physiology, and Biophysical Chemistry, University of Tübingen, 72076 Tuebingen, Germany (A.H., L.H.B., S.P., J.K., K.H., D.W.);Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1318 AgroParisTech, Institut J.-P. Bourgin, Institut National de la Recherche Agronomique Centre de Versailles-Grignon, F-78026 Versailles, France (N.S., V.G.); andUniversität des Saarlandes, Molekulare Pflanzenbiologie, 66123 Saarbruecken, Germany (D.W.)
| | - Klaus Harter
- Center for Plant Molecular Biology, Plant Physiology, and Biophysical Chemistry, University of Tübingen, 72076 Tuebingen, Germany (A.H., L.H.B., S.P., J.K., K.H., D.W.);Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1318 AgroParisTech, Institut J.-P. Bourgin, Institut National de la Recherche Agronomique Centre de Versailles-Grignon, F-78026 Versailles, France (N.S., V.G.); andUniversität des Saarlandes, Molekulare Pflanzenbiologie, 66123 Saarbruecken, Germany (D.W.)
| | - Valérie Gaudin
- Center for Plant Molecular Biology, Plant Physiology, and Biophysical Chemistry, University of Tübingen, 72076 Tuebingen, Germany (A.H., L.H.B., S.P., J.K., K.H., D.W.);Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1318 AgroParisTech, Institut J.-P. Bourgin, Institut National de la Recherche Agronomique Centre de Versailles-Grignon, F-78026 Versailles, France (N.S., V.G.); andUniversität des Saarlandes, Molekulare Pflanzenbiologie, 66123 Saarbruecken, Germany (D.W.)
| | - Dierk Wanke
- Center for Plant Molecular Biology, Plant Physiology, and Biophysical Chemistry, University of Tübingen, 72076 Tuebingen, Germany (A.H., L.H.B., S.P., J.K., K.H., D.W.);Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1318 AgroParisTech, Institut J.-P. Bourgin, Institut National de la Recherche Agronomique Centre de Versailles-Grignon, F-78026 Versailles, France (N.S., V.G.); andUniversität des Saarlandes, Molekulare Pflanzenbiologie, 66123 Saarbruecken, Germany (D.W.)
| |
Collapse
|
27
|
George B, Bhatt BS, Awasthi M, George B, Singh AK. Comparative analysis of microsatellites in chloroplast genomes of lower and higher plants. Curr Genet 2015; 61:665-77. [PMID: 25999216 DOI: 10.1007/s00294-015-0495-9] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 05/05/2015] [Accepted: 05/08/2015] [Indexed: 12/29/2022]
Abstract
Microsatellites, or simple sequence repeats (SSRs), contain repetitive DNA sequence where tandem repeats of one to six base pairs are present number of times. Chloroplast genome sequences have been shown to possess extensive variations in the length, number and distribution of SSRs. However, a comparative analysis of chloroplast microsatellites is not available. Considering their potential importance in generating genomic diversity, we have systematically analysed the abundance and distribution of simple and compound microsatellites in 164 sequenced chloroplast genomes from wide range of plants. The key findings of these studies are (1) a large number of mononucleotide repeats as compared to SSR(2-6)(di-, tri-, tetra-, penta-, hexanucleotide repeats) are present in all chloroplast genomes investigated, (2) lower plants such as algae show wide variation in relative abundance, density and distribution of microsatellite repeats as compared to flowering plants, (3) longer SSRs are excluded from coding regions of most chloroplast genomes, (4) GC content has a weak influence on number, relative abundance and relative density of mononucleotide as well as SSR(2-6). However, GC content strongly showed negative correlation with relative density (R (2) = 0.5, P < 0.05) and relative abundance (R (2) = 0.6, P < 0.05) of cSSRs. In summary, our comparative studies of chloroplast genomes illustrate the variable distribution of microsatellites and revealed that chloroplast genome of smaller plants possesses relatively more genomic diversity compared to higher plants.
Collapse
Affiliation(s)
- Biju George
- Blessy Software Solution, Sector 4/441, Malviya Nagar, Jaipur, 302017, Rajasthan, India.
| | - Bhavin S Bhatt
- School of Life Sciences, Central University of Gujarat, Gandhinagar, 382030, Gujarat, India
| | - Mayur Awasthi
- Mahatma Gandhi Chitrakoot Gramodaya Vishwavidhyalaya, Satna, 485334, Madhya Pradesh, India
| | - Binu George
- Blessy Software Solution, Sector 4/441, Malviya Nagar, Jaipur, 302017, Rajasthan, India
| | - Achuit K Singh
- School of Life Sciences, Central University of Gujarat, Gandhinagar, 382030, Gujarat, India.
| |
Collapse
|
28
|
Bajaj D, Saxena MS, Kujur A, Das S, Badoni S, Tripathi S, Upadhyaya HD, Gowda CLL, Sharma S, Singh S, Tyagi AK, Parida SK. Genome-wide conserved non-coding microsatellite (CNMS) marker-based integrative genetical genomics for quantitative dissection of seed weight in chickpea. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:1271-90. [PMID: 25504138 PMCID: PMC4339591 DOI: 10.1093/jxb/eru478] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Phylogenetic footprinting identified 666 genome-wide paralogous and orthologous CNMS (conserved non-coding microsatellite) markers from 5'-untranslated and regulatory regions (URRs) of 603 protein-coding chickpea genes. The (CT)n and (GA)n CNMS carrying CTRMCAMV35S and GAGA8BKN3 regulatory elements, respectively, are abundant in the chickpea genome. The mapped genic CNMS markers with robust amplification efficiencies (94.7%) detected higher intraspecific polymorphic potential (37.6%) among genotypes, implying their immense utility in chickpea breeding and genetic analyses. Seventeen differentially expressed CNMS marker-associated genes showing strong preferential and seed tissue/developmental stage-specific expression in contrasting genotypes were selected to narrow down the gene targets underlying seed weight quantitative trait loci (QTLs)/eQTLs (expression QTLs) through integrative genetical genomics. The integration of transcript profiling with seed weight QTL/eQTL mapping, molecular haplotyping, and association analyses identified potential molecular tags (GAGA8BKN3 and RAV1AAT regulatory elements and alleles/haplotypes) in the LOB-domain-containing protein- and KANADI protein-encoding transcription factor genes controlling the cis-regulated expression for seed weight in the chickpea. This emphasizes the potential of CNMS marker-based integrative genetical genomics for the quantitative genetic dissection of complex seed weight in chickpea.
Collapse
Affiliation(s)
- Deepak Bajaj
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Maneesha S Saxena
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Alice Kujur
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Shouvik Das
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Saurabh Badoni
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Shailesh Tripathi
- Division of Genetics, Indian Agricultural Research Institute (IARI), New Delhi 110012, India
| | - Hari D Upadhyaya
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru 502324, Telangana, India
| | - C L L Gowda
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru 502324, Telangana, India
| | - Shivali Sharma
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru 502324, Telangana, India
| | - Sube Singh
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru 502324, Telangana, India
| | - Akhilesh K Tyagi
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Swarup K Parida
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| |
Collapse
|
29
|
Derkacheva M, Hennig L. Variations on a theme: Polycomb group proteins in plants. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:2769-84. [PMID: 24336446 DOI: 10.1093/jxb/ert410] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Polycomb group (PcG) proteins evolved early in evolution, probably in the common ancestor of animals and plants. In some unicellular organisms, such as Chlamydomonas and Tetrahymena, PcG proteins silence genes in heterochromatin, suggesting an ancestral function in genome defence. In angiosperms, the PcG system controls many developmental transitions. A PcG function in the vernalization response evolved especially in Brassicaceaea. Thus, the role of PcG proteins has changed during evolution to match novel needs. Recent studies identified many proteins associated with plant PcG protein complexes. Possible functions of these interactions are discussed here. We highlight recent findings about recruitment of PcG proteins in plants in comparison with animal system. Through the new data, a picture emerges in which PcG protein complexes do not function in sequential linear pathways but as dynamically interacting networks allowing stabilizing feedback loops. We discuss how the interplay between different PcG protein complexes can enable establishment, maintenance, and epigenetic inheritance of H3K27me3.
Collapse
Affiliation(s)
- Maria Derkacheva
- Department of Plant Biology and Forest Genetics, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, SE-75007 Uppsala, Sweden Department of Biology and Zurich-Basel Plant Science Center, ETH Zurich, CH-8092, Zurich, Switzerland
| | - Lars Hennig
- Department of Plant Biology and Forest Genetics, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, SE-75007 Uppsala, Sweden Department of Biology and Zurich-Basel Plant Science Center, ETH Zurich, CH-8092, Zurich, Switzerland Science for Life Laboratory, SE-75007 Uppsala, Sweden
| |
Collapse
|
30
|
Kumar S, Shah N, Garg V, Bhatia S. Large scale in-silico identification and characterization of simple sequence repeats (SSRs) from de novo assembled transcriptome of Catharanthus roseus (L.) G. Don. PLANT CELL REPORTS 2014; 33:905-918. [PMID: 24482265 DOI: 10.1007/s00299-014-1569-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Revised: 12/17/2013] [Accepted: 01/09/2014] [Indexed: 06/03/2023]
Abstract
Transcriptomic data of C. roseus offering ample sequence resources for providing better insights into gene diversity: large resource of genic SSR markers to accelerate genomic studies and breeding in Catharanthus . Next-generation sequencing is an efficient system for generating high-throughput complete transcripts/genes and developing molecular markers. We present here the transcriptome sequencing of a 26-day-old Catharanthus roseus seedling tissue using Illumina GAIIX platform that resulted in a total of 3.37 Gb of nucleotide sequence data comprising 29,964,104 reads which were de novo assembled into 26,581 unigenes. Based on similarity searches 58 % of the unigenes were annotated of which 13,580 unique transcripts were assigned 5016 gene ontology terms. Further, 7,687 of the unigenes were found to have Cluster of Orthologous Group classifications, and 4,006 were assigned to 289 Kyoto Encyclopedia of Genes and Genome pathways. Also, 5,221 (19.64 %) of transcripts were distributed to 81 known transcription factor (TF) families. In-silico analysis of the transcriptome resulted in identification of 11,004 SSRs in 26.62 % transcripts from which 2,520 SSR markers were designed which exhibited a non-random pattern of distribution. The most abundant was the trinucleotide repeats (AAG/CTT) followed by the dinucleotide repeats (AG/CT). Location specific analysis of SSRs revealed that SSRs were preferentially associated with the 5'-UTRs with a predicted role in regulation of gene expression. A PCR validation of a set of 48 primers revealed 97.9 % successful amplification, and 76.6 % of them showed polymorphism across different Catharanthus species as well as accessions of C. roseus. In summary, this study will provide an insight into understanding the seedling development and resources for novel gene discovery and SSR development for utilization in marker-assisted selective breeding in C. roseus.
Collapse
Affiliation(s)
- Santosh Kumar
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, PO Box 10531, New Delhi, 110067, India
| | | | | | | |
Collapse
|
31
|
Simonini S, Kater MM. Class I BASIC PENTACYSTEINE factors regulate HOMEOBOX genes involved in meristem size maintenance. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:1455-65. [PMID: 24482368 PMCID: PMC3967085 DOI: 10.1093/jxb/eru003] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The BASIC PENTACYSTEINE (BCP) family is a poorly characterized plant transcription factor family of GAGA BINDING PROTEINS. In Arabidopsis, there are seven members (BPC1-7) that are broadly expressed, and they can potentially bind more than 3000 Arabidopsis GAGA-repeat-containing genes. To date, BPCs are known to be direct regulators of the INNER NO OUTER (INO), SEEDSTICK (STK), and LEAFY COTYLEDON 2 (LEC2) genes. Because of the high functional redundancy, neither single knockout nor double bpc mutant combinations cause aberrant phenotypes. The bpc1-2 bpc2 bpc3 triple mutant shows several pleiotropic developmental defects, including enlargement of the inflorescence meristem and flowers with supernumerary floral organs. Here, we demonstrated through expression analysis and chromatin immunoprecipitation assays that this phenotype is probably due to deregulation of the expression of the SHOOTMERISTEMLESS (STM) and BREVIPEDICELLUS/KNAT1 (BP) genes, which are both direct targets of BPCs. Moreover, we assigned a role to BPCs in the fine regulation of the cytokinin content in the meristem, as both ISOPENTENYLTRANSFERASE 7 (IPT7) and ARABIDOPSIS RESPONSE REGULATOR 7 (ARR7) genes were shown to be overexpressed in the bpc1-2 bpc2 bpc3 triple mutant.
Collapse
Affiliation(s)
- Sara Simonini
- * Present address: Crop Genetics Department, John Innes Centre, Norwich Research Park, Colney Lane, Norwich, Norfolk NR4 7UH, UK
| | | |
Collapse
|
32
|
Kurdyukov S, Song Y, Sheahan MB, Rose RJ. Transcriptional regulation of early embryo development in the model legume Medicago truncatula. PLANT CELL REPORTS 2014; 33:349-62. [PMID: 24258241 PMCID: PMC3909251 DOI: 10.1007/s00299-013-1535-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 10/23/2013] [Accepted: 11/02/2013] [Indexed: 05/18/2023]
Abstract
Cultivated legumes account for more than a quarter of primary crop production worldwide. The protein- and oil-rich seed of cultivated legumes provides around one-third of the protein in the average human diet, with soybeans (Glycine max (L.) Merr) being the single largest source of vegetable oil. Despite their critical importance to human and animal nutrition, we lack an understanding of how early seed development in legumes is orchestrated at the transcriptional level. We developed a method to isolate ovules from the model legume, Medicago truncatula Gaertn, at specific stages of embryogenesis, on the basis of flower and pod morphology. Using these isolated ovules we profiled the expression of candidate homeobox, AP2 domain and B3 domain-containing transcription factors. These genes were identified by available information and sequence homology, and five distinctive patterns of transcription were found that correlated with specific stages of early seed growth and development. Co-expression of some genes could be related to common regulatory sequences in the promoter or 3'-UTR regions. These expression patterns were also related to the expression of B3-domain transcription factors important in seed filling (MtFUS3-like and MtABI3-like). Localisation of gene expression by promoter-GUS fusions or in situ hybridisation aided understanding of the role of the transcription factors. This study provides a framework to enhance the understanding of the integrated transcriptional regulation of legume embryo growth and development and seed filling.
Collapse
Affiliation(s)
- Sergey Kurdyukov
- Australian Research Council Centre of Excellence for Integrative Legume Research, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW 2308 Australia
- Present Address: Kolling Institute of Medical Research, Kolling Building, Royal North Shore Hospital, St Leonards, NSW 2065 Australia
| | - Youhong Song
- Australian Research Council Centre of Excellence for Integrative Legume Research, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW 2308 Australia
| | - Michael B. Sheahan
- Australian Research Council Centre of Excellence for Integrative Legume Research, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW 2308 Australia
| | - Ray J. Rose
- Australian Research Council Centre of Excellence for Integrative Legume Research, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW 2308 Australia
| |
Collapse
|
33
|
An analysis of the Athetis lepigone transcriptome from four developmental stages. PLoS One 2013; 8:e73911. [PMID: 24058501 PMCID: PMC3772797 DOI: 10.1371/journal.pone.0073911] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2013] [Accepted: 07/23/2013] [Indexed: 11/30/2022] Open
Abstract
Athetis lepigone Möschler (Lepidoptera: Noctuidae) has recently become an important insect pest of maize (Zea mays) crops in China. In order to understand the characteristics of the different developmental stages of this pest, we used Illumina short-read sequences to perform de novo transcriptome assembly and gene expression analysis for egg, larva, pupa and adult developmental stages. We obtained 10.08 Gb of raw data from Illumina sequencing and recovered 81,356 unigenes longer than 100 bp through a de novo assembly. The total sequence length reached 49.75 Mb with 858 bp of N50 and an average unigene length of 612 bp. Annotation analysis of predicted proteins indicate that 33,736 unigenes (41.47% of total unigenes) are matches to genes in the Genbank Nr database. The unigene sequences were subjected to GO, COG and KEGG functional classification. A large number of differentially expressed genes were recovered by pairwise comparison of the four developmental stages. The most dramatic differences in gene expression were found in the transitions from one stage to another stage. Some of these differentially expressed genes are related to cuticle and wing formation as well as the growth and development. We identified more than 2,500 microsatellite markers that may be used for population studies of A.lepigone. This study lays the foundation for further research on population genetics and gene function analysis in A. lepigone.
Collapse
|
34
|
Wei B, Liu D, Guo J, Leseberg CH, Zhang X, Mao L. Functional divergence of two duplicated D-lineage MADS-box genes BdMADS2 and BdMADS4 from Brachypodium distachyon. JOURNAL OF PLANT PHYSIOLOGY 2013; 170:424-431. [PMID: 23286997 DOI: 10.1016/j.jplph.2012.11.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Revised: 11/05/2012] [Accepted: 11/05/2012] [Indexed: 06/01/2023]
Abstract
MADS-box genes are core members of the ABCDE model for flower development where D-lineage genes play essential roles in ovule identity determination. We report here the cloning and functional characterization of two duplicated MADS-box genes, BdMADS2 and BdMADS4 from Brachypodium distachyon, the model plant of temperate grasses. BdMADS2 and BdMADS4 were highly similar to grass D-lineage MADS-box genes on the protein level and they fell in a distinctive clade on the phylogenetic tree, with conserved intron/exon structures to their rice and maize orthologues. Quantitative real time PCR revealed comparable expression levels were detected in all floral organs of Brachypodium for both genes, except for the carpel where the expression level of BdMADS2 was five times higher than that of BdMADS4. Over expression of these two genes in Arabidopsis caused curly rosette leaves, small sepals and petals, and early flowering. However, BdMADS4 showed stronger phenotypic effects than BdMADS2, suggesting functional divergence between the two genes. Cis-regulatory element prediction showed that the promoter region (including the first intron) of BdMADS4 possesses much less class I BPC protein binding motifs than that of BdMADS2 which may be responsible for the specific expression in carpels. Yeast two-hybrid assays showed that both BdMADS2 and BdMADS4 can interact with BdSEP3, but BdMADS2 can additionally interact with the putative APETALA1 orthologue (BdAP1), suggesting a deviation in their protein interaction patterns. Taken together, our data demonstrate a significant divergence between the two Brachypodium D-lineage MADS-box genes and provide evidences for their sub-functionalization.
Collapse
Affiliation(s)
- Bo Wei
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, PR China.
| | | | | | | | | | | |
Collapse
|
35
|
Simonini S, Roig-Villanova I, Gregis V, Colombo B, Colombo L, Kater MM. Basic pentacysteine proteins mediate MADS domain complex binding to the DNA for tissue-specific expression of target genes in Arabidopsis. THE PLANT CELL 2012; 24:4163-72. [PMID: 23054472 PMCID: PMC3517243 DOI: 10.1105/tpc.112.103952] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Basic pentacysteine (BPC) transcription factors have been identified in a large variety of plant species. In Arabidopsis thaliana there are seven BPC genes, which, except for BPC5, are expressed ubiquitously. BPC genes are functionally redundant in a wide range of developmental processes. Recently, we reported that BPC1 binds to guanine and adenine (GA)-rich consensus sequences in the seedstick (STK) promoter in vitro and induces conformational changes. Here we show by chromatin immunoprecipitation experiments that in vivo BPCs also bind to the consensus boxes, and when these were mutated, expression from the STK promoter was derepressed, resulting in ectopic expression in the inflorescence. We also reveal that short vegetative phase (SVP) is a direct regulator of STK. SVP is a floral meristem identity gene belonging to the MADS box gene family. The SVP-APETALA1 (AP1) dimer recruits the SEUSS (SEU)-LEUNIG (LUG) transcriptional cosuppressor to repress floral homeotic gene expression in the floral meristem. Interestingly, we found that GA consensus sequences in the STK promoter to which BPCs bind are essential for recruitment of the corepressor complex to this promoter. Our data suggest that we have identified a new regulatory mechanism controlling plant gene expression that is probably generally used, when considering BPCs' wide expression profile and the frequent presence of consensus binding sites in plant promoters.
Collapse
Affiliation(s)
- Sara Simonini
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20133 Milano, Italy
| | - Irma Roig-Villanova
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20133 Milano, Italy
| | - Veronica Gregis
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20133 Milano, Italy
| | - Bilitis Colombo
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20133 Milano, Italy
| | - Lucia Colombo
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20133 Milano, Italy
- Consiglio Nazionale delle Richerche, Istituto di Biofisica, Università degli Studi di Milano, 20133 Milano, Italy
| | - Martin M. Kater
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20133 Milano, Italy
- Address correspondence to
| |
Collapse
|
36
|
Abstract
Ultraconserved elements (UCEs) are DNA sequences that are 100% identical (no base substitutions, insertions, or deletions) and located in syntenic positions in at least two genomes. Although hundreds of UCEs have been found in animal genomes, little is known about the incidence of ultraconservation in plant genomes. Using an alignment-free information-retrieval approach, we have comprehensively identified all long identical multispecies elements (LIMEs), which include both syntenic and nonsyntenic regions, of at least 100 identical base pairs shared by at least two genomes. Among six animal genomes, we found the previously known syntenic UCEs as well as previously undescribed nonsyntenic elements. In contrast, among six plant genomes, we only found nonsyntenic LIMEs. LIMEs can also be classified as either simple (repetitive) or complex (nonrepetitive), they may occur in multiple copies in a genome, and they are often spread across multiple chromosomes. Although complex LIMEs were found in both animal and plant genomes, they differed significantly in their composition and copy number. Further analyses of plant LIMEs revealed their functional diversity, encompassing elements found near rRNA and enzyme-coding genes, as well as those found in transposons and noncoding DNA. We conclude that despite the common presence of LIMEs in both animal and plant lineages, the evolutionary processes involved in the creation and maintenance of these elements differ in the two groups and are likely attributable to several mechanisms, including transfer of genetic material from organellar to nuclear genomes, de novo sequence manufacturing, and purifying selection.
Collapse
|
37
|
Berger N, Dubreucq B. Evolution goes GAGA: GAGA binding proteins across kingdoms. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1819:863-8. [PMID: 22425673 DOI: 10.1016/j.bbagrm.2012.02.022] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Revised: 02/17/2012] [Accepted: 02/22/2012] [Indexed: 01/21/2023]
Abstract
Chromatin-associated proteins (CAP) play a crucial role in the regulation of gene expression and development in higher organisms. They are involved in the control of chromatin structure and dynamics. CAP have been extensively studied over the past years and are classified into two major groups: enzymes that modify histone stability and organization by post-translational modification of histone N-Terminal tails; and proteins that use ATP hydrolysis to modify chromatin structure. All of these proteins show a relatively high degree of sequence conservation across the animal and plant kingdoms. The essential Drosophila melanogaster GAGA factor (dGAF) interacts with these two types of CAP to regulate homeobox genes and thus contributes to a wide range of developmental events. Surprisingly, however, it is not conserved in plants. In this review, following an overview of fly GAF functions, we discuss the role of plant BBR/BPC proteins. These appear to functionally converge with dGAF despite a completely divergent amino acid sequence. Some suggestions are given for further investigation into the function of BPC proteins in plants.
Collapse
|
38
|
Groszmann M, Paicu T, Alvarez JP, Swain SM, Smyth DR. SPATULA and ALCATRAZ, are partially redundant, functionally diverging bHLH genes required for Arabidopsis gynoecium and fruit development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 68:816-29. [PMID: 21801252 DOI: 10.1111/j.1365-313x.2011.04732.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The Arabidopsis gynoecium is a complex organ that facilitates fertilization, later developing into a dehiscent silique that protects seeds until their dispersal. Identifying genes important for development is often hampered by functional redundancy. We report unequal redundancy between two closely related genes, SPATULA (SPT) and ALCATRAZ (ALC), revealing previously unknown developmental roles for each. SPT is known to support septum, style and stigma development in the flower, whereas ALC is involved in dehiscence zone development in the fruit. ALC diverged from a SPT-like ancestor following gene duplication coinciding with the At-β polyploidy event. Here we show that ALC is also involved in early gynoecium development, and SPT in later valve margin generation in the silique. Evidence includes the increased severity of early gynoecium disruption, and of later valve margin defects, in spt-alc double mutants. In addition, a repressive version of SPT (35S:SPT-SRDX) disrupts both structures. Consistent with redundancy, ALC and SPT expression patterns overlap in these tissues, and the ALC promoter carries two atypical E-box elements identical to one in SPT required for valve margin expression. Further, SPT can heterodimerize with ALC, and 35S:SPT can fully complement dehiscence defects in alc mutants, although 35S:ALC can only partly complement spt gynoecium disruptions, perhaps associated with its sequence simplification. Interactions with FRUITFULL and SHATTERPROOF genes differ somewhat between SPT and ALC, reflecting their different specializations. These two genes are apparently undergoing subfunctionalization, with SPT essential for earlier carpel margin tissues, and ALC specializing in later dehiscence zone development.
Collapse
MESH Headings
- Amino Acid Sequence
- Arabidopsis/genetics
- Arabidopsis/growth & development
- Arabidopsis/metabolism
- Arabidopsis Proteins/genetics
- Arabidopsis Proteins/metabolism
- Basic Helix-Loop-Helix Transcription Factors/genetics
- Basic Helix-Loop-Helix Transcription Factors/metabolism
- Chromosomes, Plant
- Conserved Sequence
- E-Box Elements
- Flowers/genetics
- Flowers/growth & development
- Flowers/ultrastructure
- Fruit/genetics
- Fruit/growth & development
- Gene Duplication
- Gene Expression Regulation, Plant
- Genes, Plant
- Genes, Reporter
- Genetic Complementation Test
- Microscopy, Electron, Scanning
- Molecular Sequence Data
- Plants, Genetically Modified/genetics
- Plants, Genetically Modified/growth & development
- Plants, Genetically Modified/metabolism
- Promoter Regions, Genetic
- Sequence Alignment
- Two-Hybrid System Techniques
Collapse
Affiliation(s)
- Michael Groszmann
- School of Biological Sciences, Monash University, Melbourne, Vic. 3800, Australia
| | | | | | | | | |
Collapse
|
39
|
Monfared MM, Simon MK, Meister RJ, Roig-Villanova I, Kooiker M, Colombo L, Fletcher JC, Gasser CS. Overlapping and antagonistic activities of BASIC PENTACYSTEINE genes affect a range of developmental processes in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 66:1020-31. [PMID: 21435046 DOI: 10.1111/j.1365-313x.2011.04562.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The BASIC PENTACYSTEINE (BPC) proteins are a plant-specific transcription factor family that is present throughout land plants. The Arabidopsis BPC proteins have been categorized into three classes based on sequence similarity, and we demonstrate that there is functional overlap between classes. Single gene mutations produce no visible phenotypic effects, and severe morphological phenotypes occur only in higher order mutants between members of classes I and II, with the most severe phenotype observed in bpc1-1 bpc2 bpc4 bpc6 plants. These quadruple mutants are dwarfed and display small curled leaves, aberrant ovules, altered epidermal cells and reduced numbers of lateral roots. Affected processes include coordinated growth of cell layers, cell shape determination and timing of senescence. Disruption of BPC3 function rescues some aspects of the bpc1-1 bpc2 bpc4 bpc6 phenotype, indicating that BPC3 function may be antagonistic to other members of the family. Ethylene response is diminished in bpc1-1 bpc2 bpc4 bpc6 plants, although not all aspects of the phenotype can be explained by reduced ethylene sensitivity. Our data indicate that the BPC transcription factor family is integral for a wide range of processes that support normal growth and development.
Collapse
Affiliation(s)
- Mona M Monfared
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Kenth G, Puzhko S, Goodyer CG. Human growth hormone receptor gene expression is regulated by Gfi-1/1b and GAGA cis-elements. Mol Cell Endocrinol 2011; 335:135-47. [PMID: 21238539 DOI: 10.1016/j.mce.2011.01.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2010] [Revised: 12/20/2010] [Accepted: 01/07/2011] [Indexed: 12/15/2022]
Abstract
Human growth hormone receptor (hGHR) gene regulation is complex: mRNAs are transcribed from multiple variant (V) 5'UTR exons, several ubiquitously while others only in the postnatal hepatocyte. The liver-specific V1 exon promoter contains Gfi-1/1b repressor sites adjacent to a GAGA box, a GH response element (GHRE) in several mammalian genes. GAGA boxes are also present in the ubiquitously expressing V3 exon promoter. Heterologous sites in bovine, ovine and murine GHR genes suggest conserved roles. GAGA factor stimulated V1 and V3 promoters while Gfi-1/1b repressed basal and GAF-stimulated V1 transcription. HGH treatment of HepG2 cells resulted in a new complex forming with V3 GAGA elements, suggesting a functional GHRE. Data suggest liver-specific V1 transcription is regulated by inhibitory Gfi-1/1b and stimulatory GAGA cis-elements and Gfi-1/1b may control the lack of V1 expression in fetal liver, hepatic tumours and non-hepatic tissues. In addition, hGH may regulate hGHR expression through V3 GAGA boxes.
Collapse
Affiliation(s)
- Gurvinder Kenth
- Department of Experimental Medicine, McGill University, Montreal, Quebec, Canada
| | | | | |
Collapse
|
41
|
Alanine zipper-like coiled-coil domains are necessary for homotypic dimerization of plant GAGA-factors in the nucleus and nucleolus. PLoS One 2011; 6:e16070. [PMID: 21347358 PMCID: PMC3037368 DOI: 10.1371/journal.pone.0016070] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Accepted: 12/06/2010] [Indexed: 01/09/2023] Open
Abstract
GAGA-motif binding proteins control transcriptional activation or repression of homeotic genes. Interestingly, there are no sequence similarities between animal and plant proteins. Plant BBR/BPC-proteins can be classified into two distinct groups: Previous studies have elaborated on group I members only and so little is known about group II proteins. Here, we focused on the initial characterization of AtBPC6, a group II protein from Arabidopsis thaliana. Comparison of orthologous BBR/BPC sequences disclosed two conserved signatures besides the DNA binding domain. A first peptide signature is essential and sufficient to target AtBPC6-GFP to the nucleus and nucleolus. A second domain is predicted to form a zipper-like coiled-coil structure. This novel type of domain is similar to Leucine zippers, but contains invariant alanine residues with a heptad spacing of 7 amino acids. By yeast-2-hybrid and BiFC-assays we could show that this Alanine zipper domain is essential for homotypic dimerization of group II proteins in vivo. Interhelical salt bridges and charge-stabilized hydrogen bonds between acidic and basic residues of the two monomers are predicted to form an interaction domain, which does not follow the classical knobs-into-holes zipper model. FRET-FLIM analysis of GFP/RFP-hybrid fusion proteins validates the formation of parallel dimers in planta. Sequence comparison uncovered that this type of domain is not restricted to BBR/BPC proteins, but is found in all kingdoms.
Collapse
|
42
|
Kumar RP, Senthilkumar R, Singh V, Mishra RK. Repeat performance: how do genome packaging and regulation depend on simple sequence repeats? Bioessays 2010; 32:165-74. [PMID: 20091758 DOI: 10.1002/bies.200900111] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Non-coding DNA has consistently increased during evolution of higher eukaryotes. Since the number of genes has remained relatively static during the evolution of complex organisms, it is believed that increased degree of sophisticated regulation of genes has contributed to the increased complexity. A higher proportion of non-coding DNA, including repeats, is likely to provide more complex regulatory potential. Here, we propose that repeats play a regulatory role by contributing to the packaging of the genome during cellular differentiation. Repeats, and in particular the simple sequence repeats, are proposed to serve as landmarks that can target regulatory mechanisms to a large number of genomic sites with the help of very few factors and regulate the linked loci in a coordinated manner. Repeats may, therefore, function as common target sites for regulatory mechanisms involved in the packaging and dynamic compartmentalization of the chromatin into active and inactive regions during cellular differentiation.
Collapse
Affiliation(s)
- Ram Parikshan Kumar
- Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
| | | | | | | |
Collapse
|
43
|
Rangwala SH, Richards EJ. The structure, organization and radiation of Sadhu non-long terminal repeat retroelements in Arabidopsis species. Mob DNA 2010; 1:10. [PMID: 20226007 PMCID: PMC2848041 DOI: 10.1186/1759-8753-1-10] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2009] [Accepted: 03/01/2010] [Indexed: 11/10/2022] Open
Abstract
Background Sadhu elements are non-autonomous retroposons first recognized in Arabidopsis thaliana. There is a wide degree of divergence among different elements, suggesting that these sequences are ancient in origin. Here we report the results of several lines of investigation into the genomic organization and evolutionary history of this element family. Results We present a classification scheme for Sadhu elements in A. thaliana, describing derivative elements related to the full-length elements we reported previously. We characterized Sadhu5 elements in a set of A. thaliana strains in order to trace the history of radiation in this subfamily. Sequences surrounding the target sites of different Sadhu insertions are consistent with mobilization by LINE retroelements. Finally, we identified Sadhu elements grouping into distinct subfamilies in two related species, Arabidopsis arenosa and Arabidopsis lyrata. Conclusions Our analyses suggest that the Sadhu retroelement family has undergone target primed reverse transcription-driven retrotransposition during the divergence of different A. thaliana strains. In addition, Sadhu elements can be found at moderate copy number in three distinct Arabidopsis species, indicating that the evolutionary history of these sequences can be traced back at least several millions of years.
Collapse
Affiliation(s)
- Sanjida H Rangwala
- Department of Biology, Washington University in St Louis, St Louis, MO, USA.
| | | |
Collapse
|
44
|
Kim C, Lemke C, Paterson AH. Functional dissection of drought-responsive gene expression patterns in Cynodon dactylon L. PLANT MOLECULAR BIOLOGY 2009; 70:1-16. [PMID: 19152115 DOI: 10.1007/s11103-009-9453-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2008] [Accepted: 01/05/2009] [Indexed: 05/08/2023]
Abstract
Water deficit is one of the main abiotic factors that affect plant productivity in subtropical regions. To identify genes induced during the water stress response in Bermudagrass (Cynodon dactylon), cDNA macroarrays were used. The macroarray analysis identified 189 drought-responsive candidate genes from C. dactylon, of which 120 were up-regulated and 69 were down-regulated. The candidate genes were classified into seven groups by cluster analysis of expression levels across two intensities and three durations of imposed stress. Annotation using BLASTX suggested that up-regulated genes may be involved in proline biosynthesis, signal transduction pathways, protein repair systems, and removal of toxins, while down-regulated genes were mostly related to basic plant metabolism such as photosynthesis and glycolysis. The functional classification of gene ontology (GO) was consistent with the BLASTX results, also suggesting some crosstalk between abiotic and biotic stress. Comparative analysis of cis-regulatory elements from the candidate genes implicated specific elements in drought response in Bermudagrass. Although only a subset of genes was studied, Bermudagrass shared many drought-responsive genes and cis-regulatory elements with other botanical models, supporting a strategy of cross-taxon application of drought-responsive genes, regulatory cues, and physiological-genetic information.
Collapse
Affiliation(s)
- Changsoo Kim
- Plant Genome Mapping Laboratory, University of Georgia, 111 Riverbend Road, Athens, GA 30602, USA
| | | | | |
Collapse
|
45
|
Haerizadeh F, Wong CE, Singh MB, Bhalla PL. Genome-wide analysis of gene expression in soybean shoot apical meristem. PLANT MOLECULAR BIOLOGY 2009; 69:711-27. [PMID: 19115044 DOI: 10.1007/s11103-008-9450-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2008] [Accepted: 12/15/2008] [Indexed: 05/11/2023]
Abstract
The shoot apical meristem (SAM) contains undifferentiated stem cells that are responsible for the initiation of above-ground organs. The nature of genetic programs and the regulatory networks underlying SAM function in a major legume crop, soybean was investigated here. We used soybean GeneChip (containing 37,744 probe sets) to examine the transcript profiles associated with micro-dissected, actively growing SAMs or growth arrested axillary meristems (AMs) experiencing apical dominance, in comparison to that of non-meristem (NM) tissue. A total of 1,090 and 1,523 transcripts were identified to be significantly up- or down-regulated in the SAM in comparison to the NM. RT-PCR and in situ hybridization analysis were also carried out to verify the experimental approach. The resulting gene expression profiles point to the combinatorial role of diverse regulatory pathways including those associated with cell division and proliferation, epigenetic regulation, auxin-mediated responses and microRNA regulation in meristem function. In situ hybridization analysis on selected transcripts has implicated their roles in SAM maintenance and the establishment of organ polarity. We also identified a gene, ANGUSITFOLIA3 that could potentially serve as a novel marker for differentiating cells in the meristem. Computational analysis on the promoter regions of Arabidopsis thaliana orthologs of genes with high expression in the soybean SAM revealed a conserved over-representation of three cis-acting regulatory motifs. Our data show that plant meristems possess a unique transcriptional profile, with shared "molecular signatures" in apical and axillary meristems providing a rich source of novel target genes for further studies into a fundamental process that impacts plant growth and crop productivity.
Collapse
Affiliation(s)
- Farzad Haerizadeh
- Plant Molecular Biology and Biotechnology Laboratory, Australian Research Centre of Excellence for Integrative Legume Research, Faculty of Land and Food Resources, The University of Melbourne, Parkville, VIC 3010, Australia
| | | | | | | |
Collapse
|
46
|
Reddy CS, Babu AP, Swamy BPM, Kaladhar K, Sarla N. ISSR markers based on GA and AG repeats reveal genetic relationship among rice varieties tolerant to drought, flood, or salinity. J Zhejiang Univ Sci B 2009; 10:133-41. [PMID: 19235272 DOI: 10.1631/jzus.b0820183] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Drought, flood, salinity, or a combination of these limits rice production. Several rice varieties are well known for their tolerance to specific abiotic stresses. We determined genetic relationship among 12 rice varieties including 9 tolerant to drought, flood, or salinity using inter-simple sequence repeat (ISSR) markers. Based on all markers, the nine tolerant varieties formed one cluster distinct from the cluster of three control varieties. The salt-tolerant varieties were closest to two flood-tolerant varieties, and together they were distinct from the drought-tolerant varieties. (GA)(8)YG was the most informative primer, showing the highest polymorphic information content (PIC) and resolving power (Rp). The drought-, flood-, and salt-tolerant varieties grouped in three distinct clusters within the group of tolerant varieties, when (GA)(8)YG was used. Sabita was the only exception. The two aus varieties, Nagina22 and FR13A, were separated and grouped with the drought- and flood-tolerant varieties, respectively, but they were together in dendrograms based on other primers. The results show that ISSR markers associated with (GA)(8)YG delineated the three groups of stress-tolerant varieties from each other and can be used to identify genes/new alleles associated with the three abiotic stresses in rice germplasm.
Collapse
Affiliation(s)
- Ch Surendhar Reddy
- Biotechnology Laboratory, Crop Improvement Section, Directorate of Rice Research, Rajendranagar, Hyderabad 500030, India
| | | | | | | | | |
Collapse
|
47
|
Tang ZX, Fu SL, Ren ZL, Zhou JP, Yan BJ, Zhang HQ. Variations of tandem repeat, regulatory element, and promoter regions revealed by wheat–rye amphiploids. Genome 2008; 51:399-408. [DOI: 10.1139/g08-027] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To better understand the evolution of allopolyploids, 4 different combinations between wheat ( Triticum aestivum L.) and rye ( Secale cereale L.) including 12 F1hybrids and 12 derived amphiploids were analyzed and compared with their direct parental plants by PCR analysis using 150 wheat SSR (single sequence repeat) markers and by FISH analysis using a rye-specific repetitive sequence (pSc200) as a probe. Nine SSR markers amplified rye-specific fragments whose sizes ranged from 471 bp to 1089 bp. These fragments contain regulatory elements and (or) promoters. Some of these fragments were amplified from all 24 progenies, while others were amplified from a subset of the progenies. The disappearance of rye-specific fragments from some progenies was caused by sequence elimination or DNA modification. Marker Xgwm320 amplified a new fragment (403 bp), a rye-specific tandem repeat, from some of the progenies. Twenty-eight SSR markers displayed microsatellite variation in progenies derived from ‘Chinese Spring’ × ‘Jinzhou-heimai’, but none of the 150 SSR markers displayed microsatellite variation in the progenies derived from the other three combinations. FISH signals of pSc200 were eliminated from one telomere/subtelomere of 4 chromosomes of ‘Kustro’ during allopolyploidization and expanded in amphiploids derived from ‘Chinese Spring’ × ‘AR106BONE’. Thus, allopolyploidization in wheat–rye can be accompanied by rapid variation of tandem repeats, regulatory elements, and promoter regions. The alterations of repetitive sequence pSc200 indicate coordination between the constituent genomes of the newly formed amphiploids. Different genetic backgrounds of parents appear to affect genome changes during allopolyploidization.
Collapse
Affiliation(s)
- Zong-Xiang Tang
- State Key Laboratory of Plant Breeding and Genetics, Sichuan Agricultural University, Ya’an, Sichuan 625014, China
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Shu-Lan Fu
- State Key Laboratory of Plant Breeding and Genetics, Sichuan Agricultural University, Ya’an, Sichuan 625014, China
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Zheng-Long Ren
- State Key Laboratory of Plant Breeding and Genetics, Sichuan Agricultural University, Ya’an, Sichuan 625014, China
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Jian-Ping Zhou
- State Key Laboratory of Plant Breeding and Genetics, Sichuan Agricultural University, Ya’an, Sichuan 625014, China
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Ben-Ju Yan
- State Key Laboratory of Plant Breeding and Genetics, Sichuan Agricultural University, Ya’an, Sichuan 625014, China
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Huai-Qiong Zhang
- State Key Laboratory of Plant Breeding and Genetics, Sichuan Agricultural University, Ya’an, Sichuan 625014, China
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| |
Collapse
|
48
|
Chen Z, Simmons MS, Perry RT, Wiener HW, Harrell LE, Go RCP. Genetic association of neurotrophic tyrosine kinase receptor type 2 (NTRK2) With Alzheimer's disease. Am J Med Genet B Neuropsychiatr Genet 2008; 147:363-9. [PMID: 17918233 DOI: 10.1002/ajmg.b.30607] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Brain-derived neurotrophic factor (BDNF)/tyrosine receptor kinase (TRK) signaling pathway activates a wide range of downstream intracellular cascades, regulating neuronal development and plasticity, long-term potentiation, and apoptosis. The NTRK family encodes the receptors TRKA, TRKB, and TRKC, to which the neurotrophins, nerve growth factor (NGF), BDNF and neurotrophin-3 (NT-3) bind, respectively, with high affinity. Signaling through these receptors appears to be compromised in Alzheimer's disease (AD). This study is the most comprehensive investigation of genetic variants of NTRK2, and the first to show significant association between NTRK2 with AD. Fourteen single nucleotide polymorphisms (SNPs), located in 8 of 18 linkage disequilibrium (LD) blocks, were genotyped in 203 families with at least two AD affected siblings with mean age of onset (MAO) of 70.9 +/- 7.4 years and one unaffected sibling from the NIMH-ADGJ dataset. Family based association testing found no single SNP association, however, significant associations were found for two and three locus haplotypes (P = 0.012, P = 0.009, respectively) containing SNPs rsl624327, rsl443445, and rs378645. These SNPs are located in areas of the gene containing sequences that could be involved in alternative splicing and/or regulation of NTRK2. Our results suggest that NTRK2 may be a genetic susceptibility gene contributing to AD pathology.
Collapse
Affiliation(s)
- Zuomin Chen
- Department of Epidemiology, University of Alabama at Birmingham School of Public Health, Birmingham, Alabama 35294, USA
| | | | | | | | | | | |
Collapse
|
49
|
Udvardi MK, Kakar K, Wandrey M, Montanari O, Murray J, Andriankaja A, Zhang JY, Benedito V, Hofer JMI, Chueng F, Town CD. Legume transcription factors: global regulators of plant development and response to the environment. PLANT PHYSIOLOGY 2007; 144:538-49. [PMID: 17556517 PMCID: PMC1914172 DOI: 10.1104/pp.107.098061] [Citation(s) in RCA: 162] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2007] [Accepted: 03/24/2007] [Indexed: 05/15/2023]
|
50
|
Aggarwal RK, Hendre PS, Varshney RK, Bhat PR, Krishnakumar V, Singh L. Identification, characterization and utilization of EST-derived genic microsatellite markers for genome analyses of coffee and related species. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2007; 114:359-72. [PMID: 17115127 DOI: 10.1007/s00122-006-0440-x] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2006] [Accepted: 10/19/2006] [Indexed: 05/08/2023]
Abstract
Genic microsatellites or EST-SSRs derived from expressed sequence tags (ESTs) are desired because these are inexpensive to develop, represent transcribed genes, and often a putative function can be assigned to them. In this study we investigated 2,553 coffee ESTs (461 from the public domain and 2,092 in-house generated ESTs) for identification and development of genic microsatellite markers. Of these, 2,458 ESTs (all >100 bp in size) were searched for SSRs using MISA--search module followed by stackPACK clustering that revealed a total of 425 microsatellites in 331 (13.5%) non-redundant ESTs/consensus sequences suggesting an approximate frequency of 1 SSR/2.16 kb of the analysed coffee transcriptome. Identified microsatellites mainly comprised of di-/tri-nucleotide repeats, of which repeat motifs AG and AAG were the most abundant. A total of 224 primer pairs could be designed from the non-redundant SSR-positive ESTs (excluding those with only mononucleotide repeats) for possible use as potential genic markers. Of this set, a total of 24 (10%) primer pairs were tested and 18 could be validated as usable markers. Sixteen of these markers revealed moderate to high polymorphism information content (PIC) across 23 genotypes of C. arabica and C. canephora, while 2 markers were found to be monomorphic. All the markers also showed robust cross-species amplifications across 14 Coffea and 4 Psilanthus species. The apparent broad cross-species/genera transferability was further confirmed by cloning and sequencing of the amplified alleles. Thus, the study provides an insight about the frequency and distribution of SSRs in coffee transcriptome, and also demonstrates the successful development of genic-SSRs. It is expected that the potential markers described here would add to the repertoire of DNA markers needed for genetic studies in cultivated coffee and also related taxa that constitute the important secondary genepool for coffee improvement.
Collapse
Affiliation(s)
- Ramesh K Aggarwal
- Centre for Cellular and Molecular Biology, Uppal Road, Tarnaka, Hyderabad, 500007, India.
| | | | | | | | | | | |
Collapse
|