1
|
Lucas J, Geisler M. Plant Kinesin Repertoires Expand with New Domain Architecture and Contract with the Loss of Flagella. J Mol Evol 2024; 92:381-401. [PMID: 38926179 DOI: 10.1007/s00239-024-10178-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 05/20/2024] [Indexed: 06/28/2024]
Abstract
Kinesins are eukaryotic microtubule motor proteins subdivided into conserved families with distinct functional roles. While many kinesin families are widespread in eukaryotes, each organismal lineage maintains a unique kinesin repertoire composed of many families with distinct numbers of genes. Previous genomic surveys indicated that land plant kinesin repertoires differ markedly from other eukaryotes. To determine when repertoires diverged during plant evolution, we performed robust phylogenomic analyses of kinesins in 24 representative plants, two algae, two animals, and one yeast. These analyses show that kinesin repertoires expand and contract coincident with major shifts in the biology of algae and land plants. One kinesin family and five subfamilies, each defined by unique domain architectures, emerged in the green algae. Four of those kinesin groups expanded in ancestors of modern land plants, while six other kinesin groups were lost in the ancestors of pollen-bearing plants. Expansions of different kinesin families and subfamilies occurred in moss and angiosperm lineages. Other kinesin families remained stable and did not expand throughout plant evolution. Collectively these data support a radiation of kinesin domain architectures in algae followed by differential positive and negative selection on kinesins families and subfamilies in different lineages of land plants.
Collapse
Affiliation(s)
- Jessica Lucas
- Department of Biology, University of Wisconsin-Oshkosh, 800 Algoma Blvd, Oshkosh, WI, 54901, USA.
| | - Matt Geisler
- School of Biological Science, Southern Illinois University, Carbondale, IL, 54901, USA
| |
Collapse
|
2
|
Jung S, Woo J, Park E. Talk to your neighbors in an emergency: Stromule-mediated chloroplast-nucleus communication in plant immunity. CURRENT OPINION IN PLANT BIOLOGY 2024; 79:102529. [PMID: 38604000 DOI: 10.1016/j.pbi.2024.102529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 03/08/2024] [Accepted: 03/19/2024] [Indexed: 04/13/2024]
Abstract
Hypersensitive response-programmed cell death (HR-PCD) is a response mounted by plants to defend themselves against pathogens. Communication between the chloroplast and the nucleus is critical for the progression of HR-PCD. Tubular protrusions of chloroplasts, known as stromules, are tightly associated with the HR-PCD progression. There is emerging evidence that signaling molecules originating from chloroplasts are transferred to the nucleus through stromules. The translocation of signaling molecules from the chloroplast to the nucleus might trigger defense responses, including transcriptional reprogramming. In this review, we discuss the possible functions of stromules in the rapid transfer of signaling molecules in the chloroplast-nucleus communication.
Collapse
Affiliation(s)
- Seungmee Jung
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071, USA
| | - Jongchan Woo
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071, USA
| | - Eunsook Park
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071, USA.
| |
Collapse
|
3
|
Meier ND, Seward K, Caplan JL, Dinesh-Kumar SP. Calponin homology domain containing kinesin, KIS1, regulates chloroplast stromule formation and immunity. SCIENCE ADVANCES 2023; 9:eadi7407. [PMID: 37878708 PMCID: PMC10599616 DOI: 10.1126/sciadv.adi7407] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 09/25/2023] [Indexed: 10/27/2023]
Abstract
Chloroplast morphology changes during immunity, giving rise to tubule-like structures known as stromules. Stromules extend along microtubules and anchor to actin filaments along nuclei to promote perinuclear chloroplast clustering. This facilitates the transport of defense molecules/proteins from chloroplasts to the nucleus. Evidence for a direct role for stromules in immunity is lacking since, currently, there are no known genes that regulate stromule biogenesis. We show that a calponin homology (CH) domain containing kinesin, KIS1 (kinesin required for inducing stromules 1), is required for stromule formation during TNL [TIR (Toll/Interleukin-1 receptor)-type nucleotide-binding leucine-rich repeat]-immune receptor-mediated immunity. Furthermore, KIS1 is required for TNL-mediated immunity to bacterial and viral pathogens. The microtubule-binding motor domain of KIS1 is required for stromule formation while the actin-binding, CH domain is required for perinuclear chloroplast clustering. We show that KIS1 functions through early immune signaling components, EDS1 and PAD4, with salicylic acid-induced stromules requiring KIS1. Thus, KIS1 represents a player in stromule biogenesis.
Collapse
Affiliation(s)
- Nathan D. Meier
- Department of Plant Biology and The Genome Center, College of Biological Sciences, University of California, Davis, CA 95616, USA
| | - Kody Seward
- Department of Biological Sciences, College of Arts and Sciences, University of Delaware, Newark, DE 19716, USA
- Delaware Biotechnology Institute, University of Delaware, Newark, DE 19713, USA
| | - Jeffrey L. Caplan
- Department of Biological Sciences, College of Arts and Sciences, University of Delaware, Newark, DE 19716, USA
- Delaware Biotechnology Institute, University of Delaware, Newark, DE 19713, USA
- Department of Plant and Soil Sciences, College of Agriculture and Natural Resources, University of Delaware, Newark, DE 19716, USA
| | - Savithramma P. Dinesh-Kumar
- Department of Plant Biology and The Genome Center, College of Biological Sciences, University of California, Davis, CA 95616, USA
| |
Collapse
|
4
|
Jareczek JJ, Grover CE, Hu G, Xiong X, Arick Ii MA, Peterson DG, Wendel JF. Domestication over Speciation in Allopolyploid Cotton Species: A Stronger Transcriptomic Pull. Genes (Basel) 2023; 14:1301. [PMID: 37372480 DOI: 10.3390/genes14061301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/13/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Cotton has been domesticated independently four times for its fiber, but the genomic targets of selection during each domestication event are mostly unknown. Comparative analysis of the transcriptome during cotton fiber development in wild and cultivated materials holds promise for revealing how independent domestications led to the superficially similar modern cotton fiber phenotype in upland (G. hirsutum) and Pima (G. barbadense) cotton cultivars. Here we examined the fiber transcriptomes of both wild and domesticated G. hirsutum and G. barbadense to compare the effects of speciation versus domestication, performing differential gene expression analysis and coexpression network analysis at four developmental timepoints (5, 10, 15, or 20 days after flowering) spanning primary and secondary wall synthesis. These analyses revealed extensive differential expression between species, timepoints, domestication states, and particularly the intersection of domestication and species. Differential expression was higher when comparing domesticated accessions of the two species than between the wild, indicating that domestication had a greater impact on the transcriptome than speciation. Network analysis showed significant interspecific differences in coexpression network topology, module membership, and connectivity. Despite these differences, some modules or module functions were subject to parallel domestication in both species. Taken together, these results indicate that independent domestication led G. hirsutum and G. barbadense down unique pathways but that it also leveraged similar modules of coexpression to arrive at similar domesticated phenotypes.
Collapse
Affiliation(s)
- Josef J Jareczek
- Ecology, Evolution, and Organismal Biology Department, Iowa State University, Ames, IA 50010, USA
- Biology Department, Bellarmine University, Louisville, KY 40205, USA
| | - Corrinne E Grover
- Ecology, Evolution, and Organismal Biology Department, Iowa State University, Ames, IA 50010, USA
| | - Guanjing Hu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Xianpeng Xiong
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Mark A Arick Ii
- Institute for Genomics, Biocomputing & Biotechnology, Mississippi State University, Mississippi State, MS 39762, USA
| | - Daniel G Peterson
- Institute for Genomics, Biocomputing & Biotechnology, Mississippi State University, Mississippi State, MS 39762, USA
| | - Jonathan F Wendel
- Ecology, Evolution, and Organismal Biology Department, Iowa State University, Ames, IA 50010, USA
| |
Collapse
|
5
|
Hsiao AS, Huang JY. Microtubule Regulation in Plants: From Morphological Development to Stress Adaptation. Biomolecules 2023; 13:biom13040627. [PMID: 37189374 DOI: 10.3390/biom13040627] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/09/2023] [Accepted: 03/25/2023] [Indexed: 04/03/2023] Open
Abstract
Microtubules (MTs) are essential elements of the eukaryotic cytoskeleton and are critical for various cell functions. During cell division, plant MTs form highly ordered structures, and cortical MTs guide the cell wall cellulose patterns and thus control cell size and shape. Both are important for morphological development and for adjusting plant growth and plasticity under environmental challenges for stress adaptation. Various MT regulators control the dynamics and organization of MTs in diverse cellular processes and response to developmental and environmental cues. This article summarizes the recent progress in plant MT studies from morphological development to stress responses, discusses the latest techniques applied, and encourages more research into plant MT regulation.
Collapse
|
6
|
Flores-Díaz A, Escoto-Sandoval C, Cervantes-Hernández F, Ordaz-Ortiz JJ, Hayano-Kanashiro C, Reyes-Valdés H, Garcés-Claver A, Ochoa-Alejo N, Martínez O. Gene Functional Networks from Time Expression Profiles: A Constructive Approach Demonstrated in Chili Pepper ( Capsicum annuum L.). PLANTS (BASEL, SWITZERLAND) 2023; 12:1148. [PMID: 36904008 PMCID: PMC10005043 DOI: 10.3390/plants12051148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/20/2023] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
Gene co-expression networks are powerful tools to understand functional interactions between genes. However, large co-expression networks are difficult to interpret and do not guarantee that the relations found will be true for different genotypes. Statistically verified time expression profiles give information about significant changes in expressions through time, and genes with highly correlated time expression profiles, which are annotated in the same biological process, are likely to be functionally connected. A method to obtain robust networks of functionally related genes will be useful to understand the complexity of the transcriptome, leading to biologically relevant insights. We present an algorithm to construct gene functional networks for genes annotated in a given biological process or other aspects of interest. We assume that there are genome-wide time expression profiles for a set of representative genotypes of the species of interest. The method is based on the correlation of time expression profiles, bound by a set of thresholds that assure both, a given false discovery rate, and the discard of correlation outliers. The novelty of the method consists in that a gene expression relation must be repeatedly found in a given set of independent genotypes to be considered valid. This automatically discards relations particular to specific genotypes, assuring a network robustness, which can be set a priori. Additionally, we present an algorithm to find transcription factors candidates for regulating hub genes within a network. The algorithms are demonstrated with data from a large experiment studying gene expression during the development of the fruit in a diverse set of chili pepper genotypes. The algorithm is implemented and demonstrated in a new version of the publicly available R package "Salsa" (version 1.0).
Collapse
Affiliation(s)
- Alan Flores-Díaz
- Unidad de Genómica Avanzada (Langebio), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav), Irapuato 36824, Mexico
| | - Christian Escoto-Sandoval
- Unidad de Genómica Avanzada (Langebio), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav), Irapuato 36824, Mexico
| | - Felipe Cervantes-Hernández
- Unidad de Genómica Avanzada (Langebio), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav), Irapuato 36824, Mexico
| | - José J. Ordaz-Ortiz
- Unidad de Genómica Avanzada (Langebio), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav), Irapuato 36824, Mexico
| | - Corina Hayano-Kanashiro
- Departamento de Investigaciones Científicas y Tecnológicas de la Universidad de Sonora, Hermosillo 83000, Mexico
| | - Humberto Reyes-Valdés
- Department of Plant Breeding, Universidad Autónoma Agraria Antonio Narro, Saltillo 25315, Mexico
| | - Ana Garcés-Claver
- Unidad de Hortofruticultura, Centro de Investigación y Tecnología Agroalimentaria de Aragón, Instituto Agroalimentario de Aragón-IA2 (CITA-Universidad de Zaragoza), 50059 Zaragoza, Spain
| | - Neftalí Ochoa-Alejo
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav), Irapuato 36824, Mexico
| | - Octavio Martínez
- Unidad de Genómica Avanzada (Langebio), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav), Irapuato 36824, Mexico
| |
Collapse
|
7
|
Genome-Wide Identification and Expression Analysis of Kinesin Family in Barley ( Hordeum vulgare). Genes (Basel) 2022; 13:genes13122376. [PMID: 36553643 PMCID: PMC9778244 DOI: 10.3390/genes13122376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Kinesin, as a member of the molecular motor protein superfamily, plays an essential function in various plants' developmental processes. Especially at the early stages of plant growth, including influences on plants' growth rate, yield, and quality. In this study, we did a genome-wide identification and expression profile analysis of the kinesin family in barley. Forty-two HvKINs were identified and screened from the barley genome, and a generated phylogenetic tree was used to compare the evolutionary relationships between Rice and Arabidopsis. The protein structure prediction, physicochemical properties, and bioinformatics of the HvKINs were also dissected. Our results reveal the important regulatory roles of HvKIN genes in barley growth. We found many cis- elements related to GA3 and ABA in homeopathic elements of the HvKIN gene and verified them by QRT-PCR, indicating their potential role in the barley kinesin family. The current study revealed the biological functions of barley kinesin genes in barley and will aid in further investigating the kinesin in other plant species.
Collapse
|
8
|
Chen L, Tian N, Hu M, Sandhu D, Jin Q, Gu M, Zhang X, Peng Y, Zhang J, Chen Z, Liu G, Huang M, Huang J, Liu Z, Liu S. Comparative transcriptome analysis reveals key pathways and genes involved in trichome development in tea plant ( Camellia sinensis). FRONTIERS IN PLANT SCIENCE 2022; 13:997778. [PMID: 36212317 PMCID: PMC9546587 DOI: 10.3389/fpls.2022.997778] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 08/19/2022] [Indexed: 06/16/2023]
Abstract
Trichomes, which develop from epidermal cells, are considered one of the important characteristics of the tea plant [Camellia sinensis (L.) O. Kuntze]. Many nutritional and metabolomic studies have indicated the important contributions of trichomes to tea products quality. However, understanding the regulation of trichome formation at the molecular level remains elusive in tea plants. Herein, we present a genome-wide comparative transcriptome analysis between the hairless Chuyeqi (CYQ) with fewer trichomes and the hairy Budiaomao (BDM) with more trichomes tea plant genotypes, toward the identification of biological processes and functional gene activities that occur during trichome development. In the present study, trichomes in both cultivars CYQ and BDM were unicellular, unbranched, straight, and soft-structured. The density of trichomes was the highest in the bud and tender leaf periods. Further, using the high-throughput sequencing method, we identified 48,856 unigenes, of which 31,574 were differentially expressed. In an analysis of 208 differentially expressed genes (DEGs) encoding transcription factors (TFs), five may involve in trichome development. In addition, on the basis of the Gene Ontology (GO) annotation and the weighted gene co-expression network analysis (WGCNA) results, we screened several DEGs that may contribute to trichome growth, including 66 DEGs related to plant resistance genes (PRGs), 172 DEGs related to cell wall biosynthesis pathway, 29 DEGs related to cell cycle pathway, and 45 DEGs related to cytoskeleton biosynthesis. Collectively, this study provided high-quality RNA-seq information to improve our understanding of the molecular regulatory mechanism of trichome development and lay a foundation for additional trichome studies in tea plants.
Collapse
Affiliation(s)
- Lan Chen
- Department of Tea Science, College of Horticulture, Hunan Agricultural University, Changsha, China
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China
| | - Na Tian
- Department of Tea Science, College of Horticulture, Hunan Agricultural University, Changsha, China
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China
| | - Mengqing Hu
- Xiangxi Academy of Agricultural Sciences, Jishou, China
| | - Devinder Sandhu
- United States Salinity Laboratory, United States Department of Agriculture, Agricultural Research Service, Riverside, CA, United States
| | - Qifang Jin
- Department of Tea Science, College of Horticulture, Hunan Agricultural University, Changsha, China
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China
| | - Meiyi Gu
- Department of Tea Science, College of Horticulture, Hunan Agricultural University, Changsha, China
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China
| | - Xiangqin Zhang
- Department of Tea Science, College of Horticulture, Hunan Agricultural University, Changsha, China
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China
| | - Ying Peng
- Department of Tea Science, College of Horticulture, Hunan Agricultural University, Changsha, China
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China
| | - Jiali Zhang
- Department of Tea Science, College of Horticulture, Hunan Agricultural University, Changsha, China
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China
| | - Zhenyan Chen
- Department of Tea Science, College of Horticulture, Hunan Agricultural University, Changsha, China
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China
| | - Guizhi Liu
- Department of Tea Science, College of Horticulture, Hunan Agricultural University, Changsha, China
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China
| | - Mengdi Huang
- Department of Tea Science, College of Horticulture, Hunan Agricultural University, Changsha, China
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China
| | - Jianan Huang
- Department of Tea Science, College of Horticulture, Hunan Agricultural University, Changsha, China
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China
| | - Zhonghua Liu
- Department of Tea Science, College of Horticulture, Hunan Agricultural University, Changsha, China
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China
| | - Shuoqian Liu
- Department of Tea Science, College of Horticulture, Hunan Agricultural University, Changsha, China
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China
| |
Collapse
|
9
|
Cai G. The legacy of kinesins in the pollen tube thirty years later. Cytoskeleton (Hoboken) 2022; 79:8-19. [PMID: 35766009 PMCID: PMC9542081 DOI: 10.1002/cm.21713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 06/06/2022] [Accepted: 06/27/2022] [Indexed: 11/10/2022]
Abstract
The pollen tube is fundamental in the reproduction of seed plants. Particularly in angiosperms, we now have much information about how it grows, how it senses extracellular signals, and how it converts them into a directional growth mechanism. The expansion of the pollen tube is also related to dynamic cytoplasmic processes based on the cytoskeleton (such as polymerization/depolymerization of microtubules and actin filaments) or motor activity along with the two cytoskeletal systems and is dependent on motor proteins. While a considerable amount of information is available for the actomyosin system in the pollen tube, the role of microtubules in the transport of organelles or macromolecular structures is still quite uncertain despite that 30 years ago the first work on the presence of kinesins in the pollen tube was published. Since then, progress has been made in elucidating the role of kinesins in plant cells. However, their role within the pollen tube is still enigmatic. In this review, I will postulate some roles of kinesins in the pollen tube 30 years after their initial discovery based on information obtained in other plant cells in the meantime. The most concrete hypotheses predict that kinesins in the pollen tube enable the short movement of specific organelles or contribute to generative cell or sperm cell transport, as well as mediate specific steps in the process of endocytosis.
Collapse
Affiliation(s)
- Giampiero Cai
- Dipartimento Scienze della Vita, Università di Siena, via Mattioli 4, Siena, Italy
| |
Collapse
|
10
|
Liu YJ, Li D, Gong J, Wang YB, Chen ZB, Pang BS, Chen XC, Gao JG, Yang WB, Zhang FT, Tang YM, Zhao CP, Gao SQ. Comparative transcriptome and DNA methylation analysis in temperature-sensitive genic male sterile wheat BS366. BMC Genomics 2021; 22:911. [PMID: 34930131 PMCID: PMC8686610 DOI: 10.1186/s12864-021-08163-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 11/09/2021] [Indexed: 11/10/2022] Open
Abstract
Background Known as the prerequisite component for the heterosis breeding system, the male sterile line determines the hybrid yield and seed purity. Therefore, a deep understanding of the mechanism and gene network that leads to male sterility is crucial. BS366, a temperature-sensitive genic male sterile (TGMS) line, is male sterile under cold conditions (12 °C with 12 h of daylight) but fertile under normal temperature (20 °C with 12 h of daylight). Results During meiosis, BS366 was defective in forming tetrads and dyads due to the abnormal cell plate. During pollen development, unusual vacuolated pollen that could not accumulate starch grains at the binucleate stage was also observed. Transcriptome analysis revealed that genes involved in the meiotic process, such as sister chromatid segregation and microtubule-based movement, were repressed, while genes involved in DNA and histone methylation were induced in BS366 under cold conditions. MethylRAD was used for reduced DNA methylation sequencing of BS366 spikes under both cold and control conditions. The differentially methylated sites (DMSs) located in the gene region were mainly involved in carbohydrate and fatty acid metabolism, lipid metabolism, and transport. Differentially expressed and methylated genes were mainly involved in cell division. Conclusions These results indicated that the methylation of genes involved in carbon metabolism or fatty acid metabolism might contribute to male sterility in BS366 spikes, providing novel insight into the molecular mechanism of wheat male sterility. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-08163-3.
Collapse
Affiliation(s)
- Yong-Jie Liu
- Beijing Engineering Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.,The Municipal Key Laboratory of the Molecular Genetics of Hybrid Wheat, Beijing, 100097, China
| | - Dan Li
- Beijing Engineering Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.,The Municipal Key Laboratory of the Molecular Genetics of Hybrid Wheat, Beijing, 100097, China
| | - Jie Gong
- Beijing Engineering Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.,The Municipal Key Laboratory of the Molecular Genetics of Hybrid Wheat, Beijing, 100097, China
| | - Yong-Bo Wang
- Beijing Engineering Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Zhao-Bo Chen
- Beijing Engineering Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Bin-Shuang Pang
- Beijing Engineering Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.,The Municipal Key Laboratory of the Molecular Genetics of Hybrid Wheat, Beijing, 100097, China
| | - Xian-Chao Chen
- Beijing Engineering Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Jian-Gang Gao
- Beijing Engineering Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Wei-Bing Yang
- Beijing Engineering Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Feng-Ting Zhang
- Beijing Engineering Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.
| | - Yi-Miao Tang
- Beijing Engineering Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China. .,The Municipal Key Laboratory of the Molecular Genetics of Hybrid Wheat, Beijing, 100097, China.
| | - Chang-Ping Zhao
- Beijing Engineering Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China. .,The Municipal Key Laboratory of the Molecular Genetics of Hybrid Wheat, Beijing, 100097, China.
| | - Shi-Qing Gao
- Beijing Engineering Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China. .,The Municipal Key Laboratory of the Molecular Genetics of Hybrid Wheat, Beijing, 100097, China.
| |
Collapse
|
11
|
Tian S, Jiang J, Xu GQ, Wang T, Liu Q, Chen X, Liu M, Yuan L. Genome wide analysis of kinesin gene family in Citrullus lanatus reveals an essential role in early fruit development. BMC PLANT BIOLOGY 2021; 21:210. [PMID: 33971813 PMCID: PMC8108342 DOI: 10.1186/s12870-021-02988-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 04/26/2021] [Indexed: 05/16/2023]
Abstract
BACKGROUND Kinesin (KIN) as a motor protein is a versatile nano-machine and involved in diverse essential processes in plant growth and development. However, the kinesin gene family has not been identified in watermelon, a valued and nutritious fruit, and yet their functions have not been characterized. Especially, their involvement in early fruit development, which directly determines the size, shape, yield and quality of the watermelon fruit, remains unclear. RESULTS In this study, we performed a whole-genome investigation and comprehensive analysis of kinesin genes in C. lanatus. In total, 48 kinesins were identified and categorized into 10 kinesin subfamilies groups based on phylogenetic analysis. Their uneven distribution on 11 chromosomes was revealed by distribution analysis. Conserved motif analysis showed that the ATP-binding motif of kinesins was conserved within all subfamilies, but not the microtubule-binding motif. 10 segmental duplication pairs genes were detected by the syntenic and phylogenetic approaches, which showed the expansion of the kinesin gene family in C. lanatus genome during evolution. Moreover, 5 ClKINs genes are specifically and abundantly expressed in early fruit developmental stages according to comprehensive expression profile analysis, implying their critical regulatory roles during early fruit development. Our data also demonstrated that the majority of kinesin genes were responsive to plant hormones, revealing their potential involvement in the signaling pathways of plant hormones. CONCLUSIONS Kinesin gene family in watermelon was comprehensively analyzed in this study, which establishes a foundation for further functional investigation of C. lanatus kinesin genes and provides novel insights into their biological functions. In addition, these results also provide useful information for understanding the relationship between plant hormone and kinesin genes in C. lanatus.
Collapse
Affiliation(s)
- Shujuan Tian
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jiao Jiang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Guo-Qi Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Tan Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Qiyan Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xiner Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Man Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Li Yuan
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
12
|
Jain A, Chatterjee A, Das S. Synergistic consortium of beneficial microorganisms in rice rhizosphere promotes host defense to blight-causing Xanthomonas oryzae pv. oryzae. PLANTA 2020; 252:106. [PMID: 33205288 DOI: 10.1007/s00425-020-03515-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 11/05/2020] [Indexed: 06/11/2023]
Abstract
Rice plants primed with beneficial microbes Bacillus amyloliquefaciens and Aspergillus spinulosporus with biocontrol potential against Xanthomonas oryzae pv. oryzae, provided protection from disease by reprogramming host defence response under pathogen challenge. Plant-beneficial microbe interactions taking place in the rhizosphere are widely used for growth promotion and mitigation of biotic stresses in plants. The present study aims to evaluate the defense network induced by beneficial microorganisms in the rice rhizosphere, and the three-way interaction involved upon inoculation with dreadful bacteria Xanthomonas oryzae pv. oryzae (Xoo). Differential expression of defense-related enzymes, proteins, and genes in rice variety Swarna primed with a microbial consortium of Bacillus amyloliquefaciens and Aspergillus spinulosporus were quantified in the presence and absence of Xoo. The time-based expression profile alterations in leaves under the five distinct treatments "(unprimed unchallenged, unprimed Xoo challenged, B. amyloliquefaciens primed and challenged, A. spinulosporus primed and challenged, B. amyloliquefaciens and A. spinulosporus consortium primed and challenged)" revealed differential early upregulation of SOD, PAL, PO, PPO activities and TPC content in beneficial microbes primed plants in comparison to unprimed challenged plants. The enhanced defense response in all the rice plants recruited with beneficial microbe was also reflected by reduced plant mortality and an increased plant dry biomass and chlorophyll content. Also, more than 550 protein spots were observed per gel by PD Quest software, a total of 55 differentially expressed protein spots were analysed used MALDI-TOF MS, out of which 48 spots were recognized with a significant score with direct or supporting roles in stress alleviation and disease resistance. qRT-PCR was carried out to compare the biochemical and proteomic data to mRNA levels. We conclude that protein biogenesis and alleviated resistance response may contribute to improved biotic stress adaptation. These results might accelerate the functional regulation of the Xoo-receptive proteins in the presence of beneficial rhizospheric microbes and their computation as promising molecular markers for superior disease management.
Collapse
Affiliation(s)
- Akansha Jain
- Division of Plant Biology, Bose Institute Centenary Campus, P 1/12, CIT Scheme, VII-M, Kankurgachi, Kolkata, West Bengal, 700054, India
| | - Anwesha Chatterjee
- Vijaygarh Jyotish Ray College, Jadavpur, Kolkata, West Bengal, 700032, India
| | - Sampa Das
- Division of Plant Biology, Bose Institute Centenary Campus, P 1/12, CIT Scheme, VII-M, Kankurgachi, Kolkata, West Bengal, 700054, India.
| |
Collapse
|
13
|
Miguel VN, Ribichich KF, Giacomelli JI, Chan RL. Key role of the motor protein Kinesin 13B in the activity of homeodomain-leucine zipper I transcription factors. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:6282-6296. [PMID: 32882705 DOI: 10.1093/jxb/eraa379] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 08/13/2020] [Indexed: 06/11/2023]
Abstract
The sunflower (Helianthus annuus) homeodomain-leucine zipper I transcription factor HaHB11 conferred differential phenotypic features when it was expressed in Arabidopsis, alfalfa, and maize plants. Such differences were increased biomass, seed yield, and tolerance to flooding. To elucidate the molecular mechanisms leading to such traits and identify HaHB11-interacting proteins, a yeast two-hybrid screening of an Arabidopsis cDNA library was carried out using HaHB11 as bait. The sole protein identified with high confidence as interacting with HaHB11 was Kinesin 13B. The interaction was confirmed by bimolecular fluorescence complementation and by yeast two-hybrid assay. Kinesin 13B also interacted with AtHB7, the Arabidopsis closest ortholog of HaHB11. Histochemical analyses revealed an overlap between the expression patterns of the three genes in hypocotyls, apical meristems, young leaves, vascular tissue, axillary buds, cauline leaves, and cauline leaf nodes at different developmental stages. AtKinesin 13B mutants did not exhibit a differential phenotype when compared with controls; however, both HaHB11 and AtHB7 overexpressor plants lost, partially or totally, their differential phenotypic characteristics when crossed with such mutants. Altogether, the results indicated that Kinesin 13B is essential for the homeodomain-leucine zipper transcription factors I to exert their functions, probably via regulation of the intracellular distribution of these transcription factors by the motor protein.
Collapse
Affiliation(s)
- Virginia Natali Miguel
- Instituto de Agrobiotecnología del Litoral, CONICET, Universidad Nacional del Litoral, FBCB, Colectora Ruta Nacional 168 km 0, 3000, Santa Fe, Argentina
| | - Karina Fabiana Ribichich
- Instituto de Agrobiotecnología del Litoral, CONICET, Universidad Nacional del Litoral, FBCB, Colectora Ruta Nacional 168 km 0, 3000, Santa Fe, Argentina
| | - Jorge Ignacio Giacomelli
- Instituto de Agrobiotecnología del Litoral, CONICET, Universidad Nacional del Litoral, FBCB, Colectora Ruta Nacional 168 km 0, 3000, Santa Fe, Argentina
| | - Raquel Lia Chan
- Instituto de Agrobiotecnología del Litoral, CONICET, Universidad Nacional del Litoral, FBCB, Colectora Ruta Nacional 168 km 0, 3000, Santa Fe, Argentina
| |
Collapse
|
14
|
Proteome analysis provides new insight into major proteins involved in gibberellin-induced fruit setting in triploid loquat (Eriobotrya japonica). Genes Genomics 2020; 42:383-392. [DOI: 10.1007/s13258-019-00912-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Accepted: 12/20/2019] [Indexed: 12/11/2022]
|
15
|
Abdelkhalek A, Ismail IA, Dessoky ES, El-Hallous EI, Hafez E. A tomato kinesin-like protein is associated with Tobacco mosaic virus infection. BIOTECHNOL BIOTEC EQ 2019. [DOI: 10.1080/13102818.2019.1673207] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Affiliation(s)
- Ahmed Abdelkhalek
- Plant Protection and Bimolecular Diagnosis Department, Arid Lands Cultivation Research Institute (ALCRI), City of Scientific Research and Technological Applications, New Borg El Arab, Alexandria, Egypt
| | - Ismail A. Ismail
- Department of Biology, Faculty of Science, Taif University, Taif, Kingdom of Saudi Arabia
- Agricultural Genetic Engineering Research Institute, Agricultural Research Center, Giza, Egypt
| | - Eldessoky S. Dessoky
- Department of Biology, Faculty of Science, Taif University, Taif, Kingdom of Saudi Arabia
- Agricultural Genetic Engineering Research Institute, Agricultural Research Center, Giza, Egypt
| | - Ehab I. El-Hallous
- Department of Biology, Faculty of Science, Taif University, Taif, Kingdom of Saudi Arabia
- Department of Zoology, Faculty of Science, Arish University, Al-Arish, Egypt
| | - Elsayed Hafez
- Plant Protection and Bimolecular Diagnosis Department, Arid Lands Cultivation Research Institute (ALCRI), City of Scientific Research and Technological Applications, New Borg El Arab, Alexandria, Egypt
| |
Collapse
|
16
|
Identifying Pseudomonas syringae Type III Secreted Effector Function via a Yeast Genomic Screen. G3-GENES GENOMES GENETICS 2019; 9:535-547. [PMID: 30573466 PMCID: PMC6385969 DOI: 10.1534/g3.118.200877] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Gram-negative bacterial pathogens inject type III secreted effectors (T3SEs) directly into host cells to promote pathogen fitness by manipulating host cellular processes. Despite their crucial role in promoting virulence, relatively few T3SEs have well-characterized enzymatic activities or host targets. This is in part due to functional redundancy within pathogen T3SE repertoires as well as the promiscuity of individual T3SEs that can have multiple host targets. To overcome these challenges, we generated and characterized a collection of yeast strains stably expressing 75 T3SE constructs from the plant pathogen Pseudomonas syringae. This collection is devised to facilitate heterologous genetic screens in yeast, a non-host organism, to identify T3SEs that target conserved eukaryotic processes. Among 75 T3SEs tested, we identified 16 that inhibited yeast growth on rich media and eight that inhibited growth on stress-inducing media. We utilized Pathogenic Genetic Array (PGA) screens to identify potential host targets of P. syringae T3SEs. We focused on the acetyltransferase, HopZ1a, which interacts with plant tubulin and alters microtubule networks. To uncover putative HopZ1a host targets, we identified yeast genes with genetic interaction profiles most similar (i.e., congruent) to the PGA profile of HopZ1a and performed a functional enrichment analysis of these HopZ1a-congruent genes. We compared the congruence analyses above to previously described HopZ physical interaction datasets and identified kinesins as potential HopZ1a targets. Finally, we demonstrated that HopZ1a can target kinesins by acetylating the plant kinesins HINKEL and MKRP1, illustrating the utility of our T3SE-expressing yeast library to characterize T3SE functions.
Collapse
|
17
|
Zhang S, Wang C, Xie M, Liu J, Kong Z, Su H. Actin Bundles in The Pollen Tube. Int J Mol Sci 2018; 19:ijms19123710. [PMID: 30469514 PMCID: PMC6321563 DOI: 10.3390/ijms19123710] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 11/18/2018] [Accepted: 11/19/2018] [Indexed: 12/31/2022] Open
Abstract
The angiosperm pollen tube delivers two sperm cells into the embryo sac through a unique growth strategy, named tip growth, to accomplish fertilization. A great deal of experiments have demonstrated that actin bundles play a pivotal role in pollen tube tip growth. There are two distinct actin bundle populations in pollen tubes: the long, rather thick actin bundles in the shank and the short, highly dynamic bundles near the apex. With the development of imaging techniques over the last decade, great breakthroughs have been made in understanding the function of actin bundles in pollen tubes, especially short subapical actin bundles. Here, we tried to draw an overall picture of the architecture, functions and underlying regulation mechanism of actin bundles in plant pollen tubes.
Collapse
Affiliation(s)
- Shujuan Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education College of Life Science, Northwest University, Xi'an 710069, China.
| | - Chunbo Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education College of Life Science, Northwest University, Xi'an 710069, China.
| | - Min Xie
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education College of Life Science, Northwest University, Xi'an 710069, China.
| | - Jinyu Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education College of Life Science, Northwest University, Xi'an 710069, China.
| | - Zhe Kong
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education College of Life Science, Northwest University, Xi'an 710069, China.
| | - Hui Su
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education College of Life Science, Northwest University, Xi'an 710069, China.
| |
Collapse
|
18
|
Wu SZ, Yamada M, Mallett DR, Bezanilla M. Cytoskeletal discoveries in the plant lineage using the moss Physcomitrella patens. Biophys Rev 2018; 10:1683-1693. [PMID: 30382556 DOI: 10.1007/s12551-018-0470-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 10/21/2018] [Indexed: 12/16/2022] Open
Abstract
Advances in cell biology have been largely driven by pioneering work in model systems, the majority of which are from one major eukaryotic lineage, the opisthokonts. However, with the explosion of genomic information in many lineages, it has become clear that eukaryotes have incredible diversity in many cellular systems, including the cytoskeleton. By identifying model systems in diverse lineages, it may be possible to begin to understand the evolutionary origins of the eukaryotic cytoskeleton. Within the plant lineage, cell biological studies in the model moss, Physcomitrella patens, have over the past decade provided key insights into how the cytoskeleton drives cell and tissue morphology. Here, we review P. patens attributes that make it such a rich resource for cytoskeletal cell biological inquiry and highlight recent key findings with regard to intracellular transport, microtubule-actin interactions, and gene discovery that promises for many years to provide new cytoskeletal players.
Collapse
Affiliation(s)
- Shu-Zon Wu
- Department of Biological Sciences, Dartmouth College, 78 College Street, Hanover, NH, 03755, USA
| | - Moe Yamada
- Department of Biological Sciences, Dartmouth College, 78 College Street, Hanover, NH, 03755, USA
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8602, Japan
| | - Darren R Mallett
- Department of Biological Sciences, Dartmouth College, 78 College Street, Hanover, NH, 03755, USA
| | - Magdalena Bezanilla
- Department of Biological Sciences, Dartmouth College, 78 College Street, Hanover, NH, 03755, USA.
| |
Collapse
|
19
|
An EMS-induced new sequence variant, TEMS5032, in the coding region of SRS3 gene leads to shorter grain length in rice (Oryza sativa L.). J Appl Genet 2018; 59:377-389. [PMID: 30014258 DOI: 10.1007/s13353-018-0455-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 06/02/2018] [Accepted: 06/27/2018] [Indexed: 01/29/2023]
Abstract
Grain shape and size influence yield and consumer preferences in rice. In the present study, we characterized and mapped a short and bold grained mutant and named it as TEMS5032, as the mutant is a result of EMS-induced transition from C to T at the 5032nd bp of SRS3 gene, which is known to affect grain size in rice. The substitution led to creation of a stop codon in the motor domain of SRS3, a kinesin 13 family gene, translating into a truncated protein product. However, transcription of this gene remained unaffected in TEMS5032 compared to the wild type, N22. Further, the mutation was found to affect 13 of the 25 cell cycle-related genes as they showed differential expression with respect to N22. Based on rate of grain filling, dry matter accumulation in the endosperm and histological studies, the effect of mutation in TEMS5032 was found to be similar to a known variant, TCM758, but less severe than sar1 mutant. Sequencing of 88 rice germplasm lines in the kinesin motor domain region did not reveal the presence of this mutation, establishing it as a new variant of SRS3 gene.
Collapse
|
20
|
Abstract
In animals and fungi, cytoplasmic dynein is a processive minus-end-directed motor that plays dominant roles in various intracellular processes. In contrast, land plants lack cytoplasmic dynein but contain many minus-end-directed kinesin-14s. No plant kinesin-14 is known to produce processive motility as a homodimer. OsKCH2 is a plant-specific kinesin-14 with an N-terminal actin-binding domain and a central motor domain flanked by two predicted coiled-coils (CC1 and CC2). Here, we show that OsKCH2 specifically decorates preprophase band microtubules in vivo and transports actin filaments along microtubules in vitro. Importantly, OsKCH2 exhibits processive minus-end-directed motility on single microtubules as individual homodimers. We find that CC1, but not CC2, forms the coiled-coil to enable OsKCH2 dimerization. Instead, our results reveal that removing CC2 renders OsKCH2 a nonprocessive motor. Collectively, these results show that land plants have evolved unconventional kinesin-14 homodimers with inherent minus-end-directed processivity that may function to compensate for the loss of cytoplasmic dynein. Land plants lack the cytoplasmic dynein motor in fungi and animals that shows processive minus-end-directed motility on microtubules. Here the authors demonstrate that land plants have evolved novel processive minus-end-directed kinesin-14 motors that likely compensate for the absence of dynein.
Collapse
|
21
|
Spiegelman Z, Lee CM, Gallagher KL. KinG Is a Plant-Specific Kinesin That Regulates Both Intra- and Intercellular Movement of SHORT-ROOT. PLANT PHYSIOLOGY 2018; 176:392-405. [PMID: 29122988 PMCID: PMC5761801 DOI: 10.1104/pp.17.01518] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 11/06/2017] [Indexed: 05/09/2023]
Abstract
Both endogenous plant proteins and viral movement proteins associate with microtubules to promote their movement through plasmodesmata. The association of viral movement proteins with microtubules facilitates the formation of virus-associated replication complexes, which are required for the amplification and subsequent spread of the virus. However, the role of microtubules in the intercellular movement of plant proteins is less clear. Here we show that the SHORT-ROOT (SHR) protein, which moves between cells in the root to regulate root radial patterning, interacts with a type-14 kinesin, KINESIN G (KinG). KinG is a calponin homology domain kinesin that directly interacts with the SHR-binding protein SIEL (SHR-INTERACING EMBRYONIC LETHAL) and localizes to both microtubules and actin. Since SIEL and SHR associate with endosomes, we suggest that KinG serves as a linker between SIEL, SHR, and the plant cytoskeleton. Loss of KinG function results in a decrease in the intercellular movement of SHR and an increase in the sensitivity of SHR movement to treatment with oryzalin. Examination of SHR and KinG localization and dynamics in live cells suggests that KinG is a nonmotile kinesin that promotes the pausing of SHR-associated endosomes. We suggest a model in which interaction of KinG with SHR allows for the formation of stable movement complexes that facilitate the cell-to-cell transport of SHR.
Collapse
Affiliation(s)
- Ziv Spiegelman
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Chin-Mei Lee
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Kimberly L Gallagher
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| |
Collapse
|
22
|
Qu X, Zhang R, Zhang M, Diao M, Xue Y, Huang S. Organizational Innovation of Apical Actin Filaments Drives Rapid Pollen Tube Growth and Turning. MOLECULAR PLANT 2017; 10:930-947. [PMID: 28502709 DOI: 10.1016/j.molp.2017.05.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 04/15/2017] [Accepted: 05/01/2017] [Indexed: 06/07/2023]
Abstract
Polarized tip growth is a fundamental cellular process in many eukaryotes. In this study, we examined the dynamic restructuring of the actin cytoskeleton and its relationship to vesicle transport during pollen tip growth in Arabidopsis. We found that actin filaments originating from the apical membrane form a specialized structure consisting of longitudinally aligned actin bundles at the cortex and inner cytoplasmic filaments with a distinct distribution. Using actin-based pharmacological treatments and genetic mutants in combination with FRAP (fluorescence recovery after photobleaching) technology to visualize the transport of vesicles within the growth domain of pollen tubes, we demonstrated that cortical actin filaments facilitate tip-ward vesicle transport. We also discovered that the inner apical actin filaments prevent backward movement of vesicles, thus ensuring that sufficient vesicles accumulate at the pollen tube tip to support the rapid growth of the pollen tube. The combinatorial effect of cortical and internal apical actin filaments perfectly explains the generation of the inverted "V" cone-shaped vesicle distribution pattern at the pollen tube tip. When pollen tubes turn, apical actin filaments at the facing side undergo depolymerization and repolymerization to reorient the apical actin structure toward the new growth direction. This actin restructuring precedes vesicle accumulation and changes in tube morphology. Thus, our study provides new insights into the functional relationship between actin dynamics and vesicle transport during rapid and directional pollen tube growth.
Collapse
Affiliation(s)
- Xiaolu Qu
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Ruihui Zhang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Meng Zhang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China; Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Min Diao
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China; Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Yongbiao Xue
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Shanjin Huang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China; Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.
| |
Collapse
|
23
|
Huang F, Zhu QH, Zhu A, Wu X, Xie L, Wu X, Helliwell C, Chaudhury A, Finnegan EJ, Luo M. Mutants in the imprinted PICKLE RELATED 2 gene suppress seed abortion of fertilization independent seed class mutants and paternal excess interploidy crosses in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 90:383-395. [PMID: 28155248 DOI: 10.1111/tpj.13500] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 01/23/2017] [Accepted: 01/25/2017] [Indexed: 05/26/2023]
Abstract
Endosperm cellularization is essential for embryo development and viable seed formation. Loss of function of the FERTILIZATION INDEPENDENT SEED (FIS) class Polycomb genes, which mediate trimethylation of histone H3 lysine27 (H3K27me3), as well as imbalanced contributions of parental genomes interrupt this process. The causes of the failure of cellularization are poorly understood. In this study we identified PICKLE RELATED 2 (PKR2) mutations which suppress seed abortion in fis1/mea by restoring endosperm cellularization. PKR2, a paternally expressed imprinted gene (PEG), encodes a CHD3 chromatin remodeler. PKR2 is specifically expressed in syncytial endosperm and its maternal copy is repressed by FIS1. Seed abortion in a paternal genome excess interploidy cross was also partly suppressed by pkr2. Simultaneous mutations in PKR2 and another PEG, ADMETOS (ADM), additively rescue the seed abortion in fis1 and in the interploidy cross, suggesting that PKR2 and ADM modulate endosperm cellularization independently and reproductive isolation between plants of different ploidy is established by imprinted genes. Genes upregulated in fis1 and downregulated in the presence of pkr2 are enriched in glycosyl-hydrolyzing activity, while genes downregulated in fis1 and upregulated in the presence of pkr2 are enriched with microtubule motor activity, consistent with the cellularization patterns in fis1 and the suppressor line. The antagonistic functions of FIS1 and PKR2 in modulating endosperm development are similar to those of PICKLE (PKL) and CURLY LEAF (CLF), which antagonistically regulate root meristem activity. Our results provide further insights into the function of imprinted genes in endosperm development and reproductive isolation.
Collapse
Affiliation(s)
- Fang Huang
- Rice Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, China
| | - Qian-Hao Zhu
- Commonwealth Scientific and Industrial Research Organization (CSIRO), Agriculture and Food, PO Box 1700, ACT, 2601, Australia
| | - Anyu Zhu
- Commonwealth Scientific and Industrial Research Organization (CSIRO), Agriculture and Food, PO Box 1700, ACT, 2601, Australia
| | - Xiaoba Wu
- Commonwealth Scientific and Industrial Research Organization (CSIRO), Agriculture and Food, PO Box 1700, ACT, 2601, Australia
| | - Liqiong Xie
- School of Life Science and Technology, Xinjiang University, Urumqi, 830046, China
| | - Xianjun Wu
- Rice Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, China
| | - Chris Helliwell
- Commonwealth Scientific and Industrial Research Organization (CSIRO), Agriculture and Food, PO Box 1700, ACT, 2601, Australia
| | | | - E Jean Finnegan
- Commonwealth Scientific and Industrial Research Organization (CSIRO), Agriculture and Food, PO Box 1700, ACT, 2601, Australia
| | - Ming Luo
- Commonwealth Scientific and Industrial Research Organization (CSIRO), Agriculture and Food, PO Box 1700, ACT, 2601, Australia
| |
Collapse
|
24
|
Tian S, Wu J, Li F, Zou J, Liu Y, Zhou B, Bai Y, Sun MX. NtKRP, a kinesin-12 protein, regulates embryo/seed size and seed germination via involving in cell cycle progression at the G2/M transition. Sci Rep 2016; 6:35641. [PMID: 27779252 PMCID: PMC5078848 DOI: 10.1038/srep35641] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 10/03/2016] [Indexed: 01/01/2023] Open
Abstract
Kinesins comprise a superfamily of microtubule-based motor proteins involved in essential processes in plant development, but few kinesins have been functionally identified during seed development. Especially, few kinesins that regulate cell division during embryogenesis have been identified. Here we report the functional characterization of NtKRP, a motor protein of the kinesin-12 family. NtKRP is predominantly expressed in embryos and embryonic roots. NtKRP RNAi lines displayed reductions in cell numbers in the meristematic zone, in embryonic root length, and in mature embryo and seed sizes. Furthermore, we also show that CDKA;1 binds to NtKRP at the consensus phosphorylation sites and that the decreased cell numbers in NtKRP-silenced embryos are due to a delay in cell division cycle at the G2/M transition. In addition, binding between the cargo-binding tail domain of NtKRP and CDKA; 1 was also determined. Our results reveal a novel molecular pathway that regulates embryo/seed development and critical role of kinesin in temporal and spatial regulation of a specific issue of embryo developmental.
Collapse
Affiliation(s)
- Shujuan Tian
- College of Life Sciences, State Key Laboratory of Hybrid Rice, Wuhan University, Wuhan, 430072, China
| | - Jingjing Wu
- College of Life Sciences, State Key Laboratory of Hybrid Rice, Wuhan University, Wuhan, 430072, China
| | - Fen Li
- College of Life Sciences, State Key Laboratory of Hybrid Rice, Wuhan University, Wuhan, 430072, China
- College of Life Science, Henan Normal University, Xinxiang 453007, China
| | - Jianwei Zou
- College of Life Sciences, State Key Laboratory of Hybrid Rice, Wuhan University, Wuhan, 430072, China
| | - Yuwen Liu
- College of Life Sciences, State Key Laboratory of Hybrid Rice, Wuhan University, Wuhan, 430072, China
| | - Bing Zhou
- College of Life Sciences, State Key Laboratory of Hybrid Rice, Wuhan University, Wuhan, 430072, China
| | - Yang Bai
- College of Life Sciences, State Key Laboratory of Hybrid Rice, Wuhan University, Wuhan, 430072, China
| | - Meng-Xiang Sun
- College of Life Sciences, State Key Laboratory of Hybrid Rice, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
25
|
Hu H, Gu X, Xue LJ, Swamy PS, Harding SA, Tsai CJ. Tubulin C-terminal Post-translational Modifications Do Not Occur in Wood Forming Tissue of Populus. FRONTIERS IN PLANT SCIENCE 2016; 7:1493. [PMID: 27790223 PMCID: PMC5061773 DOI: 10.3389/fpls.2016.01493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 09/20/2016] [Indexed: 05/03/2023]
Abstract
Cortical microtubules (MTs) are evolutionarily conserved cytoskeletal components with specialized roles in plants, including regulation of cell wall biogenesis. MT functions and dynamics are dictated by the composition of their monomeric subunits, α- (TUA) and β-tubulins (TUB), which in animals and protists are subject to both transcriptional regulation and post-translational modifications (PTM). While spatiotemporal regulation of tubulin gene expression has been reported in plants, whether and to what extent tubulin PTMs occur in these species remain poorly understood. We chose the woody perennial Populus for investigation of tubulin PTMs in this study, with a particular focus on developing xylem where high tubulin transcript levels support MT-dependent secondary cell wall deposition. Mass spectrometry and immunodetection concurred that detyrosination, non-tyrosination and glutamylation were essentially absent in tubulins isolated from wood-forming tissues of P. deltoides and P. tremula ×alba. Label-free quantification of tubulin isotypes and RNA-Seq estimation of tubulin transcript abundance were largely consistent with transcriptional regulation. However, two TUB isotypes were detected at noticeably lower levels than expected based on RNA-Seq transcript abundance in both Populus species. These findings led us to conclude that MT composition during wood formation depends exclusively on transcriptional and, to a lesser extent, translational regulation of tubulin isotypes.
Collapse
Affiliation(s)
- Hao Hu
- Daniel B. Warnell School of Forestry and Natural Resources, University of GeorgiaAthens, GA, USA
- Department of Genetics, University of GeorgiaAthens, GA, USA
| | - Xi Gu
- Institute of Bioinformatics, University of GeorgiaAthens, GA, USA
| | - Liang-Jiao Xue
- Daniel B. Warnell School of Forestry and Natural Resources, University of GeorgiaAthens, GA, USA
- Department of Genetics, University of GeorgiaAthens, GA, USA
- Institute of Bioinformatics, University of GeorgiaAthens, GA, USA
| | - Prashant S. Swamy
- Daniel B. Warnell School of Forestry and Natural Resources, University of GeorgiaAthens, GA, USA
| | - Scott A. Harding
- Daniel B. Warnell School of Forestry and Natural Resources, University of GeorgiaAthens, GA, USA
- Department of Genetics, University of GeorgiaAthens, GA, USA
| | - Chung-Jui Tsai
- Daniel B. Warnell School of Forestry and Natural Resources, University of GeorgiaAthens, GA, USA
- Department of Genetics, University of GeorgiaAthens, GA, USA
- Institute of Bioinformatics, University of GeorgiaAthens, GA, USA
| |
Collapse
|
26
|
Geitmann A, Nebenführ A. Navigating the plant cell: intracellular transport logistics in the green kingdom. Mol Biol Cell 2016; 26:3373-8. [PMID: 26416952 PMCID: PMC4591683 DOI: 10.1091/mbc.e14-10-1482] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Intracellular transport in plant cells occurs on microtubular and actin arrays. Cytoplasmic streaming, the rapid motion of plant cell organelles, is mostly driven by an actin–myosin mechanism, whereas specialized functions, such as the transport of large cargo or the assembly of a new cell wall during cell division, are performed by the microtubules. Different modes of transport are used, fast and slow, to either haul cargo over long distances or ascertain high-precision targeting, respectively. Various forms of the actin-specific motor protein myosin XI exist in plant cells and might be involved in different cellular functions.
Collapse
Affiliation(s)
- Anja Geitmann
- Department of Biological Sciences, Institut de recherche en biologie végétale, University of Montreal, Montreal, QC H1X 2B2, Canada
| | - Andreas Nebenführ
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996-0840
| |
Collapse
|
27
|
Tomei EJ, Wolniak SM. Transcriptome analysis reveals a diverse family of kinesins essential for spermatogenesis in the fern
M
arsilea. Cytoskeleton (Hoboken) 2016; 73:145-59. [DOI: 10.1002/cm.21285] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 02/10/2016] [Accepted: 02/12/2016] [Indexed: 12/19/2022]
Affiliation(s)
- Erika J. Tomei
- Department of Cell Biology and Molecular GeneticsUniversity of Maryland at College ParkCollege Park Maryland
| | - Stephen M. Wolniak
- Department of Cell Biology and Molecular GeneticsUniversity of Maryland at College ParkCollege Park Maryland
| |
Collapse
|
28
|
Gillmor CS, Roeder AHK, Sieber P, Somerville C, Lukowitz W. A Genetic Screen for Mutations Affecting Cell Division in the Arabidopsis thaliana Embryo Identifies Seven Loci Required for Cytokinesis. PLoS One 2016; 11:e0146492. [PMID: 26745275 PMCID: PMC4712874 DOI: 10.1371/journal.pone.0146492] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Accepted: 12/17/2015] [Indexed: 11/29/2022] Open
Abstract
Cytokinesis in plants involves the formation of unique cellular structures such as the phragmoplast and the cell plate, both of which are required to divide the cell after nuclear division. In order to isolate genes that are involved in de novo cell wall formation, we performed a large-scale, microscope-based screen for Arabidopsis mutants that severely impair cytokinesis in the embryo. We recovered 35 mutations that form abnormally enlarged cells with multiple, often polyploid nuclei and incomplete cell walls. These mutants represent seven genes, four of which have previously been implicated in phragmoplast or cell plate function. Mutations in two loci show strongly reduced transmission through the haploid gametophytic generation. Molecular cloning of both corresponding genes reveals that one is represented by hypomorphic alleles of the kinesin-5 gene RADIALLY SWOLLEN 7 (homologous to tobacco kinesin-related protein TKRP125), and that the other gene corresponds to the Arabidopsis FUSED ortholog TWO-IN-ONE (originally identified based on its function in pollen development). No mutations that completely abolish the formation of cross walls in diploid cells were found. Our results support the idea that cytokinesis in the diploid and haploid generations involve similar mechanisms.
Collapse
Affiliation(s)
- C. Stewart Gillmor
- Department of Plant Biology, Carnegie Institution, Stanford, California, 94305, United States of America
- Department of Biological Sciences, Stanford University, Stanford, California, 94305, United States of America
| | - Adrienne H. K. Roeder
- Department of Plant Biology, Carnegie Institution, Stanford, California, 94305, United States of America
- Department of Biological Sciences, Stanford University, Stanford, California, 94305, United States of America
| | - Patrick Sieber
- Department of Plant Biology, Carnegie Institution, Stanford, California, 94305, United States of America
| | - Chris Somerville
- Department of Plant Biology, Carnegie Institution, Stanford, California, 94305, United States of America
- Department of Biological Sciences, Stanford University, Stanford, California, 94305, United States of America
| | - Wolfgang Lukowitz
- Department of Plant Biology, Carnegie Institution, Stanford, California, 94305, United States of America
- * E-mail:
| |
Collapse
|
29
|
Derbyshire P, Ménard D, Green P, Saalbach G, Buschmann H, Lloyd CW, Pesquet E. Proteomic Analysis of Microtubule Interacting Proteins over the Course of Xylem Tracheary Element Formation in Arabidopsis. THE PLANT CELL 2015; 27:2709-26. [PMID: 26432860 PMCID: PMC4682315 DOI: 10.1105/tpc.15.00314] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 09/15/2015] [Indexed: 05/07/2023]
Abstract
Plant vascular cells, or tracheary elements (TEs), rely on circumferential secondary cell wall thickenings to maintain sap flow. The patterns in which TE thickenings are organized vary according to the underlying microtubule bundles that guide wall deposition. To identify microtubule interacting proteins present at defined stages of TE differentiation, we exploited the synchronous differentiation of TEs in Arabidopsis thaliana suspension cultures. Quantitative proteomic analysis of microtubule pull-downs, using ratiometric (14)N/(15)N labeling, revealed 605 proteins exhibiting differential accumulation during TE differentiation. Microtubule interacting proteins associated with membrane trafficking, protein synthesis, DNA/RNA binding, and signal transduction peaked during secondary cell wall formation, while proteins associated with stress peaked when approaching TE cell death. In particular, CELLULOSE SYNTHASE-INTERACTING PROTEIN1, already associated with primary wall synthesis, was enriched during secondary cell wall formation. RNAi knockdown of genes encoding several of the identified proteins showed that secondary wall formation depends on the coordinated presence of microtubule interacting proteins with nonoverlapping functions: cell wall thickness, cell wall homogeneity, and the pattern and cortical location of the wall are dependent on different proteins. Altogether, proteins linking microtubules to a range of metabolic compartments vary specifically during TE differentiation and regulate different aspects of wall patterning.
Collapse
Affiliation(s)
- Paul Derbyshire
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| | - Delphine Ménard
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, 901 87 Umeå, Sweden
| | - Porntip Green
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| | - Gerhard Saalbach
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| | - Henrik Buschmann
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| | - Clive W Lloyd
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| | - Edouard Pesquet
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, 901 87 Umeå, Sweden
| |
Collapse
|
30
|
Shevchenko G. Participation of proteins binding both actin filaments and microtubules in higher plant cell growth. CYTOL GENET+ 2015. [DOI: 10.3103/s009545271504009x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
31
|
Kong Z, Ioki M, Braybrook S, Li S, Ye ZH, Julie Lee YR, Hotta T, Chang A, Tian J, Wang G, Liu B. Kinesin-4 Functions in Vesicular Transport on Cortical Microtubules and Regulates Cell Wall Mechanics during Cell Elongation in Plants. MOLECULAR PLANT 2015; 8:1011-23. [PMID: 25600279 DOI: 10.1016/j.molp.2015.01.004] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 01/02/2015] [Accepted: 01/07/2015] [Indexed: 05/20/2023]
Abstract
In plants, anisotropic cell expansion depends on cortical microtubules that serve as tracks along which macromolecules and vesicles are transported by the motor kinesins of unknown identities. We used cotton (Gossypium hirsutum) fibers that underwent robust elongation to discover kinesins that are involved in cell elongation and found Gh KINESIN-4A expressed abundantly. The motor was detected by immunofluorescence on vesicle-like structures that were associated with cortical microtubules. In Arabidopsis thaliana, the orthologous motor At KINESIN-4A/FRA1, previously implicated in cellulose deposition during secondary growth in fiber cells, was examined by live-cell imaging in cells expressing the fluorescently tagged functional protein. The motor decorated vesicle-like particles that exhibit a linear movement along cortical microtubules with an average velocity of 0.89 μm/min, which was significantly different from those linked to cellulose biosynthesis. We also discovered that At KINESIN-4A/FRA1 and the related At KINESIN-4C play redundant roles in cell wall mechanics, cell elongation, and the axial growth of various vegetative and reproductive organs, as the loss of At KINESIN-4C greatly enhanced the defects caused by a null mutation at the KINESIN-4A/FRA1 locus. The double mutant displayed a lack of cell wall softening at normal stages of rapid cell elongation. Furthermore, enhanced deposition of arabinose-containing carbohydrate was detected in the kinesin-4 mutants. Our findings established a connection between the Kinesin-4-based transport of cargoes containing non-cellulosic components along cortical microtubules and cell wall mechanics and cell elongation in flowering plants.
Collapse
Affiliation(s)
- Zhaosheng Kong
- Department of Plant Biology, University of California, Davis, CA 95616, USA; State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Motohide Ioki
- Department of Plant Biology, University of California, Davis, CA 95616, USA
| | - Siobhan Braybrook
- Sainsbury Laboratory Cambridge, University of Cambridge, Cambridge CB2 1LR, UK
| | - Shundai Li
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, State College, PA 16802, USA
| | - Zheng-Hua Ye
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
| | - Yuh-Ru Julie Lee
- Department of Plant Biology, University of California, Davis, CA 95616, USA
| | - Takashi Hotta
- Department of Plant Biology, University of California, Davis, CA 95616, USA
| | - Anny Chang
- Department of Plant Biology, University of California, Davis, CA 95616, USA
| | - Juan Tian
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Guangda Wang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Bo Liu
- Department of Plant Biology, University of California, Davis, CA 95616, USA.
| |
Collapse
|
32
|
Proteome analysis of dormancy-released seeds of Fraxinus mandshurica Rupr. in response to re-dehydration under different conditions. Int J Mol Sci 2015; 16:4713-30. [PMID: 25739084 PMCID: PMC4394444 DOI: 10.3390/ijms16034713] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Revised: 02/09/2015] [Accepted: 02/17/2015] [Indexed: 01/18/2023] Open
Abstract
Desiccation tolerance is the ability of orthodox seeds to achieve equilibrium with atmospheric relative humidity and to survive in this state. Understanding how orthodox seeds respond to dehydration is important for improving quality and long-term storage of seeds under low temperature and drought stress conditions. Long-term storage of seeds is an artificial situation, because in most natural situations a seed that has been shed may not remain in a desiccated state for very long, and if dormant it may undergo repeated cycles of hydration. Different types of seeds are differentially sensitive to desiccation and this directly affects long-term storage. For these reasons, many researchers are investigating loss of desiccation tolerance during orthodox seed development to understand how it is acquired. In this study, the orthodox seed proteome response of Fraxinus mandshurica Rupr. to dehydration (to a relative water content of 10%, which mimics seed dehydration) was investigated under four different conditions viz. 20 °C; 20 °C with silica gel; 1 °C; and 1 °C after pretreatment with Ca2+. Proteins from seeds dehydrated under different conditions were extracted and separated by two-dimensional difference gel electrophoresis (2D-DIGE). A total of 2919 protein spots were detected, and high-resolution 2D-DIGE indicated there were 27 differentially expressed. Seven of these were identified using MALDI TOF/TOF mass spectrometry. Inferences from bioinformatics annotations of these proteins established the possible involvement of detoxifying enzymes, transport proteins, and nucleotide metabolism enzymes in response to dehydration. Of the seven differentially abundant proteins, the amounts of six were down-regulated and one was up-regulated. Also, a putative acyl-coenzyme A oxidase of the glyoxylate cycle increased in abundance. In particular, the presence of kinesin-1, a protein important for regulation and cargo interaction, was up-regulated in seeds exposed to low temperature dehydration. Kinesin-1 is present in all major lineages, but it is rarely detected in seed desiccation tolerance of woody species. These observations provide new insight into the proteome of seeds in deep dormancy under different desiccation conditions.
Collapse
|
33
|
Abstract
Over the last few decades, our understanding of directed cell growth in different organisms has substantially improved. Tip-growing cells in plants elongate rapidly via targeted deposition of cell wall and membrane material at the cell apex, and use turgor pressure as a driving force for expansion. This type of polar growth requires a high degree of coordination between a plethora of cellular and extracellular components and compounds, including calcium dynamics, apoplastic reactive oxygen species and pH, the cytoskeleton, and vesicular trafficking. In this review, we attempt to outline and summarize the factors that control root hair growth and how they work together as a team.
Collapse
Affiliation(s)
- Amelie Mendrinna
- Max-Planck Institute for Molecular Plant PhysiologyAm Muehlenberg 1, 14476 PotsdamGermany
| | - Staffan Persson
- Max-Planck Institute for Molecular Plant PhysiologyAm Muehlenberg 1, 14476 PotsdamGermany
- ARC Centre of Excellence in Plant Cell Walls, School of Botany, University of MelbourneParkville 3010, VictoriaAustralia
| |
Collapse
|
34
|
Abstract
Microtubules (MTs) are highly conserved polar polymers that are key elements of the eukaryotic cytoskeleton and are essential for various cell functions. αβ-tubulin, a heterodimer containing one structural GTP and one hydrolysable and exchangeable GTP, is the building block of MTs and is formed by the sequential action of several molecular chaperones. GTP hydrolysis in the MT lattice is mechanistically coupled with MT growth, thus giving MTs a metastable and dynamic nature. MTs adopt several distinct higher-order organizations that function in cell division and cell morphogenesis. Small molecular weight compounds that bind tubulin are used as herbicides and as research tools to investigate MT functions in plant cells. The de novo formation of MTs in cells requires conserved γ-tubulin-containing complexes and targeting/activating regulatory proteins that contribute to the geometry of MT arrays. Various MT regulators and tubulin modifications control the dynamics and organization of MTs throughout the cell cycle and in response to developmental and environmental cues. Signaling pathways that converge on the regulation of versatile MT functions are being characterized.
Collapse
Affiliation(s)
- Takashi Hashimoto
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Takayama 8916-5, Ikoma, Nara 630-0192, Japan
- Address correspondence to
| |
Collapse
|
35
|
Bashline L, Li S, Gu Y. The trafficking of the cellulose synthase complex in higher plants. ANNALS OF BOTANY 2014; 114:1059-67. [PMID: 24651373 PMCID: PMC4195546 DOI: 10.1093/aob/mcu040] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Accepted: 02/14/2014] [Indexed: 05/17/2023]
Abstract
BACKGROUND Cellulose is an important constituent of plant cell walls in a biological context, and is also a material commonly utilized by mankind in the pulp and paper, timber, textile and biofuel industries. The biosynthesis of cellulose in higher plants is a function of the cellulose synthase complex (CSC). The CSC, a large transmembrane complex containing multiple cellulose synthase proteins, is believed to be assembled in the Golgi apparatus, but is thought only to synthesize cellulose when it is localized at the plasma membrane, where CSCs synthesize and extrude cellulose directly into the plant cell wall. Therefore, the delivery and endocytosis of CSCs to and from the plasma membrane are important aspects for the regulation of cellulose biosynthesis. SCOPE Recent progress in the visualization of CSC dynamics in living plant cells has begun to reveal some of the routes and factors involved in CSC trafficking. This review highlights the most recent major findings related to CSC trafficking, provides novel perspectives on how CSC trafficking can influence the cell wall, and proposes potential avenues for future exploration.
Collapse
Affiliation(s)
- Logan Bashline
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Shundai Li
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Ying Gu
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
36
|
Vildanova MS, Wang W, Smirnova EA. Specific organization of Golgi apparatus in plant cells. BIOCHEMISTRY (MOSCOW) 2014; 79:894-906. [DOI: 10.1134/s0006297914090065] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
37
|
Grierson C, Nielsen E, Ketelaarc T, Schiefelbein J. Root hairs. THE ARABIDOPSIS BOOK 2014; 12:e0172. [PMID: 24982600 PMCID: PMC4075452 DOI: 10.1199/tab.0172] [Citation(s) in RCA: 147] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Roots hairs are cylindrical extensions of root epidermal cells that are important for acquisition of nutrients, microbe interactions, and plant anchorage. The molecular mechanisms involved in the specification, differentiation, and physiology of root hairs in Arabidopsis are reviewed here. Root hair specification in Arabidopsis is determined by position-dependent signaling and molecular feedback loops causing differential accumulation of a WD-bHLH-Myb transcriptional complex. The initiation of root hairs is dependent on the RHD6 bHLH gene family and auxin to define the site of outgrowth. Root hair elongation relies on polarized cell expansion at the growing tip, which involves multiple integrated processes including cell secretion, endomembrane trafficking, cytoskeletal organization, and cell wall modifications. The study of root hair biology in Arabidopsis has provided a model cell type for insights into many aspects of plant development and cell biology.
Collapse
Affiliation(s)
- Claire Grierson
- School of Biological Sciences, University of Bristol, Bristol, UK BS8 1UG
| | - Erik Nielsen
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA 48109
| | - Tijs Ketelaarc
- Laboratory of Cell Biology, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - John Schiefelbein
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA 48109
| |
Collapse
|
38
|
Lipka E, Gadeyne A, Stöckle D, Zimmermann S, De Jaeger G, Ehrhardt DW, Kirik V, Van Damme D, Müller S. The Phragmoplast-Orienting Kinesin-12 Class Proteins Translate the Positional Information of the Preprophase Band to Establish the Cortical Division Zone in Arabidopsis thaliana. THE PLANT CELL 2014; 26:2617-2632. [PMID: 24972597 PMCID: PMC4114955 DOI: 10.1105/tpc.114.124933] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 05/14/2014] [Accepted: 06/06/2014] [Indexed: 05/18/2023]
Abstract
The preprophase band (PPB) is a faithful but transient predictor of the division plane in somatic cell divisions. Throughout mitosis the PPBs positional information is preserved by factors that continuously mark the division plane at the cell cortex, the cortical division zone, by their distinct spatio-temporal localization patterns. However, the mechanism maintaining these identity factors at the plasma membrane after PPB disassembly remains obscure. The pair of kinesin-12 class proteins PHRAGMOPLAST ORIENTING KINESIN1 (POK1) and POK2 are key players in division plane maintenance. Here, we show that POK1 is continuously present at the cell cortex, providing a spatial reference for the site formerly occupied by the PPB. Fluorescence recovery after photobleaching analysis combined with microtubule destabilization revealed dynamic microtubule-dependent recruitment of POK1 to the PPB during prophase, while POK1 retention at the cortical division zone in the absence of cortical microtubules appeared static. POK function is strictly required to maintain the division plane identity factor TANGLED (TAN) after PPB disassembly, although POK1 and TAN recruitment to the PPB occur independently during prophase. Together, our data suggest that POKs represent fundamental early anchoring components of the cortical division zone, translating and preserving the positional information of the PPB by maintaining downstream identity markers.
Collapse
Affiliation(s)
- Elisabeth Lipka
- Center for Plant Molecular Biology, ZMBP, Developmental Genetics, University of Tübingen, 72076 Tübingen, Germany
| | - Astrid Gadeyne
- Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium
| | - Dorothee Stöckle
- Center for Plant Molecular Biology, ZMBP, Developmental Genetics, University of Tübingen, 72076 Tübingen, Germany
| | - Steffi Zimmermann
- Center for Plant Molecular Biology, ZMBP, Developmental Genetics, University of Tübingen, 72076 Tübingen, Germany
| | - Geert De Jaeger
- Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium
| | - David W Ehrhardt
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305
| | - Viktor Kirik
- School of Biological Sciences, Illinois State University, Normal, Illinois 61790
| | - Daniel Van Damme
- Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium
| | - Sabine Müller
- Center for Plant Molecular Biology, ZMBP, Developmental Genetics, University of Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
39
|
Wang G, Zhong M, Wang J, Zhang J, Tang Y, Wang G, Song R. Genome-wide identification, splicing, and expression analysis of the myosin gene family in maize (Zea mays). JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:923-38. [PMID: 24363426 PMCID: PMC3935558 DOI: 10.1093/jxb/ert437] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The actin-based myosin system is essential for the organization and dynamics of the endomembrane system and transport network in plant cells. Plants harbour two unique myosin groups, class VIII and class XI, and the latter is structurally and functionally analogous to the animal and fungal class V myosin. Little is known about myosins in grass, even though grass includes several agronomically important cereal crops. Here, we identified 14 myosin genes from the genome of maize (Zea mays). The relatively larger sizes of maize myosin genes are due to their much longer introns, which are abundant in transposable elements. Phylogenetic analysis indicated that maize myosin genes could be classified into class VIII and class XI, with three and 11 members, respectively. Apart from subgroup XI-F, the remaining subgroups were duplicated at least in one analysed lineage, and the duplication events occurred more extensively in Arabidopsis than in maize. Only two pairs of maize myosins were generated from segmental duplication. Expression analysis revealed that most maize myosin genes were expressed universally, whereas a few members (XI-1, -6, and -11) showed an anther-specific pattern, and many underwent extensive alternative splicing. We also found a short transcript at the O1 locus, which conceptually encoded a headless myosin that most likely functions at the transcriptional level rather than via a dominant-negative mechanism at the translational level. Together, these data provide significant insights into the evolutionary and functional characterization of maize myosin genes that could transfer to the identification and application of homologous myosins of other grasses.
Collapse
Affiliation(s)
- Guifeng Wang
- * These authors contributed equally to this work
| | - Mingyu Zhong
- * These authors contributed equally to this work
| | | | | | | | - Gang Wang
- To whom correspondence should be addressed. E-mail: and
| | - Rentao Song
- To whom correspondence should be addressed. E-mail: and
| |
Collapse
|
40
|
Ketelaar T. The actin cytoskeleton in root hairs: all is fine at the tip. CURRENT OPINION IN PLANT BIOLOGY 2013; 16:749-56. [PMID: 24446547 DOI: 10.1016/j.pbi.2013.10.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Filamentous actin forms characteristic bundles in plant cells that facilitate cytoplasmic streaming. In contrast, networks of actin exhibiting fast turnover are found especially near sites of rapid cell expansion. These networks may serve various functions including delivering and retaining vesicles while preventing penetration of organelles into the area where cell growth occurs thereby allowing fast turnover of vesicles to and from the plasma membrane. Root hairs elongate by polarized growth at their tips and the local accumulation of fine F-actin near the tip has provided valuable insight into the organization of these networks. Here we will sequentially focus on the role of the actin cytoskeleton in root hair tip growth and on how activities of different actin binding proteins in the apical part of growing root hairs contribute to build the fine F-actin configuration that correlates with tip growth.
Collapse
|
41
|
Oda Y, Fukuda H. Rho of plant GTPase signaling regulates the behavior of Arabidopsis kinesin-13A to establish secondary cell wall patterns. THE PLANT CELL 2013; 25:4439-50. [PMID: 24280391 PMCID: PMC3875728 DOI: 10.1105/tpc.113.117853] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 10/22/2013] [Accepted: 11/04/2013] [Indexed: 05/18/2023]
Abstract
Plant cortical microtubule arrays determine the cell wall deposition pattern and proper cell shape and function. Although various microtubule-associated proteins regulate the cortical microtubule array, the mechanisms underlying marked rearrangement of cortical microtubules during xylem differentiation are not fully understood. Here, we show that local Rho of Plant (ROP) GTPase signaling targets an Arabidopsis thaliana kinesin-13 protein, Kinesin-13A, to cortical microtubules to establish distinct patterns of secondary cell wall formation in xylem cells. Kinesin-13A was preferentially localized with cortical microtubules in secondary cell wall pits, areas where cortical microtubules are depolymerized to prevent cell wall deposition. This localization of Kinesin-13A required the presence of the activated ROP GTPase, MICROTUBULE DEPLETION DOMAIN1 (MIDD1) protein, and cortical microtubules. Knockdown of Kinesin-13A resulted in the formation of smaller secondary wall pits, while overexpression of Kinesin-13A enlarged their surface area. Kinesin-13A alone could depolymerize microtubules in vitro; however, both MIDD1 and Kinesin-13A were required for the depolymerization of cortical microtubules in vivo. These results indicate that Kinesin-13A regulates the formation of secondary wall pits by promoting cortical microtubule depolymerization via the ROP-MIDD1 pathway.
Collapse
Affiliation(s)
- Yoshihisa Oda
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
- Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012, Japan
- Address correspondence to
| | - Hiroo Fukuda
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
42
|
Yang XY, Wang Y, Jiang WJ, Liu XL, Zhang XM, Yu HJ, Huang SW, Liu GQ. Characterization and expression profiling of cucumber kinesin genes during early fruit development: revealing the roles of kinesins in exponential cell production and enlargement in cucumber fruit. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:4541-57. [PMID: 24023249 PMCID: PMC3808332 DOI: 10.1093/jxb/ert269] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Rapid cell division and expansion in early fruit development are important phases for cucumber fruit yield and quality. Kinesin proteins are microtubule-based motors responsible for modulating cell division and enlargement. In this work, the candidate kinesin genes involved in rapid cell division and expansion during cucumber fruit development were investigated. The morphological and cellular changes during early fruit development were compared in four cucumber genotypes with varied fruit size. The correlation between the expression profiles of cucumber kinesin genes and cellular changes in fruit was investigated. Finally, the biochemical characteristics and subcellular localizations of three candidate kinesins were studied. The results clarified the morphological and cellular changes during early cucumber fruit development. This study found that CsKF2-CsKF6 were positively correlated with rapid cell production; CsKF1 and CsKF7 showed a strongly positive correlation with rapid cell expansion. The results also indicated that CsKF1 localized to the plasma membrane of fast-expanding fruit cells, that CsKF2 might play a role in fruit chloroplast division, and that CsKF3 is involved in the function or formation of phragmoplasts in fruit telophase cells. The results strongly suggest that specific fruit-enriched kinesins are specialized in their functions in rapid cell division and expansion during cucumber fruit development.
Collapse
Affiliation(s)
- Xue Yong Yang
- Institute of Vegetables and Flowers (IVF), the Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
- * These authors contributed equally to this work
| | - Yan Wang
- Institute of Vegetables and Flowers (IVF), the Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
- * These authors contributed equally to this work
| | - Wei Jie Jiang
- Institute of Vegetables and Flowers (IVF), the Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
- To whom correspondence should be addressed. E-mail: or /
| | - Xiao Ling Liu
- Institute of Vegetables and Flowers (IVF), the Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Xiao Meng Zhang
- Institute of Vegetables and Flowers (IVF), the Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Hong Jun Yu
- Institute of Vegetables and Flowers (IVF), the Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - San Wen Huang
- Institute of Vegetables and Flowers (IVF), the Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Guo Qin Liu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
43
|
Welburn JPI. The molecular basis for kinesin functional specificity during mitosis. Cytoskeleton (Hoboken) 2013; 70:476-93. [PMID: 24039047 PMCID: PMC4065354 DOI: 10.1002/cm.21135] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Revised: 07/24/2013] [Accepted: 08/21/2013] [Indexed: 12/13/2022]
Abstract
Microtubule-based motor proteins play key roles during mitosis to assemble the bipolar spindle, define the cell division axis, and align and segregate the chromosomes. The majority of mitotic motors are members of the kinesin superfamily. Despite sharing a conserved catalytic core, each kinesin has distinct functions and localization, and is uniquely regulated in time and space. These distinct behaviors and functional specificity are generated by variations in the enzymatic domain as well as the non-conserved regions outside of the kinesin motor domain and the stalk. These flanking regions can directly modulate the properties of the kinesin motor through dimerization or self-interactions, and can associate with extrinsic factors, such as microtubule or DNA binding proteins, to provide additional functional properties. This review discusses the recently identified molecular mechanisms that explain how the control and functional specification of mitotic kinesins is achieved. © 2013 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Julie P I Welburn
- Wellcome Trust Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JR, Scotland, United Kingdom
| |
Collapse
|
44
|
Liu J, Han LN, Zhang Q, Wang QL, Chang Q, Zhuang H, Liu J, Li M, Yu D, Kang ZS. Cloning and molecular characterization of a myosin light chain gene from Puccinia striiformis f. sp. tritici. World J Microbiol Biotechnol 2013; 30:631-7. [DOI: 10.1007/s11274-013-1485-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 09/06/2013] [Indexed: 11/30/2022]
|
45
|
Gardiner J. The evolution and diversification of plant microtubule-associated proteins. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 75:219-29. [PMID: 23551562 DOI: 10.1111/tpj.12189] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Revised: 03/11/2013] [Accepted: 03/22/2013] [Indexed: 05/07/2023]
Abstract
Plant evolution is marked by major advances in structural characteristics that facilitated the highly successful colonization of dry land. Underlying these advances is the evolution of genes encoding specialized proteins that form novel microtubular arrays of the cytoskeleton. This review investigates the evolution of plant families of microtubule-associated proteins (MAPs) through the recently sequenced genomes of Arabidopsis thaliana, Oryza sativa, Selaginella moellendorffii, Physcomitrella patens, Volvox carteri and Chlamydomonas reinhardtii. The families of MAPs examined are AIR9, CLASP, CRIPT, MAP18, MOR1, TON, EB1, AtMAP70, SPR2, SPR1, WVD2 and MAP65 families (abbreviations are defined in the footnote to Table 1). Conjectures are made regarding the evolution of MAPs in plants in relation to the evolution of multicellularity, oriented cell division and vasculature. Angiosperms in particular have high numbers of proteins that are involved in promotion of helical growth or its suppression, and novel plant microtubular structures may have acted as a catalyst for the development of novel plant MAPs. Comparisons of plant MAP gene families with those of animals show that animals may have more flexibility in the structure of their microtubule cytoskeletons than plants, but with both plants and animals possessing many MAP splice variants.
Collapse
Affiliation(s)
- John Gardiner
- School of Biological Sciences, The University of Sydney, Sydney, NSW 2006, Australia.
| |
Collapse
|
46
|
Brandizzi F, Wasteneys GO. Cytoskeleton-dependent endomembrane organization in plant cells: an emerging role for microtubules. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 75:339-49. [PMID: 23647215 DOI: 10.1111/tpj.12227] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 04/29/2013] [Accepted: 04/30/2013] [Indexed: 05/07/2023]
Abstract
Movement of secretory organelles is a fascinating yet largely mysterious feature of eukaryotic cells. Microtubule-based endomembrane and organelle motility utilizing the motor proteins dynein and kinesin is commonplace in animal cells. In contrast, it has been long accepted that intracellular motility in plant cells is predominantly driven by myosin motors dragging organelles and endomembrane-bounded cargo along actin filament bundles. Consistent with this, defects in the acto-myosin cytoskeleton compromise plant growth and development. Recent findings, however, challenge the actin-centric view of the motility of critical secretory organelles and distribution of associated protein machinery. In this review, we provide an overview of the current knowledge on actin-mediated organelle movement within the secretory pathway of plant cells, and report on recent and exciting findings that support a critical role of microtubules in plant cell development, in fine-tuning the positioning of Golgi stacks, as well as their involvement in cellulose synthesis and auxin polar transport. These emerging aspects of the biology of microtubules highlight adaptations of an ancestral machinery that plants have specifically evolved to support the functioning of the acto-myosin cytoskeleton, and mark new trends in our global appreciation of the complexity of organelle movement within the plant secretory pathway.
Collapse
Affiliation(s)
- Federica Brandizzi
- MSU-Department of Energy-Plant Research Laboratory, Michigan State University, 612 Wilson Road, East Lansing, MI 48824-1312, USA
| | | |
Collapse
|
47
|
Abstract
Cellular organelles move within the cellular volume and the effect of the resulting drag forces on the liquid causes bulk movement in the cytosol. The movement of both organelles and cytosol leads to an overall motion pattern called cytoplasmic streaming or cyclosis. This streaming enables the active and passive transport of molecules and organelles between cellular compartments. Furthermore, the fusion and budding of vesicles with and from the plasma membrane (exo/endocytosis) allow for transport of material between the inside and the outside of the cell. In the pollen tube, cytoplasmic streaming and exo/endocytosis are very active and fulfill several different functions. In this review, we focus on the logistics of intracellular motion and transport processes as well as their biophysical underpinnings. We discuss various modeling attempts that have been performed to understand both long-distance shuttling and short-distance targeting of organelles. We show how the combination of mechanical and mathematical modeling with cell biological approaches has contributed to our understanding of intracellular transport logistics.
Collapse
Affiliation(s)
- Youssef Chebli
- Département de Sciences Biologiques, Institut de Recherche en Biologie Végétale, Université de Montréal, Montréal, Québec, Canada
| | | | | |
Collapse
|
48
|
Abel S, Bürstenbinder K, Müller J. The emerging function of IQD proteins as scaffolds in cellular signaling and trafficking. PLANT SIGNALING & BEHAVIOR 2013; 8:e24369. [PMID: 23531692 PMCID: PMC3909082 DOI: 10.4161/psb.24369] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Calcium (Ca(2+)) signaling modules are essential for adjusting plant growth and performance to environmental constraints. Differential interactions between sensors of Ca(2+) dynamics and their molecular targets are at the center of the transduction process. Calmodulin (CaM) and CaM-like (CML) proteins are principal Ca(2+)-sensors in plants that govern the activities of numerous downstream proteins with regulatory properties. The families of IQ67-Domain (IQD) proteins are a large class of plant-specific CaM/CML-targets (e.g., 33 members in A. thaliana) which share a unique domain of multiple varied CaM retention motifs in tandem orientation. Genetic studies in Arabidopsis and tomato revealed first roles for IQD proteins related to basal defense response and plant development. Molecular, biochemical and histochemical analysis of Arabidopsis IQD1 demonstrated association with microtubules as well as targeting to the cell nucleus and nucleolus. In vivo binding to CaM and kinesin light chain-related protein-1 (KLCR1) suggests a Ca(2+)-regulated scaffolding function of IQD1 in kinesin motor-dependent transport of multiprotein complexes. Furthermore, because IQD1 interacts in vitro with single-stranded nucleic acids, the prospect arises that IQD1 and other IQD family members facilitate cellular RNA localization as one mechanism to control and fine-tune gene expression and protein sorting.
Collapse
Affiliation(s)
- Steffen Abel
- Department of Molecular Signal Processing; Leibniz Institute of Plant Biochemistry; Halle, Germany
- Institute of Biochemistry and Biotechnology; Martin-Luther-University Halle-Wittenberg; Halle, Germany
- Department of Plant Sciences; University of California-Davis; Davis, USA
- Correspondence to: Steffen Abel,
| | - Katharina Bürstenbinder
- Department of Molecular Signal Processing; Leibniz Institute of Plant Biochemistry; Halle, Germany
| | - Jens Müller
- Department of Molecular Signal Processing; Leibniz Institute of Plant Biochemistry; Halle, Germany
| |
Collapse
|
49
|
Venkatakrishnan S, Mackey D, Meier I. Functional investigation of the plant-specific long coiled-coil proteins PAMP-INDUCED COILED-COIL (PICC) and PICC-LIKE (PICL) in Arabidopsis thaliana. PLoS One 2013; 8:e57283. [PMID: 23451199 PMCID: PMC3581476 DOI: 10.1371/journal.pone.0057283] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Accepted: 01/23/2013] [Indexed: 12/20/2022] Open
Abstract
We have identified and characterized two Arabidopsis long coiled-coil proteins PAMP-INDUCED COILED-COIL (PICC) and PICC-LIKE (PICL). PICC (147 kDa) and PICL (87 kDa) are paralogs that consist predominantly of a long coiled-coil domain (expanded in PICC), with a predicted transmembrane domain at the immediate C-terminus. Orthologs of PICC and PICL were found exclusively in vascular plants. PICC and PICL GFP fusion proteins are anchored to the cytoplasmic surface of the endoplasmic reticulum (ER) membrane by a C-terminal transmembrane domain and a short tail domain, via a tail-anchoring mechanism. T-DNA-insertion mutants of PICC and PICL as well as the double mutant show an increased sensitivity to the plant abiotic stress hormone abscisic acid (ABA) in a post-germination growth response. PICC, but not PICL gene expression is induced by the bacterial pathogen-associated molecular pattern (PAMP) flg22. T-DNA insertion alleles of PICC, but not PICL, show increased susceptibility to the non-virulent strain P. syringae pv. tomato DC3000 hrcC, but not to the virulent strain P. syringae pv. tomato DC3000. This suggests that PICC mutants are compromised in PAMP-triggered immunity (PTI). The data presented here provide first evidence for the involvement of a plant long coiled-coil protein in a plant defense response.
Collapse
Affiliation(s)
- Sowmya Venkatakrishnan
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio, United States of America
| | - David Mackey
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio, United States of America
- Department of Horticulture and Crop Science, The Ohio State University, Columbus, Ohio, United States of America
| | - Iris Meier
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio, United States of America
| |
Collapse
|
50
|
Goulet A, Moores C. New insights into the mechanism of force generation by kinesin-5 molecular motors. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2013; 304:419-66. [PMID: 23809441 DOI: 10.1016/b978-0-12-407696-9.00008-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Kinesin-5 motors are members of a superfamily of microtubule-dependent ATPases and are widely conserved among eukaryotes. Kinesin-5s typically form homotetramers with pairs of motor domains located at either end of a dumbbell-shaped molecule. This quaternary structure enables cross-linking and ATP-driven sliding of pairs of microtubules, although the exact molecular mechanism of this activity is still unclear. Kinesin-5 function has been characterized in greatest detail in cell division, although a number of interphase roles have also been defined. The kinesin-5 ATPase is tuned for slow microtubule sliding rather than cellular transport and-in vertebrates-can be inhibited specifically by allosteric small molecules currently in cancer clinical trials. The biophysical and structural basis of kinesin-5 mechanochemistry is being elucidated and has provided further insight into kinesin-5 activities. However, it is likely that the precise mechanism of these important motors has evolved according to functional context and regulation in individual organisms.
Collapse
Affiliation(s)
- Adeline Goulet
- Institute of Structural and Molecular Biology, Birkbeck College, London, United Kingdom
| | | |
Collapse
|