1
|
Nagalingam S, Wang H, Kim S, Guenther A. Unexpectedly strong heat stress induction of monoterpene, methylbutenol, and other volatile emissions for conifers in the cypress family (Cupressaceae). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 956:177336. [PMID: 39500449 DOI: 10.1016/j.scitotenv.2024.177336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/28/2024] [Accepted: 10/30/2024] [Indexed: 11/11/2024]
Abstract
We investigated the biogenic volatile organic compound (BVOC) emission rates and composition of Cupressaceae species and how the emissions change in response to moderate warming and more severe heat stress. A total of 8 species from 7 distinct Cupressaceae genera were targeted in this study and exposed to laboratory-simulated heatwaves. Each plant was enclosed in a temperature-controlled glass chamber and allowed to equilibrate at 30 °C for 24 h. The temperature was then increased stepwise from 33 °C to 43 °C in 2 °C increments, with each step lasting 2 h, and was finally kept at 45 °C for 12 h. The BVOC emissions were measured periodically using an automated air sampler coupled to a gas chromatograph. Most of the sampled Cupressaceae species (6 out of 8) were low BVOC emitters (<0.3 μgC g-1 h-1) at 30 °C. However, the BVOC emissions of all 8 species increased strongly with temperature, and in most species (5 out of 8), the emissions continued to increase with longer exposure times to heat stress. The largest increase was observed in Thuja occidentalis and Chamaecyparis thyoides, which reached maximum emissions of 350 and 190 μgC g-1 h-1, respectively. Of the different BVOCs, monoterpenes responded most strongly to heat stress, with Q10 temperature coefficients typically ranging between 7.6 and 22, which were significantly greater than the model-predicted value of 2.7. Other BVOCs including sesquiterpenes, C9 aromatics (only detected in Calocedrus decurrens), methylbutenols, and other C5 oxygenates were also induced by heat stress, but generally at a lower magnitude than monoterpenes. Our results indicate that Cupressaceae are a large but typically dormant source of reactive volatile hydrocarbons (mostly monoterpenes) whose emissions can be activated by heat stress. This phenomenon could have important implications for ozone and aerosol formation, air quality, and human health, particularly in urban areas that are prone to heatwaves.
Collapse
Affiliation(s)
- Sanjeevi Nagalingam
- Department of Earth System Science, University of California, Irvine, CA, USA.
| | - Hui Wang
- Department of Earth System Science, University of California, Irvine, CA, USA
| | - Saewung Kim
- Department of Earth System Science, University of California, Irvine, CA, USA
| | - Alex Guenther
- Department of Earth System Science, University of California, Irvine, CA, USA.
| |
Collapse
|
2
|
Midzi J, Jeffery DW, Baumann U, Rogiers S, Tyerman SD, Pagay V. Stress-Induced Volatile Emissions and Signalling in Inter-Plant Communication. PLANTS (BASEL, SWITZERLAND) 2022; 11:2566. [PMID: 36235439 PMCID: PMC9573647 DOI: 10.3390/plants11192566] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 09/12/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022]
Abstract
The sessile plant has developed mechanisms to survive the "rough and tumble" of its natural surroundings, aided by its evolved innate immune system. Precise perception and rapid response to stress stimuli confer a fitness edge to the plant against its competitors, guaranteeing greater chances of survival and productivity. Plants can "eavesdrop" on volatile chemical cues from their stressed neighbours and have adapted to use these airborne signals to prepare for impending danger without having to experience the actual stress themselves. The role of volatile organic compounds (VOCs) in plant-plant communication has gained significant attention over the past decade, particularly with regard to the potential of VOCs to prime non-stressed plants for more robust defence responses to future stress challenges. The ecological relevance of such interactions under various environmental stresses has been much debated, and there is a nascent understanding of the mechanisms involved. This review discusses the significance of VOC-mediated inter-plant interactions under both biotic and abiotic stresses and highlights the potential to manipulate outcomes in agricultural systems for sustainable crop protection via enhanced defence. The need to integrate physiological, biochemical, and molecular approaches in understanding the underlying mechanisms and signalling pathways involved in volatile signalling is emphasised.
Collapse
Affiliation(s)
- Joanah Midzi
- School of Agriculture, Food and Wine, The University of Adelaide, Glen Osmond, SA 5064, Australia
- Australian Research Council Training Centre for Innovative Wine Production, Urrbrae, SA 5064, Australia
| | - David W. Jeffery
- School of Agriculture, Food and Wine, The University of Adelaide, Glen Osmond, SA 5064, Australia
- Australian Research Council Training Centre for Innovative Wine Production, Urrbrae, SA 5064, Australia
| | - Ute Baumann
- School of Agriculture, Food and Wine, The University of Adelaide, Glen Osmond, SA 5064, Australia
| | - Suzy Rogiers
- Australian Research Council Training Centre for Innovative Wine Production, Urrbrae, SA 5064, Australia
- New South Wales Department of Primary Industries, Wollongbar, NSW 2477, Australia
| | - Stephen D. Tyerman
- School of Agriculture, Food and Wine, The University of Adelaide, Glen Osmond, SA 5064, Australia
- Australian Research Council Training Centre for Innovative Wine Production, Urrbrae, SA 5064, Australia
| | - Vinay Pagay
- School of Agriculture, Food and Wine, The University of Adelaide, Glen Osmond, SA 5064, Australia
- Australian Research Council Training Centre for Innovative Wine Production, Urrbrae, SA 5064, Australia
| |
Collapse
|
3
|
Yu H, Kivimäenpää M, Blande JD. Volatile-mediated between-plant communication in Scots pine and the effects of elevated ozone. Proc Biol Sci 2022; 289:20220963. [PMID: 36069014 PMCID: PMC9449471 DOI: 10.1098/rspb.2022.0963] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Conifers are dominant tree species in boreal forests, but are susceptible to attack by bark beetles. Upon bark beetle attack, conifers release substantial quantities of volatile organic compounds known as herbivore-induced plant volatiles (HIPVs). Earlier studies of broadleaved plants have shown that HIPVs provide information to neighbouring plants, which may enhance their defences. However, the defence responses of HIPV-receiver plants have not been described for conifers. Here we advance knowledge of plant-plant communication in conifers by documenting a suite of receiver-plant responses to bark-feeding-induced volatiles. Scots pine seedlings exposed to HIPVs were more resistant to subsequent weevil feeding and received less damage. Receiver plants had both induced and primed volatile emissions and their resin ducts had an increased epithelial cell (EC) mean area and an increased number of cells located in the second EC layer. Importantly, HIPV exposure increased stomatal conductance and net photosynthesis rate of receiver plants. Receiver-plant responses were also examined under elevated ozone conditions and found to be significantly altered. However, the final defence outcome was not affected. These findings demonstrate that HIPVs modulate conifer metabolism through responses spanning photosynthesis and chemical defence. The responses are adjusted under ozone stress, but the defence benefits remain intact.
Collapse
Affiliation(s)
- Hao Yu
- Department of Environmental and Biological Sciences, University of Eastern Finland, PO Box 1627, 70211 Kuopio, Finland
| | - Minna Kivimäenpää
- Department of Environmental and Biological Sciences, University of Eastern Finland, PO Box 1627, 70211 Kuopio, Finland
| | - James D Blande
- Department of Environmental and Biological Sciences, University of Eastern Finland, PO Box 1627, 70211 Kuopio, Finland
| |
Collapse
|
4
|
Min Lao Y, Miao Lin Y, Sheng Wang X, Juan Xu X, Jin H. An improved method for sensitive quantification of isoprenoid diphosphates in the astaxanthin-accumulating Haematococcus pluvialis. Food Chem 2021; 375:131911. [PMID: 34959143 DOI: 10.1016/j.foodchem.2021.131911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 12/17/2021] [Accepted: 12/18/2021] [Indexed: 11/29/2022]
Abstract
A sensitive method has been established to simultaneously determine the concentrations of isopentenyl pyrophosphate (IPP), geranyl diphosphate (GPP), farnesyl diphosphate (FPP) and geranylgeranyl diphosphate (GGPP) in H. pluvialis under different environments. This method increased the extraction efficiency of isoprenoid diphosphates through releasing isoprenoid diphosphates using Tissue Lyser. This is the first report on the efficient extraction method of metabolites in H. pluvialis cells, being suitable for all algae and plants with thick cell wall. The concentrations of isoprenoid diphosphates were measured on poroshell EC-C18 column by UHPLC-MS/MS with the LODs of 0.015, 0.027, 0.022 and 0.076 pmol for DMAPP, GPP, FPP and GGPP, respectively. It is the most sensitive method for the determination of isoprenoid diphosphates in any sample to date. Using this method, the profile of isoprenoid diphosphates was analyzed and cisoid isomers of FPP and GGPP, (Z, Z)-FPP and (Z, Z, Z-GGPP) were found firstly in H. pluvialis.
Collapse
Affiliation(s)
- Yong Min Lao
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Yu Miao Lin
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Xu Sheng Wang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | | | - Hui Jin
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China.
| |
Collapse
|
5
|
Yuan X, Feng Z, Hu C, Zhang K, Qu L, Paoletti E. Effects of elevated ozone on the emission of volatile isoprenoids from flowers and leaves of rose (Rosa sp.) varieties. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 291:118141. [PMID: 34517180 DOI: 10.1016/j.envpol.2021.118141] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 08/13/2021] [Accepted: 09/07/2021] [Indexed: 06/13/2023]
Abstract
Tropospheric ozone (O3) affects isoprenoid emissions, and floral emissions in particular, which may result in potential impacts on the interactions of plants with other organisms. The effects of ozone (O3) on isoprenoid emissions have been investigated for many years, while knowledge on O3 effects on floral emissions is still scarce and the relevant mechanism has not been clarified so far. We investigated the effects of O3 on floral and foliar isoprenoid emissions (mainly isoprene, monoterpenes and sesquiterpenes) and their synthase substrates from three rose varieties (CH, Rosa chinensis Jacq. var. chinensis; SA, R. hybrida 'Saiun'; MO, R. hybrida 'Monica Bellucci') at different exposure durations. Results indicated that the O3-induced stimulation after short-term exposure (35 days after the beginning of O3 exposure) was significant only for sesquiterpene emissions from flowers, while long-term O3 exposure (90 days after the beginning of O3 exposure) significantly decreased both foliar and floral monoterpene and sesquiterpene emissions. In addition, the observed decline of emissions under long-term O3 exposure resulted from the limitation of synthase substrates, and the responses of emissions and substrates varied among varieties, with the greatest variation in the O3-sensitive variety. These findings provide important insights on plant isoprenoid emissions and species selection for landscaping, especially in areas with high O3 concentration.
Collapse
Affiliation(s)
- Xiangyang Yuan
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road 18, Haidian District, Beijing, 100085, China
| | - Zhaozhong Feng
- School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, 210044, China.
| | - Chunfang Hu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road 18, Haidian District, Beijing, 100085, China; Department of Environmental Science and Engineering, Beijing Technology and Business University, Beijing, 100048, China
| | - Kun Zhang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road 18, Haidian District, Beijing, 100085, China; Department of Environmental Science and Engineering, China University of Mining and Technology, Beijing, 100083, China
| | - Laiye Qu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road 18, Haidian District, Beijing, 100085, China.
| | - Elena Paoletti
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road 18, Haidian District, Beijing, 100085, China; Institute of Research on Terrestrial Ecosystems, National Research Council, via Madonna del Piano 10, 50019, Sesto Fiorentino, Italy
| |
Collapse
|
6
|
Optimization of extraction solvents, solid phase extraction and decoupling for quantitation of free isoprenoid diphosphates in Haematococcus pluvialis by liquid chromatography with tandem mass spectrometry. J Chromatogr A 2019; 1598:30-38. [PMID: 30929869 DOI: 10.1016/j.chroma.2019.03.051] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 03/14/2019] [Accepted: 03/22/2019] [Indexed: 01/19/2023]
Abstract
Isoprenoid diphosphates are important precursors actively participating in many downstream metabolisms; they are often in modified forms, e.g., protein-coupled or esterified form. Therefore, in vivo level of free isoprenoid diphosphates is quite low, ˜0.07 nmol/g fresh weight in plants. In order to directly measure the isoprenoid diphosphate pool during stress-induced accumulation of astaxanthin in Haematococcus pluvialis, the present study optimized several pretreatment procedures to enrich free isoprenoid diphosphates for high-pressure liquid chromatography with tandem mass spectrometry (HPLC-MS/MS) detection. Specifically, different extraction solvents, e.g., water, methanol, chloroform, and mixture of water, methanol, and chloroform (1:1:1, V/V/V), and solid phase extraction (SPE) columns (OASIS@ WAX and HLB Cartridges) were compared; and gentle decoupling by NaOH or trifluoroacetic acid (TFA) was introduced to release free isoprenoid diphosphates. Results found that solvent mixture of water, methanol and chloroform (1:1:1, V/V/V) showed the highest extraction efficiency (RE) for five isoprenoid diphosphates, ranging from 76.83% to 92.43%; HLB column showed the balanced recoveries ranging from 75.29% to 87.54%; and incubation with low NaOH (˜4.7 mmol/L) at 4 °C significantly increased detectable isoprenoid diphosphates in algal cells, some of which were undetectable or in trace level before NaOH decoupling. The method was applied to H. pluvialis cells under various stresses. Low levels of isoprenoid diphosphates were determined in most of the stresses used, e.g., 0.19 ± 0.09 to 0.98 ± 0.06 mg/g fresh weight (FW) for IPP/DMAPP, 0.35 ± 0.07 mg/g FW for GGPP and undetectable for FPP and GPP; while isoprenoid diphosphates were significantly accumulated in the dark to 3.27 ± 0.05, 0.17 ± 0.09, 1.81 ± 0.16 and 0.58 ± 0.07 mg/g FW for IPP/DMAPP, GPP, FPP and GGPP, respectively. These results implied that isoprenoid diphosphates were exhausted by downstream carotenogenesis under stress. Our work emphasizes NaOH decoupling for exact quantitation of in vivo isoprenoid diphosphates.
Collapse
|
7
|
Nagel R, Schmidt A, Peters RJ. Isoprenyl diphosphate synthases: the chain length determining step in terpene biosynthesis. PLANTA 2019; 249:9-20. [PMID: 30467632 DOI: 10.1007/s00425-018-3052-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 11/14/2018] [Indexed: 05/07/2023]
Abstract
This review summarizes the recent developments in the study of isoprenyl diphosphate synthases with an emphasis on analytical techniques, product length determination, and the physiological consequences of manipulating expression in planta. The highly diverse structures of all terpenes are synthesized from the five carbon precursors dimethylallyl diphosphate and a varying number of isopentenyl diphosphate units through 1'-4 alkylation reactions. These elongation reactions are catalyzed by isoprenyl diphosphate synthases (IDS). IDS are classified depending on the configuration of the ensuing double bond as trans- and cis-IDS. In addition, IDS are further stratified by the length of their prenyl diphosphate product. This review discusses analytical techniques for the determination of product length and the factors that control product length, with an emphasis on alternative mechanisms. With recent advances in analytics, multiple IDS of Arabidopsis thaliana have been recently reinvestigated and demonstrated to yield products of different lengths than originally reported, which is summarized here. As IDS dictate prenyl diphosphate length and thereby which class of terpenes is ultimately produced, another focus of this review is the impact that altering IDS expression has on terpenoid natural product accumulation. Finally, recent findings regarding the ability of a few IDS to not catalyze 1'-4 alkylation reactions, but instead produce irregular products, with unusual connectivity, or act as terpene synthases, are also discussed.
Collapse
Affiliation(s)
- Raimund Nagel
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, 50011, USA.
| | - Axel Schmidt
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knoell-Str. 8, 07745, Jena, Germany
| | - Reuben J Peters
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, 50011, USA
| |
Collapse
|
8
|
Yuan X, Shang B, Xu Y, Xin Y, Tian Y, Feng Z, Paoletti E. No significant interactions between nitrogen stimulation and ozone inhibition of isoprene emission in Cathay poplar. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 601-602:222-229. [PMID: 28554113 DOI: 10.1016/j.scitotenv.2017.05.138] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 05/13/2017] [Accepted: 05/15/2017] [Indexed: 05/24/2023]
Abstract
Isoprene emission from plants subject to a combination of ozone (O3) and nitrogen (N) has never been investigated. Cathay poplar (Populus cathayana) saplings were exposed to O3 (CF, charcoal-filtered air, NF, non-filtered ambient air and E-O3, non-filtered air +40ppb) and N treatments (N0, 0kgNha-1year-1, N50, 50kgNha-1year-1 and N100, 100kgNha-1year-1) for 96days. Increasing O3 exposure decreased isoprene emission (11.5% in NF and 57.9% in E-O3), as well as light-saturated photosynthetic rate (Asat) and chlorophyll content, while N load increased isoprene emission (19.6% in N50 and 33.4% in N100) as well as Asat and chlorophyll content. Although O3 and N interacted significantly in Asat, N did not mitigate the negative effects of O3 on isoprene emission, i.e. the combined effects were additive and did not interact. These results warrant more research on the combined effects of co-existing global change factors on future isoprene emission and atmospheric chemical processes.
Collapse
Affiliation(s)
- Xiangyang Yuan
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
| | - Bo Shang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yansen Xu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yue Xin
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Yuan Tian
- School of Food, Beijing Technology and Business University, Beijing 100048, China
| | - Zhaozhong Feng
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China.
| | - Elena Paoletti
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; CNR, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Florence, Italy
| |
Collapse
|
9
|
Schwab A, Illarionov B, Frank A, Kunfermann A, Seet M, Bacher A, Witschel MC, Fischer M, Groll M, Diederich F. Mechanism of Allosteric Inhibition of the Enzyme IspD by Three Different Classes of Ligands. ACS Chem Biol 2017; 12:2132-2138. [PMID: 28686408 DOI: 10.1021/acschembio.7b00004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Enzymes of the nonmevalonate pathway of isoprenoid biosynthesis are attractive targets for the development of herbicides and drugs against infectious diseases. While this pathway is essential for many pathogens and plants, mammals do not depend on it for the synthesis of isoprenoids. IspD, the third enzyme of the nonmevalonate pathway, is unique in that it has an allosteric regulatory site. We elucidated the binding mode of phenylisoxazoles, a new class of allosteric inhibitors. Allosteric inhibition is effected by large conformational changes of a loop region proximal to the active site. We investigated the different roles of residues in this loop by mutation studies and identified repulsive interactions with Asp291 and Asp292 to be responsible for inhibition. Crystallographic data and the response of mutant enzymes to three different classes of allosteric inhibitors provide an in-depth understanding of the allosteric mechanism. The obtained mutant enzymes show selective resistance to allosteric inhibitors and provide conceptually valuable information for future engineering of herbicide-resistant crops. We found that the isoprenoid precursors IPP and DMAPP are natural inhibitors of Arabidopsis thaliana IspD; however, they do not seem to bind to the allosteric site.
Collapse
Affiliation(s)
- Anatol Schwab
- Laboratorium
für Organische Chemie, ETH Zurich, Vladimir-Prelog-Weg 3, 8093 Zurich, Switzerland
| | - Boris Illarionov
- Hamburg
School of Food Science, Universität Hamburg Grindelallee
117, 20146 Hamburg, Germany
| | - Annika Frank
- Center
for Integrated Protein Science Munich, Lehrstuhl für Biochemie, Technische Universität München, Lichtenbergstrasse 4, 85748 Garching, Germany
| | - Andrea Kunfermann
- Center
for Integrated Protein Science Munich, Lehrstuhl für Biochemie, Technische Universität München, Lichtenbergstrasse 4, 85748 Garching, Germany
| | - Michael Seet
- Laboratorium
für Organische Chemie, ETH Zurich, Vladimir-Prelog-Weg 3, 8093 Zurich, Switzerland
| | - Adelbert Bacher
- Center
for Integrated Protein Science Munich, Lehrstuhl für Biochemie, Technische Universität München, Lichtenbergstrasse 4, 85748 Garching, Germany
| | | | - Markus Fischer
- Hamburg
School of Food Science, Universität Hamburg Grindelallee
117, 20146 Hamburg, Germany
| | - Michael Groll
- Center
for Integrated Protein Science Munich, Lehrstuhl für Biochemie, Technische Universität München, Lichtenbergstrasse 4, 85748 Garching, Germany
| | - François Diederich
- Laboratorium
für Organische Chemie, ETH Zurich, Vladimir-Prelog-Weg 3, 8093 Zurich, Switzerland
| |
Collapse
|
10
|
Yang T, Gao L, Hu H, Stoopen G, Wang C, Jongsma MA. Chrysanthemyl diphosphate synthase operates in planta as a bifunctional enzyme with chrysanthemol synthase activity. J Biol Chem 2014; 289:36325-35. [PMID: 25378387 PMCID: PMC4276892 DOI: 10.1074/jbc.m114.623348] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Indexed: 11/06/2022] Open
Abstract
Chrysanthemyl diphosphate synthase (CDS) is the first pathway-specific enzyme in the biosynthesis of pyrethrins, the most widely used plant-derived pesticide. CDS catalyzes c1'-2-3 cyclopropanation reactions of two molecules of dimethylallyl diphosphate (DMAPP) to yield chrysanthemyl diphosphate (CPP). Three proteins are known to catalyze this cyclopropanation reaction of terpene precursors. Two of them, phytoene and squalene synthase, are bifunctional enzymes with both prenyltransferase and terpene synthase activity. CDS, the other member, has been reported to perform only the prenyltransferase step. Here we show that the NDXXD catalytic motif of CDS, under the lower substrate conditions prevalent in plants, also catalyzes the next step, converting CPP into chrysanthemol by hydrolyzing the diphosphate moiety. The enzymatic hydrolysis reaction followed conventional Michaelis-Menten kinetics, with a Km value for CPP of 196 μm. For the chrysanthemol synthase activity, DMAPP competed with CPP as substrate. The DMAPP concentration required for half-maximal activity to produce chrysanthemol was ∼100 μm, and significant substrate inhibition was observed at elevated DMAPP concentrations. The N-terminal peptide of CDS was identified as a plastid-targeting peptide. Transgenic tobacco plants overexpressing CDS emitted chrysanthemol at a rate of 0.12-0.16 μg h(-1) g(-1) fresh weight. We propose that CDS should be renamed a chrysanthemol synthase utilizing DMAPP as substrate.
Collapse
Affiliation(s)
- Ting Yang
- From Business Unit PRI-Bioscience, Wageningen UR, P.O. Box 16, 6700 AA Wageningen, The Netherlands, the Laboratory of Entomology, Wageningen UR, P.O. Box 8031, 6700 EH Wageningen, The Netherlands, the Laboratory of Plant Physiology, Wageningen UR, P.O. Box 658, 6700 AR Wageningen, The Netherlands, and
| | - Liping Gao
- From Business Unit PRI-Bioscience, Wageningen UR, P.O. Box 16, 6700 AA Wageningen, The Netherlands
| | - Hao Hu
- the Key Laboratory for Biology of Horticultural Plants, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Geert Stoopen
- From Business Unit PRI-Bioscience, Wageningen UR, P.O. Box 16, 6700 AA Wageningen, The Netherlands
| | - Caiyun Wang
- the Key Laboratory for Biology of Horticultural Plants, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Maarten A Jongsma
- From Business Unit PRI-Bioscience, Wageningen UR, P.O. Box 16, 6700 AA Wageningen, The Netherlands,
| |
Collapse
|
11
|
Rasulov B, Bichele I, Laisk A, Niinemets Ü. Competition between isoprene emission and pigment synthesis during leaf development in aspen. PLANT, CELL & ENVIRONMENT 2014; 37:724-41. [PMID: 24033429 PMCID: PMC4411569 DOI: 10.1111/pce.12190] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Revised: 08/17/2013] [Accepted: 08/20/2013] [Indexed: 05/18/2023]
Abstract
In growing leaves, lack of isoprene synthase (IspS) is considered responsible for delayed isoprene emission, but competition for dimethylallyl diphosphate (DMADP), the substrate for both isoprene synthesis and prenyltransferase reactions in photosynthetic pigment and phytohormone synthesis, can also play a role. We used a kinetic approach based on post-illumination isoprene decay and modelling DMADP consumption to estimate in vivo kinetic characteristics of IspS and prenyltransferase reactions, and to determine the share of DMADP use by different processes through leaf development in Populus tremula. Pigment synthesis rate was also estimated from pigment accumulation data and distribution of DMADP use from isoprene emission changes due to alendronate, a selective inhibitor of prenyltransferases. Development of photosynthetic activity and pigment synthesis occurred with the greatest rate in 1- to 5-day-old leaves when isoprene emission was absent. Isoprene emission commenced on days 5 and 6 and increased simultaneously with slowing down of pigment synthesis. In vivo Michaelis-Menten constant (Km ) values obtained were 265 nmol m(-2) (20 μm) for DMADP-consuming prenyltransferase reactions and 2560 nmol m(-2) (190 μm) for IspS. Thus, despite decelerating pigment synthesis reactions in maturing leaves, isoprene emission in young leaves was limited by both IspS activity and competition for DMADP by prenyltransferase reactions.
Collapse
Affiliation(s)
- Bahtijor Rasulov
- Institute of Molecular and Cell Biology, University of Tartu, Riia 23 Tartu 51010, Estonia
| | - Irina Bichele
- Institute of Molecular and Cell Biology, University of Tartu, Riia 23 Tartu 51010, Estonia
| | - Agu Laisk
- Institute of Molecular and Cell Biology, University of Tartu, Riia 23 Tartu 51010, Estonia
| | - Ülo Niinemets
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, 51014 Tartu, Estonia
| |
Collapse
|
12
|
Zhou C, Li Z, Wiberley-Bradford AE, Weise SE, Sharkey TD. Isopentenyl diphosphate and dimethylallyl diphosphate/isopentenyl diphosphate ratio measured with recombinant isopentenyl diphosphate isomerase and isoprene synthase. Anal Biochem 2013; 440:130-6. [DOI: 10.1016/j.ab.2013.05.028] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2013] [Revised: 05/24/2013] [Accepted: 05/25/2013] [Indexed: 10/26/2022]
|
13
|
Weise SE, Li Z, Sutter AE, Corrion A, Banerjee A, Sharkey TD. Measuring dimethylallyl diphosphate available for isoprene synthesis. Anal Biochem 2013; 435:27-34. [DOI: 10.1016/j.ab.2012.11.031] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Revised: 11/19/2012] [Accepted: 11/19/2012] [Indexed: 11/17/2022]
|
14
|
Li Z, Sharkey TD. Metabolic profiling of the methylerythritol phosphate pathway reveals the source of post-illumination isoprene burst from leaves. PLANT, CELL & ENVIRONMENT 2013; 36:429-37. [PMID: 22831282 DOI: 10.1111/j.1365-3040.2012.02584.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The methylerythritol phosphate (MEP) pathway in plants produces the prenyl precursors for all plastidic isoprenoids, including carotenoids and quinones. The MEP pathway is also responsible for synthesis of approximately 600 Tg of isoprene per year, the largest non-methane hydrocarbon flux into the atmosphere. There have been few studies of the regulation of the MEP pathway in plants under physiological conditions. In this study, we combined gas exchange techniques and high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS-MS) and measured the profile of MEP pathway metabolites under different conditions. We report that in the MEP pathway, metabolites immediately preceding steps requiring reducing power were in high concentration. Inhibition of the MEP pathway by fosmidomycin caused deoxyxylulose phosphate accumulation in leaves as expected. Evidence is presented that accumulation of MEP pathway intermediates, primarily methylerythritol cyclodiphosphate, is responsible for the post-illumination isoprene burst phenomenon. Pools of intermediate metabolites stayed at approximately the same level 10 min after light was turned off, but declined eventually under prolonged darkness. In contrast, a strong inhibition of the second-to-last step of the MEP pathway caused suppression of isoprene emission in pure N(2). Our study suggests that reducing equivalents may be a key regulator of the MEP pathway and therefore isoprene emission from leaves.
Collapse
Affiliation(s)
- Ziru Li
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | | |
Collapse
|
15
|
Brilli F, Tsonev T, Mahmood T, Velikova V, Loreto F, Centritto M. Ultradian variation of isoprene emission, photosynthesis, mesophyll conductance, and optimum temperature sensitivity for isoprene emission in water-stressed Eucalyptus citriodora saplings. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:519-28. [PMID: 23293347 DOI: 10.1093/jxb/ers353] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Water availability is a major limiting factor on plant growth and productivity. Considering that Eucalyptus spp. are among the few plant species able to produce both isoprene and monoterpenes, experiments were designed to investigate the response of isoprene emission and isoprenoid concentrations in Eucalyptus citriodora saplings exposed to decreasing fraction of transpirable soil water (FTSW). In particular, this study aimed to assess: (a) the kinetic of water stress-induced variations in photosynthesis, isoprene emission, and leaf isoprenoid concentrations during progressive soil water shortage as a function of FTSW; (b) the ultradian control of isoprene emission and photosynthesis under limited soil water availability; and (c) the optimum temperature sensitivity of isoprene emission and photosynthesis under severe water stress. The optimum temperature for isoprene emission did not change under progressive soil water deficit. However, water stress induced a reallocation of carbon through the MEP/DOXP pathway resulting in a qualitative change of the stored isoprenoids. The ultradian trend of isoprene emission was also unaffected under water stress, and a similar ultradian trend of stomatal and mesophyll conductances was also observed, highlighting a tight coordination between diffusion limitations to photosynthesis during water stress. The kinetics of photosynthetic parameters and isoprene emission in response to decreasing FTSW in E. citriodora are strikingly similar to those measured in other plant functional types. These findings may be useful to refine the algorithms employed in process-based models aiming to precisely up-scale carbon assimilation and isoprenoid emissions at regional and global scales.
Collapse
Affiliation(s)
- Federico Brilli
- Institute of Agro-Environmental and Forest Biology, National Research Council, Via Salaria km 29, 300-00015 Monterotondo Scalo, Roma, Italy
| | | | | | | | | | | |
Collapse
|
16
|
Bracho-Nunez A, Welter S, Staudt M, Kesselmeier J. Plant-specific volatile organic compound emission rates from young and mature leaves of Mediterranean vegetation. ACTA ACUST UNITED AC 2011. [DOI: 10.1029/2010jd015521] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
17
|
Mongélard G, Seemann M, Boisson AM, Rohmer M, Bligny R, Rivasseau C. Measurement of carbon flux through the MEP pathway for isoprenoid synthesis by (31)P-NMR spectroscopy after specific inhibition of 2-C-methyl-d-erythritol 2,4-cyclodiphosphate reductase. Effect of light and temperature. PLANT, CELL & ENVIRONMENT 2011; 34:1241-7. [PMID: 21443577 DOI: 10.1111/j.1365-3040.2011.02322.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The methylerythritol 4-phosphate (MEP) and the mevalonate pathways are the unique synthesis routes for the precursors of all isoprenoids. An original mean to measure the carbon flux through the MEP pathway in plants is proposed by using cadmium as a total short-term inhibitor of 2-C-methyl-d-erythritol 2,4-cyclodiphosphate (MEcDP) reductase (GcpE) and measuring the accumulation rate of its substrate MEcDP by (31) P-NMR spectroscopy. The MEP pathway metabolic flux was determined in spinach (Spinacia oleracea), pea (Pisum sativum), Oregon grape (Mahonia aquifolium) and boxwood (Buxus sempervirens) leaves. In spinach, flux values were compared with the synthesis rate of major isoprenoids. The flux increases with light intensity (fourfold in the 200-1200 µmol m(-2) s(-1) PPFR range) and temperature (sevenfold in the 25-37 °C range). The relationship with the light and the temperature dependency of isoprenoid production downstream of the MEP pathway is discussed.
Collapse
Affiliation(s)
- Gaëlle Mongélard
- CEA, IRTSV, Laboratoire de Physiologie Cellulaire Végétale, UMR 5168, F-38054 Grenoble, France
| | | | | | | | | | | |
Collapse
|
18
|
Metabolomic analysis of Arabidopsis reveals hemiterpenoid glycosides as products of a nitrate ion-regulated, carbon flux overflow. Proc Natl Acad Sci U S A 2011; 108:10762-7. [PMID: 21670294 DOI: 10.1073/pnas.1018875108] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
An understanding of the balance between carbon and nitrogen assimilation in plants is key to future bioengineering for a range of applications. Metabolomic analysis of the model plant, Arabidopsis thaliana, using combined NMR-MS revealed the presence of two hemiterpenoid glycosides that accumulated in leaf tissue, to ~1% dry weight under repeated nitrate-deficient conditions. The formation of these isoprenoids was correlated with leaf nitrate concentrations that could also be assayed in the metabolomic data using a unique flavonoid-nitrate mass spectral adduct. Analysis of leaf and root tissue from plants grown in hydroponics with a variety of root stressors identified the conditions under which the isoprenoid pathway in leaves was diverted to the hemiterpenoids. These compounds were strongly induced by root wounding or oxidative stress and weakly induced by potassium deficiency. Other stresses such as cold, saline, and osmotic stress did not induce the compounds. Replacement of nitrate with ammonia failed to suppress the formation of the hemiterpenoids, indicating that nitrate sensing was a key factor. Feeding of intermediates was used to study aspects of 2-C-methyl-d-erythritol-4-phosphate pathway regulation leading to hemiterpenoid formation. The formation of the hemiterpenoids in leaves was strongly correlated with the induction of the phenylpropanoids scopolin and coniferin in roots of the same plants. These shunts of photosynthetic carbon flow are discussed in terms of overflow mechanisms that have some parallels with isoprene production in tree species.
Collapse
|
19
|
Vickers CE, Possell M, Laothawornkitkul J, Ryan AC, Hewitt CN, Mullineaux PM. Isoprene synthesis in plants: lessons from a transgenic tobacco model. PLANT, CELL & ENVIRONMENT 2011; 34:1043-1053. [PMID: 21388420 DOI: 10.1111/j.1365-3040.2011.02303.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Isoprene is a highly reactive gas, and is emitted in such large quantities from the biosphere that it substantially affects the oxidizing potential of the atmosphere. Relatively little is known about the control of isoprene emission at the molecular level. Using transgenic tobacco lines harbouring a poplar isoprene synthase gene, we examined control of isoprene emission. Isoprene synthase required chloroplastic localization for catalytic activity, and isoprene was produced via the methyl erythritol (MEP) pathway from recently assimilated carbon. Emission patterns in transgenic tobacco plants were remarkably similar to naturally emitting plants under a wide variety of conditions. Emissions correlated with photosynthetic rates in developing and mature leaves, and with the amount of isoprene synthase protein in mature leaves. Isoprene synthase protein levels did not change under short-term increase in heat/light, despite an increase in emissions under these conditions. A robust circadian pattern could be observed in emissions from long-day plants. The data support the idea that substrate supply and changes in enzyme kinetics (rather than changes in isoprene synthase levels or post-translational regulation of activity) are the primary controls on isoprene emission in mature transgenic tobacco leaves.
Collapse
Affiliation(s)
- Claudia E Vickers
- Department of Biological Sciences, Essex University, Colchester, Essex C04 3SQLancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, England, UK
| | - Malcolm Possell
- Department of Biological Sciences, Essex University, Colchester, Essex C04 3SQLancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, England, UK
| | - Jullada Laothawornkitkul
- Department of Biological Sciences, Essex University, Colchester, Essex C04 3SQLancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, England, UK
| | - Annette C Ryan
- Department of Biological Sciences, Essex University, Colchester, Essex C04 3SQLancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, England, UK
| | - C Nicholas Hewitt
- Department of Biological Sciences, Essex University, Colchester, Essex C04 3SQLancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, England, UK
| | - Philip M Mullineaux
- Department of Biological Sciences, Essex University, Colchester, Essex C04 3SQLancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, England, UK
| |
Collapse
|
20
|
Vickers CE, Possell M, Nicholas Hewitt C, Mullineaux PM. Genetic structure and regulation of isoprene synthase in Poplar (Populus spp.). PLANT MOLECULAR BIOLOGY 2010; 73:547-558. [PMID: 20467886 DOI: 10.1007/s11103-010-9642-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2010] [Accepted: 04/26/2010] [Indexed: 05/29/2023]
Abstract
Isoprene is a volatile 5-carbon hydrocarbon derived from the chloroplastic methylerythritol 2-C-methyl-D: -erythritol 4-phosphate isoprenoid pathway. In plants, isoprene emission is controlled by the enzyme isoprene synthase; however, there is still relatively little known about the genetics and regulation of this enzyme. Isoprene synthase gene structure was analysed in three poplar species. It was found that genes encoding stromal isoprene synthase exist as a small gene family, the members of which encode virtually identical proteins and are differentially regulated. Accumulation of isoprene synthase protein is developmentally regulated, but does not differ between sun and shade leaves and does not increase when heat stress is applied. Our data suggest that, in mature leaves, isoprene emission rates are primarily determined by substrate (dimethylallyl diphosphate, DMADP) availability. In immature leaves, where isoprene synthase levels are variable, emission levels are also influenced by the amount of isoprene synthase protein. No thylakoid isoforms could be identified in Populus alba or in Salix babylonica. Together, these data show that control of isoprene emission at the genetic level is far more complicated than previously assumed.
Collapse
Affiliation(s)
- Claudia E Vickers
- Department of Biological Sciences, Essex University, Colchester C043SQ, UK.
| | | | | | | |
Collapse
|
21
|
Nagegowda DA, Rhodes D, Dudareva N. Chapter 10 The Role of the Methyl-Erythritol-Phosphate (MEP)Pathway in Rhythmic Emission of Volatiles. THE CHLOROPLAST 2010. [DOI: 10.1007/978-90-481-8531-3_10] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
|
22
|
Lichtenthaler HK. Chapter 7 The Non-mevalonate DOXP/MEP (Deoxyxylulose 5-Phosphate/Methylerythritol 4-Phosphate) Pathway of Chloroplast Isoprenoid and Pigment Biosynthesis. THE CHLOROPLAST 2010. [DOI: 10.1007/978-90-481-8531-3_7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
23
|
Rasulov B, Hüve K, Välbe M, Laisk A, Niinemets U. Evidence that light, carbon dioxide, and oxygen dependencies of leaf isoprene emission are driven by energy status in hybrid aspen. PLANT PHYSIOLOGY 2009; 151:448-60. [PMID: 19587097 PMCID: PMC2736009 DOI: 10.1104/pp.109.141978] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2009] [Accepted: 07/05/2009] [Indexed: 05/19/2023]
Abstract
Leaf isoprene emission scales positively with light intensity, is inhibited by high carbon dioxide (CO(2)) concentrations, and may be enhanced or inhibited by low oxygen (O(2)) concentrations, but the mechanisms of environmental regulation of isoprene emission are still not fully understood. Emission controls by isoprene synthase, availability of carbon intermediates, or energetic cofactors have been suggested previously. In this study, we asked whether the short-term (tens of minutes) environmental control of isoprene synthesis results from alterations in the immediate isoprene precursor dimethylallyldiphosphate (DMADP) pool size, and to what extent DMADP concentrations are affected by the supply of carbon and energetic metabolites. A novel in vivo method based on postillumination isoprene release was employed to measure the pool size of DMADP simultaneously with the rates of isoprene emission and net assimilation at different light intensities and CO(2) and O(2) concentrations. Both net assimilation and isoprene emission rates increased hyperbolically with light intensity. The photosynthetic response to CO(2) concentration was also hyperbolic, while the CO(2) response curve of isoprene emission exhibited a maximum at close to CO(2) compensation point. Low O(2) positively affected both net assimilation and isoprene emission. In all cases, the variation in isoprene emission was matched with changes in DMADP pool size. The results of these experiments suggest that DMADP pool size controls the response of isoprene emission to light intensity and to CO(2) and O(2) concentrations and that the pool size is determined by the level of energetic metabolites generated in photosynthesis.
Collapse
Affiliation(s)
- Bahtijor Rasulov
- Department of Plant Physiology, University of Tartu, 51010 Tartu, Estonia
| | | | | | | | | |
Collapse
|
24
|
Rasulov B, Copolovici L, Laisk A, Niinemets U. Postillumination isoprene emission: in vivo measurements of dimethylallyldiphosphate pool size and isoprene synthase kinetics in aspen leaves. PLANT PHYSIOLOGY 2009; 149:1609-18. [PMID: 19129417 PMCID: PMC2649399 DOI: 10.1104/pp.108.133512] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2008] [Accepted: 01/04/2009] [Indexed: 05/20/2023]
Abstract
The control of foliar isoprene emission is shared between the activity of isoprene synthase, the terminal enzyme catalyzing isoprene formation from dimethylallyldiphosphate (DMADP), and the pool size of DMADP. Due to limited in vivo information of isoprene synthase kinetic characteristics and DMADP pool sizes, the relative importance of these controls is under debate. In this study, the phenomenon of postillumination isoprene release was employed to develop an in vivo method for estimation of the DMADP pool size and to determine isoprene synthase kinetic characteristics in hybrid aspen (Populus tremula x Populus tremuloides) leaves. The method is based on observations that after switching off the light, isoprene emission continues for 250 to 300 s and that the integral of the postillumination isoprene emission is strongly correlated with the isoprene emission rate before leaf darkening, thus quantitatively estimating the DMADP pool size associated with leaf isoprene emission. In vitro estimates demonstrated that overall leaf DMADP pool was very large, almost an order of magnitude larger than the in vivo pool. Yet, the difference between total DMADP pools in light and in darkness (light-dependent DMADP pool) was tightly correlated with the in vivo estimates of the DMADP pool size that is responsible for isoprene emission. Variation in in vivo DMADP pool size was obtained by varying light intensity and atmospheric CO(2) and O(2) concentrations. From these experiments, the in vivo kinetic constants of isoprene synthase were determined. In vivo isoprene synthase kinetic characteristics suggested that isoprene synthase mainly operates under substrate limitation and that short-term light, CO(2), and O(2) dependencies of isoprene emission result from variation in DMADP pool size rather than from modifications in isoprene synthase activity.
Collapse
Affiliation(s)
- Bahtijor Rasulov
- Department of Plant Physiology, University of Tartu, 51010 Tartu, Estonia
| | | | | | | |
Collapse
|
25
|
Rivasseau C, Seemann M, Boisson AM, Streb P, Gout E, Douce R, Rohmer M, Bligny R. Accumulation of 2-C-methyl-D-erythritol 2,4-cyclodiphosphate in illuminated plant leaves at supraoptimal temperatures reveals a bottleneck of the prokaryotic methylerythritol 4-phosphate pathway of isoprenoid biosynthesis. PLANT, CELL & ENVIRONMENT 2009; 32:82-92. [PMID: 19021881 DOI: 10.1111/j.1365-3040.2008.01903.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Metabolic profiling using phosphorus nuclear magnetic resonance ((31)P-NMR) revealed that the leaves of different herbs and trees accumulate 2-C-methyl-D-erythritol 2,4-cyclodiphosphate (MEcDP), an intermediate of the methylerythritol 4-phosphate (MEP) pathway, during bright and hot days. In spinach (Spinacia oleracea L.) leaves, its accumulation closely depended on irradiance and temperature. MEcDP was the only (31)P-NMR-detected MEP pathway intermediate. It remained in chloroplasts and was a sink for phosphate. The accumulation of MEcDP suggested that its conversion rate into 4-hydroxy-3-methylbut-2-enyl diphosphate, catalysed by (E)-4-hydroxy-3-methylbut-2-enyl diphosphate synthase (GcpE), was limiting under oxidative stress. Indeed, O(2) and ROS produced by photosynthesis damage this O(2)-hypersensitive [4Fe-4S]-protein. Nevertheless, as isoprenoid synthesis was not inhibited, damages were supposed to be continuously repaired. On the contrary, in the presence of cadmium that reinforced MEcDP accumulation, the MEP pathway was blocked. In vitro studies showed that Cd(2+) does not react directly with fully assembled GcpE, but interferes with its reconstitution from recombinant GcpE apoprotein and prosthetic group. Our results suggest that MEcDP accumulation in leaves may originate from both GcpE sensitivity to oxidative environment and limitations of its repair. We propose a model wherein GcpE turnover represents a bottleneck of the MEP pathway in plant leaves simultaneously exposed to high irradiance and hot temperature.
Collapse
Affiliation(s)
- Corinne Rivasseau
- Laboratoire de Physiologie Cellulaire Végétale, Unité Mixte de Recherche, institut de Recherche en Technologies et Sciences pour le Vivant, CEA, Grenoble, France
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
Terpenoids (isoprenoids) encompass more than 40 000 structures and form the largest class of all known plant metabolites. Some terpenoids have well-characterized physiological functions that are common to most plant species. In addition, many of the structurally diverse plant terpenoids may function in taxonomically more discrete, specialized interactions with other organisms. Historically, specialized terpenoids, together with alkaloids and many of the phenolics, have been referred to as secondary metabolites. More recently, these compounds have become widely recognized, conceptually and/or empirically, for their essential ecological functions in plant biology. Owing to their diverse biological activities and their diverse physical and chemical properties, terpenoid plant chemicals have been exploited by humans as traditional biomaterials in the form of complex mixtures or in the form of more or less pure compounds since ancient times. Plant terpenoids are widely used as industrially relevant chemicals, including many pharmaceuticals, flavours, fragrances, pesticides and disinfectants, and as large-volume feedstocks for chemical industries. Recently, there has been a renaissance of awareness of plant terpenoids as a valuable biological resource for societies that will have to become less reliant on petrochemicals. Harnessing the powers of plant and microbial systems for production of economically valuable plant terpenoids requires interdisciplinary and often expensive research into their chemistry, biosynthesis and genomics, as well as metabolic and biochemical engineering. This paper provides an overview of the formation of hemi-, mono-, sesqui- and diterpenoids in plants, and highlights some well-established examples for these classes of terpenoids in the context of biomaterials and biofuels.
Collapse
Affiliation(s)
- Jörg Bohlmann
- Michael Smith Laboratories, 321-2185 East Mall, University of British Columbia, Vancouver, BC, Canada.
| | | |
Collapse
|
27
|
Wiberley AE, Donohue AR, Meier ME, Westphal MM, Sharkey TD. Regulation of isoprene emission in Populus trichocarpa leaves subjected to changing growth temperature. PLANT, CELL & ENVIRONMENT 2008; 31:258-267. [PMID: 17996012 DOI: 10.1111/j.1365-3040.2007.01758.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The hydrocarbon isoprene is emitted in large quantities from numerous plant species, and has a substantial impact on atmospheric chemistry. Temperature affects isoprene emission at several levels: the temperature at which emission is measured, the temperature at which leaves develop, and the temperatures to which a mature leaf is exposed in the days prior to emission measurement. The molecular regulation of the response to the last of these factors was investigated in this study. When plants were grown at 20 degrees C and moved from 20 to 30 degrees C and back, or grown at 30 degrees C and moved from 30 to 20 degrees C and back, their isoprene emission peaked within 3 h of the move and stabilized over the following 3 d. Trees that developed at 20 degrees C and experienced 30 degrees C episodes had higher isoprene emission capacities than did leaves grown exclusively at 20 degrees C, even 2 weeks after the last 30 degrees C episode. The levels and extractable activities of isoprene synthase protein, which catalyses the synthesis of isoprene, and those of dimethylallyl diphosphate (DMADP), its substrate, alone could not explain observed variations in isoprene emission. Therefore, we conclude that control of isoprene emission in mature leaves is shared between isoprene synthase protein and DMADP supply.
Collapse
Affiliation(s)
- Amy E Wiberley
- Department of Botany, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | | | | | | | |
Collapse
|
28
|
Grote R, Niinemets U. Modeling volatile isoprenoid emissions--a story with split ends. PLANT BIOLOGY (STUTTGART, GERMANY) 2008; 10:8-28. [PMID: 18211545 DOI: 10.1055/s-2007-964975] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Accurate prediction of plant-generated volatile isoprenoid fluxes is necessary for reliable estimation of atmospheric ozone and aerosol formation potentials. In recent years, significant progress has been made in understanding the environmental and physiological controls on isoprenoid emission and in scaling these emissions to canopy and landscape levels. We summarize recent developments and compare different approaches for simulating volatile isoprenoid emission and scaling up to whole forest canopies with complex architecture. We show that the current developments in modeling volatile isoprenoid emissions are "split-ended" with simultaneous but separated efforts in fine-tuning the empirical emission algorithms and in constructing process-based models. In modeling volatile isoprenoid emissions, simplified leaf-level emission algorithms (Guenther algorithms) are highly successful, particularly after scaling these models up to whole regions, where the influences of different ecosystem types, ontogenetic stages, and variations in environmental conditions on emission rates and dynamics partly cancel out. However, recent experimental evidence indicates important environmental effects yet unconsidered and emphasize, the importance of a highly dynamic plant acclimation in space and time. This suggests that current parameterizations are unlikely to hold in a globally changing and dynamic environment. Therefore, long-term predictions using empirical algorithms are not necessarily reliable. We show that process-based models have large potential to capture the influence of changing environmental conditions, in particular if the leaf models are linked with physiologically based whole-plant models. This combination is also promising in considering the possible feedback impacts of emissions on plant physiological status such as mitigation of thermal and oxidative stresses by volatile isoprenoids. It might be further worth while to incorporate main features of these approaches in regional empirically-based emission estimations thereby merging the "split ends".
Collapse
Affiliation(s)
- R Grote
- Research Center Karlsruhe GmbH, Institute for Meteorology and Climate Research, Atmospheric Environmental Research (IMK-IFU), Kreuzeckbahnstrasse 19, 82467 Garmisch-Partenkirchen, Germany.
| | | |
Collapse
|
29
|
Lichtenthaler HK. Biosynthesis, accumulation and emission of carotenoids, alpha-tocopherol, plastoquinone, and isoprene in leaves under high photosynthetic irradiance. PHOTOSYNTHESIS RESEARCH 2007; 92:163-79. [PMID: 17634750 DOI: 10.1007/s11120-007-9204-y] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2007] [Accepted: 05/24/2007] [Indexed: 05/03/2023]
Abstract
The localization of isoprenoid lipids in chloroplasts, the accumulation of particular isoprenoids under high irradiance conditions, and channelling of photosynthetically fixed carbon into plastidic thylakoid isoprenoids, volatile isoprenoids, and cytosolic sterols are reviewed. During leaf and chloroplast development in spring plastidic isoprenoid biosynthesis provides primarily thylakoid carotenoids, the phytyl side-chain of chlorophylls and the electron carriers phylloquinone K1, alpha-tocoquinone and alpha-tocopherol, as well as the nona-prenyl side-chain of plastoquinone-9. Under high irradiance, plants develop sun leaves and high light (HL) leaves with sun-type chloroplasts that possess, besides higher photosynthetic CO2 assimilation rates, different quantitative levels of pigments and prenylquinones as compared to shade leaves and low light (LL) leaves. After completion of chloroplast thylakoid synthesis plastidic isoprenoid biosynthesis continues at high irradiance conditions, constantly accumulating alpha-tocopherol (alpha-T) and the reduced form of plastoquinone-9 (PQ-9H2) deposited in the steadily enlarging osmiophilic plastoglobuli, the lipid reservoir of the chloroplast stroma. In sun leaves of beech (Fagus) and in 3-year-old sunlit Ficus leaves the level of alpha-T and PQ-9 can exceed that of chlorophyll b. Most plants respond to HL conditions (sun leaves, leaves suddenly lit by the sun) with a 1.4-2-fold increase of xanthophyll cycle carotenoids (violaxanthin, zeaxanthin, neoxanthin), an enhanced operation of the xanthophyll cycle and an increase of beta-carotene levels. This is documented by significantly lower values for the weight ratio chlorophylls to carotenoids (range: 3.6-4.6) as compared to shade and LL leaves (range: 4.8-7.0). Many plant leaves emit under HL and high temperature conditions at high rates the volatile compounds isoprene (broadleaf trees) or methylbutenol (American ponderosa pines), both of which are formed via the plastidic 1-deoxy-D: -xylulose-phosphate/2-C-methylerythritol 5-phosphate (DOXP/MEP) pathway. Other plants by contrast, accumulate particular mono- and diterpenes. Under adequate photosynthetic conditions the chloroplastidic DOXP/MEP isoprenoid pathway essentially contributes, with its C5 isoprenoid precusors, to cytosolic sterol biosynthesis. The possible cross-talk between the two cellular isoprenoid pathways, the acetate/MVA and the DOXP/MEP pathways, that preferentially proceeds in a plastid-to-cytosol direction, is shortly discussed.
Collapse
Affiliation(s)
- Hartmut K Lichtenthaler
- Botanisches Institut (Molecular Biology and Biochemistry of Plants), University of Karlsruhe, Kaiserstr. 12, 76133 Karlsruhe, Germany.
| |
Collapse
|
30
|
Brilli F, Barta C, Fortunati A, Lerdau M, Loreto F, Centritto M. Response of isoprene emission and carbon metabolism to drought in white poplar (Populus alba) saplings. THE NEW PHYTOLOGIST 2007; 175:244-254. [PMID: 17587373 DOI: 10.1111/j.1469-8137.2007.02094.x] [Citation(s) in RCA: 130] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The mechanism uncoupling isoprene emission and photosynthesis under drought was investigated in Populus alba saplings. Isoprene emission, incorporation of 13C into the isoprene molecule, isoprene synthase (ISPS) activity, concentration and gene expression, and photosynthesis were measured as a function of the fraction of transpirable soil water (FTSW) and in plants recovering from drought. Photosynthesis sharply declined below FTSW30 (a FTSW of 30%) and its inhibition was not caused by metabolic factors. A decline in isoprene emission was only evident towards the FTSW endpoint. 13C incorporation into isoprene was lower when photosynthesis was constrained by drought. ISPS activity was inhibited by mild drought, while ISPS gene expression and concentration declined in concert with isoprene emission at the FTSW endpoint. Following rewatering, isoprene emission was higher than, and photosynthesis was similar to, prestress values. ISPS activity and concentration, and 13C incorporation into isoprene, also rapidly recovered to prestress values, while ISPS gene expression remained low in rewatered plants. Our experiment revealed a larger contribution of alternative carbon sources to isoprene emission only when photosynthesis was dramatically constrained by drought. Isoprene emission was likely controlled at the posttranscriptional level under severe drought.
Collapse
Affiliation(s)
- Federico Brilli
- CNR - Istituto di Biologia Agroambientale e Forestale, Via Salaria km 29.300, 00016 Monterotondo Scalo (Roma), Italy
| | - Csengele Barta
- CNR - Istituto di Biologia Agroambientale e Forestale, Via Salaria km 29.300, 00016 Monterotondo Scalo (Roma), Italy
| | - Alessio Fortunati
- CNR - Istituto di Biologia Agroambientale e Forestale, Via Salaria km 29.300, 00016 Monterotondo Scalo (Roma), Italy
| | - Manuel Lerdau
- Department of Environmental Sciences, University of Virginia, Clark Hall, 291 McCormick Road, PO Box 400123, Charlottesville, VA 22904-4123, USA
| | - Francesco Loreto
- CNR - Istituto di Biologia Agroambientale e Forestale, Via Salaria km 29.300, 00016 Monterotondo Scalo (Roma), Italy
| | - Mauro Centritto
- CNR - Istituto sull'Inquinamento Atmosferico, Via Salaria km 29.300, 00016 Monterotondo Stazione, Rome, Italy
| |
Collapse
|
31
|
Nogués I, Brilli F, Loreto F. Dimethylallyl diphosphate and geranyl diphosphate pools of plant species characterized by different isoprenoid emissions. PLANT PHYSIOLOGY 2006; 141:721-30. [PMID: 16461390 PMCID: PMC1475482 DOI: 10.1104/pp.105.073213] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Dimethylallyl diphosphate (DMADP) and geranyl diphosphate (GDP) are the last precursors of isoprene and monoterpenes emitted by leaves, respectively. DMADP and GDP pools were measured in leaves of plants emitting isoprene (Populus alba), monoterpenes (Quercus ilex and Mentha piperita), or nonemitting isoprenoids (Prunus persica). Detectable pools were found in all plant species, but P. persica showed the lowest pool size, which indicates a limitation of the whole pathway leading to isoprenoid biosynthesis in nonemitting species. The pools of DMADP and GDP of nonemitting, isoprene-emitting, and monoterpene-emitting species were partially labeled (generally 40%-60% of total carbon-incorporated (13)C) within the same time by which volatile isoprenoids are fully labeled (15 min). This indicates the coexistence of two pools for both precursors, the rapidly labeled pool presumably occurring in chloroplasts and thereby synthesized by the methylerythritol phosphate pathway and the nonlabeled pool presumably located in the cytosol and synthesized by the mevalonic pathway. In M. piperita storing monoterpenes in specialized leaf structures, the GDP pool remained totally unlabeled, indicating either that monoterpenes are totally formed by the mevalonic pathway or that labeling occurs slowly in comparison to the large pool of stored monoterpenes in this plant. The pools of DMADP and GDP increased during the season (from May to July) but decreased when the leaf was darkened or exposed to very high temperature. In the dark, the pool of DMADP of the isoprene-emitting species decreased faster than the pool of GDP. However, after 6 h of darkness, both pools were depleted to about 10% of the pool size in illuminated leaves. This indicates that both the chloroplastic and the cytosolic pools of precursors are depleted in the dark. When comparing measurements over the season and at different temperatures, an inverse correlation was observed between isoprene emission by P. alba and the DMADP pool size and between monoterpene emission by Q. ilex and the GDP pool size. This suggests that the pool size does not limit the emission of isoprenoids. Rather, it indicates that the flux of volatile isoprenoids effectively controls the size of their pools of precursors.
Collapse
Affiliation(s)
- Isabel Nogués
- Consiglio Nazionale delle Ricerche, Istituto di Biologia Agroambientale e Forestale, 00016 Monterotondo Scalo, Rome, Italy
| | | | | |
Collapse
|
32
|
Seemann M, Tse Sum Bui B, Wolff M, Miginiac-Maslow M, Rohmer M. Isoprenoid biosynthesis in plant chloroplasts via the MEP pathway: direct thylakoid/ferredoxin-dependent photoreduction of GcpE/IspG. FEBS Lett 2006; 580:1547-52. [PMID: 16480720 DOI: 10.1016/j.febslet.2006.01.082] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2006] [Accepted: 01/23/2006] [Indexed: 11/25/2022]
Abstract
In the methylerythritol phosphate pathway for isoprenoid biosynthesis, the GcpE/IspG enzyme catalyzes the conversion of 2-C-methyl-d-erythritol 2,4-cyclodiphosphate into (E)-4-hydroxy-3-methylbut-2-enyl diphosphate. This reaction requires a double one-electron transfer involving a [4Fe-4S] cluster. A thylakoid preparation from spinach chloroplasts was capable in the presence of light to act as sole electron donor for the plant GcpE Arabidopsis thaliana in the absence of any pyridine nucleotide. This is in sharp contrast with the bacterial Escherichia coli GcpE, which requires flavodoxin/flavodoxin reductase and NADPH as reducing system and represents the first proof that the electron flow from photosynthesis can directly act in phototrophic organisms as reducer in the 2-C-methyl-d-erythritol 4-phosphate pathway, most probably via ferredoxin, in the absence of any reducing cofactor. In the dark, the plant GcpE catalysis requires in addition of ferredoxin NADP(+)/ferredoxin oxido-reductase and NADPH as electron shuttle.
Collapse
Affiliation(s)
- Myriam Seemann
- Université Louis Pasteur/CNRS, Institut de Chimie LC3/UMR 7177, 4 rue Blaise Pascal, 67070 Strasbourg Cedex, France
| | | | | | | | | |
Collapse
|
33
|
Tholl D, Boland W, Hansel A, Loreto F, Röse USR, Schnitzler JP. Practical approaches to plant volatile analysis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2006; 45:540-60. [PMID: 16441348 DOI: 10.1111/j.1365-313x.2005.02612.x] [Citation(s) in RCA: 310] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Plants emit volatile organic compounds (VOCs) that play important roles in their interaction with the environment and have a major impact on atmospheric chemistry. The development of static and dynamic techniques for headspace collection of volatiles in combination with gas chromatography-mass spectrometry analysis has significantly improved our understanding of the biosynthesis and ecology of plant VOCs. Advances in automated analysis of VOCs have allowed the monitoring of fast changes in VOC emissions and facilitated in vivo studies of VOC biosynthesis. This review presents an overview of methods for the analysis of plant VOCs, including their advantages and disadvantages, with a focus on the latest technical developments. It provides guidance on how to select appropriate instrumentation and protocols for biochemical, physiological and ecologically relevant applications. These include headspace analyses of plant VOCs emitted by the whole organism, organs or enzymes as well as advanced on-line analysis methods for simultaneous measurements of VOC emissions with other physiological parameters.
Collapse
Affiliation(s)
- Dorothea Tholl
- Department of Biological Sciences, Virginia Polytechnic and State University, Fralin Biotech Center, West Campus Drive, Blacksburg, VA 24061, USA.
| | | | | | | | | | | |
Collapse
|
34
|
Abstract
Isoprenoids represent the oldest class of known low molecular-mass natural products synthesized by plants. Their biogenesis in plastids, mitochondria and the endoplasmic reticulum-cytosol proceed invariably from the C5 building blocks, isopentenyl diphosphate and/or dimethylallyl diphosphate according to complex and reiterated mechanisms. Compounds derived from the pathway exhibit a diverse spectrum of biological functions. This review centers on advances obtained in the field based on combined use of biochemical, molecular biology and genetic approaches. The function and evolutionary implications of this metabolism are discussed in relation with seminal informations gathered from distantly but related organisms.
Collapse
Affiliation(s)
- Florence Bouvier
- Institut de Biologie Moléculaire des Plantes du CNRS (UPR2357) et Université Louis Pasteur, 12 rue du Général Zimmer, 67084 Strasbourg Cedex, France
| | | | | |
Collapse
|
35
|
Mayrhofer S, Teuber M, Zimmer I, Louis S, Fischbach RJ, Schnitzler JP. Diurnal and seasonal variation of isoprene biosynthesis-related genes in grey poplar leaves. PLANT PHYSIOLOGY 2005; 139:474-84. [PMID: 16126852 PMCID: PMC1203396 DOI: 10.1104/pp.105.066373] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Transcript levels of mRNA from 1-deoxy-D-xylulose 5-phosphate reductoisomerase (PcDXR), isoprene synthase (PcISPS), and phytoene synthase (PcPSY) showed strong seasonal variations in leaves of Grey poplar (Populus x canescens [Aiton] Sm.). These changes were dependent on the developmental stage and were strongly correlated to temperature and light. The expression rates of the genes PcDXR and PcISPS were found to be significantly correlated to each other, whereas the expression of the PcPSY gene showed a different seasonal pattern. Protein concentration and enzyme activity of PcISPS showed distinct seasonal patterns peaking in late summer, whereas highest transcription levels of PcISPS were observed in early summer. Moreover, correlation between PcISPS protein concentration and enzyme activity changed, in particular in autumn, when PcISPS protein levels remained high while enzyme activity declined, indicating posttranslational modifications of the enzyme. The positive correlation between dimethylallyl diphosphate levels and PcISPS protein content was found to be consistent with the demonstrated synchronized regulation of PcDXR and PcISPS, suggesting that metabolic flux through the 1-deoxy-D-xylulose 5-phosphate pathway and isoprene emission capacity are closely intercoordinated. Transcript levels of PcISPS showed strong diurnal variation with maximal values before midday in contrast to PcDXR, whose gene expression exhibited no clear intraday changes. During the course of a day, in vitro PcISPS activities did not change, whereas leaf dimethylallyl diphosphate levels and isoprene emission showed strong diurnal variations depending on actual temperature and light profiles on the respective day. These results illustrate that the regulation of isoprene biosynthesis in Grey poplar leaves seems to happen on transcriptional, posttranslational, and metabolic levels and is highly variable with respect to seasonal and diurnal changes in relation to temperature and light.
Collapse
Affiliation(s)
- Sabine Mayrhofer
- Forschungszentrum Karlsruhe GmbH, Institut für Meteorologie und Klimaforschung, Atmosphärische Umweltforschung, Garmisch-Partenkirchen, Germany
| | | | | | | | | | | |
Collapse
|
36
|
Owen SM, Peñuelas J. Opportunistic emissions of volatile isoprenoids. TRENDS IN PLANT SCIENCE 2005; 10:420-6. [PMID: 16098785 DOI: 10.1016/j.tplants.2005.07.010] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2005] [Revised: 06/21/2005] [Accepted: 07/26/2005] [Indexed: 05/04/2023]
Abstract
Isoprene, monoterpenes and sesquiterpenes are synthesized and emitted by some plant species, but not all plant species have this ability. These volatile, nonessential isoprenoid compounds share the same biochemical precursors as larger essential isoprenoids such as gibberellic acids and carotenoids. They have many protective and ecological functions for the plant species that produce them, but plant species that do not produce these compounds also grow and reproduce successfully. Here, we develop an 'opportunist hypothesis' suggesting that (i) volatile isoprenoid production takes advantage of dimethylallyl diphosphate (DMAPP) and its isomer isopentenyl diphosphate (IPP), which are synthesized primarily to produce essential isoprenoids, and (ii) conditions affecting synthesis of the higher isoprenoids will affect the production and emission of volatile isoprenoids.
Collapse
Affiliation(s)
- Susan M Owen
- Unitat d'Ecofisiologia CSIC-CEAB-CREAF, CREAF (Centre de Recerca Ecològica i Aplicacions Forestals), Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain.
| | | |
Collapse
|
37
|
Funk JL. Variation in isoprene emission fromQuercus rubra: Sources, causes, and consequences for estimating fluxes. ACTA ACUST UNITED AC 2005. [DOI: 10.1029/2004jd005229] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
38
|
Wolfertz M, Sharkey TD, Boland W, Kühnemann F. Rapid regulation of the methylerythritol 4-phosphate pathway during isoprene synthesis. PLANT PHYSIOLOGY 2004; 135:1939-45. [PMID: 15286290 PMCID: PMC520765 DOI: 10.1104/pp.104.043737] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2004] [Revised: 05/25/2004] [Accepted: 05/26/2004] [Indexed: 05/20/2023]
Abstract
More volatile organic carbon is lost from plants as isoprene than any other molecule. This flux of carbon to the atmosphere affects atmospheric chemistry and can serve as a substrate for ozone production in polluted air. Isoprene synthesis may help leaves cope with heatflecks and active oxygen species. Isoprene synthase, an enzyme related to monoterpene synthases, converts dimethylallyl diphosphate derived from the methylerythritol 4-phosphate pathway to isoprene. We used dideuterated deoxyxylulose (DOX-d(2)) to study the regulation of the isoprene biosynthetic pathway. Exogenous DOX-d(2) displaced endogenous sources of carbon for isoprene synthesis without increasing the overall rate of isoprene synthesis. However, at higher concentrations, DOX-d(2) completely suppressed isoprene synthesis from endogenous sources and increased the overall rate of isoprene synthesis. We interpret these results to indicate strong feedback control of deoxyxylulose-5-phosphate synthase. We related the emission of labeled isoprene to the concentration of labeled dimethylallyl diphosphate in order to estimate the in situ K(m) of isoprene synthase. The results confirm that isoprene synthase has a K(m) 10- to 100-fold higher for its allylic diphosphate substrate than related monoterpene synthases for geranyl diphosphate.
Collapse
Affiliation(s)
- Michael Wolfertz
- Institut für Angewandte Physik, Universität Bonn, D-53115 Bonn, Germany
| | | | | | | |
Collapse
|
39
|
Loreto F, Pinelli P, Brancaleoni E, Ciccioli P. 13C labeling reveals chloroplastic and extrachloroplastic pools of dimethylallyl pyrophosphate and their contribution to isoprene formation. PLANT PHYSIOLOGY 2004; 135:1903-7. [PMID: 15286296 PMCID: PMC520762 DOI: 10.1104/pp.104.039537] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2004] [Revised: 03/01/2004] [Accepted: 03/21/2004] [Indexed: 05/20/2023]
Abstract
Isoprene emitted from plants is made in chloroplasts from dimethylallyl pyrophosphate (DMAPP). Leaves of Populus nigra and Phragmites australis exposed to (13)CO(2) for 15 min emitted isoprene that was about 90% (13)C, but DMAPP isolated from those leaves was only 28% and 36% (13)C, respectively. The labeled DMAPP is likely to represent chloroplastic DMAPP contributing to isoprene emission. A substantial (13)C labeling was also found in both emission and DMAPP pool of low-emitting, young leaves of Phragmites. This confirms that low emission of young leaves is not caused by absence of chloroplastic DMAPP but rather by enzyme characteristics. A very low (13)C labeling was found in the DMAPP pool and in the residual isoprene emission of leaves previously fed with fosmidomycin to inhibit isoprene formation. This shows that fosmidomycin is a very effective inhibitor of the chloroplastic biosynthetic pathway of isoprene synthesis, that the residual isoprene is formed from extra-chloroplastic sources, and that chloroplastic and extrachloroplastic pathways are not cross-linked, at least following inhibition of the chloroplastic pathway. Refixation of unlabeled respiratory CO(2) in the light may explain incomplete labeling of isoprene emission, as we found a good association between these two parameters.
Collapse
Affiliation(s)
- Francesco Loreto
- Istituto di Biologia Agroambientale e Forestale, Consiglio Nazionale delle Ricerche, 00016 Monterotondo Scalo, Rome, Italy.
| | | | | | | |
Collapse
|
40
|
Niinemets U, Loreto F, Reichstein M. Physiological and physicochemical controls on foliar volatile organic compound emissions. TRENDS IN PLANT SCIENCE 2004; 9:180-186. [PMID: 15063868 DOI: 10.1016/j.tplants.2004.02.006] [Citation(s) in RCA: 195] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Plant leaves emit a broad spectrum of organic compounds that typically play multiple roles in plant protection. Furthermore, most of these compounds actively participate in tropospheric chemistry. There has been rapid progress in understanding how the emission of volatiles is regulated, mostly focusing on the biochemical controls over compound production. However, physicochemical characteristics such as low volatility or diffusion can also control the emissions and interact with physiological limitations. In particular, non-specific leaf storage of less volatile compounds smooths the emission responses to fluctuating environmental conditions, and diffusion through stomata leads to conspicuous emission bursts after stomatal opening and modifications of diurnal emission time courses. Because natural conditions always fluctuate, both physiological and physicochemical controls exert a major influence over plant volatile emissions.
Collapse
Affiliation(s)
- Ulo Niinemets
- Department of Plant Physiology, University of Tartu, Estonia.
| | | | | |
Collapse
|
41
|
Rosenstiel TN, Potosnak MJ, Griffin KL, Fall R, Monson RK. Increased CO2 uncouples growth from isoprene emission in an agriforest ecosystem. Nature 2003; 421:256-9. [PMID: 12529640 DOI: 10.1038/nature01312] [Citation(s) in RCA: 254] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2002] [Accepted: 11/15/2002] [Indexed: 11/10/2022]
Abstract
The emission of isoprene from the leaves of forest trees is a fundamental component of biosphere-atmosphere interactions, controlling many aspects of photochemistry in the lower atmosphere. As almost all commercial agriforest species emit high levels of isoprene, proliferation of agriforest plantations has significant potential to increase regional ozone pollution and enhance the lifetime of methane, an important determinant of global climate. Here we show that growth of an intact Populus deltoides plantation under increased CO2 (800 micromol x mol(-1) and 1,200 micromol x mol(-1)) reduced ecosystem isoprene production by 21% and 41%, while above-ground biomass accumulation was enhanced by 60% and 82%, respectively. Exposure to increased CO2 significantly reduced the cellular content of dimethylallyl diphosphate, the substrate for isoprene synthesis, in both leaves and leaf protoplasts. We identify intracellular metabolic competition for phosphoenolpyruvate as a possible control point in explaining the suppression of isoprene emission under increased CO2. Our results highlight the potential for uncoupling isoprene emission from biomass accumulation in an agriforest species, and show that negative air-quality effects of proliferating agriforests may be offset by increases in CO2.
Collapse
Affiliation(s)
- Todd N Rosenstiel
- Department of Environmental, Population, and Organismic Biology, University of Colorado, Boulder, Colorado 80309, USA.
| | | | | | | | | |
Collapse
|