1
|
Gupta S, Naseem M, Thokchom SD, Srivastava PK, Kapoor R. Rhizophagus intraradices mediated mitigation of arsenic toxicity in wheat involves differential distribution of arsenic in subcellular fractions and modulated expression of Phts and ABCCs. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136284. [PMID: 39471615 DOI: 10.1016/j.jhazmat.2024.136284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/18/2024] [Accepted: 10/23/2024] [Indexed: 11/01/2024]
Abstract
Biomagnification of arsenic in food chain through wheat consumption poses a serious threat to human health. Therefore, it is necessary to elucidate mechanism of arsenic tolerance and detoxification in wheat. The study aimed to unravel the strategies adopted by arbuscular mycorrhizal fungi to alleviate arsenic toxicity in wheat. To accomplish this, independent and interactive effects of arsenic and Rhizophagus intraradices were assessed. Colonization by R. intraradices resulted in lower expression of high-affinity phosphate transporters (Phts) in comparison with non-mycorrhizal (NM) plants, thereby lowering arsenic concentrations in mycorrhizal (M) plants. Additionally, the subcellular fractionation analysis indicated differential distribution of arsenic. In NM plants, arsenic accumulated primarily in cell wall and organelle fractions. Conversely, in M plants arsenic was more concentrated in the cell wall and vacuolar fractions. This was related to higher levels of hydroxyl and aldehyde groups in cell wall fraction of root along with increased expression of C-type ATP-binding cassette transporters in root and leaves. These factors enabled effective sequestration of arsenic in the cell wall and vacuoles of M plants, thereby reducing its toxicity. Furthermore, the proportion of inorganic arsenic was lower in M plant, as it transformed it into less toxic organic forms.
Collapse
Affiliation(s)
- Samta Gupta
- Department of Botany, University of Delhi, Delhi 110007, India
| | - Mariya Naseem
- CSIR-National Botanical Research Institute, Lucknow 226001, India
| | | | | | - Rupam Kapoor
- Department of Botany, University of Delhi, Delhi 110007, India.
| |
Collapse
|
2
|
Li W, He SX, Zhou QY, Dai ZH, Liu CJ, Xiao SF, Deng SG, Ma LQ. Foliar-selenium enhances plant growth and arsenic accumulation in As-hyperaccumulator Pteris vittata: Critical roles of GSH-GSSG cycle and arsenite antiporters PvACR3. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135154. [PMID: 38986410 DOI: 10.1016/j.jhazmat.2024.135154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/04/2024] [Accepted: 07/06/2024] [Indexed: 07/12/2024]
Abstract
It is known that selenium (Se) enhances plant growth and arsenic (As) accumulation in As-hyperaccumulator Pteris vittata, but the associated mechanisms are unclear. In this study, P. vittata was exposed to 50 μM arsenate (AsV) under hydroponics plus 25 or 50 μM foliar selenate. After 3-weeks of growth, the plant biomass, As and Se contents, As speciation, malondialdehyde (MDA) and glutathione (GSH and GSSG) levels, and important genes related to As-metabolism in P. vittata were determined. Foliar-Se increased plant biomass by 17 - 30 %, possibly due to 9.1 - 19 % reduction in MDA content compared to the As control. Further, foliar-Se enhanced the As contents by 1.9-3.5 folds and increased arsenite (AsIII) contents by 64 - 136 % in the fronds. The increased AsV reduction to AsIII was attributed to 60 - 131 % increase in glutathione peroxidase activity, which mediates GSH oxidation to GSSG (8.8 -29 % increase) in the fronds. Further, foliar-Se increased the expression of AsIII antiporters PvACR3;1-3;3 by 1.6 - 2.1 folds but had no impact on phosphate transporters PvPht1 or arsenate reductases PvHAC1/2. Our results indicate that foliar-Se effectively enhances plant growth and arsenic accumulation by promoting the GSH-GSSG cycle and upregulating gene expression of AsIII antiporters, which are responsible for AsIII translocation from the roots to fronds and AsIII sequestration into the fronds. The data indicate that foliar-Se can effectively improve phytoremediation efficiency of P. vittata in As-contaminated soils.
Collapse
Affiliation(s)
- Wei Li
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Si-Xue He
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Qian-Yu Zhou
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Zhi-Hua Dai
- School of Ecology and Environment, Anhui Normal University, Wuhu, Anhui 241000, China.
| | - Chen-Jing Liu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Shu-Fen Xiao
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Song-Ge Deng
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Lena Q Ma
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
3
|
Gracia-Rodriguez C, Lopez-Ortiz C, Flores-Iga G, Ibarra-Muñoz L, Nimmakayala P, Reddy UK, Balagurusamy N. From genes to ecosystems: Decoding plant tolerance mechanisms to arsenic stress. Heliyon 2024; 10:e29140. [PMID: 38601600 PMCID: PMC11004893 DOI: 10.1016/j.heliyon.2024.e29140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/28/2024] [Accepted: 04/01/2024] [Indexed: 04/12/2024] Open
Abstract
Arsenic (As), a metalloid of considerable toxicity, has become increasingly bioavailable through anthropogenic activities, raising As contamination levels in groundwater and agricultural soils worldwide. This bioavailability has profound implications for plant biology and farming systems. As can detrimentally affect crop yield and pose risks of bioaccumulation and subsequent entry into the food chain. Upon exposure to As, plants initiate a multifaceted molecular response involving crucial signaling pathways, such as those mediated by calcium, mitogen-activated protein kinases, and various phytohormones (e.g., auxin, methyl jasmonate, cytokinin). These pathways, in turn, activate enzymes within the antioxidant system, which combat the reactive oxygen/nitrogen species (ROS and RNS) generated by As-induced stress. Plants exhibit a sophisticated genomic response to As, involving the upregulation of genes associated with uptake, chelation, and sequestration. Specific gene families, such as those coding for aquaglyceroporins and ABC transporters, are key in mediating As uptake and translocation within plant tissues. Moreover, we explore the gene regulatory networks that orchestrate the synthesis of phytochelatins and metallothioneins, which are crucial for As chelation and detoxification. Transcription factors, particularly those belonging to the MYB, NAC, and WRKY families, emerge as central regulators in activating As-responsive genes. On a post-translational level, we examine how ubiquitination pathways modulate the stability and function of proteins involved in As metabolism. By integrating omics findings, this review provides a comprehensive overview of the complex genomic landscape that defines plant responses to As. Knowledge gained from these genomic and epigenetic insights is pivotal for developing biotechnological strategies to enhance crop As tolerance.
Collapse
Affiliation(s)
- Celeste Gracia-Rodriguez
- Laboratorio de Biorremediación, Facultad de Ciencias Biológicas, Universidad Autónoma de Coahuila, Torreón, Mexico
- Gus R. Douglass Institute and Department of Biology, West Virginia State University, Institute, Dunbar, WV 25112-1000, USA
| | - Carlos Lopez-Ortiz
- Gus R. Douglass Institute and Department of Biology, West Virginia State University, Institute, Dunbar, WV 25112-1000, USA
| | - Gerardo Flores-Iga
- Laboratorio de Biorremediación, Facultad de Ciencias Biológicas, Universidad Autónoma de Coahuila, Torreón, Mexico
- Gus R. Douglass Institute and Department of Biology, West Virginia State University, Institute, Dunbar, WV 25112-1000, USA
| | - Lizbeth Ibarra-Muñoz
- Laboratorio de Biorremediación, Facultad de Ciencias Biológicas, Universidad Autónoma de Coahuila, Torreón, Mexico
| | - Padma Nimmakayala
- Gus R. Douglass Institute and Department of Biology, West Virginia State University, Institute, Dunbar, WV 25112-1000, USA
| | - Umesh K. Reddy
- Gus R. Douglass Institute and Department of Biology, West Virginia State University, Institute, Dunbar, WV 25112-1000, USA
| | - Nagamani Balagurusamy
- Laboratorio de Biorremediación, Facultad de Ciencias Biológicas, Universidad Autónoma de Coahuila, Torreón, Mexico
| |
Collapse
|
4
|
Wang Y, Ma C, Dang F, Zhao L, Zhou D, Gu X. Mixed effects and co-transfer of CeO 2 NPs and arsenic in the pakchoi-snail food chain. JOURNAL OF HAZARDOUS MATERIALS 2024; 462:132770. [PMID: 37852136 DOI: 10.1016/j.jhazmat.2023.132770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 10/20/2023]
Abstract
Nanomaterial application in agriculture offers novel solutions for soil arsenic (As) pollution control, yet safety along the food chain is of concern. We comprehensively assessed CeO2 nanoparticles (NPs) foliar application effects on As uptake by pakchoi and their presence in the pakchoi-snail food chain. CeO2 NPs reduced As transfer from pakchoi roots to shoots by 37.9%, lowered As in snail foot by 39%, and halved human As exposure risk. The NPs alleviated pakchoi shoot As toxicity by regulating antioxidants, enhancing water use efficiency, and photosynthesis. CeO2 +As treatment raised GSH/GSSG ratios by 38.92%- 167.54%, leading to an increased AsIII/AsV ratio and inorganic As detoxification compared to As alone. Metabolomics revealed CeO2's rapid As response via phosphatidylinositol signaling. The enzyme-like activity of CeO2 NPs may drive these effects. While CeO2 foliar application accumulated Ce on pakchoi leaves, > 99% of Ce was excreted following snail consumption. Ce transfer from pakchoi leaves to snail foot was minimal (trophic transfer factor ∼0.00007) due to limited bioavailability. The target hazard quotient of Ce in pakchoi shoot (1.21 ± 0.18) and snails (0.0016 ± 0.0004) indicated low exposure risk, suggesting a 'risk filter' effect for CeO2. Our results contribute to the safe and sustainable application of CeO2 NPs in the future implication.
Collapse
Affiliation(s)
- Yaoyao Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Chuanxin Ma
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Fei Dang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Lijuan Zhao
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Dongmei Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Xueyuan Gu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
5
|
Bai Y, Wan X, Lei M, Wang L, Chen T. Research advances in mechanisms of arsenic hyperaccumulation of Pteris vittata: Perspectives from plant physiology, molecular biology, and phylogeny. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132463. [PMID: 37690196 DOI: 10.1016/j.jhazmat.2023.132463] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/24/2023] [Accepted: 08/31/2023] [Indexed: 09/12/2023]
Abstract
Pteris vittata, as the firstly discovered arsenic (As) hyperaccumulator, has great application value in As-contaminated soil remediation. Currently, the genes involved in As hyperaccumulation in P. vittata have been mined continuously, while they have not been used in practice to enhance phytoremediation efficiency. Aiming to better assist the practice of phytoremediation, this review collects 130 studies to clarify the progress in research into the As hyperaccumulation process in P. vittata from multiple perspectives. Antioxidant defense, rhizosphere activities, vacuolar sequestration, and As efflux are important physiological activities involved in As hyperaccumulation in P. vittata. Among related 19 genes, PHT, TIP, ACR3, ACR2 and HAC family genes play essential roles in arsenate (AsⅤ) transport, arsenite (AsⅢ) transport, vacuole sequestration of AsⅢ, and the reduction of AsⅤ to AsⅢ, respectively. Gene ontology enrichment analysis indicated it is necessary to further explore genes that can bind to related ions, with transport activity, or with function of transmembrane transport. Phylogeny analysis results implied ACR2, HAC and ACR3 family genes with rapid evolutionary rate may be the decisive factors for P. vittata as an As hyperaccumulator. A deeper understanding of the As hyperaccumulation network and key gene components could provide useful tools for further bio-engineered phytoremediation.
Collapse
Affiliation(s)
- Yang Bai
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoming Wan
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Mei Lei
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lingqing Wang
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tongbin Chen
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
6
|
Sun X, Kong T, Huang D, Chen Z, Kolton M, Yang J, Huang Y, Cao Y, Gao P, Yang N, Li B, Liu H, Sun W. Arsenic (As) oxidation by core endosphere microbiome mediates As speciation in Pteris vittata roots. JOURNAL OF HAZARDOUS MATERIALS 2023; 454:131458. [PMID: 37099912 DOI: 10.1016/j.jhazmat.2023.131458] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/17/2023] [Accepted: 04/19/2023] [Indexed: 05/19/2023]
Abstract
Pteris vittata is an arsenic(As)-hyperaccumulator that may be employed in phytoremediation of As-contaminated soils. P. vittata-associated microbiome are adapted to elevated As and may be important for host survival under stresses. Although P. vittata root endophytes could be critical for As biotransformation in planta, their compositions and metabolisms remain elusive. The current study aims to characterize the root endophytic community composition and As-metabolizing potentials in P. vittata. High As(III) oxidase gene abundances and rapid As(III) oxidation activity indicated that As(III) oxidation was the dominant microbial As-biotransformation processes compared to As reduction and methylization in P. vittata roots. Members of Rhizobiales were the core microbiome and the dominant As(III) oxidizers in P. vittata roots. Acquasition of As-metabolising genes, including both As(III) oxidase and As(V) detoxification reductase genes, through horizontal gene transfer was identified in a Saccharimonadaceae genomic assembly, which was another abundant population residing in P. vittata roots. Acquisition of these genes might improve the fitness of Saccharimonadaceae population to elevated As concentrations in P. vittata. Diverse plant growth promoting traits were encoded by the core root microbiome populations Rhizobiales. We propose that microbial As(III) oxidation and plant growth promotion are critical traits for P. vittata survival in hostile As-contaiminated sites.
Collapse
Affiliation(s)
- Xiaoxu Sun
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control,Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Tianle Kong
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China; College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Duanyi Huang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China; College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
| | - Zhenyu Chen
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China; School of Environment, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Max Kolton
- French Associates Institute for Agriculture and Biotechnology of Drylands, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Jinchan Yang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China; School of Environment, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Yuqing Huang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control,Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Yue Cao
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Peng Gao
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control,Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Nie Yang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control,Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Baoqin Li
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control,Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Huaqing Liu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control,Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Weimin Sun
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control,Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China.
| |
Collapse
|
7
|
Qi X, Zhang D, Xu Y, Wang D, Xu W. Improvement of Arsenic Tolerance and Removal Ability of Multi-stress-tolerant Pichia kudriavzevii A16 by Salt Preincubation. Curr Microbiol 2023; 80:121. [PMID: 36862180 DOI: 10.1007/s00284-023-03216-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 02/09/2023] [Indexed: 03/03/2023]
Abstract
Arsenic (As) exists widely in the environment and its strong toxicity endangers human health, causing widespread concern. Microbial adsorption technology plays an important role in As removal due to its advantages of high safety, low pollution, and low cost. The removal of As by active microorganisms requires not only good accumulation characteristics but also high As tolerance. The effect of salt preincubation on arsenate [As(V)] tolerance and bioaccumulation of Pichia kudriavzevii A16 and the possible mechanisms were studied. Salt preincubation improved the As(V) tolerance and bioaccumulation ability of the yeast. After Na5P3O10 preincubation, the proportion of dead cells and cells with high reactive oxygen species (ROS) accumulation decreased from 50.88% and 16.54% to 14.60% and 5.24%, respectively. In addition, the As removal rate significantly increased from 26.20% to 57.98%. The preincubated cells showed stronger As(V) tolerance and removal ability. The potential of use in complex environment to remove As(V) as well as the mechanisms involved in As(V) tolerance by yeast will be discussed.
Collapse
Affiliation(s)
- Xiaoxue Qi
- Laboratory of Food Chemistry and Nutrition, College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, China
| | - Dandan Zhang
- Naval Architecture and Port Engineering College, Shandong Jiaotong University, Weihai, 264209, China
| | - Ying Xu
- Laboratory of Food Chemistry and Nutrition, College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, China.
| | - Dongfeng Wang
- Laboratory of Food Chemistry and Nutrition, College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, China
| | - Wanying Xu
- Laboratory of Food Chemistry and Nutrition, College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, China
| |
Collapse
|
8
|
Li X, He F, Wang Z, Xing B. Roadmap of environmental health research on emerging contaminants: Inspiration from the studies on engineered nanomaterials. ECO-ENVIRONMENT & HEALTH (ONLINE) 2022; 1:181-197. [PMID: 38075596 PMCID: PMC10702922 DOI: 10.1016/j.eehl.2022.10.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 10/04/2022] [Accepted: 10/11/2022] [Indexed: 01/25/2024]
Abstract
Research on the environmental health of emerging contaminants is critical to understand their risks before causing severe harm. However, the low environmental concentrations, complex behaviors, and toxicology of emerging contaminants present enormous challenges for researchers. Here, we reviewed the research on the environmental health of engineered nanomaterials (ENMs), one of the typical emerging contaminants, to enlighten pathways for future research on emerging contaminants at their initial exploratory stage. To date, some developed pretreatment methods and detection technologies have been established for the determination of ENMs in natural environments. The mechanisms underlying the transfer and transformation of ENMs have been systematically explored in laboratory studies. The mechanisms of ENMs-induced toxicity have also been preliminarily clarified at genetic, cellular, individual, and short food chain levels, providing not only a theoretical basis for revealing the risk change and environmental health effects of ENMs in natural environments but also a methodological guidance for studying environmental health of other emerging contaminants. Nonetheless, due to the interaction of multiple environmental factors and the high diversity of organisms in natural environments, health effects observed in laboratory studies likely differ from those in natural environments. We propose a holistic approach and mesocosmic model ecosystems to systematically carry out environmental health research on emerging contaminants, obtaining data that determine the objectivity and accuracy of risk assessment.
Collapse
Affiliation(s)
- Xiaona Li
- Institute of Environmental Processes and Pollution Control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
- Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi 214122, China
| | - Feng He
- Institute of Environmental Processes and Pollution Control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
- Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi 214122, China
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution Control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
- Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi 214122, China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, United States
| |
Collapse
|
9
|
Álvarez-Robles MJ, Clemente R, Ferrer MA, Calderón A, Bernal MP. Effects of ascorbic acid addition on the oxidative stress response of Oryza sativa L. plants to As(V) exposure. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 186:232-241. [PMID: 35926283 DOI: 10.1016/j.plaphy.2022.07.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 07/04/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
Accumulation of noxious elements in the edible part of crops and its impact on food safety is of increasing concern. Rice is one of the major staple food crops worldwide, including arsenic (As)-polluted areas, in which dietary As exposure is becoming a widespread health threat. Plant chemical priming has been shown to be an effective strategy to enhance tolerance to environmental stresses, including metal(loid) exposure. The priming effect of ascorbic acid (AsA) was assessed in rice seedlings exposed to As(V) in a hydroponics experiment. AsA treatment (co-addition to the growing media concomitantly (t0) or 24 h in advance (t24)) prevented an excessive accumulation of As in the roots (that decreased ∼ 60%) and stimulated the activities of photosynthetic and antioxidant attributes (∼1.2-fold) in the aerial part of the plants. The increase in proline levels in both shoots (∼2.1-fold) and roots (∼2.4-fold) was found to be the most sensitive stress parameter, and was able to reflect the AsA-induced reduction of As toxic effects (concentrations back to Control levels, both simultaneously added or added as a pretreatment) in the aerial part of the plants. However, the phytotoxic effects related to As exposure were not fully prevented by priming with AsA, and further research is needed to find alternative priming approaches.
Collapse
Affiliation(s)
- M J Álvarez-Robles
- Department of Soil and Water Conservation and Organic Waste Management, CEBAS-CSIC, Campus Universitario de Espinardo, 30100, Murcia, Spain.
| | - R Clemente
- Department of Soil and Water Conservation and Organic Waste Management, CEBAS-CSIC, Campus Universitario de Espinardo, 30100, Murcia, Spain
| | - M A Ferrer
- Department of Agricultural Science and Technology, Universidad Politécnica de Cartagena, Paseo Alfonso XIII 48, 30203, Cartagena, Spain
| | - A Calderón
- Department of Agricultural Science and Technology, Universidad Politécnica de Cartagena, Paseo Alfonso XIII 48, 30203, Cartagena, Spain
| | - M P Bernal
- Department of Soil and Water Conservation and Organic Waste Management, CEBAS-CSIC, Campus Universitario de Espinardo, 30100, Murcia, Spain
| |
Collapse
|
10
|
Krasnodębska-Ostręga B, Sadowska M, Biaduń E, Mazur R, Kowalska J. Sinapis alba as a useful plant in bioremediation - studies of defense mechanisms and accumulation of As, Tl and PGEs. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2022; 24:1475-1490. [PMID: 35216535 DOI: 10.1080/15226514.2022.2036098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Pollution of the soils with toxic elements is a serious problem all over the world. One of environmentally friendly techniques of their removal is phytoremediation. This paper is a summary of literature data and the results of own studies about the potential of Sinapis alba for bioaccumulation of Tl, As and PGEs, and its usefulness in remediation of polluted environment. S. alba is characterized with low living requirements, BFs ≫ 1 and high TFs, especially for Tl (up to 3). The influence of different forms of studied elements on plants was discussed based on biomass production, morphological changes and the impact on photosynthesis activity. The plants were cultivated in hydroponics and solid media of various composition, for example, in soil supplemented with MnO2, which resulted in BFs lower 6-7 times for leaves, and about 3-4 times for stems, as well as twice lower leaf development. Application of advanced analytical techniques was presented in studies of the detoxification mechanisms, identification of particular chemical forms of the elements and the presence of phytochelatins and their complexes with the investigated elements.Novelty StatementThe paper summarizes both literature and original data on Sinapis alba exposed to such elements as thallium, arsenic and platinum group metals. The influence of different forms of studied elements on white mustard was discussed based on biomass production and morphological changes, as well as the impact on photosynthesis activity. The study covers such aspects as bioaccumulation, phytotoxicity as well as the usefulness of white mustard in remediation of polluted environment.
Collapse
Affiliation(s)
| | | | - Ewa Biaduń
- Faculty of Chemistry, University of Warsaw, Warsaw, Poland
| | - Radosław Mazur
- Department of Metabolic Regulation, Institute of Biochemistry, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | | |
Collapse
|
11
|
Bhalla S, Garg N. Arbuscular mycorrhizae and silicon alleviate arsenic toxicity by enhancing soil nutrient availability, starch degradation and productivity in Cajanus cajan (L.) Millsp. MYCORRHIZA 2021; 31:735-754. [PMID: 34669029 DOI: 10.1007/s00572-021-01056-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 10/08/2021] [Indexed: 06/13/2023]
Abstract
Arsenic (As) pollution of soil reduces the growth and reproductive potential of plants. Silicon (Si) and arbuscular mycorrhizal (AM) fungi play significant roles in alleviating adverse effects of As stress. However, studies are scant regarding alleviative effects of Si in pigeonpea (Cajanus cajan L. Millsp.) because legumes are considered low Si-accumulators. We investigated the individual as well as synergistic potential of Si with two AM species (M1-Claroideoglomus etunicatum and M2-Rhizoglomus intraradices) in modulating soil properties, thereby improving growth and productivity of pigeonpea genotype Pusa 2001 grown in AsV and AsIII challenged soils. Both As species hampered the establishment of AM symbiosis, thus, reducing nutrient uptake, growth and yield, with AsIII more toxic than AsV. Exogenously applied Si and AM species enhanced soil glomalin and phosphatases activity, hence decreased metal bioavailability in soil, increased plant nutrient acquisition, biomass and chlorophylls; with maximum benefits provided by M2, closely followed by Si and least by M1. These amendments boosted the activities of starch hydrolytic enzymes (α-, β-amylase, starch phosphorylase) in plants, along with a simultaneous increase in total soluble sugars (TSS). This enhanced sugar accumulation directly led to improved reproductive attributes, more efficiently by M2 and Si than by M1. Moreover, there was a substantial increase in proline biosynthesis due to significantly enhanced activities of its biosynthetic enzymes. Additionally, combined applications of Si and AM, especially +Si+M2, complemented each other where AM enhanced Si uptake, while Si induced mycorrhization, suggesting their mutual and beneficial roles in ameliorating metal(loid) toxicity and achieving sustainability in pigeonpea production under As stress.
Collapse
Affiliation(s)
- Shyna Bhalla
- Department of Botany, Panjab University, Chandigarh-160014, India
| | - Neera Garg
- Department of Botany, Panjab University, Chandigarh-160014, India.
| |
Collapse
|
12
|
Liao XY, Gong XG, Zhang LL, Cassidy DP. Micro-distribution of arsenic and polycyclic aromatic hydrocarbons and their interaction in Pteris vittata L. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 285:117250. [PMID: 33957513 DOI: 10.1016/j.envpol.2021.117250] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 04/19/2021] [Accepted: 04/25/2021] [Indexed: 06/12/2023]
Abstract
Interactive effects of inorganic arsenic (As) species and polycyclic aromatic hydrocarbons (PAHs) on their uptake, accumulation and translocation in the hyperaccumulator Pteris vittata L. (P. vittata) were studied hydroponically. The presence of PAHs hindered As uptake and acropetal translocation by P. vittata, decreasing As concentrations by 29.8%-54.5% in pinnae, regardless of the initial As speciation. The inhibitive effect of PAHs was 1.6-8.7 times greater for arsenite [As(III)] than for arsenate [As(V)]. Similarly, inorganic As inhibited the uptake of fluorene (FLU) and benzo[a]pyrene (BaP) by P. vittata roots by 0.4%-21.7% and by 33.1%-69.7%, respectively. Interestingly, coexposure to As and PAHs slightly enhanced the translocation of PAHs by P. vittata with their concentrations increased 0.3 to 0.8 times in shoots, except for the As(III)+BaP treatment. The antagonistic interaction between As and PAHs uptake is likely caused by competitive inhibition or oxidative stress injury. By using synchrotron radiation micro X-ray fluorescence imaging, high concentrations of As were found distributed throughout the microstructures far from main vein of the pinnae when coexposed with PAHs, the opposite of what was observed with exposure to As only. PAHs could also significantly inhibit the accumulation and distribution of As in vascular bundles in rachis treated with As(III). The results of two-photon laser scanning confocal microscopy revealed that PAHs were mainly distributed in the vascular cylinder, epidermal cells, vascular bundles, epidermis and vein tissues, and this was independent of As speciation and treatment. This work offers new positive evidence for the interaction between As and PAHs in P. vittata, presents new information on the underlying mechanisms for interactions of As and PAHs affecting their uptake and translocation within P. vittata L., and provides direction for future research on the mechanisms of PAHs uptake by plants.
Collapse
Affiliation(s)
- Xiao-Yong Liao
- Key Laboratory of Land Surface Pattern and Simulation, Beijing Key Laboratory of Environmental Damage Assessment and Remediation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Xue-Gang Gong
- Key Laboratory of Land Surface Pattern and Simulation, Beijing Key Laboratory of Environmental Damage Assessment and Remediation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China; Beijing General Research Institute of Mining & Metallurgy Technology Group, Beijing, 100160, China
| | - Li-Li Zhang
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201204, China
| | - Daniel P Cassidy
- Department of Geological & Environmental Sciences, Western Michigan University, Kalamazoo, 49008, USA
| |
Collapse
|
13
|
Wang H, Cui S, Ma L, Wang Z, Wang H. Variations of arsenic forms and the role of arsenate reductase in three hydrophytes exposed to different arsenic species. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 221:112415. [PMID: 34171691 DOI: 10.1016/j.ecoenv.2021.112415] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 06/01/2021] [Accepted: 06/08/2021] [Indexed: 06/13/2023]
Abstract
In order to understand the mechanisms of arsenic (As) accumulation and detoxification in aquatic plants exposed to different As species, a hydroponic experiment was conducted and the three aquatic plants (Hydrilla verticillata, Pistia stratiotes and Eichhornia crassipes) were exposed to different concentrations of As(III), As(V) and dimethylarsinate (DMA) for 10 days. The biomass, the surface As adsorption and total As adsorption of three plants were determined. Furthermore, As speciation in the culture solution and plant body, as well as the arsenate reductase (AR) activities of roots and shoots, were also analyzed. The results showed that the surface As adsorption of plants was far less than total As absorption. Compared to As(V), the plants showed a lower DMA accumulation. P. stratiotes showed the highest accumulation of inorganic arsenic but E. crassipes showed the lowest at the same As treatment. E. crassipes showed a strong ability to accumulate DMA. Results from As speciation analysis in culture solution showed that As(III) was transformed to As(V) in all As(III) treatments, and the oxidation rates followed as the sequence of H. verticillata>P. stratiotes>E. crassipes>no plant. As(III) was the predominant species in both roots (39.4-88.3%) and shoots (39-86%) of As(III)-exposed plants. As(V) and As(III) were the predominant species in roots (37-94%) and shoots (31.1-85.6%) in As(V)-exposed plants, respectively. DMA was the predominant species in both roots (23.46-100%) and shoots (72.6-100%) in DMA-exposed plants. The As(III) contents and AR activities in the roots of P. stratiotes and in the shoots of H. verticillata were significantly increased when exposed to 1 mg·L-1 or 3 mg·L-1 As(V). Therefore, As accumulation mainly occurred via biological uptake rather than physicochemical adsorption, and AR played an important role in As detoxification in aquatic plants. In the case of As(V)-exposed plants, their As tolerance was attributed to the increase of AR activities.
Collapse
Affiliation(s)
- Haijuan Wang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, China 650500.
| | - Suping Cui
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, China 650500.
| | - Li Ma
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, China 650500.
| | - Zhongzhen Wang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, China 650500.
| | - Hongbin Wang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, China 650500.
| |
Collapse
|
14
|
Sytar O, Ghosh S, Malinska H, Zivcak M, Brestic M. Physiological and molecular mechanisms of metal accumulation in hyperaccumulator plants. PHYSIOLOGIA PLANTARUM 2021; 173:148-166. [PMID: 33219524 DOI: 10.1111/ppl.13285] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/19/2020] [Accepted: 11/17/2020] [Indexed: 05/19/2023]
Abstract
Most of the heavy metals (HMs), and metals/metalloids are released into the nature either by natural phenomenon or anthropogenic activities. Being sessile organisms, plants are constantly exposed to HMs in the environment. The metal non-hyperaccumulating plants are susceptible to excess metal concentrations. They tend to sequester metals in their root vacuoles by forming complexes with metal ligands, as a detoxification strategy. In contrast, the metal-hyperaccumulating plants have adaptive intrinsic regulatory mechanisms to hyperaccumulate or sequester excess amounts of HMs into their above-ground tissues rather than accumulating them in roots. They have unique abilities to successfully carry out normal physiological functions without showing any visible stress symptoms unlike metal non-hyperaccumulators. The unique abilities of accumulating excess metals in hyperaccumulators partly owes to constitutive overexpression of metal transporters and ability to quickly translocate HMs from root to shoot. Various metal ligands also play key roles in metal hyperaccumulating plants. These metal hyperaccumulating plants can be used in metal contaminated sites to clean-up soils. Exploiting the knowledge of natural populations of metal hyperaccumulators complemented with cutting-edge biotechnological tools can be useful in the future. The present review highlights the recent developments in physiological and molecular mechanisms of metal accumulation of hyperaccumulator plants in the lights of metal ligands and transporters. The contrasting mechanisms of metal accumulation between hyperaccumulators and non-hyperaccumulators are thoroughly compared. Moreover, uses of different metal hyperaccumulators for phytoremediation purposes are also discussed in detail.
Collapse
Affiliation(s)
- Oksana Sytar
- Department of Plant Physiology, Slovak University of Agriculture, Nitra, Slovakia
- Department of Plant Biology, Institute of Biology and Medicine, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | - Supriya Ghosh
- Department of Botany, University of Kalyani, Kalyani, Nadia-741235, India
| | - Hana Malinska
- Department of Biology, Jan Evangelista Purkyne University, Usti nad Labem, Czech Republic
| | - Marek Zivcak
- Department of Plant Physiology, Slovak University of Agriculture, Nitra, Slovakia
| | - Marian Brestic
- Department of Plant Physiology, Slovak University of Agriculture, Nitra, Slovakia
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, Prague, Czech Republic
| |
Collapse
|
15
|
Popov M, Zemanová V, Sácký J, Pavlík M, Leonhardt T, Matoušek T, Kaňa A, Pavlíková D, Kotrba P. Arsenic accumulation and speciation in two cultivars of Pteris cretica L. and characterization of arsenate reductase PcACR2 and arsenite transporter PcACR3 genes in the hyperaccumulating cv. Albo-lineata. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 216:112196. [PMID: 33848737 DOI: 10.1016/j.ecoenv.2021.112196] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 03/19/2021] [Accepted: 03/24/2021] [Indexed: 06/12/2023]
Abstract
Pollution and poisoning with carcinogenic arsenic (As) is of major concern globally. Interestingly, there are ferns that can naturally tolerate remarkably high As concentrations in soils while hyperaccumulating this metalloid in their fronds. Besides Pteris vittata in which As-related traits and molecular determinants have been studied in detail, the As hyperaccumulation status has been attributed also to Pteris cretica. We thus inspected two P. cretica cultivars, Parkerii and Albo-lineata, for As hyperaccumulation traits. The cultivars were grown in soils supplemented with 20, 100, and 250 mg kg-1 of inorganic arsenate (iAsV). Unlike Parkerii, Albo-lineata was confirmed to be As tolerant and hyperaccumulating, with up to 1.3 and 6.4 g As kg-1 dry weight in roots and fronds, respectively, from soils amended with 250 mg iAsV kg-1. As speciation analyses rejected that organoarsenical species and binding with phytochelatins and other proteinaceous ligands would play any significant role in the biology of As in either cultivar. While in Parkerii, the dominating As species, particularly in roots, occurred as iAsV, in Albo-lineata the majority of the root and frond As was apparently converted to iAsIII. Parkerii markedly accumulated iAsIII in its fronds when grown on As spiked soils. Considering the roles iAsV reductase ACR2 and iAsIII transporter ACR3 may have in the handling of iAs, we isolated Albo-lineata PcACR2 and PcACR3 genes closely related to P. vittata PvACR2 and PvACR3. The gene expression analysis in Albo-lineata fronds revealed that the transcription of PcACR2 and PcACR3 was clearly As responsive (up to 6.5- and 45-times increase in transcript levels compared to control soil conditions, respectively). The tolerance and uptake assays in yeasts showed that PcACRs can complement corresponding As-sensitive mutations, indicating that PcACR2 and PcACR3 encode functional proteins that can perform, respectively, iAsV reduction and membrane iAsIII transport tasks in As-hyperaccumulating Albo-lineata.
Collapse
Affiliation(s)
- Marek Popov
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Technická 3, 166 28 Prague, Czech Republic; Department of Botany and Plant Physiology, Czech University of Life Sciences Prague, Kamýcká 129, 16500 Prague, Czech Republic
| | - Veronika Zemanová
- Isotope Laboratory, Institute of Experimental Botany, The Czech Academy of Sciences, Vídeňská 1083, 14220 Prague, Czech Republic; Department of Agro-Environmental Chemistry and Plant Nutrition, Czech University of Life Sciences Prague, Kamýcká 129, 16500 Prague, Czech Republic
| | - Jan Sácký
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Technická 3, 166 28 Prague, Czech Republic
| | - Milan Pavlík
- Isotope Laboratory, Institute of Experimental Botany, The Czech Academy of Sciences, Vídeňská 1083, 14220 Prague, Czech Republic
| | - Tereza Leonhardt
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Technická 3, 166 28 Prague, Czech Republic
| | - Tomáš Matoušek
- Institute of Analytical Chemistry, The Czech Academy of Sciences, Veveří 97, 602 00 Brno, Czech Republic
| | - Antonín Kaňa
- Department of Analytical Chemistry, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague, Czech Republic
| | - Daniela Pavlíková
- Department of Agro-Environmental Chemistry and Plant Nutrition, Czech University of Life Sciences Prague, Kamýcká 129, 16500 Prague, Czech Republic
| | - Pavel Kotrba
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Technická 3, 166 28 Prague, Czech Republic.
| |
Collapse
|
16
|
Kashiwabara T, Kitajima N, Onuma R, Fukuda N, Endo S, Terada Y, Abe T, Hokura A, Nakai I. Synchrotron micro-X-ray fluorescence imaging of arsenic in frozen-hydrated sections of a root of Pteris vittata. Metallomics 2021; 13:6164887. [PMID: 33693839 PMCID: PMC8716073 DOI: 10.1093/mtomcs/mfab009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 02/15/2021] [Indexed: 11/23/2022]
Abstract
We performed micro-X-ray fluorescence imaging of frozen-hydrated sections of a root of Pteris vittata for the first time, to the best of our knowledge, to reveal the mechanism of arsenic (As) uptake. The As distribution was successfully visualized in cross sections of different parts of the root, which showed that (i) the major pathway of As uptake changes from symplastic to apoplastic transport in the direction of root growth, and (ii) As and K have different mobilities around the stele before xylem loading, despite their similar distributions outside the stele in the cross sections. These data can reasonably explain As reduction, axially observed around the root tip in the direction of root growth and radially observed in the endodermis in the cross sections, as a consequence of the incorporation of As into the cells or symplast of the root. In addition, previous observations of As species in the midrib can be reconciled by ascribing a reduction capacity to the root cells, which implies that As reduction mechanisms at the cellular level may be an important control on the peculiar root-to-shoot transport of As in P. vittata.
Collapse
Affiliation(s)
- Teruhiko Kashiwabara
- Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushimacho, Yokosuka, Kanagawa 237-0068, Japan.,Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku, Tokyo 162-8601, Japan
| | | | - Ryoko Onuma
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku, Tokyo 162-8601, Japan
| | - Naoki Fukuda
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku, Tokyo 162-8601, Japan
| | - Satoshi Endo
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku, Tokyo 162-8601, Japan
| | - Yasuko Terada
- SPring-8, Japan Synchrotron Radiation Research Institute (JASRI), Sayo-cho, Hyogo 679-5198, Japan
| | - Tomoko Abe
- RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Akiko Hokura
- Department of Applied Chemistry, School of Engineering, Tokyo Denki University, 5 Senju-Asahicho, Adachi, Tokyo 120-8551, Japan
| | - Izumi Nakai
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku, Tokyo 162-8601, Japan
| |
Collapse
|
17
|
Garg N, Cheema A. Relative roles of Arbuscular Mycorrhizae in establishing a correlation between soil properties, carbohydrate utilization and yield in Cicer arietinum L. under As stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 207:111196. [PMID: 32890948 DOI: 10.1016/j.ecoenv.2020.111196] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 08/15/2020] [Accepted: 08/18/2020] [Indexed: 05/21/2023]
Abstract
Accumulation of As (metalloid) degrades soil by negatively affecting the activities of soil enzymes, which in turn reduce growth and yield of the inhabiting plant. Arbuscular mycorrhizal (AM) symbiosis can impart metalloid tolerance in plants by secreting glomalin-related soil protein (GRSP) which binds with As or inertly adsorb in the extraradical mycelial surface. However, profitable use of AM requires selection of the most efficient combination of host plant and fungal species. The current study, therefore designed to study the efficacy of 3 a.m. fungal species: Rhizoglomus intraradices (Ri), Funneliformis mosseae (Fm) and Claroideoglomus claroideum (Cc) in imparting arsenate As(V) and arsenite As(III) stress tolerance in Cicer arietinum (chickpea) genotypes (G) - relatively metalloid tolerant- HC 3 and sensitive- C 235. Roots were found to be more severly affected as compared to shoots which resulted into a major decline in uptake of nutrients, chlorophyll concentrations and yield with As(III) inducing more toxic effects than As(V). HC 3 established more effective mycorrhizal symbiosis and was able to extract higher nutrients from the soil than C 235. Ri was most beneficial in improving plant biomass, carbohydrate utilization and productivity followed by Fm and Cc which could be due to its capability to initiate highest percent colonization and least metalloid uptake in roots through higher glomalin production in the soil. Moreover, Ri was highly efficient in improving soil enzymes activities-phosphatases (PHAs), β-glucosidase (BGA) and invertase (INV), thereby, imparting metalloid tolerance in chickpea genotypes. The results suggested use of Ri-chickpea symbiosis as a promising strategy for ameliorating As stress in chickpea.
Collapse
Affiliation(s)
- Neera Garg
- Department of Botany, Panjab University, Chandigarh, 160014, India.
| | - Amandeep Cheema
- Department of Botany, Panjab University, Chandigarh, 160014, India
| |
Collapse
|
18
|
Pteris vittata Arsenic Accumulation Only Partially Explains Soil Arsenic Depletion during Field-Scale Phytoextraction. SOIL SYSTEMS 2020. [DOI: 10.3390/soilsystems4040071] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Soil arsenic heterogeneity complicates our understanding of phytoextraction rates during arsenic phytoextraction with Pteris vittata, including in response to rate stimulation with nutrient treatments. In a 58-week arsenic phytoextraction field study, we determined the effects of soil arsenic concentrations, fertilizer application, and mycorrhizal fungi inoculation on P. vittata arsenic uptake rates, soil arsenic depletion, and arsenic soil–plant mass balances. Initial soil arsenic concentrations were positively correlated with arsenic uptake rates. Soil inoculation with mycorrhizal fungus Funneliformis mosseae led to 1.5–2 times higher fern aboveground biomass. Across all treatments, ferns accumulated a mean of 3.6% of the initial soil arsenic, and mean soil arsenic concentrations decreased by up to 44%. At depths of 0–10 cm, arsenic accumulation in P. vittata matched soil arsenic depletion. However, at depths of 0–20 cm, fern arsenic accumulation could not account for 61.5% of the soil arsenic depletion, suggesting that the missing arsenic could have been lost to leaching. A higher fraction of arsenic (III) (12.8–71.5%) in the rhizosphere compared to bulk soils suggests that the rhizosphere is a distinct geochemical environment featuring processes that could solubilize arsenic. To our knowledge, this is the first mass balance relating arsenic accumulation in P. vittata to significant decreases in soil arsenic concentrations under field conditions.
Collapse
|
19
|
Sil P, Biswas AK. Silicon nutrition modulates arsenic-inflicted oxidative overload and thiol metabolism in wheat (Triticum aestivum L.) seedlings. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:45209-45224. [PMID: 32779070 DOI: 10.1007/s11356-020-10369-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 08/03/2020] [Indexed: 06/11/2023]
Abstract
A hydroponic experiment was conducted to establish the response of exogenous silicon [Si] in alleviating arsenate [As (V)] prompted alterations on antioxidant enzyme activities and thiol metabolism in wheat (Triticum aestivum L. cv PBW 343) seedlings. Objective of the work was to validate the hypothesis whether silicate may alleviate arsenate-provoked oxidative stress in wheat through diverse metabolic pathways with an endeavor to improve food safety and health. Arsenate treatment significantly enhanced oxidative stress and was associated with modifications in non-enzymatic and enzymatic antioxidants. The activities of arsenate reductase [AR] and the enzymes related to thiol metabolism revealed dose-dependent enhancements with increase in arsenate along with enhanced production of phytochelatins [PCs] in the cultivar. Simultaneous supplementations of silicate with arsenate in the nutrient formulation reduced arsenate uptake along with arsenate reductase activity and consequently lowered arsenite [As (III)] accumulation. The antioxidative defense was upregulated and phytochelatin production was lowered causing an appreciable revival from the arsenate-imposed consequences that eventually augmented growth.
Collapse
Affiliation(s)
- Palin Sil
- Plant Physiology and Biochemistry Laboratory, Centre for Advanced Study, Department of Botany, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, India
| | - Asok K Biswas
- Plant Physiology and Biochemistry Laboratory, Centre for Advanced Study, Department of Botany, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, India.
| |
Collapse
|
20
|
Li X, Sun D, Feng H, Chen J, Chen Y, Li H, Cao Y, Ma LQ. Efficient arsenate reduction in As-hyperaccumulator Pteris vittata are mediated by novel arsenate reductases PvHAC1 and PvHAC2. JOURNAL OF HAZARDOUS MATERIALS 2020; 399:122895. [PMID: 32937698 DOI: 10.1016/j.jhazmat.2020.122895] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/05/2020] [Accepted: 04/21/2020] [Indexed: 06/11/2023]
Abstract
Arsenic-hyperaccumulator Pteris vittata is efficient in As absorption, reduction, and translocation. But the molecular mechanisms and locations of arsenate (AsV) reduction in P. vittata are still unclear. Here, we identified two new arsenate reductase genes from P. vittata, PvHAC1 and PvHAC2. Two PvHAC genes encoded a rhodanase-like protein, which were localized in the cytoplasm and nucleus. Both recombinant Escherichia coli strains and transgenic Arabidopsis thaliana lines showed arsenate reductase ability after expressing PvHAC genes. Further, expressing PvHAC2 enhanced As tolerance and reduced As accumulation in A. thaliana shoots under AsV exposure. Based on expression pattern analysis, PvHAC1 and PvHAC2 were predominantly expressed in the rhizomes and fronds of P. vittata. Different from those of HAC homologous genes in non-hyperaccumulators, little PvHAC was expressed in the roots. Besides, PvHAC1 expression was strongly upregulated under AsV exposure but not AsIII. The data suggest that arsenate reductase PvHAC1 in the rhizomes coupled with arsenate reductase PvHAC2 in the fronds of P. vittata played a critical role in As-hyperaccumulation by P. vittata, which helps to further improve its utility in phytoremediation of As-contaminated soils.
Collapse
Affiliation(s)
- Xinyuan Li
- State Key Lab of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu 210023, China
| | - Dan Sun
- State Key Lab of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu 210023, China
| | - Huayuan Feng
- State Key Lab of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu 210023, China
| | - Junxiu Chen
- State Key Lab of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu 210023, China
| | - Yanshan Chen
- School of the Environment, Nanjing Normal University, Nanjing, Jiangsu 210023, China
| | - Hongbo Li
- State Key Lab of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu 210023, China
| | - Yue Cao
- State Key Lab of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu 210023, China; School of Environmental Science and Engineering, Guangdong Provincial Key Lab for Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, China.
| | - Lena Q Ma
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
21
|
Song Y, Zhang F, Li H, Qiu B, Gao Y, Cui D, Yang Z. Antioxidant defense system in lettuces tissues upon various As species exposure. JOURNAL OF HAZARDOUS MATERIALS 2020; 399:123003. [PMID: 32534392 DOI: 10.1016/j.jhazmat.2020.123003] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 04/17/2020] [Accepted: 05/20/2020] [Indexed: 06/11/2023]
Abstract
Characterization of antioxidant response is essential to elucidate the mechanism for plants tolerating arsenic (As) stress. Ten-day old lettuces were exposed to 50, 100, and 200 μg L-1 of arsenite (As(III)), arsenate (As(V)) or dimethylarsinic acid (DMA) for 50 days in hydroponic culture. The activities of superoxide dismutase, catalase, peroxidase, glutathione peroxidase, monodehydroascorbate reductase, dehydroascorbate reductase and glutathione reductase, as well as the glutathione concentration in tissues, were monitored. And the speciation and occurrence of As were concurrently analyzed in roots and leaves. The results showed that As(III) was the predominant As species in lettuces upon inorganic As exposure, while DMA was the primary As species upon DMA exposure. DMA presented higher mobility than inorganic As. The reduction of As(V) in roots upon As(V) exposure and in leaves upon As(III) exposure were suggested. The alterations of enzymatic antioxidant activities and non-enzymatic antioxidant contents showed that the antioxidant responses were As species-dependent, dose-dependent and tissue-dependent. And upon As(V) and DMA exposures, antioxidant responses were more intense than that upon As(III) exposure. Further the results indicated that the antioxidant responses in lettuce were associated with the conversion and transport of As species.
Collapse
Affiliation(s)
- Yang Song
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha, China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha, China
| | - Fenglin Zhang
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha, China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha, China
| | - Haipu Li
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha, China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha, China.
| | - Bo Qiu
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha, China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha, China
| | - Ya Gao
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha, China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha, China
| | - Di Cui
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha, China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha, China
| | - Zhaoguang Yang
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha, China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha, China
| |
Collapse
|
22
|
Wagner S, Hoefer C, Puschenreiter M, Wenzel WW, Oburger E, Hann S, Robinson B, Kretzschmar R, Santner J. Arsenic redox transformations and cycling in the rhizosphere of Pteris vittata and Pteris quadriaurita. ENVIRONMENTAL AND EXPERIMENTAL BOTANY 2020; 177:104122. [PMID: 34103771 PMCID: PMC7610922 DOI: 10.1016/j.envexpbot.2020.104122] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Pteris vittata (PV) and Pteris quadriaurita (PQ) are reported to hyperaccumulate arsenic (As) when grown in Asrich soil. Yet, little is known about the impact of their unique As accumulation mechanisms on As transformations and cycling at the soil-root interface. Using a combined approach of two-dimensional (2D), sub-mm scale solute imaging of arsenite (AsIII), arsenate (AsV), phosphorus (P), manganese (Mn), iron (Fe) and oxygen (O2), we found localized patterns of AsIII/AsV redox transformations in the PV rhizosphere (AsIII/AsV ratio of 0.57) compared to bulk soil (AsIII/AsV ratio of ≤0.04). Our data indicate that the high As root uptake, translocation and accumulation from the As-rich experimental soil (2080 mg kg-1) to PV fronds (6986 mg kg-1) induced As detoxification via AsV reduction and AsIII root efflux, leading to AsIII accumulation and re-oxidation to AsV in the rhizosphere porewater. This As cycling mechanism is linked to the reduction of O2 and MnIII/IV (oxyhydr)oxides resulting in decreased O2 levels and increased Mn solubilization along roots. Compared to PV, we found 4-fold lower As translocation to PQ fronds (1611 mg kg-1), 2-fold lower AsV depletion in the PQ rhizosphere, and no AsIII efflux from PQ roots, suggesting that PQ efficiently controls As uptake to avoid toxic As levels in roots. Analysis of root exudates obtained from soil-grown PV showed that As acquisition by PV roots was not associated with phytic acid release. Our study demonstrates that two closely-related As-accumulating ferns have distinct mechanisms for As uptake modulating As cycling in As-rich environments.
Collapse
Affiliation(s)
- Stefan Wagner
- Department of Forest and Soil Sciences, Institute of Soil Research, Rhizosphere Ecology & Biogeochemistry Group, University of Natural Resources and Life Sciences, Vienna, Konrad-Lorenz-Strasse 24, 3430, Tulln, Austria
- Department General, Analytical and Physical Chemistry, Chair of General and Analytical Chemistry, Montanuniversität Leoben, Franz-Josef-Strasse 18, 8700, Leoben, Austria
- Department of Chemistry, Institute of Analytical Chemistry, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190, Vienna, Austria
| | - Christoph Hoefer
- Department of Forest and Soil Sciences, Institute of Soil Research, Rhizosphere Ecology & Biogeochemistry Group, University of Natural Resources and Life Sciences, Vienna, Konrad-Lorenz-Strasse 24, 3430, Tulln, Austria
- Department of Environmental Systems Science, Institute of Biogeochemistry and Pollutant Dynamics, Soil Chemistry Group, ETH Zürich, Universitätstrasse 16, CHN, 8092, Zürich, Switzerland
| | - Markus Puschenreiter
- Department of Forest and Soil Sciences, Institute of Soil Research, Rhizosphere Ecology & Biogeochemistry Group, University of Natural Resources and Life Sciences, Vienna, Konrad-Lorenz-Strasse 24, 3430, Tulln, Austria
| | - Walter W. Wenzel
- Department of Forest and Soil Sciences, Institute of Soil Research, Rhizosphere Ecology & Biogeochemistry Group, University of Natural Resources and Life Sciences, Vienna, Konrad-Lorenz-Strasse 24, 3430, Tulln, Austria
| | - Eva Oburger
- Department of Forest and Soil Sciences, Institute of Soil Research, Rhizosphere Ecology & Biogeochemistry Group, University of Natural Resources and Life Sciences, Vienna, Konrad-Lorenz-Strasse 24, 3430, Tulln, Austria
| | - Stephan Hann
- Department of Chemistry, Institute of Analytical Chemistry, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190, Vienna, Austria
| | - Brett Robinson
- School of Physical and Chemical Sciences, University of Canterbury, 20 Kirkwood Ave, Ilam, Christchurch, 8041, New Zealand
| | - Ruben Kretzschmar
- Department of Environmental Systems Science, Institute of Biogeochemistry and Pollutant Dynamics, Soil Chemistry Group, ETH Zürich, Universitätstrasse 16, CHN, 8092, Zürich, Switzerland
| | - Jakob Santner
- Department General, Analytical and Physical Chemistry, Chair of General and Analytical Chemistry, Montanuniversität Leoben, Franz-Josef-Strasse 18, 8700, Leoben, Austria
- Department of Crop Sciences, Institute of Agronomy, University of Natural Resources and Life Sciences, Vienna, Konrad-Lorenz-Strasse 24, 3430, Tulln, Austria
- Corresponding author. (J. Santner)
| |
Collapse
|
23
|
|
24
|
Hyperaccumulation of arsenic by Pteris vittata, a potential strategy for phytoremediation of arsenic-contaminated soil. ACTA ACUST UNITED AC 2020. [DOI: 10.1007/s42398-020-00106-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
25
|
van der Ent A, de Jonge MD, Spiers KM, Brueckner D, Montargès-Pelletier E, Echevarria G, Wan XM, Lei M, Mak R, Lovett JH, Harris HH. Confocal Volumetric μXRF and Fluorescence Computed μ-Tomography Reveals Arsenic Three-Dimensional Distribution within Intact Pteris vittata Fronds. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:745-757. [PMID: 31891245 DOI: 10.1021/acs.est.9b03878] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The fern Pteris vittata has been the subject of numerous studies because of its extreme arsenic hyperaccumulation characteristics. However, information on the arsenic chemical speciation and distribution across cell types within intact frozen-hydrated Pteris vittata fronds is necessary to better understand the arsenic biotransformation pathways in this unusual fern. While 2D X-ray absorption spectroscopy imaging studies show that different chemical forms of arsenic, As(III) and As(V), occur across the plant organs, depth-resolved information on arsenic distribution and chemical speciation in different cell types within tissues of Pteris vittata have not been reported. By using a combination of planar and confocal μ-X-ray fluorescence imaging and fluorescence computed μ-tomography, we reveal, in this study, the localization of arsenic in the endodermis and pericycle surrounding the vascular bundles in the rachis and the pinnules of the fern. Arsenic is also accumulated in the vascular bundles connecting into each sporangium, and in some mature sori. The use of 2D X-ray absorption near edge structure imaging allows for deciphering arsenic speciation across the tissues, revealing arsenate in the vascular bundles and arsenite in the endodermis and pericycle. This study demonstrates how different advanced synchrotron X-ray microscopy techniques can be complementary in revealing, at tissue and cellular levels, elemental distribution and chemical speciation in hyperaccumulator plants.
Collapse
Affiliation(s)
- Antony van der Ent
- Centre for Mined Land Rehabilitation, Sustainable Minerals Institute , The University of Queensland , St. Lucia , QLD 4072 , Australia
- Laboratoire Sols et Environnement, UMR 1120 , Université de Lorraine , Nancy 54000 , France
| | - Martin D de Jonge
- Australian Synchrotron , ANSTO , 800 Blackburn Road , Clayton , Victoria 3168 , Australia
| | - Kathryn M Spiers
- Photon Science , Deutsches Elektronen-Synchrotron DESY , Hamburg , 22607 , Germany
| | - Dennis Brueckner
- Photon Science , Deutsches Elektronen-Synchrotron DESY , Hamburg , 22607 , Germany
- Department of Physics , University of Hamburg , Hamburg , 20146 , Germany
- Faculty of Chemistry and Biochemistry , Ruhr-University Bochum , Bochum , 44801 , Germany
| | | | - Guillaume Echevarria
- Laboratoire Sols et Environnement, UMR 1120 , Université de Lorraine , Nancy 54000 , France
| | - Xiao-Ming Wan
- Institute of Geographic Sciences and Natural Resources , Research, Chinese Academy of Sciences , Beijing 100101 , China
- College of Resources and Environment , University of Chinese Academy of Sciences , Bejing 100049 , P. R. China
| | - Mei Lei
- Institute of Geographic Sciences and Natural Resources , Research, Chinese Academy of Sciences , Beijing 100101 , China
- College of Resources and Environment , University of Chinese Academy of Sciences , Bejing 100049 , P. R. China
| | - Rachel Mak
- School of Chemistry , University of Sydney , Sydney , NSW 2006 , Australia
| | - James H Lovett
- Department of Chemistry , The University of Adelaide , Adelaide , SA 5005 , Australia
| | - Hugh H Harris
- Department of Chemistry , The University of Adelaide , Adelaide , SA 5005 , Australia
| |
Collapse
|
26
|
Allevato E, Stazi SR, Marabottini R, D'Annibale A. Mechanisms of arsenic assimilation by plants and countermeasures to attenuate its accumulation in crops other than rice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 185:109701. [PMID: 31562999 DOI: 10.1016/j.ecoenv.2019.109701] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/18/2019] [Accepted: 09/19/2019] [Indexed: 05/27/2023]
Abstract
Arsenic is a ubiquitous metalloid in the biosphere, and its origin can be either geogenic or anthropic. Four oxidation states (-3, 0, +3 and + 5) characterize organic and inorganic As- compounds. Although arsenic is reportedly a toxicant, its harmful effects are closely related to its chemical form: inorganic compounds are most toxic, followed by organic ones and finally by arsine gas. Although drinking water is the primary source of arsenic exposure to humans, the metalloid enters the food chain through its uptake by crops, the extent of which is tightly dependent on its phytoavailability. Arsenate is taken up by roots via phosphate carriers, while arsenite is taken up by a subclass of aquaporins (NIP), some of which involved in silicon (Si) transport. NIP and Si transporters are also involved in the uptake of methylated forms of As. Once taken up, its distribution is regulated by the same type of transporters albeit with mobility efficiencies depending on As forms and its accumulation generally occurs in the following decreasing order: roots > stems > leaves > fruits (seeds). Besides providing a survey on the uptake and transport mechanisms in higher plants, this review reports on measures able to reducing plant uptake and the ensuing transfer into edible parts. On the one hand, these measures include a variety of plant-based approaches including breeding, genetic engineering of transport systems, graft/rootstock combinations, and mycorrhization. On the other hand, they include agronomic practices with a particular focus on the use of inorganic and organic amendments, treatment of irrigation water, and fertilization.
Collapse
Affiliation(s)
- Enrica Allevato
- Dipartimento per la Innovazione nei Sistemi Biologici, Agroalimentari e Forestali (DIBAF) Università Degli Studi Della Tuscia, Via San Camillo de Lellis Snc I, 1100 Viterbo Italy
| | - Silvia Rita Stazi
- Dipartimento per la Innovazione nei Sistemi Biologici, Agroalimentari e Forestali (DIBAF) Università Degli Studi Della Tuscia, Via San Camillo de Lellis Snc I, 1100 Viterbo Italy.
| | - Rosita Marabottini
- Dipartimento per la Innovazione nei Sistemi Biologici, Agroalimentari e Forestali (DIBAF) Università Degli Studi Della Tuscia, Via San Camillo de Lellis Snc I, 1100 Viterbo Italy
| | - Alessandro D'Annibale
- Dipartimento per la Innovazione nei Sistemi Biologici, Agroalimentari e Forestali (DIBAF) Università Degli Studi Della Tuscia, Via San Camillo de Lellis Snc I, 1100 Viterbo Italy
| |
Collapse
|
27
|
Li J, Zhao Q, Xue B, Wu H, Song G, Zhang X. Arsenic and nutrient absorption characteristics and antioxidant response in different leaves of two ryegrass (Lolium perenne) species under arsenic stress. PLoS One 2019; 14:e0225373. [PMID: 31774844 PMCID: PMC6881006 DOI: 10.1371/journal.pone.0225373] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 11/03/2019] [Indexed: 11/18/2022] Open
Abstract
Arsenic (As), a heavy metal element, causes soil environmental concerns in many parts of the world, and ryegrass has been considered as an effective plant species for bioremediation of heavy metal pollution including As. This study was designed to investigate As content, nutrient absorption and antioxidant enzyme activity associated with As tolerance in the mature leaves, expanded leaves and emerging leaves of perennial ryegrass (Lolium perenne) and annual ryegrass (Lolium multiflorum) under 100 mg·kg-1 As treatment. The contents of As, calcium (Ca), magnesium (Mg), manganese (Mn) in the leaves of both ryegrass species were greatest in the mature leaves and least in the emerging leaves. The nitrogen (N), phosphorus (P), potassium (K) contents of both ryegrass species were greatest in the emerging leaves and least in the mature leaves. The As treatment reduced biomass more in the mature leaves and expanded leaves relative to the emerging leaves for annual ryegrass and reduced more in emerging leaves relative to the mature and expanded leaves for perennial ryegrass. Perennial ryegrass had higher As content than annual ryegrass in all three kinds of leaves. The As treatment increased hydrogen peroxide (H2O2) in expanded leaves of two ryegrass species, relative to the control. The As treatment increased the ascorbate peroxidase (APX) activity in the expanded leaves of perennial ryegrass and the mature leaves of annual ryegrass, the catalase (CAT) activity in the mature and expanded leaves of perennial ryegrass and the emerging leaves of annual ryegrass, relative to the control. The As treatment reduced peroxidase (POD) activity in all three kinds of leaves of annual ryegrass and superoxide dismutase (SOD) activity in expanded leaves of perennial ryegrass, relative to the control. The results of this study suggest that As tolerance may vary among different ages of leaf and reactive oxygen species (ROS) and antioxidant enzyme activity may be associated with As tolerance in the ryegrass.
Collapse
Affiliation(s)
- Jinbo Li
- Institute of Turfgrass Science, Beijing Forestry University, Beijing, China
| | - Qian Zhao
- Institute of Turfgrass Science, Beijing Forestry University, Beijing, China
| | - Bohan Xue
- Institute of Turfgrass Science, Beijing Forestry University, Beijing, China
| | - Hongyan Wu
- Institute of Turfgrass Science, Beijing Forestry University, Beijing, China
| | - Guilong Song
- Institute of Turfgrass Science, Beijing Forestry University, Beijing, China
| | - Xunzhong Zhang
- School of Plant and Environmental Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
| |
Collapse
|
28
|
Cao Y, Feng H, Sun D, Xu G, Rathinasabapathi B, Chen Y, Ma LQ. Heterologous Expression of Pteris vittata Phosphate Transporter PvPht1;3 Enhances Arsenic Translocation to and Accumulation in Tobacco Shoots. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:10636-10644. [PMID: 31411864 DOI: 10.1021/acs.est.9b02082] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Arsenic-hyperaccumulator Pteris vittata is efficient in As accumulation and has been used in phytoremediation of As-contaminated soils. Arsenate (AsV) is the predominant As species in aerobic soils and is taken up by plants via phosphate transporters (Pht) including P. vittata. In this work, we cloned the PvPht1;3 full length coding sequence from P. vittata and investigated its role in As accumulation by yeast and plants. PvPht1;3 complemented a yeast P uptake mutant strain and showed a stronger affinity and transport capacity to AsV than PvPht1;2. In transgenic tobacco, PvPht1;3 enhanced AsV absorption and translocation, increasing As accumulation in the shoots under both hydroponic and soil experiments. On the basis of the expression patterns via qRT-PCR, PvPht1;3 was strongly induced by P deficiency but not As exposure. To further understand its expression pattern, transgenic Arabidopsis thaliana and soybean expressing the GUS reporter gene, driven by PvPht1;3 promoter, were produced. The GUS staining showed that the reporter gene was mainly expressed in the stele cells, indicating that PvPht1;3 was expressed in stele cells and was likely involved in P/As translocation. Taken together, the data suggested that PvPht1;3 was a high-affinity AsV transporter and was probably responsible for efficient As translocation in P. vittata. Our results suggest that expressing PvPht1;3 enhances As translocation and accumulation in plants, thereby improving phytoremediation of As-contaminated soils.
Collapse
Affiliation(s)
- Yue Cao
- State Key Lab of Pollution Control and Resource Reuse, School of the Environment , Nanjing University , Nanjing , Jiangsu 210023 , China
| | - Huayuan Feng
- State Key Lab of Pollution Control and Resource Reuse, School of the Environment , Nanjing University , Nanjing , Jiangsu 210023 , China
| | - Dan Sun
- State Key Lab of Pollution Control and Resource Reuse, School of the Environment , Nanjing University , Nanjing , Jiangsu 210023 , China
| | - Guohua Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture , Nanjing Agricultural University , Nanjing , Jiangsu 210095 , China
| | - Bala Rathinasabapathi
- Horticultural Sciences Department , University of Florida , Gainesville , Florida 32611 , United States
| | - Yanshan Chen
- State Key Lab of Pollution Control and Resource Reuse, School of the Environment , Nanjing University , Nanjing , Jiangsu 210023 , China
- School of the Environment , Nanjing Normal University , Nanjing , Jiangsu 210023 , China
| | - Lena Q Ma
- State Key Lab of Pollution Control and Resource Reuse, School of the Environment , Nanjing University , Nanjing , Jiangsu 210023 , China
| |
Collapse
|
29
|
Kerl CF, Schindele RA, Brüggenwirth L, Colina Blanco AE, Rafferty C, Clemens S, Planer-Friedrich B. Methylated Thioarsenates and Monothioarsenate Differ in Uptake, Transformation, and Contribution to Total Arsenic Translocation in Rice Plants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:5787-5796. [PMID: 31033272 DOI: 10.1021/acs.est.9b00592] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Methylated and inorganic thioarsenates have recently been reported from paddy fields besides the better-known oxyarsenates. Methylated thioarsenates are highly toxic for humans, yet their uptake, transformation, and translocation in rice plants is unknown. Here, hydroponic experiments with 20 day old rice plants showed that monomethylmonothioarsenate (MMMTA), dimethylmonothioarsenate (DMMTA), and monothioarsenate (MTA) were taken up by rice roots and could be detected in the xylem. Total arsenic (As) translocation from roots to shoots was higher for plants exposed to DMMTA, MTA, and dimethylarsenate (DMAV) compared to MMMTA and monomethylarsenate (MMAV). All thioarsenates were partially transformed in the presence of rice roots, but processes and extents differed. MMMTA was subject to abiotic oxidation and largely dethiolated to MMAV already outside the plant, probably due to root oxygen loss. DMMTA and MTA were not oxidized abiotically. Crude protein extracts showed rapid enzymatic reduction for MTA but not for DMMTA. Our study implies that DMMTA has the highest potential to contribute to total As accumulation in grains either as DMAV or partially as DMMTA. DMMTA has once been detected in rice grains using enzymatic extraction. By routine acid extraction, DMMTA is determined as DMAV and thus escapes regulation despite its toxicity.
Collapse
Affiliation(s)
- Carolin F Kerl
- Environmental Geochemistry, Bayreuth Center for Ecology and Environmental Research (BayCEER) , University of Bayreuth , D-95440 Bayreuth , Germany
| | - Ruth Alina Schindele
- Environmental Geochemistry, Bayreuth Center for Ecology and Environmental Research (BayCEER) , University of Bayreuth , D-95440 Bayreuth , Germany
| | - Lena Brüggenwirth
- Environmental Geochemistry, Bayreuth Center for Ecology and Environmental Research (BayCEER) , University of Bayreuth , D-95440 Bayreuth , Germany
| | - Andrea E Colina Blanco
- Environmental Geochemistry, Bayreuth Center for Ecology and Environmental Research (BayCEER) , University of Bayreuth , D-95440 Bayreuth , Germany
| | - Colleen Rafferty
- Plant Physiology, Bayreuth Center for Ecology and Environmental Research (BayCEER) , University of Bayreuth , D-95440 Bayreuth , Germany
| | - Stephan Clemens
- Plant Physiology, Bayreuth Center for Ecology and Environmental Research (BayCEER) , University of Bayreuth , D-95440 Bayreuth , Germany
| | - Britta Planer-Friedrich
- Environmental Geochemistry, Bayreuth Center for Ecology and Environmental Research (BayCEER) , University of Bayreuth , D-95440 Bayreuth , Germany
| |
Collapse
|
30
|
da Silva EB, Mussoline WA, Wilkie AC, Ma LQ. Arsenic removal and biomass reduction of As-hyperaccumulator Pteris vittata: Coupling ethanol extraction with anaerobic digestion. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 666:205-211. [PMID: 30798231 DOI: 10.1016/j.scitotenv.2019.02.161] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 02/10/2019] [Accepted: 02/10/2019] [Indexed: 06/09/2023]
Abstract
Improper disposal of arsenic-rich biomass and the lack of efficient methods to treat it may cause contamination in the environment. We developed an efficient method for arsenic (As) removal and biomass reduction of As-rich biomass of the As-hyperaccumulator Pteris vittata by coupling ethanol extraction with anaerobic digestion. This study assessed As partitioning among the three phases (gas, liquid and solid) after anaerobic digestion of P. vittata biomass. Biomass with and without As was first extracted with ethanol. Ethanol extraction removed ~93% As, with remaining As concentration at 197 mg kg-1. The extracted biomass was then digested at 35 °C under anaerobic conditions for 35 d. Arsenic in the digested biomass was reduced by 89%, with remaining As concentration at 60 mg kg-1. In addition, anaerobic digestion reduced the biomass by 64-71% and decreased the volatile solids content from 94 to 15-18%. Methane production was 145 and 160 LNCH4/kgVS after 35 d for As-rich and control biomass, respectively. As a final step, As concentration in anaerobic digestate supernatant was reduced to 0.26 mg L-1 by As-Mg precipitation. Overall, coupling ethanol extraction with anaerobic digestion decreased As concentration in P. vittata biomass from 2665 to 60 mg kg-1, or by 98%. At this level (<100 mg As kg-1), P. vittata biomass can be considered a safe material based on USEPA regulations. Effective As removal from P. vittata biomass prior to disposal improves the phytoremediation process and lowers biomass transport and landfill disposal costs.
Collapse
Affiliation(s)
- Evandro B da Silva
- Soil and Water Sciences Department, University of Florida-IFAS, Gainesville, FL 32611, United States
| | - Wendy A Mussoline
- Soil and Water Sciences Department, University of Florida-IFAS, Gainesville, FL 32611, United States
| | - Ann C Wilkie
- Soil and Water Sciences Department, University of Florida-IFAS, Gainesville, FL 32611, United States.
| | - Lena Q Ma
- Soil and Water Sciences Department, University of Florida-IFAS, Gainesville, FL 32611, United States; Research Center for Soil Contamination and Environment Remediation, Southwest Forestry University, Yunnan 650224, China
| |
Collapse
|
31
|
Xie MY, Tian ZH, Yang XL, Liu BH, Yang J, Lin HH. The role of OsNLA1 in regulating arsenate uptake and tolerance in rice. JOURNAL OF PLANT PHYSIOLOGY 2019; 236:15-22. [PMID: 30849693 DOI: 10.1016/j.jplph.2019.02.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 02/25/2019] [Accepted: 02/25/2019] [Indexed: 06/09/2023]
Abstract
Arsenic (As) contamination in agricultural soil can cause phytotoxicity and lead to As accumulation in crops. Rice (Oryza sativa) feeds half of the world's population, but the molecular mechanism of As detoxification is not well understood in rice. In this study, the role of OsNLA1 in arsenate uptake and tolerance in rice was analyzed. OsNLA1 expression was induced in response to As(V) stress. The osnla1 mutant was more sensitive to As(V) stress than those of the wild type (WT). When exposed to As(V), mutation of OsNLA1 resulted in 30% greater As accumulation in roots and shoots of the WT. Although OsPT8 expression was induced after As(V) exposure, the amount of its protein was reduced. Unexpectedly, the osnla1 mutant showed a significant increase in punctate structures of OsPT8-GFP in response to As(V) stress, while the amount of the OsPT8-GFP protein in the osnla1 mutant was greater than in the WT. Combining OsNLA1 mutation with OsPT8 overexpression resulted in As(V) hypersensitivity, As hyperaccumulation, and higher shoot to root ratio of As in rice. These results indicated that OsNLA1 plays an important role in arsenate uptake and tolerance, mainly via regulating the amount of Pi transporters.
Collapse
Affiliation(s)
- Meng-Yang Xie
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, China
| | - Zhi-Hui Tian
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, China
| | - Xiao-Li Yang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, China
| | - Bao-Hui Liu
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Jian Yang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, China.
| | - Hong-Hui Lin
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, China.
| |
Collapse
|
32
|
Kashiwabara T, Tanoi K, Kitajima N, Hokura A, Abe T, Nakanishi T, Nakai I. Comparative in vivo Imaging of Arsenic and Phosphorus in Pteris vittata Gametophyte by Synchrotron μ-XRF and Radioactive Tracer Techniques. CHEM LETT 2019. [DOI: 10.1246/cl.180996] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Teruhiko Kashiwabara
- Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushimacho, Yokosuka, Kanagawa 237-0061, Japan
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku, Tokyo 162-8601, Japan
| | - Keitaro Tanoi
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | - Akiko Hokura
- Department of Applied Chemistry, School of Engineering, Tokyo Denki University, 5 Senju-Asahicho, Adachi, Tokyo 120-8551, Japan
| | - Tomoko Abe
- RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Tomoko Nakanishi
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Izumi Nakai
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku, Tokyo 162-8601, Japan
| |
Collapse
|
33
|
Garg N, Kashyap L. Joint effects of Si and mycorrhiza on the antioxidant metabolism of two pigeonpea genotypes under As (III) and (V) stress. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:7821-7839. [PMID: 30680683 DOI: 10.1007/s11356-019-04256-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 01/15/2019] [Indexed: 06/09/2023]
Abstract
Arsenic (As) is the most hazardous soil contaminant, which inactivates metabolic enzymes and restrains plant growth. To withstand As stress conditions, use of some alleviative tools, such as arbuscular mycorrhizal (AM) fungi and silicon (Si), has gained importance. Therefore, the present study evaluated comparative and interactive effects of Si and arbuscular mycorrhiza-Rhizophagus irregularis on phytotoxicity of arsenate (As V) and arsenite (As III) on plant growth, ROS generation, and antioxidant defense responses in pigeonpea genotypes (Tolerant-Pusa 2002; Sensitive-Pusa 991). Roots of As III treated plants accumulated significantly higher total As than As V supplemented plants, more in Pusa 991 than Pusa 2002, which corresponded to proportionately decreased plant growth, root to biomass ratio, and oxidative burst. Although Si nutrition and AM inoculations improved plant growth by significantly reducing As uptake and the resultant oxidative burst, AM was relatively more efficient in upregulating enzymatic and non-enzymatic antioxidant defense responses as well as ascorbate-glutathione pathway when compared with Si. Pusa 2002 was more receptive to Si nourishment due to its ability to establish more efficient mycorrhizal symbiosis, which led to higher Si uptake and lower As concentrations. Moreover, +Si+AM bestowed better metalloid resistance by further reducing ROS and strengthening antioxidants. Results demonstrated that the genotype with more efficient AM symbiosis in As-contaminated soils could accrue higher benefits of Si fertilization in terms of metalloid tolerance in pigeonpea.
Collapse
Affiliation(s)
- Neera Garg
- Department of Botany, Panjab University, Chandigarh, 160014, India.
| | - Lakita Kashyap
- Department of Botany, Panjab University, Chandigarh, 160014, India
| |
Collapse
|
34
|
Li JT, Gurajala HK, Wu LH, van der Ent A, Qiu RL, Baker AJM, Tang YT, Yang XE, Shu WS. Hyperaccumulator Plants from China: A Synthesis of the Current State of Knowledge. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:11980-11994. [PMID: 30272967 DOI: 10.1021/acs.est.8b01060] [Citation(s) in RCA: 131] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Hyperaccumulator plants are the material basis for phytoextraction research and for practical applications in decontaminating polluted soils and industrial wastes. China's high biodiversity and substantial mineral resources make it a global hotspot for hyperaccumulator plant species. Intensive screening efforts over the past 20 years by researchers working in China have led to the discovery of many different hyperaccumulators for a range of elements. In this review, we present the state of knowledge on all currently reported hyperaccumulator species from China, including Cardamine hupingshanensis (selenium, Se), Dicranopteris dichotoma (rare earth elements, REEs), Elsholtzia splendens (copper, Cu), Phytolacca americana (manganese, Mn), Pteris vittata (arsenic, As), Sedum alfredii, and Sedum plumbizincicola (cadmium/zinc, Cd/Zn). This review covers aspects of the ecophysiology and molecular biology of tolerance and hyperaccumulation for each element. The major scientific advances resulting from the study of hyperaccumulator plants in China are summarized and synthesized.
Collapse
Affiliation(s)
- Jin-Tian Li
- School of Life Sciences , South China Normal University , Guangzhou 510631 , P.R. China
| | - Hanumanth Kumar Gurajala
- College of Environmental & Resources Science , Zhejiang University , Hangzhou 310058 , P.R. China
| | - Long-Hua Wu
- Institute of Soil Science, Chinese Academy of Sciences , Nanjing 210008 , P.R. China
| | - Antony van der Ent
- Centre for Mined Land Rehabilitation, Sustainable Minerals Institute , The University of Queensland , Brisbane , Australia
- Laboratoire Sols et Environnement, UMR , Université de Lorraine - INRA , Nancy 1120 , France
| | - Rong-Liang Qiu
- School of Environmental Science and Engineering , Sun Yat-sen University , Guangzhou 510275 , P.R. China
| | - Alan J M Baker
- Centre for Mined Land Rehabilitation, Sustainable Minerals Institute , The University of Queensland , Brisbane , Australia
- Laboratoire Sols et Environnement, UMR , Université de Lorraine - INRA , Nancy 1120 , France
- School of BioSciences , The University of Melbourne , Victoria 3010 , Australia
| | - Ye-Tao Tang
- School of Environmental Science and Engineering , Sun Yat-sen University , Guangzhou 510275 , P.R. China
| | - Xiao-E Yang
- College of Environmental & Resources Science , Zhejiang University , Hangzhou 310058 , P.R. China
| | - Wen-Sheng Shu
- School of Life Sciences , South China Normal University , Guangzhou 510631 , P.R. China
| |
Collapse
|
35
|
Liu Y, Nie Y, Wang J, Wang J, Wang X, Chen S, Zhao G, Wu L, Xu A. Mechanisms involved in the impact of engineered nanomaterials on the joint toxicity with environmental pollutants. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 162:92-102. [PMID: 29990744 DOI: 10.1016/j.ecoenv.2018.06.079] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 06/21/2018] [Accepted: 06/25/2018] [Indexed: 06/08/2023]
Abstract
Emerging nanoscience and nanotechnology inevitably facilitate discharge of engineered nanomaterials (ENMs) into the environment. Owing to their versatile physicochemical properties, ENMs invariably come across and interact with various pollutants already existing in the environment, leading to considerable uncertainty regarding the risk assessment of pollutants. Nevertheless, the underlying mechanisms of the complicated joint toxicity are still largely unexplored. This review aims to aid in understanding the interaction of ENMs and pollutants from the perspective of ecological and environmental health risk assessment. Based on related research published from 2005 to 2018, this review focuses on summarizing the effect of ENMs on the toxicity of pollutants both in vivo and in vitro. Physicochemical interaction appears as a main factor affecting ENMs-pollutants joint toxicity, with the mechanisms and the resultants for ENM-pollutant adsorption been illustrated. Cellular and molecular mechanisms involved in the joint toxicity of ENMs and pollutants are discussed, including the effect of ENMs on the bioaccumulation, biodistribution, and metabolism of pollutants, as well as the defense responses of organisms against such pollutants. Future in-depth investigation are suggested to focus on further exploring biological mechanisms (especially for the antagonized effect of ENMs against pollutants), using more advanced mammalian models, and paying more attention to the realistic exposure scenarios.
Collapse
Affiliation(s)
- Yun Liu
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Chinese Academy of Sciences; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, PR China
| | - Yaguang Nie
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Chinese Academy of Sciences; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, PR China
| | - Jingjing Wang
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Chinese Academy of Sciences; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, PR China; School of Environmental Science and Optoelectronic Technology, University of Science and Technology of China, Hefei, Anhui 230026, PR China
| | - Juan Wang
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Chinese Academy of Sciences; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, PR China; University of Science and Technology of China, Hefei, Anhui 230026, PR China
| | - Xue Wang
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Chinese Academy of Sciences; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, PR China; School of Environmental Science and Optoelectronic Technology, University of Science and Technology of China, Hefei, Anhui 230026, PR China
| | - Shaopeng Chen
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Chinese Academy of Sciences; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, PR China
| | - Guoping Zhao
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Chinese Academy of Sciences; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, PR China
| | - Lijun Wu
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Chinese Academy of Sciences; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, PR China; Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230601, PR China
| | - An Xu
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Chinese Academy of Sciences; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, PR China; Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230601, PR China.
| |
Collapse
|
36
|
Sharma V, Pant D. Structural basis for expanding the application of bioligand in metal bioremediation: A review. BIORESOURCE TECHNOLOGY 2018; 252:188-197. [PMID: 29307506 DOI: 10.1016/j.biortech.2017.12.070] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 12/20/2017] [Accepted: 12/21/2017] [Indexed: 06/07/2023]
Abstract
Bioligands (BL) present in plant and microbes are primarily responsible for their use in metal decontamination. Both primary (proteins and amino acid) and secondary (proliferated) response in the form of BL is possible in plants and microbes toward metal bioremediation. Structure of these BL have specific requirement for preferential binding towards a particular metal in biomass. The aim of this review is to explore various templates from BL (as metal host) for the metal detoxification/decontamination and associated bioremediation. Mechanistic explanation for bioremediation may involve the various processes like: (i) electron transfer; (ii) translocation; and (iii) coordination number variation. HSAB (hard and soft acid and base) concept can act as guiding principle for many such processes. It is possible to investigate various structural homolog of BL (similar to secondary response in living stage) for the possible improvement in bioremediation process.
Collapse
Affiliation(s)
- Virbala Sharma
- Department of Environmental Sciences, Central University of Himachal Pradesh, Dharamshala, Himachal Pradesh 176215, India
| | - Deepak Pant
- Department of Environmental Sciences, Central University of Himachal Pradesh, Dharamshala, Himachal Pradesh 176215, India.
| |
Collapse
|
37
|
da Silva EB, de Oliveira LM, Wilkie AC, Liu Y, Ma LQ. Arsenic removal from As-hyperaccumulator Pteris vittata biomass: Coupling extraction with precipitation. CHEMOSPHERE 2018; 193:288-294. [PMID: 29145089 DOI: 10.1016/j.chemosphere.2017.10.116] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Revised: 10/16/2017] [Accepted: 10/21/2017] [Indexed: 06/07/2023]
Abstract
Proper disposal of As-hyperaccumulator Pteris vittata biomass (Chinese brake fern) enhances its application in phytoremediation. The goal of this study was to optimize As removal from P. vittata (PV) biomass by testing different particle sizes, extractants, extraction times and solid-to-liquid ratios. PV biomass was extracted using different extractants followed by different Mg-salts to recover soluble As via precipitation. Water-soluble As in PV biomass varied from 6.8% to 61% of total As depending on extraction time, with 99% of As being arsenate (AsV). Extraction with 2.1% HCl, 2.1% H3PO4, 1 M NaOH and 50% ethanol recovered 81, 78, 47 and 14% of As from PV biomass. A follow-up extraction using HCl recovered 27-32% with ethanol recovering only 5%. Though ethanol showed the lowest extractable As, residual As in the biomass was also the lowest. Among the extractants, 35% ethanol was the best to remove As from PV biomass. Approximately 90% As was removed from PV biomass using particle size <1 mm at solid:liquid ratio 1:50 and pH 6 for 2 h. Adding MgCl2 at As:Mg ratio of 1:400 with pH 9.5 was effective to precipitate soluble As, resulting in 98% removal. Effective removal of As from PV biomass prior to disposal helps make phytoremediation more feasible.
Collapse
Affiliation(s)
- Evandro B da Silva
- Research Institute of Rural Sewage Treatment, South West Forestry University, Yunnan 650224, China; Soil and Water Sciences Department, University of Florida, Gainesville, FL 32611, United States
| | - Letuzia M de Oliveira
- Soil and Water Sciences Department, University of Florida, Gainesville, FL 32611, United States
| | - Ann C Wilkie
- Soil and Water Sciences Department, University of Florida, Gainesville, FL 32611, United States
| | - Yungen Liu
- Research Institute of Rural Sewage Treatment, South West Forestry University, Yunnan 650224, China.
| | - Lena Q Ma
- Research Institute of Rural Sewage Treatment, South West Forestry University, Yunnan 650224, China; Soil and Water Sciences Department, University of Florida, Gainesville, FL 32611, United States.
| |
Collapse
|
38
|
Han YH, Jia MR, Liu X, Zhu Y, Cao Y, Chen DL, Chen Y, Ma LQ. Bacteria from the rhizosphere and tissues of As-hyperaccumulator Pteris vittata and their role in arsenic transformation. CHEMOSPHERE 2017; 186:599-606. [PMID: 28813694 DOI: 10.1016/j.chemosphere.2017.08.031] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 07/28/2017] [Accepted: 08/08/2017] [Indexed: 06/07/2023]
Abstract
Arsenic (As)-resistant bacteria are abundant in the rhizosphere and tissues of As-hyperaccumulator Pteris vittata. However, little is known about their roles in As transformation and As uptake in P. vittata. In this study, the impacts of P. vittata tissue extracts with or without surface sterilization on As transformation in solutions containing 100 μg L-1 AsIII or AsV were investigated. After 48 h incubation, the sterilized and unsterilized root extracts resulted in 45% and 73% oxidation of AsIII, indicating a role of both rhizobacteria and endobacteria. In contrast, AsV reduction was only found in rhizome and frond extracts at 3.7-24% of AsV. A total of 37 strains were isolated from the tissue extracts, which are classified into 18 species based on morphology and 16S rRNA. Phylogenic analysis showed that ∼44% isolates were Firmicutes and others were Proteobacteria except for one strain belonging to Bacteroidetes. While most endobacteria were Firmicutes, most rhizobacteria were Proteobacteria. All isolated bacteria belonged to AsV reducers except for an As-sensitive strain and one AsIII- oxidizer PVR-YHB6-1. Since As transformation was not observed in solutions after filtrating or boiling, we concluded that both rhizobacteria and endobacteria were involved in As transformation in the rhizosphere and tissues of P. vittata.
Collapse
Affiliation(s)
- Yong-He Han
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu, 210023, China; Quangang Petrochemical Research Institute, Fujian Normal University, Quanzhou, Fujian, 326801, China
| | - Meng-Ru Jia
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu, 210023, China
| | - Xue Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu, 210023, China
| | - Ying Zhu
- Fujian Center for Disease Control & Prevention, Fuzhou, Fujian, 350001, China
| | - Yue Cao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu, 210023, China
| | - Deng-Long Chen
- Quangang Petrochemical Research Institute, Fujian Normal University, Quanzhou, Fujian, 326801, China
| | - Yanshan Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu, 210023, China.
| | - Lena Q Ma
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu, 210023, China; Soil and Water Sciences Department, University of Florida, Gainesville, FL 32611, United States.
| |
Collapse
|
39
|
Das S, de Oliveira LM, da Silva E, Ma LQ. Arsenate and fluoride enhanced each other's uptake in As-sensitive plant Pteris ensiformis. CHEMOSPHERE 2017; 180:448-454. [PMID: 28419958 DOI: 10.1016/j.chemosphere.2017.04.050] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 04/07/2017] [Accepted: 04/09/2017] [Indexed: 06/07/2023]
Abstract
We investigated the effects of arsenate (AsV) and fluoride (F) on each other's uptake in an As-sensitive plant Pteris ensiformis. Plants were exposed to 1) 0.1 × Hoagland solution control, 2) 3.75 mg L-1 As and 1.9, 3.8, or 7.6 mg L-1 F, or 3) 1 mg L-1 F and 3.75 mg L-1 or 7.5 mg L-1 As for 7 d in hydroponics. P. ensiformis accumulated 14.7-32.6 mg kg-1 As at 3.75 mg L-1 AsV, and 99-145 mg kg-1 F at 1 mg L-1 F. Our study revealed that AsV and F increased each other's uptake when co-present. At 1.9 mg L-1, F increased frond As uptake from 14.7 to 40.3 mg kg-1, while 7.5 mg L-1 As increased frond F uptake from 99 to 371 mg kg-1. Although, AsV was the predominant As species in all tissues, F enhanced AsIII levels in the rhizomes and fronds, while the reverse was observed in the roots. Increasing As concentrations also enhanced TBARS and H2O2 in tissues, indicating oxidative stress. However, F alleviated As stress by lowering their levels in the fronds. Frond and root membrane leakage were also evident due to As or F exposure. The results may facilitate better understanding of the mechanisms underlying the co-uptake of As and F in plants. However, the mechanisms of how they enhance each other's uptake in P. ensiformis need further investigation.
Collapse
Affiliation(s)
- Suchismita Das
- Soil and Water Science Department, University of Florida, Gainesville, FL, 32611, United States; Life Science and Bioinformatics, Assam University, Silchar, India
| | - Letuzia M de Oliveira
- Soil and Water Science Department, University of Florida, Gainesville, FL, 32611, United States
| | - Evandro da Silva
- Soil and Water Science Department, University of Florida, Gainesville, FL, 32611, United States
| | - Lena Q Ma
- Soil and Water Science Department, University of Florida, Gainesville, FL, 32611, United States; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210046, People's Republic of China.
| |
Collapse
|
40
|
Han YH, Liu X, Rathinasabapathi B, Li HB, Chen Y, Ma LQ. Mechanisms of efficient As solubilization in soils and As accumulation by As-hyperaccumulator Pteris vittata. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 227:569-577. [PMID: 28501771 DOI: 10.1016/j.envpol.2017.05.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 04/30/2017] [Accepted: 05/01/2017] [Indexed: 06/07/2023]
Abstract
Arsenic (As) in soils is of major environmental concern due to its ubiquity and carcinogenicity. Pteris vittata (Chinese brake fern) is the first known As-hyperaccumulator, which is highly efficient in extracting As from soils and translocating it to the fronds, making it possible to be used for phytoremediation of As-contaminated soils. In addition, P. vittata has served as a model plant to study As metabolisms in plants. Based on the recent advances, we reviewed the mechanisms of efficient As solubilization and transformation in rhizosphere soils of P. vittata and effective As uptake, translocation and detoxification in P. vittata. We also provided future research perspectives to further improve As phytoremediation by P. vittata.
Collapse
Affiliation(s)
- Yong-He Han
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu, 210046, China
| | - Xue Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu, 210046, China
| | - Bala Rathinasabapathi
- Horticultural Sciences Department, University of Florida, Gainesville, FL, 32611, United States
| | - Hong-Bo Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu, 210046, China
| | - Yanshan Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu, 210046, China.
| | - Lena Q Ma
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu, 210046, China; Soil and Water Science Department, University of Florida, Gainesville, FL, 32611, United States.
| |
Collapse
|
41
|
Affiliation(s)
- David E Salt
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Sutton Bonington, LE12 5RD, UK
| |
Collapse
|
42
|
Souri Z, Karimi N, Sandalio LM. Arsenic Hyperaccumulation Strategies: An Overview. Front Cell Dev Biol 2017; 5:67. [PMID: 28770198 PMCID: PMC5513893 DOI: 10.3389/fcell.2017.00067] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 06/30/2017] [Indexed: 01/01/2023] Open
Abstract
Arsenic (As) pollution, which is on the increase around the world, poses a growing threat to the environment. Phytoremediation, an important green technology, uses different strategies, including As uptake, transport, translocation, and detoxification, to remediate this metalloid. Arsenic hyperaccumulator plants have developed various strategies to accumulate and tolerate high concentrations of As. In these plants, the formation of AsIII complexes with GSH and phytochelatins and their transport into root and shoot vacuoles constitute important mechanisms for coping with As stress. The oxidative stress induced by reactive oxygen species (ROS) production is one of the principal toxic effects of As; moreover, the strong antioxidative defenses in hyperaccumulator plants could constitute an important As detoxification strategy. On the other hand, nitric oxide activates antioxidant enzyme and phytochelatins biosynthesis which enhances As stress tolerance in plants. Although several studies have focused on transcription, metabolomics, and proteomic changes in plants induced by As, the mechanisms involved in As transport, translocation, and detoxification in hyperaccumulator plants need to be studied in greater depth. This review updates recent progress made in the study of As uptake, translocation, chelation, and detoxification in As hyperaccumulator plants.
Collapse
Affiliation(s)
- Zahra Souri
- Laboratory of Plant Physiology, Department of Biology, Faculty of Science, Razi UniversityKermanshah, Iran
| | - Naser Karimi
- Laboratory of Plant Physiology, Department of Biology, Faculty of Science, Razi UniversityKermanshah, Iran
| | - Luisa M. Sandalio
- Laboratory of Oxygen and Nitrogen Species Signalling Under Plant Stress Conditions, Department of Biochemistry and Molecular and Cellular Biology of Plants, Estación Experimental del Zaidín, Consejo Superior de Investigaciones CientíficasGranada, Spain
| |
Collapse
|
43
|
Datta R, Das P, Tappero R, Punamiya P, Elzinga E, Sahi S, Feng H, Kiiskila J, Sarkar D. Evidence for exocellular Arsenic in Fronds of Pteris vittata. Sci Rep 2017; 7:2839. [PMID: 28588214 PMCID: PMC5460129 DOI: 10.1038/s41598-017-03194-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 04/25/2017] [Indexed: 11/08/2022] Open
Abstract
The arsenic (As) hyperaccumulating fern species Pteris vittata (PV) is capable of accumulating large quantities of As in its aboveground tissues. Transformation to AsIII and vacuolar sequestration is believed to be the As detoxification mechanism in PV. Here we present evidence for a preponderance of exocellular As in fronds of Pteris vittata despite numerous reports of a tolerance mechanism involving intracellular compartmentalization. Results of an extraction experiment show that 43-71% of the As extruded out of the fronds of PV grown in 0.67, 3.3 and 6.7 mM AsV. SEM-EDX analysis showed that As was localized largely on the lower pinna surface, with smaller amounts on the upper surface, as crystalline deposits. X-ray fluorescence imaging of pinna cross-sections revealed preferential localization of As on the pinna surface in the proximity of veins, with the majority localized near the midrib. Majority of the As in the pinnae is contained in the apoplast rather than vacuoles. Our results provide evidence that exocellular sequestration is potentially a mechanism of As detoxification in PV, particularly at higher As concentrations, raising concern about its use for phytoremediation.
Collapse
Affiliation(s)
- Rupali Datta
- Department of Biological Sciences, Michigan Technological University, Houghton, MI, 49931, USA
| | - Padmini Das
- Department of Biology, Nazareth College of Rochester, NY, 14618, USA
| | - Ryan Tappero
- Photon Sciences Division, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Pravin Punamiya
- Parsons, 200 Cottontail Lane South 08873, Somerset, 08873, NJ, United States
| | - Evert Elzinga
- Department of Earth & Environmental Sciences, Rutgers University, Newark, NJ, 07102, USA
| | - Shivendra Sahi
- Department of Biology, Western Kentucky University, Bowling Green, KY, 42101, USA
| | - Huan Feng
- Department of Earth and Environmental Studies, Montclair State University, Montclair, NJ, 07043, USA
| | - Jeffrey Kiiskila
- Department of Biological Sciences, Michigan Technological University, Houghton, MI, 49931, USA
| | - Dibyendu Sarkar
- Department of Civil, Environmental and Ocean Engineering, Stevens Institute of Technology, Hoboken, NJ, 07030, USA.
| |
Collapse
|
44
|
Zhang X, Yang X, Wang H, Li Q, Wang H, Li Y. A significant positive correlation between endogenous trans-zeatin content and total arsenic in arsenic hyperaccumulator Pteris cretica var. nervosa. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2017; 138:199-205. [PMID: 28061413 DOI: 10.1016/j.ecoenv.2016.12.031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 12/16/2016] [Accepted: 12/27/2016] [Indexed: 06/06/2023]
Abstract
A pot experiment was conducted to compare the content of endogenous trans-zeatin (Z), plant arsenic (As) uptake and physiological indices in the fronds of As-hyperaccumulator (Pteris cretica var. nervosa) and non-hyperaccumulator (Pteris ensiformis). Furthermore, a stepwise regression method was used to study the relationship among determined indices, and the time-course effect of main indices was also investigated under 100mg/kg As stress with time extension. In the 100-200mg/kg As treatments, plant height showed no significant difference and endogenous Z content significantly increased in P. cretica var. nervosa compared to the control, but a significant decrease of height and endogenous Z was observed in P. ensiformis. The concentrations of As (III) and As (V) increased significantly in the fronds of two plants, but this increase was much higher in P. cretica var. nervosa. Compared to the control, the contents of chlorophyll and soluble protein were significantly increased in P. cretica var. nervosa but decreased in P. ensiformis in the 200mg/kg As treatment, respectively. A significant positive correlation was found between the contents of endogenous Z and total As in P. cretica var. nervosa, but such a correlation was not found in P. ensiformis. Additionally, in the time-course effect experiment, a peak value of each index was appeared in the 43rd day in two plants, except for chlorophyll in P. ensiformis, but this value was significantly higher in P. cretica var. nervosa than that in P. ensiformis. In conclusion, a higher endogenous Z content contributed to As accumulation of P. cretica var. nervosa under As stress.
Collapse
Affiliation(s)
- Xuemei Zhang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan Province 650500, China
| | - Xiaoyan Yang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan Province 650500, China
| | - Hongbin Wang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan Province 650500, China.
| | - Qinchun Li
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan Province 650500, China
| | - Haijuan Wang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan Province 650500, China
| | - Yanyan Li
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan Province 650500, China
| |
Collapse
|
45
|
DiTusa SF, Fontenot EB, Wallace RW, Silvers MA, Steele TN, Elnagar AH, Dearman KM, Smith AP. A member of the Phosphate transporter 1 (Pht1) family from the arsenic-hyperaccumulating fern Pteris vittata is a high-affinity arsenate transporter. THE NEW PHYTOLOGIST 2016; 209:762-72. [PMID: 26010225 DOI: 10.1111/nph.13472] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 04/21/2015] [Indexed: 05/18/2023]
Abstract
Pteris vittata exhibits enhanced arsenic uptake, but the corresponding mechanisms are not well known. The prevalent form of arsenic in most soils is arsenate, which is a phosphate analog and a substrate for Phosphate transporter 1 (Pht1) transporters. Herein we identify and characterize three P. vittata Pht1 transporters. Pteris vittata Pht1 cDNAs were isolated and characterized via heterologous expression in Saccharomyces cerevisiae (yeast) and Nicotiana benthamiana leaves. Expression of the PvPht1 loci in P. vittata gametophytes was also examined in response to phosphate deficiency and arsenate exposure. Expression of each of the PvPht1 cDNAs complemented the phosphate uptake defect of a yeast mutant. Compared with yeast cells expressing Arabidopsis thaliana Pht1;5, cells expressing PvPht1;3 were more sensitive to arsenate, and accumulated more arsenic. Uptake assays with yeast cells and radiolabeled (32)P revealed that PvPht1;3 and AtPht1;5 have similar affinities for phosphate, but the affinity of PvPht1;3 for arsenate is much greater. In P. vittata gametophytes, PvPht1;3 transcript levels increased in response to phosphate (Pi) deficiency and arsenate exposure. PvPht1;3 is induced by Pi deficiency and arsenate, and encodes a phosphate transporter that has a high affinity for arsenate. PvPht1;3 probably contributes to the enhanced arsenate uptake capacity and affinity exhibited by P. vittata.
Collapse
Affiliation(s)
- Sandra Feuer DiTusa
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Elena B Fontenot
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Robert W Wallace
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Molly A Silvers
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Thomas N Steele
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Alia H Elnagar
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Kelsey M Dearman
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Aaron P Smith
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA
| |
Collapse
|
46
|
He Z, Yan H, Chen Y, Shen H, Xu W, Zhang H, Shi L, Zhu YG, Ma M. An aquaporin PvTIP4;1 from Pteris vittata may mediate arsenite uptake. THE NEW PHYTOLOGIST 2016; 209:746-61. [PMID: 26372374 DOI: 10.1111/nph.13637] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 08/05/2015] [Indexed: 05/07/2023]
Abstract
The fern Pteris vittata is an arsenic hyperaccumulator. The genes involved in arsenite (As(III)) transport are not yet clear. Here, we describe the isolation and characterization of a new P. vittata aquaporin gene, PvTIP4;1, which may mediate As(III) uptake. PvTIP4;1 was identified from yeast functional complement cDNA library of P. vittata. Arsenic toxicity and accumulating activities of PvTIP4;1 were analyzed in Saccharomyces cerevisiae and Arabidopsis. Subcellular localization of PvTIP4;1-GFP fusion protein in P. vittata protoplast and callus was conducted. The tissue expression of PvTIP4;1 was investigated by quantitative real-time PCR. Site-directed mutagenesis of the PvTIP4;1 aromatic/arginine (Ar/R) domain was studied. Heterologous expression in yeast demonstrates that PvTIP4;1 was able to facilitate As(III) diffusion. Transgenic Arabidopsis showed that PvTIP4;1 increases arsenic accumulation and induces arsenic sensitivity. Images and FM4-64 staining suggest that PvTIP4;1 localizes to the plasma membrane in P. vittata cells. A tissue location study shows that PvTIP4;1 transcripts are mainly expressed in roots. Site-directed mutation in yeast further proved that the cysteine at the LE1 position of PvTIP4;1 Ar/R domain is a functional site. PvTIP4;1 is a new represented tonoplast intrinsic protein (TIP) aquaporin from P. vittata and the function and location results imply that PvTIP4;1 may be involved in As(III) uptake.
Collapse
Affiliation(s)
- Zhenyan He
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Huili Yan
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanshan Chen
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hongling Shen
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenxiu Xu
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Haiyan Zhang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Lei Shi
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Yong-Guan Zhu
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Mi Ma
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| |
Collapse
|
47
|
Campos NV, Arcanjo-Silva S, Viana IB, Batista BL, Barbosa F, Loureiro ME, Ribeiro C, Azevedo AA. Arsenic-induced responses in Pityrogramma calomelanos (L.) Link: Arsenic speciation, mineral nutrition and antioxidant defenses. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2015; 97:28-35. [PMID: 26408808 DOI: 10.1016/j.plaphy.2015.09.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 09/15/2015] [Accepted: 09/15/2015] [Indexed: 06/05/2023]
Abstract
Arsenic (As) hyperaccumulation trait has been described in a limited number of fern species. The physiological basis of hyperaccumulation remains unclear, especially in non-Pteris species such as Pityrogramma calomelanos. Aiming at a better understanding of As-induced responses, P. calomelanos plants were exposed to 1 mM As for 21 days and compared with control plants. Chemical analyses revealed that As accumulation was ten times higher in pinnae then in roots and stipes. In pinnae, As was present mainly as arsenite, whereas arsenate was the dominant form in stipes and roots. Arsenic promoted an increase in antioxidant enzyme activities in both fern parts and several alterations in mineral nutrition, especially with regard to P and K. A higher content of non-protein thiols was observed in pinnae of plants exposed to As, whereas As induced the increase in lipid peroxidation in roots. The results showed that Pityrogramma calomelanos shares with Pteris vittata several aspects of As metabolism. High root-shoot As translocation showed to be essential to avoid toxic effects in roots, since the root is more sensitive to the metalloid. The higher capacity of P. calomelanos to sequester arsenite in the pinna and its efficient antioxidant system maintain the reactive oxygen species at a low level, thus enhancing the continuous accumulation of As. Molecular investigations are needed to elucidate the evolution of As-tolerance mechanisms in Pteridaceae species, especially with regard to membrane transporters and ROS signaling.
Collapse
Affiliation(s)
- N V Campos
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, MG, Brazil
| | - S Arcanjo-Silva
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, MG, Brazil
| | - I B Viana
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, MG, Brazil
| | - B L Batista
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirao Preto, Universidade de São Paulo, 14040-903, Ribeirão Preto, SP, Brazil
| | - F Barbosa
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirao Preto, Universidade de São Paulo, 14040-903, Ribeirão Preto, SP, Brazil
| | - M E Loureiro
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, MG, Brazil
| | - C Ribeiro
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, MG, Brazil
| | - A A Azevedo
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, MG, Brazil.
| |
Collapse
|
48
|
Cesaro P, Cattaneo C, Bona E, Berta G, Cavaletto M. The arsenic hyperaccumulating Pteris vittata expresses two arsenate reductases. Sci Rep 2015; 5:14525. [PMID: 26412036 PMCID: PMC4585942 DOI: 10.1038/srep14525] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 08/26/2015] [Indexed: 11/09/2022] Open
Abstract
Enzymatic reduction of arsenate to arsenite is the first known step in arsenate metabolism in all organisms. Although the presence of one mRNA arsenate reductase (PvACR2) has been characterized in gametophytes of P. vittata, no arsenate reductase protein has been directly observed in this arsenic hyperaccumulating fern, yet. In order to assess the possible presence of arsenate reductase in P. vittata, two recombinant proteins, ACR2-His6 and Trx-His6-S-Pv2.5-8 were prepared in Escherichia coli, purified and used to produce polyclonal antibodies. The presence of these two enzymes was evaluated by qRT-PCR, immunoblotting and direct MS analysis. Enzymatic activity was detected in crude extracts. For the first time we detected and identified two arsenate reductase proteins (PvACR2 and Pv2.5-8) in sporophytes and gametophytes of P. vittata. Despite an increase of the mRNA levels for both proteins in roots, no difference was observed at the protein level after arsenic treatment. Overall, our data demonstrate the constitutive protein expression of PvACR2 and Pv2.5-8 in P. vittata tissues and propose their specific role in the complex metabolic network of arsenic reduction.
Collapse
Affiliation(s)
- Patrizia Cesaro
- Università del Piemonte Orientale, DiSIT- Dipartimento di Scienze e Innovazione Tecnologica, viale T. Michel 11, 15121 - Alessandria, Novara, Vercelli - Italy
| | - Chiara Cattaneo
- Università del Piemonte Orientale, DiSIT- Dipartimento di Scienze e Innovazione Tecnologica, viale T. Michel 11, 15121 - Alessandria, Novara, Vercelli - Italy
| | - Elisa Bona
- Università del Piemonte Orientale, DiSIT- Dipartimento di Scienze e Innovazione Tecnologica, viale T. Michel 11, 15121 - Alessandria, Novara, Vercelli - Italy
| | - Graziella Berta
- Università del Piemonte Orientale, DiSIT- Dipartimento di Scienze e Innovazione Tecnologica, viale T. Michel 11, 15121 - Alessandria, Novara, Vercelli - Italy
| | - Maria Cavaletto
- Università del Piemonte Orientale, DiSIT- Dipartimento di Scienze e Innovazione Tecnologica, viale T. Michel 11, 15121 - Alessandria, Novara, Vercelli - Italy
| |
Collapse
|
49
|
Shi GL, Zhu S, Meng JR, Qian M, Yang N, Lou LQ, Cai QS. Variation in arsenic accumulation and translocation among wheat cultivars: the relationship between arsenic accumulation, efflux by wheat roots and arsenate tolerance of wheat seedlings. JOURNAL OF HAZARDOUS MATERIALS 2015; 289:190-196. [PMID: 25725341 DOI: 10.1016/j.jhazmat.2015.02.045] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 02/10/2015] [Accepted: 02/14/2015] [Indexed: 05/27/2023]
Abstract
Fifty-seven wheat cultivars were used to investigate the differences in arsenic (As) accumulation, efflux and translocation among wheat cultivars and their relationship with arsenate (As(V)) tolerance under hydroponic condition. The relationship between wheat root As accumulation, As(V) uptake, arsenite (As(III)) efflux and As(V) tolerance of 14 wheat cultivars were also investigated. The results showed there were significant (p<0.001) differences in As(V) tolerance, As accumulation and translocation among 57 wheat cultivars. Arsenate tolerance of wheat seedlings was positively correlated with As(V) uptake (p<0.05), root As concentration (p<0.001), but negatively correlated (p<0.05) with TFs and relative As(III) efflux. No significant correlation between As(III) efflux and As(V) tolerance was found (p=0.442). 56-83% of total As taken up by roots was extruded to nutrient solution. Root As concentration was positively correlated with As(V) uptake (not significant, p=0.100), negatively correlated (p<0.001) with relative As(III) efflux, whereas not significantly correlated (p=0.773) with As(III) efflux. The results indicated that As(V) tolerant wheat cultivars have much higher capacity of root As accumulation. Arsenic detoxification in root cells is important for wheat seedlings under As(V) exposure.
Collapse
Affiliation(s)
- Gao Ling Shi
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Shun Zhu
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Ji Rong Meng
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Meng Qian
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Na Yang
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Lai Qing Lou
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, PR China.
| | - Qing Sheng Cai
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
50
|
Most P, Papenbrock J. Possible roles of plant sulfurtransferases in detoxification of cyanide, reactive oxygen species, selected heavy metals and arsenate. Molecules 2015; 20:1410-23. [PMID: 25594348 PMCID: PMC6272796 DOI: 10.3390/molecules20011410] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 01/09/2015] [Indexed: 11/16/2022] Open
Abstract
Plants and animals have evolved various potential mechanisms to surmount the adverse effects of heavy metal toxicity. Plants possess low molecular weight compounds containing sulfhydryl groups (-SH) that actively react with toxic metals. For instance, glutathione (γ-Glu-Cys-Gly) is a sulfur-containing tripeptide thiol and a substrate of cysteine-rich phytochelatins (γ-Glu-Cys)2-11-Gly (PCs). Phytochelatins react with heavy metal ions by glutathione S-transferase in the cytosol and afterwards they are sequestered into the vacuole for degradation. Furthermore, heavy metals induce reactive oxygen species (ROS), which directly or indirectly influence metabolic processes. Reduced glutathione (GSH) attributes as an antioxidant and participates to control ROS during stress. Maintenance of the GSH/GSSG ratio is important for cellular redox balance, which is crucial for the survival of the plants. In this context, sulfurtransferases (Str), also called rhodaneses, comprise a group of enzymes widely distributed in all phyla, paving the way for the transfer of a sulfur atom from suitable sulfur donors to nucleophilic sulfur acceptors, at least in vitro. The best characterized in vitro reaction is the transfer of a sulfane sulfur atom from thiosulfate to cyanide, leading to the formation of sulfite and thiocyanate. Plants as well as other organisms have multi-protein families (MPF) of Str. Despite the presence of Str activities in many living organisms, their physiological role has not been clarified unambiguously. In mammals, these proteins are involved in the elimination of cyanide released from cyanogenic compounds. However, their ubiquity suggests additional physiological functions. Furthermore, it is speculated that a member of the Str family acts as arsenate reductase (AR) and is involved in arsenate detoxification. In summary, the role of Str in detoxification processes is still not well understood but seems to be a major function in the organism.
Collapse
Affiliation(s)
- Parvin Most
- Institute of Botany, Leibniz University Hannover, Herrenhäuserstr. 2, Hannover D-30419, Germany.
| | - Jutta Papenbrock
- Institute of Botany, Leibniz University Hannover, Herrenhäuserstr. 2, Hannover D-30419, Germany.
| |
Collapse
|