1
|
Zhang Y, Gao L, Wang Y, Niu D, Yuan Y, Liu C, Zhan X, Gai S. Dual functions of PsmiR172b-PsTOE3 module in dormancy release and flowering in tree peony ( Paeonia suffruticosa). HORTICULTURE RESEARCH 2023; 10:uhad033. [PMID: 37090095 PMCID: PMC10120838 DOI: 10.1093/hr/uhad033] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 02/14/2023] [Indexed: 05/03/2023]
Abstract
MicroRNAs (miRNAs) are non-coding RNAs that interact with target genes and are involved in many physiological processes in plants. miR172-AP2 mainly plays a role in the regulation of flowering time and floral organ differentiation. Bud dormancy release is necessary for forcing culture of tree peony in winter, but the mechanism of dormancy regulation is unclear. In this study, we found that a miR172 family member, PsmiR172b, was downregulated during chilling-induced bud dormancy release in tree peony, exhibiting a trend opposite to that of PsTOE3. RNA ligase-mediated (RLM) 5'-RACE (rapid amplification of cDNA ends) confirmed that miR172b targeted PsTOE3, and the cleavage site was between bases 12 (T) and 13 (C) within the complementary site to miR172b. The functions of miR172b and PsTOE3 were detected by virus-induced gene silencing (VIGS) and their overexpression in tree peony buds. PsmiR172b negatively regulated bud dormancy release, but PsTOE3 promoted bud dormancy release, and the genes associated with bud dormancy release, including PsEBB1, PsEBB3, PsCYCD, and PsBG6, were upregulated. Further analysis indicated that PsTOE3 directly regulated PsEBB1 by binding to its promoter, and the specific binding site was a C-repeat (ACCGAC). Ectopic expression in Arabidopsis revealed that the PsmiR172b-PsTOE3 module displayed conservative function in regulating flowering. In conclusion, our results provided a novel insight into the functions of PsmiR172-PsTOE3 and possible molecular mechanism underlying bud dormancy release in tree peony.
Collapse
Affiliation(s)
- Yuxi Zhang
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
- University Key Laboratory of Plant Biotechnology in Shandong Province, Qingdao, 266109, China
| | | | | | - Demei Niu
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
- University Key Laboratory of Plant Biotechnology in Shandong Province, Qingdao, 266109, China
| | - Yanchao Yuan
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
- University Key Laboratory of Plant Biotechnology in Shandong Province, Qingdao, 266109, China
| | - Chunying Liu
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
- University Key Laboratory of Plant Biotechnology in Shandong Province, Qingdao, 266109, China
| | - Xinmei Zhan
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
- University Key Laboratory of Plant Biotechnology in Shandong Province, Qingdao, 266109, China
| | | |
Collapse
|
2
|
Yang J, Zhang M, Wang XT. Response of under-ground bud bank to degradation in an alpine meadows on the Qinghai-Tibet Plateau, China. FRONTIERS IN PLANT SCIENCE 2022; 13:1013331. [PMID: 36388515 PMCID: PMC9664154 DOI: 10.3389/fpls.2022.1013331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Exploring the diversity and formation mechanism of under-ground bud banks is essential for understanding the renewal of plant populations and community succession. However, there are few studies on the response of bud bank size and composition to different degradation gradients in alpine meadows. In view of this, we investigated the size and composition of bud bank under four degradation gradients (non-degraded:ND, lightly degraded:LD, moderately degraded:MD, and heavily degraded:HD) caused by overgrazing in a typical alpine meadow in Tibet, China, using a unit area excavation sampling method, and analyzed the correlation between above-ground plant community composition and bud bank density. Our results showed that: (i) in the ND alpine meadow, rhizome buds were dominant, in the LD, tiller buds were dominant, and in the MD, root-sprouting buds were dominant; (ii) total bud bank and cyperaceae bud density decreased with increasing degradation gradient, the density of leguminosae was insignificant in each degradation gradient, and the density of gramineae and forb were dominant in LD and MD meadows, respectively; (iii) total bud bank density was significantly and positively correlated with total above-ground biomass in the LD gradient, tiller bud density was significantly positively correlated with the species diversity index of above-ground vegetation under the ND gradient, rhizome bud density was significantly and positively correlated with total above-ground biomass in the LD gradient, and root-sprouting density was significantly negatively correlated with total above-ground biomass in ND meadows, but was significantly positively correlated with the species diversity index of the LD gradient. Therefore, our research shows that rhizome buds are more important in ND meadow habitats, tiller buds are more important in LD meadow habitats, and root-sprouting buds are more important in MD meadows. The response of bud banks to degradation gradient varies with different types of bud banks and different functional groups of plants, and the survival strategy of bud banks is of great value for community restoration and regeneration, which should be paid more attention to in subsequent alpine meadow research.
Collapse
Affiliation(s)
- Jun Yang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, China
- University of Chinese Academy of Sciences, Beijing, China
- College of Animal Science, Tibet Agricultural and Animal Husbandry University, Nyingchi, China
| | - Min Zhang
- College of Life Science, China West Normal University, Nanchong, China
| | - Xiang-tao Wang
- College of Animal Science, Tibet Agricultural and Animal Husbandry University, Nyingchi, China
- Qiangtang Alpine Grassland Ecosystem Research Station (jointly built with Lanzhou University), Tibet Agricultural and Animal Husbandry University, Nyingchi, China
- Collaborative Innovation Centre of Ecological Grassland Animal Husbandry in Tibet Plateau, Nyingchi, China
| |
Collapse
|
3
|
Takahashi H, Nishihara M, Yoshida C, Itoh K. Gentian FLOWERING LOCUS T orthologs regulate phase transitions: floral induction and endodormancy release. PLANT PHYSIOLOGY 2022; 188:1887-1899. [PMID: 35026009 PMCID: PMC8968275 DOI: 10.1093/plphys/kiac007] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 12/22/2021] [Indexed: 05/17/2023]
Abstract
Perennial plants undergo a dormant period in addition to the growth and flowering phases that are commonly observed in annuals and perennials. Consequently, the regulation of these phase transitions in perennials is believed to be complicated. Previous studies have proposed that orthologs of FLOWERING LOCUS T (FT) regulate not only floral initiation but also dormancy. We, therefore, investigated the involvement of FT orthologs (GtFT1 and GtFT2) during the phase transitions of the herbaceous perennial gentian (Gentiana triflora). Analysis of seasonal fluctuations in the expression of these genes revealed that GtFT1 expression increased prior to budbreak and flowering, whereas GtFT2 expression was induced by chilling temperatures with the highest expression occurring when endodormancy was released. The expression of FT-related transcription factors, reportedly involved in flowering, also fluctuated during each phase transition. These results suggested the involvement of GtFT1 in budbreak and floral induction and GtFT2 in dormancy regulation, implying that the two gentian FT orthologs activated a different set of transcription factors. Gentian ft2 mutants generated by CRISPR/Cas9-mediated genome editing had a lower frequency of budbreak and budbreak delay in overwintering buds caused by an incomplete endodormancy release. Our results highlighted that the gentian orthologs of FRUITFULL (GtFUL) and SHORT VEGETATIVE PHASE-like 1 (GtSVP-L1) act downstream of GtFT2, probably to prevent untimely budbreak during ecodormancy. These results suggest that each gentian FT ortholog regulates a different phase transition by having variable responses to endogenous or environmental cues, leading to their ability to induce the expression of distinct downstream genes.
Collapse
Affiliation(s)
- Hideyuki Takahashi
- Liberal Arts Education Center, Tokai University, Kumamoto 862-8652, Japan
| | | | - Chiharu Yoshida
- Iwate Biotechnology Research Center, Kitakami, Iwate 024-0003, Japan
| | | |
Collapse
|
4
|
Chilling Requirement Validation and Physiological and Molecular Responses of the Bud Endodormancy Release in Paeonia lactiflora 'Meiju'. Int J Mol Sci 2021; 22:ijms22168382. [PMID: 34445086 PMCID: PMC8395073 DOI: 10.3390/ijms22168382] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 07/30/2021] [Accepted: 08/02/2021] [Indexed: 02/02/2023] Open
Abstract
The introduction of herbaceous peony (Paeonia lactiflora Pall.) in low-latitude areas is of great significance to expand the landscape application of this world-famous ornamental. With the hazards of climate warming, warm winters occurs frequently, which makes many excellent northern herbaceous peony cultivars unable to meet their chilling requirements (CR) and leads to their poor growth and flowering in southern China. Exploring the endodormancy release mechanism of underground buds is crucial for improving low-CR cultivar screening and breeding. A systematic study was conducted on P. lactiflora 'Meiju', a screened cultivar with a typical low-CR trait introduced from northern China, at the morphological, physiological and molecular levels. The CR value of 'Meiju' was further verified as 677.5 CUs based on the UT model and morphological observation. As a kind of signal transducer, reactive oxygen species (ROS) released a signal to enter dormancy, which led to corresponding changes in carbohydrate and hormone metabolism in buds, thus promoting underground buds to acquire strong cold resistance and enter endodormancy. The expression of important genes related to ABA metabolism, such as NCED3, PP2C, CBF4 and ABF2, reached peaks at the critical stage of endodormancy release (9 January) and then decreased rapidly; the expression of the GA2ox8 gene related to GA synthesis increased significantly in the early stage of endodormancy release and decreased rapidly after the release of ecodormancy (23 January). Cytological observation showed that the period when the sugar and starch contents decreased and the ABA/GA ratio decreased was when 'Meiju' bud endodormancy was released. This study reveals the endodormancy regulation mechanism of 'Meiju' buds with the low-CR trait, which lays a theoretical foundation for breeding new herbaceous peony cultivars with the low-CR trait.
Collapse
|
5
|
Vayssières A, Mishra P, Roggen A, Neumann U, Ljung K, Albani MC. Vernalization shapes shoot architecture and ensures the maintenance of dormant buds in the perennial Arabis alpina. THE NEW PHYTOLOGIST 2020; 227:99-115. [PMID: 32022273 DOI: 10.1111/nph.16470] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 01/29/2020] [Indexed: 05/11/2023]
Abstract
Perennials have a complex shoot architecture with axillary meristems organized in zones of differential bud activity and fate. This includes zones of buds maintained dormant for multiple seasons and used as reservoirs for potential growth in case of damage. The shoot of Arabis alpina, a perennial relative of Arabidopsis thaliana, consists of a zone of dormant buds placed between subapical vegetative and basal flowering branches. This shoot architecture is shaped after exposure to prolonged cold, required for flowering. To understand how vernalization ensures the maintenance of dormant buds, we performed physiological and transcriptome studies, followed the spatiotemporal changes of auxin, and generated transgenic plants. Our results demonstrate that the complex shoot architecture in A. alpina is shaped by its flowering behavior, specifically the initiation of inflorescences during cold treatment and rapid flowering after subsequent exposure to growth-promoting conditions. Dormant buds are already formed before cold treatment. However, dormancy in these buds is enhanced during, and stably maintained after, vernalization by a BRC1-dependent mechanism. Post-vernalization, stable maintenance of dormant buds is correlated with increased auxin response, transport, and endogenous indole-3-acetic acid levels in the stem. Here, we provide a functional link between flowering and the maintenance of dormant buds in perennials.
Collapse
Affiliation(s)
- Alice Vayssières
- Institute for Plant Sciences, University of Cologne, Zülpicher Straße 47b, Cologne, 50674, Germany
- Cluster of Excellence on Plant Sciences 'From Complex Traits towards Synthetic Modules', Düsseldorf, 40225, Germany
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, Cologne, 50829, Germany
| | - Priyanka Mishra
- Institute for Plant Sciences, University of Cologne, Zülpicher Straße 47b, Cologne, 50674, Germany
- Cluster of Excellence on Plant Sciences 'From Complex Traits towards Synthetic Modules', Düsseldorf, 40225, Germany
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, Cologne, 50829, Germany
| | - Adrian Roggen
- Institute for Plant Sciences, University of Cologne, Zülpicher Straße 47b, Cologne, 50674, Germany
- Cluster of Excellence on Plant Sciences 'From Complex Traits towards Synthetic Modules', Düsseldorf, 40225, Germany
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, Cologne, 50829, Germany
| | - Ulla Neumann
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, Cologne, 50829, Germany
| | - Karin Ljung
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå, 90183, Sweden
| | - Maria C Albani
- Institute for Plant Sciences, University of Cologne, Zülpicher Straße 47b, Cologne, 50674, Germany
- Cluster of Excellence on Plant Sciences 'From Complex Traits towards Synthetic Modules', Düsseldorf, 40225, Germany
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, Cologne, 50829, Germany
| |
Collapse
|
6
|
Thirugnanasambantham K, Prabu G, Mandal AKA. Synergistic effect of cytokinin and gibberellins stimulates release of dormancy in tea ( Camellia sinensis (L.) O. Kuntze) bud. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2020; 26:1035-1045. [PMID: 32377051 PMCID: PMC7196570 DOI: 10.1007/s12298-020-00786-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 01/25/2020] [Accepted: 02/24/2020] [Indexed: 05/14/2023]
Abstract
Reactivation of dormant meristem in banjhi (dormant) shoots is important to enhance the quality and quantity of tea production. The field grown tea bushes were subjected to treatment with dormancy breaking agents such as potassium nitrate (KNO3), thiourea, sodium nitro prusside (SNP), the phytohormones kinetin (Kn) and gibberellins (GA). The efficacy of Kn and GA were comparatively lesser than KNO3 while the combination of Kn and GA (50 and100 ppm respectively) resulted in better dormancy reduction in tea buds. This observation was supported by our results from gene expression study where accumulation patterns of mRNAs corresponding to histones (H2A, H2B, H3 and H4), cyclins (B2, D1 and D3), cyclin-dependent kinase (CDKA), ubiquitination enzymes (FUS, EXT CE2), cyclophilin, E2F, and tubulin were analyzed during growth-dormancy cycles in tea apical buds under the influence of Kn, GA and their combinations. The level of these mRNAs was low in dormant buds, which was significantly increased by foliar application of GA and Kn combination. The present study indicated that the foliar application of GA in combination with Kn will help to improve quality and quantity of tea production by breaking dormancy and stimulating the bud growth.
Collapse
Affiliation(s)
- Krishnaraj Thirugnanasambantham
- UPASI-Tea Research Foundation, Nirar Dam B.P.O, Valparai, Tamil Nadu 642127 India
- Pondicherry Centre for Biological Science and Educational Trust, Jawahar Nagar, Pondicherry, 605005 India
| | - Gajjeraman Prabu
- UPASI-Tea Research Foundation, Nirar Dam B.P.O, Valparai, Tamil Nadu 642127 India
- Department of Biotechnology, Karpagam Academy of Higher Education (Deemed University), Pollachi Main Road, Eachanari Post, Coimbatore, Tamil Nadu 641 021 India
| | - Abul Kalam Azad Mandal
- UPASI-Tea Research Foundation, Nirar Dam B.P.O, Valparai, Tamil Nadu 642127 India
- School of Bio Sciences and Technology (SBST), Department of Biotechnology, Vellore Institute of Technology, Katpadi, Vellore, Tamil Nadu 632014 India
| |
Collapse
|
7
|
Zha M, Imran M, Wang Y, Xu J, Ding Y, Wang S. Transcriptome analysis revealed the interaction among strigolactones, auxin, and cytokinin in controlling the shoot branching of rice. PLANT CELL REPORTS 2019; 38:279-293. [PMID: 30689021 DOI: 10.1007/s00299-018-2361-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Accepted: 11/23/2018] [Indexed: 06/09/2023]
Abstract
Strigolactones inhibit bud growth by negatively regulating the auxin transport without changing the auxin biosynthesis and suppressing the expression of A-ARR in buds. Strigolactones (SLs) are important phytohormones associated with regulation of shoot branching in rice. Rice shoot branching is persuasively mediated by plant hormones like auxin, cytokinins (CKs) and SLs. The interactions among these hormones were diversely investigated by many researchers but remained a subject of debate. In the present study, the removal of panicle and application of subsequent synthetic SLs were used to regulate rice bud growth on node 2 (the second node from panicle) at full heading stage. The bud growth was significantly induced after panicle removal but GR24 (synthetic SLs) application inhibited it, along with variations in endogenous hormone contents in bud. RNA samples from buds were subjected to RNA sequencing through Illumina HiSeq 2000 (RNA-seq). Comparison of transcript expression levels among three treatments, viz. (1) intact (Co), (2) removed panicle (RP) and (3) RP combined with synthetic SL GR24 (GR) revealed the involvement of numerous genes associated with hormone signal transduction. GR24 supply minimized the RP-induced enhancement of auxin early response genes, independent of ARF. CK signal transduction was also induced by RP, but type-A ARR were the only genes responding to GR without any other CK signal associated genes. Additionally, RP and GR can also modulate auxin transport and CK degradation by regulating the genes' expression involved in the biosynthesis of flavonoid, phenylpropanoid and benzoxazinoid. Contemplating the results obtained so far, it is possible to open new vistas of research to reveal the interactions among SLs, auxin and CK in controlling the shoot branching of rice.
Collapse
Affiliation(s)
- M Zha
- Agronomy College, Nanjing Agricultural University, Nanjing, People's Republic of China
- College of Biology and Environmental Sciences, Jishou University, Jishou, 416000, People's Republic of China
| | - M Imran
- Department of Soil and Environmental Sciences, University College of Agriculture, University of Sargodha, Sargodha, 40100, Pakistan
| | - Y Wang
- Agronomy College, Nanjing Agricultural University, Nanjing, People's Republic of China
- College of Biology and Environmental Sciences, Jishou University, Jishou, 416000, People's Republic of China
| | - J Xu
- Agronomy College, Nanjing Agricultural University, Nanjing, People's Republic of China
- Forest and Fruit Tree Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, People's Republic of China
| | - Y Ding
- Agronomy College, Nanjing Agricultural University, Nanjing, People's Republic of China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing, 210095, People's Republic of China
| | - Shaohua Wang
- Agronomy College, Nanjing Agricultural University, Nanjing, People's Republic of China.
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing, 210095, People's Republic of China.
| |
Collapse
|
8
|
Chao WS, Doğramaci M, Horvath DP, Anderson JV, Foley ME. Phytohormone balance and stress-related cellular responses are involved in the transition from bud to shoot growth in leafy spurge. BMC PLANT BIOLOGY 2016; 16:47. [PMID: 26897527 PMCID: PMC4761131 DOI: 10.1186/s12870-016-0735-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 02/09/2016] [Indexed: 05/07/2023]
Abstract
BACKGROUND Leafy spurge (Euphorbia esula L.) is an herbaceous weed that maintains a perennial growth pattern through seasonal production of abundant underground adventitious buds (UABs) on the crown and lateral roots. During the normal growing season, differentiation of bud to shoot growth is inhibited by physiological factors external to the affected structure; a phenomenon referred to as paradormancy. Initiation of shoot growth from paradormant UABs can be accomplished through removal of the aerial shoots (hereafter referred to as paradormancy release). RESULTS In this study, phytohormone abundance and the transcriptomes of paradormant UABs vs. shoot-induced growth at 6, 24, and 72 h after paradormancy release were compared based on hormone profiling and RNA-seq analyses. Results indicated that auxin, abscisic acid (ABA), and flavonoid signaling were involved in maintaining paradormancy in UABs of leafy spurge. However, auxin, ABA, and flavonoid levels/signals decreased by 6 h after paradormancy release, in conjunction with increase in gibberellic acid (GA), cytokinin, jasmonic acid (JA), ethylene, and brassinosteroid (BR) levels/signals. Twenty four h after paradormancy release, auxin and ABA levels/signals increased, in conjunction with increase in GA levels/signals. Major cellular changes were also identified in UABs at 24 h, since both principal component and Venn diagram analysis of transcriptomes clearly set the 24 h shoot-induced growth apart from other time groups. In addition, increase in auxin and ABA levels/signals and the down-regulation of 40 over-represented AraCyc pathways indicated that stress-derived cellular responses may be involved in the activation of stress-induced re-orientation required for initiation of shoot growth. Seventy two h after paradormancy release, auxin, cytokinin, and GA levels/signals were increased, whereas ABA, JA, and ethylene levels/signals were decreased. CONCLUSION Combined results were consistent with different phytohormone signals acting in concert to direct cellular changes involved in bud differentiation and shoot growth. In addition, shifts in balance of these phytohormones at different time points and stress-related cellular responses after paradormancy release appear to be critical factors driving transition of bud to shoot growth.
Collapse
Affiliation(s)
- Wun S Chao
- USDA-Agricultural Research Service, Biosciences Research Laboratory, 1605 Albrecht Boulevard, Fargo, ND, 58102-2765, USA.
| | - Münevver Doğramaci
- USDA-Agricultural Research Service, Biosciences Research Laboratory, 1605 Albrecht Boulevard, Fargo, ND, 58102-2765, USA.
| | - David P Horvath
- USDA-Agricultural Research Service, Biosciences Research Laboratory, 1605 Albrecht Boulevard, Fargo, ND, 58102-2765, USA.
| | - James V Anderson
- USDA-Agricultural Research Service, Biosciences Research Laboratory, 1605 Albrecht Boulevard, Fargo, ND, 58102-2765, USA.
| | - Michael E Foley
- USDA-Agricultural Research Service, Biosciences Research Laboratory, 1605 Albrecht Boulevard, Fargo, ND, 58102-2765, USA.
| |
Collapse
|
9
|
Vergara R, Noriega X, Parada F, Dantas D, Pérez FJ. Relationship between endodormancy, FLOWERING LOCUS T and cell cycle genes in Vitis vinifera. PLANTA 2016; 243:411-419. [PMID: 26438218 DOI: 10.1007/s00425-015-2415-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 09/22/2015] [Indexed: 06/05/2023]
Abstract
In grapevines, the increased expression of VvFT , genes involved in the photoperiodic control of seasonal growth ( VvAP1, VvAIL2 ) and cell cycle genes ( VvCDKA, VvCDKB2, VvCYCA1, VvCYCB, VvCYCD3.2 ) in the shoot apex relative to the latent bud, suggests a high mitotic activity of the apex which could prevent them to enter into endodormancy. Additionally, the up-regulation of these genes by the dormancy-breaking compound hydrogen cyanamide (H 2 CN 2 ) strongly suggests that VvFT plays a key role in regulating transcriptionally cell cycle genes. At the end of the growing season, short-day (SD) photoperiod induces the transition of latent grapevine buds (Vitis vinifera L) from paradormancy (PD) to endodormancy (ED), which allows them to survive the cold temperatures of winter. Meanwhile, the shoot apex gradually decreases its growth without entering into ED, and as a result of the fall of temperatures at the beginning of autumn, dies. To understand developmental differences and contrasting responses to environmental cues between both organs, the expression of cell cycle genes, and of genes involved in photoperiodic control of seasonal growth in trees, such as FLOWERING LOCUS T (FT), APETALA1 (AP1) and AINTEGUMENTA-like (AIL) was analyzed at the shoot apex and latent buds of vines during the transition from PD to ED. After shift to SD photoperiod, increased expression of cell cycle genes in the shoot apex suggests a high mitotic activity in this organ which could prevent them from entering into ED. Additionally, the increased expression of VvFT, VvAP1and VvAIL2 in the shoot apex, and the up-regulation of VvFT, VvAP1and cell cycle genes VvCDKA, VvCDKB2, VvCYCA.1, by the dormancy-breaking compound hydrogen cyanamide (H2CN2), strongly suggests that VvFT plays a key role in regulating transcriptionally cell cycle genes, giving thus, more support to the model for photoperiodic control of seasonal growth in trees. Furthermore, downregulation of VvFT by the SD photoperiod detected in leaves and buds of grapevines highlights the importance of VvFT in the induction of growth cessation and in ED development, probably by regulating the expression of cell cycle genes.
Collapse
Affiliation(s)
- Ricardo Vergara
- Facultad de Ciencias, Laboratorio de Bioquímica Vegetal, Universidad de Chile, Casilla 653, Santiago, Chile
- Programa Doctorado en Ciencias Silvoagropecuarias y Veterinarias, Universidad de Chile, Santiago, Chile
| | - Ximena Noriega
- Facultad de Ciencias, Laboratorio de Bioquímica Vegetal, Universidad de Chile, Casilla 653, Santiago, Chile
| | - Francisca Parada
- Facultad de Ciencias, Laboratorio de Bioquímica Vegetal, Universidad de Chile, Casilla 653, Santiago, Chile
| | - Débora Dantas
- Centro de Ciencias e Tecnologías Agropecuarias, Universidade Estadual do Norte Fluminense, Avda Alberto Lamego 2000, Campos Dos Goytacazes, RJ, Brazil
| | - Francisco J Pérez
- Facultad de Ciencias, Laboratorio de Bioquímica Vegetal, Universidad de Chile, Casilla 653, Santiago, Chile.
| |
Collapse
|
10
|
Niu Q, Li J, Cai D, Qian M, Jia H, Bai S, Hussain S, Liu G, Teng Y, Zheng X. Dormancy-associated MADS-box genes and microRNAs jointly control dormancy transition in pear (Pyrus pyrifolia white pear group) flower bud. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:239-57. [PMID: 26466664 PMCID: PMC4682432 DOI: 10.1093/jxb/erv454] [Citation(s) in RCA: 125] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Bud dormancy in perennial plants is indispensable to survival over winter and to regrowth and development in the following year. However, the molecular pathways of endo-dormancy induction, maintenance, and release are still unclear, especially in fruit crops. To identify genes with roles in regulating endo-dormancy, 30 MIKC(C)-type MADS-box genes were identified in the pear genome and characterized. The 30 genes were analysed to determine their phylogenetic relationships with homologous genes, genome locations, gene structure, tissue-specific transcript profiles, and transcriptional patterns during flower bud dormancy in 'Suli' pear (Pyrus pyrifolia white pear group). The roles in regulating bud dormancy varied among the MIKC gene family members. Yeast one-hybrid and transient assays showed that PpCBF enhanced PpDAM1 and PpDAM3 transcriptional activity during the induction of dormancy, probably by binding to the C-repeat/DRE binding site, while DAM proteins inhibited the transcriptional activity of PpFT2 during dormancy release. In the small RNA-seq analysis, 185 conserved, 24 less-conserved, and 32 pear-specific miRNAs with distinct expression patterns during bud dormancy were identified. Joint analyses of miRNAs and MIKC genes together with degradome data showed that miR6390 targeted PpDAM transcripts and degraded them to release PpFT2. Our data show that cross-talk among PpCBF, PpDAM, PpFT2, and miR6390 played important roles in regulating endo-dormancy. A model for the molecular mechanism of dormancy transition is proposed: short-term chilling in autumn activates the accumulation of CBF, which directly promotes DAM expression; DAM subsequently inhibits FT expression to induce endo-dormancy, and miR6390 degrades DAM genes to release endo-dormancy.
Collapse
Affiliation(s)
- Qingfeng Niu
- Department of Horticulture, Zhejiang University, Hangzhou, Zhejiang 310058, China The Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, the Ministry of Agriculture of China, Hangzhou, Zhejiang 310058, China Zhejiang Provincial Key Laboratory of Integrative Biology and Utilization of Horticultural Plants, Hangzhou, Zhejiang 310058, China
| | - Jianzhao Li
- Department of Horticulture, Zhejiang University, Hangzhou, Zhejiang 310058, China The Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, the Ministry of Agriculture of China, Hangzhou, Zhejiang 310058, China Zhejiang Provincial Key Laboratory of Integrative Biology and Utilization of Horticultural Plants, Hangzhou, Zhejiang 310058, China
| | - Danying Cai
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang Province 310021, China
| | - Minjie Qian
- Department of Horticulture, Zhejiang University, Hangzhou, Zhejiang 310058, China The Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, the Ministry of Agriculture of China, Hangzhou, Zhejiang 310058, China Zhejiang Provincial Key Laboratory of Integrative Biology and Utilization of Horticultural Plants, Hangzhou, Zhejiang 310058, China
| | - Huimin Jia
- Department of Horticulture, Zhejiang University, Hangzhou, Zhejiang 310058, China The Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, the Ministry of Agriculture of China, Hangzhou, Zhejiang 310058, China Zhejiang Provincial Key Laboratory of Integrative Biology and Utilization of Horticultural Plants, Hangzhou, Zhejiang 310058, China
| | - Songling Bai
- Department of Horticulture, Zhejiang University, Hangzhou, Zhejiang 310058, China The Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, the Ministry of Agriculture of China, Hangzhou, Zhejiang 310058, China Zhejiang Provincial Key Laboratory of Integrative Biology and Utilization of Horticultural Plants, Hangzhou, Zhejiang 310058, China
| | - Sayed Hussain
- Department of Horticulture, Zhejiang University, Hangzhou, Zhejiang 310058, China The Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, the Ministry of Agriculture of China, Hangzhou, Zhejiang 310058, China Zhejiang Provincial Key Laboratory of Integrative Biology and Utilization of Horticultural Plants, Hangzhou, Zhejiang 310058, China
| | - Guoqin Liu
- College of Agriculture, Guizhou University, Guiyang, Guizhou Province 550025, China
| | - Yuanwen Teng
- Department of Horticulture, Zhejiang University, Hangzhou, Zhejiang 310058, China The Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, the Ministry of Agriculture of China, Hangzhou, Zhejiang 310058, China Zhejiang Provincial Key Laboratory of Integrative Biology and Utilization of Horticultural Plants, Hangzhou, Zhejiang 310058, China
| | - Xiaoyan Zheng
- Institute of Horticulture and Landscape, College of Ecology, Lishui University, Lishui, Zhejiang 323000, China
| |
Collapse
|
11
|
Álvarez C, Valledor L, Sáez P, Sánchez-Olate M, Ríos D. Proteomic Analysis through Adventitious Rooting of <i>Pinus radiata</i> Stem Cuttings with Different Rooting Capabilities. ACTA ACUST UNITED AC 2016. [DOI: 10.4236/ajps.2016.714174] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
12
|
Zhang J, Wu Y, Li D, Wang G, Li X, Xia Y. Transcriptomic analysis of the underground renewal buds during dormancy transition and release in 'Hangbaishao' peony (Paeonia lactiflora). PLoS One 2015; 10:e0119118. [PMID: 25790307 PMCID: PMC4366336 DOI: 10.1371/journal.pone.0119118] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 01/27/2015] [Indexed: 11/18/2022] Open
Abstract
Paeonia lactiflora is one of the most famous species of herbaceous peonies with gorgeous flowers. Bud dormancy is a crucial developmental process that allows P. lactiflora to survive unfavorable environmental conditions. However, little information is available on the molecular mechanism of the bud dormancy in P. lactiflora. We performed de novo transcriptome sequencing using the Illumina RNA sequencing platform for the underground renewal buds of P. lactiflora 'Hangbaishao' to study the molecular mechanism underlying its bud dormancy transition (the period from endodormancy to ecodormancy) and release (the period from ecodormancy to bud elongation and sprouting). Approximately 300 million high-quality clean reads were generated and assembled into 207,827 (mean length = 828 bp) and 51,481 (mean length = 1250 bp) unigenes using two assembly methods named "Trinity" and "Trinity+PRICE", respectively. Based on the data obtained by the latter method, 32,316 unigenes were annotated by BLAST against various databases. Approximately 1,251 putative transcription factors were obtained, of which the largest number of unique transcripts belonged to the basic helix-loop-helix protein (bHLH) transcription factor family, and five of the top ten highly expressed transcripts were annotated as dehydrin (DHN). A total of 17,705 simple sequence repeat (SSR) motifs distributed in 13,797 sequences were obtained. The budbreak morphology, levels of indole-3-acetic acid (IAA) and abscisic acid (ABA), and activities of guaiacol peroxidase (POD) and catalase (CAT) were observed. The expression of 20 interested unigenes, which annotated as DHN, heat shock protein (HSP), histone, late elongated hypocotyl (LHY), and phytochrome (PHY), and so on, were also analyzed. These studies were based on morphological, physiological, biochemical, and molecular levels and provide comprehensive insight into the mechanism of dormancy transition and release in P. lactiflora. Transcriptome dataset can be highly valuable for future investigation on gene expression networks in P. lactiflora as well as research on dormancy in other non-model perennial horticultural crops of commercial significance.
Collapse
Affiliation(s)
- Jiaping Zhang
- Institute of Landscape Architecture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, People’s Republic of China
| | - Yun Wu
- Institute of Landscape Architecture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, People’s Republic of China
| | - Danqing Li
- Institute of Landscape Architecture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, People’s Republic of China
| | - Guanqun Wang
- Institute of Landscape Architecture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, People’s Republic of China
| | - Xin Li
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, People’s Republic of China
| | - Yiping Xia
- Institute of Landscape Architecture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, People’s Republic of China
| |
Collapse
|
13
|
Lesur I, Le Provost G, Bento P, Da Silva C, Leplé JC, Murat F, Ueno S, Bartholomé J, Lalanne C, Ehrenmann F, Noirot C, Burban C, Léger V, Amselem J, Belser C, Quesneville H, Stierschneider M, Fluch S, Feldhahn L, Tarkka M, Herrmann S, Buscot F, Klopp C, Kremer A, Salse J, Aury JM, Plomion C. The oak gene expression atlas: insights into Fagaceae genome evolution and the discovery of genes regulated during bud dormancy release. BMC Genomics 2015; 16:112. [PMID: 25765701 PMCID: PMC4350297 DOI: 10.1186/s12864-015-1331-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Accepted: 02/09/2015] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND Many northern-hemisphere forests are dominated by oaks. These species extend over diverse environmental conditions and are thus interesting models for studies of plant adaptation and speciation. The genomic toolbox is an important asset for exploring the functional variation associated with natural selection. RESULTS The assembly of previously available and newly developed long and short sequence reads for two sympatric oak species, Quercus robur and Quercus petraea, generated a comprehensive catalog of transcripts for oak. The functional annotation of 91 k contigs demonstrated the presence of a large proportion of plant genes in this unigene set. Comparisons with SwissProt accessions and five plant gene models revealed orthologous relationships, making it possible to decipher the evolution of the oak genome. In particular, it was possible to align 9.5 thousand oak coding sequences with the equivalent sequences on peach chromosomes. Finally, RNA-seq data shed new light on the gene networks underlying vegetative bud dormancy release, a key stage in development allowing plants to adapt their phenology to the environment. CONCLUSION In addition to providing a vast array of expressed genes, this study generated essential information about oak genome evolution and the regulation of genes associated with vegetative bud phenology, an important adaptive traits in trees. This resource contributes to the annotation of the oak genome sequence and will provide support for forward genetics approaches aiming to link genotypes with adaptive phenotypes.
Collapse
Affiliation(s)
- Isabelle Lesur
- INRA, UMR1202, BIOGECO, F-33610, Cestas, France.
- HelixVenture, F-33700, Mérignac, France.
| | - Grégoire Le Provost
- INRA, UMR1202, BIOGECO, F-33610, Cestas, France.
- University Bordeaux, BIOGECO, UMR1202, F-33170, Talence, France.
| | - Pascal Bento
- CEA-Institut de Génomique, GENOSCOPE, Centre National de Séquençage, 2 rue Gaston Crémieux, CP5706, F-91057, Evry Cedex, France.
| | - Corinne Da Silva
- CEA-Institut de Génomique, GENOSCOPE, Centre National de Séquençage, 2 rue Gaston Crémieux, CP5706, F-91057, Evry Cedex, France.
| | - Jean-Charles Leplé
- INRA, UR0588 Amélioration Génétique et Physiologie Forestières, F-45075, Orléans, France.
| | - Florent Murat
- INRA/UBP UMR 1095, Laboratoire Génétique, Diversité et Ecophysiologie des Céréales, F-63039, Clermont-Ferrand, France.
| | - Saneyoshi Ueno
- Forestry and Forest Products Research Institute, Department of Forest Genetics, Tree Genetics Laboratory, 1 Matsunosato, Tsukuba, Ibaraki, 305-8687, Japan.
| | - Jerôme Bartholomé
- INRA, UMR1202, BIOGECO, F-33610, Cestas, France.
- CIRAD, UMR AGAP, F-34398, Montpellier, France.
| | - Céline Lalanne
- INRA, UMR1202, BIOGECO, F-33610, Cestas, France.
- University Bordeaux, BIOGECO, UMR1202, F-33170, Talence, France.
| | - François Ehrenmann
- INRA, UMR1202, BIOGECO, F-33610, Cestas, France.
- University Bordeaux, BIOGECO, UMR1202, F-33170, Talence, France.
| | - Céline Noirot
- Plateforme bioinformatique Toulouse Midi-Pyrénées, UBIA, INRA, F-31326, Auzeville Castanet-Tolosan, France.
| | - Christian Burban
- INRA, UMR1202, BIOGECO, F-33610, Cestas, France.
- University Bordeaux, BIOGECO, UMR1202, F-33170, Talence, France.
| | - Valérie Léger
- INRA, UMR1202, BIOGECO, F-33610, Cestas, France.
- University Bordeaux, BIOGECO, UMR1202, F-33170, Talence, France.
| | - Joelle Amselem
- INRA, Unité de Recherche Génomique Info (URGI), F78026, Versailles, France.
| | - Caroline Belser
- CEA-Institut de Génomique, GENOSCOPE, Centre National de Séquençage, 2 rue Gaston Crémieux, CP5706, F-91057, Evry Cedex, France.
| | - Hadi Quesneville
- INRA, Unité de Recherche Génomique Info (URGI), F78026, Versailles, France.
| | | | - Silvia Fluch
- AIT Austrian Institute of Technology GmbH, Konrad-Lorenz Str 24, 3430, Tulln, Austria.
| | - Lasse Feldhahn
- Department of Soil Ecology, UFZ - Helmholtz Centre for Environmental Research, DE-06120, Halle/Saale, Germany.
| | - Mika Tarkka
- Department of Soil Ecology, UFZ - Helmholtz Centre for Environmental Research, DE-06120, Halle/Saale, Germany.
- iDiv - German Centre for Integrative Biodiversity Research, Halle Jena Leipzig, DE-04103, Leipzig, Germany.
| | - Sylvie Herrmann
- iDiv - German Centre for Integrative Biodiversity Research, Halle Jena Leipzig, DE-04103, Leipzig, Germany.
- Department of Community Ecology, UFZ - Helmholtz Centre for Environmental Research, 06120, Halle/Saale, Germany.
| | - François Buscot
- Department of Soil Ecology, UFZ - Helmholtz Centre for Environmental Research, DE-06120, Halle/Saale, Germany.
- iDiv - German Centre for Integrative Biodiversity Research, Halle Jena Leipzig, DE-04103, Leipzig, Germany.
| | - Christophe Klopp
- Plateforme bioinformatique Toulouse Midi-Pyrénées, UBIA, INRA, F-31326, Auzeville Castanet-Tolosan, France.
| | - Antoine Kremer
- INRA, UMR1202, BIOGECO, F-33610, Cestas, France.
- University Bordeaux, BIOGECO, UMR1202, F-33170, Talence, France.
| | - Jérôme Salse
- INRA/UBP UMR 1095, Laboratoire Génétique, Diversité et Ecophysiologie des Céréales, F-63039, Clermont-Ferrand, France.
| | - Jean-Marc Aury
- CEA-Institut de Génomique, GENOSCOPE, Centre National de Séquençage, 2 rue Gaston Crémieux, CP5706, F-91057, Evry Cedex, France.
| | - Christophe Plomion
- INRA, UMR1202, BIOGECO, F-33610, Cestas, France.
- University Bordeaux, BIOGECO, UMR1202, F-33170, Talence, France.
| |
Collapse
|
14
|
Takahashi H, Imamura T, Konno N, Takeda T, Fujita K, Konishi T, Nishihara M, Uchimiya H. The gentio-oligosaccharide gentiobiose functions in the modulation of bud dormancy in the herbaceous perennial Gentiana. THE PLANT CELL 2014; 26:3949-63. [PMID: 25326293 PMCID: PMC4247589 DOI: 10.1105/tpc.114.131631] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 09/04/2014] [Accepted: 09/30/2014] [Indexed: 05/19/2023]
Abstract
Bud dormancy is an adaptive strategy that perennials use to survive unfavorable conditions. Gentians (Gentiana), popular alpine flowers and ornamentals, produce overwintering buds (OWBs) that can persist through the winter, but the mechanisms regulating dormancy are currently unclear. In this study, we conducted targeted metabolome analysis to obtain clues about the metabolic mechanisms involved in regulating OWB dormancy. Multivariate analysis of metabolite profiles revealed metabolite patterns characteristic of dormant states. The concentrations of gentiobiose [β-D-Glcp-(1→6)-D-Glc] and gentianose [β-D-Glcp-(1→6)-D-Glc-(1→2)-d-Fru] significantly varied depending on the stage of OWB dormancy, and the gentiobiose concentration increased prior to budbreak. Both activation of invertase and inactivation of β-glucosidase resulted in gentiobiose accumulation in ecodormant OWBs, suggesting that gentiobiose is seldom used as an energy source but is involved in signaling pathways. Furthermore, treatment with exogenous gentiobiose induced budbreak in OWBs cultured in vitro, with increased concentrations of sulfur-containing amino acids, GSH, and ascorbate (AsA), as well as increased expression levels of the corresponding genes. Inhibition of GSH synthesis suppressed gentiobiose-induced budbreak accompanied by decreases in GSH and AsA concentrations and redox status. These results indicate that gentiobiose, a rare disaccharide, acts as a signal for dormancy release of gentian OWBs through the AsA-GSH cycle.
Collapse
Affiliation(s)
| | - Tomohiro Imamura
- Iwate Biotechnology Research Center, Kitakami, Iwate 024-0003, Japan
| | - Naotake Konno
- Iwate Biotechnology Research Center, Kitakami, Iwate 024-0003, Japan
| | - Takumi Takeda
- Iwate Biotechnology Research Center, Kitakami, Iwate 024-0003, Japan
| | - Kohei Fujita
- Iwate Biotechnology Research Center, Kitakami, Iwate 024-0003, Japan
| | - Teruko Konishi
- Department of Bioscience and Biotechnology, Faculty of Agriculture, University of the Ryukyus, Okinawa 903-0213, Japan
| | | | - Hirofumi Uchimiya
- Institute of Environmental Science and Technology, Saitama University, Sakura-Ku, Saitama City, Saitama 338-8570, Japan
| |
Collapse
|
15
|
Johansson M, Ibáñez C, Takata N, Eriksson ME. The perennial clock is an essential timer for seasonal growth events and cold hardiness. Methods Mol Biol 2014; 1158:297-311. [PMID: 24792060 DOI: 10.1007/978-1-4939-0700-7_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Over the last several decades, changes in global temperatures have led to changes in local environments affecting the growth conditions for many species. This is a trend that makes it even more important to understand how plants respond to local variations and seasonal changes in climate. To detect daily and seasonal changes as well as acute stress factors such as cold and drought, plants rely on a circadian clock. This chapter introduces the current knowledge and literature about the setup and function of the circadian clock in various tree and perennial species, with a focus on the Populus genus.
Collapse
Affiliation(s)
- Mikael Johansson
- Molecular Cell Physiology, Bielefeld University, 100131, 33615, Bielefeld, Germany,
| | | | | | | |
Collapse
|
16
|
Tank JG, Pandya RV, Thaker VS. Phytohormones in regulation of the cell division and endoreduplication process in the plant cell cycle. RSC Adv 2014. [DOI: 10.1039/c3ra45367g] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
|
17
|
Gai S, Zhang Y, Liu C, Zhang Y, Zheng G. Transcript profiling of Paoenia ostii during artificial chilling induced dormancy release identifies activation of GA pathway and carbohydrate metabolism. PLoS One 2013; 8:e55297. [PMID: 23405132 PMCID: PMC3566188 DOI: 10.1371/journal.pone.0055297] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Accepted: 12/20/2012] [Indexed: 11/23/2022] Open
Abstract
Endo-dormant flower buds must pass through a period of chilling to reinitiate growth and subsequent flowering, which is a major obstacle to the forcing culture of tree peony in winter. Customized cDNA microarray (8×15 K element) was used to investigate gene expression profiling in tree peony 'Feng Dan Bai' buds during 24 d chilling treatment at 0-4°C. According to the morphological changes after the whole plants were transferred to green house, endo-dormancy was released after 18 d chilling treatment, and prolonged chilling treatment increased bud break rate. Pearson correlation hierarchical clustering of sample groups was highly consistent with the dormancy transitions revealed by morphological changes. Totally 3,174 significantly differentially-expressed genes (P<0.05) were observed through endo-dormancy release process, of which the number of up-regulated (1,611) and that of down-regulated (1,563) was almost the same. Functional annotation of differentially-expressed genes revealed that cellular process, metabolic process, response to stimulus, regulation of biological process and development process were well-represented. Hierarchical clustering indicated that activation of genes involved in carbohydrate metabolism (Glycolysis, Citrate cycle and Pentose phosphate pathway), energy metabolism and cell growth. Based on the results of GO analysis, totally 51 probes presented in the microarray were associated with GA response and GA signaling pathway, and 22 of them were differently expressed. The expression profiles also revealed that the genes of GA biosynthesis, signaling and response involved in endo-dormancy release. We hypothesized that activation of GA pathway played a central role in the regulation of dormancy release in tree peony.
Collapse
Affiliation(s)
- Shupeng Gai
- College of Life Sciences, Qingdao Agricultural University, Key Lab of Plant Biotechnology in Universities of Shandong Province, Qingdao, China
| | - Yuxi Zhang
- College of Life Sciences, Qingdao Agricultural University, Key Lab of Plant Biotechnology in Universities of Shandong Province, Qingdao, China
| | - Chunying Liu
- College of Life Sciences, Qingdao Agricultural University, Key Lab of Plant Biotechnology in Universities of Shandong Province, Qingdao, China
| | - Yang Zhang
- College of Life Sciences, Qingdao Agricultural University, Key Lab of Plant Biotechnology in Universities of Shandong Province, Qingdao, China
| | - Guosheng Zheng
- College of Life Sciences, Qingdao Agricultural University, Key Lab of Plant Biotechnology in Universities of Shandong Province, Qingdao, China
| |
Collapse
|
18
|
Liu G, Li W, Zheng P, Xu T, Chen L, Liu D, Hussain S, Teng Y. Transcriptomic analysis of 'Suli' pear (Pyrus pyrifolia white pear group) buds during the dormancy by RNA-Seq. BMC Genomics 2012; 13:700. [PMID: 23234335 PMCID: PMC3562153 DOI: 10.1186/1471-2164-13-700] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Accepted: 12/07/2012] [Indexed: 12/21/2022] Open
Abstract
Background Bud dormancy is a critical developmental process that allows perennial plants to survive unfavorable environmental conditions. Pear is one of the most important deciduous fruit trees in the world, but the mechanisms regulating bud dormancy in this species are unknown. Because genomic information for pear is currently unavailable, transcriptome and digital gene expression data for this species would be valuable resources to better understand the molecular and biological mechanisms regulating its bud dormancy. Results We performed de novo transcriptome assembly and digital gene expression (DGE) profiling analyses of ‘Suli’ pear (Pyrus pyrifolia white pear group) using the Illumina RNA-seq system. RNA-Seq generated approximately 100 M high-quality reads that were assembled into 69,393 unigenes (mean length = 853 bp), including 14,531 clusters and 34,194 singletons. A total of 51,448 (74.1%) unigenes were annotated using public protein databases with a cut-off E-value above 10-5. We mainly compared gene expression levels at four time-points during bud dormancy. Between Nov. 15 and Dec. 15, Dec. 15 and Jan. 15, and Jan. 15 and Feb. 15, 1,978, 1,024, and 3,468 genes were differentially expressed, respectively. Hierarchical clustering analysis arranged 190 significantly differentially-expressed genes into seven groups. Seven genes were randomly selected to confirm their expression levels using quantitative real-time PCR. Conclusions The new transcriptomes offer comprehensive sequence and DGE profiling data for a dynamic view of transcriptomic variation during bud dormancy in pear. These data provided a basis for future studies of metabolism during bud dormancy in non-model but economically-important perennial species.
Collapse
Affiliation(s)
- Guoqin Liu
- Department of Horticulture, The State Agricultural Ministry's Key Laboratory of Horticultural Plant Growth, Development & Quality Improvement, Zhejiang University, Hangzhou, 310058,, Zhejiang Province, China
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Santamaría ME, Rodríguez R, Cañal MJ, Toorop PE. Transcriptome analysis of chestnut (Castanea sativa) tree buds suggests a putative role for epigenetic control of bud dormancy. ANNALS OF BOTANY 2011; 108:485-98. [PMID: 21803738 PMCID: PMC3158698 DOI: 10.1093/aob/mcr185] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Accepted: 05/24/2011] [Indexed: 05/20/2023]
Abstract
BACKGROUND AND AIMS Recent papers indicated that epigenetic control is involved in transitions in bud dormancy, purportedly controlling gene expression. The present study aimed to identify genes that are differentially expressed in dormant and non-dormant Castanea sativa buds. METHODS Two suppression subtractive hybridization cDNA libraries were constructed to characterize the transcriptomes of dormant apical buds of C. sativa, and buds in which dormancy was released. KEY RESULTS A total of 512 expressed sequence tags (ESTs) were generated in a forward and reverse subtractive hybridization experiment. Classification of these ESTs into functional groups demonstrated that dormant buds were predominantly characterized by genes associated with stress response, while non-dormant buds were characterized by genes associated with energy, protein synthesis and cellular components for development and growth. ESTs for a few genes involved in different forms of epigenetic modification were found in both libraries, suggesting a role for epigenetic control in bud dormancy different from that in growth. Genes encoding histone mono-ubiquitinase HUB2 and histone acetyltransferase GCN5L were associated with dormancy, while a gene encoding histone H3 kinase AUR3 was associated with growth. Real-time RT-PCR with a selection of genes involved in epigenetic modification and stress tolerance confirmed the expression of the majority of investigated genes in various stages of bud development, revealing a cyclical expression pattern concurring with the growth seasons for most genes. However, senescing leaves also showed an increased expression of several of the genes associated with dormancy, implying pleiotropy. Furthermore, a comparison between these subtraction cDNA libraries and the poplar bud dormancy transcriptome and arabidopsis transcriptomes for seed dormancy and non-dormancy indicated a common basis for dormancy in all three systems. CONCLUSIONS Bud dormancy and non-dormancy in C. sativa were characterized by distinct sets of genes and are likely to be under different epigenetic control.
Collapse
Affiliation(s)
- María Estrella Santamaría
- Dpto. Biología de Organismos y Sistemas, Área de Fisiología Vegetal, Universidad de Oviedo 33071, Oviedo, Asturias, Spain
- Instituto de Biotecnologia de Asturias (IUBA), Ed. Santiago Gascón, Universidad de Oviedo, C/ Fernando Bongera s/n, E-33006 Oviedo, Asturias, Spain
| | - Roberto Rodríguez
- Dpto. Biología de Organismos y Sistemas, Área de Fisiología Vegetal, Universidad de Oviedo 33071, Oviedo, Asturias, Spain
- Instituto de Biotecnologia de Asturias (IUBA), Ed. Santiago Gascón, Universidad de Oviedo, C/ Fernando Bongera s/n, E-33006 Oviedo, Asturias, Spain
| | - María Jesús Cañal
- Dpto. Biología de Organismos y Sistemas, Área de Fisiología Vegetal, Universidad de Oviedo 33071, Oviedo, Asturias, Spain
- Instituto de Biotecnologia de Asturias (IUBA), Ed. Santiago Gascón, Universidad de Oviedo, C/ Fernando Bongera s/n, E-33006 Oviedo, Asturias, Spain
| | - Peter E. Toorop
- Seed Conservation Department, Royal Botanic Gardens, Kew, Wakehurst Place, Selsfield Road, Ardingly, West Sussex RH17 6TN, UK
| |
Collapse
|
20
|
Santamaría ME, Rodríguez R, Cañal MJ, Toorop PE. Transcriptome analysis of chestnut (Castanea sativa) tree buds suggests a putative role for epigenetic control of bud dormancy. ANNALS OF BOTANY 2011. [PMID: 21803738 DOI: 10.1093/aob/mbr185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
BACKGROUND AND AIMS Recent papers indicated that epigenetic control is involved in transitions in bud dormancy, purportedly controlling gene expression. The present study aimed to identify genes that are differentially expressed in dormant and non-dormant Castanea sativa buds. METHODS Two suppression subtractive hybridization cDNA libraries were constructed to characterize the transcriptomes of dormant apical buds of C. sativa, and buds in which dormancy was released. KEY RESULTS A total of 512 expressed sequence tags (ESTs) were generated in a forward and reverse subtractive hybridization experiment. Classification of these ESTs into functional groups demonstrated that dormant buds were predominantly characterized by genes associated with stress response, while non-dormant buds were characterized by genes associated with energy, protein synthesis and cellular components for development and growth. ESTs for a few genes involved in different forms of epigenetic modification were found in both libraries, suggesting a role for epigenetic control in bud dormancy different from that in growth. Genes encoding histone mono-ubiquitinase HUB2 and histone acetyltransferase GCN5L were associated with dormancy, while a gene encoding histone H3 kinase AUR3 was associated with growth. Real-time RT-PCR with a selection of genes involved in epigenetic modification and stress tolerance confirmed the expression of the majority of investigated genes in various stages of bud development, revealing a cyclical expression pattern concurring with the growth seasons for most genes. However, senescing leaves also showed an increased expression of several of the genes associated with dormancy, implying pleiotropy. Furthermore, a comparison between these subtraction cDNA libraries and the poplar bud dormancy transcriptome and arabidopsis transcriptomes for seed dormancy and non-dormancy indicated a common basis for dormancy in all three systems. CONCLUSIONS Bud dormancy and non-dormancy in C. sativa were characterized by distinct sets of genes and are likely to be under different epigenetic control.
Collapse
Affiliation(s)
- María Estrella Santamaría
- Dpto. Biología de Organismos y Sistemas, Área de Fisiología Vegetal, Universidad de Oviedo 33071, Oviedo, Asturias, Spain
| | | | | | | |
Collapse
|
21
|
Wang D, Pan Y, Zhao X, Zhu L, Fu B, Li Z. Genome-wide temporal-spatial gene expression profiling of drought responsiveness in rice. BMC Genomics 2011; 12:149. [PMID: 21406116 PMCID: PMC3070656 DOI: 10.1186/1471-2164-12-149] [Citation(s) in RCA: 142] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2010] [Accepted: 03/16/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Rice is highly sensitive to drought, and the effect of drought may vary with the different genotypes and development stages. Genome-wide gene expression profiling was used as the initial point to dissect molecular genetic mechanism of this complex trait and provide valuable information for the improvement of drought tolerance in rice. Affymetrix rice genome array containing 48,564 japonica and 1,260 indica sequences was used to analyze the gene expression pattern of rice exposed to drought stress. The transcriptome from leaf, root, and young panicle at three developmental stages was comparatively analyzed combined with bioinformatics exploring drought stress related cis-elements. RESULTS There were 5,284 genes detected to be differentially expressed under drought stress. Most of these genes were tissue- or stage-specific regulated by drought. The tissue-specific down-regulated genes showed distinct function categories as photosynthesis-related genes prevalent in leaf, and the genes involved in cell membrane biogenesis and cell wall modification over-presented in root and young panicle. In a drought environment, several genes, such as GA2ox, SAP15, and Chitinase III, were regulated in a reciprocal way in two tissues at the same development stage. A total of 261 transcription factor genes were detected to be differentially regulated by drought stress. Most of them were also regulated in a tissue- or stage-specific manner. A cis-element containing special CGCG box was identified to over-present in the upstream of 55 common induced genes, and it may be very important for rice plants responding to drought environment. CONCLUSIONS Genome-wide gene expression profiling revealed that most of the drought differentially expressed genes (DEGs) were under temporal and spatial regulation, suggesting a crosstalk between various development cues and environmental stimuli. The identification of the differentially regulated DEGs, including TF genes and unique candidate cis-element for drought responsiveness, is a very useful resource for the functional dissection of the molecular mechanism in rice responding to environment stress.
Collapse
Affiliation(s)
- Di Wang
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, China
| | | | | | | | | | | |
Collapse
|
22
|
|
23
|
Tanino KK, Kalcsits L, Silim S, Kendall E, Gray GR. Temperature-driven plasticity in growth cessation and dormancy development in deciduous woody plants: a working hypothesis suggesting how molecular and cellular function is affected by temperature during dormancy induction. PLANT MOLECULAR BIOLOGY 2010; 73:49-65. [PMID: 20191309 DOI: 10.1016/j.envexpbot.2014.02.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2009] [Accepted: 01/22/2010] [Indexed: 05/24/2023]
Abstract
The role of temperature during dormancy development is being reconsidered as more research emerges demonstrating that temperature can significantly influence growth cessation and dormancy development in woody plants. However, there are seemingly contradictory responses to warm and low temperature in the literature. This research/review paper aims to address this contradiction. The impact of temperature was examined in four poplar clones and two dogwood ecotypes with contrasting dormancy induction patterns. Under short day (SD) conditions, warm night temperature (WT) strongly accelerated timing of growth cessation leading to greater dormancy development and cold hardiness in poplar hybrids. In contrast, under long day (LD) conditions, low night temperature (LT) can completely bypass the short photoperiod requirement in northern but not southern dogwood ecotypes. These findings are in fact consistent with the literature in which both coniferous and deciduous woody plant species' growth cessation, bud set or dormancy induction are accelerated by temperature. The contradictions are addressed when photoperiod and ecotypes are taken into account in which the combination of either SD/WT (northern and southern ecotypes) or LD/LT (northern ecotypes only) are separated. Photoperiod insensitive types are driven to growth cessation by LT. Also consistent is the importance of night temperature in regulating these warm and cool temperature responses. However, the physiological basis for these temperature effects remain unclear. Changes in water content, binding and mobility are factors known to be associated with dormancy induction in woody plants. These were measured using non-destructive magnetic resonance micro-imaging (MRMI) in specific regions within lateral buds of poplar under SD/WT dormancing inducing conditions. Under SD/WT, dormancy was associated with restrictions in inter- or intracellular water movement between plant cells that reduces water mobility during dormancy development. Northern ecotypes of dogwood may be more tolerant to photoinhibition under the dormancy inducing LD/LT conditions compared to southern ecotypes. In this paper, we propose the existence of two separate, but temporally connected processes that contribute to dormancy development in some deciduous woody plant: one driven by photoperiod and influenced by moderate temperatures; the other driven by abiotic stresses, such as low temperature in combination with long photoperiods. The molecular changes corresponding to these two related but distinct responses to temperature during dormancy development in woody plants remains an investigative challenge.
Collapse
Affiliation(s)
- Karen K Tanino
- Department of Plant Sciences, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK S7N5A8, Canada.
| | | | | | | | | |
Collapse
|
24
|
Horvath DP, Sung S, Kim D, Chao W, Anderson J. Characterization, expression and function of DORMANCY ASSOCIATED MADS-BOX genes from leafy spurge. PLANT MOLECULAR BIOLOGY 2010; 73:169-79. [PMID: 20066557 DOI: 10.1007/s11103-009-9596-5] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2009] [Accepted: 12/28/2009] [Indexed: 05/20/2023]
Abstract
DORMANCY ASSOCIATED MADS-BOX (DAM) genes are related to AGAMOUS-LIKE 24 and SHORT VEGETATIVE PHASE genes of arabidopsis and are differentially regulated coordinately with endodormancy induction and release in buds of several perennial plant species. DAM genes were first shown to directly impact endodormancy in peach where a deletion of a series of DAM resulted in loss of endodormancy induction. We have cloned and characterized several MADS box genes from the model perennial weed leafy spurge. Leafy spurge DAM genes are preferentially expressed in shoot tips and buds in response to cold temperatures and day length in a manner that is relative to the level of endodormancy induced by various environmental conditions. Over-expression of one DAM gene in arabidopsis delays flowering. Additionally, we show that at least one DAM gene is differentially regulated by chromatin remodeling. Comparisons of the DAM gene promoters between poplar and leafy spurge have identified several conserved sequences that may be important for their expression patterns in response to dormancy-inducing stimuli.
Collapse
|
25
|
Tanino KK, Kalcsits L, Silim S, Kendall E, Gray GR. Temperature-driven plasticity in growth cessation and dormancy development in deciduous woody plants: a working hypothesis suggesting how molecular and cellular function is affected by temperature during dormancy induction. PLANT MOLECULAR BIOLOGY 2010; 73:49-65. [PMID: 20191309 DOI: 10.1007/s11103-010-9610-y] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2009] [Accepted: 01/22/2010] [Indexed: 05/04/2023]
Abstract
The role of temperature during dormancy development is being reconsidered as more research emerges demonstrating that temperature can significantly influence growth cessation and dormancy development in woody plants. However, there are seemingly contradictory responses to warm and low temperature in the literature. This research/review paper aims to address this contradiction. The impact of temperature was examined in four poplar clones and two dogwood ecotypes with contrasting dormancy induction patterns. Under short day (SD) conditions, warm night temperature (WT) strongly accelerated timing of growth cessation leading to greater dormancy development and cold hardiness in poplar hybrids. In contrast, under long day (LD) conditions, low night temperature (LT) can completely bypass the short photoperiod requirement in northern but not southern dogwood ecotypes. These findings are in fact consistent with the literature in which both coniferous and deciduous woody plant species' growth cessation, bud set or dormancy induction are accelerated by temperature. The contradictions are addressed when photoperiod and ecotypes are taken into account in which the combination of either SD/WT (northern and southern ecotypes) or LD/LT (northern ecotypes only) are separated. Photoperiod insensitive types are driven to growth cessation by LT. Also consistent is the importance of night temperature in regulating these warm and cool temperature responses. However, the physiological basis for these temperature effects remain unclear. Changes in water content, binding and mobility are factors known to be associated with dormancy induction in woody plants. These were measured using non-destructive magnetic resonance micro-imaging (MRMI) in specific regions within lateral buds of poplar under SD/WT dormancing inducing conditions. Under SD/WT, dormancy was associated with restrictions in inter- or intracellular water movement between plant cells that reduces water mobility during dormancy development. Northern ecotypes of dogwood may be more tolerant to photoinhibition under the dormancy inducing LD/LT conditions compared to southern ecotypes. In this paper, we propose the existence of two separate, but temporally connected processes that contribute to dormancy development in some deciduous woody plant: one driven by photoperiod and influenced by moderate temperatures; the other driven by abiotic stresses, such as low temperature in combination with long photoperiods. The molecular changes corresponding to these two related but distinct responses to temperature during dormancy development in woody plants remains an investigative challenge.
Collapse
Affiliation(s)
- Karen K Tanino
- Department of Plant Sciences, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK S7N5A8, Canada.
| | | | | | | | | |
Collapse
|
26
|
Horvath D. Genomics for weed science. Curr Genomics 2010; 11:47-51. [PMID: 20808523 PMCID: PMC2851116 DOI: 10.2174/138920210790217972] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2009] [Revised: 07/08/2009] [Accepted: 07/08/2009] [Indexed: 12/29/2022] Open
Abstract
Numerous genomic-based studies have provided insight to the physiological and evolutionary processes involved in developmental and environmental processes of model plants such as arabidopsis and rice. However, far fewer efforts have been attempted to use genomic resources to study physiological and evolutionary processes of weedy plants. Genomics-based tools such as extensive EST databases and microarrays have been developed for a limited number of weedy species, although application of information and resources developed for model plants and crops are possible and have been exploited. These tools have just begun to provide insights into the response of these weeds to herbivore and pathogen attack, survival of extreme environmental conditions, and interaction with crops. The potential of these tools to illuminate mechanisms controlling the traits that allow weeds to invade novel habitats, survive extreme environments, and that make weeds difficult to eradicate have potential for both improving crops and developing novel methods to control weeds.
Collapse
Affiliation(s)
- David Horvath
- USDA-ARS, Bioscience Research Laboratory, 1605 Albrecht Blvd. Fargo, ND 58105, USA
| |
Collapse
|
27
|
Anderson JV, Horvath DP, Chao WS, Foley ME. Bud Dormancy in Perennial Plants: A Mechanism for Survival. DORMANCY AND RESISTANCE IN HARSH ENVIRONMENTS 2010. [DOI: 10.1007/978-3-642-12422-8_5] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
28
|
Ophir R, Pang X, Halaly T, Venkateswari J, Lavee S, Galbraith D, Or E. Gene-expression profiling of grape bud response to two alternative dormancy-release stimuli expose possible links between impaired mitochondrial activity, hypoxia, ethylene-ABA interplay and cell enlargement. PLANT MOLECULAR BIOLOGY 2009; 71:403-23. [PMID: 19653104 DOI: 10.1007/s11103-009-9531-9] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2009] [Accepted: 07/16/2009] [Indexed: 05/20/2023]
Abstract
A grape-bud-oriented genomic platform was produced for a large-scale comparative analysis of bud responses to two stimuli of grape-bud dormancy release, hydrogen cyanamide (HC) and heat shock (HS). The results suggested considerable similarity in bud response to the stimuli, both in the repertoire of responding genes and in the temporary nature of the transcriptome reprogramming. Nevertheless, the bud response to HC was delayed, more condensed and stronger, as reflected by a higher number of regulated genes and a higher intensity of regulation compared to the response to HS. Integrating the changes occurring in response to both stimuli suggested perturbation of mitochondrial activity, development of oxidative stress and establishment of a situation that resembles hypoxia, which coincides with induction of glycolysis and fermentation, as well as changes in the interplay between ABA and ethylene metabolism. The latter is known to induce various growth responses in submerged plants and the possibility of a similar mechanism operating in the bud meristem during dormancy release is raised. The new link suggested between sub lethal stress, mitochondrial activity, hypoxic conditions, ethylene metabolism and cell enlargement during bud dormancy release may be instrumental in understanding the dormancy-release mechanism. Temporary increase of acetaldehyde, ethanol and ethylene in response to dormancy release stimuli demonstrated the predictive power of the working model, and its relevance to dormancy release was demonstrated by enhancement of bud break by exogenous ethylene and its inhibition by an ethylene signal inhibitor.
Collapse
Affiliation(s)
- Ron Ophir
- Department of Fruit Tree Sciences, Institute of Horticulture, Agricultural Research Organization, The Volcani Center, Bet Dagan 50250, Israel
| | | | | | | | | | | | | |
Collapse
|
29
|
Horvath DP, Chao WS, Suttle JC, Thimmapuram J, Anderson JV. Transcriptome analysis identifies novel responses and potential regulatory genes involved in seasonal dormancy transitions of leafy spurge (Euphorbia esula L.). BMC Genomics 2008; 9:536. [PMID: 19014493 PMCID: PMC2605480 DOI: 10.1186/1471-2164-9-536] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2008] [Accepted: 11/12/2008] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Dormancy of buds is a critical developmental process that allows perennial plants to survive extreme seasonal variations in climate. Dormancy transitions in underground crown buds of the model herbaceous perennial weed leafy spurge were investigated using a 23 K element cDNA microarray. These data represent the first large-scale transcriptome analysis of dormancy in underground buds of an herbaceous perennial species. Crown buds collected monthly from August through December, over a five year period, were used to monitor the changes in the transcriptome during dormancy transitions. RESULTS Nearly 1,000 genes were differentially-expressed through seasonal dormancy transitions. Expected patterns of gene expression were observed for previously characterized genes and physiological processes indicated that resolution in our analysis was sufficient for identifying shifts in global gene expression. CONCLUSION Gene ontology of differentially-expressed genes suggests dormancy transitions require specific alterations in transport functions (including induction of a series of mitochondrial substrate carriers, and sugar transporters), ethylene, jasmonic acid, auxin, gibberellic acid, and abscisic acid responses, and responses to stress (primarily oxidative and cold/drought). Comparison to other dormancy microarray studies indicated that nearly half of the genes identified in our study were also differentially expressed in at least two other plant species during dormancy transitions. This comparison allowed us to identify a particular MADS-box transcription factor related to the DORMANCY ASSOCIATED MADS-BOX genes from peach and hypothesize that it may play a direct role in dormancy induction and maintenance through regulation of FLOWERING LOCUS T.
Collapse
Affiliation(s)
- David P Horvath
- Biosciences Research Laboratory, USDA-Agricultural Research Service, Fargo ND, USA
| | - Wun S Chao
- Biosciences Research Laboratory, USDA-Agricultural Research Service, Fargo ND, USA
| | - Jeffrey C Suttle
- Northern Crop Science Laboratory, USDA-Agricultural Research Service, Fargo ND, USA
| | - Jyothi Thimmapuram
- WM Keck Center for Comparative and Functional Genomics, University of Illinois, Urbana IL, USA
| | - James V Anderson
- Biosciences Research Laboratory, USDA-Agricultural Research Service, Fargo ND, USA
| |
Collapse
|
30
|
Mazzitelli L, Hancock RD, Haupt S, Walker PG, Pont SDA, McNicol J, Cardle L, Morris J, Viola R, Brennan R, Hedley PE, Taylor MA. Co-ordinated gene expression during phases of dormancy release in raspberry (Rubus idaeus L.) buds. JOURNAL OF EXPERIMENTAL BOTANY 2007; 58:1035-45. [PMID: 17244630 DOI: 10.1093/jxb/erl266] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Bud break in raspberry (Rubus idaeus L.) is often poor and uneven, with many of the subapical buds remaining in a dormant state. In order to determine the dormancy status of raspberry buds, an empirical measure of bud burst in a growth-permissive environment following exposure to chilling (4 degrees C cold storage) was developed. For cv. Glen Ample, percentage bud burst in intact canes and isolated nodes was recorded after 14 d. Isolated nodes (a measure of endodormancy) achieved 100% bud burst after approximately 1500 h chilling whereas buds on intact plants (combined endo- and paradormancy) required an additional 1000 h chilling. A microarray approach was used to follow changes in gene expression that occurred during dormancy transition. The probes for the microarrays were obtained from endodormant and paradormant raspberry bud cDNA libraries. The expression profiles of 5300 clones from these libraries were subjected to principal component analysis to determine the most significant expression patterns. Sequence analysis of these clones, in many cases, enabled their functional categorization and the development of hypotheses concerning the mechanisms of bud dormancy release. Thus a set of novel candidates for key dormancy-related genes from raspberry buds have been identified. Bud dormancy is fundamental to the study of plant developmental processes and, in addition, its regulation is of significant economic importance to fruit and horticultural industries.
Collapse
Affiliation(s)
- Luca Mazzitelli
- Quality, Health and Nutrition, Scottish Crop Research Institute, Invergowrie, Dundee DD2 5DA, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Jia Y, Anderson JV, Horvath DP, Gu YQ, Lym RG, Chao WS. Subtractive cDNA libraries identify differentially expressed genes in dormant and growing buds of leafy spurge (Euphorbia esula). PLANT MOLECULAR BIOLOGY 2006; 61:329-44. [PMID: 16786310 DOI: 10.1007/s11103-006-0015-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2005] [Accepted: 01/23/2006] [Indexed: 05/08/2023]
Abstract
Two subtractive cDNA libraries were developed to study genes associated with bud dormancy (reverse library) and initiation of shoot growth (forward library) in leafy spurge. To identify unique sequences represented in each library, 15744 clones were screened to reduce the level of redundancy within both libraries. A total of 516 unique sequences were obtained from 2304 minimally redundant clones. Radioactive probes developed from RNAs extracted from crown buds of either intact (para-dormant control) or a series of growth-induced (2 h, 2, and 4 d after decapitation) plants were used to identify differentially expressed genes by macroarray analysis. Semi-quantitative RT-PCR was used to confirm results obtained by macroarray analysis and to determine the expression profiles for other transcripts identified within the subtractive libraries. Selected clones were also used to examine gene expression in crown buds after growth induction and/or during normal seasonal growth. In this study, four distinct patterns of gene expression were observed during the transition from para-dormancy to growth-induction. Many of the differentially regulated genes identified have unknown or hypothetical functions while others are known to play important roles in molecular functions. Gene ontology analysis identified a greater proportion of genes involved with catalytic activity in the forward library while the reverse library had a greater proportion of genes involved in DNA/RNA binding.
Collapse
Affiliation(s)
- Ying Jia
- Department of Plant Sciences, North Dakota State University, Fargo, 58105, USA
| | | | | | | | | | | |
Collapse
|
32
|
Affiliation(s)
- Michael A Campbell
- School of Science, Penn State Erie--The Behrend College, Erie, Pennsylvania 16563, USA
| |
Collapse
|
33
|
Volaire F, Norton MR, Norton GM, Lelièvre F. Seasonal patterns of growth, dehydrins and water-soluble carbohydrates in genotypes of Dactylis glomerata varying in summer dormancy. ANNALS OF BOTANY 2005; 95:981-90. [PMID: 15760915 PMCID: PMC4246749 DOI: 10.1093/aob/mci102] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2004] [Revised: 11/18/2004] [Accepted: 01/08/2005] [Indexed: 05/08/2023]
Abstract
BACKGROUND AND AIMS Summer dormancy in perennial grasses has been studied inadequately, despite its potential to enhance plant survival and persistence in Mediterranean areas. The aim of the present work was to characterize summer dormancy and dehydration tolerance in two cultivars of Dactylis glomerata (dormant 'Kasbah', non-dormant 'Oasis') and their hybrid using physiological indicators associated with these traits. METHODS Dehydration tolerance was assessed in a glasshouse experiment, while seasonal metabolic changes which produce putative protectants for drought, such as carbohydrates and dehydrins that might be associated with summer dormancy, were analysed in the field. KEY RESULTS The genotypes differed in their ability to survive increasing soil water deficit: lethal soil water potential (Psi(s)) was -3.4 MPa for 'Kasbah' (although non-dormant), -1.3 MPa for 'Oasis', and -1.6 MPa for their hybrid. In contrast, lethal water content of apices was similar for all genotypes (approx. 0.45 g H(2)O g d. wt(-1)), and hence the greater survival of 'Kasbah' can be ascribed to better drought avoidance rather than dehydration tolerance. In autumn-sown plants, 'Kasbah' had greatest dormancy, the hybrid was intermediate and 'Oasis' had none. The more dormant the genotype, the lower the metabolic activity during summer, and the earlier the activity declined in spring. Decreased monosaccharide content was an early indicator of dormancy induction. Accumulation of dehydrins did not correlate with stress tolerance, but dehydrin content was a function of the water status of the tissues, irrespective of the soil moisture. A protein of approx. 55 kDa occurred in leaf bases of the most dormant cultivar even in winter. CONCLUSIONS Drought avoidance and summer dormancy are correlated but can be independently expressed. These traits are heritable, allowing selection in breeding programmes.
Collapse
Affiliation(s)
- F Volaire
- Institut National de Recherche Agronomique, LEPSE, 2 place Viala, 34060 Montpellier, France.
| | | | | | | |
Collapse
|
34
|
Trebbi D, McGrath JM. Fluorometric sucrose evaluation for sugar beet. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2004; 52:6862-6867. [PMID: 15537287 DOI: 10.1021/jf048900c] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Sucrose is the economic product from sugar beet. Disease resistance is often available in low-sucrose genotypes and, prior to the deployment of such novel genes as available into the cultivated spectrum, selection for increased sucrose content is required during introgression. The objective of this work was to evaluate a relatively rapid and inexpensive enzymatic-fluorometric microtiter plate assay for sucrose quantification in sugar beet root dry matter, both for progeny testing in the greenhouse and for evaluation of field-grown mother roots. As determined using HPLC, sucrose content in diverse populations of sugar and table beet assayed over various developmental stages ranged from 0.213 to 2.416 mmol g(-1) of dry matter, and these values were used as references for both refractometry and enzymatic-fluorometric assay. As expected, refractometric analysis generally overestimated sucrose content. Enzymatic-fluorometric analyses were reasonably well correlated with HPLC results for young greenhouse-grown root tissues (R2 = 0.976), and less so with older field-grown roots (R2 = 0.605), for unknown reasons. Enzymatic-fluorometric assays may be best deployed for progeny testing of young seedlings.
Collapse
Affiliation(s)
- Daniele Trebbi
- Department of Crop and Soil Sciences, Plant Breeding and Genetics Graduate Program, Michigan State University, East Lansing, Michigan 48824-1325, USA
| | | |
Collapse
|
35
|
Horvath DP, Anderson JV, Chao WS, Foley ME. Knowing when to grow: signals regulating bud dormancy. TRENDS IN PLANT SCIENCE 2003; 8:534-40. [PMID: 14607098 DOI: 10.1016/j.tplants.2003.09.013] [Citation(s) in RCA: 267] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Dormancy regulation in vegetative buds is a complex process necessary for plant survival, development and architecture. Our understanding of and ability to manipulate these processes are crucial for increasing the yield and availability of much of the world's food. In many cases, release of dormancy results in increased cell division and changes in developmental programs. Much can be learned about dormancy regulation by identifying interactions of signals in these crucial processes. Internal signals such as hormones and sugar, and external signals such as light act through specific, overlapping signal transduction pathways to regulate endo-, eco- and paradormancy. Epigenetic-like regulation of endodormancy suggests a possible role for chromatin remodeling similar to that known for the vernalization responses during flowering.
Collapse
Affiliation(s)
- David P Horvath
- USDA/ARS, Biosciences Research Laboratory, 1605 Albrecht Blvd, PO Box 5674, State University Station, Fargo, ND 58105, USA.
| | | | | | | |
Collapse
|
36
|
Horvath DP, Schaffer R, West M, Wisman E. Arabidopsis microarrays identify conserved and differentially expressed genes involved in shoot growth and development from distantly related plant species. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2003; 34:125-134. [PMID: 12662315 DOI: 10.1046/j.1365-313x.2003.01706.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Expressed sequence tags (EST)-based microarrays are powerful tools for gene discovery and signal transduction studies in a small number of well-characterized species. To explore the usefulness of this technique for poorly characterized species, we have hybridized the 11,522-element Arabidopsis microarrays with labeled cDNAs from mature leaf and shoot apices from several different species. Expression of 23 to 47% of the genes on the array was detected, demonstrating that a large number of genes from distantly related species can be surveyed on Arabidopsis arrays. Differential expression of genes with known functions was indicative of the physiological state of the tissues tested. Genes involved in cell division, stress responses, and development were conserved and expressed preferentially in growing shoots.
Collapse
Affiliation(s)
- David P Horvath
- Biosciences Research Laboratory, Agricultural Research Service, US Department of Agriculture, Fargo, ND 58105-5674, USA.
| | | | | | | |
Collapse
|