1
|
Henchiri H, Rayapuram N, Alhoraibi HM, Caïus J, Paysant-Le Roux C, Citerne S, Hirt H, Colcombet J, Sturbois B, Bigeard J. Integrated multi-omics and genetic analyses reveal molecular determinants underlying Arabidopsis snap33 mutant phenotype. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:1016-1035. [PMID: 38281242 DOI: 10.1111/tpj.16647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/17/2023] [Accepted: 01/09/2024] [Indexed: 01/30/2024]
Abstract
The secretory pathway is essential for plant immunity, delivering diverse antimicrobial molecules into the extracellular space. Arabidopsis thaliana soluble N-ethylmaleimide-sensitive-factor attachment protein receptor SNAP33 is a key actor of this process. The snap33 mutant displays dwarfism and necrotic lesions, however the molecular determinants of its macroscopic phenotypes remain elusive. Here, we isolated several new snap33 mutants that exhibited constitutive cell death and H2O2 accumulation, further defining snap33 as an autoimmune mutant. We then carried out quantitative transcriptomic and proteomic analyses showing that numerous defense transcripts and proteins were up-regulated in the snap33 mutant, among which genes/proteins involved in defense hormone, pattern-triggered immunity, and nucleotide-binding domain leucine-rich-repeat receptor signaling. qRT-PCR analyses and hormone dosages supported these results. Furthermore, genetic analyses elucidated the diverse contributions of the main defense hormones and some nucleotide-binding domain leucine-rich-repeat receptor signaling actors in the establishment of the snap33 phenotype, emphasizing the preponderant role of salicylic acid over other defense phytohormones. Moreover, the accumulation of pattern-triggered immunity and nucleotide-binding domain leucine-rich-repeat receptor signaling proteins in the snap33 mutant was confirmed by immunoblotting analyses and further shown to be salicylic acid-dependent. Collectively, this study unveiled molecular determinants underlying the Arabidopsis snap33 mutant phenotype and brought new insights into autoimmunity signaling.
Collapse
Affiliation(s)
- Houda Henchiri
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190, Gif-sur-Yvette, France
- Université Paris-Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), 91190, Gif-sur-Yvette, France
| | - Naganand Rayapuram
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
| | - Hanna M Alhoraibi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, 21551, Jeddah, Saudi Arabia
| | - José Caïus
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190, Gif-sur-Yvette, France
- Université Paris-Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), 91190, Gif-sur-Yvette, France
| | - Christine Paysant-Le Roux
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190, Gif-sur-Yvette, France
- Université Paris-Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), 91190, Gif-sur-Yvette, France
| | - Sylvie Citerne
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000, Versailles, France
| | - Heribert Hirt
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
| | - Jean Colcombet
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190, Gif-sur-Yvette, France
- Université Paris-Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), 91190, Gif-sur-Yvette, France
| | - Bénédicte Sturbois
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190, Gif-sur-Yvette, France
- Université Paris-Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), 91190, Gif-sur-Yvette, France
| | - Jean Bigeard
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190, Gif-sur-Yvette, France
- Université Paris-Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), 91190, Gif-sur-Yvette, France
| |
Collapse
|
2
|
Karady M, Hladík P, Cermanová K, Jiroutová P, Antoniadi I, Casanova-Sáez R, Ljung K, Novák O. Profiling of 1-aminocyclopropane-1-carboxylic acid and selected phytohormones in Arabidopsis using liquid chromatography-tandem mass spectrometry. PLANT METHODS 2024; 20:41. [PMID: 38493175 PMCID: PMC10943774 DOI: 10.1186/s13007-024-01165-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 02/27/2024] [Indexed: 03/18/2024]
Abstract
BACKGROUND Gaseous phytohormone ethylene levels are directly influenced by the production of its immediate non-volatile precursor 1-aminocyclopropane-1-carboxylic acid (ACC). Owing to the strongly acidic character of the ACC molecule, its quantification has been difficult to perform. Here, we present a simple and straightforward validated method for accurate quantification of not only ACC levels, but also major members of other important phytohormonal classes - auxins, cytokinins, jasmonic acid, abscisic acid and salicylic acid from the same biological sample. RESULTS The presented technique facilitates the analysis of 15 compounds by liquid chromatography coupled with tandem mass spectrometry. It was optimized and validated for 10 mg of fresh weight plant material. The extraction procedure is composed of a minimal amount of necessary steps. Accuracy and precision were the basis for evaluating the method, together with process efficiency, recovery and matrix effects as validation parameters. The examined compounds comprise important groups of phytohormones, their active forms and some of their metabolites, including six cytokinins, four auxins, two jasmonates, abscisic acid, salicylic acid and 1-aminocyclopropane-1-carboxylic acid. The resulting method was used to examine their contents in selected Arabidopsis thaliana mutant lines. CONCLUSION This profiling method enables a very straightforward approach for indirect ethylene study and explores how it interacts, based on content levels, with other phytohormonal groups in plants.
Collapse
Affiliation(s)
- Michal Karady
- Laboratory of Growth Regulators, Institute of Experimental Botany, Palacký University, The Czech Academy of Sciences & Faculty of Science, Olomouc, CZ-783 71, Czechia.
| | - Pavel Hladík
- Laboratory of Growth Regulators, Institute of Experimental Botany, Palacký University, The Czech Academy of Sciences & Faculty of Science, Olomouc, CZ-783 71, Czechia
| | - Kateřina Cermanová
- Laboratory of Growth Regulators, Institute of Experimental Botany, Palacký University, The Czech Academy of Sciences & Faculty of Science, Olomouc, CZ-783 71, Czechia
| | - Petra Jiroutová
- Laboratory of Growth Regulators, Institute of Experimental Botany, Palacký University, The Czech Academy of Sciences & Faculty of Science, Olomouc, CZ-783 71, Czechia
| | - Ioanna Antoniadi
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre (UPSC), Swedish University of Agricultural Sciences, Umeå, SE-901 83, Sweden
| | - Rubén Casanova-Sáez
- Department of Plant Physiology, Umeå Plant Science Centre (UPSC), Umeå University, Umeå, SE-901 87, Sweden
| | - Karin Ljung
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre (UPSC), Swedish University of Agricultural Sciences, Umeå, SE-901 83, Sweden
| | - Ondřej Novák
- Laboratory of Growth Regulators, Institute of Experimental Botany, Palacký University, The Czech Academy of Sciences & Faculty of Science, Olomouc, CZ-783 71, Czechia
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre (UPSC), Swedish University of Agricultural Sciences, Umeå, SE-901 83, Sweden
| |
Collapse
|
3
|
Yao Q, Feng Y, Wang J, Zhang Y, Yi F, Li Z, Zhang M. Integrated Metabolome and Transcriptome Analysis of Gibberellins Mediated the Circadian Rhythm of Leaf Elongation by Regulating Lignin Synthesis in Maize. Int J Mol Sci 2024; 25:2705. [PMID: 38473951 DOI: 10.3390/ijms25052705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 02/08/2024] [Accepted: 02/24/2024] [Indexed: 03/14/2024] Open
Abstract
Plant growth exhibits rhythmic characteristics, and gibberellins (GAs) are involved in regulating cell growth, but it is still unclear how GAs crosstalk with circadian rhythm to regulate cell elongation. The study analyzed growth characteristics of wild-type (WT), zmga3ox and zmga3ox with GA3 seedlings. We integrated metabolomes and transcriptomes to study the interaction between GAs and circadian rhythm in mediating leaf elongation. The rates of leaf growth were higher in WT than zmga3ox, and zmga3ox cell length was shorter when proliferated in darkness than light, and GA3 restored zmga3ox leaf growth. The differentially expressed genes (DEGs) between WT and zmga3ox were mainly enriched in hormone signaling and cell wall synthesis, while DEGs in zmga3ox were restored to WT by GA3. Moreover, the number of circadian DEGs that reached the peak expression in darkness was more than light, and the upregulated circadian DEGs were mainly enriched in cell wall synthesis. The differentially accumulated metabolites (DAMs) were mainly attributed to flavonoids and phenolic acid. Twenty-two DAMs showed rhythmic accumulation, especially enriched in lignin synthesis. The circadian DEGs ZmMYBr41/87 and ZmHB34/70 were identified as regulators of ZmHCT8 and ZmBM1, which were enzymes in lignin synthesis. Furthermore, GAs regulated ZmMYBr41/87 and ZmHB34/70 to modulate lignin biosynthesis for mediating leaf rhythmic growth.
Collapse
Affiliation(s)
- Qingqing Yao
- State Key Laboratory of Plant Environmental Resilience, Engineering Research Center of Plant Growth Regulator, Ministry of Education, College of Agronomy and Biotechnology, China Agricultural University, No 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China
| | - Ying Feng
- State Key Laboratory of Plant Environmental Resilience, Engineering Research Center of Plant Growth Regulator, Ministry of Education, College of Agronomy and Biotechnology, China Agricultural University, No 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China
| | - Jiajie Wang
- State Key Laboratory of Plant Environmental Resilience, Engineering Research Center of Plant Growth Regulator, Ministry of Education, College of Agronomy and Biotechnology, China Agricultural University, No 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China
| | - Yushi Zhang
- State Key Laboratory of Plant Environmental Resilience, Engineering Research Center of Plant Growth Regulator, Ministry of Education, College of Agronomy and Biotechnology, China Agricultural University, No 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China
| | - Fei Yi
- State Key Laboratory of Plant Environmental Resilience, Engineering Research Center of Plant Growth Regulator, Ministry of Education, College of Agronomy and Biotechnology, China Agricultural University, No 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China
| | - Zhaohu Li
- State Key Laboratory of Plant Environmental Resilience, Engineering Research Center of Plant Growth Regulator, Ministry of Education, College of Agronomy and Biotechnology, China Agricultural University, No 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China
| | - Mingcai Zhang
- State Key Laboratory of Plant Environmental Resilience, Engineering Research Center of Plant Growth Regulator, Ministry of Education, College of Agronomy and Biotechnology, China Agricultural University, No 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China
| |
Collapse
|
4
|
Chen X, Chen G, Guo S, Wang Y, Sun J. SlSAMS1 enhances salt tolerance through regulation DNA methylation of SlGI in tomato. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 335:111808. [PMID: 37482302 DOI: 10.1016/j.plantsci.2023.111808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 07/03/2023] [Accepted: 07/19/2023] [Indexed: 07/25/2023]
Abstract
S-adenosylmethionine (SAM), which is synthesized from methionine and ATP catalyzed by S-adenosylmethionine synthetase (SAMS), is an important methyl donor in plants. SAMS and DNA methylation play an important role in the plant response to abiotic stresses. Previous studies have shown that SAMS improves salt tolerance in tomato plants, but it is not clear whether the DNA methylation pathway mediates SAMS-induced salt tolerance. This study confirmed that SlSAMS1-overexpressing plants exhibited improved salt tolerance. Through whole-genome bisulfite sequencing (WGBS) and transcriptome sequencing (RNA-seq) analysis, the study screened the circadian rhythm pathway and identified the gene SlGI in this pathway, which was regulated by SlSAMS1. The gene body region of SlGI, the core gene of the circadian rhythm pathway, was hypermethylated in SlSAMS1-overexpressing plants, and its expression level was significantly increased. Furthermore, the SlGI-overexpressing plants showed higher salt tolerance, less reduction in plant height and fresh weight, lower electrolyte leakage, malondialdehyde and H2O2 content, and higher antioxidant enzyme activity compared to wild type plants. Therefore, SlSAMS1-overexpressing plants regulated significant changes in CHG-type methylation sites of the SlGI gene body and its expression levels, leading to an enhanced salt tolerance of tomato plants.
Collapse
Affiliation(s)
- Xinyang Chen
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Guangling Chen
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Shirong Guo
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Yu Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| | - Jin Sun
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
5
|
Singh V, Singh V. Characterizing the circadian connectome of Ocimum tenuiflorum using an integrated network theoretic framework. Sci Rep 2023; 13:13108. [PMID: 37567911 PMCID: PMC10421869 DOI: 10.1038/s41598-023-40212-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 08/07/2023] [Indexed: 08/13/2023] Open
Abstract
Across the three domains of life, circadian clock is known to regulate vital physiological processes, like, growth, development, defence etc. by anticipating environmental cues. In this work, we report an integrated network theoretic methodology comprising of random walk with restart and graphlet degree vectors to characterize genome wide core circadian clock and clock associated raw candidate proteins in a plant for which protein interaction information is available. As a case study, we have implemented this framework in Ocimum tenuiflorum (Tulsi); one of the most valuable medicinal plants that has been utilized since ancient times in the management of a large number of diseases. For that, 24 core clock (CC) proteins were mined in 56 template plant genomes to build their hidden Markov models (HMMs). These HMMs were then used to identify 24 core clock proteins in O. tenuiflorum. The local topology of the interologous Tulsi protein interaction network was explored to predict the CC associated raw candidate proteins. Statistical and biological significance of the raw candidates was determined using permutation and enrichment tests. A total of 66 putative CC associated proteins were identified and their functional annotation was performed.
Collapse
Affiliation(s)
- Vikram Singh
- Centre for Computational Biology and Bioinformatics, Central University of Himahcal Pradesh, Dharamshala, Himahcal Pradesh, 176206, India
| | - Vikram Singh
- Centre for Computational Biology and Bioinformatics, Central University of Himahcal Pradesh, Dharamshala, Himahcal Pradesh, 176206, India.
| |
Collapse
|
6
|
Wang Z, Wei X, Wang Y, Sun M, Zhao P, Wang Q, Yang B, Li J, Jiang YQ. WRKY29 transcription factor regulates ethylene biosynthesis and response in arabidopsis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 194:134-145. [PMID: 36403487 DOI: 10.1016/j.plaphy.2022.11.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/06/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
The gaseous phytohormone ethylene participates in a lot of physiological processes in plants. 1-aminocyclopropane-1-carboxylic acid (ACC) synthase (ACS, EC 4.4.1.14) and the ACC oxidase (ACO, EC 1.14.17.4) are key enzymes in ethylene biosynthesis. However, how ACSs and ACOs are regulated at the transcriptional level is largely unknown. In the present study, we showed that an Arabidopsis (Arabidopsis thaliana) WRKY-type transcription factor (TF), WRKY29 positively regulated the expression of ACS5, ACS6, ACS8, ACS11 and ACO5 genes and thus promoted basal ethylene production. WRKY29 protein was localized in nuclei and was a transcriptional activator. Overexpression of WRKY29 caused pleiotropic effect on plant growth, development and showed obvious response even without ACC treatment. Inducible overexpression of WRKY29 also reduced primary root elongation and lateral root growth. A triple response assay of overexpression and mutant seedlings of WRKY29 showed that overexpression seedlings had shorter hypocotyls than the transgenic GFP (Green Fluorescence Protein) control, while mutants had no difference from wild-type. A qRT-PCR assay demonstrated that expression of multiple ACSs and ACO5 was up-regulated in WRKY29 overexpression plants. A transactivation assay through dual luciferase reporter system confirmed the regulation of promoters of ACS5, ACS6, ACS8, ACS11 and ACO5 by WRKY29. Both in vivo chromatin immunoprecipitation (ChIP)- quantitative PCR and in vitro electrophoretic mobility shift assay (EMSA) revealed that WRKY29 directly bound to the promoter regions of its target genes. Taken together, these results suggest that WRKY29 is a novel TF positively regulating ethylene production by modulating the expression of ACS and ACO genes.
Collapse
Affiliation(s)
- Zhaoqiang Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Xiangyan Wei
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Yiqiao Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Mengting Sun
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Peiyu Zhao
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Qiannan Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Bo Yang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A & F University, Yangling, Shaanxi, 712100, China.
| | - Jing Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Yuan-Qing Jiang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A & F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
7
|
Careno DA, Perez Santangelo S, Macknight RC, Yanovsky MJ. The 5'-3' mRNA Decay Pathway Modulates the Plant Circadian Network in Arabidopsis. PLANT & CELL PHYSIOLOGY 2022; 63:1709-1719. [PMID: 36066193 DOI: 10.1093/pcp/pcac126] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/18/2022] [Accepted: 09/03/2022] [Indexed: 06/15/2023]
Abstract
Circadian rhythms enable organisms to anticipate and adjust their physiology to periodic environmental changes. These rhythms are controlled by biological clocks that consist of a set of clock genes that regulate each other's expression. Circadian oscillations in messenger RNA (mRNA) levels require the regulation of mRNA production and degradation. While transcription factors controlling clock function have been well characterized from cyanobacteria to humans, the role of factors controlling mRNA decay is largely unknown. Here, we show that mutations in SM-LIKE PROTEIN 1 (LSM1) and exoribonucleases 4 (XRN4), components of the 5'-3' mRNA decay pathway, alter clock function in Arabidopsis. We found that lsm1 and xrn4 mutants display long-period phenotypes for clock gene expression. In xrn4, these circadian defects were associated with changes in circadian phases of expression, but not overall mRNA levels, of several core-clock genes. We then used noninvasive transcriptome-wide mRNA stability analysis to identify genes and pathways regulated by XRN4. Among genes affected in the xrn4 mutant at the transcriptional and posttranscriptional level, we found an enrichment in genes involved in auxin, ethylene and drought recovery. Large effects were not observed for canonical core-clock genes, although the mRNAs of several auxiliary clock genes that control the pace of the clock were stabilized in xrn4 mutants. Our results establish that the 5'-3' mRNA decay pathway constitutes a novel posttranscriptional regulatory layer of the circadian gene network, which probably acts through a combination of small effects on mRNA stability of several auxiliary and some core-clock genes.
Collapse
Affiliation(s)
- Daniel A Careno
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires C1405BWE, Argentina
| | | | | | - Marcelo J Yanovsky
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires C1405BWE, Argentina
| |
Collapse
|
8
|
Cabrera J, Conesa CM, Del Pozo JC. May the dark be with roots: a perspective on how root illumination may bias in vitro research on plant-environment interactions. THE NEW PHYTOLOGIST 2022; 233:1988-1997. [PMID: 34942016 DOI: 10.1111/nph.17936] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 12/16/2021] [Indexed: 06/14/2023]
Abstract
Roots anchor plants to the soil, providing them with nutrients and water while creating a defence network and facilitating beneficial interactions with a multitude of living organisms and climatological conditions. To facilitate morphological and molecular studies, root research has been conducted using in vitro systems. However, under natural conditions, roots grow in the dark, mainly in the absence of illumination, except for the relatively low illumination of the upper soil surface, and this has been largely ignored. Here, we discuss the results found over the last decade on how experimental exposure of roots to light may bias root development and responses through the alteration of hormonal signalling, cytoskeleton organization, reactive oxygen species or the accumulation of flavonoids, among other factors. Illumination alters the uptake of nutrients or water, and also affects the response of the roots to abiotic stresses and root interactions with the microbiota. Furthermore, we review in vitro systems created to maintain roots in darkness, and provide a comparative analysis of root transcriptomes obtained with these devices. Finally, we identify other experimental variables that should be considered to better mimic soil conditions, whose improvement would benefit studies using in vitro cultivation or enclosed ecosystems.
Collapse
Affiliation(s)
- Javier Cabrera
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria/Consejo Superior de Investigaciones Científicas (UPM-INIA/CSIC), UPM, Campus de Montegancedo, Pozuelo de Alarcón, 28223, Madrid, Spain
| | - Carlos M Conesa
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria/Consejo Superior de Investigaciones Científicas (UPM-INIA/CSIC), UPM, Campus de Montegancedo, Pozuelo de Alarcón, 28223, Madrid, Spain
- Escuela Técnica Superior de Ingeniería Agronómica, Agroambiental y de Biosistemas (ETSIAAB), Universidad Politécnica de Madrid, Campus de Montegancedo, Pozuelo de Alarcón, 28223, Madrid, Spain
| | - Juan C Del Pozo
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria/Consejo Superior de Investigaciones Científicas (UPM-INIA/CSIC), UPM, Campus de Montegancedo, Pozuelo de Alarcón, 28223, Madrid, Spain
| |
Collapse
|
9
|
Chen P, Liu P, Zhang Q, Zhao L, Hao X, Liu L, Bu C, Pan Y, Zhang D, Song Y. Dynamic physiological and transcriptome changes reveal a potential relationship between the circadian clock and salt stress response in Ulmus pumila. Mol Genet Genomics 2022; 297:303-317. [PMID: 35089426 DOI: 10.1007/s00438-021-01838-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 11/13/2021] [Indexed: 11/26/2022]
Abstract
Despite the important role the circadian clock plays in numerous critical physiological responses in plants, such as hypocotyl elongation, leaf movement, stomatal opening, flowering, and stress responses, there have been no investigations into the effect of the circadian clock on physiological and transcriptional networks under salt stress. Ulmus pumila L. has been reported to tolerate 100-150 mM NaCl treatment. We measured the diurnal variation in photosynthesis and chlorophyll fluorescence parameters and performed a time-course transcriptome analysis of 2-years-old U. pumila seedlings under salt treatment to dissect the physiological regulation and potential relationship between the circadian network and the salt stress response. Seedlings in 150 mM NaCl treatment exhibited salt-induced physiological enhancement compared to the control group. A total of 7009 differentially expressed unigenes (DEGs) were identified under salt stress, of which 16 DEGs were identified as circadian rhythm-related DEGs (crDEGs). Further analysis of dynamic expression changes revealed that DEGs involved in four crucial pathways-photosynthesis, thiamine metabolism, abscisic acid synthesis and metabolism, and the hormone-MAPK signal crosstalk pathway-are closely related to the circadian clock. Finally, we constructed a co-expression network between the circadian clock and these four crucial pathways. Our results help shed light on the molecular link between the circadian network and salt stress tolerance in U. pumila.
Collapse
Affiliation(s)
- Panfei Chen
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, People's Republic of China
- Experimental Center of Forestry in North China, Chinese Academy of Forestry, Beijing, 102300, People's Republic of China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, People's Republic of China
| | - Peng Liu
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, People's Republic of China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, People's Republic of China
| | - Quanfeng Zhang
- Hebei Academy of Forestry Sciences, No. 75, Xuefu Road, Hebei, 050072, People's Republic of China
| | - Lei Zhao
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, People's Republic of China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, People's Republic of China
| | - Xuri Hao
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, People's Republic of China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, People's Republic of China
| | - Lei Liu
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, People's Republic of China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, People's Republic of China
| | - Chenhao Bu
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, People's Republic of China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, People's Republic of China
| | - Yanjun Pan
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, People's Republic of China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, People's Republic of China
| | - Deqiang Zhang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, People's Republic of China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, People's Republic of China
| | - Yuepeng Song
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, People's Republic of China.
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, People's Republic of China.
| |
Collapse
|
10
|
Geldhof B, Pattyn J, Eyland D, Carpentier S, Van de Poel B. A digital sensor to measure real-time leaf movements and detect abiotic stress in plants. PLANT PHYSIOLOGY 2021; 187:1131-1148. [PMID: 34618089 PMCID: PMC8566216 DOI: 10.1093/plphys/kiab407] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 08/02/2021] [Indexed: 05/31/2023]
Abstract
Plant and plant organ movements are the result of a complex integration of endogenous growth and developmental responses, partially controlled by the circadian clock, and external environmental cues. Monitoring of plant motion is typically done by image-based phenotyping techniques with the aid of computer vision algorithms. Here we present a method to measure leaf movements using a digital inertial measurement unit (IMU) sensor. The lightweight sensor is easily attachable to a leaf or plant organ and records angular traits in real-time for two dimensions (pitch and roll) with high resolution (measured sensor oscillations of 0.36 ± 0.53° for pitch and 0.50 ± 0.65° for roll). We were able to record simple movements such as petiole bending, as well as complex lamina motions, in several crops, ranging from tomato to banana. We also assessed growth responses in terms of lettuce rosette expansion and maize seedling stem movements. The IMU sensors are capable of detecting small changes of nutations (i.e. bending movements) in leaves of different ages and in different plant species. In addition, the sensor system can also monitor stress-induced leaf movements. We observed that unfavorable environmental conditions evoke certain leaf movements, such as drastic epinastic responses, as well as subtle fading of the amplitude of nutations. In summary, the presented digital sensor system enables continuous detection of a variety of leaf motions with high precision, and is a low-cost tool in the field of plant phenotyping, with potential applications in early stress detection.
Collapse
Affiliation(s)
- Batist Geldhof
- Department of Biosystems, Division of Crop Biotechnics, Molecular Plant Hormone Physiology Lab, University of Leuven, Leuven 3001, Belgium
| | - Jolien Pattyn
- Department of Biosystems, Division of Crop Biotechnics, Molecular Plant Hormone Physiology Lab, University of Leuven, Leuven 3001, Belgium
| | - David Eyland
- Department of Biosystems, Division of Crop Biotechnics, Tropical Crop Improvement Laboratory, University of Leuven, Leuven 3001, Belgium
| | - Sebastien Carpentier
- Department of Biosystems, Division of Crop Biotechnics, Tropical Crop Improvement Laboratory, University of Leuven, Leuven 3001, Belgium
- Bioversity International, Leuven, 3001, Belgium
| | - Bram Van de Poel
- Department of Biosystems, Division of Crop Biotechnics, Molecular Plant Hormone Physiology Lab, University of Leuven, Leuven 3001, Belgium
| |
Collapse
|
11
|
Jiménez A, Sevilla F, Martí MC. Reactive oxygen species homeostasis and circadian rhythms in plants. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:5825-5840. [PMID: 34270727 DOI: 10.1093/jxb/erab318] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 07/15/2021] [Indexed: 06/13/2023]
Abstract
Elucidation of the molecular mechanisms by which plants sense and respond to environmental stimuli that influence their growth and yield is a prerequisite for understanding the adaptation of plants to climate change. Plants are sessile organisms and one important factor for their successful acclimation is the temporal coordination of the 24 h daily cycles and the stress response. The crosstalk between second messengers, such as Ca2+, reactive oxygen species (ROS), and hormones is a fundamental aspect in plant adaptation and survival under environmental stresses. In this sense, the circadian clock, in conjunction with Ca2+- and hormone-signalling pathways, appears to act as an important mechanism controlling plant adaptation to stress. The relationship between the circadian clock and ROS-generating and ROS-scavenging mechanisms is still not fully understood, especially at the post-transcriptional level and in stress situations in which ROS levels increase and changes in cell redox state occur. In this review, we summarize the information regarding the relationship between the circadian clock and the ROS homeostasis network. We pay special attention not only to the transcriptional regulation of ROS-generating and ROS-scavenging enzymes, but also to the few studies that have been performed at the biochemical level and those conducted under stress conditions.
Collapse
Affiliation(s)
- Ana Jiménez
- Abiotic Stress, Production and Quality Laboratory, Department of Stress Biology and Plant Pathology, Centre of Edaphology and Applied Biology of Segura (CEBAS-CSIC), Murcia, Spain
| | - Francisca Sevilla
- Abiotic Stress, Production and Quality Laboratory, Department of Stress Biology and Plant Pathology, Centre of Edaphology and Applied Biology of Segura (CEBAS-CSIC), Murcia, Spain
| | - María Carmen Martí
- Abiotic Stress, Production and Quality Laboratory, Department of Stress Biology and Plant Pathology, Centre of Edaphology and Applied Biology of Segura (CEBAS-CSIC), Murcia, Spain
| |
Collapse
|
12
|
Czékus Z, Kukri A, Hamow KÁ, Szalai G, Tari I, Ördög A, Poór P. Activation of Local and Systemic Defence Responses by Flg22 Is Dependent on Daytime and Ethylene in Intact Tomato Plants. Int J Mol Sci 2021; 22:ijms22158354. [PMID: 34361121 PMCID: PMC8348740 DOI: 10.3390/ijms22158354] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/29/2021] [Accepted: 07/31/2021] [Indexed: 02/07/2023] Open
Abstract
The first line of plant defence responses against pathogens can be induced by the bacterial flg22 and can be dependent on various external and internal factors. Here, we firstly studied the effects of daytime and ethylene (ET) using Never ripe (Nr) mutants in the local and systemic defence responses of intact tomato plants after flg22 treatments. Flg22 was applied in the afternoon and at night and rapid reactions were detected. The production of hydrogen peroxide and nitric oxide was induced by flg22 locally, while superoxide was induced systemically, in wild type plants in the light period, but all remained lower at night and in Nr leaves. Flg22 elevated, locally, the ET, jasmonic acid (JA) and salicylic acid (SA) levels in the light period; these levels did not change significantly at night. Expression of Pathogenesis-related 1 (PR1), Ethylene response factor 1 (ERF1) and Defensin (DEF) showed also daytime- and ET-dependent changes. Enhanced ERF1 and DEF expression and stomatal closure were also observable in systemic leaves of wild type plants in the light. These data demonstrate that early biotic signalling in flg22-treated leaves and distal ones is an ET-dependent process and it is also determined by the time of day and inhibited in the early night phase.
Collapse
Affiliation(s)
- Zalán Czékus
- Department of Plant Biology, Faculty of Science and Informatics, University of Szeged, 6726 Szeged, Hungary; (Z.C.); (A.K.); (I.T.); (A.Ö.)
- Doctoral School of Biology, University of Szeged, 6726 Szeged, Hungary
| | - András Kukri
- Department of Plant Biology, Faculty of Science and Informatics, University of Szeged, 6726 Szeged, Hungary; (Z.C.); (A.K.); (I.T.); (A.Ö.)
| | - Kamirán Áron Hamow
- Department of Plant Physiology, Agricultural Institute, Centre for Agricultural Research of the Hungarian Academy of Sciences, 2462 Martonvásár, Hungary; (K.Á.H.); (G.S.)
| | - Gabriella Szalai
- Department of Plant Physiology, Agricultural Institute, Centre for Agricultural Research of the Hungarian Academy of Sciences, 2462 Martonvásár, Hungary; (K.Á.H.); (G.S.)
| | - Irma Tari
- Department of Plant Biology, Faculty of Science and Informatics, University of Szeged, 6726 Szeged, Hungary; (Z.C.); (A.K.); (I.T.); (A.Ö.)
| | - Attila Ördög
- Department of Plant Biology, Faculty of Science and Informatics, University of Szeged, 6726 Szeged, Hungary; (Z.C.); (A.K.); (I.T.); (A.Ö.)
| | - Péter Poór
- Department of Plant Biology, Faculty of Science and Informatics, University of Szeged, 6726 Szeged, Hungary; (Z.C.); (A.K.); (I.T.); (A.Ö.)
- Correspondence:
| |
Collapse
|
13
|
Reyes Jara AM, Gómez-Lobato ME, Civello PM, Martínez GA. Expression of BoNOL and BoHCAR genes during postharvest senescence of broccoli heads. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:1629-1635. [PMID: 32893880 DOI: 10.1002/jsfa.10783] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/19/2020] [Accepted: 09/07/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Chlorophyll is the most abundant pigment on Earth, essential for the capture of light energy during photosynthesis. During senescence, chlorophyll degradation is highly regulated in order to diminish toxicity of the free chlorophyll molecule due to its photoactivity. The first step in the chlorophyll degradation pathway is the conversion of chlorophyll b to chlorophyll a by means of two consecutive reactions catalyzed by enzymes coded by NYC1 (NON-YELLOW COLORING 1), NOL (NYC1-LIKE) and HCAR. RESULTS In this work, we studied the expression of NOL and HCAR genes during postharvest senescence of broccoli. We found that the expression of BoNOL increase during the first days of storage and then decrease. In the case of BoHCAR, its expression is maintained during the first days and then it also diminishes. Additionally, the effect of different postharvest treatments on the expression of these genes was also analyzed. It was observed that the expression of BoNOL is lower in the treatments performed with 1-methylcyclopropene (1-MCP), 6-benzylaminopurine (6-BAP) and modified atmospheres, while BoHCAR expression showed an increase in these same treatments, and a decrease in the treatment with ethylene. There were no variations in the expression of both genes in heat treatment, UV-C treatment and visible light treatment. CONCLUSIONS These results suggest that both BoHCAR and BoNOL show a lower regulation of their expression than other genes involved in chlorophyll degradation during senescence. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
| | | | - Pedro M Civello
- Instituto de Fisiología Vegetal (INFIVE) UNLP-Conicet, La Plata, Argentina
- Facultad de Ciencias Exactas UNLP, La Plata, Argentina
| | - Gustavo A Martínez
- Instituto de Fisiología Vegetal (INFIVE) UNLP-Conicet, La Plata, Argentina
- Facultad de Ciencias Exactas UNLP, La Plata, Argentina
| |
Collapse
|
14
|
Valim H, Dalton H, Joo Y, McGale E, Halitschke R, Gaquerel E, Baldwin IT, Schuman MC. TOC1 in Nicotiana attenuata regulates efficient allocation of nitrogen to defense metabolites under herbivory stress. THE NEW PHYTOLOGIST 2020; 228:1227-1242. [PMID: 32608045 DOI: 10.1111/nph.16784] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 06/16/2020] [Indexed: 06/11/2023]
Abstract
The circadian clock contextualizes plant responses to environmental signals. Plants use temporal information to respond to herbivory, but many of the functional roles of circadian clock components in these responses, and their contribution to fitness, remain unknown. We investigate the role of the central clock regulator TIMING OF CAB EXPRESSION 1 (TOC1) in Nicotiana attenuata's defense responses to the specialist herbivore Manduca sexta under both field and glasshouse conditions. We utilize 15 N pulse-labeling to quantify nitrogen incorporation into pools of three defense compounds: caffeoylputrescine (CP), dicaffeoyl spermidine (DCS) and nicotine. Nitrogen incorporation was decreased in CP and DCS and increased in nicotine pools in irTOC1 plants compared to empty vector (EV) under control conditions, but these differences were abolished after simulated herbivory. Differences between EV and irTOC1 plants in nicotine, but not phenolamide production, were abolished by treatment with the ethylene agonist 1-methylcyclopropene. Using micrografting, TOC1's effect on nicotine was isolated to the root and did not affect the fitness of heterografts under field conditions. These results suggest that the circadian clock contributes to plant fitness by balancing production of metabolically expensive nitrogen-rich defense compounds and mediating the allocation of resources between vegetative biomass and reproduction.
Collapse
Affiliation(s)
- Henrique Valim
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, Jena, 07745, Germany
| | - Heidi Dalton
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, Jena, 07745, Germany
| | - Youngsung Joo
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, Jena, 07745, Germany
| | - Erica McGale
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, Jena, 07745, Germany
| | - Rayko Halitschke
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, Jena, 07745, Germany
| | - Emmanuel Gaquerel
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, Jena, 07745, Germany
- Institute of Plant Molecular Biology, University of Strasbourg, 12 Rue du Général Zimmer, Strasbourg, 67084, France
| | - Ian T Baldwin
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, Jena, 07745, Germany
| | - Meredith C Schuman
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, Jena, 07745, Germany
| |
Collapse
|
15
|
Baruah I, Baldodiya GM, Sahu J, Baruah G. Dissecting the Role of Promoters of Pathogen-sensitive Genes in Plant Defense. Curr Genomics 2020; 21:491-503. [PMID: 33214765 PMCID: PMC7604749 DOI: 10.2174/1389202921999200727213500] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 06/15/2020] [Accepted: 06/30/2020] [Indexed: 11/22/2022] Open
Abstract
Plants inherently show resistance to pathogen attack but are susceptible to multiple bacteria, viruses, fungi, and phytoplasmas. Diseases as a result of such infection leads to the deterioration of crop yield. Several pathogen-sensitive gene activities, promoters of such genes, associated transcription factors, and promoter elements responsible for crosstalk between the defense signaling pathways are involved in plant resistance towards a pathogen. Still, only a handful of genes and their promoters related to plant resistance have been identified to date. Such pathogen-sensitive promoters are accountable for elevating the transcriptional activity of certain genes in response to infection. Also, a suitable promoter is a key to devising successful crop improvement strategies as it ensures the optimum expression of the required transgene. The study of the promoters also helps in mining more details about the transcription factors controlling their activities and helps to unveil the involvement of new genes in the pathogen response. Therefore, the only way out to formulate new solutions is by analyzing the molecular aspects of these promoters in detail. In this review, we provided an overview of the promoter motifs and cis-regulatory elements having specific roles in pathogen attack response. To elaborate on the importance and get a vivid picture of the pathogen-sensitive promoter sequences, the key motifs and promoter elements were analyzed with the help of PlantCare and interpreted with available literature. This review intends to provide useful information for reconstructing the gene networks underlying the resistance of plants against pathogens.
Collapse
Affiliation(s)
| | | | - Jagajjit Sahu
- Address correspondence to these authors at the Department of Mycology & Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu University (BHU), Varanasi-221005, Uttar Pradesh, India;, E-mail: ; Environment Division, Assam Science Technology & Environment Council, Bigyan Bhawan, Guwahati-781005, Assam, India; E-mail:
| | - Geetanjali Baruah
- Address correspondence to these authors at the Department of Mycology & Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu University (BHU), Varanasi-221005, Uttar Pradesh, India;, E-mail: ; Environment Division, Assam Science Technology & Environment Council, Bigyan Bhawan, Guwahati-781005, Assam, India; E-mail:
| |
Collapse
|
16
|
Cui S, Kubota T, Nishiyama T, Ishida JK, Shigenobu S, Shibata TF, Toyoda A, Hasebe M, Shirasu K, Yoshida S. Ethylene signaling mediates host invasion by parasitic plants. SCIENCE ADVANCES 2020; 6:6/44/eabc2385. [PMID: 33115743 PMCID: PMC7608805 DOI: 10.1126/sciadv.abc2385] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 09/10/2020] [Indexed: 05/18/2023]
Abstract
Parasitic plants form a specialized organ, a haustorium, to invade host tissues and acquire water and nutrients. To understand the molecular mechanism of haustorium development, we performed a forward genetics screening to isolate mutants exhibiting haustorial defects in the model parasitic plant Phtheirospermum japonicum. We isolated two mutants that show prolonged and sometimes aberrant meristematic activity in the haustorium apex, resulting in severe defects on host invasion. Whole-genome sequencing revealed that the two mutants respectively have point mutations in homologs of ETHYLENE RESPONSE 1 (ETR1) and ETHYLENE INSENSITIVE 2 (EIN2), signaling components in response to the gaseous phytohormone ethylene. Application of the ethylene signaling inhibitors also caused similar haustorial defects, indicating that ethylene signaling regulates cell proliferation and differentiation of parasite cells. Genetic disruption of host ethylene production also perturbs parasite invasion. We propose that parasitic plants use ethylene as a signal to invade host roots.
Collapse
Affiliation(s)
- Songkui Cui
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
- Institute for Research Initiatives, Division for Research Strategy, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Tomoya Kubota
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Tomoaki Nishiyama
- Advanced Science Research Center, Kanazawa University, Kanazawa 920-0934, Japan
| | | | - Shuji Shigenobu
- National Institute for Basic Biology, Okazaki 444-8585, Japan
- Department of Basic Biology, School of Life Science, SOKENDAI (Graduate University for Advanced Studies), Okazaki 444-8585, Japan
| | | | - Atsushi Toyoda
- Comparative Genomics Laboratory, Department of Genomics and Evolutionary Biology, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Mitsuyasu Hasebe
- National Institute for Basic Biology, Okazaki 444-8585, Japan
- Department of Basic Biology, School of Life Science, SOKENDAI (Graduate University for Advanced Studies), Okazaki 444-8585, Japan
| | - Ken Shirasu
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
- Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Satoko Yoshida
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan.
- Institute for Research Initiatives, Division for Research Strategy, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| |
Collapse
|
17
|
Baek D, Kim WY, Cha JY, Park HJ, Shin G, Park J, Lim CJ, Chun HJ, Li N, Kim DH, Lee SY, Pardo JM, Kim MC, Yun DJ. The GIGANTEA-ENHANCED EM LEVEL Complex Enhances Drought Tolerance via Regulation of Abscisic Acid Synthesis. PLANT PHYSIOLOGY 2020; 184:443-458. [PMID: 32690755 PMCID: PMC7479899 DOI: 10.1104/pp.20.00779] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 07/09/2020] [Indexed: 05/22/2023]
Abstract
Drought is one of the most critical environmental stresses limiting plant growth and crop productivity. The synthesis and signaling of abscisic acid (ABA), a key phytohormone in the drought stress response, is under photoperiodic control. GIGANTEA (GI), a key regulator of photoperiod-dependent flowering and the circadian rhythm, is also involved in the signaling pathways for various abiotic stresses. In this study, we isolated ENHANCED EM LEVEL (EEL)/basic Leu zipper 12, a transcription factor involved in ABA signal responses, as a GI interactor in Arabidopsis (Arabidopsis thaliana). The diurnal expression of 9-CIS-EPOXYCAROTENOID DIOXYGENASE 3 (NCED3), a rate-limiting ABA biosynthetic enzyme, was reduced in the eel, gi-1, and eel gi-1 mutants under normal growth conditions. Chromatin immunoprecipitation and electrophoretic mobility shift assays revealed that EEL and GI bind directly to the ABA-responsive element motif in the NCED3 promoter. Furthermore, the eel, gi-1, and eel gi-1 mutants were hypersensitive to drought stress due to uncontrolled water loss. The transcript of NCED3, endogenous ABA levels, and stomatal closure were all reduced in the eel, gi-1, and eel gi-1 mutants under drought stress. Our results suggest that the EEL-GI complex positively regulates diurnal ABA synthesis by affecting the expression of NCED3, and contributes to the drought tolerance of Arabidopsis.
Collapse
Affiliation(s)
- Dongwon Baek
- Division of Applied Life Science (BK21 PLUS), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 52828, Korea
| | - Woe-Yeon Kim
- Division of Applied Life Science (BK21 PLUS), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 52828, Korea
- Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Korea
| | - Joon-Yung Cha
- Division of Applied Life Science (BK21 PLUS), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 52828, Korea
- Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Korea
| | - Hee Jin Park
- Department of Biomedical Science and Engineering, Konkuk University, Seoul 05029, Korea
- Institute of Glocal Disease Control, Konkuk University, Seoul 05029, Korea
| | - Gilok Shin
- Department of Biomedical Science and Engineering, Konkuk University, Seoul 05029, Korea
| | - Junghoon Park
- Department of Biomedical Science and Engineering, Konkuk University, Seoul 05029, Korea
| | - Chae Jin Lim
- Department of Biomedical Science and Engineering, Konkuk University, Seoul 05029, Korea
| | - Hyun Jin Chun
- Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Korea
| | - Ning Li
- State Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha 410004, China
| | - Doh Hoon Kim
- College of Life Science and Natural Resources, Dong-A University, Busan 49315, Korea
| | - Sang Yeol Lee
- Division of Applied Life Science (BK21 PLUS), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 52828, Korea
| | - Jose M Pardo
- Instituto de Bioquímica Vegetal y Fotosíntesis, cicCartuja, CSIC-Universidad de Sevilla, Sevilla 41092, Spain
| | - Min Chul Kim
- Division of Applied Life Science (BK21 PLUS), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 52828, Korea
| | - Dae-Jin Yun
- Department of Biomedical Science and Engineering, Konkuk University, Seoul 05029, Korea
- Institute of Glocal Disease Control, Konkuk University, Seoul 05029, Korea
| |
Collapse
|
18
|
Johnston CR, Malladi A, Vencill WK, Grey TL, Culpepper AS, Henry G, Czarnota MA, Randell TM. Investigation of physiological and molecular mechanisms conferring diurnal variation in auxinic herbicide efficacy. PLoS One 2020; 15:e0238144. [PMID: 32857790 PMCID: PMC7454982 DOI: 10.1371/journal.pone.0238144] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 08/10/2020] [Indexed: 11/18/2022] Open
Abstract
The efficacy of auxinic herbicides, a valuable weed control tool for growers worldwide, has been shown to vary with the time of day in which applications are made. However, little is known about the mechanisms causing this phenomenon. Investigating the differential in planta behavior of these herbicides across different times of application may grant an ability to advise which properties of auxinic herbicides are desirable when applications must be made around the clock. Radiolabeled herbicide experiments demonstrated a likely increase in ATP-binding cassette subfamily B (ABCB)-mediated 2,4-D and dicamba transport in Palmer amaranth (Amaranthus palmeri S. Watson) at simulated dawn compared to mid-day, as dose response models indicated that many orders of magnitude higher concentrations of N-1-naphthylphthalamic acid (NPA) and verapamil, respectively, are required to inhibit translocation by 50% at simulated sunrise compared to mid-day. Gas chromatographic analysis displayed that ethylene evolution in A. palmeri was higher when dicamba was applied during mid-day compared to sunrise. Furthermore, it was found that inhibition of translocation via 2,3,5-triiodobenzoic acid (TIBA) resulted in an increased amount of 2,4-D-induced ethylene evolution at sunrise, and the inhibition of dicamba translocation via NPA reversed the difference in ethylene evolution across time of application. Dawn applications of these herbicides were associated with increased expression of a putative 9-cis-epoxycarotenoid dioxygenase biosynthesis gene NCED1, while there was a notable lack of trends observed across times of day and across herbicides with ACS1, encoding 1-aminocyclopropane-1-carboxylic acid synthase. Overall, this research indicates that translocation is differentially regulated via specific protein-level mechanisms across times of application, and that ethylene release, a chief phytotoxic process involved in the response to auxinic herbicides, is related to translocation. Furthermore, transcriptional regulation of abscisic acid involvement in phytotoxicity and/or translocation are suggested.
Collapse
Affiliation(s)
- Christopher R. Johnston
- Department of Crop & Soil Sciences, University of Georgia, Athens, GA, United States of America
| | - Anish Malladi
- Department of Horticulture, University of Georgia, Athens, GA, United States of America
| | - William K. Vencill
- Department of Crop & Soil Sciences, University of Georgia, Athens, GA, United States of America
| | - Timothy L. Grey
- Department of Crop & Soil Sciences, University of Georgia, Tifton, GA, United States of America
| | - A. Stanley Culpepper
- Department of Crop & Soil Sciences, University of Georgia, Tifton, GA, United States of America
| | - Gerald Henry
- Department of Crop & Soil Sciences, University of Georgia, Athens, GA, United States of America
| | - Mark A. Czarnota
- Department of Horticulture, University of Georgia, Griffin, GA, United States of America
| | - Taylor M. Randell
- Department of Crop & Soil Sciences, University of Georgia, Tifton, GA, United States of America
| |
Collapse
|
19
|
Hiraki H, Watanabe M, Uemura M, Kawamura Y. Season specificity in the cold-induced calcium signal and the volatile chemicals in the atmosphere. PHYSIOLOGIA PLANTARUM 2020; 168:803-818. [PMID: 31390065 DOI: 10.1111/ppl.13019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 07/12/2019] [Accepted: 08/02/2019] [Indexed: 06/10/2023]
Abstract
Cold-induced Ca2+ signals in plants are widely accepted to be involved in cold acclimation. Surprisingly, despite using Arabidopsis plants grown in a growth chamber, we observed a clear seasonal change in cold-induced Ca2+ signals only in roots. Ca2+ signals were captured using Arabidopsis expressing Yellow Cameleon 3.60. In winter, two Ca2+ signal peaks were observed during a cooling treatment from 20 to 0°C, but in summer only one small peak was observed under the same cooling condition. In the spring and autumn seasons, an intermediate type of Ca2+ signal, which had a delayed first peak and smaller second peaks compared with the those of the winter type, was observed. Volatile chemicals and/or particles in the air from the outside may affect plants in the growth chamber. This idea is supported by the fact that incubation of plants with activated carbon changed the intermediate-type Ca2+ signal to the summer-type. The seasonality was also observed in the freezing tolerance of plants cold-acclimated in a low-temperature chamber. The solar radiation intensity was weakly correlated, not only with the seasonal characteristics of the Ca2+ signal but also with freezing tolerance. It has been reported that the ethylene concentration in the atmosphere seasonally changes depending on the solar radiation intensity. Ethylene gas and 1-aminocyclopropane-1-carboxylic acid treatment affected the Ca2+ signals, the shape of which became a shape close to, but not the same as, the winter type from the other types, indicating that ethylene may be one of several factors influencing the cold-induced Ca2+ signal.
Collapse
Affiliation(s)
- Hayato Hiraki
- The United Graduate School of Agricultural Sciences, Iwate University, Iwate, 020-8550, Japan
| | - Manabu Watanabe
- Field Science Center, Faculty of Agriculture, Iwate University, Iwate, 020-0611, Japan
| | - Matsuo Uemura
- The United Graduate School of Agricultural Sciences, Iwate University, Iwate, 020-8550, Japan
- Department of Plant Bioscience, Iwate University, Iwate, 020-8550, Japan
| | - Yukio Kawamura
- The United Graduate School of Agricultural Sciences, Iwate University, Iwate, 020-8550, Japan
- Department of Plant Bioscience, Iwate University, Iwate, 020-8550, Japan
| |
Collapse
|
20
|
Sanchez SE, Rugnone ML, Kay SA. Light Perception: A Matter of Time. MOLECULAR PLANT 2020; 13:363-385. [PMID: 32068156 PMCID: PMC7056494 DOI: 10.1016/j.molp.2020.02.006] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 02/10/2020] [Accepted: 02/12/2020] [Indexed: 05/02/2023]
Abstract
Optimizing the perception of external cues and regulating physiology accordingly help plants to cope with the constantly changing environmental conditions to which they are exposed. An array of photoreceptors and intricate signaling pathways allow plants to convey the surrounding light information and synchronize an endogenous timekeeping system known as the circadian clock. This biological clock integrates multiple cues to modulate a myriad of downstream responses, timing them to occur at the best moment of the day and the year. Notably, the mechanism underlying entrainment of the light-mediated clock is not clear. This review addresses known interactions between the light-signaling and circadian-clock networks, focusing on the role of light in clock entrainment and known molecular players in this process.
Collapse
Affiliation(s)
- Sabrina E Sanchez
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Matias L Rugnone
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Steve A Kay
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
21
|
Shi Y, Zhao X, Guo S, Dong S, Wen Y, Han Z, Jin W, Chen Y. ZmCCA1a on Chromosome 10 of Maize Delays Flowering of Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2020; 11:78. [PMID: 32153606 PMCID: PMC7044342 DOI: 10.3389/fpls.2020.00078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 01/20/2020] [Indexed: 06/01/2023]
Abstract
Maize (Zea mays) is a major cereal crop that originated at low latitudes, and thus photoperiod sensitivity is an important barrier to the use of tropical/subtropical germplasm in temperate regions. However, studies of the mechanisms underlying circadian regulation in maize are at an early stage. In this study we cloned ZmCCA1a on chromosome 10 of maize by map-based cloning. The gene is homologous to the Myb transcription factor genes AtCCA1/AtLHY in Arabidopsis thaliana; the deduced Myb domain of ZmCCA1a showed high similarity with that of AtCCA1/AtLHY and ZmCCA1b. Transiently or constitutively expressed ZmCCA1a-YFPs were localized to nuclei of Arabidopsis mesophyll protoplasts, agroinfiltrated tobacco leaves, and leaf and root cells of transgenic seedlings of Arabidopsis thaliana. Unlike AtCCA1/AtLHY, ZmCCA1a did not form homodimers nor interact with ZmCCA1b. Transcripts of ZmCCA1a showed circadian rhythm with peak expression around sunrise in maize inbred lines CML288 (photoperiod sensitive) and Huangzao 4 (HZ4; photoperiod insensitive). Under short days, transcription of ZmCCA1a in CML288 and HZ4 was repressed compared with that under long days, whereas the effect of photoperiod on ZmCCA1a expression was moderate in HZ4. In ZmCCA1a-overexpressing A. thaliana (ZmCCA1a-ox) lines, the circadian rhythm was disrupted under constant light and flowering was delayed under long days, but the hypocotyl length was not affected. In addition, expression of endogenous AtCCA1/AtLHY and the downstream genes AtGI, AtCO, and AtFt was repressed in ZmCCA1a-ox seedlings. The present results suggest that the function of ZmCCA1a is similar, at least in part, to that of AtCCA1/AtLHY and ZmCCA1b, implying that ZmCCA1a is likely to be an important component of the circadian clock pathway in maize.
Collapse
Affiliation(s)
- Yong Shi
- College of Agronomy/National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, China
| | - Xiyong Zhao
- Crop Research Institute, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Sha Guo
- College of Agronomy/National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, China
| | - Shifeng Dong
- College of Agronomy/National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, China
| | - Yanpeng Wen
- College of Agronomy/National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, China
| | - Zanping Han
- College of Agronomy, Henan University of Science and Technology, Luoyang, China
| | - Weihuan Jin
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Yanhui Chen
- College of Agronomy/National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
22
|
Park CH, Seo C, Park YJ, Youn JH, Roh J, Moon J, Kim SK. BES1 directly binds to the promoter of the ACC oxidase 1 gene to regulate gravitropic response in the roots of Arabidopsis thaliana. PLANT SIGNALING & BEHAVIOR 2020; 15:1690724. [PMID: 31718454 PMCID: PMC7012152 DOI: 10.1080/15592324.2019.1690724] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 11/01/2019] [Accepted: 11/05/2019] [Indexed: 05/22/2023]
Abstract
Brassinosteroids (BRs) are known to be endogenous regulators of ethylene production, suggesting that some BR activity in plant growth and development is associated with ethylene. Here, we demonstrated that ethylene production in Arabidopsis thaliana roots is increased by BR signaling via the ethylene biosynthetic gene for ACC oxidase 1 (ACO1). Electrophoretic mobility shift and chromatin immune-precipitation assays showed that the BR transcription factor BES1 directly binds to two E-box sequences located in the intergenic region of ACO1. GUS expression using site mutations of the E-box sequences verified that ACO1 is normally expressed only when BES1 binds to the E-boxes in the putative promoter of ACO1, indicating that this binding is essential for ACO1 expression and the subsequent production of ethylene in A. thaliana roots. BR exogenously applied to A. thaliana roots enhanced the gravitropic response. Additionally, bes1-D exhibited a greater gravitropic response than did the wild-type specimens, proving that BR is a positive regulator of the gravitropic response in A. thaliana roots. The knock-down mutant aco1-1 showed a slightly lower gravitropic response than did the wild-type specimens, while bes1-D X aco1-1 exhibited a lower gravitropic response than did bes1-D. Therefore, ACO1 is a direct downstream target for BR transcription factor BES1, which controls ethylene production for gravitropism in A. thaliana roots.
Collapse
Affiliation(s)
- Chan-Ho Park
- Department of Life Science, Chung-Ang University, Seoul, Korea
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, USA
| | - Chaiweon Seo
- Department of Life Science, Chung-Ang University, Seoul, Korea
| | - Yeon Ju Park
- Department of Life Science, Chung-Ang University, Seoul, Korea
| | - Ji-Hyun Youn
- Department of Life Science, Chung-Ang University, Seoul, Korea
| | - Jeehee Roh
- Department of Life Science, Chung-Ang University, Seoul, Korea
| | - Jinyoung Moon
- Department of Life Science, Chung-Ang University, Seoul, Korea
| | - Seong-Ki Kim
- Department of Life Science, Chung-Ang University, Seoul, Korea
- CONTACT Seong-Ki Kim Department of Life Science, Chung-Ang University, Seoul 06974, Korea
| |
Collapse
|
23
|
Wang X, Gao X, Liu Y, Fan S, Ma Q. Progress of Research on the Regulatory Pathway of the Plant Shade-Avoidance Syndrome. FRONTIERS IN PLANT SCIENCE 2020; 11:439. [PMID: 32351535 PMCID: PMC7174782 DOI: 10.3389/fpls.2020.00439] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 03/25/2020] [Indexed: 05/03/2023]
Abstract
When subject to vegetational shading, shade-avoiding plants detect neighbors by perceiving reduced light quantity and altered light quality. The former includes decreases in the ratio of red to far-red wavelengths (low R:FR) and low blue light ratio (LBL) predominantly detected by phytochromes and cryptochromes, respectively. By integrating multiple signals, plants generate a suite of responses, such as elongation of a variety of organs, accelerated flowering, and reduced branching, which are collectively termed the shade-avoidance syndrome (SAS). To trigger the SAS, interactions between photoreceptors and phytochrome-interacting factors are the general switch for activation of downstream signaling pathways. A number of transcription factor families and phytohormones, especially auxin, gibberellins, ethylene, and brassinosteroids, are involved in the SAS processes. In this review, shade signals, the major photoreceptors involved, and the phenotypic characteristics of the shade-intolerant plant Arabidopsis thaliana are described in detail. In addition, integration of the signaling mechanisms that link photoreceptors with multiple hormone signaling pathways is presented and future research directions are discussed.
Collapse
Affiliation(s)
- Xiaoyan Wang
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, China
| | - Xinqiang Gao
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, China
| | - Yuling Liu
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, China
| | - Shuli Fan
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, China
- Research Base, Anyang Institute of Technology, State Key Laboratory of Cotton Biology, Anyang, China
- *Correspondence: Shuli Fan, ; Qifeng Ma,
| | - Qifeng Ma
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, China
- Research Base, Anyang Institute of Technology, State Key Laboratory of Cotton Biology, Anyang, China
- *Correspondence: Shuli Fan, ; Qifeng Ma,
| |
Collapse
|
24
|
Lei J, Jayaprakasha GK, Singh J, Uckoo R, Borrego EJ, Finlayson S, Kolomiets M, Patil BS, Braam J, Zhu-Salzman K. CIRCADIAN CLOCK-ASSOCIATED1 Controls Resistance to Aphids by Altering Indole Glucosinolate Production. PLANT PHYSIOLOGY 2019; 181:1344-1359. [PMID: 31527087 PMCID: PMC6836836 DOI: 10.1104/pp.19.00676] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 09/04/2019] [Indexed: 05/07/2023]
Abstract
CIRCADIAN CLOCK-ASSOCIATED1 (CCA1), a well-known central circadian clock regulator, coordinates plant responses to environmental challenges. Its daily rhythmic expression in Arabidopsis (Arabidopsis thaliana) confers host resistance to the caterpillar Trichoplusia ni However, it is unclear whether CCA1 plays a role in defense against phloem sap-feeding aphids. In this study, we showed that green peach aphid (Myzus persicae) displayed an intrinsic circadian feeding rhythm. Under constant light, wild-type Columbia-0 (Col-0) Arabidopsis plants coentrained with aphids in the same light/dark cycles exhibited greater antixenotic activity than plants preentrained in the opposite cycle from the aphids. Consistently, circadian mutants cca1-1, cca1-11, lhy-21, ztl-1, ztl-4, and lux-2 suffered more severe damage than Col-0 plants when infested by aphids, suggesting that the Arabidopsis circadian clock plays a defensive role. However, the arrhythmic CCA1 overexpression line (CCA1-OX) displayed strong antixenotic and antibiotic activities despite its loss of circadian regulation. Aphids feeding on CCA1-OX plants exhibited lower reproduction and smaller body size and weight than those on Col-0. Apparently, CCA1 regulates both clock-dependent and -independent defense responses. Systematic investigation based on bioinformatics analyses indicated that resistance to aphids in CCA1-OX plants was due primarily to heightened basal indole glucosinolate levels. Interestingly, aphid feeding induced alternatively spliced intron-retaining CCA1a/b transcripts, which are normally expressed at low levels, whereas expression of the major fully spliced CCA1 transcript remained largely unchanged. We hypothesize that posttranscriptional modulation of CCA1 expression upon aphid infestation maximizes the potential of circadian-mediated defense and stress tolerance while ensuring normal plant development.
Collapse
Affiliation(s)
- Jiaxin Lei
- Department of Entomology, Texas A&M University, College Station, Texas 77843
- Vegetable and Fruit Improvement Center, Texas A&M University, College Station, Texas 77843
- Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, Texas 77843
| | | | - Jashbir Singh
- Vegetable and Fruit Improvement Center, Texas A&M University, College Station, Texas 77843
| | - Rammohan Uckoo
- Vegetable and Fruit Improvement Center, Texas A&M University, College Station, Texas 77843
| | - Eli J Borrego
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, Texas 77843
| | - Scott Finlayson
- Department of Soil and Crop Sciences, Texas A&M University, College Station, Texas 77843
| | - Mike Kolomiets
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, Texas 77843
| | - Bhimanagouda S Patil
- Vegetable and Fruit Improvement Center, Texas A&M University, College Station, Texas 77843
| | - Janet Braam
- Department of Biochemistry and Cell Biology, Rice University, Houston, Texas 77005
| | - Keyan Zhu-Salzman
- Department of Entomology, Texas A&M University, College Station, Texas 77843
- Vegetable and Fruit Improvement Center, Texas A&M University, College Station, Texas 77843
- Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, Texas 77843
| |
Collapse
|
25
|
GIGANTEA gates gibberellin signaling through stabilization of the DELLA proteins in Arabidopsis. Proc Natl Acad Sci U S A 2019; 116:21893-21899. [PMID: 31597737 PMCID: PMC6815129 DOI: 10.1073/pnas.1913532116] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The circadian clock integrates environmental cues with internal biological processes to generate robust rhythms in almost all aspects of plant physiology. The molecular mechanisms underlying the pervasive regulation of plant physiology and development by the circadian clock are still being unraveled. Our study identifies the clock protein GIGANTEA as a key regulator of the response to gibberellins through the regulation of pivotal factors in the signaling of this hormone. Direct modulation of hub components in signaling networks by the circadian clock provides a means through which the oscillator can effectively transduce timing information to an extensive array of physiological pathways. Circadian clock circuitry intersects with a plethora of signaling pathways to adequately time physiological processes to occur at the most appropriate time of the day and year. However, our mechanistic understanding of how the clockwork is wired to its output is limited. Here we uncover mechanistic connections between the core clock component GIGANTEA (GI) and hormone signaling through the modulation of key components of the transduction pathways. Specifically, we show how GI modulates gibberellin (GA) signaling through the stabilization of the DELLA proteins, which act as negative components in the signaling of this hormone. GI function within the GA pathway is required to precisely time the permissive gating of GA sensitivity, thereby determining the phase of GA-regulated physiological outputs.
Collapse
|
26
|
Kumari S, Yadav S, Patra D, Singh S, Sarkar AK, Panigrahi KCS. Uncovering the molecular signature underlying the light intensity-dependent root development in Arabidopsis thaliana. BMC Genomics 2019; 20:596. [PMID: 31325959 PMCID: PMC6642530 DOI: 10.1186/s12864-019-5933-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 06/24/2019] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Root morphology is known to be affected by light quality, quantity and direction. Light signal is perceived at the shoot, translocated to roots through vasculature and further modulates the root development. Photoreceptors are differentially expressed in both shoot and root cells. The light irradiation to the root affects shoot morphology as well as whole plant development. The current work aims to understand the white light intensity dependent changes in root patterning and correlate that with the global gene expression profile. RESULTS Different fluence of white light (WL) regulate overall root development via modulating the expression of a specific set of genes. Phytochrome A deficient Arabidopsis thaliana (phyA-211) showed shorter primary root compared to phytochrome B deficient (phyB-9) and wild type (WT) seedlings at a lower light intensity. However, at higher intensity, both mutants showed shorter primary root in comparison to WT. The lateral root number was observed to be lowest in phyA-211 at intensities of 38 and 75 μmol m - 2 s - 1. The number of adventitious roots was significantly lower in phyA-211 as compared to WT and phyB-9 under all light intensities tested. With the root phenotypic data, microarray was performed for four different intensities of WL light in WT. Here, we identified ~ 5243 differentially expressed genes (DEGs) under all light intensities. Gene ontology-based analysis indicated that different intensities of WL predominantly affect a subset of genes having catalytic activity and localized to the cytoplasm and membrane. Furthermore, when root is irradiated with different intensities of WL, several key genes involved in hormone, light signaling and clock-regulated pathways are differentially expressed. CONCLUSION Using genome wide microarray-based approach, we have identified candidate genes in Arabidopsis root that responded to the changes in light intensities. Alteration in expression of genes such as PIF4, COL9, EPR1, CIP1, ARF18, ARR6, SAUR9, TOC1 etc. which are involved in light, hormone and clock pathway was validated by qRT-PCR. This indicates their potential role in light intensity mediated root development.
Collapse
Affiliation(s)
- Sony Kumari
- School of Biological Sciences, National Institute of Science Education and Research (NISER), Homi Bhabha National Institute (HBNI), P.O. Bhimpur- Padanpur, Via Jatni, Dist. Khurda, Odisha, 752050, India
| | - Sandeep Yadav
- National Institute of Plant Genome Research (NIPGR), Jawaharlal Nehru University Campus, Aruna Asaf Ali Marg, New Delhi, Delhi, 110067, India
| | - Debadutta Patra
- School of Biological Sciences, National Institute of Science Education and Research (NISER), Homi Bhabha National Institute (HBNI), P.O. Bhimpur- Padanpur, Via Jatni, Dist. Khurda, Odisha, 752050, India
| | - Sharmila Singh
- National Institute of Plant Genome Research (NIPGR), Jawaharlal Nehru University Campus, Aruna Asaf Ali Marg, New Delhi, Delhi, 110067, India
| | - Ananda K Sarkar
- National Institute of Plant Genome Research (NIPGR), Jawaharlal Nehru University Campus, Aruna Asaf Ali Marg, New Delhi, Delhi, 110067, India
| | - Kishore C S Panigrahi
- School of Biological Sciences, National Institute of Science Education and Research (NISER), Homi Bhabha National Institute (HBNI), P.O. Bhimpur- Padanpur, Via Jatni, Dist. Khurda, Odisha, 752050, India.
| |
Collapse
|
27
|
Abstract
Circadian rhythms in transcription ultimately result in oscillations of key biological processes. Understanding how transcriptional rhythms are generated in plants provides an opportunity for fine-tuning growth, development, and responses to the environment. Here, we present a succinct description of the plant circadian clock, briefly reviewing a number of recent studies but mostly emphasizing the components and mechanisms connecting chromatin remodeling with transcriptional regulation by the clock. The possibility that intergenomic interactions govern hybrid vigor through epigenetic changes at clock loci and the function of epialleles controlling clock output traits during crop domestication are also discussed.
Collapse
Affiliation(s)
- Z Jeffrey Chen
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, 78712, USA.,Department of Integrative Biology, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Paloma Mas
- Center for Research in Agricultural Genomics (CRAG), Consortium CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, 08193, Barcelona, Spain. .,Consejo Superior de Investigaciones Científicas, 08028, Barcelona, Spain.
| |
Collapse
|
28
|
Singh M, Mas P. A Functional Connection between the Circadian Clock and Hormonal Timing in Arabidopsis. Genes (Basel) 2018; 9:E567. [PMID: 30477118 PMCID: PMC6315462 DOI: 10.3390/genes9120567] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 11/20/2018] [Accepted: 11/20/2018] [Indexed: 02/04/2023] Open
Abstract
The rotation of the Earth entails changes in environmental conditions that pervasively influence an organism's physiology and metabolism. An internal cellular mechanism known as the circadian clock acts as an internal timekeeper that is able to perceive the changes in environmental cues to generate 24-h rhythms in synchronization with daily and seasonal fluctuations. In plants, the circadian clock function is particularly important and regulates nearly every aspect of plant growth and development as well as proper responses to stresses. The circadian clock does not function in isolation but rather interconnects with an intricate network of different pathways, including those of phytohormones. Here, we describe the interplay of the circadian clock with a subset of hormones in Arabidopsis. The molecular components directly connecting the circadian and hormone pathways are described, highlighting the biological significance of such connections in the control of growth, development, fitness, and survival. We focus on the overlapping as well as contrasting circadian and hormonal functions that together provide a glimpse on how the Arabidopsis circadian system regulates hormone function in response to endogenous and exogenous cues. Examples of feedback regulation from hormone signaling to the clock are also discussed.
Collapse
Affiliation(s)
- Manjul Singh
- Center for Research in Agricultural Genomics (CRAG), Consortium CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, 08193 Barcelona, Spain.
| | - Paloma Mas
- Center for Research in Agricultural Genomics (CRAG), Consortium CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, 08193 Barcelona, Spain.
- Consejo Superior de Investigaciones Científicas, 08028 Barcelona, Spain.
| |
Collapse
|
29
|
Sanchez-Muñoz R, Bonfill M, Cusidó RM, Palazón J, Moyano E. Advances in the Regulation of In Vitro Paclitaxel Production: Methylation of a Y-Patch Promoter Region Alters BAPT Gene Expression in Taxus Cell Cultures. PLANT & CELL PHYSIOLOGY 2018; 59:2255-2267. [PMID: 30060238 DOI: 10.1093/pcp/pcy149] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 07/19/2018] [Indexed: 06/08/2023]
Abstract
Plant cell biofactories represent a promising solution to the increasing demand for plant-derived compounds, but there are still limiting factors that prevent optimal production, including the loss of yield during in vitro maintenance. Our results reveal a clear correlation between genomic methylation levels and a progressive decline in taxane production in Taxus spp. cell cultures. A comparative study of two cell lines, one 10 years old and low productive and the other new and high productive, revealed important differences in appearance, growth, taxane accumulation and expression levels of several taxane biosynthetic genes. Differences in taxane content and gene expression profile indicate an altered pathway regulation and that the BAPT gene, located in the center of the expression network of taxane biosynthetic genes, is active in a potentially flux-limiting step. The methylation patterns of the BAPT gene were studied in both cell lines by bisulfite sequencing, which revealed high rates of CHH methylated cytosines on the core promoter. Using a bioinformatics approach, this hotspot was identified as a Y-patch promoter element. The Y-patch may play a key role in the epigenetic regulation of the taxane biosynthetic pathway, which would open up novel genetic engineering strategies toward stable and high productivity.
Collapse
Affiliation(s)
- Raul Sanchez-Muñoz
- Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, E-08003 Barcelona, Spain
| | - Mercedes Bonfill
- Secció de Fisiologia Vegetal, Facultat de Farmàcia, Universitat de Barcelona, E-08028 Barcelona, Spain
| | - Rosa M Cusidó
- Secció de Fisiologia Vegetal, Facultat de Farmàcia, Universitat de Barcelona, E-08028 Barcelona, Spain
| | - Javier Palazón
- Secció de Fisiologia Vegetal, Facultat de Farmàcia, Universitat de Barcelona, E-08028 Barcelona, Spain
| | - Elisabeth Moyano
- Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, E-08003 Barcelona, Spain
| |
Collapse
|
30
|
Park CH, Roh J, Youn JH, Son SH, Park JH, Kim SY, Kim TW, Kim SK. Arabidopsis ACC Oxidase 1 Coordinated by Multiple Signals Mediates Ethylene Biosynthesis and Is Involved in Root Development. Mol Cells 2018; 41:923-932. [PMID: 30352493 PMCID: PMC6199567 DOI: 10.14348/molcells.2018.0092] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 06/14/2018] [Accepted: 08/21/2018] [Indexed: 12/21/2022] Open
Abstract
Ethylene regulates numerous aspects of plant growth and development. Multiple external and internal factors coordinate ethylene production in plant tissues. Transcriptional and post-translational regulations of ACC synthases (ACSs), which are key enzymes mediating a rate-limiting step in ethylene biosynthesis have been well characterized. However, the regulation and physiological roles of ACC oxidases (ACOs) that catalyze the final step of ethylene biosynthesis are largely unknown in Arabidopsis. Here, we show that Arabidopsis ACO1 exhibits a tissue-specific expression pattern that is regulated by multiple signals, and plays roles in the lateral root development in Arabidopsis. Histochemical analysis of the ACO1 promoter indicated that ACO1 expression was largely modulated by light and plant hormones in a tissue-specific manner. We demonstrated that point mutations in two E-box motifs on the ACO1 promoter reduce the light-regulated expression patterns of ACO1. The aco1-1 mutant showed reduced ethylene production in root tips compared to wild-type. In addition, aco1-1 displayed altered lateral root formation. Our results suggest that Arabidopsis ACO1 integrates various signals into the ethylene biosynthesis that is required for ACO1's intrinsic roles in root physiology.
Collapse
Affiliation(s)
- Chan Ho Park
- Department of Life Science, Chung-Ang University, Seoul 06974,
Korea
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305-4150,
USA
| | - Jeehee Roh
- Department of Life Science, Chung-Ang University, Seoul 06974,
Korea
| | - Ji-Hyun Youn
- Department of Life Science, Chung-Ang University, Seoul 06974,
Korea
| | - Seung-Hyun Son
- Department of Life Science, Chung-Ang University, Seoul 06974,
Korea
| | - Ji Hye Park
- Department of Biological Science, Andong National University, Andong 36729,
Korea
| | - Soon Young Kim
- Department of Biological Science, Andong National University, Andong 36729,
Korea
| | - Tae-Wuk Kim
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 04763,
Korea
- Research Institute for Natural Sciences, Hanyang University, Seoul 04763,
Korea
| | - Seong-Ki Kim
- Department of Life Science, Chung-Ang University, Seoul 06974,
Korea
| |
Collapse
|
31
|
Diurnal down-regulation of ethylene biosynthesis mediates biomass heterosis. Proc Natl Acad Sci U S A 2018; 115:5606-5611. [PMID: 29735680 DOI: 10.1073/pnas.1722068115] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Heterosis is widely applied in agriculture; however, the underlying molecular mechanisms for superior performance are not well understood. Ethylene biosynthesis and signaling genes are shown to be down-regulated in Arabidopsis interspecific hybrids. Ethylene is a plant hormone that promotes fruit ripening and maturation but inhibits hypocotyl elongation. Here we report that application of exogenous ethylene could eliminate biomass vigor in Arabidopsis thaliana F1 hybrids, suggesting a negative role of ethylene in heterosis. Ethylene biosynthesis is mediated by the rate-limiting enzyme, 1-aminocyclopropane-1-carboxylate synthase (ACS). Down-regulation of ACS genes led to the decrease of ethylene production, which was associated with the high-vigor F1 hybrids, but not with the low-vigor ones. At the mechanistic level, expression of ACS genes was down-regulated diurnally and indirectly by Circadian Clock Associated 1 (CCA1) during the day and directly by Phyotochrome-Interacting Factor 5 (PIF5) at night. Consistent with the negative role of ethylene in plant growth, biomass vigor was higher in the acs mutants than in wild-type plants, while increasing endogenous ethylene production in the hybridizing parents reduced growth vigor in the hybrids. Thus, integrating circadian rhythms and light signaling into ethylene production is another regulatory module of complex biological networks, leading to biomass heterosis in plants.
Collapse
|
32
|
Alessio VM, Cavaçana N, Dantas LLDB, Lee N, Hotta CT, Imaizumi T, Menossi M. The FBH family of bHLH transcription factors controls ACC synthase expression in sugarcane. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:2511-2525. [PMID: 29514290 PMCID: PMC5920332 DOI: 10.1093/jxb/ery083] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 02/27/2018] [Indexed: 05/21/2023]
Abstract
Ethylene is a phytohormone involved in the regulation of several aspects of plant development and in responses to biotic and abiotic stress. The effects of exogenous application of ethylene to sugarcane plants are well characterized as growth inhibition of immature internodes and stimulation of sucrose accumulation. However, the molecular network underlying the control of ethylene biosynthesis in sugarcane remains largely unknown. The chemical reaction catalyzed by 1-aminocyclopropane-1-carboxylic acid synthase (ACS) is an important rate-limiting step that regulates ethylene production in plants. In this work, using a yeast one-hybrid approach, we identified three basic helix-loop-helix (bHLH) transcription factors, homologs of Arabidopsis FBH (FLOWERING BHLH), that bind to the promoter of ScACS2 (Sugarcane ACS2), a sugarcane type 3 ACS isozyme gene. Protein-protein interaction assays showed that sugarcane FBH1 (ScFBH1), ScFBH2, and ScFBH3 form homo- and heterodimers in the nucleus. Gene expression analysis revealed that ScFBHs and ScACS2 transcripts are more abundant in maturing internodes during afternoon and night. In addition, Arabidopsis functional analysis demonstrated that FBH controls ethylene production by regulating transcript levels of ACS7, a homolog of ScACS2. These results indicate that ScFBHs transcriptionally regulate ethylene biosynthesis in maturing internodes of sugarcane.
Collapse
Affiliation(s)
- Valter Miotto Alessio
- Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas, CP, Campinas, SP, Brazil
- Department of Biology, University of Washington, Seattle, WA, USA
| | - Natale Cavaçana
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil
| | | | - Nayoung Lee
- Department of Biology, University of Washington, Seattle, WA, USA
| | - Carlos Takeshi Hotta
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Takato Imaizumi
- Department of Biology, University of Washington, Seattle, WA, USA
| | - Marcelo Menossi
- Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas, CP, Campinas, SP, Brazil
- Correspondence:
| |
Collapse
|
33
|
Dubois M, Van den Broeck L, Inzé D. The Pivotal Role of Ethylene in Plant Growth. TRENDS IN PLANT SCIENCE 2018; 23:311-323. [PMID: 29428350 DOI: 10.1016/j.tplants.2018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 01/12/2018] [Accepted: 01/15/2018] [Indexed: 05/27/2023]
Abstract
Being continuously exposed to variable environmental conditions, plants produce phytohormones to react quickly and specifically to these changes. The phytohormone ethylene is produced in response to multiple stresses. While the role of ethylene in defense responses to pathogens is widely recognized, recent studies in arabidopsis and crop species highlight an emerging key role for ethylene in the regulation of organ growth and yield under abiotic stress. Molecular connections between ethylene and growth-regulatory pathways have been uncovered, and altering the expression of ethylene response factors (ERFs) provides a new strategy for targeted ethylene-response engineering. Crops with optimized ethylene responses show improved growth in the field, opening new windows for future crop improvement. This review focuses on how ethylene regulates shoot growth, with an emphasis on leaves.
Collapse
Affiliation(s)
- Marieke Dubois
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium; VIB Center for Plant Systems Biology, 9052 Ghent, Belgium; Present address: Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique, 67000 Strasbourg, France
| | - Lisa Van den Broeck
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium; VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Dirk Inzé
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium; VIB Center for Plant Systems Biology, 9052 Ghent, Belgium. https://twitter.com/@InzeDirk
| |
Collapse
|
34
|
Dubois M, Van den Broeck L, Inzé D. The Pivotal Role of Ethylene in Plant Growth. TRENDS IN PLANT SCIENCE 2018; 23:311-323. [PMID: 29428350 PMCID: PMC5890734 DOI: 10.1016/j.tplants.2018.01.003] [Citation(s) in RCA: 398] [Impact Index Per Article: 56.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 01/12/2018] [Accepted: 01/15/2018] [Indexed: 05/18/2023]
Abstract
Being continuously exposed to variable environmental conditions, plants produce phytohormones to react quickly and specifically to these changes. The phytohormone ethylene is produced in response to multiple stresses. While the role of ethylene in defense responses to pathogens is widely recognized, recent studies in arabidopsis and crop species highlight an emerging key role for ethylene in the regulation of organ growth and yield under abiotic stress. Molecular connections between ethylene and growth-regulatory pathways have been uncovered, and altering the expression of ethylene response factors (ERFs) provides a new strategy for targeted ethylene-response engineering. Crops with optimized ethylene responses show improved growth in the field, opening new windows for future crop improvement. This review focuses on how ethylene regulates shoot growth, with an emphasis on leaves.
Collapse
Affiliation(s)
- Marieke Dubois
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
- Present address: Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique, 67000 Strasbourg, France
| | - Lisa Van den Broeck
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Dirk Inzé
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
- Correspondence: @InzeDirk
| |
Collapse
|
35
|
Zhang B, Liu H, Ding X, Qiu J, Zhang M, Chu Z. Arabidopsis thalianaACS8 plays a crucial role in the early biosynthesis of ethylene elicited by Cu 2+ ions. J Cell Sci 2018; 131:jcs.202424. [PMID: 28775152 DOI: 10.1242/jcs.202424] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 07/11/2017] [Indexed: 11/20/2022] Open
Abstract
Cu2+ ions are required by all living organisms and play important roles in many bactericides and fungicides. We previously reported that Cu2+ can elicit defense responses, which are dependent on the ethylene signaling pathway in Arabidopsis However, the mechanism by which Cu2+ elicits the biosynthesis of ethylene remains unclear. Here, we show that CuSO4 treatment rapidly increases the production of ethylene. In addition, it upregulates the expression of several defense-related genes and ethylene biosynthesis genes, including genes encoding S-adenosylmethionine synthase, 1-aminocyclopropane-1-carboxylate (ACC) synthase (ACS) and ACC oxidase. Among these genes, Arabidopsis thaliana (At)ACS8 was identified as essential for the defense response and early ethylene biosynthesis induced by Cu2+ Furthermore, Cu2+-induced AtACS8 expression depended on the copper-response cis-element (CuRE) in the promoter of AtACS8 Our study indicates that Cu2+ specifically activates the expression of AtACS8 to promote the early biosynthesis of ethylene that elicits plant immunity in Arabidopsis plants.
Collapse
Affiliation(s)
- Baogang Zhang
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai an, 271018, Shandong, PR China.,Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai an, 271018, Shandong, PR China
| | - Haifeng Liu
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai an, 271018, Shandong, PR China
| | - Xinhua Ding
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai an, 271018, Shandong, PR China
| | - Jiajia Qiu
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai an, 271018, Shandong, PR China
| | - Min Zhang
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Tai an, Shandong 271018, China
| | - Zhaohui Chu
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai an, 271018, Shandong, PR China
| |
Collapse
|
36
|
Hassidim M, Dakhiya Y, Turjeman A, Hussien D, Shor E, Anidjar A, Goldberg K, Green RM. CIRCADIAN CLOCK ASSOCIATED1 ( CCA1) and the Circadian Control of Stomatal Aperture. PLANT PHYSIOLOGY 2017; 175:1864-1877. [PMID: 29084902 PMCID: PMC5717738 DOI: 10.1104/pp.17.01214] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 10/23/2017] [Indexed: 05/18/2023]
Abstract
The endogenous circadian (∼24 h) system allows plants to anticipate and adapt to daily environmental changes. Stomatal aperture is one of the many processes under circadian control; stomatal opening and closing occurs under constant conditions, even in the absence of environmental cues. To understand the significance of circadian-mediated anticipation in stomatal opening, we have generated SGC (specifically guard cell) Arabidopsis (Arabidopsis thaliana) plants in which the oscillator gene CIRCADIAN CLOCK ASSOCIATED1 (CCA1) was overexpressed under the control of the guard-cell-specific promoter, GC1. The SGC plants showed a loss of ability to open stomata in anticipation of daily dark-to-light changes and of circadian-mediated stomatal opening in constant light. We observed that under fully watered and mild drought conditions, SGC plants outperform wild type with larger leaf area and biomass. To investigate the molecular basis for circadian control of guard cell aperture, we used large-scale qRT-PCR to compare circadian oscillator gene expression in guard cells compared with the "average" whole-leaf oscillator and examined gene expression and stomatal aperture in several lines of plants with misexpressed CCA1 Our results show that the guard cell oscillator is different from the average plant oscillator. Moreover, the differences in guard cell oscillator function may be important for the correct regulation of photoperiod pathway genes that have previously been reported to control stomatal aperture. We conclude by showing that CONSTANS and FLOWERING LOCUS T, components of the photoperiod pathway that regulate flowering time, also control stomatal aperture in a daylength-dependent manner.
Collapse
Affiliation(s)
- Miriam Hassidim
- Department of Plant and Environmental Sciences, The Silberman Institute for Life Sciences, The Hebrew University, Givat Ram, Jerusalem 91904, Israel
| | - Yuri Dakhiya
- Department of Plant and Environmental Sciences, The Silberman Institute for Life Sciences, The Hebrew University, Givat Ram, Jerusalem 91904, Israel
| | - Adi Turjeman
- Department of Plant and Environmental Sciences, The Silberman Institute for Life Sciences, The Hebrew University, Givat Ram, Jerusalem 91904, Israel
| | - Duaa Hussien
- Department of Plant and Environmental Sciences, The Silberman Institute for Life Sciences, The Hebrew University, Givat Ram, Jerusalem 91904, Israel
| | - Ekaterina Shor
- Department of Plant and Environmental Sciences, The Silberman Institute for Life Sciences, The Hebrew University, Givat Ram, Jerusalem 91904, Israel
| | - Ariane Anidjar
- Department of Plant and Environmental Sciences, The Silberman Institute for Life Sciences, The Hebrew University, Givat Ram, Jerusalem 91904, Israel
| | - Keren Goldberg
- Department of Plant and Environmental Sciences, The Silberman Institute for Life Sciences, The Hebrew University, Givat Ram, Jerusalem 91904, Israel
| | - Rachel M Green
- Department of Plant and Environmental Sciences, The Silberman Institute for Life Sciences, The Hebrew University, Givat Ram, Jerusalem 91904, Israel
| |
Collapse
|
37
|
Haydon MJ, Mielczarek O, Frank A, Román Á, Webb AAR. Sucrose and Ethylene Signaling Interact to Modulate the Circadian Clock. PLANT PHYSIOLOGY 2017; 175:947-958. [PMID: 28778922 PMCID: PMC5619894 DOI: 10.1104/pp.17.00592] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 08/01/2017] [Indexed: 05/19/2023]
Abstract
Circadian clocks drive rhythmic physiology and metabolism to optimize plant growth and performance under daily environmental fluctuations caused by the rotation of the planet. Photosynthesis is a key metabolic process that must be appropriately timed to the light-dark cycle. The circadian clock contributes to the regulation of photosynthesis, and in turn the daily accumulation of sugars from photosynthesis also feeds back to regulate the circadian oscillator. We have previously shown that GIGANTEA (GI) is required to sustain Suc-dependent circadian rhythms in darkness. The mechanism by which Suc affects the circadian oscillator in a GI-dependent manner was unknown. Here, we identify that Suc sustains rhythms in the dark by stabilizing GI protein, dependent on the F-box protein ZEITLUPE, and implicate CONSTITUTIVE TRIPLE RESPONSE1 (CTR1), a negative regulator of ethylene signaling. Our identification of a role for CTR1 in the response to Suc prompted a reinvestigation of the effects of ethylene on the circadian oscillator. We demonstrate that ethylene shortens the circadian period, conditional on the effects of Suc and requiring GI These findings reveal that Suc affects the stability of circadian oscillator proteins and can mask the effects of ethylene on the circadian system, identifying novel molecular pathways for input of sugar to the Arabidopsis (Arabidopsis thaliana) circadian network.
Collapse
Affiliation(s)
- Michael J Haydon
- School of BioSciences, The University of Melbourne, Parkville 3010, Australia
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom
- Department of Biology, University of York, York YO10 5DD, United Kingdom
| | - Olga Mielczarek
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom
| | - Alexander Frank
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom
| | - Ángela Román
- Department of Biology, University of York, York YO10 5DD, United Kingdom
| | - Alex A R Webb
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom
| |
Collapse
|
38
|
Pereira L, Pujol M, Garcia-Mas J, Phillips MA. Non-invasive quantification of ethylene in attached fruit headspace at 1 p.p.b. by gas chromatography-mass spectrometry. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 91:172-183. [PMID: 28370685 DOI: 10.1111/tpj.13545] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 03/01/2017] [Accepted: 03/17/2017] [Indexed: 05/05/2023]
Abstract
Ethylene is a gaseous plant hormone involved in defense, adaptations to environmental stress and fruit ripening. Its relevance to the latter makes its detection highly useful for physiologists interested in the onset of ripening. Produced as a sharp peak during the respiratory burst, ethylene is biologically active at tens of nl L-1 . Reliable quantification at such concentrations generally requires specialized instrumentation. Here we present a rapid, high-sensitivity method for detecting ethylene in attached fruit using a conventional gas chromatography-mass spectrometry (GC-MS) system and in situ headspace collection chambers. We apply this method to melon (Cucumis melo L.), a unique species consisting of climacteric and non-climacteric varieties, with a high variation in the climacteric phenotype among climacteric types. Using a population of recombinant inbred lines (RILs) derived from highly climacteric ('Védrantais', cantalupensis type) and non-climacteric ('Piel de Sapo', inodorus type) parental lines, we observed a significant variation for the intensity, onset and duration of the ethylene burst during fruit ripening. Our method does not require concentration, sampling times over 1 h or fruit harvest. We achieved a limit of detection of 0.41 ± 0.04 nl L-1 and a limit of quantification of 1.37 ± 0.13 nl L-1 with an analysis time per sample of 2.6 min. Validation of the analytical method indicated that linearity (>98%), precision (coefficient of variation ≤2%) and sensitivity compared favorably with dedicated optical sensors. This study adds to evidence of the characteristic climacteric ethylene burst as a complex trait whose intensity in our RIL population lies along a continuum in addition to two extremes.
Collapse
Affiliation(s)
- Lara Pereira
- IRTA, Center for Research in Agricultural Genomics (IRTA- CSIC- UAB-UB), Edifici CRAG, Bellaterra, Barcelona, 08193, Spain
| | - Marta Pujol
- IRTA, Center for Research in Agricultural Genomics (IRTA- CSIC- UAB-UB), Edifici CRAG, Bellaterra, Barcelona, 08193, Spain
| | - Jordi Garcia-Mas
- IRTA, Center for Research in Agricultural Genomics (IRTA- CSIC- UAB-UB), Edifici CRAG, Bellaterra, Barcelona, 08193, Spain
| | - Michael A Phillips
- Department of Biology, University of Toronto-Mississauga, Mississauga, ON, L5L 1C6, Canada
| |
Collapse
|
39
|
Sanchez SE, Kay SA. The Plant Circadian Clock: From a Simple Timekeeper to a Complex Developmental Manager. Cold Spring Harb Perspect Biol 2016; 8:cshperspect.a027748. [PMID: 27663772 PMCID: PMC5131769 DOI: 10.1101/cshperspect.a027748] [Citation(s) in RCA: 149] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The plant circadian clock allows organisms to anticipate the predictable changes in the environment by adjusting their developmental and physiological traits. In the last few years, it was determined that responses known to be regulated by the oscillator are also able to modulate clock performance. These feedback loops and their multilayer communications create a complex web, and confer on the clock network a role that exceeds the measurement of time. In this article, we discuss the current knowledge of the wiring of the clock, including the interplay with metabolism, hormone, and stress pathways in the model species Arabidopsis thaliana We outline the importance of this system in crop agricultural traits, highlighting the identification of natural alleles that alter the pace of the timekeeper. We report evidence supporting the understanding of the circadian clock as a master regulator of plant life, and we hypothesize on its relevant role in the adaptability to the environment and the impact on the fitness of most organisms.
Collapse
Affiliation(s)
- Sabrina E Sanchez
- Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, California 92093
| | - Steve A Kay
- Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, California 92093
| |
Collapse
|
40
|
Pons C, Martí C, Forment J, Crisosto CH, Dandekar AM, Granell A. A genetic genomics-expression approach reveals components of the molecular mechanisms beyond the cell wall that underlie peach fruit woolliness due to cold storage. PLANT MOLECULAR BIOLOGY 2016; 92:483-503. [PMID: 27714490 DOI: 10.1007/s11103-016-0526-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 08/06/2016] [Indexed: 05/14/2023]
Abstract
Peach fruits subjected to prolonged cold storage (CS) to delay decay and over-ripening often develop a form of chilling injury (CI) called mealiness/woolliness (WLT), a flesh textural disorder characterized by lack of juiciness. Transcript profiles were analyzed after different lengths of CS and subsequent shelf life ripening (SLR) in pools of fruits from siblings of the Pop-DG population with contrasting sensitivity to develop WLT. This was followed by quantitative PCR on pools and individual lines of the Pop-DG population to validate and extend the microarray results. Relative tolerance to WLT development during SLR was related to the fruit's ability to recover from cold and the reactivation of normal ripening, processes that are probably regulated by transcription factors involved in stress protection, stress recovery and induction of ripening. Furthermore, our results showed that altered ripening in WLT fruits during shelf life is probably due, in part, to cold-induced desynchronization of the ripening program involving ethylene and auxin hormonal regulation of metabolism and cell wall. In addition, we found strong correlation between expression of RNA translation and protein assembly genes and the visual injury symptoms.
Collapse
Affiliation(s)
- Clara Pons
- Instituto de Biología Molecular y Celular de Plantas. Consejo Superior de Investigaciones Científicas (CSIC) -Universidad Politécnica de Valencia (UPV), 46022, Valencia, Spain.
| | - Cristina Martí
- Instituto de Biología Molecular y Celular de Plantas. Consejo Superior de Investigaciones Científicas (CSIC) -Universidad Politécnica de Valencia (UPV), 46022, Valencia, Spain
| | - Javier Forment
- Instituto de Biología Molecular y Celular de Plantas. Consejo Superior de Investigaciones Científicas (CSIC) -Universidad Politécnica de Valencia (UPV), 46022, Valencia, Spain
| | - Carlos H Crisosto
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| | - Abhaya M Dandekar
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| | - Antonio Granell
- Instituto de Biología Molecular y Celular de Plantas. Consejo Superior de Investigaciones Científicas (CSIC) -Universidad Politécnica de Valencia (UPV), 46022, Valencia, Spain
| |
Collapse
|
41
|
Atamian HS, Harmer SL. Circadian regulation of hormone signaling and plant physiology. PLANT MOLECULAR BIOLOGY 2016; 91:691-702. [PMID: 27061301 DOI: 10.1007/s11103-016-0477-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 03/31/2016] [Indexed: 05/20/2023]
Abstract
The survival and reproduction of plants depend on their ability to cope with a wide range of daily and seasonal environmental fluctuations during their life cycle. Phytohormones are plant growth regulators that are involved in almost every aspect of growth and development as well as plant adaptation to myriad abiotic and biotic conditions. The circadian clock, an endogenous and cell-autonomous biological timekeeper that produces rhythmic outputs with close to 24-h rhythms, provides an adaptive advantage by synchronizing plant physiological and metabolic processes to the external environment. The circadian clock regulates phytohormone biosynthesis and signaling pathways to generate daily rhythms in hormone activity that fine-tune a range of plant processes, enhancing adaptation to local conditions. This review explores our current understanding of the interplay between the circadian clock and hormone signaling pathways.
Collapse
Affiliation(s)
- Hagop S Atamian
- Department of Plant Biology, University of California, One Shields Avenue, Davis, CA, 95616, USA
| | - Stacey L Harmer
- Department of Plant Biology, University of California, One Shields Avenue, Davis, CA, 95616, USA.
| |
Collapse
|
42
|
Park HJ, Kim WY, Yun DJ. A New Insight of Salt Stress Signaling in Plant. Mol Cells 2016; 39:447-59. [PMID: 27239814 PMCID: PMC4916396 DOI: 10.14348/molcells.2016.0083] [Citation(s) in RCA: 167] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 05/06/2016] [Accepted: 05/16/2016] [Indexed: 12/12/2022] Open
Abstract
Many studies have been conducted to understand plant stress responses to salinity because irrigation-dependent salt accumulation compromises crop productivity and also to understand the mechanism through which some plants thrive under saline conditions. As mechanistic understanding has increased during the last decades, discovery-oriented approaches have begun to identify genetic determinants of salt tolerance. In addition to osmolytes, osmoprotectants, radical detoxification, ion transport systems, and changes in hormone levels and hormone-guided communications, the Salt Overly Sensitive (SOS) pathway has emerged to be a major defense mechanism. However, the mechanism by which the components of the SOS pathway are integrated to ultimately orchestrate plant-wide tolerance to salinity stress remains unclear. A higher-level control mechanism has recently emerged as a result of recognizing the involvement of GIGANTEA (GI), a protein involved in maintaining the plant circadian clock and control switch in flowering. The loss of GI function confers high tolerance to salt stress via its interaction with the components of the SOS pathway. The mechanism underlying this observation indicates the association between GI and the SOS pathway and thus, given the key influence of the circadian clock and the pathway on photoperiodic flowering, the association between GI and SOS can regulate growth and stress tolerance. In this review, we will analyze the components of the SOS pathways, with emphasis on the integration of components recognized as hallmarks of a halophytic lifestyle.
Collapse
Affiliation(s)
- Hee Jin Park
- Division of Applied Life Science (BK21 Plus Program), Plant Molecular Biology and Biotechnology Research Center, Jinju 52828,
Korea
| | - Woe-Yeon Kim
- Division of Applied Life Science (BK21 Plus Program), Plant Molecular Biology and Biotechnology Research Center, Jinju 52828,
Korea
- Institute of Agriculture & Life Sciences, Graduate School of Gyeongsang National University, Jinju 52828,
Korea
| | - Dae-Jin Yun
- Division of Applied Life Science (BK21 Plus Program), Plant Molecular Biology and Biotechnology Research Center, Jinju 52828,
Korea
| |
Collapse
|
43
|
Le Deunff E, Lecourt J. Non-specificity of ethylene inhibitors: 'double-edged' tools to find out new targets involved in the root morphogenetic programme. PLANT BIOLOGY (STUTTGART, GERMANY) 2016; 18:353-61. [PMID: 26434926 DOI: 10.1111/plb.12405] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 09/24/2015] [Indexed: 05/23/2023]
Abstract
In the last decade, genetic and pharmacological approaches have been used to explore ethylene biosynthesis and perception in order to study the role of ethylene and ethylene/auxin interaction in root architecture development. However, recent findings with pharmacological approaches highlight the non-specificity of commonly used inhibitors. This suggests that caution is required for interpreting these studies and that the use of pharmacological agents is a 'double-edged' tool. On one hand, non-specific effects make interpretation difficult unless other experiments, such as with different mutants or with multiple diversely acting chemicals, are conducted. On the other hand, the non-specificity of inhibitors opens up the possibility of uncovering some ligands or modulators of new receptors such as plant glutamate-like receptors and importance of some metabolic hubs in carbon and nitrogen metabolism such as the pyridoxal phosphate biosynthesis involved in the regulation of the root morphogenetic programme. Identification of such targets is a critical issue to improve the efficiency of absorption of macronutrients in relation to root the morphogenetic programme.
Collapse
Affiliation(s)
- E Le Deunff
- Normandie Université, UMR EVA, F-14032, Caen cedex, France
- INRA, UMR 950, Écophysiologie Végétale & Agronomie, Nutritions NCS, INRA F-14032 Caen cedex, France
| | - J Lecourt
- East Malling Research, East Malling, Kent, UK
| |
Collapse
|
44
|
Keunen E, Schellingen K, Vangronsveld J, Cuypers A. Ethylene and Metal Stress: Small Molecule, Big Impact. FRONTIERS IN PLANT SCIENCE 2016; 7:23. [PMID: 26870052 PMCID: PMC4735362 DOI: 10.3389/fpls.2016.00023] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 01/08/2016] [Indexed: 05/18/2023]
Abstract
The phytohormone ethylene is known to mediate a diverse array of signaling processes during abiotic stress in plants. Whereas many reports have demonstrated enhanced ethylene production in metal-exposed plants, the underlying molecular mechanisms are only recently investigated. Increasing evidence supports a role for ethylene in the regulation of plant metal stress responses. Moreover, crosstalk appears to exist between ethylene and the cellular redox balance, nutrients and other phytohormones. This review highlights our current understanding of the key role ethylene plays during responses to metal exposure. Moreover, particular attention is paid to the integration of ethylene within the broad network of plant responses to metal stress.
Collapse
|
45
|
Arraes FBM, Beneventi MA, Lisei de Sa ME, Paixao JFR, Albuquerque EVS, Marin SRR, Purgatto E, Nepomuceno AL, Grossi-de-Sa MF. Implications of ethylene biosynthesis and signaling in soybean drought stress tolerance. BMC PLANT BIOLOGY 2015; 15:213. [PMID: 26335593 PMCID: PMC4557918 DOI: 10.1186/s12870-015-0597-z] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 08/20/2015] [Indexed: 05/20/2023]
Abstract
BACKGROUND Ethylene is a phytohormone known for inducing a triple response in seedlings, leaf abscission and other responses to various stresses. Several studies in model plants have evaluated the importance of this hormone in crosstalk signaling with different metabolic pathways, in addition to responses to biotic stresses. However, the mechanism of action in plants of agricultural interest, such as soybean, and its participation in abiotic stresses remain unclear. RESULTS The studies presented in this work allowed for the identification of 176 soybean genes described elsewhere for ethylene biosynthesis (108 genes) and signal transduction (68 genes). A model to predict these routes in soybean was proposed, and it had great representability compared to those described for Arabidopsis thaliana and Oryza sativa. Furthermore, analysis of putative gene promoters from soybean gene orthologs permitted the identification of 29 families of cis-acting elements. These elements are essential for ethylene-mediated regulation and its possible crosstalk with other signaling pathways mediated by other plant hormones. From genes that are differentially expressed in the transcriptome database, we analyzed the relative expression of some selected genes in resistant and tolerant soybean plants subjected to water deficit. The differential expression of a set of five soybean ethylene-related genes (MAT, ACS, ACO, ETR and CTR) was validated with RT-qPCR experiments, which confirmed variations in the expression of these soybean target genes, as identified in the transcriptome database. In particular, two families of ethylene biosynthesis genes (ACS and ACO) were upregulated under these experimental conditions, whereas CTR (involved in ethylene signal transduction) was downregulated. In the same samples, high levels of ethylene production were detected and were directly correlated with the free fraction levels of ethylene's precursor. Thus, the combination of these data indicated the involvement of ethylene biosynthesis and signaling in soybean responses to water stress. CONCLUSIONS The in silico analysis, combined with the quantification of ethylene production (and its precursor) and RT-qPCR experiments, allowed for a better understanding of the importance of ethylene at a molecular level in this crop as well as its role in the response to abiotic stresses. In summary, all of the data presented here suggested that soybean responses to water stress could be regulated by a crosstalk network among different signaling pathways, which might involve various phytohormones, such as auxins, ABA and jasmonic acid. The integration of in silico and physiological data could also contribute to the application of biotechnological strategies to the development of improved cultivars with regard to different stresses, such as the isolation of stress-specific plant promoters.
Collapse
Affiliation(s)
- Fabricio Barbosa Monteiro Arraes
- Federal University of Rio Grande do Sul, Campus do Vale, Av. Bento Gonçalves 9500, Postal Code 15005, CEP 91501-970, Porto Alegre, RS, Brazil.
- Embrapa Genetic Resources and Biotechnology, PqEB, Av. W5-Norte, Postal Code 02372, CEP 70770-910, Brasilia, DF, Brazil.
| | - Magda Aparecida Beneventi
- Federal University of Rio Grande do Sul, Campus do Vale, Av. Bento Gonçalves 9500, Postal Code 15005, CEP 91501-970, Porto Alegre, RS, Brazil.
- Embrapa Genetic Resources and Biotechnology, PqEB, Av. W5-Norte, Postal Code 02372, CEP 70770-910, Brasilia, DF, Brazil.
| | - Maria Eugenia Lisei de Sa
- Embrapa Genetic Resources and Biotechnology, PqEB, Av. W5-Norte, Postal Code 02372, CEP 70770-910, Brasilia, DF, Brazil.
- Agricultural Research Company of Minas Gerais State, Rua Afonso Rato 1301, Postal Code 311, CEP 38001-970, Uberaba, MG, Brazil.
| | - Joaquin Felipe Roca Paixao
- Embrapa Genetic Resources and Biotechnology, PqEB, Av. W5-Norte, Postal Code 02372, CEP 70770-910, Brasilia, DF, Brazil.
- Brasilia University - Biology Institute, Brasilia, DF, Brazil.
| | | | - Silvana Regina Rockenbach Marin
- Embrapa Soybean, Rodovia Carlos João Strass, SN, Acesso Orlando Amaral, Distrito de Warta, Postal Code 231, CEP 86001-970, Londrina, PR, Brazil.
| | - Eduardo Purgatto
- Food Chemistry and Biochemistry Laboratory, Sao Paulo University, Av. Lineu Prestes 580, Bloco 14, Cidade Universitaria, CEP 05508-000, Sao Paulo, SP, Brazil.
| | - Alexandre Lima Nepomuceno
- Embrapa Soybean, Rodovia Carlos João Strass, SN, Acesso Orlando Amaral, Distrito de Warta, Postal Code 231, CEP 86001-970, Londrina, PR, Brazil.
| | - Maria Fatima Grossi-de-Sa
- Embrapa Genetic Resources and Biotechnology, PqEB, Av. W5-Norte, Postal Code 02372, CEP 70770-910, Brasilia, DF, Brazil.
- Catholic University of Brasilia, SGAN 916, Modulo B, Av. W5, Asa Norte, CEP 70790-160, Brasilia, DF, Brazil.
| |
Collapse
|
46
|
Zdarska M, Dobisová T, Gelová Z, Pernisová M, Dabravolski S, Hejátko J. Illuminating light, cytokinin, and ethylene signalling crosstalk in plant development. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:4913-31. [PMID: 26022257 DOI: 10.1093/jxb/erv261] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Integrating important environmental signals with intrinsic developmental programmes is a crucial adaptive requirement for plant growth, survival, and reproduction. Key environmental cues include changes in several light variables, while important intrinsic (and highly interactive) regulators of many developmental processes include the phytohormones cytokinins (CKs) and ethylene. Here, we discuss the latest discoveries regarding the molecular mechanisms mediating CK/ethylene crosstalk at diverse levels of biosynthetic and metabolic pathways and their complex interactions with light. Furthermore, we summarize evidence indicating that multiple hormonal and light signals are integrated in the multistep phosphorelay (MSP) pathway, a backbone signalling pathway in plants. Inter alia, there are strong overlaps in subcellular localizations and functional similarities in components of these pathways, including receptors and various downstream agents. We highlight recent research demonstrating the importance of CK/ethylene/light crosstalk in selected aspects of plant development, particularly seed germination and early seedling development. The findings clearly demonstrate the crucial integration of plant responses to phytohormones and adaptive responses to environmental cues. Finally, we tentatively identify key future challenges to refine our understanding of the molecular mechanisms mediating crosstalk between light and hormonal signals, and their integration during plant life cycles.
Collapse
Affiliation(s)
- Marketa Zdarska
- Functional Genomics and Proteomics of Plants, Central European Institute of Technology and National Centre for Biomolecular Research, Masaryk University, Brno 62500, Czech Republic
| | - Tereza Dobisová
- Functional Genomics and Proteomics of Plants, Central European Institute of Technology and National Centre for Biomolecular Research, Masaryk University, Brno 62500, Czech Republic
| | - Zuzana Gelová
- Functional Genomics and Proteomics of Plants, Central European Institute of Technology and National Centre for Biomolecular Research, Masaryk University, Brno 62500, Czech Republic
| | - Markéta Pernisová
- Functional Genomics and Proteomics of Plants, Central European Institute of Technology and National Centre for Biomolecular Research, Masaryk University, Brno 62500, Czech Republic
| | - Siarhei Dabravolski
- Functional Genomics and Proteomics of Plants, Central European Institute of Technology and National Centre for Biomolecular Research, Masaryk University, Brno 62500, Czech Republic
| | - Jan Hejátko
- Functional Genomics and Proteomics of Plants, Central European Institute of Technology and National Centre for Biomolecular Research, Masaryk University, Brno 62500, Czech Republic
| |
Collapse
|
47
|
Hwang EE, Wang MB, Bravo JE, Banta LM. Unmasking host and microbial strategies in the Agrobacterium-plant defense tango. FRONTIERS IN PLANT SCIENCE 2015; 6:200. [PMID: 25873923 PMCID: PMC4379751 DOI: 10.3389/fpls.2015.00200] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 03/12/2015] [Indexed: 05/27/2023]
Abstract
Coevolutionary forces drive adaptation of both plant-associated microbes and their hosts. Eloquently captured in the Red Queen Hypothesis, the complexity of each plant-pathogen relationship reflects escalating adversarial strategies, but also external biotic and abiotic pressures on both partners. Innate immune responses are triggered by highly conserved pathogen-associated molecular patterns, or PAMPs, that are harbingers of microbial presence. Upon cell surface receptor-mediated recognition of these pathogen-derived molecules, host plants mount a variety of physiological responses to limit pathogen survival and/or invasion. Successful pathogens often rely on secretion systems to translocate host-modulating effectors that subvert plant defenses, thereby increasing virulence. Host plants, in turn, have evolved to recognize these effectors, activating what has typically been characterized as a pathogen-specific form of immunity. Recent data support the notion that PAMP-triggered and effector-triggered defenses are complementary facets of a convergent, albeit differentially regulated, set of immune responses. This review highlights the key players in the plant's recognition and signal transduction pathways, with a focus on the aspects that may limit Agrobacterium tumefaciens infection and the ways it might overcome those defenses. Recent advances in the field include a growing appreciation for the contributions of cytoskeletal dynamics and membrane trafficking to the regulation of these exquisitely tuned defenses. Pathogen counter-defenses frequently manipulate the interwoven hormonal pathways that mediate host responses. Emerging systems-level analyses include host physiological factors such as circadian cycling. The existing literature indicates that varying or even conflicting results from different labs may well be attributable to environmental factors including time of day of infection, temperature, and/or developmental stage of the host plant.
Collapse
Affiliation(s)
| | | | | | - Lois M. Banta
- *Correspondence: Lois M. Banta, Thompson Biology Lab, Department of Biology, Williams College, 59 Lab Campus Drive, Williamstown, MA 01267, USA
| |
Collapse
|
48
|
Pons Puig C, Dagar A, Marti Ibanez C, Singh V, Crisosto CH, Friedman H, Lurie S, Granell A. Pre-symptomatic transcriptome changes during cold storage of chilling sensitive and resistant peach cultivars to elucidate chilling injury mechanisms. BMC Genomics 2015; 16:245. [PMID: 25887353 PMCID: PMC4391166 DOI: 10.1186/s12864-015-1395-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 02/24/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cold storage induces chilling injury (CI) disorders in peach fruit (woolliness/mealiness, flesh browning and reddening/bleeding) manifested when ripened at shelf life. To gain insight into the mechanisms underlying CI, we analyzed the transcriptome of 'Oded' (high tolerant) and 'Hermoza' (relatively tolerant to woolliness, but sensitive to browning and bleeding) peach cultivars at pre-symptomatic stages. The expression profiles were compared and validated with two previously analyzed pools (high and low sensitive to woolliness) from the Pop-DG population. The four fruit types cover a wide range of sensitivity to CI. The four fruit types were also investigated with the ROSMETER that provides information on the specificity of the transcriptomic response to oxidative stress. RESULTS We identified quantitative differences in a subset of core cold responsive genes that correlated with sensitivity or tolerance to CI at harvest and during cold storage, and also subsets of genes correlating specifically with high sensitivity to woolliness and browning. Functional analysis indicated that elevated levels, at harvest and during cold storage, of genes related to antioxidant systems and the biosynthesis of metabolites with antioxidant activity correlates with tolerance. Consistent with these results, ROSMETER analysis revealed oxidative stress in 'Hermoza' and the progeny pools, but not in the cold resistant 'Oded'. By contrast, cold storage induced, in sensitivity to woolliness dependant manner, a gene expression program involving the biosynthesis of secondary cell wall and pectins. Furthermore, our results indicated that while ethylene is related to CI tolerance, differential auxin subcellular accumulation and signaling may play a role in determining chilling sensitivity/tolerance. In addition, sugar partitioning and demand during cold storage may also play a role in the tolerance/sensitive mechanism. The analysis also indicates that vesicle trafficking, membrane dynamics and cytoskeleton organization could have a role in the tolerance/sensitive mechanism. In the case of browning, our results suggest that elevated acetaldehyde related genes together with the core cold responses may increase sensitivity to browning in shelf life. CONCLUSIONS Our data suggest that in sensitive fruit a cold response program is activated and regulated by auxin distribution and ethylene and these hormones have a role in sensitivity to CI even before fruit are cold stored.
Collapse
Affiliation(s)
- Clara Pons Puig
- Instituto de Biología Molecular y Celular de Plantas, CSIC-Universidad Politecnica de Valencia, E-48022, Valencia, Spain.
| | - Anurag Dagar
- Department of Postharvest Science of Fresh Produce, Agricultural Research Organization, Volcani Center, P.O. Box 6, Bet Dagan, 50250, Israel.
| | - Cristina Marti Ibanez
- Instituto de Biología Molecular y Celular de Plantas, CSIC-Universidad Politecnica de Valencia, E-48022, Valencia, Spain.
| | - Vikram Singh
- Department of Postharvest Science of Fresh Produce, Agricultural Research Organization, Volcani Center, P.O. Box 6, Bet Dagan, 50250, Israel.
| | - Carlos H Crisosto
- Plant Sciences Department, University of California Davis, 1 Shields Ave, Davis, CA, 95616, USA.
| | - Haya Friedman
- Department of Postharvest Science of Fresh Produce, Agricultural Research Organization, Volcani Center, P.O. Box 6, Bet Dagan, 50250, Israel.
| | - Susan Lurie
- Department of Postharvest Science of Fresh Produce, Agricultural Research Organization, Volcani Center, P.O. Box 6, Bet Dagan, 50250, Israel.
| | - Antonio Granell
- Instituto de Biología Molecular y Celular de Plantas, CSIC-Universidad Politecnica de Valencia, E-48022, Valencia, Spain.
| |
Collapse
|
49
|
Sharma M, Bhatt D. The circadian clock and defence signalling in plants. MOLECULAR PLANT PATHOLOGY 2015; 16:210-8. [PMID: 25081907 PMCID: PMC6638510 DOI: 10.1111/mpp.12178] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The circadian clock is the internal time-keeping machinery in higher organisms. Cross-talk between the circadian clock and a diverse range of physiological processes in plants, including stress acclimatization, hormone signalling, photomorphogenesis and defence signalling, is currently being explored. Recent studies on circadian clock genes and genes involved in defence signalling have indicated a possible reciprocal interaction between the two. It has been proposed that the circadian clock shapes the outcome of plant-pathogen interactions. In this review, we highlight the studies carried out so far on two model plant pathogens, namely Pseudomonas syringae and Hyaloperonospora arabidopsidis, and the involvement of the circadian clock in gating effector-triggered immunity and pathogen-associated molecular pattern-triggered immunity. We focus on how the circadian clock gates the expression of various stress-related transcripts in a prolific manner to enhance plant fitness. An understanding of this dynamic relationship between clock and stress will open up new avenues in the understanding of endogenous mechanisms of defence signalling in plants.
Collapse
Affiliation(s)
- Mayank Sharma
- Mahyco Life Science Research Center, PO Box 76, Jalna (MS), 431203, India
| | | |
Collapse
|
50
|
Bours R, Kohlen W, Bouwmeester HJ, van der Krol A. Thermoperiodic control of hypocotyl elongation depends on auxin-induced ethylene signaling that controls downstream PHYTOCHROME INTERACTING FACTOR3 activity. PLANT PHYSIOLOGY 2015; 167:517-30. [PMID: 25516603 PMCID: PMC4326743 DOI: 10.1104/pp.114.254425] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 12/11/2014] [Indexed: 05/19/2023]
Abstract
We show that antiphase light-temperature cycles (negative day-night temperature difference [-DIF]) inhibit hypocotyl growth in Arabidopsis (Arabidopsis thaliana). This is caused by reduced cell elongation during the cold photoperiod. Cell elongation in the basal part of the hypocotyl under -DIF was restored by both 1-aminocyclopropane-1-carboxylic acid (ACC; ethylene precursor) and auxin, indicating limited auxin and ethylene signaling under -DIF. Both auxin biosynthesis and auxin signaling were reduced during -DIF. In addition, expression of several ACC Synthase was reduced under -DIF but could be restored by auxin application. In contrast, the reduced hypocotyl elongation of ethylene biosynthesis and signaling mutants could not be complemented by auxin, indicating that auxin functions upstream of ethylene. The PHYTOCHROME INTERACTING FACTORS (PIFs) PIF3, PIF4, and PIF5 were previously shown to be important regulators of hypocotyl elongation. We now show that, in contrast to pif4 and pif5 mutants, the reduced hypocotyl length in pif3 cannot be rescued by either ACC or auxin. In line with this, treatment with ethylene or auxin inhibitors reduced hypocotyl elongation in PIF4 overexpressor (PIF4ox) and PIF5ox but not PIF3ox plants. PIF3 promoter activity was strongly reduced under -DIF but could be restored by auxin application in an ACC Synthase-dependent manner. Combined, these results show that PIF3 regulates hypocotyl length downstream, whereas PIF4 and PIF5 regulate hypocotyl length upstream of an auxin and ethylene cascade. We show that, under -DIF, lower auxin biosynthesis activity limits the signaling in this pathway, resulting in low activity of PIF3 and short hypocotyls.
Collapse
Affiliation(s)
- Ralph Bours
- Laboratory of Plant Physiology, Wageningen University, 6708 PB Wageningen, The Netherlands (R.B., H.J.B., A.v.d.K.); andDepartment of Plant Breeding and Genetics, Max Planck Institute for Plant Breeding Research, D-50829 Cologne, Germany (W.K.)
| | - Wouter Kohlen
- Laboratory of Plant Physiology, Wageningen University, 6708 PB Wageningen, The Netherlands (R.B., H.J.B., A.v.d.K.); andDepartment of Plant Breeding and Genetics, Max Planck Institute for Plant Breeding Research, D-50829 Cologne, Germany (W.K.)
| | - Harro J Bouwmeester
- Laboratory of Plant Physiology, Wageningen University, 6708 PB Wageningen, The Netherlands (R.B., H.J.B., A.v.d.K.); andDepartment of Plant Breeding and Genetics, Max Planck Institute for Plant Breeding Research, D-50829 Cologne, Germany (W.K.)
| | - Alexander van der Krol
- Laboratory of Plant Physiology, Wageningen University, 6708 PB Wageningen, The Netherlands (R.B., H.J.B., A.v.d.K.); andDepartment of Plant Breeding and Genetics, Max Planck Institute for Plant Breeding Research, D-50829 Cologne, Germany (W.K.)
| |
Collapse
|