1
|
Haghir S, Yamada K, Kato M, Tsuge T, Wada T, Tominaga R, Ohashi Y, Aoyama T. The Arabidopsis basic-helix-loop-helix transcription factor LRL1 activates cell wall-related genes during root hair development. PLANT & CELL PHYSIOLOGY 2025; 66:384-399. [PMID: 39869366 DOI: 10.1093/pcp/pcaf006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 01/05/2025] [Accepted: 01/08/2025] [Indexed: 01/28/2025]
Abstract
Lotus japonicus-ROOT HAIR LESS1-LIKE-1 (LRL1) of Arabidopsis thaliana encodes a basic helix-loop-helix (bHLH) transcription factor (TF) involved in root hair development. Root hair development is regulated by an elaborate transcriptional network, in which GLABRA2 (GL2), a key negative regulator, directly represses bHLH TF genes, including LRL1 and ROOT HAIR DEFECTIVE6 (RHD6). Although RHD6 and its paralogous TFs have been shown to connect downstream to genes involved in cell morphological events, such as endomembrane and cell wall modification, the downstream network of LRL1 remains elusive. We found that a mutation of LRL1 causes a short-root hair phenotype and that this phenotype can be partially rescued by a transgene encoding a glucocorticoid receptor (GR) domain-fused LRL1, LRL1-GR, in the presence of glucocorticoids. Using this conditional rescue system, we identified 46 genes that are activated downstream of LRL1. Among these, the cell wall-related genes were significantly enriched and many of them were found to be immediately downstream of LRL1 without de novo protein synthesis in between. We further analyzed three representative genes, PROLINE-RICH PROTEIN1 (PRP1), PRP3, and XYLOGLUCAN ENDOTRANSGLUCOSYLASE/HYDOLASE12 (XTH12). Reporter gene analyses showed that these genes are specifically transcribed in root hair cells including those in the root-hypocotyl junction, and that their proteins were localized to the cell wall of elongating root hairs, root hair bulges, and root hair bulge-expecting loci. A T-DNA insertion mutant of PRP3 showed a moderate short-root hair phenotype. Based on these results, LRL1 is likely to promote root hair development throughout the morphogenetic process by activating cell wall-related genes.
Collapse
Affiliation(s)
- Shahrzad Haghir
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Koh Yamada
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Mariko Kato
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Tomohiko Tsuge
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Takuji Wada
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Rumi Tominaga
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-4 Kagamiyama, Higashi Hiroshima 739-5828, Japan
| | - Yohei Ohashi
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| | - Takashi Aoyama
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| |
Collapse
|
2
|
Meaney JS, Panchal AK, Wilcox AJ, diCenzo GC, Karas BJ. Identifying functional multi-host shuttle plasmids to advance synthetic biology applications in Mesorhizobium and Bradyrhizobium. Can J Microbiol 2024; 70:336-347. [PMID: 38564797 DOI: 10.1139/cjm-2023-0232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Ammonia availability has a crucial role in agriculture as it ensures healthy plant growth and increased crop yields. Since diazotrophs are the only organisms capable of reducing dinitrogen to ammonia, they have great ecological importance and potential to mitigate the environmental and economic costs of synthetic fertilizer use. Rhizobia are especially valuable being that they can engage in nitrogen-fixing symbiotic relationships with legumes, and they demonstrate great diversity and plasticity in genomic and phenotypic traits. However, few rhizobial species have sufficient genetic tractability for synthetic biology applications. This study established a basic genetic toolbox with antibiotic resistance markers, multi-host shuttle plasmids and a streamlined protocol for biparental conjugation with Mesorhizobium and Bradyrhizobium species. We identified two repABC origins of replication from Sinorhizobium meliloti (pSymB) and Rhizobium etli (p42d) that were stable across all three strains of interest. Furthermore, the NZP2235 genome was sequenced and phylogenetic analysis determined its reclassification to Mesorhizobium huakuii. These tools will enable the use of plasmid-based strategies for more advanced genetic engineering projects and ultimately contribute towards the development of more sustainable agriculture practices by means of novel nitrogen-fixing organelles, elite bioinoculants, or symbiotic association with nonlegumes.
Collapse
Affiliation(s)
- Jordyn S Meaney
- Department of Biochemistry, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON N6A 5C1, Canada
| | - Aakanx K Panchal
- Department of Biology, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Aiden J Wilcox
- Department of Biochemistry, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON N6A 5C1, Canada
| | - George C diCenzo
- Department of Biology, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Bogumil J Karas
- Department of Biochemistry, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON N6A 5C1, Canada
| |
Collapse
|
3
|
Gao JP, Liang W, Liu CW, Xie F, Murray JD. Unraveling the rhizobial infection thread. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:2235-2245. [PMID: 38262702 DOI: 10.1093/jxb/erae017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 01/23/2024] [Indexed: 01/25/2024]
Abstract
Most legumes can form an endosymbiotic association with soil bacteria called rhizobia, which colonize specialized root structures called nodules where they fix nitrogen. To colonize nodule cells, rhizobia must first traverse the epidermis and outer cortical cell layers of the root. In most legumes, this involves formation of the infection thread, an intracellular structure that becomes colonized by rhizobia, guiding their passage through the outer cell layers of the root and into the newly formed nodule cells. In this brief review, we recount the early research milestones relating to the rhizobial infection thread and highlight two relatively recent advances in the symbiotic infection mechanism, the eukaryotically conserved 'MYB-AUR1-MAP' mitotic module, which links cytokinesis mechanisms to intracellular infection, and the discovery of the 'infectosome' complex, which guides infection thread growth. We also discuss the potential intertwining of the two modules and the hypothesis that cytokinesis served as a foundation for intracellular infection of symbiotic microbes.
Collapse
Affiliation(s)
- Jin-Peng Gao
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Wenjie Liang
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Cheng-Wu Liu
- School of Life Sciences, Division of Life Sciences and Medicine, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China, Hefei 230026, China
| | - Fang Xie
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Jeremy D Murray
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- John Innes Centre, CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), Norwich Research Park, Norwich NR4 7UH, UK
| |
Collapse
|
4
|
Montiel J, García-Soto I, James EK, Reid D, Cárdenas L, Napsucialy-Mendivil S, Ferguson S, Dubrovsky JG, Stougaard J. Aromatic amino acid biosynthesis impacts root hair development and symbiotic associations in Lotus japonicus. PLANT PHYSIOLOGY 2023; 193:1508-1526. [PMID: 37427869 PMCID: PMC10517252 DOI: 10.1093/plphys/kiad398] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/07/2023] [Accepted: 06/12/2023] [Indexed: 07/11/2023]
Abstract
Legume roots can be symbiotically colonized by arbuscular mycorrhizal (AM) fungi and nitrogen-fixing bacteria. In Lotus japonicus, the latter occurs intracellularly by the cognate rhizobial partner Mesorhizobium loti or intercellularly with the Agrobacterium pusense strain IRBG74. Although these symbiotic programs show distinctive cellular and transcriptome signatures, some molecular components are shared. In this study, we demonstrate that 3-deoxy-d-arabino-heptulosonate 7-phosphate synthase 1 (DAHPS1), the first enzyme in the biosynthetic pathway of aromatic amino acids (AAAs), plays a critical role in root hair development and for AM and rhizobial symbioses in Lotus. Two homozygous DAHPS1 mutants (dahps1-1 and dahps1-2) showed drastic alterations in root hair morphology, associated with alterations in cell wall dynamics and a progressive disruption of the actin cytoskeleton. The altered root hair structure was prevented by pharmacological and genetic complementation. dahps1-1 and dahps1-2 showed significant reductions in rhizobial infection (intracellular and intercellular) and nodule organogenesis and a delay in AM colonization. RNAseq analysis of dahps1-2 roots suggested that these phenotypes are associated with downregulation of several cell wall-related genes, and with an attenuated signaling response. Interestingly, the dahps1 mutants showed no detectable pleiotropic effects, suggesting a more selective recruitment of this gene in certain biological processes. This work provides robust evidence linking AAA metabolism to root hair development and successful symbiotic associations.
Collapse
Affiliation(s)
- Jesús Montiel
- Departamento de Genómica Funcional de Eucariotas. Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca 62210, Mexico
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus DK-8000, Denmark
| | - Ivette García-Soto
- Departamento de Genómica Funcional de Eucariotas. Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca 62210, Mexico
| | - Euan K James
- Ecological Sciences, The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Dugald Reid
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus DK-8000, Denmark
- Department of Animal, Plant and Soil Sciences, School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Luis Cárdenas
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca 62210, Mexico
| | - Selene Napsucialy-Mendivil
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca 62210, Mexico
| | - Shaun Ferguson
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus DK-8000, Denmark
| | - Joseph G Dubrovsky
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca 62210, Mexico
| | - Jens Stougaard
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus DK-8000, Denmark
| |
Collapse
|
5
|
Zheng X, Xiao R, Chen M, Wu H, Gao X, Wang J. An avirulent Ralstonia solanacearum strain FJAT1458 outcompetes with virulent strain and induces tomato plant resistance against bacterial wilt. PEST MANAGEMENT SCIENCE 2022; 78:5002-5013. [PMID: 36053816 DOI: 10.1002/ps.7123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/22/2022] [Accepted: 08/10/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Bacterial wilt (BW) caused by Ralstonia solanacearum (RS) is considered as one of the most destructive plant diseases. An avirulent strain of RS, FJAT1458, is a potential biocontrol agent of BW. In this study, the mechanism of FJAT1458 against BW was evaluated. RESULTS FJAT1458 was tagged with the red fluorescent protein gene, and the resulting strain was named as FJAT1458-RFP. When FJAT1458-RFP and FJAT91-GFP (a virulent strain of RS labelled with the green fluorescent protein gene), were co-inoculated in potted tomato plants, the colonization of FJAT91-GFP reached an almost undetectable level at 7 days post-inoculation (dpi) in the roots and at 9 dpi in rhizosphere soil. When they were co-inoculated in a hydroponic tomato growing system, numbers of the two strains were similar at 3 dpi in the root tissues; however, FJAT91-GFP was not detected at 9 dpi while FJAT1458-RFP maintained 1.77 × 105 CFU g-1 . The inoculation of FJAT1458-RFP alone or combination with FJAT91-GFP significantly increased tomato root activity. Moreover, expression levels of the defense-related genes PR-1a, GLUA, and CHI3 in tomato roots were significantly up-regulated by FJAT1458-RFP and co-inoculation of FJAT1458-RFP and FJAT91-GFP at 5 dpi, compared to the control (water, CK) treatment. Noteworthy, expression levels of GLUA in the treatments of FJAT1458-RFP and FJAT1458-RFP + FJAT91-GFP were 12.22- and 12.05-fold higher than that in the CK at 5 dpi, respectively. CONCLUSIONS The results suggested that the avirulent strain FJAT1458-RFP could suppress colonization of the virulent strain in tomato roots, and induce tomato plant resistance against BW. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xuefang Zheng
- Agricultural Bio-Resources Research Institute, Fujian Academy of Agriculture Sciences, Fuzhou, China
| | - Rongfeng Xiao
- Agricultural Bio-Resources Research Institute, Fujian Academy of Agriculture Sciences, Fuzhou, China
| | - Meichun Chen
- Agricultural Bio-Resources Research Institute, Fujian Academy of Agriculture Sciences, Fuzhou, China
| | - Huijun Wu
- Key Laboratory of Integrated and Management of Crop Diseases and Pests, Ministry of Education, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xuewen Gao
- Key Laboratory of Integrated and Management of Crop Diseases and Pests, Ministry of Education, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jieping Wang
- Agricultural Bio-Resources Research Institute, Fujian Academy of Agriculture Sciences, Fuzhou, China
| |
Collapse
|
6
|
Quilbé J, Montiel J, Arrighi JF, Stougaard J. Molecular Mechanisms of Intercellular Rhizobial Infection: Novel Findings of an Ancient Process. FRONTIERS IN PLANT SCIENCE 2022; 13:922982. [PMID: 35812902 PMCID: PMC9260380 DOI: 10.3389/fpls.2022.922982] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
Establishment of the root-nodule symbiosis in legumes involves rhizobial infection of nodule primordia in the root cortex that is dependent on rhizobia crossing the root epidermal barrier. Two mechanisms have been described: either through root hair infection threads or through the intercellular passage of bacteria. Among the legume genera investigated, around 75% use root hair entry and around 25% the intercellular entry mode. Root-hair infection thread-mediated infection has been extensively studied in the model legumes Medicago truncatula and Lotus japonicus. In contrast, the molecular circuit recruited during intercellular infection, which is presumably an ancient and simpler pathway, remains poorly known. In recent years, important discoveries have been made to better understand the transcriptome response and the genetic components involved in legumes with obligate (Aeschynomene and Arachis spp.) and conditional (Lotus and Sesbania spp.) intercellular rhizobial infections. This review addresses these novel findings and briefly considers possible future research to shed light on the molecular players that orchestrate intercellular infection in legumes.
Collapse
Affiliation(s)
- Johan Quilbé
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Jesús Montiel
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
- Centre for Genomic Sciences, National Autonomous University of Mexico (UNAM), Cuernavaca, Mexico
| | - Jean-François Arrighi
- IRD, Plant Health Institute of Montpellier (PHIM), UMR IRD/SupAgro/INRAE/UM/CIRAD, Montpellier, France
| | - Jens Stougaard
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| |
Collapse
|
7
|
Nguyen DV, Hoang TTH, Le NT, Tran HT, Nguyen CX, Moon YH, Chu HH, Do PT. An Efficient Hairy Root System for Validation of Plant Transformation Vector and CRISPR/Cas Construct Activities in Cucumber ( Cucumis sativus L.). FRONTIERS IN PLANT SCIENCE 2022; 12:770062. [PMID: 35222448 PMCID: PMC8874011 DOI: 10.3389/fpls.2021.770062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 12/27/2021] [Indexed: 06/14/2023]
Abstract
Hairy root induction system has been applied in various plant species as an effective method to study gene expression and function due to its fast-growing and high genetic stability. Recently, these systems have shown to be an effective tool to evaluate activities of CRISPR/Cas9 systems for genome editing. In this study, Rhizobium rhizogenes mediated hairy root induction was optimized to provide an effective tool for validation of plant transformation vector, CRISPR/Cas9 construct activities as well as selection of targeted gRNAs for gene editing in cucumber (Cucumis sativus L.). Under the optimized conditions including OD650 at 0.4 for infection and 5 days of co-cultivation, the highest hairy root induction frequency reached 100% for the cucumber variety Choka F1. This procedure was successfully utilized to overexpress a reporter gene (gus) and induce mutations in two Lotus japonicus ROOTHAIRLESS1 homolog genes CsbHLH66 and CsbHLH82 using CRISPR/Cas9 system. For induced mutation, about 78% of transgenic hairy roots exhibited mutant phenotypes including sparse root hair and root hair-less. The targeted mutations were obtained in individual CsbHLH66, CsbHLH82, or both CsbHLH66 and CsbHLH82 genes by heteroduplex analysis and sequencing. The hairy root transformation system established in this study is sufficient and potential for further research in genome editing of cucumber as well as other cucumis plants.
Collapse
Affiliation(s)
- Doai Van Nguyen
- Laboratory of Plant Cell Biotechnology, Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
- Department of Integrated Biological Science, Pusan National University, Busan, South Korea
| | - Trang Thi-Huyen Hoang
- Laboratory of Plant Cell Biotechnology, Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Ngoc Thu Le
- Laboratory of Plant Cell Biotechnology, Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Huyen Thi Tran
- Laboratory of Plant Cell Biotechnology, Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Cuong Xuan Nguyen
- Division of Plant Sciences, University of Missouri, Columbia, MO, United States
| | - Yong-Hwan Moon
- Department of Integrated Biological Science, Pusan National University, Busan, South Korea
- Department of Molecular Biology, Pusan National University, Busan, South Korea
| | - Ha Hoang Chu
- Laboratory of Plant Cell Biotechnology, Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Phat Tien Do
- Laboratory of Plant Cell Biotechnology, Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| |
Collapse
|
8
|
Guha S, Molla F, Sarkar M, Ibańez F, Fabra A, DasGupta M. Nod factor-independent 'crack-entry' symbiosis in dalbergoid legume Arachis hypogaea. Environ Microbiol 2022; 24:2732-2746. [PMID: 34995397 DOI: 10.1111/1462-2920.15888] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/09/2021] [Accepted: 12/21/2021] [Indexed: 11/29/2022]
Abstract
Dalbergoids are typified by crack-entry symbiosis which is evidenced to be Nod Factor (NF)- independent in several Aeschynomene legumes. Natural symbionts of the dalbergoid legume Arachis hypogaea are always NF-producing, prompting us to check whether symbiosis in this legume could also be NF-independent. For this, we followed the symbiosis with two NF containing bradyrhizobial strains- SEMIA6144, a natural symbiont of Arachis and ORS285, a versatile nodulator of Aeschynomene legumes, along with their corresponding nodulation (nod) mutants. Additionally, we investigated NF-deficient bradyrhizobia like BTAi1, a natural symbiont of Aeschynomene indica and the WBOS strains that were natural endophytes of Oryza sativa, collected from an Arachis-Oryza intercropped field. While SEMIA6144ΔnodC was non-nodulating, both ORS285 and ORS285ΔnodB could induce functional nodulation, although with lower efficiency than SEMIA6144. On the other hand, all the NF-deficient strains- BTAi1, WBOS2 and WBOS4 showed comparable nodulation with ORS285 indicating Arachis to harbour a NF-independent mechanism of symbiosis. Intriguingly, symbiosis in Arachis, irrespective of whether it was NF-dependent or independent, was always associated with the curling or branching of the rosette root hairs at the lateral root bases. Thus, despite being predominantly described as NF-dependent legume, Arachis does retain a vestigial, less-efficient form of NF-independent symbiosis. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Sohini Guha
- Department of Biochemistry, University of Calcutta, Kolkata, 700019, India
| | - Firoz Molla
- Department of Biochemistry, University of Calcutta, Kolkata, 700019, India
| | - Monolina Sarkar
- Department of Biochemistry, University of Calcutta, Kolkata, 700019, India
| | - Fernando Ibańez
- Instituto de Investigaciones Agrobiotecnologicas (CONCINET-UNRC), Ruta 36 Km 601, Río Cuarto, Argentina
| | - Adriana Fabra
- Instituto de Investigaciones Agrobiotecnologicas (CONCINET-UNRC), Ruta 36 Km 601, Río Cuarto, Argentina
| | - Maitrayee DasGupta
- Department of Biochemistry, University of Calcutta, Kolkata, 700019, India
| |
Collapse
|
9
|
Karas BJ, Ross L, Novero M, Amyot L, Shrestha A, Inada S, Nakano M, Sakai T, Bonetta D, Sato S, Murray JD, Bonfante P, Szczyglowski K. Intragenic complementation at the Lotus japonicus CELLULOSE SYNTHASE-LIKE D1 locus rescues root hair defects. PLANT PHYSIOLOGY 2021; 186:2037-2050. [PMID: 34618101 PMCID: PMC8331140 DOI: 10.1093/plphys/kiab204] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 04/06/2021] [Indexed: 06/13/2023]
Abstract
Root hair cells form the primary interface of plants with the soil environment, playing key roles in nutrient uptake and plant defense. In legumes, they are typically the first cells to become infected by nitrogen-fixing soil bacteria during root nodule symbiosis. Here, we report a role for the CELLULOSE SYNTHASE-LIKE D1 (CSLD1) gene in root hair development in the legume species Lotus japonicus. CSLD1 belongs to the cellulose synthase protein family that includes cellulose synthases and cellulose synthase-like proteins, the latter thought to be involved in the biosynthesis of hemicellulose. We describe 11 Ljcsld1 mutant alleles that impose either short (Ljcsld1-1) or variable (Ljcsld1-2 to 11) root hair length phenotypes. Examination of Ljcsld1-1 and one variable-length root hair mutant, Ljcsld1-6, revealed increased root hair cell wall thickness, which in Ljcsld1-1 was significantly more pronounced and also associated with a strong defect in root nodule symbiosis. Lotus japonicus plants heterozygous for Ljcsld1-1 exhibited intermediate root hair lengths, suggesting incomplete dominance. Intragenic complementation was observed between alleles with mutations in different CSLD1 domains, suggesting CSLD1 function is modular and that the protein may operate as a homodimer or multimer during root hair development.
Collapse
Affiliation(s)
- Bogumil J Karas
- Department of Biochemistry, The University of Western Ontario, London, Ontario, Canada, N6A 5C1
- Agriculture and Agri-Food Canada, London Research and Development Centre, London, Ontario, Canada, N5V 4T3
| | - Loretta Ross
- Agriculture and Agri-Food Canada, London Research and Development Centre, London, Ontario, Canada, N5V 4T3
| | - Mara Novero
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
| | - Lisa Amyot
- Agriculture and Agri-Food Canada, London Research and Development Centre, London, Ontario, Canada, N5V 4T3
| | - Arina Shrestha
- Department of Biochemistry, The University of Western Ontario, London, Ontario, Canada, N6A 5C1
| | - Sayaka Inada
- RIKEN Plant Science Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Michiharu Nakano
- RIKEN Plant Science Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Tatsuya Sakai
- Graduate School of Science and Technology, Niigata University, 8050 Ikarashi-nino-cho, Nishiku, Niigata 950-2181, Japan
| | - Dario Bonetta
- Faculty of Science, Ontario Tech University, Oshawa, Ontario, Canada
| | - Sushei Sato
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577, Japan
| | - Jeremy D Murray
- Agriculture and Agri-Food Canada, London Research and Development Centre, London, Ontario, Canada, N5V 4T3
- National Key Laboratory of Plant Molecular Genetics, CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), CAS Center for Excellence in Molecular and Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Paola Bonfante
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
| | - Krzysztof Szczyglowski
- Agriculture and Agri-Food Canada, London Research and Development Centre, London, Ontario, Canada, N5V 4T3
- Department of Biology, University of Western Ontario, London, Ontario, N6A 5B7 Canada
| |
Collapse
|
10
|
Majda M. CELLULOSE SYNTHASE-LIKE D1 mediates root hair development in Lotus japonicus. PLANT PHYSIOLOGY 2021; 186:1765-1766. [PMID: 34618113 PMCID: PMC8331127 DOI: 10.1093/plphys/kiab258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 05/17/2021] [Indexed: 06/13/2023]
Affiliation(s)
- Mateusz Majda
- Department of Computational and Systems Biology, John Innes Centre, Norwich NR4 7UH, UK
| |
Collapse
|
11
|
Burak E, Quinton JN, Dodd IC. Root hairs are the most important root trait for rhizosheath formation of barley (Hordeum vulgare), maize (Zea mays) and Lotus japonicus (Gifu). ANNALS OF BOTANY 2021; 128:45-57. [PMID: 33631013 PMCID: PMC8318254 DOI: 10.1093/aob/mcab029] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 03/15/2021] [Indexed: 05/25/2023]
Abstract
BACKGROUND AND AIMS Rhizosheaths are defined as the soil adhering to the root system after it is extracted from the ground. Root hairs and mucilage (root exudates) are key root traits involved in rhizosheath formation, but to better understand the mechanisms involved their relative contributions should be distinguished. METHODS The ability of three species [barley (Hordeum vulgare), maize (Zea mays) and Lotus japonicus (Gifu)] to form a rhizosheath in a sandy loam soil was compared with that of their root-hairless mutants [bald root barley (brb), maize root hairless 3 (rth3) and root hairless 1 (Ljrhl1)]. Root hair traits (length and density) of wild-type (WT) barley and maize were compared along with exudate adhesiveness of both barley and maize genotypes. Furthermore, root hair traits and exudate adhesiveness from different root types (axile versus lateral) were compared within the cereal species. KEY RESULTS Per unit root length, rhizosheath size diminished in the order of barley > L. japonicus > maize in WT plants. Root hairs significantly increased rhizosheath formation of all species (3.9-, 3.2- and 1.8-fold for barley, L. japonicus and maize, respectively) but there was no consistent genotypic effect on exudate adhesiveness in the cereals. While brb exudates were more and rth3 exudates were less adhesive than their respective WTs, maize rth3 bound more soil than barley brb. Although both maize genotypes produced significantly more adhesive exudate than the barley genotypes, root hair development of WT barley was more extensive than that of WT maize. Thus, the greater density of longer root hairs in WT barley bound more soil than WT maize. Root type did not seem to affect rhizosheath formation, unless these types differed in root length. CONCLUSIONS When root hairs were present, greater root hair development better facilitated rhizosheath formation than root exudate adhesiveness. However, when root hairs were absent root exudate adhesiveness was a more dominant trait.
Collapse
Affiliation(s)
- Emma Burak
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
| | - John N Quinton
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
| | - Ian C Dodd
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
| |
Collapse
|
12
|
Pankievicz VCS, Irving TB, Maia LGS, Ané JM. Are we there yet? The long walk towards the development of efficient symbiotic associations between nitrogen-fixing bacteria and non-leguminous crops. BMC Biol 2019; 17:99. [PMID: 31796086 PMCID: PMC6889567 DOI: 10.1186/s12915-019-0710-0] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 10/18/2019] [Indexed: 01/09/2023] Open
Abstract
Nitrogen is an essential element of life, and nitrogen availability often limits crop yields. Since the Green Revolution, massive amounts of synthetic nitrogen fertilizers have been produced from atmospheric nitrogen and natural gas, threatening the sustainability of global food production and degrading the environment. There is a need for alternative means of bringing nitrogen to crops, and taking greater advantage of biological nitrogen fixation seems a logical option. Legumes are used in most cropping systems around the world because of the nitrogen-fixing symbiosis with rhizobia. However, the world's three major cereal crops-rice, wheat, and maize-do not associate with rhizobia. In this review, we will survey how genetic approaches in rhizobia and their legume hosts allowed tremendous progress in understanding the molecular mechanisms controlling root nodule symbioses, and how this knowledge paves the way for engineering such associations in non-legume crops. We will also discuss challenges in bringing these systems into the field and how they can be surmounted by interdisciplinary collaborations between synthetic biologists, microbiologists, plant biologists, breeders, agronomists, and policymakers.
Collapse
Affiliation(s)
| | - Thomas B Irving
- Department of Bacteriology, University of Wisconsin, Madison, WI, USA
| | - Lucas G S Maia
- Department of Bacteriology, University of Wisconsin, Madison, WI, USA
| | - Jean-Michel Ané
- Department of Agronomy, University of Wisconsin, Madison, WI, USA.
- Department of Bacteriology, University of Wisconsin, Madison, WI, USA.
| |
Collapse
|
13
|
Liang J, Klingl A, Lin YY, Boul E, Thomas-Oates J, Marín M. A subcompatible rhizobium strain reveals infection duality in Lotus. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:1903-1913. [PMID: 30775775 PMCID: PMC6436148 DOI: 10.1093/jxb/erz057] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 01/31/2019] [Indexed: 05/06/2023]
Abstract
Lotus species develop infection threads to guide rhizobia into nodule cells. However, there is evidence that some species have a genetic repertoire to allow other modes of infection. By conducting confocal and electron microscopy, quantification of marker gene expression, and phenotypic analysis of transgenic roots infected with mutant rhizobia, we elucidated the infection mechanism used by Rhizobium leguminosarum Norway to colonize Lotus burttii. Rhizobium leguminosarum Norway induces a distinct host transcriptional response compared with Mesorhizobium loti. It infects L. burttii utilizing an epidermal and transcellular infection thread-independent mechanism at high frequency. The entry into plant cells occurs directly from the apoplast and is primarily mediated by 'peg'-like structures, the formation of which is dependent on the production of Nod factor by the rhizobia. These results demonstrate that Lotus species can exhibit duality in their infection mechanisms depending on the rhizobial strain that they encounter. This is especially relevant in the context of interactions in the rhizosphere where legumes do not encounter single strains, but complex rhizobial communities. Additionally, our findings support a perception mechanism at the nodule cell entry interface, reinforcing the idea that there are successive checkpoints during rhizobial infection.
Collapse
Affiliation(s)
- Juan Liang
- Genetics, Faculty of Biology, Ludwig Maximilians University Munich, Germany
| | - Andreas Klingl
- Botany, Faculty of Biology, Ludwig Maximilians University Munich, Germany
| | - Yen-Yu Lin
- Genetics, Faculty of Biology, Ludwig Maximilians University Munich, Germany
| | - Emily Boul
- Department of Chemistry, University of York, UK
| | | | - Macarena Marín
- Genetics, Faculty of Biology, Ludwig Maximilians University Munich, Germany
| |
Collapse
|
14
|
Acosta-Jurado S, Rodríguez-Navarro DN, Kawaharada Y, Rodríguez-Carvajal MA, Gil-Serrano A, Soria-Díaz ME, Pérez-Montaño F, Fernández-Perea J, Niu Y, Alias-Villegas C, Jiménez-Guerrero I, Navarro-Gómez P, López-Baena FJ, Kelly S, Sandal N, Stougaard J, Ruiz-Sainz JE, Vinardell JM. Sinorhizobium fredii HH103 nolR and nodD2 mutants gain capacity for infection thread invasion of Lotus japonicus Gifu and Lotus burttii. Environ Microbiol 2019; 21:1718-1739. [PMID: 30839140 DOI: 10.1111/1462-2920.14584] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 03/04/2019] [Accepted: 03/04/2019] [Indexed: 02/01/2023]
Abstract
Sinorhizobium fredii HH103 RifR , a broad-host-range rhizobial strain, forms ineffective nodules with Lotus japonicus but induces nitrogen-fixing nodules in Lotus burttii roots that are infected by intercellular entry. Here we show that HH103 RifR nolR or nodD2 mutants gain the ability to induce infection thread formation and to form nitrogen-fixing nodules in L. japonicus Gifu. Microscopy studies showed that the mode of infection of L. burttii roots by the nodD2 and nolR mutants switched from intercellular entry to infection threads (ITs). In the presence of the isoflavone genistein, both mutants overproduced Nod-factors. Transcriptomic analyses showed that, in the presence of Lotus japonicus Gifu root exudates, genes related to Nod factors production were overexpressed in both mutants in comparison to HH103 RifR . Complementation of the nodD2 and nolR mutants provoked a decrease in Nod-factor production, the incapacity to form nitrogen-fixing nodules with L. japonicus Gifu and restored the intercellular way of infection in L. burttii. Thus, the capacity of S. fredii HH103 RifR nodD2 and nolR mutants to infect L. burttii and L. japonicus Gifu by ITs and fix nitrogen L. japonicus Gifu might be correlated with Nod-factor overproduction, although other bacterial symbiotic signals could also be involved.
Collapse
Affiliation(s)
- Sebastián Acosta-Jurado
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Avda. Reina Mercedes 6, C.P., 41012, Sevilla, Spain
| | | | - Yasuyuki Kawaharada
- Department of Molecular Biology and Genetics, Centre for Carbohydrate Recognition and Signalling, Aarhus University, Gustav Wieds Vej 10, Aarhus, CDK-8000, Denmark.,Department of Plant BioSciences, Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka, Iwate, 020-8550, Japan
| | - Miguel A Rodríguez-Carvajal
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Calle Profesor García González 1, C. P, 41012, Sevilla, Spain
| | - Antonio Gil-Serrano
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Calle Profesor García González 1, C. P, 41012, Sevilla, Spain
| | - María E Soria-Díaz
- Servicio de Espectrometría de Masas, Centro de Investigación, Tecnología e Innovación (CITIUS), Universidad de Sevilla, Sevilla, Spain
| | - Francisco Pérez-Montaño
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Avda. Reina Mercedes 6, C.P., 41012, Sevilla, Spain
| | - Juan Fernández-Perea
- IFAPA, Centro Las Torres-Tomejil, Apartado Oficial 41200, Alcalá del Río, Sevilla, Spain
| | - Yanbo Niu
- Department of Resources and Environmental Microbiology, Institute of Microbiology, Heilongjiang Academy of Sciences, No. 68, Zhaolin Street, Daoli District, Harbin, Heilongjiang Province, China
| | - Cynthia Alias-Villegas
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Avda. Reina Mercedes 6, C.P., 41012, Sevilla, Spain
| | - Irene Jiménez-Guerrero
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Avda. Reina Mercedes 6, C.P., 41012, Sevilla, Spain
| | - Pilar Navarro-Gómez
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Avda. Reina Mercedes 6, C.P., 41012, Sevilla, Spain
| | - Francisco Javier López-Baena
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Avda. Reina Mercedes 6, C.P., 41012, Sevilla, Spain
| | - Simon Kelly
- Department of Molecular Biology and Genetics, Centre for Carbohydrate Recognition and Signalling, Aarhus University, Gustav Wieds Vej 10, Aarhus, CDK-8000, Denmark
| | - Niels Sandal
- Department of Molecular Biology and Genetics, Centre for Carbohydrate Recognition and Signalling, Aarhus University, Gustav Wieds Vej 10, Aarhus, CDK-8000, Denmark
| | - Jens Stougaard
- Department of Molecular Biology and Genetics, Centre for Carbohydrate Recognition and Signalling, Aarhus University, Gustav Wieds Vej 10, Aarhus, CDK-8000, Denmark
| | - José E Ruiz-Sainz
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Avda. Reina Mercedes 6, C.P., 41012, Sevilla, Spain
| | - José-María Vinardell
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Avda. Reina Mercedes 6, C.P., 41012, Sevilla, Spain
| |
Collapse
|
15
|
Suzaki T, Takeda N, Nishida H, Hoshino M, Ito M, Misawa F, Handa Y, Miura K, Kawaguchi M. LACK OF SYMBIONT ACCOMMODATION controls intracellular symbiont accommodation in root nodule and arbuscular mycorrhizal symbiosis in Lotus japonicus. PLoS Genet 2019; 15:e1007865. [PMID: 30605473 PMCID: PMC6317779 DOI: 10.1371/journal.pgen.1007865] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 11/30/2018] [Indexed: 11/19/2022] Open
Abstract
Nitrogen-fixing rhizobia and arbuscular mycorrhizal fungi (AMF) form symbioses with plant roots and these are established by precise regulation of symbiont accommodation within host plant cells. In model legumes such as Lotus japonicus and Medicago truncatula, rhizobia enter into roots through an intracellular invasion system that depends on the formation of a root-hair infection thread (IT). While IT-mediated intracellular rhizobia invasion is thought to be the most evolutionarily derived invasion system, some studies have indicated that a basal intercellular invasion system can replace it when some nodulation-related factors are genetically modified. In addition, intracellular rhizobia accommodation is suggested to have a similar mechanism as AMF accommodation. Nevertheless, our understanding of the underlying genetic mechanisms is incomplete. Here we identify a L. japonicus nodulation-deficient mutant, with a mutation in the LACK OF SYMBIONT ACCOMMODATION (LAN) gene, in which root-hair IT formation is strongly reduced, but intercellular rhizobial invasion eventually results in functional nodule formation. LjLAN encodes a protein that is homologous to Arabidopsis MEDIATOR 2/29/32 possibly acting as a subunit of a Mediator complex, a multiprotein complex required for gene transcription. We also show that LjLAN acts in parallel with a signaling pathway including LjCYCLOPS. In addition, the lan mutation drastically reduces the colonization levels of AMF. Taken together, our data provide a new factor that has a common role in symbiont accommodation process during root nodule and AM symbiosis. Symbiosis between plants and beneficial microbes such as nitrogen-fixing bacteria and arbuscular mycorrhizal fungi has enabled plant colonization of new environments. Root nodule symbiosis with nitrogen-fixing rhizobia enables sessile plants to survive in a nitrogen-deficient environment. To establish the symbiosis, host plant cells need to accommodate rhizobia during nodule development, a process mediated by a plant-derived intracellular structure called the infection thread (IT). In this study, we show that LACK OF SYMBIONT ACCOMMODATION (LAN) is involved in intracellular rhizobia accommodation in the model leguminous plant Lotus japonicus. LjLAN encodes a putative subunit of Mediator complex, a multiprotein complex that has a fundamental role as an activator of gene transcription. Mutation analysis suggests that LjLAN is required for root hair IT formation, which enables swift and efficient rhizobial accommodation. Moreover, we show that LjLAN is required for symbiosis with arbuscular mycorrhizal fungi. These data add a new component to the molecular mechanism relevant to the establishment of root nodule and arbuscular mycorrhizal symbiosis.
Collapse
Affiliation(s)
- Takuya Suzaki
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
- College of Biological Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Tsukuba Plant-Innovation Research Center, University of Tsukuba, Tsukuba, Ibaraki, Japan
- * E-mail:
| | - Naoya Takeda
- Graduate School of Science and Technology, Kwansei Gakuin University, Mita, Hyogo, Japan
| | - Hanna Nishida
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Motomi Hoshino
- College of Biological Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Momoyo Ito
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Fumika Misawa
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | | | - Kenji Miura
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
- College of Biological Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Tsukuba Plant-Innovation Research Center, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Masayoshi Kawaguchi
- National Institute for Basic Biology, Okazaki, Aichi, Japan
- School of Life Science, Graduate University for Advanced Studies, Okazaki, Aichi, Japan
| |
Collapse
|
16
|
Cui S, Suzaki T, Tominaga-Wada R, Yoshida S. Regulation and functional diversification of root hairs. Semin Cell Dev Biol 2017; 83:115-122. [PMID: 28993253 DOI: 10.1016/j.semcdb.2017.10.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 10/03/2017] [Accepted: 10/06/2017] [Indexed: 12/27/2022]
Abstract
Root hairs result from the polar outgrowth of root epidermis cells in vascular plants. Root hair development processes are regulated by intrinsic genetic programs, which are flexibly modulated by environmental conditions, such as nutrient availability. Basic programs for root hair development were present in early land plants. Subsequently, some plants developed the ability to utilize root hairs for specific functions, in particular, for interactions with other organisms, such as legume-rhizobia and host plants-parasites interactions. In this review, we summarize the molecular regulation of root hair development and the modulation of root hairs under limited nutrient supply and during interactions with other organisms.
Collapse
Affiliation(s)
- Songkui Cui
- Division for Research Strategy, Nara Institute of Science and Technology, Ikoma, Nara, Japan; Graduate School of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara, Japan
| | - Takuya Suzaki
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Rumi Tominaga-Wada
- Graduate School of Biosphere Sciences, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| | - Satoko Yoshida
- Division for Research Strategy, Nara Institute of Science and Technology, Ikoma, Nara, Japan; Graduate School of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara, Japan.
| |
Collapse
|
17
|
Ibáñez F, Wall L, Fabra A. Starting points in plant-bacteria nitrogen-fixing symbioses: intercellular invasion of the roots. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:1905-1918. [PMID: 27756807 DOI: 10.1093/jxb/erw387] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Agricultural practices contribute to climate change by releasing greenhouse gases such as nitrous oxide that are mainly derived from nitrogen fertilizers. Therefore, understanding biological nitrogen fixation in farming systems is beneficial to agriculture and environmental preservation. In this context, a better grasp of nitrogen-fixing systems and nitrogen-fixing bacteria-plant associations will contribute to the optimization of these biological processes. Legumes and actinorhizal plants can engage in a symbiotic interaction with nitrogen-fixing rhizobia or actinomycetes, resulting in the formation of specialized root nodules. The legume-rhizobia interaction is mediated by a complex molecular signal exchange, where recognition of different bacterial determinants activates the nodulation program in the plant. To invade plants roots, bacteria follow different routes, which are determined by the host plant. Entrance via root hairs is probably the best understood. Alternatively, entry via intercellular invasion has been observed in many legumes. Although there are common features shared by intercellular infection mechanisms, differences are observed in the site of root invasion and bacterial spread on the cortex reaching and infecting a susceptible cell to form a nodule. This review focuses on intercellular bacterial invasion of roots observed in the Fabaceae and considers, within an evolutionary context, the different variants, distribution and molecular determinants involved. Intercellular invasion of actinorhizal plants and Parasponia is also discussed.
Collapse
Affiliation(s)
- Fernando Ibáñez
- Departamento de Ciencias Naturales, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba, Argentina
| | - Luis Wall
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Buenos Aires, Argentina
| | - Adriana Fabra
- Departamento de Ciencias Naturales, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba, Argentina
| |
Collapse
|
18
|
Differential regulation of the Epr3 receptor coordinates membrane-restricted rhizobial colonization of root nodule primordia. Nat Commun 2017; 8:14534. [PMID: 28230048 PMCID: PMC5331223 DOI: 10.1038/ncomms14534] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 01/09/2017] [Indexed: 11/08/2022] Open
Abstract
In Lotus japonicus, a LysM receptor kinase, EPR3, distinguishes compatible and incompatible rhizobial exopolysaccharides at the epidermis. However, the role of this recognition system in bacterial colonization of the root interior is unknown. Here we show that EPR3 advances the intracellular infection mechanism that mediates infection thread invasion of the root cortex and nodule primordia. At the cellular level, Epr3 expression delineates progression of infection threads into nodule primordia and cortical infection thread formation is impaired in epr3 mutants. Genetic dissection of this developmental coordination showed that Epr3 is integrated into the symbiosis signal transduction pathways. Further analysis showed differential expression of Epr3 in the epidermis and cortical primordia and identified key transcription factors controlling this tissue specificity. These results suggest that exopolysaccharide recognition is reiterated during the progressing infection and that EPR3 perception of compatible exopolysaccharide promotes an intracellular cortical infection mechanism maintaining bacteria enclosed in plant membranes.
Collapse
|
19
|
Honkanen S, Dolan L. Growth regulation in tip-growing cells that develop on the epidermis. CURRENT OPINION IN PLANT BIOLOGY 2016; 34:77-83. [PMID: 27816817 DOI: 10.1016/j.pbi.2016.10.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 10/10/2016] [Accepted: 10/13/2016] [Indexed: 05/24/2023]
Abstract
Plants develop tip-growing extensions-root hairs and rhizoids-that initiate as swellings on the outer surface of individual epidermal cells. A conserved genetic mechanism controls the earliest stages in the initiation of these swellings. The same mechanism controls the formation of multicellular structures that develop from swellings on epidermal cells in early diverging land plants. Details of the molecular events that regulate the positioning of the swellings involve sterols and phosphatidylinositol phosphates. The final length of root hairs is determined by the intensity of a pulse of transcription factor synthesis. Genes encoding similar transcription factors control root hair development in cereals and are potential targets for crop improvement.
Collapse
Affiliation(s)
- Suvi Honkanen
- Department of Plant Sciences, University of Oxford, OX1 3RB, UK
| | - Liam Dolan
- Department of Plant Sciences, University of Oxford, OX1 3RB, UK.
| |
Collapse
|
20
|
Miri M, Janakirama P, Held M, Ross L, Szczyglowski K. Into the Root: How Cytokinin Controls Rhizobial Infection. TRENDS IN PLANT SCIENCE 2016; 21:178-186. [PMID: 26459665 DOI: 10.1016/j.tplants.2015.09.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 08/26/2015] [Accepted: 09/08/2015] [Indexed: 05/13/2023]
Abstract
Leguminous plants selectively initiate primary responses to rhizobial nodulation factors (NF) that ultimately lead to symbiotic root nodule formation. Functioning downstream, cytokinin has emerged as the key endogenous plant signal for nodule differentiation, but its role in mediating rhizobial entry into the root remains obscure. Nonetheless, such a role is suggested by aberrant infection phenotypes of plant mutants with defects in cytokinin signaling. We postulate that cytokinin participates in orchestrating signaling events that promote rhizobial colonization of the root cortex and limit the extent of subsequent infection at the root epidermis, thus maintaining homeostasis of the symbiotic interaction. We further argue that cytokinin signaling must have been crucial during the evolution of plant cell predisposition for rhizobial colonization.
Collapse
Affiliation(s)
- Mandana Miri
- Agriculture and Agri-Food Canada, Southern Crop Protection and Food Research Centre, London, ONT, NV5 4T3, Canada; Department of Biology, University of Western Ontario, London, ONT, N6A 5BF, Canada
| | - Preetam Janakirama
- Agriculture and Agri-Food Canada, Southern Crop Protection and Food Research Centre, London, ONT, NV5 4T3, Canada
| | - Mark Held
- Agriculture and Agri-Food Canada, Southern Crop Protection and Food Research Centre, London, ONT, NV5 4T3, Canada; Current address: Intrexon Corporation, 329 Oyster Pt. Blvd., South San Francisco, CA 94080, USA
| | - Loretta Ross
- Agriculture and Agri-Food Canada, Southern Crop Protection and Food Research Centre, London, ONT, NV5 4T3, Canada
| | - Krzysztof Szczyglowski
- Agriculture and Agri-Food Canada, Southern Crop Protection and Food Research Centre, London, ONT, NV5 4T3, Canada; Department of Biology, University of Western Ontario, London, ONT, N6A 5BF, Canada.
| |
Collapse
|
21
|
Lin Q, Ohashi Y, Kato M, Tsuge T, Gu H, Qu LJ, Aoyama T. GLABRA2 Directly Suppresses Basic Helix-Loop-Helix Transcription Factor Genes with Diverse Functions in Root Hair Development. THE PLANT CELL 2015; 27:2894-906. [PMID: 26486447 PMCID: PMC4637992 DOI: 10.1105/tpc.15.00607] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 09/03/2015] [Accepted: 10/05/2015] [Indexed: 05/21/2023]
Abstract
The Arabidopsis thaliana GLABRA2 (GL2) gene encodes a transcription factor involved in the cell differentiation of various epidermal tissues. During root hair pattern formation, GL2 suppresses root hair development in non-hair cells, acting as a node between the gene regulatory networks for cell fate determination and cell differentiation. Despite the importance of GL2 function, its molecular basis remains obscure because the GL2 target genes leading to the network for cell differentiation are unknown. We identified five basic helix-loop-helix (bHLH) transcription factor genes (ROOT HAIR DEFECTIVE6 [RHD6], RHD6-LIKE1 [RSL1], RSL2, Lj-RHL1-LIKE1 [LRL1], and LRL2) as GL2 direct targets using transcriptional and posttranslational induction systems. Chromatin immunoprecipitation analysis confirmed GL2 binding to upstream regions of these genes in planta. Reporter gene analyses showed that these genes are expressed in various stages of root hair development and are suppressed by GL2 in non-hair cells. GL2 promoter-driven GFP fusions of LRL1 and LRL2, but not those of the other bHLH proteins, conferred root hair development on non-hair cells. These results indicate that GL2 directly suppresses bHLH genes with diverse functions in root hair development.
Collapse
Affiliation(s)
- Qing Lin
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Yohei Ohashi
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Mariko Kato
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Tomohiko Tsuge
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Hongya Gu
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Li-Jia Qu
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Takashi Aoyama
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| |
Collapse
|
22
|
Hossain MS, Joshi T, Stacey G. System approaches to study root hairs as a single cell plant model: current status and future perspectives. FRONTIERS IN PLANT SCIENCE 2015; 6:363. [PMID: 26042143 PMCID: PMC4436566 DOI: 10.3389/fpls.2015.00363] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 05/06/2015] [Indexed: 05/29/2023]
Abstract
Our current understanding of plant functional genomics derives primarily from measurements of gene, protein and/or metabolite levels averaged over the whole plant or multicellular tissues. These approaches risk diluting the response of specific cells that might respond strongly to the treatment but whose signal is diluted by the larger proportion of non-responding cells. For example, if a gene is expressed at a low level, does this mean that it is indeed lowly expressed or is it highly expressed, but only in a few cells? In order to avoid these issues, we adopted the soybean root hair cell, derived from a single, differentiated root epidermal cell, as a single-cell model for functional genomics. Root hair cells are intrinsically interesting since they are major conduits for root water and nutrient uptake and are also the preferred site of infection by nitrogen-fixing rhizobium bacteria. Although a variety of other approaches have been used to study single plant cells or single cell types, the root hair system is perhaps unique in allowing application of the full repertoire of functional genomic and biochemical approaches. In this mini review, we summarize our published work and place this within the broader context of root biology, with a significant focus on understanding the initial events in the soybean-rhizobium interaction.
Collapse
Affiliation(s)
- Md Shakhawat Hossain
- Division of Plant Sciences and Biochemistry, National Center for Soybean Biotechnology, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - Trupti Joshi
- Department of Computer Science, Informatics Institute and Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - Gary Stacey
- Division of Plant Sciences and Biochemistry, National Center for Soybean Biotechnology, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| |
Collapse
|
23
|
Suzaki T, Yoro E, Kawaguchi M. Leguminous plants: inventors of root nodules to accommodate symbiotic bacteria. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 316:111-58. [PMID: 25805123 DOI: 10.1016/bs.ircmb.2015.01.004] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Legumes and a few other plant species can establish a symbiotic relationship with nitrogen-fixing rhizobia, which enables them to survive in a nitrogen-deficient environment. During the course of nodulation, infection with rhizobia induces the dedifferentiation of host cells to form primordia of a symbiotic organ, the nodule, which prepares plants to accommodate rhizobia in host cells. While these nodulation processes are known to be genetically controlled by both plants and rhizobia, recent advances in studies on two model legumes, Lotus japonicus and Medicago truncatula, have provided great insight into the underlying plant-side molecular mechanism. In this chapter, we review such knowledge, with particular emphasis on two key processes of nodulation, nodule development and rhizobial invasion.
Collapse
Affiliation(s)
- Takuya Suzaki
- National Institute for Basic Biology, Okazaki, Japan; School of Life Science, Graduate University for Advanced Studies, Okazaki, Japan
| | - Emiko Yoro
- National Institute for Basic Biology, Okazaki, Japan; School of Life Science, Graduate University for Advanced Studies, Okazaki, Japan
| | - Masayoshi Kawaguchi
- National Institute for Basic Biology, Okazaki, Japan; School of Life Science, Graduate University for Advanced Studies, Okazaki, Japan
| |
Collapse
|
24
|
Ectopic expression of miR156 represses nodulation and causes morphological and developmental changes in Lotus japonicus. Mol Genet Genomics 2014; 290:471-84. [PMID: 25293935 PMCID: PMC4361721 DOI: 10.1007/s00438-014-0931-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 09/20/2014] [Indexed: 11/03/2022]
Abstract
The effects of microRNA156 overexpression on general plant architecture, branching, flowering time and nodulation were investigated in the model legume, Lotus japonicus. We cloned an miR156 homolog, LjmiR156a, from L. japonicus, and investigated its SQUAMOSA PROMOTER BINDING PROTEIN LIKE (SPL) genes and its biological function at enhancing vegetative biomass yield, extending flowering time, and its impact on nodulation. Thirteen potential targets for LjmiR156 were identified in vitro and their expression profiles were determined in aerial and underground parts of mature plants, including genes coding for eight SPLs, one WD-40, one RNA-directed DNA polymerase, two transport proteins, and one histidine-phosphotransfer protein. Two SPL and one WD-40 cleavage targets for LjmiR156-TC70253, AU089191, and TC57859-were identified. Transgenic plants with ectopic expression of LjmiR156a showed enhanced branching, dramatically delayed flowering, underdeveloped roots, and reduced nodulation. We also examined the transcript levels of key genes involved in nodule organogenesis and infection thread formation to determine the role of miR156 in regulating symbiosis. Overexpression of LjmiR156a led to repression of several nodulation genes during the early stages of root development such as three ENOD genes, SymPK, POLLUX, CYCLOPS, Cerberus, and Nsp1, and the stimulation of NFR1. Our results show that miR156 regulates vegetative biomass yield, flowering time and nodulation by silencing downstream target SPLs and other genes, suggesting that the miR156 regulatory network could be modified in forage legumes (such as alfalfa and trefoils) and in leafy vegetables (like lettuce and spinach) to positively impact economically valuable crop species.
Collapse
|
25
|
Suzaki T, Kawaguchi M. Root nodulation: a developmental program involving cell fate conversion triggered by symbiotic bacterial infection. CURRENT OPINION IN PLANT BIOLOGY 2014; 21:16-22. [PMID: 24996031 DOI: 10.1016/j.pbi.2014.06.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 05/29/2014] [Accepted: 06/05/2014] [Indexed: 05/11/2023]
Abstract
Root nodulation is a unique developmental process that predominantly occurs in leguminous plants. In this process, signaling initiated by symbiotic bacterial infection alters the fate of differentiated cortical cells and causes formation of new organs. Two qualitatively different regulatory events, namely bacterial infection and nodule organogenesis, need to be coordinated in the epidermis and cortical cells to establish proper nodule formation. Recent studies have determined the tissue-specific requirements of known symbiotic genes and also detailed a direct molecular link between the two regulatory pathways. Additionally, the detailed function of cytokinin signaling has been identified and the downstream genes have been isolated, providing greater understanding of the genetic mechanisms underlying nodule organogenesis.
Collapse
Affiliation(s)
- Takuya Suzaki
- National Institute for Basic Biology, Okazaki, Aichi 444-8585, Japan; School of Life Science, The Graduate University for Advanced Studies, Okazaki, Aichi 444-8585, Japan.
| | - Masayoshi Kawaguchi
- National Institute for Basic Biology, Okazaki, Aichi 444-8585, Japan; School of Life Science, The Graduate University for Advanced Studies, Okazaki, Aichi 444-8585, Japan
| |
Collapse
|
26
|
Yoon HJ, Hossain MS, Held M, Hou H, Kehl M, Tromas A, Sato S, Tabata S, Andersen SU, Stougaard J, Ross L, Szczyglowski K. Lotus japonicus SUNERGOS1 encodes a predicted subunit A of a DNA topoisomerase VI that is required for nodule differentiation and accommodation of rhizobial infection. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 78:811-21. [PMID: 24661810 PMCID: PMC4282747 DOI: 10.1111/tpj.12520] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 02/13/2014] [Accepted: 03/05/2014] [Indexed: 05/05/2023]
Abstract
A symbiotic mutant of Lotus japonicus, called sunergos1-1 (suner1-1), originated from a har1-1 suppressor screen. suner1-1 supports epidermal infection by Mesorhizobium loti and initiates cell divisions for organogenesis of nodule primordia. However, these processes appear to be temporarily stalled early during symbiotic interaction, leading to a low nodule number phenotype. This defect is ephemeral and near wild-type nodule numbers are reached by suner1-1 at a later point after infection. Using an approach that combined map-based cloning and next-generation sequencing we have identified the causative mutation and show that the suner1-1 phenotype is determined by a weak recessive allele, with the corresponding wild-type SUNER1 locus encoding a predicted subunit A of a DNA topoisomerase VI. Our data suggest that at least one function of SUNER1 during symbiosis is to participate in endoreduplication, which is an essential step during normal differentiation of functional, nitrogen-fixing nodules.
Collapse
Affiliation(s)
- Hwi Joong Yoon
- Agriculture and Agri-Food Canada, Southern Crop Protection and Food Research CentreLondon, ON, N5V 4T3, Canada
- Department of Biology, University of Western OntarioLondon, ON, N6A 5B7, Canada
| | - Md Shakhawat Hossain
- Agriculture and Agri-Food Canada, Southern Crop Protection and Food Research CentreLondon, ON, N5V 4T3, Canada
| | - Mark Held
- Agriculture and Agri-Food Canada, Southern Crop Protection and Food Research CentreLondon, ON, N5V 4T3, Canada
- Department of Biology, University of Western OntarioLondon, ON, N6A 5B7, Canada
| | - Hongwei Hou
- Agriculture and Agri-Food Canada, Southern Crop Protection and Food Research CentreLondon, ON, N5V 4T3, Canada
| | - Marilyn Kehl
- Agriculture and Agri-Food Canada, Southern Crop Protection and Food Research CentreLondon, ON, N5V 4T3, Canada
- Department of Biology, University of Western OntarioLondon, ON, N6A 5B7, Canada
| | - Alexandre Tromas
- Agriculture and Agri-Food Canada, Southern Crop Protection and Food Research CentreLondon, ON, N5V 4T3, Canada
| | - Shusei Sato
- Kazusa DNA Research InstituteKisarazu, Chiba, 292-0812, Japan
| | - Satoshi Tabata
- Kazusa DNA Research InstituteKisarazu, Chiba, 292-0812, Japan
| | - Stig Uggerhøj Andersen
- Centre for Carbohydrate Recognition and Signalling, Department of Molecular Biology and Genetics, Aarhus UniversityGustav Wieds Vej 10, 8000, Aarhus C, Denmark
| | - Jens Stougaard
- Centre for Carbohydrate Recognition and Signalling, Department of Molecular Biology and Genetics, Aarhus UniversityGustav Wieds Vej 10, 8000, Aarhus C, Denmark
| | - Loretta Ross
- Agriculture and Agri-Food Canada, Southern Crop Protection and Food Research CentreLondon, ON, N5V 4T3, Canada
| | - Krzysztof Szczyglowski
- Agriculture and Agri-Food Canada, Southern Crop Protection and Food Research CentreLondon, ON, N5V 4T3, Canada
- Department of Biology, University of Western OntarioLondon, ON, N6A 5B7, Canada
- *For correspondence (e-mail )
| |
Collapse
|
27
|
Held M, Hou H, Miri M, Huynh C, Ross L, Hossain MS, Sato S, Tabata S, Perry J, Wang TL, Szczyglowski K. Lotus japonicus cytokinin receptors work partially redundantly to mediate nodule formation. THE PLANT CELL 2014; 26:678-94. [PMID: 24585837 PMCID: PMC3967033 DOI: 10.1105/tpc.113.119362] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 01/22/2014] [Accepted: 02/05/2014] [Indexed: 05/21/2023]
Abstract
Previous analysis of the Lotus histidine kinase1 (Lhk1) cytokinin receptor gene has shown that it is required and also sufficient for nodule formation in Lotus japonicus. The L. japonicus mutant carrying the loss-of-function lhk1-1 allele is hyperinfected by its symbiotic partner, Mesorhizobium loti, in the initial absence of nodule organogenesis. At a later time point following bacterial infection, lhk1-1 develops a limited number of nodules, suggesting the presence of an Lhk1-independent mechanism. We have tested a hypothesis that other cytokinin receptors function in at least a partially redundant manner with LHK1 to mediate nodule organogenesis in L. japonicus. We show here that L. japonicus contains a small family of four cytokinin receptor genes, which all respond to M. loti infection. We show that within the root cortex, LHK1 performs an essential role but also works partially redundantly with LHK1A and LHK3 to mediate cell divisions for nodule primordium formation. The LHK1 receptor is also presumed to partake in mediating a feedback mechanism that negatively regulates bacterial infections at the root epidermis. Interestingly, the Arabidopsis thaliana AHK4 receptor gene can functionally replace Lhk1 in mediating nodule organogenesis, indicating that the ability to perform this developmental process is not determined by unique, legume-specific properties of LHK1.
Collapse
MESH Headings
- Alleles
- Arabidopsis/drug effects
- Arabidopsis/growth & development
- Cytokinins/metabolism
- Cytokinins/pharmacology
- Escherichia coli
- Gene Expression Regulation, Plant/drug effects
- Lotus/drug effects
- Lotus/genetics
- Lotus/growth & development
- Lotus/microbiology
- Mesorhizobium
- Models, Biological
- Molecular Sequence Data
- Multigene Family
- Mutation/genetics
- Organogenesis/drug effects
- Organogenesis/genetics
- Phylogeny
- Plant Proteins/chemistry
- Plant Proteins/metabolism
- Promoter Regions, Genetic/genetics
- Protein Structure, Tertiary
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptors, Cell Surface/chemistry
- Receptors, Cell Surface/metabolism
- Root Nodules, Plant/drug effects
- Root Nodules, Plant/growth & development
- Root Nodules, Plant/microbiology
- Saccharomyces cerevisiae/genetics
- Signal Transduction/drug effects
- Signal Transduction/genetics
- Transcription, Genetic/drug effects
Collapse
Affiliation(s)
- Mark Held
- Agriculture and Agri-Food Canada, Southern Crop
Protection and Food Research Centre, London, Ontario N5V 4T3, Canada
- Department of Biology, University of Western Ontario,
London, Ontario N6A 5BF, Canada
| | - Hongwei Hou
- Agriculture and Agri-Food Canada, Southern Crop
Protection and Food Research Centre, London, Ontario N5V 4T3, Canada
| | - Mandana Miri
- Agriculture and Agri-Food Canada, Southern Crop
Protection and Food Research Centre, London, Ontario N5V 4T3, Canada
- Department of Biology, University of Western Ontario,
London, Ontario N6A 5BF, Canada
| | - Christian Huynh
- Agriculture and Agri-Food Canada, Southern Crop
Protection and Food Research Centre, London, Ontario N5V 4T3, Canada
| | - Loretta Ross
- Agriculture and Agri-Food Canada, Southern Crop
Protection and Food Research Centre, London, Ontario N5V 4T3, Canada
| | - Md Shakhawat Hossain
- Agriculture and Agri-Food Canada, Southern Crop
Protection and Food Research Centre, London, Ontario N5V 4T3, Canada
| | - Shusei Sato
- Kazusa DNA Research Institute, Kisarazu, Chiba 292-0818,
Japan
| | - Satoshi Tabata
- Kazusa DNA Research Institute, Kisarazu, Chiba 292-0818,
Japan
| | | | | | - Krzysztof Szczyglowski
- Agriculture and Agri-Food Canada, Southern Crop
Protection and Food Research Centre, London, Ontario N5V 4T3, Canada
- Department of Biology, University of Western Ontario,
London, Ontario N6A 5BF, Canada
- Address correspondence to
| |
Collapse
|
28
|
Held M, Hou H, Miri M, Huynh C, Ross L, Hossain MS, Sato S, Tabata S, Perry J, Wang TL, Szczyglowski K. Lotus japonicus cytokinin receptors work partially redundantly to mediate nodule formation. THE PLANT CELL 2014. [PMID: 24585837 DOI: 10.1105/tpc.113.119382] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Previous analysis of the Lotus histidine kinase1 (Lhk1) cytokinin receptor gene has shown that it is required and also sufficient for nodule formation in Lotus japonicus. The L. japonicus mutant carrying the loss-of-function lhk1-1 allele is hyperinfected by its symbiotic partner, Mesorhizobium loti, in the initial absence of nodule organogenesis. At a later time point following bacterial infection, lhk1-1 develops a limited number of nodules, suggesting the presence of an Lhk1-independent mechanism. We have tested a hypothesis that other cytokinin receptors function in at least a partially redundant manner with LHK1 to mediate nodule organogenesis in L. japonicus. We show here that L. japonicus contains a small family of four cytokinin receptor genes, which all respond to M. loti infection. We show that within the root cortex, LHK1 performs an essential role but also works partially redundantly with LHK1A and LHK3 to mediate cell divisions for nodule primordium formation. The LHK1 receptor is also presumed to partake in mediating a feedback mechanism that negatively regulates bacterial infections at the root epidermis. Interestingly, the Arabidopsis thaliana AHK4 receptor gene can functionally replace Lhk1 in mediating nodule organogenesis, indicating that the ability to perform this developmental process is not determined by unique, legume-specific properties of LHK1.
Collapse
MESH Headings
- Alleles
- Arabidopsis/drug effects
- Arabidopsis/growth & development
- Cytokinins/metabolism
- Cytokinins/pharmacology
- Escherichia coli
- Gene Expression Regulation, Plant/drug effects
- Lotus/drug effects
- Lotus/genetics
- Lotus/growth & development
- Lotus/microbiology
- Mesorhizobium
- Models, Biological
- Molecular Sequence Data
- Multigene Family
- Mutation/genetics
- Organogenesis/drug effects
- Organogenesis/genetics
- Phylogeny
- Plant Proteins/chemistry
- Plant Proteins/metabolism
- Promoter Regions, Genetic/genetics
- Protein Structure, Tertiary
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptors, Cell Surface/chemistry
- Receptors, Cell Surface/metabolism
- Root Nodules, Plant/drug effects
- Root Nodules, Plant/growth & development
- Root Nodules, Plant/microbiology
- Saccharomyces cerevisiae/genetics
- Signal Transduction/drug effects
- Signal Transduction/genetics
- Transcription, Genetic/drug effects
Collapse
Affiliation(s)
- Mark Held
- Agriculture and Agri-Food Canada, Southern Crop Protection and Food Research Centre, London, Ontario N5V 4T3, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Liao J, Singh S, Hossain MS, Andersen SU, Ross L, Bonetta D, Zhou Y, Sato S, Tabata S, Stougaard J, Szczyglowski K, Parniske M. Negative regulation of CCaMK is essential for symbiotic infection. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 72:572-84. [PMID: 22775286 DOI: 10.1111/j.1365-313x.2012.05098.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
One of the earliest responses of legumes to symbiotic signalling is oscillation of the calcium concentration in the nucleoplasm of root epidermal cells. Integration and decoding of the calcium-spiking signal involve a calcium- and calmodulin-dependent protein kinase (CCaMK) and its phosphorylation substrates, such as CYCLOPS. Here we describe the Lotus japonicus ccamk-14 mutant that originated from a har1-1 suppressor screen. The ccamk-14 mutation causes a serine to asparagine substitution at position 337 located within the calmodulin binding site, which we determined to be an in vitro phosphorylation site in CCaMK. We show that ccamk-14 exerts cell-specific effects on symbiosis. The mutant is characterized by an increased frequency of epidermal infections and significantly compromised cortical infections by Mesorhizobium loti and also the arbuscular mycorrhiza fungus Rhizophagus irregularis. The S337 residue is conserved across angiosperm CCaMKs, and testing discrete substitutions at this site showed that it participates in a negative regulation of CCaMK activity, which is required for the cell-type-specific integration of symbiotic signalling.
Collapse
Affiliation(s)
- Jinqiu Liao
- Agriculture and Agri-Food Canada, Southern Crop Protection and Food Research Centre, London, Ontario N5V 4T3, Canada
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Hossain MS, Liao J, James EK, Sato S, Tabata S, Jurkiewicz A, Madsen LH, Stougaard J, Ross L, Szczyglowski K. Lotus japonicus ARPC1 is required for rhizobial infection. PLANT PHYSIOLOGY 2012; 160:917-28. [PMID: 22864583 PMCID: PMC3461565 DOI: 10.1104/pp.112.202572] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Accepted: 08/01/2012] [Indexed: 05/18/2023]
Abstract
Remodeling of the plant cell cytoskeleton precedes symbiotic entry of nitrogen-fixing bacteria within the host plant roots. Here we identify a Lotus japonicus gene encoding a predicted ACTIN-RELATED PROTEIN COMPONENT1 (ARPC1) as essential for rhizobial infection but not for arbuscular mycorrhiza symbiosis. In other organisms ARPC1 constitutes a subunit of the ARP2/3 complex, the major nucleator of Y-branched actin filaments. The L. japonicus arpc1 mutant showed a distorted trichome phenotype and was defective in epidermal infection thread formation, producing mostly empty nodules. A few partially colonized nodules that did form in arpc1 contained abnormal infections. Together with previously described L. japonicus Nck-associated protein1 and 121F-specific p53 inducible RNA mutants, which are also impaired in the accommodation of rhizobia, our data indicate that ARPC1 and, by inference a suppressor of cAMP receptor/WASP-family verpolin homologous protein-ARP2/3 pathway, must have been coopted during evolution of nitrogen-fixing symbiosis to specifically mediate bacterial entry.
Collapse
MESH Headings
- Actin Cytoskeleton/genetics
- Actin Cytoskeleton/metabolism
- Actin-Related Protein 2-3 Complex/genetics
- Actin-Related Protein 2-3 Complex/metabolism
- Agrobacterium tumefaciens/genetics
- Agrobacterium tumefaciens/metabolism
- Cloning, Molecular
- Gene Expression Regulation, Plant
- Genes, Plant
- Genetic Complementation Test
- Genetic Loci
- Lotus/genetics
- Lotus/growth & development
- Lotus/metabolism
- Lotus/microbiology
- Mesorhizobium/growth & development
- Mutation
- Mycorrhizae/growth & development
- Phenotype
- Plant Epidermis/metabolism
- Plant Epidermis/microbiology
- Plant Proteins/genetics
- Plant Proteins/metabolism
- Plants, Genetically Modified/genetics
- Plants, Genetically Modified/metabolism
- Plants, Genetically Modified/microbiology
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Root Nodules, Plant/growth & development
- Root Nodules, Plant/microbiology
- Seeds/genetics
- Seeds/metabolism
- Symbiosis
Collapse
|
31
|
Markmann K, Radutoiu S, Stougaard J. Infection of Lotus japonicus Roots by Mesorhizobium loti. SIGNALING AND COMMUNICATION IN PLANT SYMBIOSIS 2012. [DOI: 10.1007/978-3-642-20966-6_2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
32
|
Desbrosses G, Stougaard J. Root Nodulation: A Paradigm for How Plant-Microbe Symbiosis Influences Host Developmental Pathways. Cell Host Microbe 2011; 10:348-58. [DOI: 10.1016/j.chom.2011.09.005] [Citation(s) in RCA: 203] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
33
|
Kosuta S, Held M, Hossain MS, Morieri G, Macgillivary A, Johansen C, Antolín-Llovera M, Parniske M, Oldroyd GED, Downie AJ, Karas B, Szczyglowski K. Lotus japonicus symRK-14 uncouples the cortical and epidermal symbiotic program. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 67:929-940. [PMID: 21595760 DOI: 10.1111/j.1365-313x.2011.04645.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
SYMRK is a leucine-rich-repeat (LRR)-receptor kinase that mediates intracellular symbioses of legumes with rhizobia and arbuscular mycorrhizal fungi. It participates in signalling events that lead to epidermal calcium spiking, an early cellular response that is typically considered as central for intracellular accommodation and nodule organogenesis. Here, we describe the Lotus japonicus symRK-14 mutation that alters a conserved GDPC amino-acid sequence in the SYMRK extracellular domain. Normal infection of the epidermis by fungal or bacterial symbionts was aborted in symRK-14. Likewise, epidermal responses of symRK-14 to bacterial signalling, including calcium spiking, NIN gene expression and infection thread formation, were significantly reduced. In contrast, no major negative effects on the formation of nodule primordia and cortical infection were detected. Cumulatively, our data show that the symRK-14 mutation uncouples the epidermal and cortical symbiotic program, while indicating that the SYMRK extracellular domain participates in transduction of non-equivalent signalling events. The GDPC sequence was found to be highly conserved in LRR-receptor kinases in legumes and non-legumes, including the evolutionarily distant bryophytes. Conservation of the GDPC sequence in nearly one-fourth of LRR-receptor-like kinases in the genome of Arabidopsis thaliana suggests, however, that this sequence might also play an important non-symbiotic function in this plant.
Collapse
Affiliation(s)
- Sonja Kosuta
- Agriculture and Agri-Food Canada, Southern Crop Protection and Food Research Centre, London, ON N5V4T3 Canada
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Oldroyd GED, Murray JD, Poole PS, Downie JA. The rules of engagement in the legume-rhizobial symbiosis. Annu Rev Genet 2011; 45:119-44. [PMID: 21838550 DOI: 10.1146/annurev-genet-110410-132549] [Citation(s) in RCA: 688] [Impact Index Per Article: 49.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Rhizobial bacteria enter a symbiotic association with leguminous plants, resulting in differentiated bacteria enclosed in intracellular compartments called symbiosomes within nodules on the root. The nodules and associated symbiosomes are structured for efficient nitrogen fixation. Although the interaction is beneficial to both partners, it comes with rigid rules that are strictly enforced by the plant. Entry into root cells requires appropriate recognition of the rhizobial Nod factor signaling molecule, and this recognition activates a series of events, including polarized root-hair tip growth, invagination associated with bacterial infection, and the promotion of cell division in the cortex leading to the nodule meristem. The plant's command of the infection process has been highlighted by its enforcement of terminal differentiation upon the bacteria within nodules of some legumes, and this can result in a loss of bacterial viability while permitting effective nitrogen fixation. Here, we review the mechanisms by which the plant allows bacterial infection and promotes the formation of the nodule, as well as the details of how this intimate association plays out inside the cells of the nodule where a complex interchange of metabolites and regulatory peptides force the bacteria into a nitrogen-fixing organelle-like state.
Collapse
Affiliation(s)
- Giles E D Oldroyd
- John Innes Center, Norwich Research Park, Norwich NR4 7UH, United Kingdom.
| | | | | | | |
Collapse
|
35
|
Takanashi K, Sugiyama A, Yazaki K. Involvement of auxin distribution in root nodule development of Lotus japonicus. PLANTA 2011; 234:73-81. [PMID: 21369920 DOI: 10.1007/s00425-011-1385-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2010] [Accepted: 02/11/2011] [Indexed: 05/23/2023]
Abstract
The symbiosis between legume plants and rhizobia causes the development of new organs, nodules which function as an apparatus for nitrogen fixation. In this study, the roles of auxin in nodule development in Lotus japonicus have been demonstrated using molecular genetic tools and auxin inhibitors. The expression of an auxin-reporter GH3 fused to β-glucuronidase (GUS) was analyzed in L. japonicus roots, and showed a strong signal in the central cylinder of the root, whereas upon rhizobium infection, generation of GUS signal was observed at the dividing outer cortical cells during the first nodule cell divisions. When nodules were developed to maturity, strong GUS staining was detected in vascular tissues of nodules, suggesting distinct auxin involvement in the determinate nodule development. Numbers and the development of nodules were affected by auxin transport inhibitors (1-naphthylphthalamic acid, NPA and triindobenzoic acid, TIBA), and by a newly synthesized auxin antagonist, α-(phenyl ethyl-2-one)-indole-3-acetic acid (PEO-IAA). The common phenotypical alteration by these auxin inhibitors was the inhibition in forming lenticel which is normally developed on the nodule surface from the root outer cortex. The inhibition of lenticel formation was correlated with the inhibition of nodule vascular bundle development. These results indicate that auxin is required for the normal development of determinate nodules in a multidirectional manner.
Collapse
Affiliation(s)
- Kojiro Takanashi
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji 611-0011, Japan
| | | | | |
Collapse
|
36
|
Murray JD. Invasion by invitation: rhizobial infection in legumes. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2011; 24:631-9. [PMID: 21542766 DOI: 10.1094/mpmi-08-10-0181] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Nodulation of legume roots typically begins with rhizobia attaching to the tip of a growing root-hair cell. The attached rhizobia secrete Nod factors (NF), which are perceived by the plant. This initiates a series of preinfection events that include cytoskeletal rearrangements, curling at the root-hair tip, and formation of radially aligned cytoplasmic bridges called preinfection threads (PIT) in outer cortical cells. Within the root-hair curl, an infection pocket filled with bacteria forms, from which originates a tubular invagination of cell wall and membrane called an infection thread (IT). IT formation is coordinated with nodule development in the underlying root cortex tissues. The IT extends from the infection pocket down through the root hair and into the root cortex, where it passes through PIT and eventually reaches the nascent nodule. As the IT grows, it is colonized by rhizobia that are eventually released into cells within the nodule, where they fix nitrogen. NF can also induce cortical root hairs that appear to originate from PIT and can become infected like normal root hairs. Several genes involved in NF signaling and some of the downstream transcription factors required for infection have been characterized. More recently, several genes with direct roles in infection have been identified, some with roles in actin rearrangement and others with possible roles in protein turnover and secretion. This article provides an overview of the infection process, including the roles of NF signaling, actin, and calcium and the influence of the hormones ethylene and cytokinin.
Collapse
|
37
|
Held M, Hossain MS, Yokota K, Bonfante P, Stougaard J, Szczyglowski K. Common and not so common symbiotic entry. TRENDS IN PLANT SCIENCE 2010; 15:540-545. [PMID: 20829094 DOI: 10.1016/j.tplants.2010.08.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2010] [Revised: 07/26/2010] [Accepted: 08/09/2010] [Indexed: 05/29/2023]
Abstract
Great advances have been made in our understanding of the host plant's common symbiosis functions, which in legumes mediate intracellular accommodation of both nitrogen-fixing bacteria and arbuscular mycorrhiza (AM) fungi. However, it has become apparent that additional plant genes are required specifically for bacterial entry inside the host root. In this opinion article, we consider Lotus japonicus nap1 and pir1 symbiotic mutants within the context of other deleterious mutations that impair an intracellular accommodation of bacteria but have no impact on the colonization of roots by AM fungi. We highlight a clear delineation of early signaling events during bacterial versus AM symbioses while suggesting a more intricate origin of the plant's ability for intracellular accommodation of bacteria.
Collapse
Affiliation(s)
- Mark Held
- Agriculture and Agri-Food Canada, Southern Crop Protection and Food Research Centre, London, Ontario NV5 4T3, Canada
| | | | | | | | | | | |
Collapse
|
38
|
Groth M, Takeda N, Perry J, Uchida H, Dräxl S, Brachmann A, Sato S, Tabata S, Kawaguchi M, Wang TL, Parniske M. NENA, a Lotus japonicus homolog of Sec13, is required for rhizodermal infection by arbuscular mycorrhiza fungi and rhizobia but dispensable for cortical endosymbiotic development. THE PLANT CELL 2010; 22:2509-26. [PMID: 20675572 PMCID: PMC2929109 DOI: 10.1105/tpc.109.069807] [Citation(s) in RCA: 152] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2009] [Revised: 06/25/2010] [Accepted: 07/05/2010] [Indexed: 05/07/2023]
Abstract
Legumes form symbioses with arbuscular mycorrhiza (AM) fungi and nitrogen fixing root nodule bacteria. Intracellular root infection by either endosymbiont is controlled by the activation of the calcium and calmodulin-dependent kinase (CCaMK), a central regulatory component of the plant's common symbiosis signaling network. We performed a microscopy screen for Lotus japonicus mutants defective in AM development and isolated a mutant, nena, that aborted fungal infection in the rhizodermis. NENA encodes a WD40 repeat protein related to the nucleoporins Sec13 and Seh1. Localization of NENA to the nuclear rim and yeast two-hybrid experiments indicated a role for NENA in a conserved subcomplex of the nuclear pore scaffold. Although nena mutants were able to form pink nodules in symbiosis with Mesorhizobium loti, root hair infection was not observed. Moreover, Nod factor induction of the symbiotic genes NIN, SbtM4, and SbtS, as well as perinuclear calcium spiking, were impaired. Detailed phenotypic analyses of nena mutants revealed a rhizobial infection mode that overcame the lack of rhizodermal responsiveness and carried the hallmarks of crack entry, including a requirement for ethylene. CCaMK-dependent processes were only abolished in the rhizodermis but not in the cortex of nena mutants. These data support the concept of tissue-specific components for the activation of CCaMK.
Collapse
Affiliation(s)
- Martin Groth
- Biocenter University of Munich (LMU), Genetics, 82152 Martinsried, Germany
| | - Naoya Takeda
- Biocenter University of Munich (LMU), Genetics, 82152 Martinsried, Germany
| | - Jillian Perry
- Department of Metabolic Biology, John Innes Centre, Colney, Norwich NR4 7UH, United Kingdom
| | - Hisaki Uchida
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Stephan Dräxl
- Biocenter University of Munich (LMU), Genetics, 82152 Martinsried, Germany
| | - Andreas Brachmann
- Biocenter University of Munich (LMU), Genetics, 82152 Martinsried, Germany
| | - Shusei Sato
- Kazusa DNA Research Institute, Kisarazu, Chiba 292-0818, Japan
| | - Satoshi Tabata
- Kazusa DNA Research Institute, Kisarazu, Chiba 292-0818, Japan
| | - Masayoshi Kawaguchi
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Trevor L. Wang
- Department of Metabolic Biology, John Innes Centre, Colney, Norwich NR4 7UH, United Kingdom
| | - Martin Parniske
- Biocenter University of Munich (LMU), Genetics, 82152 Martinsried, Germany
| |
Collapse
|
39
|
Madsen LH, Tirichine L, Jurkiewicz A, Sullivan JT, Heckmann AB, Bek AS, Ronson CW, James EK, Stougaard J. The molecular network governing nodule organogenesis and infection in the model legume Lotus japonicus. Nat Commun 2010; 1:10. [PMID: 20975672 PMCID: PMC2892300 DOI: 10.1038/ncomms1009] [Citation(s) in RCA: 318] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2010] [Accepted: 03/05/2010] [Indexed: 12/30/2022] Open
Abstract
Bacterial infection of interior tissues of legume root nodules is controlled at the epidermal cell layer and is closely coordinated with progressing organ development. Using spontaneous nodulating Lotus japonicus plant mutants to uncouple nodule organogenesis from infection, we have determined the role of 16 genes in these two developmental processes. We show that host-encoded mechanisms control three alternative entry processes operating in the epidermis, the root cortex and at the single cell level. Single cell infection did not involve the formation of trans-cellular infection threads and was independent of host Nod-factor receptors and bacterial Nod-factor signals. In contrast, Nod-factor perception was required for epidermal root hair infection threads, whereas primary signal transduction genes preceding the secondary Ca2+ oscillations have an indirect role. We provide support for the origin of rhizobial infection through direct intercellular epidermal invasion and subsequent evolution of crack entry and root hair invasions observed in most extant legumes.
Collapse
MESH Headings
- Alphaproteobacteria/growth & development
- Alphaproteobacteria/physiology
- Gene Expression Regulation, Plant/genetics
- Gene Expression Regulation, Plant/physiology
- Genotype
- Lotus/growth & development
- Lotus/metabolism
- Lotus/microbiology
- Lotus/ultrastructure
- Microscopy, Electron, Transmission
- Plant Proteins/genetics
- Plant Proteins/metabolism
- Plants, Genetically Modified/growth & development
- Plants, Genetically Modified/metabolism
- Plants, Genetically Modified/microbiology
- Plants, Genetically Modified/ultrastructure
- Root Nodules, Plant/growth & development
- Root Nodules, Plant/metabolism
- Root Nodules, Plant/microbiology
- Root Nodules, Plant/ultrastructure
Collapse
Affiliation(s)
- Lene H. Madsen
- Department of Molecular Biology, Centre for Carbohydrate Recognition and Signalling, Aarhus University, Gustav Wieds Vej 10, Aarhus C DK-8000, Denmark
| | - Leïla Tirichine
- Department of Molecular Biology, Centre for Carbohydrate Recognition and Signalling, Aarhus University, Gustav Wieds Vej 10, Aarhus C DK-8000, Denmark
| | - Anna Jurkiewicz
- Department of Molecular Biology, Centre for Carbohydrate Recognition and Signalling, Aarhus University, Gustav Wieds Vej 10, Aarhus C DK-8000, Denmark
| | - John T. Sullivan
- Department of Microbiology and Immunology, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Anne B. Heckmann
- Department of Molecular Biology, Centre for Carbohydrate Recognition and Signalling, Aarhus University, Gustav Wieds Vej 10, Aarhus C DK-8000, Denmark
| | - Anita S. Bek
- Department of Molecular Biology, Centre for Carbohydrate Recognition and Signalling, Aarhus University, Gustav Wieds Vej 10, Aarhus C DK-8000, Denmark
| | - Clive W. Ronson
- Department of Microbiology and Immunology, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Euan K. James
- EPI division, Scottish Crop Research Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Jens Stougaard
- Department of Molecular Biology, Centre for Carbohydrate Recognition and Signalling, Aarhus University, Gustav Wieds Vej 10, Aarhus C DK-8000, Denmark
| |
Collapse
|
40
|
Capoen W, Oldroyd G, Goormachtig S, Holsters M. Sesbania rostrata: a case study of natural variation in legume nodulation. THE NEW PHYTOLOGIST 2010; 186:340-5. [PMID: 20015069 DOI: 10.1111/j.1469-8137.2009.03124.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Legumes acquired the ability to engage in a symbiotic interaction with soil-borne bacteria and establish a nitrogen-fixing symbiosis in a novel root organ, the nodule. Most legume crops and the model legumes Medicago truncatula and Lotus japonicus are infected intracellularly in root hairs via infection threads that lead the bacteria towards a nodule primordium in the root cortex. This infection process, however, does not reflect the great diversity of infection strategies that are used by leguminous plants. An alternative, intercellular invasion occurs in the semiaquatic legume Sesbania rostrata. Bacteria colonize epidermal fissures at lateral root bases and trigger cortical cell death for infection pocket formation and subsequent intercellular and intracellular infection thread progression towards the primordium. This infection mode evolved as an adaptation to waterlogged conditions that inhibit intracellular invasion. In this review, we discuss the molecular basis for this adaptation and how insights into this process contribute to general knowledge of the rhizobial infection process.
Collapse
Affiliation(s)
- Ward Capoen
- Department of Disease and Stress Biology, John Innes Centre, Norwich NR4 7UH, UK
| | | | | | | |
Collapse
|
41
|
Karas B, Amyot L, Johansen C, Sato S, Tabata S, Kawaguchi M, Szczyglowski K. Conservation of lotus and Arabidopsis basic helix-loop-helix proteins reveals new players in root hair development. PLANT PHYSIOLOGY 2009; 151:1175-85. [PMID: 19675148 PMCID: PMC2773103 DOI: 10.1104/pp.109.143867] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2009] [Accepted: 08/03/2009] [Indexed: 05/18/2023]
Abstract
Basic helix-loop-helix (bHLH) proteins constitute a large family of transcriptional regulators in plants. Although they have been shown to play important roles in a wide variety of developmental processes, relatively few have been functionally characterized. Here, we describe the map-based cloning of the Lotus japonicus ROOTHAIRLESS1 (LjRHL1) locus. Deleterious mutations in this locus prevent root hair development, which also aborts root hair-dependent colonization of the host root by nitrogen-fixing bacteria. We show that the LjRHL1 gene encodes a presumed bHLH transcription factor that functions in a nonredundant manner to control root hair development in L. japonicus. Homology search and cross-species complementation experiments defined three members of the Arabidopsis (Arabidopsis thaliana) bHLH protein family, At2g24260, At4g30980, and At5g58010, as functionally equivalent to LjRHL1. Curiously, At2g24260 and At4g30980 mRNA species accumulate independently from the known positive regulators of root hair cell fate, while all three genes act in a partially redundant manner to regulate root hair development in Arabidopsis.
Collapse
|
42
|
Yano K, Shibata S, Chen WL, Sato S, Kaneko T, Jurkiewicz A, Sandal N, Banba M, Imaizumi-Anraku H, Kojima T, Ohtomo R, Szczyglowski K, Stougaard J, Tabata S, Hayashi M, Kouchi H, Umehara Y. CERBERUS, a novel U-box protein containing WD-40 repeats, is required for formation of the infection thread and nodule development in the legume-Rhizobium symbiosis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 60:168-80. [PMID: 19508425 DOI: 10.1111/j.1365-313x.2009.03943.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Endosymbiotic infection of legume plants by Rhizobium bacteria is initiated through infection threads (ITs) which are initiated within and penetrate from root hairs and deliver the endosymbionts into nodule cells. Despite recent progress in understanding the mutual recognition and early symbiotic signaling cascades in host legumes, the molecular mechanisms underlying bacterial infection processes and successive nodule organogenesis are still poorly understood. We isolated a novel symbiotic mutant of Lotus japonicus, cerberus, which shows defects in IT formation and nodule organogenesis. Map-based cloning of the causal gene allowed us to identify the CERBERUS gene, which encodes a novel protein containing a U-box domain and WD-40 repeats. CERBERUS expression was detected in the roots and nodules, and was enhanced after inoculation of Mesorhizobium loti. Strong expression was detected in developing nodule primordia and the infected zone of mature nodules. In cerberus mutants, Rhizobium colonized curled root hair tips, but hardly penetrated into root hair cells. The occasional ITs that were formed inside the root hair cells were mostly arrested within the epidermal cell layer. Nodule organogenesis was aborted prematurely, resulting in the formation of a large number of small bumps which contained no endosymbiotic bacteria. These phenotypic and genetic analyses, together with comparisons with other legume mutants with defects in IT formation, indicate that CERBERUS plays a critical role in the very early steps of IT formation as well as in growth and differentiation of nodules.
Collapse
Affiliation(s)
- Koji Yano
- National Institute of Agrobiological Sciences, Tsukuba, Ibaraki 305-8602, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Yokota K, Fukai E, Madsen LH, Jurkiewicz A, Rueda P, Radutoiu S, Held M, Hossain MS, Szczyglowski K, Morieri G, Oldroyd GED, Downie JA, Nielsen MW, Rusek AM, Sato S, Tabata S, James EK, Oyaizu H, Sandal N, Stougaard J. Rearrangement of actin cytoskeleton mediates invasion of Lotus japonicus roots by Mesorhizobium loti. THE PLANT CELL 2009; 21:267-84. [PMID: 19136645 PMCID: PMC2648097 DOI: 10.1105/tpc.108.063693] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2008] [Revised: 12/03/2008] [Accepted: 12/18/2008] [Indexed: 05/18/2023]
Abstract
Infection thread-dependent invasion of legume roots by rhizobia leads to internalization of bacteria into the plant cells, which is one of the salient features of root nodule symbiosis. We found that two genes, Nap1 (for Nck-associated protein 1) and Pir1 (for 121F-specific p53 inducible RNA), involved in actin rearrangements were essential for infection thread formation and colonization of Lotus japonicus roots by its natural microsymbiont, Mesorhizobium loti. nap1 and pir1 mutants developed an excess of uncolonized nodule primordia, indicating that these two genes were not essential for the initiation of nodule organogenesis per se. However, both the formation and subsequent progression of infection threads into the root cortex were significantly impaired in these mutants. We demonstrate that these infection defects were due to disturbed actin cytoskeleton organization. Short root hairs of the mutants had mostly transverse or web-like actin filaments, while bundles of actin filaments in wild-type root hairs were predominantly longitudinal. Corroborating these observations, temporal and spatial differences in actin filament organization between wild-type and mutant root hairs were also observed after Nod factor treatment, while calcium influx and spiking appeared unperturbed. Together with various effects on plant growth and seed formation, the nap1 and pir1 alleles also conferred a characteristic distorted trichome phenotype, suggesting a more general role for Nap1 and Pir1 in processes establishing cell polarity or polar growth in L. japonicus.
Collapse
Affiliation(s)
- Keisuke Yokota
- Centre for Carbohydrate Recognition and Signalling, Department of Molecular Biology, University of Aarhus, 8000 Aarhus C, Denmark
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
The RPG gene of Medicago truncatula controls Rhizobium-directed polar growth during infection. Proc Natl Acad Sci U S A 2008; 105:9817-22. [PMID: 18621693 DOI: 10.1073/pnas.0710273105] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Rhizobia can infect roots of host legume plants and induce new organs called nodules, in which they fix atmospheric nitrogen. Infection generally starts with root hair curling, then proceeds inside newly formed, intracellular tubular structures called infection threads. A successful symbiotic interaction relies on infection threads advancing rapidly at their tips by polar growth through successive cell layers of the root toward developing nodule primordia. To identify a plant component that controls this tip growth process, we characterized a symbiotic mutant of Medicago truncatula, called rpg for rhizobium-directed polar growth. In this mutant, nitrogen-fixing nodules were rarely formed due to abnormally thick and slowly progressing infection threads. Root hair curling was also abnormal, indicating that the RPG gene fulfils an essential function in the process whereby rhizobia manage to dominate the process of induced tip growth for root hair infection. Map-based cloning of RPG revealed a member of a previously unknown plant-specific gene family encoding putative long coiled-coil proteins we have called RRPs (RPG-related proteins) and characterized by an "RRP domain" specific to this family. RPG expression was strongly associated with rhizobial infection, and the RPG protein showed a nuclear localization, indicating that this symbiotic gene constitutes an important component of symbiotic signaling.
Collapse
|
45
|
Oldroyd GED, Downie JA. Coordinating nodule morphogenesis with rhizobial infection in legumes. ANNUAL REVIEW OF PLANT BIOLOGY 2008; 59:519-46. [PMID: 18444906 DOI: 10.1146/annurev.arplant.59.032607.092839] [Citation(s) in RCA: 611] [Impact Index Per Article: 35.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The formation of nitrogen-fixing nodules on legumes requires an integration of infection by rhizobia at the root epidermis and the initiation of cell division in the cortex, several cell layers away from the sites of infection. Several recent developments have added to our understanding of the signaling events in the epidermis associated with the perception of rhizobial nodulation factors and the role of plant hormones in the activation of cell division leading to nodule morphogenesis. This review focuses on the tissue-specific nature of the developmental processes associated with nodulation and the mechanisms by which these processes are coordinated during the formation of a nodule.
Collapse
Affiliation(s)
- Giles E D Oldroyd
- Department of Disease and Stress Biology, John Innes Center, Norwich NR4 7UH, UK.
| | | |
Collapse
|
46
|
Heckmann AB, Lombardo F, Miwa H, Perry JA, Bunnewell S, Parniske M, Wang TL, Downie JA. Lotus japonicus nodulation requires two GRAS domain regulators, one of which is functionally conserved in a non-legume. PLANT PHYSIOLOGY 2006; 142:1739-50. [PMID: 17071642 PMCID: PMC1676053 DOI: 10.1104/pp.106.089508] [Citation(s) in RCA: 175] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2006] [Accepted: 10/19/2006] [Indexed: 05/12/2023]
Abstract
A new nodulation-defective mutant of Lotus japonicus does not initiate nodule cortical cell division in response to Mesorhizobium loti, but induces root hair deformation, Nod factor-induced calcium spiking, and mycorrhization. This phenotype, together with mapping data, suggested that the mutation could be in the ortholog of the Medicago truncatula NSP1 gene (MtNSP1). The sequence of the orthologous gene (LjNSP1) in the L. japonicus mutant (Ljnsp1-1) revealed a mutation causing a premature stop resulting in loss of the C-terminal 23 amino acids. We also sequenced the NSP2 gene from L. japonicus (LjNSP2). A mutant (Ljnsp2-3) with a premature stop codon was identified by TILLING showing a similar phenotype to Ljnsp1-1. Both LjNSP1 and LjNSP2 are predicted GRAS (GAI, RGA, SCR) domain transcriptional regulators. Transcript steady-state levels of LjNSP1 and LjNSP2 initially decreased and then increased following infection by M. loti. In hairy root transformations, LjNSP1 and MtNSP1 complemented both Mtnsp1-1 and Ljnsp1-1 mutants, demonstrating that these orthologous proteins have a conserved biochemical function. A Nicotiana benthamiana NSP1-like gene (NbNSP1) was shown to restore nodule formation in both Ljnsp1-1 and Mtnsp1-1 mutants, indicating that NSP1 regulators from legumes and non-legumes can propagate the Nod factor-induced signal, activating appropriate downstream targets. The L. japonicus nodules complemented with NbNSP1 contained some cells with abnormal bacteroids and could fix nitrogen. However, the NbNSP1-complemented M. truncatula nodules did not fix nitrogen and contained very few bacteria released from infection threads. These observations suggest that NSP1 is also involved in infection, bacterial release, and normal bacteroid formation in nodule cells.
Collapse
Affiliation(s)
- Anne B Heckmann
- Department of Molecular Microbiology, John Innes Centre, Norwich NR4 7UH, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Murray JD, Karas BJ, Sato S, Tabata S, Amyot L, Szczyglowski K. A cytokinin perception mutant colonized by Rhizobium in the absence of nodule organogenesis. Science 2006; 315:101-4. [PMID: 17110535 DOI: 10.1126/science.1132514] [Citation(s) in RCA: 291] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
In legumes, Nod-factor signaling by rhizobia initiates the development of the nitrogen-fixing nodule symbiosis, but the direct cell division stimulus that brings about nodule primordia inception in the root cortex remains obscure. We showed that Lotus japonicus plants homozygous for a mutation in the HYPERINFECTED 1 (HIT1) locus exhibit abundant infection-thread formation but fail to initiate timely cortical cell divisions in response to rhizobial signaling. We demonstrated that the corresponding gene encodes a cytokinin receptor that is required for the activation of the nodule inception regulator Nin and nodule organogenesis.
Collapse
Affiliation(s)
- Jeremy D Murray
- Agriculture and Agri-Food Canada, Southern Crop Protection and Food Research Centre, 1391 Sandford Street, London, Ontario N5V 4T3, Canada
| | | | | | | | | | | |
Collapse
|
48
|
Murray J, Karas B, Ross L, Brachmann A, Wagg C, Geil R, Perry J, Nowakowski K, MacGillivary M, Held M, Stougaard J, Peterson L, Parniske M, Szczyglowski K. Genetic suppressors of the Lotus japonicus har1-1 hypernodulation phenotype. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2006; 19:1082-91. [PMID: 17022172 DOI: 10.1094/mpmi-19-1082] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Lotus japonicus har1 mutants respond to inoculation with Mesorhizobium loti by forming an excessive number of nodules due to genetic lesions in the HAR1 autoregulatory receptor kinase gene. In order to expand the repertoire of mutants available for the genetic dissection of the root nodule symbiosis (RNS), a screen for suppressors of the L. japonicus har1-1 hypernodulation phenotype was performed. Of 150,000 M2 plants analyzed, 61 stable L. japonicus double-mutant lines were isolated. In the context of the har1-1 mutation, 26 mutant lines were unable to form RNS, whereas the remaining 35 mutant lines carried more subtle symbiotic phenotypes, either forming white ineffective nodules or showing reduced nodulation capacity. When challenged with Glomus intraradices, 18 of the 61 suppressor lines were unable to establish a symbiosis with this arbuscular mycorrhiza fungus. Using a combined approach of genetic mapping, targeting induced local lesions in genomics, and sequencing, all non-nodulating mutant lines were characterized and shown to represent new alleles of at least nine independent symbiotic loci. The class of mutants with reduced nodulation capacity was of particular interest because some of them may specify novel plant functions that regulate nodule development in L. japonicus. To facilitate mapping of the latter class of mutants, an introgression line, in which the har1-1 allele was introduced into a polymorphic background of L. japonicus ecotype MG20, was constructed.
Collapse
Affiliation(s)
- Jeremy Murray
- Agriculture and Agri-Food Canada, Southern Crop Protection and Food Research Centre, 1391 Sandford Street, London, Ontario N5V 4T3, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Murray J, Geil R, Wagg C, Karas B, Szczyglowski K, Peterson RL. Genetic supressors of Lotus japonicus har1-1 hypernodulation show altered interactions with Glomus intraradices. FUNCTIONAL PLANT BIOLOGY : FPB 2006; 33:749-755. [PMID: 32689285 DOI: 10.1071/fp06083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2006] [Accepted: 05/19/2006] [Indexed: 06/11/2023]
Abstract
Mutant lines of Lotus japonicus (Regel) Larsen that show defects in nodulation as well as in mycorrhiza formation are valuable resources for studying the events required for the establishment of functional symbioses. In this study, 11 mutant lines derived from a screen for genetic suppressors of har1-1 hypernodulation were assessed quantitatively for their ability to form arbuscular mycorrhizal (AM) symbiosis. The presence of extraradical mycelia, appressoria, intraradical hyphae, arbuscules and vesicles were scored. Roots of the har1-1 parental line were heavily colonised by six weeks after inoculation with the AM fungus Glomus intraradices showing the typical Arum-type colonisation pattern. Five mutants lacked internal root colonisation with blocks either at the surface of epidermal cells or at the outer tangential wall of cortical cells. These AM- lines showed some differences in relation to the amount of extraradical hyphae, the number of appressoria, and the degree of abnormal appressorium morphology. Four mutants had internal root colonisation but at a lower level than the parental line. Two mutants showed no difference from the parental line. Results of this study provide additional genetic resources for studying the mechanism of root colonisation by AM fungi.
Collapse
Affiliation(s)
- Jeremy Murray
- Agriculture and Agri-Food Canada, Southern Crop Protection and Food Research Centre, London, Ontario N5V 4T3, Canada
| | - Ryan Geil
- Department of Integrative Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Cameron Wagg
- Department of Integrative Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Bogumil Karas
- Agriculture and Agri-Food Canada, Southern Crop Protection and Food Research Centre, London, Ontario N5V 4T3, Canada
| | - Krzysztof Szczyglowski
- Agriculture and Agri-Food Canada, Southern Crop Protection and Food Research Centre, London, Ontario N5V 4T3, Canada
| | - R Larry Peterson
- Department of Integrative Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| |
Collapse
|
50
|
Tirichine L, James EK, Sandal N, Stougaard J. Spontaneous root-nodule formation in the model legume Lotus japonicus: a novel class of mutants nodulates in the absence of rhizobia. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2006; 19:373-82. [PMID: 16610740 DOI: 10.1094/mpmi-19-0373] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Root-nodule development in legumes is an inducible developmental process initially triggered by perception of lipochitin-oligosaccharide signals secreted by the bacterial microsymbiont. In nature, rhizobial colonization and invasion of the legume root is therefore a prerequisite for formation of nitrogen-fixing root nodules. Here, we report isolation and characterization of chemically induced spontaneously nodulating mutants in a model legume amenable to molecular genetics. Six mutant lines of Lotus japonicus were identified in a screen for spontaneous nodule development under axenic conditions, i.e., in the absence of rhizobia. Spontaneous nodules do not contain rhizobia, bacteroids, or infection threads. Phenotypically, they resemble ineffective white nodules formed by some bacterial mutants on wild-type plants or certain plant mutants inoculated with wild-type Mesorhizobium loti. Spontaneous nodules formed on mutant lines show the ontogeny and characteristic histological features described for rhizobia-induced nodules on wild-type plants. Physiological responses to nitrate and ethylene are also maintained, as elevated levels inhibit spontaneous nodulation. Activation of the nodule developmental program in spontaneous nodules was shown for the early nodulin genes Enod2 and Nin, which are both upregulated in spontaneous nodules as well as in rhizobial nodules. Both monogenic recessive and dominant spontaneous nodule formation (snf) mutations were isolated in this mutant screen, and map positions were determined for three loci. We suggest that future molecular characterization of these mutants will identify key plant determinants involved in regulating nodulation and provide new insight into plant organ development.
Collapse
Affiliation(s)
- Leïla Tirichine
- Laboratory of Gene Expression, Department of Molecular Biology, University of Aarhus, Gustav Wieds Vej 10, DK-8000 C Aarhus, Denmark
| | | | | | | |
Collapse
|