1
|
Zhou Z, Li Z, Fan F, Qin H, Ding G. Effects of exogenous GA 3 on stem secondary growth of Pinus massoniana seedlings. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 206:108254. [PMID: 38056037 DOI: 10.1016/j.plaphy.2023.108254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/07/2023] [Accepted: 11/28/2023] [Indexed: 12/08/2023]
Abstract
Gibberellins (GAs) play a crucial role in regulating secondary growth in angiosperms, but their effects on the secondary growth of gymnosperms are rarely reported. In this study, we administered exogenous GA3 to two-year-old P. massoniana seedlings, and examined its effects on anatomical structure, physiological and biochemical changes, and gene expression in stems. The results showed that exogenous GA3 could enhance xylem development in P. massoniana by promoting cell division. The content of endogenous hormone (including auxins, brassinosteroids, and gibberellins) were changed and the genes related to phytohormone biosynthesis and signaling pathway, such as GID1, DELLA, TIR1, ARF, SAUR, CPD, BR6ox1, and CYCD3, were differentially expressed under GA3 treatment. Furthermore, GA3 and BR (brassinosteroid) might act synergistically in promoting secondary growth in P. massoniana. Additionally, lignin content was significantly increased after GA3 treatment accompanied by the express of lignin biosynthesis related genes. PmCAD (TRINITY_DN142116_c0_g1), a crucial gene involved in the lignin biosynthesis, was cloned and overexpressed in Nicotiana benthamiana, significantly promoting the xylem development and enhancing stem lignification. It was regarded as a key candidate gene for improving stem growth of P. massoniana. The findings of this study have demonstrated the impact of GA3 treatment on secondary growth of stems in P. massoniana, providing a foundation for understanding the molecular regulatory mechanism of stem secondary growth in Pinaceae seedlings and offering theoretical guidance for cultivating new germplasm with enhanced growth and yield.
Collapse
Affiliation(s)
- Zijing Zhou
- Institute for Forest Resources and Environment of Guizhou Province & Key Laboratory of Forest Cultivation in Plateau Mountain of Guizhou Province & College of Forestry, Guizhou University, Guiyang, 550025, China
| | - Zhengchun Li
- Institute for Forest Resources and Environment of Guizhou Province & Key Laboratory of Forest Cultivation in Plateau Mountain of Guizhou Province & College of Forestry, Guizhou University, Guiyang, 550025, China
| | - Fuhua Fan
- Institute for Forest Resources and Environment of Guizhou Province & Key Laboratory of Forest Cultivation in Plateau Mountain of Guizhou Province & College of Forestry, Guizhou University, Guiyang, 550025, China.
| | - Huijuan Qin
- Institute for Forest Resources and Environment of Guizhou Province & Key Laboratory of Forest Cultivation in Plateau Mountain of Guizhou Province & College of Forestry, Guizhou University, Guiyang, 550025, China
| | - Guijie Ding
- Institute for Forest Resources and Environment of Guizhou Province & Key Laboratory of Forest Cultivation in Plateau Mountain of Guizhou Province & College of Forestry, Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
2
|
Liang S, Li Y, Chen Y, Huang H, Zhou R, Ma T. Application and prospects of single-cell and spatial omics technologies in woody plants. FORESTRY RESEARCH 2023; 3:27. [PMID: 39526269 PMCID: PMC11524316 DOI: 10.48130/fr-2023-0027] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 11/02/2023] [Indexed: 11/16/2024]
Abstract
Over the past decade, high-throughput sequencing and high-resolution single-cell transcriptome sequencing technologies have undergone rapid development, leading to significant breakthroughs. Traditional molecular biology methods are limited in their ability to unravel cellular-level heterogeneity within woody plant tissues. Consequently, techniques such as single-cell transcriptomics, single-cell epigenetics, and spatial transcriptomics are rapidly gaining popularity in the study of woody plants. In this review, we provide a comprehensive overview of the development of these technologies, with a focus on their applications and the challenges they present in single-cell transcriptome research in woody plants. In particular, we delve into the similarities and differences among the results of current studies and analyze the reasons behind these differences. Furthermore, we put forth potential solutions to overcome the challenges encountered in single-cell transcriptome applications in woody plants. Finally, we discuss the application directions of these techniques to address key challenges in woody plant research in the future.
Collapse
Affiliation(s)
- Shaoming Liang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Sciences, Sichuan University, Chengdu, China
| | - Yiling Li
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Sciences, Sichuan University, Chengdu, China
| | - Yang Chen
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Sciences, Sichuan University, Chengdu, China
| | - Heng Huang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Sciences, Sichuan University, Chengdu, China
| | - Ran Zhou
- School of Forestry and Natural Resources, University of Georgia, Athens, GA, USA
| | - Tao Ma
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Sciences, Sichuan University, Chengdu, China
| |
Collapse
|
3
|
Tung CC, Kuo SC, Yang CL, Yu JH, Huang CE, Liou PC, Sun YH, Shuai P, Su JC, Ku C, Lin YCJ. Single-cell transcriptomics unveils xylem cell development and evolution. Genome Biol 2023; 24:3. [PMID: 36624504 PMCID: PMC9830878 DOI: 10.1186/s13059-022-02845-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 12/31/2022] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Xylem, the most abundant tissue on Earth, is responsible for lateral growth in plants. Typical xylem has a radial system composed of ray parenchyma cells and an axial system of fusiform cells. In most angiosperms, fusiform cells comprise vessel elements for water transportation and libriform fibers for mechanical support, while both functions are performed by tracheids in other vascular plants such as gymnosperms. Little is known about the developmental programs and evolutionary relationships of these xylem cell types. RESULTS Through both single-cell and laser capture microdissection transcriptomic profiling, we determine the developmental lineages of ray and fusiform cells in stem-differentiating xylem across four divergent woody angiosperms. Based on cross-species analyses of single-cell clusters and overlapping trajectories, we reveal highly conserved ray, yet variable fusiform, lineages across angiosperms. Core eudicots Populus trichocarpa and Eucalyptus grandis share nearly identical fusiform lineages, whereas the more basal angiosperm Liriodendron chinense has a fusiform lineage distinct from that in core eudicots. The tracheids in the basal eudicot Trochodendron aralioides, an evolutionarily reversed trait, exhibit strong transcriptomic similarity to vessel elements rather than libriform fibers. CONCLUSIONS This evo-devo framework provides a comprehensive understanding of the formation of xylem cell lineages across multiple plant species spanning over a hundred million years of evolutionary history.
Collapse
Affiliation(s)
- Chia-Chun Tung
- Department of Life Science, National Taiwan University, Taipei, 10617, Taiwan
| | - Shang-Che Kuo
- Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei, 10617, Taiwan
| | - Chia-Ling Yang
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Jhong-He Yu
- Institute of Plant Biology, National Taiwan University, Taipei, 10617, Taiwan
| | - Chia-En Huang
- Institute of Plant Biology, National Taiwan University, Taipei, 10617, Taiwan
| | - Pin-Chien Liou
- Institute of Plant Biology, National Taiwan University, Taipei, 10617, Taiwan
| | - Ying-Hsuan Sun
- Department of Forestry, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Peng Shuai
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jung-Chen Su
- Department of Pharmacy, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan
| | - Chuan Ku
- Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei, 10617, Taiwan.
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan.
| | - Ying-Chung Jimmy Lin
- Department of Life Science, National Taiwan University, Taipei, 10617, Taiwan.
- Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei, 10617, Taiwan.
- Institute of Plant Biology, National Taiwan University, Taipei, 10617, Taiwan.
| |
Collapse
|
4
|
Moshchenskaya YL, Galibina NA, Nikerova KM, Tarelkina TV, Korzhenevsky MA, Sofronova IN, Ershova MA, Semenova LI. Plant-Programmed Cell Death-Associated Genes Participation in Pinus sylvestris L. Trunk Tissue Formation. PLANTS (BASEL, SWITZERLAND) 2022; 11:3438. [PMID: 36559551 PMCID: PMC9785643 DOI: 10.3390/plants11243438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
Molecular genetic markers of various PCD (programmed cell death) variants during xylo- and phloemogenesis have been identified for the first time in Scots pine under lingonberry pine forest conditions in Northwest Russia (middle taiga subzone). PCD is a genetically determined process. Gene profiles of serine and cysteine proteases (endopeptidases), endonucleases, and metacaspases families are often considered markers of the final xylogenesis stage. In the present study, we examined the gene expression profiles of the BFN (bifunctional endonuclease) family-BFN, BFN1, BFN2, BFN3, and peptidase (cysteine endopeptidase, CEP and metacaspase, MC5) in the radial row, in addition to the vascular phloem and cambium (F1), differentiating xylem (F2), sapwood (SW), and transition zone during the active cambial growth period of uneven-aged pine trees (25-, 63- and 164-cambial age (c.a.) years old). We have shown that the expression patterns of the PCD-related genes did not depend on the cambial age but were largely determined by plant tissue type. In the radial row F1-F2-SW, we studied the activities of enzymes, including sucrose in metabolism (sucrose synthase, three forms of invertase); antioxidant system (AOS) enzymes (superoxide dismutase, catalase); and peroxidase andpolyphenol oxidase, which belonged to AOS enzymes and were involved in the synthesis of phenolic components of cell walls. The activity of the enzymes indicated that the trunk tissues of pine trees had varying metabolic status. Molecular genetic PCD regulation mechanisms during xylem vascular and mechanical element formation and parenchyma cells' PCD during the formation of Scots pine heartwood were discussed.
Collapse
Affiliation(s)
- Yulia L. Moshchenskaya
- Forest Research Institute, Karelian Research Centre of the Russian Academy of Sciences, 11 Pushkinskaya st., 185910 Petrozavodsk, Russia
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Apoplastic and vascular defences. Essays Biochem 2022; 66:595-605. [PMID: 36062526 DOI: 10.1042/ebc20220159] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 08/02/2022] [Accepted: 08/19/2022] [Indexed: 11/17/2022]
Abstract
The apoplast comprises the intercellular space between cell membranes, includes the xylem, and extends to the rhizoplane and the outer surfaces of the plant. The apoplast plays roles in different biological processes including plant immunity. This highly specialised space is often the first place where pathogen recognition occurs, and this then triggers the immune response. The immune response in the apoplast involves different mechanisms that restrict pathogen infection. Among these responses, secretion of different molecules like proteases, proteins related to immunity, small RNAs and secondary metabolites play important and often additive or synergistic roles. In addition, production of reactive oxygen species occurs to cause direct deleterious effects on the pathogen as well as reinforce the plant's immune response by triggering modifications to cell wall composition and providing additional defence signalling capabilities. The pool of available sugar in the apoplast also plays a role in immunity. These sugars can be manipulated by both interactors, pathogens gaining access to nutrients whilst the plant's responses restrict the pathogen's access to nutrients. In this review, we describe the latest findings in the field to highlight the importance of the apoplast in plant-pathogen interactions and plant immunity. We also indicate where new discoveries are needed.
Collapse
|
6
|
Onyenedum JG, Pace MR. The role of ontogeny in wood diversity and evolution. AMERICAN JOURNAL OF BOTANY 2021; 108:2331-2355. [PMID: 34761812 DOI: 10.1002/ajb2.1801] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 09/16/2021] [Indexed: 06/13/2023]
Abstract
Evolutionary developmental biology (evo-devo) explores the link between developmental patterning and phenotypic change through evolutionary time. In this review, we highlight the scientific advancements in understanding xylem evolution afforded by the evo-devo approach, opportunities for further engagement, and future research directions for the field. We review evidence that (1) heterochrony-the change in rate and timing of developmental events, (2) homeosis-the ontogenetic replacement of features, (3) heterometry-the change in quantity of a feature, (4) exaptation-the co-opting and repurposing of an ancestral feature, (5) the interplay between developmental and capacity constraints, and (6) novelty-the emergence of a novel feature, have all contributed to generating the diversity of woods. We present opportunities for future research engagement, which combine wood ontogeny within the context of robust phylogenetic hypotheses, and molecular biology.
Collapse
Affiliation(s)
- Joyce G Onyenedum
- School of Integrative Plant Sciences and L. H. Bailey Hortorium, Cornell University, Ithaca, New York, 14853, USA
| | - Marcelo R Pace
- Department of Botany, Instituto de Biología, Universidad Nacional Autónoma de México, Tercer Circuito s/n de Ciudad Universitaria, Mexico City, 04510, Mexico
| |
Collapse
|
7
|
Shi S, Wang H, Nie L, Tan D, Zhou C, Zhang Q, Li Y, Du B, Guo J, Huang J, Wu D, Zheng X, Guan W, Shan J, Zhu L, Chen R, Xue L, Walling LL, He G. Bph30 confers resistance to brown planthopper by fortifying sclerenchyma in rice leaf sheaths. MOLECULAR PLANT 2021; 14:1714-1732. [PMID: 34246801 DOI: 10.1016/j.molp.2021.07.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/24/2021] [Accepted: 07/07/2021] [Indexed: 06/13/2023]
Abstract
Phloem-feeding insects cause massive losses in agriculture and horticulture. Host plant resistance to phloem-feeding insects is often mediated by changes in phloem composition, which deter insect settling and feeding and decrease viability. Here, we report that rice plant resistance to the phloem-feeding brown planthopper (BPH) is associated with fortification of the sclerenchyma tissue, which is located just beneath the epidermis and a cell layer or two away from the vascular bundle in the rice leaf sheath. We found that BPHs prefer to feed on the smooth and soft region on the surface of rice leaf sheaths called the long-cell block. We identified Bph30 as a rice BPH resistance gene that prevents BPH stylets from reaching the phloem due to the fortified sclerenchyma. Bph30 is strongly expressed in sclerenchyma cells and enhances cellulose and hemicellulose synthesis, making the cell walls stiffer and sclerenchyma thicker. The structurally fortified sclerenchyma is a formidable barrier preventing BPH stylets from penetrating the leaf sheath tissues and arriving at the phloem to feed. Bph30 belongs to a novel gene family, encoding a protein with two leucine-rich domains. Another member of the family, Bph40, also conferred resistance to BPH. Collectively, the fortified sclerenchyma-mediated resistance mechanism revealed in this study expands our understanding of plant-insect interactions and opens a new path for controlling planthoppers in rice.
Collapse
Affiliation(s)
- Shaojie Shi
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Huiying Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Lingyun Nie
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Di Tan
- The Institute of Technological Science, School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China
| | - Cong Zhou
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Qian Zhang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Yi Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Bo Du
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Jianping Guo
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Jin Huang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Di Wu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Xiaohong Zheng
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Wei Guan
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Junhan Shan
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Lili Zhu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Rongzhi Chen
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Longjian Xue
- The Institute of Technological Science, School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China
| | - Linda L Walling
- Department of Botany and Plant Sciences, University of CaliforniaA, Riverside, CA 92521, USA
| | - Guangcun He
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
8
|
Thonglim A, Delzon S, Larter M, Karami O, Rahimi A, Offringa R, Keurentjes JJB, Balazadeh S, Smets E, Lens F. Intervessel pit membrane thickness best explains variation in embolism resistance amongst stems of Arabidopsis thaliana accessions. ANNALS OF BOTANY 2021; 128:171-182. [PMID: 33216143 PMCID: PMC8324034 DOI: 10.1093/aob/mcaa196] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 11/13/2020] [Indexed: 05/28/2023]
Abstract
BACKGROUND AND AIMS The ability to avoid drought-induced embolisms in the xylem is one of the essential traits for plants to survive periods of water shortage. Over the past three decades, hydraulic studies have been focusing on trees, which limits our ability to understand how herbs tolerate drought. Here we investigate the embolism resistance in inflorescence stems of four Arabidopsis thaliana accessions that differ in growth form and drought response. We assess functional traits underlying the variation in embolism resistance amongst the accessions studied using detailed anatomical observations. METHODS Vulnerability to xylem embolism was evaluated via vulnerability curves using the centrifuge technique and linked with detailed anatomical observations in stems using light microscopy and transmission electron microscopy. KEY RESULTS The data show significant differences in stem P50, varying 2-fold from -1.58 MPa in the Cape Verde Island accession to -3.07 MPa in the woody soc1 ful double mutant. Out of all the anatomical traits measured, intervessel pit membrane thickness (TPM) best explains the differences in P50, as well as P12 and P88. The association between embolism resistance and TPM can be functionally explained by the air-seeding hypothesis. There is no evidence that the correlation between increased woodiness and increased embolism resistance is directly related to functional aspects. However, we found that increased woodiness is strongly linked to other lignification characters, explaining why mechanical stem reinforcement is indirectly related to increased embolism resistance. CONCLUSIONS The woodier or more lignified accessions are more resistant to embolism than the herbaceous accessions, confirming the link between increased stem lignification and increased embolism resistance, as also observed in other lineages. Intervessel pit membrane thickness and, to a lesser extent, theoretical vessel implosion resistance and vessel wall thickness are the missing functional links between stem lignification and embolism resistance.
Collapse
Affiliation(s)
- Ajaree Thonglim
- Naturalis Biodiversity Center, Research Group Functional Traits, RA Leiden, The Netherlands
| | | | - Maximilian Larter
- Naturalis Biodiversity Center, Research Group Functional Traits, RA Leiden, The Netherlands
| | - Omid Karami
- Plant Developmental Genetics, Institute of Biology Leiden, Leiden University, BE Leiden, the Netherlands
| | - Arezoo Rahimi
- Plant Developmental Genetics, Institute of Biology Leiden, Leiden University, BE Leiden, the Netherlands
| | - Remko Offringa
- Plant Developmental Genetics, Institute of Biology Leiden, Leiden University, BE Leiden, the Netherlands
| | - Joost J B Keurentjes
- Laboratory of Genetics, Wageningen University, Droevendaalsesteeg, PB Wageningen, The Netherlands
| | - Salma Balazadeh
- Plant Developmental Genetics, Institute of Biology Leiden, Leiden University, BE Leiden, the Netherlands
| | - Erik Smets
- Naturalis Biodiversity Center, Research Group Functional Traits, RA Leiden, The Netherlands
| | - Frederic Lens
- Naturalis Biodiversity Center, Research Group Functional Traits, RA Leiden, The Netherlands
| |
Collapse
|
9
|
Fan F, Zhou Z, Qin H, Tan J, Ding G. Exogenous Brassinosteroid Facilitates Xylem Development in Pinus massoniana Seedlings. Int J Mol Sci 2021; 22:ijms22147615. [PMID: 34299234 PMCID: PMC8303313 DOI: 10.3390/ijms22147615] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/11/2021] [Accepted: 07/14/2021] [Indexed: 12/28/2022] Open
Abstract
Brassinosteroids (BRs) are known to be essential regulators for wood formation in herbaceous plants and poplar, but their roles in secondary growth and xylem development are still not well-defined, especially in pines. Here, we treated Pinus massoniana seedlings with different concentrations of exogenous BRs, and assayed the effects on plant growth, xylem development, endogenous phytohormone contents and gene expression within stems. Application of exogenous BR resulted in improving development of xylem more than phloem, and promoting xylem development in a dosage-dependent manner in a certain concentration rage. Endogenous hormone determination showed that BR may interact with other phytohormones in regulating xylem development. RNA-seq analysis revealed that some conventional phenylpropanoid biosynthesis- or lignin synthesis-related genes were downregulated, but the lignin content was elevated, suggesting that new lignin synthesis pathways or other cell wall components should be activated by BR treatment in P. massoniana. The results presented here reveal the foundational role of BRs in regulating plant secondary growth, and provide the basis for understanding molecular mechanisms of xylem development in P. massoniana.
Collapse
Affiliation(s)
- Fuhua Fan
- Institute for Forest Resources and Environment of Guizhou, Guizhou University, Guiyang 550025, China; (Z.Z.); (H.Q.)
- Key Laboratory of Forest Cultivation in Plateau Mountain of Guizhou Province, Guizhou University, Guiyang 550025, China
- College of Forestry, Guizhou University, Guiyang 550025, China
- Correspondence: (F.F.); (G.D.)
| | - Zijing Zhou
- Institute for Forest Resources and Environment of Guizhou, Guizhou University, Guiyang 550025, China; (Z.Z.); (H.Q.)
- Key Laboratory of Forest Cultivation in Plateau Mountain of Guizhou Province, Guizhou University, Guiyang 550025, China
- College of Forestry, Guizhou University, Guiyang 550025, China
| | - Huijuan Qin
- Institute for Forest Resources and Environment of Guizhou, Guizhou University, Guiyang 550025, China; (Z.Z.); (H.Q.)
- Key Laboratory of Forest Cultivation in Plateau Mountain of Guizhou Province, Guizhou University, Guiyang 550025, China
- College of Forestry, Guizhou University, Guiyang 550025, China
| | - Jianhui Tan
- Timber Forest Research Institute, Guangxi Academy of Forestry, Nanning 530009, China;
| | - Guijie Ding
- Institute for Forest Resources and Environment of Guizhou, Guizhou University, Guiyang 550025, China; (Z.Z.); (H.Q.)
- Key Laboratory of Forest Cultivation in Plateau Mountain of Guizhou Province, Guizhou University, Guiyang 550025, China
- College of Forestry, Guizhou University, Guiyang 550025, China
- Correspondence: (F.F.); (G.D.)
| |
Collapse
|
10
|
Stem cell ageing of the root apical meristem of Arabidopsis thaliana. Mech Ageing Dev 2020; 190:111313. [PMID: 32721407 DOI: 10.1016/j.mad.2020.111313] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/16/2020] [Accepted: 07/02/2020] [Indexed: 11/21/2022]
Abstract
Plants form new organs from pluripotent stem cells throughout their lives and under changing environmental conditions. In the Arabidopsis root meristem, a pool of stem cells surrounding a stem cell organizer, named Quiescent Center (QC), gives rise to the specific root tissues. Among them, the columella stem cell niche that gives rise to the gravity-sensing columella cells has been used as a model system to study stem cell regulation at the young seedling stage. However, little is known about the changes of the stem cell niche during later development. Here, we report that the columella stem cell niche undergoes pronounced histological and molecular reorganization as the plant progresses towards the adult stage. Commonly-used reporters for cellular states undergo re-patterning after an initial juvenile meristem phase. Furthermore, the responsiveness to the plant hormone abscisic acid, an integrator of stress response, strongly decreases. Many ageing effects are reminiscent of the loss-of-function phenotype of the central stem cell regulator WOX5 and can be explained by gradually decreasing WOX5 expression levels during ageing. Our results show that the architecture and central regulatory components of the root stem cell niche are already highly dynamic within the first weeks of development.
Collapse
|
11
|
Hearn J, Blaxter M, Schönrogge K, Nieves-Aldrey JL, Pujade-Villar J, Huguet E, Drezen JM, Shorthouse JD, Stone GN. Genomic dissection of an extended phenotype: Oak galling by a cynipid gall wasp. PLoS Genet 2019; 15:e1008398. [PMID: 31682601 PMCID: PMC6855507 DOI: 10.1371/journal.pgen.1008398] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 11/14/2019] [Accepted: 10/23/2019] [Indexed: 12/13/2022] Open
Abstract
Galls are plant tissues whose development is induced by another organism for the inducer's benefit. 30,000 arthropod species induce galls, and in most cases the inducing effectors and target plant systems are unknown. Cynipid gall wasps are a speciose monophyletic radiation that induce structurally complex galls on oaks and other plants. We used a model system comprising the gall wasp Biorhiza pallida and the oak Quercus robur to characterise inducer and host plant gene expression at defined stages through the development of galled and ungalled plant tissues, and tested alternative hypotheses for the origin and type of galling effectors and plant metabolic pathways involved. Oak gene expression patterns diverged markedly during development of galled and normal buds. Young galls showed elevated expression of oak genes similar to legume root nodule Nod factor-induced early nodulin (ENOD) genes and developmental parallels with oak buds. In contrast, mature galls showed substantially different patterns of gene expression to mature leaves. While most oak transcripts could be functionally annotated, many gall wasp transcripts of interest were novel. We found no evidence in the gall wasp for involvement of third-party symbionts in gall induction, for effector delivery using virus-like-particles, or for gallwasp expression of genes coding for plant hormones. Many differentially and highly expressed genes in young larvae encoded secretory peptides, which we hypothesise are effector proteins exported to plant tissues. Specifically, we propose that host arabinogalactan proteins and gall wasp chitinases interact in young galls to generate a somatic embryogenesis-like process in oak tissues surrounding the gall wasp larvae. Gall wasp larvae also expressed genes encoding multiple plant cell wall degrading enzymes (PCWDEs). These have functional orthologues in other gall inducing cynipids but not in figitid parasitoid sister groups, suggesting that they may be evolutionary innovations associated with cynipid gall induction. Plant galls are induced by organisms that manipulate host plant development to produce novel structures. The organisms involved range from mutualistic (such as nitrogen fixing bacteria) to parasitic. In the case of parasites, the gall benefits only the gall-inducing partner. A wide range of organisms can induce galls, but the processes involved are understood only for some bacterial and fungal galls. Cynipid gall wasps induce diverse and structurally complex galls, particularly on oaks (Quercus). We used transcriptome and genome sequencing for one gall wasp and its host oak to identify genes active in gall development. On the plant side, when compared to normally developing bud tissues, young gall tissues showed elevated expression of loci similar to those found in nitrogen-fixing root nodules of leguminous plants. On the wasp side, we found no evidence for involvement of viruses or microorganisms carried by the insects in gall induction or delivery of inducing stimuli. We found that gall wasps express many genes whose products may be secreted to the host, including enzymes that degrade plant cell walls. Genome comparisons between galling and non-galling relatives showed cell wall-degrading enzymes are restricted to gall inducers, and hence potentially key components of a gall inducing lifestyle.
Collapse
Affiliation(s)
- Jack Hearn
- Vector Biology Department, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Institute of Evolutionary Biology, University of Edinburgh, King’s Buildings, Edinburgh, United Kingdom
- * E-mail: (JH); (GNS)
| | - Mark Blaxter
- Institute of Evolutionary Biology, University of Edinburgh, King’s Buildings, Edinburgh, United Kingdom
| | | | - José-Luis Nieves-Aldrey
- Departamento de Biodiversidad y Biología Evolutiva, Museo Nacional de Ciencias Naturales (CSIC), Madrid, Spain
| | | | - Elisabeth Huguet
- UMR 7261 CNRS, Institut de Recherche sur la Biologie de l’Insecte, Faculté des Sciences et Techniques, Université de Tours, France
| | - Jean-Michel Drezen
- UMR 7261 CNRS, Institut de Recherche sur la Biologie de l’Insecte, Faculté des Sciences et Techniques, Université de Tours, France
| | | | - Graham N. Stone
- Institute of Evolutionary Biology, University of Edinburgh, King’s Buildings, Edinburgh, United Kingdom
- * E-mail: (JH); (GNS)
| |
Collapse
|
12
|
Exogenous Application of Phytohormones Promotes Growth and Regulates Expression of Wood Formation-Related Genes in Populus simonii × P. nigra. Int J Mol Sci 2019; 20:ijms20030792. [PMID: 30759868 PMCID: PMC6387376 DOI: 10.3390/ijms20030792] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 02/06/2019] [Accepted: 02/11/2019] [Indexed: 02/06/2023] Open
Abstract
Although phytohormones are known to be important signal molecules involved in wood formation, their roles are still largely unclear. Here, Populus simonii × P. nigra seedlings were treated with different concentrations of exogenous phytohormones, indole-3-acetic acid (IAA), gibberellin (GA3), and brassinosteroid (BR), and the effects of phytohormones on growth were investigated. Next, 27 genes with known roles in wood formation were selected for qPCR analysis to determine tissue-specificity and timing of responses to phytohormone treatments. Compared to the control, most IAA, GA3, and BR concentrations significantly increased seedling height. Meanwhile, IAA induced significant seedling stem diameter and cellulose content increases that peaked at 3 and 30 mg·L−1, respectively. Significant increase in cellulose content was also observed in seedlings treated with 100 mg·L−1 GA3. Neither stem diameter nor cellulose content of seedlings were affected by BR treatment significantly, although slight effects were observed. Anatomical measurements demonstrated improved xylem, but not phloem, development in IAA- and BR-treated seedlings. Most gene expression patterns induced by IAA, GA3, and BR differed among tissues. Many IAA response genes were also regulated by GA3, while BR-induced transcription was weaker and slower in Populus than for IAA and GA3. These results reveal the roles played by phytohormones in plant growth and lay the foundation for exploring molecular regulatory mechanisms of wood formation in Populus.
Collapse
|
13
|
Pereira WEL, Ferreira CB, Caserta R, Melotto M, de Souza AA. Xylella fastidiosa subsp. pauca and fastidiosa Colonize Arabidopsis Systemically and Induce Anthocyanin Accumulation in Infected Leaves. PHYTOPATHOLOGY 2019; 109:225-232. [PMID: 30277118 DOI: 10.1094/phyto-05-18-0155-fi] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The bacterium Xylella fastidiosa is a multihost pathogen that affects perennial crops such as grapevine, sweet orange, and olive tree worldwide. It is inherently difficult to study these pathosystems owing to the long-term growth habit of the host plant. Thus, the availability of model plants becomes essential to accelerate discoveries with economic impact. In this study, we uncovered evidence that the model plant Arabidopsis thaliana can be colonized by two different X. fastidiosa subspecies, pauca and fastidiosa. We observed that these bacteria are able to move away from the inoculation point as high bacterial populations were found in distant tissues. In addition, confocal laser scanning microscopy analysis of bacterial movement inside the petiole revealed the ability of the bacterium to move against the net xylem flow during the time course of colonization forming biofilm. These findings provide evidence for the capacity of X. fastidiosa to colonize Arabidopsis. Furthermore, leaves inoculated with X. fastidiosa showed a significant accumulation of anthocyanin. We propose that the X. fastidiosa subsp. pauca or fastidiosa colonization pattern and anthocyanin accumulation in the Arabidopsis ecotype Col-0 can be used as marker phenotypes to facilitate further studies aimed at improving genetic components involved in X. fastidiosa-host interaction.
Collapse
Affiliation(s)
- W E L Pereira
- First, second, third, and fifth authors: Centro de Citricultura Sylvio Moreira-Instituto Agronômico, Cordeirópolis, SP, Brazil; first and second authors: Universidade Estadual de Campinas (Unicamp), Campinas, SP, Brazil; and first and fourth authors: Department of Plant Sciences, University of California, Davis
| | - C B Ferreira
- First, second, third, and fifth authors: Centro de Citricultura Sylvio Moreira-Instituto Agronômico, Cordeirópolis, SP, Brazil; first and second authors: Universidade Estadual de Campinas (Unicamp), Campinas, SP, Brazil; and first and fourth authors: Department of Plant Sciences, University of California, Davis
| | - R Caserta
- First, second, third, and fifth authors: Centro de Citricultura Sylvio Moreira-Instituto Agronômico, Cordeirópolis, SP, Brazil; first and second authors: Universidade Estadual de Campinas (Unicamp), Campinas, SP, Brazil; and first and fourth authors: Department of Plant Sciences, University of California, Davis
| | - M Melotto
- First, second, third, and fifth authors: Centro de Citricultura Sylvio Moreira-Instituto Agronômico, Cordeirópolis, SP, Brazil; first and second authors: Universidade Estadual de Campinas (Unicamp), Campinas, SP, Brazil; and first and fourth authors: Department of Plant Sciences, University of California, Davis
| | - A A de Souza
- First, second, third, and fifth authors: Centro de Citricultura Sylvio Moreira-Instituto Agronômico, Cordeirópolis, SP, Brazil; first and second authors: Universidade Estadual de Campinas (Unicamp), Campinas, SP, Brazil; and first and fourth authors: Department of Plant Sciences, University of California, Davis
| |
Collapse
|
14
|
Han J, Li H, Yin B, Zhang Y, Liu Y, Cheng Z, Liu D, Lu H. The papain-like cysteine protease CEP1 is involved in programmed cell death and secondary wall thickening during xylem development in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:205-215. [PMID: 30376110 PMCID: PMC6305193 DOI: 10.1093/jxb/ery356] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 10/23/2018] [Indexed: 05/24/2023]
Abstract
Both tracheary elements and fiber cells undergo programmed cell death (PCD) during xylem development. In this study we investigated the role of papain-like cysteine protease CEP1 in PCD in the xylem of Arabidopsis. CEP1 was located in the cell wall of xylem cells, and CEP1 expression levels in inflorescence stems increased during stem maturation. cep1 mutant plants exhibited delayed stem growth and reduced xylem cell number compared to wild-type plants. Transmission electron microscopy demonstrated that organelle degradation was delayed during PCD, and thicker secondary walls were present in fiber cells and tracheary elements of the cep1 mutant. Transcriptional analyses of the maturation stage of the inflorescence stem revealed that genes involved in the biosynthesis of secondary wall components, including cellulose, hemicellulose, and lignin, as well as wood-associated transcriptional factors, were up-regulated in the cep1 mutant. These results suggest that CEP1 is directly involved in the clearing of cellular content during PCD and regulates secondary wall thickening during xylem development.
Collapse
Affiliation(s)
- Jingyi Han
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Hui Li
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Bin Yin
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Yongzhuo Zhang
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Yadi Liu
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Ziyi Cheng
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Di Liu
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Hai Lu
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
| |
Collapse
|
15
|
Iakimova ET, Woltering EJ. Xylogenesis in zinnia (Zinnia elegans) cell cultures: unravelling the regulatory steps in a complex developmental programmed cell death event. PLANTA 2017; 245:681-705. [PMID: 28194564 PMCID: PMC5357506 DOI: 10.1007/s00425-017-2656-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 01/27/2017] [Indexed: 05/20/2023]
Abstract
MAIN CONCLUSION Physiological and molecular studies support the view that xylogenesis can largely be determined as a specific form of vacuolar programmed cell death (PCD). The studies in xylogenic zinnia cell culture have led to many breakthroughs in xylogenesis research and provided a background for investigations in other experimental models in vitro and in planta . This review discusses the most essential earlier and recent findings on the regulation of xylem elements differentiation and PCD in zinnia and other xylogenic systems. Xylogenesis (the formation of water conducting vascular tissue) is a paradigm of plant developmental PCD. The xylem vessels are composed of fused tracheary elements (TEs)-dead, hollow cells with patterned lignified secondary cell walls. They result from the differentiation of the procambium and cambium cells and undergo cell death to become functional post-mortem. The TE differentiation proceeds through a well-coordinated sequence of events in which differentiation and the programmed cellular demise are intimately connected. For years a classical experimental model for studies on xylogenesis was the xylogenic zinnia (Zinnia elegans) cell culture derived from leaf mesophyll cells that, upon induction by cytokinin and auxin, transdifferentiate into TEs. This cell system has been proven very efficient for investigations on the regulatory components of xylem differentiation which has led to many discoveries on the mechanisms of xylogenesis. The knowledge gained from this system has potentiated studies in other xylogenic cultures in vitro and in planta. The present review summarises the previous and latest findings on the hormonal and biochemical signalling, metabolic pathways and molecular and gene determinants underlying the regulation of xylem vessels differentiation in zinnia cell culture. Highlighted are breakthroughs achieved through the use of xylogenic systems from other species and newly introduced tools and analytical approaches to study the processes. The mutual dependence between PCD signalling and the differentiation cascade in the program of TE development is discussed.
Collapse
Affiliation(s)
| | - Ernst J Woltering
- Wageningen University and Research, Food and Biobased Research, P.O. Box 17, 6700 AA, Wageningen, The Netherlands.
- Wageningen University, Horticulture and Product Physiology, P.O. Box 630, 6700 AP, Wageningen, The Netherlands.
| |
Collapse
|
16
|
Liu Y, Wei M, Hou C, Lu T, Liu L, Wei H, Cheng Y, Wei Z. Functional Characterization of Populus PsnSHN2 in Coordinated Regulation of Secondary Wall Components in Tobacco. Sci Rep 2017; 7:42. [PMID: 28246387 PMCID: PMC5428377 DOI: 10.1038/s41598-017-00093-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 02/03/2017] [Indexed: 11/13/2022] Open
Abstract
Wood formation is a biological process during which the most abundant lignocellulosic biomass on earth is produced. Although a number of transcription factors have been linked to the regulation of wood formation process, none of them has been demonstrated to be a higher hierarchical regulator that coordinately regulates secondary wall biosynthesis genes. Here, we identified a Populus gene, PsnSHN2, a counterpart of the Arabidopsis AP2/ERF type transcription factor, SHINE2. PsnSHN2 is predominantly expressed in xylem tissues and acted evidently as a high hierarchical transcriptional activator. Overexpression of PsnSHN2 in tobacco significantly altered the expression of both transcription factors and biosynthesis genes involved in secondary wall formation, leading to the thickened secondary walls and the changed cell wall composition. The most significant changes occurred in the contents of cellulose and hemicellulose that increased 37% and 28%, respectively, whereas the content of lignin that decreased 34%. Furthermore, PsnSHN2 activated or repressed the promoter activities of transcription factors involved in secondary wall biosynthesis and bound to five cis-acting elements enriched in the promoter regions of these transcription factors. Taken together, our results suggest PsnSHN2 coordinately regulate secondary wall formation through selective up/down-regulation of its downstream transcription factors that control secondary wall formation.
Collapse
Affiliation(s)
- Yingying Liu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Heilongjiang Harbin, 150040, P.R. China
| | - Minjing Wei
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Heilongjiang Harbin, 150040, P.R. China
| | - Cong Hou
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Heilongjiang Harbin, 150040, P.R. China
| | - Tingting Lu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Heilongjiang Harbin, 150040, P.R. China
| | | | - Hairong Wei
- School of Forest Resource and Environmental Science, Michigan Technological University, Houghton, MI, 49931, USA
| | - Yuxiang Cheng
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Heilongjiang Harbin, 150040, P.R. China.
| | - Zhigang Wei
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Heilongjiang Harbin, 150040, P.R. China.
| |
Collapse
|
17
|
Coiro M, Truernit E. Xylem Characterization Using Improved Pseudo-Schiff Propidium Iodide Staining of Whole Mount Samples and Confocal Laser-Scanning Microscopy. Methods Mol Biol 2017; 1544:127-132. [PMID: 28050834 DOI: 10.1007/978-1-4939-6722-3_11] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
An improved pseudo-Schiff propidium iodide staining technique well suited for, but not limited to, the visualization of xylem cell walls in whole mount samples is presented. The pseudo-Schiff reaction results in covalent binding of the fluorescent dye propidium iodide to cell walls. This stable linkage permits the use of clearing agents after staining, which is itself improved following pretreatment of the plant tissue. A subsequent acid alcohol washing step eliminates unbound propidium iodide to reduce background fluorescence. The method can be used for characterizing xylem cell structure in different organs and species without the need for tissue sectioning.
Collapse
Affiliation(s)
- Mario Coiro
- Department of Biology, ETH Zurich, Universitätsstrasse 2, 8092, Zürich, Switzerland
- Department of Systematic and Evolutionary Botany, University of Zurich, Zollikerstrasse 107, 8008, Zürich, Switzerland
| | - Elisabeth Truernit
- Department of Biology, ETH Zurich, Universitätsstrasse 2, 8092, Zürich, Switzerland.
| |
Collapse
|
18
|
Vascular cambium regeneration and vessel formation in wounded inflorescence stems of Arabidopsis. Sci Rep 2016; 6:33754. [PMID: 27649687 PMCID: PMC5030676 DOI: 10.1038/srep33754] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 06/06/2016] [Indexed: 01/10/2023] Open
Abstract
Synchronized tissue polarization during regeneration or de novo vascular tissue formation is a plant-specific example of intercellular communication and coordinated development. According to the canalization hypothesis, the plant hormone auxin serves as polarizing signal that mediates directional channel formation underlying the spatio-temporal vasculature patterning. A necessary part of canalization is a positive feedback between auxin signaling and polarity of the intercellular auxin flow. The cellular and molecular mechanisms of this process are still poorly understood, not the least, because of a lack of a suitable model system. We show that the main genetic model plant, Arabidopsis (Arabidopsis thaliana) can be used to study the canalization during vascular cambium regeneration and new vasculature formation. We monitored localized auxin responses, directional auxin-transport channels formation, and establishment of new vascular cambium polarity during regenerative processes after stem wounding. The increased auxin response above and around the wound preceded the formation of PIN1 auxin transporter-marked channels from the primarily homogenous tissue and the transient, gradual changes in PIN1 localization preceded the polarity of newly formed vascular tissue. Thus, Arabidopsis is a useful model for studies of coordinated tissue polarization and vasculature formation after wounding allowing for genetic and mechanistic dissection of the canalization hypothesis.
Collapse
|
19
|
Transcriptome analysis of secondary cell wall development in Medicago truncatula. BMC Genomics 2016; 17:23. [PMID: 26728635 PMCID: PMC4700669 DOI: 10.1186/s12864-015-2330-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 12/17/2015] [Indexed: 11/18/2022] Open
Abstract
Background Legumes are important to humans by providing food, feed and raw materials for industrial utilizations. Some legumes, such as alfalfa, are potential bioenergy crops due to their high biomass productivity. Global transcriptional profiling has been successfully used to identify genes and regulatory pathways in secondary cell wall thickening in Arabidopsis, but such transcriptome data is lacking in legumes. Results A systematic microarray assay and high through-put real time PCR analysis of secondary cell wall development were performed along stem maturation in Medicago truncatula. More than 11,000 genes were differentially expressed during stem maturation, and were categorized into 10 expression clusters. Among these, 279 transcription factor genes were correlated with lignin/cellulose biosynthesis, therefore representing putative regulators of secondary wall development. The b-ZIP, NAC, WRKY, C2H2 zinc finger (ZF), homeobox, and HSF gene families were over-represented. Gene co-expression network analysis was employed to identify transcription factors that may regulate the biosynthesis of lignin, cellulose and hemicellulose. As a complementary approach to microarray, real-time PCR analysis was used to characterize the expression of 1,045 transcription factors in the stem samples, and 64 of these were upregulated more than 5-fold during stem maturation. Reverse genetics characterization of a cellulose synthase gene in cluster 10 confirmed its function in xylem development. Conclusions This study provides a useful transcriptome and expression resource for understanding cell wall development, which is pivotal to enhance biomass production in legumes. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-2330-6) contains supplementary material, which is available to authorized users.
Collapse
|
20
|
Yang JH, Wang H. Molecular Mechanisms for Vascular Development and Secondary Cell Wall Formation. FRONTIERS IN PLANT SCIENCE 2016; 7:356. [PMID: 27047525 PMCID: PMC4801872 DOI: 10.3389/fpls.2016.00356] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 03/07/2016] [Indexed: 05/18/2023]
Abstract
Vascular tissues are important for transporting water and nutrients throughout the plant and as physical support of upright growth. The primary constituents of vascular tissues, xylem, and phloem, are derived from the meristematic vascular procambium and cambium. Xylem cells develop secondary cell walls (SCWs) that form the largest part of plant lignocellulosic biomass that serve as a renewable feedstock for biofuel production. For the last decade, research on vascular development and SCW biosynthesis has seen rapid progress due to the importance of these processes to plant biology and to the biofuel industry. Plant hormones, transcriptional regulators and peptide signaling regulate procambium/cambium proliferation, vascular patterning, and xylem differentiation. Transcriptional regulatory pathways play a pivot role in SCW biosynthesis. Although most of these discoveries are derived from research in Arabidopsis, many genes have shown conserved functions in biofuel feedstock species. Here, we review the recent advances in our understanding of vascular development and SCW formation and discuss potential biotechnological uses.
Collapse
Affiliation(s)
- Jung Hyun Yang
- Department of Plant Science and Landscape Architecture, University of ConnecticutStorrs, CT, USA
| | - Huanzhong Wang
- Department of Plant Science and Landscape Architecture, University of ConnecticutStorrs, CT, USA
- Institute for Systems Genomics, University of ConnecticutStorrs, CT, USA
- *Correspondence: Huanzhong Wang,
| |
Collapse
|
21
|
Exogenous GA₃ Application Enhances Xylem Development and Induces the Expression of Secondary Wall Biosynthesis Related Genes in Betula platyphylla. Int J Mol Sci 2015; 16:22960-75. [PMID: 26404260 PMCID: PMC4613346 DOI: 10.3390/ijms160922960] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 09/09/2015] [Accepted: 09/11/2015] [Indexed: 11/17/2022] Open
Abstract
Gibberellin (GA) is a key signal molecule inducing differentiation of tracheary elements, fibers, and xylogenesis. However the molecular mechanisms underlying the effect of GA on xylem elongation and secondary wall development in tree species remain to be determined. In this study, Betula platyphylla (birch) seeds were treated with 300 ppm GA3 and/or 300 ppm paclobutrazol (PAC), seed germination was recorded, and transverse sections of hypocotyls were stained with toluidine blue; the two-month-old seedlings were treated with 50 μM GA3 and/or 50 μM PAC, transverse sections of seedling stems were stained using phloroglucinol–HCl, and secondary wall biosynthesis related genes expression was analyzed by real-time quantitative PCR. Results indicated that germination percentage, energy and time of seeds, hypocotyl height and seedling fresh weight were enhanced by GA3, and reduced by PAC; the xylem development was wider in GA3-treated plants than in the control; the expression of NAC and MYB transcription factors, CESA, PAL, and GA oxidase was up-regulated during GA3 treatment, suggesting their role in GA3-induced xylem development in the birch. Our results suggest that GA3 induces the expression of secondary wall biosynthesis related genes to trigger xylogenesis in the birch plants.
Collapse
|
22
|
Randall RS, Miyashima S, Blomster T, Zhang J, Elo A, Karlberg A, Immanen J, Nieminen K, Lee JY, Kakimoto T, Blajecka K, Melnyk CW, Alcasabas A, Forzani C, Matsumoto-Kitano M, Mähönen AP, Bhalerao R, Dewitte W, Helariutta Y, Murray JAH. AINTEGUMENTA and the D-type cyclin CYCD3;1 regulate root secondary growth and respond to cytokinins. Biol Open 2015; 4:1229-36. [PMID: 26340943 PMCID: PMC4610221 DOI: 10.1242/bio.013128] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Higher plant vasculature is characterized by two distinct developmental phases. Initially, a well-defined radial primary pattern is established. In eudicots, this is followed by secondary growth, which involves development of the cambium and is required for efficient water and nutrient transport and wood formation. Regulation of secondary growth involves several phytohormones, and cytokinins have been implicated as key players, particularly in the activation of cell proliferation, but the molecular mechanisms mediating this hormonal control remain unknown. Here we show that the genes encoding the transcription factor AINTEGUMENTA (ANT) and the D-type cyclin CYCD3;1 are expressed in the vascular cambium of Arabidopsis roots, respond to cytokinins and are both required for proper root secondary thickening. Cytokinin regulation of ANT and CYCD3 also occurs during secondary thickening of poplar stems, suggesting this represents a conserved regulatory mechanism.
Collapse
Affiliation(s)
- Ricardo S Randall
- Department of Molecular Biosciences, Cardiff School of Biosciences, Cardiff University, Cardiff, Wales CF10 3AX, UK
| | - Shunsuke Miyashima
- Department of Biological Sciences, Osaka University, Graduate School of Science, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | - Tiina Blomster
- Department of Biosciences, Institute of Biotechnology, Viikinkaari 1 (P.O.Box 65), 00014, University of Helsinki, Helsinki, Finland
| | - Jing Zhang
- Department of Biosciences, Institute of Biotechnology, Viikinkaari 1 (P.O.Box 65), 00014, University of Helsinki, Helsinki, Finland
| | - Annakaisa Elo
- Department of Biosciences, Institute of Biotechnology, Viikinkaari 1 (P.O.Box 65), 00014, University of Helsinki, Helsinki, Finland
| | - Anna Karlberg
- Department of Plant Physiology, Umeå University, Umeå SE-901 87, Sweden
| | - Juha Immanen
- Department of Biosciences, Institute of Biotechnology, Viikinkaari 1 (P.O.Box 65), 00014, University of Helsinki, Helsinki, Finland
| | - Kaisa Nieminen
- Department of Biosciences, Institute of Biotechnology, Viikinkaari 1 (P.O.Box 65), 00014, University of Helsinki, Helsinki, Finland
| | - Ji-Young Lee
- School of Biological Sciences, College of Natural Science, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
| | - Tatsuo Kakimoto
- Department of Biological Sciences, Osaka University, Graduate School of Science, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | - Karolina Blajecka
- Sainsbury Laboratory, Cambridge University, Bateman Street, Cambridge CB2 1LR, UK
| | - Charles W Melnyk
- Sainsbury Laboratory, Cambridge University, Bateman Street, Cambridge CB2 1LR, UK
| | - Annette Alcasabas
- Department of Molecular Biosciences, Cardiff School of Biosciences, Cardiff University, Cardiff, Wales CF10 3AX, UK
| | - Celine Forzani
- Department of Molecular Biosciences, Cardiff School of Biosciences, Cardiff University, Cardiff, Wales CF10 3AX, UK
| | - Miho Matsumoto-Kitano
- Department of Biological Sciences, Osaka University, Graduate School of Science, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | - Ari Pekka Mähönen
- Department of Biosciences, Institute of Biotechnology, Viikinkaari 1 (P.O.Box 65), 00014, University of Helsinki, Helsinki, Finland
| | | | - Walter Dewitte
- Department of Molecular Biosciences, Cardiff School of Biosciences, Cardiff University, Cardiff, Wales CF10 3AX, UK
| | - Ykä Helariutta
- Sainsbury Laboratory, Cambridge University, Bateman Street, Cambridge CB2 1LR, UK
| | - James A H Murray
- Department of Molecular Biosciences, Cardiff School of Biosciences, Cardiff University, Cardiff, Wales CF10 3AX, UK
| |
Collapse
|
23
|
Liu J, Hai G, Wang C, Cao S, Xu W, Jia Z, Yang C, Wang JP, Dai S, Cheng Y. Comparative proteomic analysis of Populus trichocarpa early stem from primary to secondary growth. J Proteomics 2015; 126:94-108. [DOI: 10.1016/j.jprot.2015.05.032] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 05/20/2015] [Accepted: 05/21/2015] [Indexed: 01/01/2023]
|
24
|
Růžička K, Ursache R, Hejátko J, Helariutta Y. Xylem development - from the cradle to the grave. THE NEW PHYTOLOGIST 2015; 207:519-35. [PMID: 25809158 DOI: 10.1111/nph.13383] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 02/21/2015] [Indexed: 05/06/2023]
Abstract
The development and growth of plants, as well as their successful adaptation to a variety of environments, is highly dependent on the conduction of water, nutrients and other important molecules throughout the plant body. Xylem is a specialized vascular tissue that serves as a conduit of water and minerals and provides mechanical support for upright growth. Wood, also known as secondary xylem, constitutes the major part of mature woody stems and roots. In the past two decades, a number of key factors including hormones, signal transducers and (post)transcriptional regulators have been shown to control xylem formation. We outline the main mechanisms shown to be essential for xylem development in various plant species, with an emphasis on Arabidopsis thaliana, as well as several tree species where xylem has a long history of investigation. We also summarize the processes which have been shown to be instrumental during xylem maturation. This includes mechanisms of cell wall formation and cell death which collectively complete xylem cell fate.
Collapse
Affiliation(s)
- Kamil Růžička
- Department of Functional Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Kamenice 25, Brno, CZ-62500, Czech Republic
| | - Robertas Ursache
- Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge, CB2 1LR, UK
| | - Jan Hejátko
- Department of Functional Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Kamenice 25, Brno, CZ-62500, Czech Republic
| | - Ykä Helariutta
- Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge, CB2 1LR, UK
- Institute of Biotechnology, University of Helsinki, PO Box 65, Helsinki, FIN-00014, Finland
| |
Collapse
|
25
|
Soler M, Camargo ELO, Carocha V, Cassan-Wang H, San Clemente H, Savelli B, Hefer CA, Paiva JAP, Myburg AA, Grima-Pettenati J. The Eucalyptus grandis R2R3-MYB transcription factor family: evidence for woody growth-related evolution and function. THE NEW PHYTOLOGIST 2015; 206:1364-77. [PMID: 25250741 DOI: 10.1111/nph.13039] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 08/05/2014] [Indexed: 05/19/2023]
Abstract
The R2R3-MYB family, one of the largest transcription factor families in higher plants, controls a wide variety of plant-specific processes including, notably, phenylpropanoid metabolism and secondary cell wall formation. We performed a genome-wide analysis of this superfamily in Eucalyptus, one of the most planted hardwood trees world-wide. A total of 141 predicted R2R3-MYB sequences identified in the Eucalyptus grandis genome sequence were subjected to comparative phylogenetic analyses with Arabidopsis thaliana, Oryza sativa, Populus trichocarpa and Vitis vinifera. We analysed features such as gene structure, conserved motifs and genome location. Transcript abundance patterns were assessed by RNAseq and validated by high-throughput quantitative PCR. We found some R2R3-MYB subgroups with expanded membership in E. grandis, V. vinifera and P. trichocarpa, and others preferentially found in woody species, suggesting diversification of specific functions in woody plants. By contrast, subgroups containing key genes regulating lignin biosynthesis and secondary cell wall formation are more conserved across all of the species analysed. In Eucalyptus, R2R3-MYB tandem gene duplications seem to disproportionately affect woody-preferential and woody-expanded subgroups. Interestingly, some of the genes belonging to woody-preferential subgroups show higher expression in the cambial region, suggesting a putative role in the regulation of secondary growth.
Collapse
Affiliation(s)
- Marçal Soler
- LRSV Laboratoire de Recherche en Sciences Végétales, UMR5546, Université Toulouse III/CNRS, BP 42617 Auzeville, 31326, Castanet Tolosan, France
| | - Eduardo Leal Oliveira Camargo
- LRSV Laboratoire de Recherche en Sciences Végétales, UMR5546, Université Toulouse III/CNRS, BP 42617 Auzeville, 31326, Castanet Tolosan, France
| | - Victor Carocha
- LRSV Laboratoire de Recherche en Sciences Végétales, UMR5546, Université Toulouse III/CNRS, BP 42617 Auzeville, 31326, Castanet Tolosan, France
- Instituto de Tecnologia Química e Biológica (ITQB), Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal
- Instituto de Biologia Experimental e Tecnológica (iBET) Av. da República, Quinta do Marquês, 2781-901, Oeiras, Portugal
| | - Hua Cassan-Wang
- LRSV Laboratoire de Recherche en Sciences Végétales, UMR5546, Université Toulouse III/CNRS, BP 42617 Auzeville, 31326, Castanet Tolosan, France
| | - Hélène San Clemente
- LRSV Laboratoire de Recherche en Sciences Végétales, UMR5546, Université Toulouse III/CNRS, BP 42617 Auzeville, 31326, Castanet Tolosan, France
| | - Bruno Savelli
- LRSV Laboratoire de Recherche en Sciences Végétales, UMR5546, Université Toulouse III/CNRS, BP 42617 Auzeville, 31326, Castanet Tolosan, France
| | - Charles A Hefer
- Bioinformatics and Computational Biology Unit, Department of Biochemistry, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag X20, Pretoria, 0028, South Africa
| | - Jorge A Pinto Paiva
- Instituto de Biologia Experimental e Tecnológica (iBET) Av. da República, Quinta do Marquês, 2781-901, Oeiras, Portugal
- Instituto de Investigaçao Científica e Tropical (IICT/MNE) Palacio Burnay - Rua da Junqueira, 30, 1349-007, Lisboa, Portugal
| | - Alexander A Myburg
- Department of Genetics, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag X20, Pretoria, 0028, South Africa
- Genomics Research Institute (GRI), University of Pretoria, Private Bag X20, Pretoria, 0028, South Africa
| | - Jacqueline Grima-Pettenati
- LRSV Laboratoire de Recherche en Sciences Végétales, UMR5546, Université Toulouse III/CNRS, BP 42617 Auzeville, 31326, Castanet Tolosan, France
| |
Collapse
|
26
|
Tsai AY, Goacher RE, Master ER. Detecting changes in arabidopsis cell wall composition using time‐of‐flight secondary ion mass spectrometry. SURF INTERFACE ANAL 2015. [DOI: 10.1002/sia.5756] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Alex Yi‐Lin Tsai
- Department of Cell & Systems BiologyUniversity of Toronto Toronto ON Canada
| | - Robyn E. Goacher
- Department of Biochemistry, Chemistry and PhysicsNiagara University Lewiston NY USA
- Department of Chemical Engineering & Applied ChemistryUniversity of Toronto Toronto ON Canada
| | - Emma R. Master
- Department of Cell & Systems BiologyUniversity of Toronto Toronto ON Canada
- Department of Chemical Engineering & Applied ChemistryUniversity of Toronto Toronto ON Canada
| |
Collapse
|
27
|
Jupa R, Didi V, Hejátko J, Gloser V. An improved method for the visualization of conductive vessels in Arabidopsis thaliana inflorescence stems. FRONTIERS IN PLANT SCIENCE 2015; 6:211. [PMID: 25914701 PMCID: PMC4391271 DOI: 10.3389/fpls.2015.00211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 03/16/2015] [Indexed: 06/04/2023]
Abstract
Dye perfusion is commonly used for the identification of conductive elements important for the study of xylem development as well as precise hydraulic estimations. The tiny size of inflorescence stems, the small amount of vessels in close arrangement, and high hydraulic resistivity delimit the use of the method for quantification of the water conductivity of Arabidopsis thaliana, one of the recently most extensively used plant models. Here, we present an extensive adjustment to the method in order to reliably identify individual functional (conductive) vessels. Segments of inflorescence stems were sealed in silicone tubes to prevent damage and perfused with a dye solution. Our results showed that dyes often used for staining functional xylem elements (safranin, fuchsine, toluidine blue) failed with Arabidopsis. In contrast, Fluorescent Brightener 28 dye solution perfused through segments stained secondary cell walls of functional vessels, which were clearly distinguishable in native cross sections. When compared to identification based on the degree of development of secondary cell walls, identification with the help of dye perfusion revealed a significantly lower number of functional vessels and values of theoretical hydraulic conductivity. We found that lignified but not yet functional vessels form a substantial portion of the xylem in apical and basal segments of Arabidopsis and, thus, significantly affect the analyzed functional parameters of xylem. The presented methodology enables reliable identification of individual functional vessels, allowing thus estimations of hydraulic conductivities to be improved, size distributions and vessel diameters to be refined, and data variability generally to be reduced.
Collapse
Affiliation(s)
- Radek Jupa
- Department of Experimental Biology, Faculty of Science, Masaryk UniversityBrno, Czech Republic
| | - Vojtěch Didi
- Functional Genomics and Proteomics of Plants, Central European Institute of Technology, Masaryk UniversityBrno, Czech Republic
| | - Jan Hejátko
- Functional Genomics and Proteomics of Plants, Central European Institute of Technology, Masaryk UniversityBrno, Czech Republic
| | - Vít Gloser
- Department of Experimental Biology, Faculty of Science, Masaryk UniversityBrno, Czech Republic
| |
Collapse
|
28
|
Park J, Kim HK, Ryu J, Ahn S, Lee SJ, Hwang I. Functional water flow pathways and hydraulic regulation in the xylem network of Arabidopsis. PLANT & CELL PHYSIOLOGY 2015; 56:520-531. [PMID: 25520406 DOI: 10.1093/pcp/pcu198] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
In vascular plants, the xylem network constitutes a complex microfluidic system. The relationship between vascular network architecture and functional hydraulic regulation during actual water flow remains unexplored. Here, we developed a method to visualize individual xylem vessels of the 3D xylem network of Arabidopsis thaliana, and to analyze the functional activities of these vessels using synchrotron X-ray computed tomography with hydrophilic gold nanoparticles as flow tracers. We show how the organization of the xylem network changes dynamically throughout the plant, and reveal how the elementary units of this transport system are organized to ensure both long-distance axial water transport and local lateral water transport. Xylem vessels form distinct clusters that operate as functional units, and the activity of these units, which determines water flow pathways, is modulated not only by varying the number and size of xylem vessels, but also by altering their interconnectivity and spatial arrangement. Based on these findings, we propose a regulatory model of water transport that ensures hydraulic efficiency and safety.
Collapse
Affiliation(s)
- Joonghyuk Park
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Korea These authors contributed equally to this work
| | - Hae Koo Kim
- Center for Biofluid and Biomimic Research, Pohang University of Science and Technology, Pohang 790-784, Korea Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang 790-784, Korea These authors contributed equally to this work. Present address: Global Conservation Agriculture Program, International Maize and Wheat Improvement Center (CIMMYT), P.O. Box 5689, Addis Ababa, Ethiopia
| | - Jeongeun Ryu
- Center for Biofluid and Biomimic Research, Pohang University of Science and Technology, Pohang 790-784, Korea Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang 790-784, Korea
| | - Sungsook Ahn
- Center for Biofluid and Biomimic Research, Pohang University of Science and Technology, Pohang 790-784, Korea Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang 790-784, Korea
| | - Sang Joon Lee
- Center for Biofluid and Biomimic Research, Pohang University of Science and Technology, Pohang 790-784, Korea Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang 790-784, Korea
| | - Ildoo Hwang
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Korea
| |
Collapse
|
29
|
Du Q, Wang H. The role of HD-ZIP III transcription factors and miR165/166 in vascular development and secondary cell wall formation. PLANT SIGNALING & BEHAVIOR 2015; 10:e1078955. [PMID: 26340415 PMCID: PMC4883823 DOI: 10.1080/15592324.2015.1078955] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The Arabidopsis vascular system is composed of xylem and phloem, which form a well-defined collateral pattern in vascular bundles. Xylary element and fibers develop secondary cell walls (SCWs) that provide mechanical strength to support plant growth and to transport water and minerals to all above ground organs. SCWs also constitute the majority of terrestrial biomass for biofuel production. The biosynthesis of secondary cell walls are known to be under transcriptional regulation. Transcription factors, such as NAC (NAM, ATAF1/2 and CUC2) and MYB domain proteins, serve as master regulators in SCW development. Recent studies indicated that Class III homeodomain leucine zipper transcription factors (HD-ZIP III TFs) and microRNA 165/166 (miR165/166) may play important roles in SCW formation. Here we discuss the diverse functions of miR165/166 and HD-ZIPIII in vascular development and their interaction with the regulatory pathways of SCW biosynthesis.
Collapse
Affiliation(s)
- Qian Du
- Department of Plant Science and Landscape Architecture; University of Connecticut; Storrs, CT USA
| | - Huanzhong Wang
- Department of Plant Science and Landscape Architecture; University of Connecticut; Storrs, CT USA
- Correspondence to: Huanzhong Wang;
| |
Collapse
|
30
|
Mazur E, Kurczyńska EU, Friml J. Cellular events during interfascicular cambium ontogenesis in inflorescence stems of Arabidopsis. PROTOPLASMA 2014; 251:1125-1139. [PMID: 24526327 DOI: 10.1007/s00709-014-0620-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 01/22/2014] [Indexed: 06/03/2023]
Abstract
Development of cambium and its activity is important for our knowledge of the mechanism of secondary growth. Arabidopsis thaliana emerges as a good model plant for such a kind of study. Thus, this paper reports on cellular events taking place in the interfascicular regions of inflorescence stems of A. thaliana, leading to the development of interfascicular cambium from differentiated interfascicular parenchyma cells (IPC). These events are as follows: appearance of auxin accumulation, PIN1 gene expression, polar PIN1 protein localization in the basal plasma membrane and periclinal divisions. Distribution of auxin was observed to be higher in differentiating into cambium parenchyma cells compared to cells within the pith and cortex. Expression of PIN1 in IPC was always preceded by auxin accumulation. Basal localization of PIN1 was already established in the cells prior to their periclinal division. These cellular events initiated within parenchyma cells adjacent to the vascular bundles and successively extended from that point towards the middle region of the interfascicular area, located between neighboring vascular bundles. The final consequence of which was the closure of the cambial ring within the stem. Changes in the chemical composition of IPC walls were also detected and included changes of pectic epitopes, xyloglucans (XG) and extensins rich in hydroxyproline (HRGPs). In summary, results presented in this paper describe interfascicular cambium ontogenesis in terms of successive cellular events in the interfascicular regions of inflorescence stems of Arabidopsis.
Collapse
Affiliation(s)
- Ewa Mazur
- Laboratory of Cell Biology, Faculty of Biology and Environmental Protection, University of Silesia, Jagiellońska 28, 40-032, Katowice, Poland,
| | | | | |
Collapse
|
31
|
Guerriero G, Sergeant K, Hausman JF. Wood biosynthesis and typologies: a molecular rhapsody. TREE PHYSIOLOGY 2014; 34:839-55. [PMID: 24876292 DOI: 10.1093/treephys/tpu031] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Wood represents one of the most important renewable commodities for humanity and plays a crucial role in terrestrial ecosystem carbon-cycling. Wood formation is the result of a multitude of events that require the concerted action of endogenous and exogenous factors under the influence of photoperiod, for instance genes and plant growth regulators. Beyond providing mechanical support and being responsible for the increase in stem radial diameter, woody tissues constitute the vascular system of trees and are capable of reacting to environmental stimuli, and as such are therefore quite plastic and responsive. Despite the ecological and economic importance of wood, not all aspects of its formation have been unveiled. Many gaps in our knowledge are still present, which hinder the maximal exploitation of this precious bioresource. This review aims at surveying the current knowledge of wood formation and the available molecular data addressing the relationship between wood production and environmental factors, which have crucial influences on the rhythmic regulation of cambial activity and exert profound effects on tree stem growth, wood yield and properties. We will here go beyond wood sensu stricto, i.e., secondary xylem, and extend our survey to other tissues, namely vascular cambium, phloem and fibres. The purpose is to provide the reader with an overview of the complexity of the topic and to highlight the importance of progressing in the future towards an integrated knowledge on the subject.
Collapse
Affiliation(s)
- Gea Guerriero
- Department of Environment and Agro-biotechnologies (EVA), Centre de Recherche Public-Gabriel Lippmann, 41, Rue du Brill, L-4422 Belvaux, Luxembourg
| | - Kjell Sergeant
- Department of Environment and Agro-biotechnologies (EVA), Centre de Recherche Public-Gabriel Lippmann, 41, Rue du Brill, L-4422 Belvaux, Luxembourg
| | - Jean-Francois Hausman
- Department of Environment and Agro-biotechnologies (EVA), Centre de Recherche Public-Gabriel Lippmann, 41, Rue du Brill, L-4422 Belvaux, Luxembourg;
| |
Collapse
|
32
|
Sankar M, Nieminen K, Ragni L, Xenarios I, Hardtke CS. Automated quantitative histology reveals vascular morphodynamics during Arabidopsis hypocotyl secondary growth. eLife 2014; 3:e01567. [PMID: 24520159 PMCID: PMC3917233 DOI: 10.7554/elife.01567] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Among various advantages, their small size makes model organisms preferred subjects of investigation. Yet, even in model systems detailed analysis of numerous developmental processes at cellular level is severely hampered by their scale. For instance, secondary growth of Arabidopsis hypocotyls creates a radial pattern of highly specialized tissues that comprises several thousand cells starting from a few dozen. This dynamic process is difficult to follow because of its scale and because it can only be investigated invasively, precluding comprehensive understanding of the cell proliferation, differentiation, and patterning events involved. To overcome such limitation, we established an automated quantitative histology approach. We acquired hypocotyl cross-sections from tiled high-resolution images and extracted their information content using custom high-throughput image processing and segmentation. Coupled with automated cell type recognition through machine learning, we could establish a cellular resolution atlas that reveals vascular morphodynamics during secondary growth, for example equidistant phloem pole formation. DOI:http://dx.doi.org/10.7554/eLife.01567.001 Our understanding of the living world has been advanced greatly by studies of ‘model organisms’, such as mice, zebrafish, and fruit flies. Studying these creatures has been crucial to uncovering the genes that control how our bodies develop and grow, and also to discover the genetic basis of diseases such as cancer. Thale cress—or Arabidopsis thaliana to give its formal name—is the model organism of choice for many plant biologists. This tiny weed has been widely studied because it can complete its lifecycle, from seed to seed, in about 6 weeks, and because its relatively small genome simplifies the search for genes that control specific traits. However, as with other much-studied model systems, understanding the changes that underpin the development of some of the more complex tissues in Arabidopsis has been severely hampered by the shear number of cells involved. After it has emerged from the seed, the plant’s first stem will develop from a few dozen cells in width to several thousand cells with highly specialized tissues arranged in a complex pattern of concentric circles. Although this stem thickening process represents a major developmental change in many plants—from Arabidopsis to oak trees—it has been under-researched. This is partly because it involves so many different cells, and also because it can only be observed in thin sections cut out of the plant’s stem. Now Sankar, Nieminen, Ragni et al. have developed a novel approach, termed ‘automated quantitative histology’, to overcome these problems. This strategy involves ‘teaching’ a computer to automatically recognize different plant cells and to measure their important features in high-resolution images of tissue sections. The resulting ‘map’ of the developing stem—which required over 800 hr of computing time to complete—reveals the changes to cells and tissues as they develop that allow the transport of water, sugars and nutrients between the above- and below-ground organs. Sankar, Nieminen, Ragni et al. suggest that their novel approach could, in the future, also be applied to study the development of other tissues and organisms, including animals. DOI:http://dx.doi.org/10.7554/eLife.01567.002
Collapse
Affiliation(s)
- Martial Sankar
- Department of Plant Molecular Biology, University of Lausanne, Lausanne, Switzerland
| | | | | | | | | |
Collapse
|
33
|
Carvalho A, Paiva J, Louzada J, Lima-Brito J. The transcriptomics of secondary growth and wood formation in conifers. Mol Biol Int 2013; 2013:974324. [PMID: 24288610 PMCID: PMC3830773 DOI: 10.1155/2013/974324] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 08/22/2013] [Accepted: 09/09/2013] [Indexed: 11/17/2022] Open
Abstract
In the last years, forestry scientists have adapted genomics and next-generation sequencing (NGS) technologies to the search for candidate genes related to the transcriptomics of secondary growth and wood formation in several tree species. Gymnosperms, in particular, the conifers, are ecologically and economically important, namely, for the production of wood and other forestry end products. Until very recently, no whole genome sequencing of a conifer genome was available. Due to the gradual improvement of the NGS technologies and inherent bioinformatics tools, two draft assemblies of the whole genomes sequence of Picea abies and Picea glauca arose in the current year. These draft genome assemblies will bring new insights about the structure, content, and evolution of the conifer genomes. Furthermore, new directions in the forestry, breeding and research of conifers will be discussed in the following. The identification of genes associated with the xylem transcriptome and the knowledge of their regulatory mechanisms will provide less time-consuming breeding cycles and a high accuracy for the selection of traits related to wood production and quality.
Collapse
Affiliation(s)
- Ana Carvalho
- Institute for Biotechnology and Bioengineering, Centre of Genomics and Biotechnology (IBB/CGB), University of Tras-os-Montes and Alto Douro, 5001-801 Vila Real, Portugal
| | - Jorge Paiva
- Instituto de Investigação Científica Tropical (IICT), Centro de Florestas e Produtos Florestais (FLOR), Tapada da Ajuda, 1349-018 Lisboa, Portugal
| | - José Louzada
- Department of Forestry Sciences and Landscape (CIFAP), University of Tras-os-Montes and Alto Douro, 5001-801 Vila Real, Portugal
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Tras-os-Montes and Alto Douro, 5001-801 Vila Real, Portugal
| | - José Lima-Brito
- Institute for Biotechnology and Bioengineering, Centre of Genomics and Biotechnology (IBB/CGB), University of Tras-os-Montes and Alto Douro, 5001-801 Vila Real, Portugal
| |
Collapse
|
34
|
Wang HH, Tang RJ, Liu H, Chen HY, Liu JY, Jiang XN, Zhang HX. Chimeric repressor of PtSND2 severely affects wood formation in transgenic Populus. TREE PHYSIOLOGY 2013; 33:878-86. [PMID: 23939552 DOI: 10.1093/treephys/tpt058] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
NAC domain transcription factors are important regulators that activate the secondary wall biosynthesis in wood formation. In this work, we investigated the possible functions of an NAC family member SECONDARY WALL-ASSOCIATED NAC DOMAIN PROTEIN2 (PtSND2) using chimeric repressor silencing technology. Reverse transcription-polymerase chain reaction, subcellular localization and transcriptional activation analyses indicated that PtSND2 is a wood-associated transcriptional factor with the predicted transcriptional activation activity, which could be inhibited by the repression domain SUPERMAN REPRESSION DOMAIN X (SRDX) in yeast. Wood formation was severely repressed in transgenic poplar plants overexpressing PtSND2-SRDX. Meanwhile, the secondary cell wall thickness of xylem fibers was restrained, and the contents of cellulose and lignin were obviously decreased in the stems of transgenic plants. Further studies indicated that expressions of a number of wood-associated genes were down-regulated in the stems of transgenic plants. Our results suggest that PtSND2 may play important roles during the secondary growth of stems in poplar.
Collapse
Affiliation(s)
- H H Wang
- National Key Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China
| | | | | | | | | | | | | |
Collapse
|
35
|
Herrero J, Esteban-Carrasco A, Zapata JM. Looking for Arabidopsis thaliana peroxidases involved in lignin biosynthesis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2013; 67:77-86. [PMID: 23545205 DOI: 10.1016/j.plaphy.2013.02.019] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Accepted: 02/19/2013] [Indexed: 05/20/2023]
Abstract
Monolignol polymerization into lignin is catalyzed by peroxidases or laccases. Recently, a Zinnia elegans peroxidase (ZePrx) that is considered responsible for monolignol polymerization in this plant has been molecularly and functionally characterized. Nevertheless, Arabidopsis thaliana has become an alternative model plant for studies of lignification, filling the gaps that may occur with Z. elegans. The arabidopsis genome offers the possibility of performing bioinformatic analyses and data mining that are not yet feasible with other plant species, in order to obtain preliminary evidence on the role of genes and proteins. In our search for arabidopsis homologs to the ZePrx, we performed an exhaustive in silico characterization of everything from the protein to the transcript of Arabidopsis thaliana peroxidases (AtPrxs) homologous to ZePrx, with the aim of identifying one or more peroxidases that may be involved in monolignol polymerization. Nine peroxidases (AtPrx 4, 5, 52, 68, 67, 36, 14, 49 and 72) with an E-value greater than 1e-80 with ZePrx were selected for this study. The results demonstrate that a high level of 1D, 2D and 3D homology between these AtPrxs and ZePrx are not always accompanied by the presence of the same electrostatic and mRNA properties that indicate a peroxidase is involved in lignin biosynthesis. In summary, we can confirm that the peroxidases involved in lignification are among AtPrx 4, 52, 49 and 72. Their structural and mRNA features indicate that exert their action in the cell wall similar to ZePrx.
Collapse
Affiliation(s)
- Joaquín Herrero
- Department of Plant Biology, University of Alcalá, E-28871 Alcalá de Henares, Madrid, Spain.
| | | | - José Miguel Zapata
- Department of Plant Biology, University of Alcalá, E-28871 Alcalá de Henares, Madrid, Spain.
| |
Collapse
|
36
|
Tixier A, Cochard H, Badel E, Dusotoit-Coucaud A, Jansen S, Herbette S. Arabidopsis thaliana as a model species for xylem hydraulics: does size matter? JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:2295-305. [PMID: 23547109 PMCID: PMC3654419 DOI: 10.1093/jxb/ert087] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
While Arabidopsis thaliana has been proposed as a model species for wood development, the potential of this tiny herb for studying xylem hydraulics remains unexplored and anticipated by scepticism. Inflorescence stems of A. thaliana were used to measure hydraulic conductivity and cavitation resistance, whereas light and electron microscopy allowed observations of vessels. In wild-type plants, measured and theoretical conductivity showed a significant correlation (R (2) = 0.80, P < 0.01). Moreover, scaling of vessel dimensions and intervessel pit structure of A. thaliana were consistent with structure-function relationships of woody plants. The reliability and resolution of the hydraulic methods applied to measure vulnerability to cavitation were addressed by comparing plants grown under different photoperiods or different mutant lines. Sigmoid vulnerability curves of A. thaliana indicated a pressure corresponding to 50% loss of hydraulic conductance (P 50) between -3 and -2.5MPa for short-day and long-day plants, respectively. Polygalacturonase mutants showed a higher P 50 value (-2.25MPa), suggesting a role for pectins in vulnerability to cavitation. The application of A. thaliana as a model species for xylem hydraulics provides exciting possibilities for (1) exploring the molecular basis of xylem anatomical features and (2) understanding genetic mechanisms behind xylem functional traits such as cavitation resistance. Compared to perennial woody species, however, the lesser amount of xylem in A. thaliana has its limitations.
Collapse
Affiliation(s)
- Aude Tixier
- Clermont Université, Université Blaise Pascal, UMR 547 PIAF, F-63177, Aubière, France
- Institute for Systematic Botany and Ecology, Ulm University, Albert-Einstein-Allee 11, D–89081, Ulm, Germany
| | - Hervé Cochard
- INRA, UMR 547 PIAF, F-63100 Clermont-Ferrand, France
| | - Eric Badel
- INRA, UMR 547 PIAF, F-63100 Clermont-Ferrand, France
| | | | - Steven Jansen
- Institute for Systematic Botany and Ecology, Ulm University, Albert-Einstein-Allee 11, D–89081, Ulm, Germany
| | - Stéphane Herbette
- Clermont Université, Université Blaise Pascal, UMR 547 PIAF, F-63177, Aubière, France
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
37
|
Yadeta KA, J. Thomma BPH. The xylem as battleground for plant hosts and vascular wilt pathogens. FRONTIERS IN PLANT SCIENCE 2013; 4:97. [PMID: 23630534 PMCID: PMC3632776 DOI: 10.3389/fpls.2013.00097] [Citation(s) in RCA: 261] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2012] [Accepted: 03/28/2013] [Indexed: 05/19/2023]
Abstract
Vascular wilts are among the most destructive plant diseases that occur in annual crops as well as in woody perennials. These diseases are generally caused by soil-borne bacteria, fungi, and oomycetes that infect through the roots and enter the water-conducting xylem vessels where they proliferate and obstruct the transportation of water and minerals. As a consequence, leaves wilt and die, which may lead to impairment of the whole plant and eventually to death of the plant. Cultural, chemical, and biological measures to control this group of plant pathogens are generally ineffective, and the most effective control strategy is the use of genetic resistance. Owing to the fact that vascular wilt pathogens live deep in the interior of their host plants, studies into the biology of vascular pathogens are complicated. However, to design novel strategies to combat vascular wilt diseases, understanding the (molecular) biology of vascular pathogens and the molecular mechanisms underlying plant defense against these pathogens is crucial. In this review, we discuss the current knowledge on interactions of vascular wilt pathogens with their host plants, with emphasis on host defense responses against this group of pathogens.
Collapse
Affiliation(s)
- Koste A. Yadeta
- Laboratory of Phytopathology, Wageningen UniversityWageningen, Netherlands
| | - Bart P. H. J. Thomma
- Laboratory of Phytopathology, Wageningen UniversityWageningen, Netherlands
- Centre for BioSystems GenomicsWageningen, Netherlands
| |
Collapse
|
38
|
Vanholme R, Storme V, Vanholme B, Sundin L, Christensen JH, Goeminne G, Halpin C, Rohde A, Morreel K, Boerjan W. A systems biology view of responses to lignin biosynthesis perturbations in Arabidopsis. THE PLANT CELL 2012; 24:3506-29. [PMID: 23012438 PMCID: PMC3480285 DOI: 10.1105/tpc.112.102574] [Citation(s) in RCA: 249] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Revised: 08/27/2012] [Accepted: 09/05/2012] [Indexed: 05/17/2023]
Abstract
Lignin engineering is an attractive strategy to improve lignocellulosic biomass quality for processing to biofuels and other bio-based products. However, lignin engineering also results in profound metabolic consequences in the plant. We used a systems biology approach to study the plant's response to lignin perturbations. To this end, inflorescence stems of 20 Arabidopsis thaliana mutants, each mutated in a single gene of the lignin biosynthetic pathway (phenylalanine ammonia-lyase1 [PAL1], PAL2, cinnamate 4-hydroxylase [C4H], 4-coumarate:CoA ligase1 [4CL1], 4CL2, caffeoyl-CoA O-methyltransferase1 [CCoAOMT1], cinnamoyl-CoA reductase1 [CCR1], ferulate 5-hydroxylase [F5H1], caffeic acid O-methyltransferase [COMT], and cinnamyl alcohol dehydrogenase6 [CAD6], two mutant alleles each), were analyzed by transcriptomics and metabolomics. A total of 566 compounds were detected, of which 187 could be tentatively identified based on mass spectrometry fragmentation and many were new for Arabidopsis. Up to 675 genes were differentially expressed in mutants that did not have any obvious visible phenotypes. Comparing the responses of all mutants indicated that c4h, 4cl1, ccoaomt1, and ccr1, mutants that produced less lignin, upregulated the shikimate, methyl-donor, and phenylpropanoid pathways (i.e., the pathways supplying the monolignols). By contrast, f5h1 and comt, mutants that provoked lignin compositional shifts, downregulated the very same pathways. Reductions in the flux to lignin were associated with the accumulation of various classes of 4-O- and 9-O-hexosylated phenylpropanoids. By combining metabolomic and transcriptomic data in a correlation network, system-wide consequences of the perturbations were revealed and genes with a putative role in phenolic metabolism were identified. Together, our data provide insight into lignin biosynthesis and the metabolic network it is embedded in and provide a systems view of the plant's response to pathway perturbations.
Collapse
Affiliation(s)
- Ruben Vanholme
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium
| | - Véronique Storme
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium
| | - Bartel Vanholme
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium
| | - Lisa Sundin
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium
| | - Jørgen Holst Christensen
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium
| | - Geert Goeminne
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium
| | - Claire Halpin
- Division of Plant Sciences, College of Life Sciences, University of Dundee at the James Hutton Institute, Dundee DD2 5DA, United Kingdom
| | - Antje Rohde
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium
| | - Kris Morreel
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium
| | - Wout Boerjan
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium
- Address correspondence to
| |
Collapse
|
39
|
Khan M, Tabb P, Hepworth SR. BLADE-ON-PETIOLE1 and 2 regulate Arabidopsis inflorescence architecture in conjunction with homeobox genes KNAT6 and ATH1. PLANT SIGNALING & BEHAVIOR 2012; 7:788-92. [PMID: 22751300 PMCID: PMC3583964 DOI: 10.4161/psb.20599] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Inflorescence architecture varies widely among flowering plants, serving to optimize the display of flowers for reproductive success. In Arabidopsis thaliana, internode elongation begins at the floral transition, generating a regular spiral arrangement of upwardly-oriented flowers on the primary stem. Post-elongation, differentiation of lignified interfascicular fibers in the stem provides mechanical support. Correct inflorescence patterning requires two interacting homeodomain transcription factors: the KNOTTED1-like protein BREVIPEDICELLUS (BP) and its BEL1-like interaction partner PENNYWISE (PNY). Mutations in BP and PNY cause short internodes, irregular spacing and/or orientation of lateral organs, and altered lignin deposition in stems. Recently, we showed that these defects are caused by the misexpression of lateral organ boundary genes, BLADE-ON-PETIOLE1 (BOP1) and BOP2, which function downstream of BP-PNY in an antagonistic fashion. BOP1/2 gain-of-function in stems promotes expression of the boundary gene KNOTTED1-LIKE FROM ARABIDOPSIS THALIANA6 (KNAT6) and shown here, ARABIDOPSIS THALIANA HOMEOBOX GENE1 (ATH1), providing KNAT6 with a BEL1-like co-factor. Our further analyses show that defects caused by BOP1/2 gain-of-function require both KNAT6 and ATH1. These data reveal how BOP1/2-dependent activation of a boundary module in stems exerts changes in inflorescence architecture.
Collapse
|
40
|
Lens F, Eeckhout S, Zwartjes R, Smets E, Janssens SB. The multiple fuzzy origins of woodiness within Balsaminaceae using an integrated approach. Where do we draw the line? ANNALS OF BOTANY 2012; 109:783-99. [PMID: 22190560 PMCID: PMC3286280 DOI: 10.1093/aob/mcr310] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Accepted: 11/16/2011] [Indexed: 05/28/2023]
Abstract
BACKGROUND AND AIMS The family Balsaminaceae is essentially herbaceous, except for some woodier species that can be described as 'woody' herbs or small shrubs. The family is nested within the so-called balsaminoid clade of Ericales, including the exclusively woody families Tetrameristaceae and Marcgraviaceae, which is sister to the remaining families of the predominantly woody order. A molecular phylogeny of Balsaminaceae is compared with wood anatomical observations to find out whether the woodier species are derived from herbaceous taxa (i.e. secondary woodiness), or whether woodiness in the family represents the ancestral state for the order (i.e. primary woodiness). METHODS Wood anatomical observations of 68 Impatiens species and Hydrocera triflora, of which 47 are included in a multigene phylogeny, are carried out using light and scanning electron microscopy and compared with the molecular phylogenetic insights. KEY RESULTS There is much continuous variation in wood development between the Impatiens species studied, making the distinction between herbaceousness and woodiness difficult. However, the most woody species, unambiguously considered as truly woody shrubs, all display paedomorphic wood features pointing to secondary woodiness. This hypothesis is further supported by the molecular phylogeny, demonstrating that these most woody species are derived from herbaceous (or less woody) species in at least five independent clades. Wood formation in H. triflora is mostly confined to the ribs of the stems and shows paedomorphic wood features as well, suggesting that the common ancestor of Balsaminaceae was probably herbaceous. CONCLUSIONS The terms 'herbaceousness' and 'woodiness' are notoriously difficult to use in Balsaminaceae. However, anatomical observations and molecular sequence data show that the woodier species are derived from less woody or clearly herbaceous species, demonstrating that secondary woodiness has evolved in parallel.
Collapse
Affiliation(s)
- Frederic Lens
- Netherlands Centre for Biodiversity Naturalis-section NHN, RA Leiden, The Netherlands.
| | | | | | | | | |
Collapse
|
41
|
Zhu T, Nevo E, Sun D, Peng J. Phylogenetic analyses unravel the evolutionary history of NAC proteins in plants. Evolution 2012; 66:1833-48. [PMID: 22671550 DOI: 10.1111/j.1558-5646.2011.01553.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
NAC (NAM/ATAF/CUC) proteins are one of the largest groups of transcription factors in plants. Although many NAC proteins based on Arabidopsis and rice genomes have been reported in a number of species, a complete survey and classification of all NAC genes in plant species from disparate evolutionary groups is lacking. In this study, we analyzed whole-genome sequences from nine major lineages of land plants to unveil the relationships between these proteins. Our results show that there are fewer than 30 NAC proteins present in both mosses and lycophytes, whereas more than 100 were found in most of the angiosperms. Phylogenetic analyses suggest that NAC proteins consist of 21 subfamilies, most of which have highly conserved non-NAC domain motifs. Six of these subfamilies existed in early-diverged land plants, whereas the remainder diverged only within the angiosperms. We hypothesize that NAC proteins probably originated sometime more than 400 million years ago and expanded together with the differentiation of plants into organisms of increasing complexity possibly after the divergence of lycophytes from the other vascular plants.
Collapse
Affiliation(s)
- Tingting Zhu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture and Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei 430074, China
| | | | | | | |
Collapse
|
42
|
Khan M, Xu M, Murmu J, Tabb P, Liu Y, Storey K, McKim SM, Douglas CJ, Hepworth SR. Antagonistic interaction of BLADE-ON-PETIOLE1 and 2 with BREVIPEDICELLUS and PENNYWISE regulates Arabidopsis inflorescence architecture. PLANT PHYSIOLOGY 2012; 158:946-60. [PMID: 22114095 PMCID: PMC3271780 DOI: 10.1104/pp.111.188573] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Accepted: 11/21/2011] [Indexed: 05/18/2023]
Abstract
The transition to flowering in many plant species, including Arabidopsis (Arabidopsis thaliana), is marked by the elongation of internodes to make an inflorescence upon which lateral branches and flowers are arranged in a characteristic pattern. Inflorescence patterning relies in part on the activities of two three-amino-acid loop-extension homeodomain transcription factors: BREVIPEDICELLUS (BP) and PENNYWISE (PNY) whose interacting products also promote meristem function. We examine here the genetic interactions between BP-PNY whose expression is up-regulated in stems at the floral transition, and the lateral organ boundary genes BLADE-ON-PETIOLE1 (BOP1) and BOP2, whose expression is restricted to pedicel axils. Our data show that bp and pny inflorescence defects are caused by BOP1/2 gain of function in stems and pedicels. Compatible with this, inactivation of BOP1/2 rescues these defects. BOP expression domains are differentially enlarged in bp and pny mutants, corresponding to the distinctive patterns of growth restriction in these mutants leading to compacted internodes and clustered or downward-oriented fruits. Our data indicate that BOP1/2 are positive regulators of KNOTTED1-LIKE FROM ARABIDOPSIS THALIANA6 expression and that growth restriction in BOP1/2 gain-of-function plants requires KNOTTED1-LIKE FROM ARABIDOPSIS THALIANA6. Antagonism between BOP1/2 and BP is explained in part by their reciprocal regulation of gene expression, as evidenced by the identification of lignin biosynthetic genes that are repressed by BP and activated by BOP1/2 in stems. These data reveal BOP1/2 gain of function as the basis of bp and pny inflorescence defects and reveal how antagonism between BOP1/2 and BP-PNY contributes to inflorescence patterning in a model plant species.
Collapse
|
43
|
Lens F, Smets E, Melzer S. Stem anatomy supports Arabidopsis thaliana as a model for insular woodiness. THE NEW PHYTOLOGIST 2012; 193:12-17. [PMID: 21906070 DOI: 10.1111/j.1469-8137.2011.03888.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Affiliation(s)
- Frederic Lens
- Netherlands Centre for Biodiversity Naturalis (Section NHN), Leiden University, PO Box 9514, NL-2300 RA Leiden, The Netherlands
- (Authors for correspondence: Frederic Lens tel +31 71 527 3570; email ; Siegbert Melzer tel +49 431 880 3345; email )
| | - Erik Smets
- Netherlands Centre for Biodiversity Naturalis (Section NHN), Leiden University, PO Box 9514, NL-2300 RA Leiden, The Netherlands
- Laboratory of Plant Systematics, Institute of Botany and Microbiology, Kasteelpark Arenberg 31 Box 2437, K.U. Leuven, BE-3001 Leuven, Belgium
| | - Siegbert Melzer
- Laboratory of Plant Systematics, Institute of Botany and Microbiology, Kasteelpark Arenberg 31 Box 2437, K.U. Leuven, BE-3001 Leuven, Belgium
- Present address: Plant Breeding Institute, Christian-Albrechts-University Kiel, Am Botanischen Garten 1-9, D-24118 Kiel, Germany
- (Authors for correspondence: Frederic Lens tel +31 71 527 3570; email ; Siegbert Melzer tel +49 431 880 3345; email )
| |
Collapse
|
44
|
Mazur E, Kurczynska EU. Rays, intrusive growth, and storied cambium in the inflorescence stems of Arabidopsis thaliana (L.) Heynh. PROTOPLASMA 2012; 249:217-20. [PMID: 21311923 PMCID: PMC3249544 DOI: 10.1007/s00709-011-0266-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Accepted: 01/31/2011] [Indexed: 05/08/2023]
Abstract
Arabidopsis thaliana is a model plant used in analysis of different aspects of plant growth and development. Under suitable conditions, secondary growth takes place in the hypocotyl of Arabidopsis plants, a finding which helps in understanding many aspects of xylogenesis. However, not all developmental processes of secondary tissue can be studied here, as no secondary rays and intrusive growth have been detected in hypocotyl. However, results presented here concerning the secondary growth in inflorescence stems of Arabidopsis shows that both secondary rays and intrusive growth of cambial cells can be detected, and that, in the interfascicular regions, a storied cambium can be developed.
Collapse
Affiliation(s)
- Ewa Mazur
- Laboratory of Cell Biology, Faculty of Biology and Environmental Protection, University of Silesia, Katowice, Poland.
| | | |
Collapse
|
45
|
Ckurshumova W, Scarpella E, Goldstein RS, Berleth T. Double-filter identification of vascular-expressed genes using Arabidopsis plants with vascular hypertrophy and hypotrophy. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2011; 181:96-104. [PMID: 21683873 DOI: 10.1016/j.plantsci.2011.04.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Revised: 04/16/2011] [Accepted: 04/18/2011] [Indexed: 05/30/2023]
Abstract
Genes expressed in vascular tissues have been identified by several strategies, usually with a focus on mature vascular cells. In this study, we explored the possibility of using two opposite types of altered tissue compositions in combination with a double-filter selection to identify genes with a high probability of vascular expression in early organ primordia. Specifically, we generated full-transcriptome microarray profiles of plants with (a) genetically strongly reduced and (b) pharmacologically vastly increased vascular tissues and identified a reproducible cohort of 158 transcripts that fulfilled the dual requirement of being underrepresented in (a) and overrepresented in (b). In order to assess the predictive value of our identification scheme for vascular gene expression, we determined the expression patterns of genes in two unbiased subsamples. First, we assessed the expression patterns of all twenty annotated transcription factor genes from the cohort of 158 genes and found that seventeen of the twenty genes were preferentially expressed in leaf vascular cells. Remarkably, fifteen of these seventeen vascular genes were clearly expressed already very early in leaf vein development. Twelve genes with published leaf expression patterns served as a second subsample to monitor the representation of vascular genes in our cohort. Of those twelve genes, eleven were preferentially expressed in leaf vascular tissues. Based on these results we propose that our compendium of 158 genes represents a sample that is highly enriched for genes expressed in vascular tissues and that our approach is particularly suited to detect genes expressed in vascular cell lineages at early stages of their inception.
Collapse
Affiliation(s)
- Wenzislava Ckurshumova
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON M5S 3B2, Canada.
| | | | | | | |
Collapse
|
46
|
Ragni L, Nieminen K, Pacheco-Villalobos D, Sibout R, Schwechheimer C, Hardtke CS. Mobile gibberellin directly stimulates Arabidopsis hypocotyl xylem expansion. THE PLANT CELL 2011; 23:1322-36. [PMID: 21498678 PMCID: PMC3101547 DOI: 10.1105/tpc.111.084020] [Citation(s) in RCA: 149] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Revised: 03/23/2011] [Accepted: 04/04/2011] [Indexed: 05/18/2023]
Abstract
Secondary growth of the vasculature results in the thickening of plant structures and continuously produces xylem tissue, the major biological carbon sink. Little is known about the developmental control of this quantitative trait, which displays two distinct phases in Arabidopsis thaliana hypocotyls. The later phase of accelerated xylem expansion resembles the secondary growth of trees and is triggered upon flowering by an unknown, shoot-derived signal. We found that flowering-dependent hypocotyl xylem expansion is a general feature of herbaceous plants with a rosette growth habit. Flowering induction is sufficient to trigger xylem expansion in Arabidopsis. By contrast, neither flower formation nor elongation of the main inflorescence is required. Xylem expansion also does not depend on any particular flowering time pathway or absolute age. Through analyses of natural genetic variation, we found that ERECTA acts locally to restrict xylem expansion downstream of the gibberellin (GA) pathway. Investigations of mutant and transgenic plants indicate that GA and its signaling pathway are both necessary and sufficient to directly trigger enhanced xylogenesis. Impaired GA signaling did not affect xylem expansion systemically, suggesting that it acts downstream of the mobile cue. By contrast, the GA effect was graft transmissible, suggesting that GA itself is the mobile shoot-derived signal.
Collapse
Affiliation(s)
- Laura Ragni
- Department of Plant Molecular Biology, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Kaisa Nieminen
- Department of Plant Molecular Biology, University of Lausanne, CH-1015 Lausanne, Switzerland
| | | | - Richard Sibout
- Department of Plant Molecular Biology, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Claus Schwechheimer
- Plant Systems Biology, Center of Life and Food Sciences Weihenstephan, Technische Universität München, 85354 Freising, Germany
| | - Christian S. Hardtke
- Department of Plant Molecular Biology, University of Lausanne, CH-1015 Lausanne, Switzerland
- Address correspondence to
| |
Collapse
|
47
|
Avni A, Blázquez MA. Can plant biotechnology help in solving our food and energy shortage in the future? Curr Opin Biotechnol 2011; 22:220-3. [PMID: 21330127 DOI: 10.1016/j.copbio.2011.01.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
48
|
Paul-Victor C, Rowe N. Effect of mechanical perturbation on the biomechanics, primary growth and secondary tissue development of inflorescence stems of Arabidopsis thaliana. ANNALS OF BOTANY 2011; 107:209-18. [PMID: 21118840 PMCID: PMC3025729 DOI: 10.1093/aob/mcq227] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Revised: 10/11/2010] [Accepted: 10/25/2010] [Indexed: 05/19/2023]
Abstract
BACKGROUND AND AIMS Mechanical perturbation is known to inhibit elongation of the inflorescence stem of Arabidopsis thaliana. The phenomenon has been reported widely for both herbaceous and woody plants, and has implications for how plants adjust their size and form to survive in mechanically perturbed environments. While this response is an important aspect of the plant's architecture, little is known about how mechanical properties of the inflorescence stem are modified or how its primary and secondary tissues respond to mechanical perturbation. METHODS Plants of the Columbia-0 ecotype were exposed to controlled brushing treatments and then submitted to three-point bending tests to determine stem rigidity and stiffness. Contributions of different tissues to the inflorescence stem geometry were analysed. KEY RESULTS Perturbed plants showed little difference in stem diameter, were 50 % shorter, 75 % less rigid and 70 % less stiff than controls. Changes in mechanical properties were linked to significant changes in tissue geometry - size and position of the pith, lignified interfascicular tissue and cortex - as well as a reduction in density of lignified cells. Stem mechanical properties were modified by changes in primary tissues and thus differ from changes observed in most woody plants tested with indeterminate growth - even though a vascular cambium is present in the inflorescence axis. CONCLUSIONS The study suggests that delayed development of key primary developmental features of the stem in this ecotype of Arabidopsis results in a 'short and flexible' rather than a 'short and rigid' strategy for maintaining upright axes in conditions of severe mechanical perturbation. The mechanism is comparable with more general phenomena in plants where changes in developmental rate can significantly affect the overall growth form of the plant in both ecological and evolutionary contexts.
Collapse
Affiliation(s)
- Cloé Paul-Victor
- Université Montpellier 2, UMR AMAP, Montpellier, F-34000 France; CNRS, UMR AMAP, Montpellier, F-34398 France.
| | | |
Collapse
|
49
|
Fuchs M, van Bel AJE, Ehlers K. Do symplasmic networks in cambial zones correspond with secondary growth patterns? PROTOPLASMA 2011; 248:141-151. [PMID: 20853011 DOI: 10.1007/s00709-010-0208-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2010] [Accepted: 08/30/2010] [Indexed: 05/29/2023]
Abstract
The plasmodesmal (PD) network in the cambial zone of Arabidopsis thaliana hypocotyls was analysed using electron microscopy and dye-coupling studies and compared to those of internodes of Populus nigra and Solanum lycopersicum. In all species, PD densities and frequencies undergo alterations in topologically successive cambial walls reflecting species-specific patterns of PD degradation and PD insertion during cell development. Longitudinal PD fission is responsible for an abrupt increment of PD numbers in specific walls of the youngest derivatives at the xylem and/or phloem side. Here, PDs seem to mediate positional signalling to control tissue fate and early cell determination. PD numbers at all cambial interfaces of A. thaliana correspond to those of the herbaceous tomato, but are higher with the woody poplar. This suggests a positive correlation between PD frequencies and the rapidity of cell division activity. Photoactivated green fluorescent protein (26 kDa) did not diffuse through cambial PDs of A. thaliana. This is in keeping with the common size exclusion limit (SEL) of 8-10 kDa observed for PDs at the youngest interfaces of tomato and poplar which may mediate diffusive exchange of developmental signals of equal molecular size. The regular growth patterns in internodal cambial zones of poplar and tomato result from synchronized cell division activity of neighbouring initials. A. thaliana hypocotyls have an irregular mode of secondary growth. Here, signalling through PDs in misaligned radial walls between non-homologous derivatives may control tissue development. The observed organizational differences between the cambia cast doubts on the suitability of A. thaliana as a model plant for cambial research.
Collapse
Affiliation(s)
- Maike Fuchs
- Institute of General Botany, Justus-Liebig-University, Senckenbergstrasse 17, 35390, Giessen, Germany
| | | | | |
Collapse
|
50
|
How Well Understood Are the Processes that Create Dendroclimatic Records? A Mechanistic Model of the Climatic Control on Conifer Tree-Ring Growth Dynamics. DENDROCLIMATOLOGY 2011. [DOI: 10.1007/978-1-4020-5725-0_3] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|