1
|
Zameer R, Ali M, Jalal AS, Fiaz S, Attia KA, Li C, Yu C, Azeem F, Li ZF. Reproductive Meristem (REM) family genes GhREM1 and GhREM5.4 act as potential regulators of temperature stress response in cotton. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 224:109767. [PMID: 40311531 DOI: 10.1016/j.plaphy.2025.109767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 02/23/2025] [Accepted: 03/05/2025] [Indexed: 05/03/2025]
Abstract
Cotton (Gossypium spp.) is considered a major cash crop in agriculture, food, and textile industries all over the world. The foremost focus of scientists and farmers is to meet global food security needs, but unfortunately, evolving weather conditions have significantly reduced the overall production. Latest genome sequence of Gossypium hirsutum enables us to understand the molecular mechanisms and identify development-related and stress-responsive genes. The Reproductive Meristem (REM) gene family, a subfamily of B3 DNA-binding superfamily of transcription factors, is characterized in model plants including Arabidopsis and Chickpea, but no study reported in G. hirsutum. In current study, 33 members of REM gene family were predicted and confirmed to possess the conserved REM-related domains in G. hirsutum. The phylogenetic analysis revealed that REM family members are divided into six sub-groups consistent with Arabidopsis, further confirming the evolutionary relationship across species. The pattern of introns, exons, and conserved motifs also indicated evolutionary conservation. Gene duplication analysis suggested segmental duplication as a reason for the expansion of REM gene family. RNA-seq and real-time qPCR assisted expression analysis in root, leaf and stem under multiple abiotic stresses (drought, salt, low and high temperature) collectively suggesting GhREM1 and GhREM5.4 as potential regulators under low and high temperature stress which is supported with the presence of temperature responsive cis-elements. Furthermore, GhREM1-OE and GhREM5.4-OE revealed the significant regulation of peroxidase (POD) under both low and high temperature stress indicating the potential involvement in temperature tolerance. Green fluorescent protein GFP revealed that both genes were localized in the nucleus. Our findings elucidate the ground work for co-regulatory relationship of REM genes and antioxidant activity in cotton under temperature stress.
Collapse
Affiliation(s)
- Roshan Zameer
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Science, Henan University, Kaifeng, Henan, 475004, China.
| | - Mushtaque Ali
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Science, Henan University, Kaifeng, Henan, 475004, China.
| | - Areej S Jalal
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia.
| | - Sajid Fiaz
- Institute of Molecular Biology and Biotechnology, The University of Lahore, 54590, Lahore, Pakistan.
| | - Kotb A Attia
- Center of Excellence in Biotechnology Research, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia.
| | - Cheng Li
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Science, Henan University, Kaifeng, Henan, 475004, China.
| | - Chengde Yu
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Science, Henan University, Kaifeng, Henan, 475004, China.
| | - Farrukh Azeem
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan.
| | - Zhi-Fang Li
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Science, Henan University, Kaifeng, Henan, 475004, China.
| |
Collapse
|
2
|
Liu H, Li J, Xu C, Liu H, Zhao Z. Characterization and expression analysis of the B3 gene family during seed development in Akebia trifoliata. BMC Genomics 2024; 25:1060. [PMID: 39516780 PMCID: PMC11549857 DOI: 10.1186/s12864-024-10981-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND B3 genes encode transcription factors that play key roles in plant growth and development. However, the specific B3 genes involved in the seed development of Akebia trifoliata remain unexplored. RESULTS A total of 72 AktB3 genes were identified and classified into five subfamilies (ARF, LAV, RAV, HSI, and REM) based on phylogenetic analysis. These 72 AktB3 genes were unevenly distributed across 16 chromosomes. Collinear analysis indicated that segmental duplication has played a significant role in the evolution of AktB3 genes, and underwent purification selection. Expression profiling across seed development stages revealed that seven AktB3 genes, particularly from the LAV subfamily (AktABI3, AktFUS3, AktLEC2), were up-regulated at 70 days after flowering (DAF). Notably, the expression of oleosin exhibited a strong positive correlation with LAV subfamily genes, highlighting their potential roles as hub genes in lipid metabolism and seed development. Yeast two-hybrid (Y2H) and yeast one-hybrid (Y1H) experiments confirmed that AktFUS3-1, AktFUS3-2, and AktLEC2 form protein complexes and individually bind to the AktOLE1 promoter, thereby regulating downstream gene expression. These results provide direct evidence of the cooperative role these transcription factors play in controlling lipid metabolism, particularly related to oleosin proteins. Additionally, miRNA sequencing across three seed developmental stages identified 591 miRNAs and 1,673 target gene pairs. A total of 23 AktB3 genes were predicted to be targets of 20 miRNAs, with 11 miRNAs specifically targeting the ARF subfamily genes. Particularly, miR160-x, miR160-z, and miR167-z were predicted to target ARF subfamily genes, potentially influencing seed development. Moreover, the miRNA-B3 regulatory modules, especially involving ARF genes and miR160/167, require further study to clarify their roles in seed development. CONCLUSIONS These findings contribute valuable resources for future functional studies of the molecular regulatory networks governing seed development in A. trifoliata.
Collapse
Affiliation(s)
- Huijuan Liu
- College of Life Sciences, Guizhou University, Guiyang, 550025, China
- Guizhou Key Laboratory of Propagation and Cultivation of Medicinal Plants, Guizhou University, Guiyang, 550025, China
| | - Jinling Li
- Guizhou Key Laboratory of Propagation and Cultivation of Medicinal Plants, Guizhou University, Guiyang, 550025, China
| | - Cunbin Xu
- Guizhou Key Laboratory of Propagation and Cultivation of Medicinal Plants, Guizhou University, Guiyang, 550025, China
| | - Hongchang Liu
- Guizhou Key Laboratory of Propagation and Cultivation of Medicinal Plants, Guizhou University, Guiyang, 550025, China
| | - Zhi Zhao
- Guizhou Key Laboratory of Propagation and Cultivation of Medicinal Plants, Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
3
|
Maeo K, Nakaya Y, Mitsuda N, Ishiguro S. ACRE, a class of AP2/ERF transcription factors, activates the expression of sweet potato ß-amylase and sporamin genes through the sugar-responsible element CMSRE-1. PLANT MOLECULAR BIOLOGY 2024; 114:54. [PMID: 38714535 PMCID: PMC11076338 DOI: 10.1007/s11103-024-01450-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 04/04/2024] [Indexed: 05/10/2024]
Abstract
Sugars, synthesized by photosynthesis in source organs, are loaded and utilized as an energy source and carbon skeleton in sink organs, and also known to be important signal molecules regulating gene expression in higher plants. The expression of genes coding for sporamin and β-amylase, the two most abundant proteins in storage roots of sweet potato, is coordinately induced by sugars. We previously reported on the identification of the carbohydrate metabolic signal-responsible element-1 (CMSRE-1) essential for the sugar-responsible expression of two genes. However, transcription factors that bind to this sequence have not been identified. In this study, we performed yeast one-hybrid screening using the sugar-responsible minimal promoter region of the ß-amylase gene as bait and a library composed only transcription factor cDNAs of Arabidopsis. Two clones, named Activator protein binding to CMSRE-1 (ACRE), encoding AP2/ERF transcription factors were isolated. ACRE showed transactivation activity of the sugar-responsible minimal promoter in a CMSRE-1-dependent manner in Arabidopsis protoplasts. Electric mobility shift assay (EMSA) using recombinant proteins and transient co-expression assay in Arabidopsis protoplasts revealed that ACRE could actually act to the CMSRE-1. Among the DEHYDRATION -RESPONSIVE ELEMENT BINDING FACTOR (DREB) subfamily, almost all homologs including ACRE, could act on the DRE, while only three ACREs could act to the CMSRE-1. Moreover, ACRE-homologs of Japanese morning glory also have the same property of DNA-binding preference and transactivation activity through the CMSRE-1. These findings suggested that ACRE plays an important role in the mechanism regulating the sugar-responsible gene expression through the CMSRE-1 conserved across plant species.
Collapse
Affiliation(s)
- Kenichiro Maeo
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-Cho, Chikusa-Ku, Nagoya, Aichi, 464-8601, Japan.
| | - Yuki Nakaya
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-Cho, Chikusa-Ku, Nagoya, Aichi, 464-8601, Japan
| | - Nobutaka Mitsuda
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, Higashi 1-1-1, Tsukuba, Ibaraki, 305-8566, Japan
| | - Sumie Ishiguro
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-Cho, Chikusa-Ku, Nagoya, Aichi, 464-8601, Japan
| |
Collapse
|
4
|
Lu JX, Sun JY, Wang Z, Ren WC, Xing NN, Liu MQ, Zhang ZP, Kong LY, Su XY, Liu XB, Ma W. In Silico Genome-Wide Analysis of B3 Transcription Factors in Cannabis sativa L. Cannabis Cannabinoid Res 2024; 9:495-512. [PMID: 36516081 DOI: 10.1089/can.2022.0168] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Introduction: The B3 transcription factor has been identified in Arabidopsis thaliana, Oryza sativa, and Solanum lycopersicum, among other species. This family of transcription factors regulates seed growth, development, and stress. Cannabis is a valuable crop with numerous applications; however, no B3 transcription factors have been identified in this plant. Materials and Methods: The cannabis B3 gene family was identified and analyzed using bioinformatics analysis tools, such as the NCBI database, plantTFDB website, TBtools, and MEGA software. Quantitative real-time polymerase chain reaction (qRT-PCR) experiments were used to confirm its function. Results: The cannabis B3 family contains 65 members spread across 10 chromosomes. The isoelectric point ranged from 10.03 to 4.65, and the molecular weight ranged from 99,542.88 to 14,310.9 Da. Most of the members were found in the nucleus. The upstream promoter region of the gene contains a variety of cis-acting elements related to the stress response. RNA-seq data and qRT-PCR results showed that CsB3 genes were expressed differently in five organs of female Diku plants and in glandular hairs of nine distinct types of female cannabis inflorescences. Collinearity analysis revealed that there were more homologous genes between cannabis and dicotyledons than monocotyledonous plants, which was consistent with the evolutionary relationship. Conclusions: Hormones and external environmental factors might influence CsB3 expression. Furthermore, some genes such as CsB3-02, CsB3-07, CsB3-50, CsB3-62, and CsB3-65 may participate in cannabis growth and development and play a role in secondary metabolite synthesis. This study provides a solid foundation for further research into the gene function of the cannabis B3 family.
Collapse
Affiliation(s)
- Jia-Xin Lu
- Pharmacy of College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Jia-Ying Sun
- Pharmacy of College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Zhen Wang
- Pharmacy of College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Wei-Chao Ren
- Pharmacy of College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Nan-Nan Xing
- Pharmacy of College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Mei-Qi Liu
- Pharmacy of College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Zhan-Ping Zhang
- Pharmacy of College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Ling-Yang Kong
- Pharmacy of College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xiao-Yue Su
- Pharmacy of College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xiu-Bo Liu
- Department of Chinese Medicine, Jiamusi Campus, Heilongjiang University of Chinese Medicine, Jiamusi, China
| | - Wei Ma
- Pharmacy of College, Heilongjiang University of Chinese Medicine, Harbin, China
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, China
| |
Collapse
|
5
|
Park YS, Cho HJ, Kim S. Identification and expression analyses of B3 genes reveal lineage-specific evolution and potential roles of REM genes in pepper. BMC PLANT BIOLOGY 2024; 24:201. [PMID: 38500065 PMCID: PMC10949715 DOI: 10.1186/s12870-024-04897-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 03/10/2024] [Indexed: 03/20/2024]
Abstract
BACKGROUND The B3 gene family, one of the largest plant-specific transcription factors, plays important roles in plant growth, seed development, and hormones. However, the B3 gene family, especially the REM subfamily, has not been systematically and functionally studied. RESULTS In this study, we performed genome-wide re-annotation of B3 genes in five Solanaceae plants, Arabidopsis thaliana, and Oryza sativa, and finally predicted 1,039 B3 genes, including 231 (22.2%) newly annotated genes. We found a striking abundance of REM genes in pepper species (Capsicum annuum, Capsicum baccatum, and Capsicum chinense). Comparative motif analysis revealed that REM and other subfamilies (ABI3/VP1, ARF, RAV, and HSI) consist of different amino acids. We verified that the large number of REM genes in pepper were included in the specific subgroup (G8) through the phylogenetic analysis. Chromosome location and evolutionary analyses suggested that the G8 subgroup genes evolved mainly via a pepper-specific recent tandem duplication on chromosomes 1 and 3 after speciation between pepper and other Solanaceae. RNA-seq analyses suggested the potential functions of REM genes under salt, heat, cold, and mannitol stress conditions in pepper (C. annuum). CONCLUSIONS Our study provides evolutionary and functional insights into the REM gene family in pepper.
Collapse
Affiliation(s)
- Young-Soo Park
- Department of Environmental Horticulture, University of Seoul, Seoul, 02504, Republic of Korea
| | - Hye Jeong Cho
- Department of Environmental Horticulture, University of Seoul, Seoul, 02504, Republic of Korea
| | - Seungill Kim
- Department of Environmental Horticulture, University of Seoul, Seoul, 02504, Republic of Korea.
| |
Collapse
|
6
|
Smolikova G, Krylova E, Petřík I, Vilis P, Vikhorev A, Strygina K, Strnad M, Frolov A, Khlestkina E, Medvedev S. Involvement of Abscisic Acid in Transition of Pea ( Pisum sativum L.) Seeds from Germination to Post-Germination Stages. PLANTS (BASEL, SWITZERLAND) 2024; 13:206. [PMID: 38256760 PMCID: PMC10819913 DOI: 10.3390/plants13020206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 12/30/2023] [Accepted: 01/07/2024] [Indexed: 01/24/2024]
Abstract
The transition from seed to seedling represents a critical developmental step in the life cycle of higher plants, dramatically affecting plant ontogenesis and stress tolerance. The release from dormancy to acquiring germination ability is defined by a balance of phytohormones, with the substantial contribution of abscisic acid (ABA), which inhibits germination. We studied the embryonic axis of Pisum sativum L. before and after radicle protrusion. Our previous work compared RNA sequencing-based transcriptomics in the embryonic axis isolated before and after radicle protrusion. The current study aims to analyze ABA-dependent gene regulation during the transition of the embryonic axis from the germination to post-germination stages. First, we determined the levels of abscisates (ABA, phaseic acid, dihydrophaseic acid, and neo-phaseic acid) using ultra-high-performance liquid chromatography-tandem mass spectrometry. Second, we made a detailed annotation of ABA-associated genes using RNA sequencing-based transcriptome profiling. Finally, we analyzed the DNA methylation patterns in the promoters of the PsABI3, PsABI4, and PsABI5 genes. We showed that changes in the abscisate profile are characterized by the accumulation of ABA catabolites, and the ABA-related gene profile is accompanied by the upregulation of genes controlling seedling development and the downregulation of genes controlling water deprivation. The expression of ABI3, ABI4, and ABI5, which encode crucial transcription factors during late maturation, was downregulated by more than 20-fold, and their promoters exhibited high levels of methylation already at the late germination stage. Thus, although ABA remains important, other regulators seems to be involved in the transition from seed to seedling.
Collapse
Affiliation(s)
- Galina Smolikova
- Department of Plant Physiology and Biochemistry, St. Petersburg State University, 199034 St. Petersburg, Russia; (E.K.); (S.M.)
| | - Ekaterina Krylova
- Department of Plant Physiology and Biochemistry, St. Petersburg State University, 199034 St. Petersburg, Russia; (E.K.); (S.M.)
- Federal Research Center N.I. Vavilov All-Russian Institute of Plant Genetic Resources, 190000 St. Petersburg, Russia;
| | - Ivan Petřík
- Laboratory of Growth Regulators, The Czech Academy of Sciences, Institute of Experimental Botany & Palacky University, Faculty of Science, Slechtitelu 27, CZ-78371 Olomouc, Czech Republic; (I.P.); (M.S.)
| | - Polina Vilis
- Department of Plant Physiology and Biochemistry, St. Petersburg State University, 199034 St. Petersburg, Russia; (E.K.); (S.M.)
| | - Aleksander Vikhorev
- School of Advanced Engineering Studies, Novosibirsk State University, 630090 Novosibirsk, Russia
| | | | - Miroslav Strnad
- Laboratory of Growth Regulators, The Czech Academy of Sciences, Institute of Experimental Botany & Palacky University, Faculty of Science, Slechtitelu 27, CZ-78371 Olomouc, Czech Republic; (I.P.); (M.S.)
| | - Andrej Frolov
- Laboratory of Analytical Biochemistry and Biotechnology, K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276 Moscow, Russia;
| | - Elena Khlestkina
- Federal Research Center N.I. Vavilov All-Russian Institute of Plant Genetic Resources, 190000 St. Petersburg, Russia;
| | - Sergei Medvedev
- Department of Plant Physiology and Biochemistry, St. Petersburg State University, 199034 St. Petersburg, Russia; (E.K.); (S.M.)
| |
Collapse
|
7
|
Jin Y, Zeng L, Xiao M, Feng Y, Gao Z, Wei J. Exploration of the B3 transcription factor superfamily in Aquilaria sinensis reveal their involvement in seed recalcitrance and agarwood formation. PLoS One 2023; 18:e0294358. [PMID: 37972007 PMCID: PMC10653465 DOI: 10.1371/journal.pone.0294358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 10/31/2023] [Indexed: 11/19/2023] Open
Abstract
The endangered tree species of the Aquilaria genus produce agarwood, a high value material produced only after wounding; however, conservation of Aquilaria seeds is difficult. The B3 transcription factor family has diverse important functions in plant development, especially in seed development, although their functions in other areas, such as stress responses, remain to be revealed. Here germination tests proved that the seeds of A. sinensis were recalcitrant seeds. To provide insights into the B3 superfamily, the members were identified and characterized by bioinformatic approaches and classified by phylogenetic analysis and domain structure. In total, 71 members were identified and classified into four subfamilies. Each subfamily not only had similar domains, but also had conserved motifs in their B3 domains. For the seed-related LAV subfamily, the B3 domain of AsLAV3 was identical to that of AsVALs but lacked a typical zf-CW domain such as VALs. AsLAV5 lacks a typical PHD-L domain present in Arabidopsis VALs. qRT-PCR expression analysis showed that the LEC2 ortholog AsLAV4 was not expressed in seeds. RAVs and REMs induced after wound treatment were also identified. These findings provide insights into the functions of B3 genes and seed recalcitrance of A. sinensis and indicate the role of B3 genes in wound response and agarwood formation.This is the first work to investigate the B3 family in A. sinensis and to provide insights of the molecular mechanism of seed recalcitrance.This will be a valuable guidance for studies of B3 genes in stress responses, secondary metabolite biosynthesis, and seed development.
Collapse
Affiliation(s)
- Yue Jin
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education & National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lin Zeng
- Hainan Provincial Key Laboratory of Resources Conservation and Development of Southern Medicine & Key Laboratory of State Administration of Traditional Chinese Medicine for Agarwood Sustainable Utilization, Hainan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Haikou, China
| | - Mengjun Xiao
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education & National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yanan Feng
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education & National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhihui Gao
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education & National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jianhe Wei
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education & National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Hainan Provincial Key Laboratory of Resources Conservation and Development of Southern Medicine & Key Laboratory of State Administration of Traditional Chinese Medicine for Agarwood Sustainable Utilization, Hainan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Haikou, China
| |
Collapse
|
8
|
Interaction Analysis between the Arabidopsis Transcription Repressor VAL1 and Transcription Coregulators SIN3-LIKEs (SNLs). Int J Mol Sci 2022; 23:ijms23136987. [PMID: 35805982 PMCID: PMC9266683 DOI: 10.3390/ijms23136987] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/16/2022] [Accepted: 06/21/2022] [Indexed: 01/19/2023] Open
Abstract
VIVIPAROUS1/ABSCISIC ACID INSENSITIVE3-LIKE1 (VAL1) encodes a DNA-binding B3 domain protein and plays essential roles in seed maturation and flowering transition by repressing genes through epigenetic silencing in Arabidopsis. SWI-INDEPENDENT3 (SIN3)-LIKEs (SNLs), which encode scaffold proteins for the assembly of histone deacetylase complexes and have six SIN3 homologues (SNL1–SNL6) in Arabidopsis thaliana, directly repress gene expression to regulate seed maturation and flowering transition. However, it remains unclear whether VAL1 and SNLs work together in repressing the expression of related genes. In this study, yeast two-hybrid and firefly luciferase complementation imaging assays revealed that VAL1 interacts with SNLs, which can be attributed to its own zinc-finger CW (conserved Cys (C) and Trp (W) residues) domain and the PAH (Paired Amphipathic Helices) domains of SNLs. Furthermore, pull-down experiments confirmed that the CW domain of VAL1 interacts with both intact protein and the PAH domains of SNLs proteins, and the co-immunoprecipitation assays also confirmed the interaction between VAL1 and SNLs. In addition, quantitative real-time PCR (qRT-PCR) analysis showed that VAL1 and SNLs were expressed in seedlings, and transient expression assays showed that VAL1 and SNLs were localized in the nucleus. Considered together, these results reveal that VAL1 physically interacts with SNLs both in vitro and in vivo, and suggest that VAL1 and SNLs may work together to repress the expression of genes related to seed maturation and flowering transition in Arabidopsis.
Collapse
|
9
|
Liu Y, Bai Y, Li N, Li M, Liu W, Yun DJ, Liu B, Xu ZY. HEXOKINASE1 forms a nuclear complex with the PRC2 subunits CURLY LEAF and SWINGER to regulate glucose signaling. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:1168-1180. [PMID: 35394700 DOI: 10.1111/jipb.13261] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 04/05/2022] [Indexed: 06/14/2023]
Abstract
The glucose sensor HEXOKINASE1 (HXK1) integrates myriad external and internal signals to regulate gene expression and development in Arabidopsis thaliana. However, how HXK1 mediates glucose signaling in the nucleus remains unclear. Here, using immunoprecipitation-coupled mass spectrometry, we show that two catalytic subunits of Polycomb Repressive Complex 2, SWINGER (SWN) and CURLY LEAF (CLF), directly interact with catalytically active HXK1 and its inactive forms (HXK1G104D and HXK1S177A ) via their evolutionarily conserved SANT domains. HXK1, CLF, and SWN target common glucose-responsive genes to regulate glucose signaling, as revealed by RNA sequencing. The glucose-insensitive phenotypes of the Arabidopsis swn-1 and clf-50 mutants were similar to that of hxk1, and genetic analysis revealed that CLF, SWN, and HXK1 function in the same genetic pathway. Intriguingly, HXK1 is required for CLF- and SWN-mediated histone H3 lysine 27 (H3K27me3) deposition and glucose-mediated gene repression. Moreover, CLF and SWN affect the recruitment of HXK1 to its target chromatin. These findings support a model in which HXK1 and epigenetic modifiers form a nuclear complex to cooperatively mediate glucose signaling, thereby affecting the histone modification and expression of glucose-regulated genes in plants.
Collapse
Affiliation(s)
- Yutong Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Yunshu Bai
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Ning Li
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Mengting Li
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Wenxin Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Dae-Jin Yun
- Department of Biomedical Science and Engineering, Konkuk University, Seoul, 132-798, South Korea
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Zheng-Yi Xu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| |
Collapse
|
10
|
Chen Q, Zhang J, Li G. Dynamic epigenetic modifications in plant sugar signal transduction. TRENDS IN PLANT SCIENCE 2022; 27:379-390. [PMID: 34865981 DOI: 10.1016/j.tplants.2021.10.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 09/28/2021] [Accepted: 10/22/2021] [Indexed: 05/21/2023]
Abstract
In eukaryotes, dynamic chromatin states are closely related to changes in gene expression. Epigenetic modifications help plants adapt to their ever-changing environment by modulating gene expression via covalent modification at specific sites on DNA or histones. Sugars provide energy, but also function as signaling molecules to control plant growth and development. Various epigenetic modifications participate in sensing and transmitting sugar signals. Here we summarize recent progress in uncovering the epigenetic mechanisms involved in sugar signal transduction, including histone acetylation and deacetylation, histone methylation and demethylation, and DNA methylation. We also highlight changes in chromatin marks when crosstalk occurs between sugar signaling and the light, temperature, and phytohormone signaling pathways, and describe potential questions and approaches for future research.
Collapse
Affiliation(s)
- Qingshuai Chen
- Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, Shandong, China; State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, Shandong, China
| | - Jing Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, Shandong, China
| | - Gang Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, Shandong, China.
| |
Collapse
|
11
|
Wang WB, Ao T, Zhang YY, Wu D, Xu W, Han B, Liu AZ. Genome-wide analysis of the B3 transcription factors reveals that RcABI3/VP1 subfamily plays important roles in seed development and oil storage in castor bean ( Ricinus communis). PLANT DIVERSITY 2022; 44:201-212. [PMID: 35505987 PMCID: PMC9043308 DOI: 10.1016/j.pld.2021.06.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/19/2021] [Accepted: 06/22/2021] [Indexed: 06/14/2023]
Abstract
The B3 transcription factors (TFs) in plants play vital roles in numerous biological processes. Although B3 genes have been broadly identified in many plants, little is known about their potential functions in mediating seed development and material accumulation. Castor bean (Ricinus communis) is a non-edible oilseed crop considered an ideal model system for seed biology research. Here, we identified a total of 61 B3 genes in the castor bean genome, which can be classified into five subfamilies, including ABI3/VP1, HSI, ARF, RAV and REM. The expression profiles revealed that RcABI3/VP1 subfamily genes are significantly up-regulated in the middle and later stages of seed development, indicating that these genes may be associated with the accumulation of storage oils. Furthermore, through yeast one-hybrid and tobacco transient expression assays, we detected that ABI3/VP1 subfamily member RcLEC2 directly regulates the transcription of RcOleosin2, which encodes an oil-body structural protein. This finding suggests that RcLEC2, as a seed-specific TF, may be involved in the regulation of storage materials accumulation. This study provides novel insights into the potential roles and molecular basis of B3 family proteins in seed development and material accumulation.
Collapse
Affiliation(s)
- Wen-Bo Wang
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing, 100049, China
- Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, 650204, China
- University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Tao Ao
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Science, Mengla, 666303, China
| | - Yan-Yu Zhang
- Northwest A&F University, Yangling, 712100, China
| | - Di Wu
- Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, 650204, China
- University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Wei Xu
- Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, 650204, China
| | - Bing Han
- Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, 650204, China
| | - Ai-Zhong Liu
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China (Ministry of Education), Southwest Forestry University, Kunming, 650224, China
| |
Collapse
|
12
|
Nomoto M, Skelly MJ, Itaya T, Mori T, Suzuki T, Matsushita T, Tokizawa M, Kuwata K, Mori H, Yamamoto YY, Higashiyama T, Tsukagoshi H, Spoel SH, Tada Y. Suppression of MYC transcription activators by the immune cofactor NPR1 fine-tunes plant immune responses. Cell Rep 2021; 37:110125. [PMID: 34910911 DOI: 10.1016/j.celrep.2021.110125] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 10/05/2021] [Accepted: 11/23/2021] [Indexed: 12/13/2022] Open
Abstract
Plants tailor immune responses to defend against pathogens with different lifestyles. In this process, antagonism between the immune hormones salicylic acid (SA) and jasmonic acid (JA) optimizes transcriptional signatures specifically to the attacker encountered. Antagonism is controlled by the transcription cofactor NPR1. The indispensable role of NPR1 in activating SA-responsive genes is well understood, but how it functions as a repressor of JA-responsive genes remains unclear. Here, we demonstrate that SA-induced NPR1 is recruited to JA-responsive promoter regions that are co-occupied by a JA-induced transcription complex consisting of the MYC2 activator and MED25 Mediator subunit. In the presence of SA, NPR1 physically associates with JA-induced MYC2 and inhibits transcriptional activation by disrupting its interaction with MED25. Importantly, NPR1-mediated inhibition of MYC2 is a major immune mechanism for suppressing pathogen virulence. Thus, NPR1 orchestrates the immune transcriptome not only by activating SA-responsive genes but also by acting as a corepressor of JA-responsive MYC2.
Collapse
Affiliation(s)
- Mika Nomoto
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa, Nagoya, Aichi 464-8602, Japan; Center for Gene Research, Nagoya University, Chikusa, Nagoya, Aichi 464-8602, Japan
| | - Michael J Skelly
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Tomotaka Itaya
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa, Nagoya, Aichi 464-8602, Japan
| | - Tsuyoshi Mori
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa, Nagoya, Aichi 464-8602, Japan
| | - Takamasa Suzuki
- JST ERATO Higashiyama Live-Holonics Project, Nagoya University, Chikusa, Nagoya, Aichi 464-8602, Japan; College of Bioscience and Biotechnology, Chubu University, Aichi 487-8501, Japan
| | - Tomonao Matsushita
- Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Mutsutomo Tokizawa
- Faculty of Applied Biological Sciences, Gifu University, Gifu 501-1193, Japan
| | - Keiko Kuwata
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya, Aichi 464-8602, Japan
| | - Hitoshi Mori
- Graduate School of Agriculture, Nagoya University, Chikusa, Nagoya, Aichi 464-8601, Japan
| | | | - Tetsuya Higashiyama
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa, Nagoya, Aichi 464-8602, Japan; JST ERATO Higashiyama Live-Holonics Project, Nagoya University, Chikusa, Nagoya, Aichi 464-8602, Japan; Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya, Aichi 464-8602, Japan
| | - Hironaka Tsukagoshi
- Faculty of Agriculture, Meijo University, Tenpaku, Nagoya, Aichi 468-8502, Japan
| | - Steven H Spoel
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK.
| | - Yasuomi Tada
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa, Nagoya, Aichi 464-8602, Japan; Center for Gene Research, Nagoya University, Chikusa, Nagoya, Aichi 464-8602, Japan.
| |
Collapse
|
13
|
Smolikova G, Strygina K, Krylova E, Leonova T, Frolov A, Khlestkina E, Medvedev S. Transition from Seeds to Seedlings: Hormonal and Epigenetic Aspects. PLANTS (BASEL, SWITZERLAND) 2021; 10:1884. [PMID: 34579418 PMCID: PMC8467299 DOI: 10.3390/plants10091884] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/02/2021] [Accepted: 09/08/2021] [Indexed: 01/21/2023]
Abstract
Transition from seed to seedling is one of the critical developmental steps, dramatically affecting plant growth and viability. Before plants enter the vegetative phase of their ontogenesis, massive rearrangements of signaling pathways and switching of gene expression programs are required. This results in suppression of the genes controlling seed maturation and activation of those involved in regulation of vegetative growth. At the level of hormonal regulation, these events are controlled by the balance of abscisic acid and gibberellins, although ethylene, auxins, brassinosteroids, cytokinins, and jasmonates are also involved. The key players include the members of the LAFL network-the transcription factors LEAFY COTYLEDON1 and 2 (LEC 1 and 2), ABSCISIC ACID INSENSITIVE3 (ABI3), and FUSCA3 (FUS3), as well as DELAY OF GERMINATION1 (DOG1). They are the negative regulators of seed germination and need to be suppressed before seedling development can be initiated. This repressive signal is mediated by chromatin remodeling complexes-POLYCOMB REPRESSIVE COMPLEX 1 and 2 (PRC1 and PRC2), as well as PICKLE (PKL) and PICKLE-RELATED2 (PKR2) proteins. Finally, epigenetic methylation of cytosine residues in DNA, histone post-translational modifications, and post-transcriptional downregulation of seed maturation genes with miRNA are discussed. Here, we summarize recent updates in the study of hormonal and epigenetic switches involved in regulation of the transition from seed germination to the post-germination stage.
Collapse
Affiliation(s)
- Galina Smolikova
- Department of Plant Physiology and Biochemistry, St. Petersburg State University, 199034 St. Petersburg, Russia;
| | - Ksenia Strygina
- Postgenomic Studies Laboratory, Federal Research Center N.I. Vavilov All-Russian Institute of Plant Genetic Resources, 190121 St. Petersburg, Russia; (K.S.); (E.K.); (E.K.)
| | - Ekaterina Krylova
- Postgenomic Studies Laboratory, Federal Research Center N.I. Vavilov All-Russian Institute of Plant Genetic Resources, 190121 St. Petersburg, Russia; (K.S.); (E.K.); (E.K.)
| | - Tatiana Leonova
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, 06120 Halle (Saale), Germany; (T.L.); (A.F.)
- Department of Biochemistry, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Andrej Frolov
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, 06120 Halle (Saale), Germany; (T.L.); (A.F.)
- Department of Biochemistry, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Elena Khlestkina
- Postgenomic Studies Laboratory, Federal Research Center N.I. Vavilov All-Russian Institute of Plant Genetic Resources, 190121 St. Petersburg, Russia; (K.S.); (E.K.); (E.K.)
| | - Sergei Medvedev
- Department of Plant Physiology and Biochemistry, St. Petersburg State University, 199034 St. Petersburg, Russia;
| |
Collapse
|
14
|
Ranade SS, Egertsdotter U. In silico characterization of putative gene homologues involved in somatic embryogenesis suggests that some conifer species may lack LEC2, one of the key regulators of initiation of the process. BMC Genomics 2021; 22:392. [PMID: 34039265 PMCID: PMC8157724 DOI: 10.1186/s12864-021-07718-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 05/12/2021] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Somatic embryogenesis (SE) is the process in which somatic embryos develop from somatic tissue in vitro on medium in most cases supplemented with growth regulators. Knowledge of genes involved in regulation of initiation and of development of somatic embryos is crucial for application of SE as an efficient tool to enable genetic improvement across genotypes by clonal propagation. RESULTS Current work presents in silico identification of putative homologues of central regulators of SE initiation and development in conifers focusing mainly on key transcription factors (TFs) e.g. BBM, LEC1, LEC1-LIKE, LEC2 and FUSCA3, based on sequence similarity using BLASTP. Protein sequences of well-characterised candidates genes from Arabidopsis thaliana were used to query the databases (Gymno PLAZA, Congenie, GenBank) including whole-genome sequence data from two representative species from the genus Picea (Picea abies) and Pinus (Pinus taeda), for finding putative conifer homologues, using BLASTP. Identification of corresponding conifer proteins was further confirmed by domain search (Conserved Domain Database), alignment (MUSCLE) with respective sequences of Arabidopsis thaliana proteins and phylogenetic analysis (Phylogeny.fr). CONCLUSIONS This in silico analysis suggests absence of LEC2 in Picea abies and Pinus taeda, the conifer species whose genomes have been sequenced. Based on available sequence data to date, LEC2 was also not detected in the other conifer species included in the study. LEC2 is one of the key TFs associated with initiation and regulation of the process of SE in angiosperms. Potential alternative mechanisms that might be functional in conifers to compensate the lack of LEC2 are discussed.
Collapse
Affiliation(s)
- Sonali Sachin Ranade
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Center (UPSC), Swedish University of Agricultural Science (SLU), 901 83, Umeå, Sweden.
| | - Ulrika Egertsdotter
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Center (UPSC), Swedish University of Agricultural Science (SLU), 901 83, Umeå, Sweden
| |
Collapse
|
15
|
Li Q, Chakrabarti M, Taitano NK, Okazaki Y, Saito K, Al-Abdallat AM, van der Knaap E. Differential expression of SlKLUH controlling fruit and seed weight is associated with changes in lipid metabolism and photosynthesis-related genes. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:1225-1244. [PMID: 33159787 PMCID: PMC7904157 DOI: 10.1093/jxb/eraa518] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 11/02/2020] [Indexed: 05/21/2023]
Abstract
The sizes of plant organs such as fruit and seed are crucial yield components. Tomato KLUH underlies the locus fw3.2, an important regulator of fruit and seed weight. However, the mechanism by which the expression levels of KLUH affect organ size is poorly understood. We found that higher expression of SlKLUH increased cell proliferation in the pericarp within 5 d post-anthesis in tomato near-isogenic lines. Differential gene expression analyses showed that lower expression of SlKLUH was associated with increased expression of genes involved in lipid metabolism. Lipidomic analysis revealed that repression of SlKLUH mainly increased the contents of certain non-phosphorus glycerolipids and phospholipids and decreased the contents of four unknown lipids. Co-expression network analyses revealed that lipid metabolism was possibly associated with but not directly controlled by SlKLUH, and that this gene instead controls photosynthesis-related processes. In addition, many transcription factors putatively involved in the KLUH pathway were identified. Collectively, we show that SlKLUH regulates fruit and seed weight which is associated with altered lipid metabolism. The results expand our understanding of fruit and seed weight regulation and offer a valuable resource for functional studies of candidate genes putatively involved in regulation of organ size in tomato and other crops.
Collapse
Affiliation(s)
- Qiang Li
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding, China
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA, USA
| | - Manohar Chakrabarti
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, USA
| | - Nathan K Taitano
- Institute for Plant Breeding, Genetics and Genomics, University of Georgia, Athens, GA, USA
| | - Yozo Okazaki
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
- Graduate School of Bioresources, Mie University, Tsu, Japan
| | - Kazuki Saito
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | | | - Esther van der Knaap
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA, USA
- Institute for Plant Breeding, Genetics and Genomics, University of Georgia, Athens, GA, USA
- Department of Horticulture, University of Georgia, Athens, GA, USA
- Correspondence:
| |
Collapse
|
16
|
Arrey-Salas O, Caris-Maldonado JC, Hernández-Rojas B, Gonzalez E. Comprehensive Genome-Wide Exploration of C2H2 Zinc Finger Family in Grapevine ( Vitis vinifera L.): Insights into the Roles in the Pollen Development Regulation. Genes (Basel) 2021; 12:302. [PMID: 33672655 PMCID: PMC7924211 DOI: 10.3390/genes12020302] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 02/13/2021] [Accepted: 02/16/2021] [Indexed: 01/02/2023] Open
Abstract
Some C2H2 zinc-finger proteins (ZFP) transcription factors are involved in the development of pollen in plants. In grapevine (Vitis vinifera L.), it has been suggested that abnormalities in pollen development lead to the phenomenon called parthenocarpy that occurs in some varieties of this cultivar. At present, a network involving several transcription factors types has been revealed and key roles have been assigned to members of the C2H2 zinc-finger proteins (ZFP) family in model plants. However, particularities of the regulatory mechanisms controlling pollen formation in grapevine remain unknown. In order to gain insight into the participation of ZFPs in grapevine gametophyte development, we performed a genome-wide identification and characterization of genes encoding ZFP (VviZFP family). A total of 98 genes were identified and renamed based on the gene distribution into grapevine genome. The analysis performed indicate significant changes throughout VviZFP genes evolution explained by high heterogeneity in sequence, length, number of ZF and presence of another conserved domains. Moreover, segmental duplication participated in the gene family expansion in grapevine. The VviZFPs were classified based on domain and phylogenetic analysis into three sets and different groups. Heat-map demonstrated differential and tissue-specific expression patterns of these genes and k-means clustering allowed to identify a group of putative orthologs to some ZFPs related to pollen development. In transgenic plants carrying the promVviZFP13::GUS and promVviZFP68::GUS constructs, GUS signals were detectable in the anther and mature pollen grains. Expression profiling of selected VviZFP genes showed differential expression pattern during flower development and provides a basis for deepening in the understanding of VviZFPs role on grapevine reproductive development.
Collapse
Affiliation(s)
- Oscar Arrey-Salas
- Laboratorio de Genómica Funcional, Instituto de Ciencias Biológicas, Universidad de Talca, 3460000 Talca, Chile;
| | | | - Bairon Hernández-Rojas
- Ph.D Program in Sciences Mention in Modeling of Chemical and Biological Systems, Faculty of Engineering, University of Talca, Calle 1 Poniente, 1141, 3462227 Talca, Chile;
| | - Enrique Gonzalez
- Laboratorio de Genómica Funcional, Instituto de Ciencias Biológicas, Universidad de Talca, 3460000 Talca, Chile;
| |
Collapse
|
17
|
Yuan L, Song X, Zhang L, Yu Y, Liang Z, Lei Y, Ruan J, Tan B, Liu J, Li C. The transcriptional repressors VAL1 and VAL2 recruit PRC2 for genome-wide Polycomb silencing in Arabidopsis. Nucleic Acids Res 2021; 49:98-113. [PMID: 33270882 PMCID: PMC7797069 DOI: 10.1093/nar/gkaa1129] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 10/19/2020] [Accepted: 11/07/2020] [Indexed: 12/11/2022] Open
Abstract
The Polycomb repressive complex 2 (PRC2) catalyzes histone H3 Lys27 trimethylation (H3K27me3) to repress gene transcription in multicellular eukaryotes. Despite its importance in gene silencing and cellular differentiation, how PRC2 is recruited to target loci is still not fully understood. Here, we report genome-wide evidence for the recruitment of PRC2 by the transcriptional repressors VIVIPAROUS1/ABI3-LIKE1 (VAL1) and VAL2 in Arabidopsis thaliana. We show that the val1 val2 double mutant possesses somatic embryonic phenotypes and a transcriptome strikingly similar to those of the swn clf double mutant, which lacks the PRC2 catalytic subunits SWINGER (SWN) and CURLY LEAF (CLF). We further show that VAL1 and VAL2 physically interact with SWN and CLF in vivo. Genome-wide binding profiling demonstrated that they colocalize with SWN and CLF at PRC2 target loci. Loss of VAL1/2 significantly reduces SWN and CLF enrichment at PRC2 target loci and leads to a genome-wide redistribution of H3K27me3 that strongly affects transcription. Finally, we provide evidence that the VAL1/VAL2-RY regulatory system is largely independent of previously identified modules for Polycomb silencing in plants. Together, our work demonstrates an extensive genome-wide interaction between VAL1/2 and PRC2 and provides mechanistic insights into the establishment of Polycomb silencing in plants.
Collapse
Affiliation(s)
- Liangbing Yuan
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resource, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Xin Song
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resource, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Lu Zhang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resource, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China.,Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China
| | - Yaoguang Yu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resource, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Zhenwei Liang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resource, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yawen Lei
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resource, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Jiuxiao Ruan
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resource, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Bin Tan
- Guangdong Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou 510624, China
| | - Jun Liu
- Guangdong Provincial Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Chenlong Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resource, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| |
Collapse
|
18
|
Shi Z, Halaly-Basha T, Zheng C, Sharabi-Schwager M, Wang C, Galbraith DW, Ophir R, Pang X, Or E. Identification of potential post-ethylene events in the signaling cascade induced by stimuli of bud dormancy release in grapevine. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 104:1251-1268. [PMID: 32989852 DOI: 10.1111/tpj.14997] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 08/24/2020] [Accepted: 09/01/2020] [Indexed: 06/11/2023]
Abstract
Ethylene signaling appears critical for grape bud dormancy release. We therefore focused on identification and characterization of potential downstream targets and events, assuming that they participate in the regulation of dormancy release. Because ethylene responding factors (ERF) are natural candidates for targets of ethylene signaling, we initially characterized the behavior of two VvERF-VIIs, which we identified within a gene set induced by dormancy release stimuli. As expected, these VvERF-VIIs are localized within the nucleus, and are stabilized upon decreases in oxygen availability within the dormant buds. Less expected, the proteins are also stabilized upon hydrogen cyanamide (HC) application under normoxic conditions, and their levels peak at deepest dormancy under vineyard conditions. We proceeded to catalog the response of all bud-expressed ERFs, and identified additional ERFs that respond similarly to ethylene, HC, azide and hypoxia. We also identified a core set of genes that are similarly affected by treatment with ethylene and with various dormancy release stimuli. Interestingly, the functional annotations of this core set center around response to energy crisis and renewal of energy resources via autophagy-mediated catabolism. Because ERF-VIIs are stabilized under energy shortage and reshape cell metabolism to allow energy regeneration, we propose that: (i) the availability of VvERF-VIIs is a consequence of an energy crisis within the bud; (ii) VvERF-VIIs function as part of an energy-regenerating mechanism, which activates anaerobic metabolism and autophagy-mediated macromolecule catabolism; and (iii) activation of catabolism serves as the mandatory switch and the driving force for activation of the growth-inhibited meristem during bud-break.
Collapse
Affiliation(s)
- Zhaowan Shi
- Department of Fruit Tree Sciences, Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion, 7528809, Israel
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Tamar Halaly-Basha
- Department of Fruit Tree Sciences, Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion, 7528809, Israel
| | - Chuanlin Zheng
- Department of Fruit Tree Sciences, Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion, 7528809, Israel
- Department of Fruit Tree Sciences, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Michal Sharabi-Schwager
- Department of Fruit Tree Sciences, Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion, 7528809, Israel
| | - Chen Wang
- Department of Fruit Tree Sciences, Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion, 7528809, Israel
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - David W Galbraith
- School of Plant Sciences and Bio5 Institute, University of Arizona, Tucson, AZ, 85721, USA
- Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Jin Ming Avenue, Kaifeng, 475004, China
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Jin Ming Avenue, Kaifeng, 475004, China
| | - Ron Ophir
- Department of Fruit Tree Sciences, Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion, 7528809, Israel
| | - Xuequn Pang
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Etti Or
- Department of Fruit Tree Sciences, Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion, 7528809, Israel
| |
Collapse
|
19
|
Kato H, Onai K, Abe A, Shimizu M, Takagi H, Tateda C, Utsushi H, Singkarabanit-Ogawa S, Kitakura S, Ono E, Zipfel C, Takano Y, Ishiura M, Terauchi R. Lumi-Map, a Real-Time Luciferase Bioluminescence Screen of Mutants Combined with MutMap, Reveals Arabidopsis Genes Involved in PAMP-Triggered Immunity. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2020; 33:1366-1380. [PMID: 32876529 DOI: 10.1094/mpmi-05-20-0118-ta] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Plants recognize pathogen-associated molecular patterns (PAMPs) to activate PAMP-triggered immunity (PTI). However, our knowledge of PTI signaling remains limited. In this report, we introduce Lumi-Map, a high-throughput platform for identifying causative single-nucleotide polymorphisms (SNPs) for studying PTI signaling components. In Lumi-Map, a transgenic reporter plant line is produced that contains a firefly luciferase (LUC) gene driven by a defense gene promoter, which generates luminescence upon PAMP treatment. The line is mutagenized and the mutants with altered luminescence patterns are screened by a high-throughput real-time bioluminescence monitoring system. Selected mutants are subjected to MutMap analysis, a whole-genome sequencing-based method of rapid mutation identification, to identify the causative SNP responsible for the luminescence pattern change. We generated nine transgenic Arabidopsis reporter lines expressing the LUC gene fused to multiple promoter sequences of defense-related genes. These lines generate luminescence upon activation of FLAGELLIN-SENSING 2 (FLS2) by flg22, a PAMP derived from bacterial flagellin. We selected the WRKY29-promoter reporter line to identify mutants in the signaling pathway downstream of FLS2. After screening 24,000 ethylmethanesulfonate-induced mutants of the reporter line, we isolated 22 mutants with altered WRKY29 expression upon flg22 treatment (abbreviated as awf mutants). Although five flg22-insensitive awf mutants harbored mutations in FLS2 itself, Lumi-Map revealed three genes not previously associated with PTI. Lumi-Map has the potential to identify novel PAMPs and their receptors as well as signaling components downstream of the receptors.[Formula: see text] Copyright © 2020 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Hiroaki Kato
- Iwate Biotechnology Research Center, Kitakami, Japan
- Laboratory of Crop Evolution, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Kiyoshi Onai
- Laboratory of Crop Evolution, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Akira Abe
- Iwate Biotechnology Research Center, Kitakami, Japan
| | | | - Hiroki Takagi
- Iwate Biotechnology Research Center, Kitakami, Japan
| | - Chika Tateda
- Iwate Biotechnology Research Center, Kitakami, Japan
| | - Hiroe Utsushi
- Iwate Biotechnology Research Center, Kitakami, Japan
| | | | - Saeko Kitakura
- Laboratory of Plant Pathology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Erika Ono
- Laboratory of Plant Pathology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Cyril Zipfel
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, U.K
- Institute of Plant and Microbial Biology, Zurich-Basel Plant Science Center, University of Zurich, Zurich, Switzerland
| | - Yoshitaka Takano
- Laboratory of Plant Pathology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | | | - Ryohei Terauchi
- Iwate Biotechnology Research Center, Kitakami, Japan
- Laboratory of Crop Evolution, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| |
Collapse
|
20
|
Luo H, Meng D, Liu H, Xie M, Yin C, Liu F, Dong Z, Jin W. Ectopic Expression of the Transcriptional Regulator silky3 Causes Pleiotropic Meristem and Sex Determination Defects in Maize Inflorescences. THE PLANT CELL 2020; 32:3750-3773. [PMID: 32989171 PMCID: PMC7721320 DOI: 10.1105/tpc.20.00043] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 09/04/2020] [Accepted: 09/25/2020] [Indexed: 05/12/2023]
Abstract
Maize (Zea mays) is a monoecious plant, in which inflorescence morphogenesis involves complicated molecular regulatory mechanisms. Although many related genes have been cloned, our understanding of the molecular mechanism underlying maize inflorescence development remains limited. Here, we identified a maize semi-dominant mutant Silky3 (Si3), which displays pleiotropic defects during inflorescence development, including loss of determinacy and identity in meristems and floral organs, as well as the sexual transformation of tassel florets. We cloned the si3 gene using a map-based approach. Functional analysis reveals that SI3 is a nuclear protein and may act as a transcriptional regulator. Transcriptome analysis reveals that the ectopic expression of si3 strongly represses multiple biological processes, especially the flower development pathways. RNA in situ hybridization similarly shows that the expression patterns of genes responsible for flower development are changed in the Si3 mutant. In addition, the homeostasis of jasmonic acid and gibberellic acid are altered in the Si3 young tassels, and application of exogenous jasmonic acid can rescue the sex reversal phenotype of Si3 The defects we characterized in various regulatory pathways can explain the complex phenotypes of Si3 mutant, and this study deepens our knowledge of maize inflorescence development.
Collapse
Affiliation(s)
- Haishan Luo
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Crop Heterosis and Utilization, the Ministry of Education, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Dexuan Meng
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Crop Heterosis and Utilization, the Ministry of Education, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
- College of Agronomy, Shenyang Agricultural University, Shenyang 110866, Liaoning, China
| | - Hongbing Liu
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Crop Heterosis and Utilization, the Ministry of Education, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Mujiao Xie
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Crop Heterosis and Utilization, the Ministry of Education, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Changfa Yin
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Crop Heterosis and Utilization, the Ministry of Education, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Fang Liu
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Zhaobin Dong
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Crop Heterosis and Utilization, the Ministry of Education, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Weiwei Jin
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Crop Heterosis and Utilization, the Ministry of Education, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100193, China
| |
Collapse
|
21
|
Yu Y, Qiao L, Chen J, Rong Y, Zhao Y, Cui X, Xu J, Hou X, Dong CH. Arabidopsis REM16 acts as a B3 domain transcription factor to promote flowering time via directly binding to the promoters of SOC1 and FT. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:1386-1398. [PMID: 32391591 DOI: 10.1111/tpj.14807] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 04/22/2020] [Accepted: 05/01/2020] [Indexed: 05/25/2023]
Abstract
Actin depolymerizing factor (ADF) is a key modulator for dynamic organization of actin cytoskeleton. Interestingly, it was found that the ADF1 gene silencing delays flowering, but its mechanism remains unclear. In this study, ADF1 was used as a bait to screen its interacting proteins by the yeast two-hybrid (Y2H) system. One of them, the REM16 transcription factor was identified. As one of the AP2/B3-like transcriptional factor family members, the REM16 contains two B3 domains and its transcript levels kept increasing during the floral transition stage. Overexpression of REM16 accelerates flowering while silencing of REM16 delays flowering. Gene expression analysis indicated that the key flowering activation genes such as CONSTANS (CO), FLOWERING LOCUS T (FT), LEAFY (LFY) and SUPPRESSOR OF OVEREXPRESSION OF CONSTANS (SOC1) were upregulated in the REM16 overexpression lines, while the transcription of the flowering suppression gene FLOWERING LOCUS C (FLC) was decreased. In contrast, the REM16 gene silencing lines contained lower transcript levels of the CO, FT, LFY and SOC1 but higher transcript levels of the FLC compared with the wild-type plants. It was proved that REM16 could directly bind to the promoter regions of SOC1 and FT by in vitro and in vivo assays. Genetic analysis supported that REM16 acts upstream of SOC1 and FT in flowering pathways. All these studies provided strong evidence demonstrating that REM16 promotes flowering by directly activating SOC1 and FT.
Collapse
Affiliation(s)
- Yanchong Yu
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Longfei Qiao
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Jiacai Chen
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Yongheng Rong
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Yuhang Zhao
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Xiankui Cui
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Jinpeng Xu
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Xiaomin Hou
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Chun-Hai Dong
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
22
|
Chen N, Wang H, Abdelmageed H, Veerappan V, Tadege M, Allen RD. HSI2/VAL1 and HSL1/VAL2 function redundantly to repress DOG1 expression in Arabidopsis seeds and seedlings. THE NEW PHYTOLOGIST 2020; 227:840-856. [PMID: 32201955 PMCID: PMC7383879 DOI: 10.1111/nph.16559] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 03/16/2020] [Indexed: 05/21/2023]
Abstract
DELAY OF GERMINATION1 (DOG1) is a primary regulator of seed dormancy. Accumulation of DOG1 in seeds leads to deep dormancy and delayed germination in Arabidopsis. B3 domain-containing transcriptional repressors HSI2/VAL1 and HSL1/VAL2 silence seed dormancy and enable the subsequent germination and seedling growth. However, the roles of HSI2 and HSL1 in regulation of DOG1 expression and seed dormancy remain elusive. Seed dormancy was analysed by measurement of maximum germination percentage of freshly harvested Arabidopsis seeds. In vivo protein-protein interaction analysis, ChIP-qPCR and EMSA were performed and suggested that HSI2 and HSL1 can form dimers to directly regulate DOG1. HSI2 and HSL1 dimers interact with RY elements at DOG1 promoter. Both B3 and PHD-like domains are required for enrichment of HSI2 and HSL1 at the DOG1 promoter. HSI2 and HSL1 recruit components of polycomb-group proteins, including CURLY LEAF (CLF) and LIKE HETERCHROMATIN PROTEIN 1 (LHP1), for consequent deposition of H3K27me3 marks, leading to repression of DOG1 expression. Our findings suggest that HSI2- and HSL1-dependent histone methylation plays critical roles in regulation of seed dormancy during seed germination and early seedling growth.
Collapse
Affiliation(s)
- Naichong Chen
- Institute for Agricultural BiosciencesOklahoma State UniversityArdmoreOK73401USA
- Department of Biochemistry and Molecular BiologyOklahoma State UniversityStillwater74078OKUSA
| | - Hui Wang
- Institute for Agricultural BiosciencesOklahoma State UniversityArdmoreOK73401USA
| | - Haggag Abdelmageed
- Institute for Agricultural BiosciencesOklahoma State UniversityArdmoreOK73401USA
- Department of Agricultural BotanyFaculty of AgricultureCairo UniversityGiza12613Egypt
| | | | - Million Tadege
- Institute for Agricultural BiosciencesOklahoma State UniversityArdmoreOK73401USA
- Department of Plant and Soil SciencesOklahoma State UniversityStillwaterOKUSA
| | - Randy D. Allen
- Institute for Agricultural BiosciencesOklahoma State UniversityArdmoreOK73401USA
- Department of Biochemistry and Molecular BiologyOklahoma State UniversityStillwater74078OKUSA
| |
Collapse
|
23
|
Takafuji K, Rim H, Kawauchi K, Mujiono K, Shimokawa S, Ando Y, Shiojiri K, Galis I, Arimura GI. Evidence that ERF transcriptional regulators serve as possible key molecules for natural variation in defense against herbivores in tall goldenrod. Sci Rep 2020; 10:5352. [PMID: 32210260 PMCID: PMC7093551 DOI: 10.1038/s41598-020-62142-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 03/06/2020] [Indexed: 11/15/2022] Open
Abstract
We collected Solidago altissima clones to explore their leaf damage resistance, and as a result identified five accessions that exhibited variable defense abilities against the generalist herbivore Spodoptera litura. In order to characterize molecules involved in such natural variation, we focused on ethylene response factors (ERFs) that exhibited distinct transcription patterns in the leaves of the five accessions (e.g., S1 and S2) after wounding: the transcript of SaERF1 and SaERF2 was induced in wounded S1 and S2 leaves, respectively. Although transcription levels of SaERFs in leaves of the five accessions did not correlate with the accessions’ phytohormone levels, these transcription levels accorded with the possibility that ethylene and jasmonate signaling play crucial roles in wound-induced transcription of SaERF1 in S1 leaves, and SaERF2 in S2 leaves, respectively. SaERF1 was found to be a positive regulator of the GCC box and DRE element in the upstream regions of promoters of defense genes, whereas SaERF2 served as a negative regulator of genes controlled through the GCC box. Transgenic Arabidopsis plants expressing SaERF1 or SaERF2 showed enhanced and suppressed transcript levels, respectively, of a defensin gene, indicating that ERFs may be partly responsible for herbivore resistance properties of S. altissima accessions.
Collapse
Affiliation(s)
- Kento Takafuji
- Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, Tokyo, 125-8585, Japan
| | - Hojun Rim
- Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, Tokyo, 125-8585, Japan
| | - Kentaro Kawauchi
- Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, Tokyo, 125-8585, Japan
| | - Kadis Mujiono
- Institute of Plant Science and Resources (IPSR), Okayama University, Kurashiki, 710-0046, Japan.,Faculty of Agriculture, Mulawarman University, Samarinda, 75119, Indonesia
| | - Saki Shimokawa
- Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, Tokyo, 125-8585, Japan
| | - Yoshino Ando
- Field Science Center for Northern Biosphere, Hokkaido University, Sapporo, 060-0809, Japan
| | - Kaori Shiojiri
- Faculty of Agriculture, Ryukoku University, Otsu, 520-2194, Japan
| | - Ivan Galis
- Institute of Plant Science and Resources (IPSR), Okayama University, Kurashiki, 710-0046, Japan
| | - Gen-Ichiro Arimura
- Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, Tokyo, 125-8585, Japan.
| |
Collapse
|
24
|
A comprehensive analysis of the B3 superfamily identifies tissue-specific and stress-responsive genes in chickpea ( Cicer arietinum L.). 3 Biotech 2019; 9:346. [PMID: 31497464 DOI: 10.1007/s13205-019-1875-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 08/14/2019] [Indexed: 12/31/2022] Open
Abstract
The aim of this study was to provide a comprehensive analysis of the plant-specific B3 domain-containing transcription factors (TFs) in chickpea. Scanning of the chickpea genome resulted in the identification of 51 B3 domain-containing TFs that were located on seven out of eight chickpea chromosomes. Based on the presence of additional domains other than the B3 domain, the candidates were classified into four subfamilies, i.e., ARF (24), REM (19), LAV (6) and RAV (2). Phylogenetic analysis classified them into four groups in which members of the same group had similar intron-exon organization and motif composition. Genome duplication analysis of the candidate B3 genes revealed an event of segmental duplication that was instrumental in the expansion of the B3 gene family. Ka/Ks analysis showed that the B3 gene family was under purifying selection. Further, chickpea B3 genes showed maximum orthology with Medicago followed by soybean and Arabidopsis. Promoter analyses of the B3 genes led to the identification of several tissue-specific and stress-responsive cis-regulatory elements. Expression profiling of the candidate B3 genes using publicly available RNA-seq data of several chickpea tissues indicated their putative role in plant development and abiotic stress response. These findings were further validated by real-time expression analysis. Overall, this study provides a comprehensive analysis of the B3 domain-containing proteins in chickpea that would aid in devising strategies for crop manipulation in chickpea.
Collapse
|
25
|
Wen B, Song W, Sun M, Chen M, Mu Q, Zhang X, Wu Q, Chen X, Gao D, Wu H. Identification and characterization of cherry (Cerasus pseudocerasus G. Don) genes responding to parthenocarpy induced by GA3 through transcriptome analysis. BMC Genet 2019; 20:65. [PMID: 31370778 PMCID: PMC6670208 DOI: 10.1186/s12863-019-0746-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 04/29/2019] [Indexed: 12/02/2022] Open
Abstract
Background Fruit set after successful pollination is key for the production of sweet cherries, and a low fruit-setting rate is the main problem in production of this crop. As gibberellin treatment can directly induce parthenogenesis and satisfy the hormone requirement during fruit growth and development, such treatment is an important strategy for improving the fruit-setting rate of sweet cherries. Previous studies have mainly focused on physiological aspects, such as fruit quality, fruit size, and anatomical structure, whereas the molecular mechanism remains clear. Results In this study, we analyzed the transcriptome of ‘Meizao’ sweet cherry fruit treated with gibberellin during the anthesis and hard-core periods to identify genes associated with parthenocarpic fruit set. A total of 25,341 genes were identified at the anthesis and hard-core stages, 765 (681 upregulated, 84 downregulated) and 186 (141 upregulated, 45 downregulated) of which were significant differentially expressed genes (DEGs) at the anthesis and the hard-core stages after gibberellin 3 (GA3) treatment, respectively. Based on DEGs between the control and GA3 treatments, the GA3 response mainly involves parthenocarpic fruit set and cell division. Exogenous gibberellin stimulated sweet cherry fruit parthenocarpy and enlargement, as verified by qRT-PCR results of related genes as well as the parthenocarpic fruit set and fruit size. Based on our research and previous studies in Arabidopsis thaliana, we identified key genes associated with parthenocarpic fruit set and cell division. Interestingly, we observed patterns among sweet cherry fruit setting-related DEGs, especially those associated with hormone balance, cytoskeleton formation and cell wall modification. Conclusions Overall, the result provides a possible molecular mechanism regulating parthenocarpic fruit set that will be important for basic research and industrial development of sweet cherries. Electronic supplementary material The online version of this article (10.1186/s12863-019-0746-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Binbin Wen
- College of Horticulture Science and Engineering, Shandong Agricultural University, 61 Daizong Road, Tai'an, 271018, China.,State Key Laboratory of Crop Biology, Shandong Agricultural University, 61 Daizong Road, Tai'an, 271018, China
| | - Wenliang Song
- College of Horticulture Science and Engineering, Shandong Agricultural University, 61 Daizong Road, Tai'an, 271018, China.,State Key Laboratory of Crop Biology, Shandong Agricultural University, 61 Daizong Road, Tai'an, 271018, China
| | - Mingyue Sun
- College of Horticulture Science and Engineering, Shandong Agricultural University, 61 Daizong Road, Tai'an, 271018, China.,State Key Laboratory of Crop Biology, Shandong Agricultural University, 61 Daizong Road, Tai'an, 271018, China
| | - Min Chen
- College of Horticulture Science and Engineering, Shandong Agricultural University, 61 Daizong Road, Tai'an, 271018, China.,State Key Laboratory of Crop Biology, Shandong Agricultural University, 61 Daizong Road, Tai'an, 271018, China
| | - Qin Mu
- College of Horticulture Science and Engineering, Shandong Agricultural University, 61 Daizong Road, Tai'an, 271018, China
| | - Xinhao Zhang
- College of Horticulture Science and Engineering, Shandong Agricultural University, 61 Daizong Road, Tai'an, 271018, China.,State Key Laboratory of Crop Biology, Shandong Agricultural University, 61 Daizong Road, Tai'an, 271018, China
| | - Qijie Wu
- College of Horticulture Science and Engineering, Shandong Agricultural University, 61 Daizong Road, Tai'an, 271018, China
| | - Xiude Chen
- College of Horticulture Science and Engineering, Shandong Agricultural University, 61 Daizong Road, Tai'an, 271018, China.,State Key Laboratory of Crop Biology, Shandong Agricultural University, 61 Daizong Road, Tai'an, 271018, China.,Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, Shandong Agricultural University, 61 Daizong Road, Tai'an, 271018, China
| | - Dongsheng Gao
- College of Horticulture Science and Engineering, Shandong Agricultural University, 61 Daizong Road, Tai'an, 271018, China. .,State Key Laboratory of Crop Biology, Shandong Agricultural University, 61 Daizong Road, Tai'an, 271018, China. .,Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, Shandong Agricultural University, 61 Daizong Road, Tai'an, 271018, China.
| | - Hongyu Wu
- College of Horticulture Science and Engineering, Shandong Agricultural University, 61 Daizong Road, Tai'an, 271018, China. .,State Key Laboratory of Crop Biology, Shandong Agricultural University, 61 Daizong Road, Tai'an, 271018, China. .,Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, Shandong Agricultural University, 61 Daizong Road, Tai'an, 271018, China.
| |
Collapse
|
26
|
Huang Y, Jiang L, Liu BY, Tan CF, Chen DH, Shen WH, Ruan Y. Evolution and conservation of polycomb repressive complex 1 core components and putative associated factors in the green lineage. BMC Genomics 2019; 20:533. [PMID: 31253095 PMCID: PMC6599366 DOI: 10.1186/s12864-019-5905-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 06/13/2019] [Indexed: 01/14/2023] Open
Abstract
Background Polycomb group (PcG) proteins play important roles in animal and plant development and stress response. Polycomb repressive complex 1 (PRC1) and PRC2 are the key epigenetic regulators of gene expression, and are involved in almost all developmental stages. PRC1 catalyzes H2A monoubiquitination resulting in transcriptional silencing or activation. The PRC1 components in the green lineage were identified and evolution and conservation was analyzed by bioinformatics techniques. RING Finger Protein 1 (RING1), B lymphoma Mo-MLV insertion region 1 homolog (BMI1), Like Heterochromatin Protein 1 (LHP1) and Embryonic Flower 1 (EMF1) are the PRC1 core components and Vernalization 1 (VRN1), VP1/ABI3-Like 1/2/3 (VAL1/2/3), Alfin-like 1–7 (AL1–7), Inhibitor of growth 1/2 (ING1/2), and Early Bolting in Short Days (EBS) / Short Life (SHL) are the associated factors. Results Each PRC1 subunit possesses special domain organizations, such as RING and the ring finger and WD40-associated ubiquitin-like (RAWUL) domains for RING1 and BMI1, chromatin organization modifier (CHROMO) and chromo shadow (ChSh) domains for LHP1, one or two B3 DNA binding domain(s) for VRN1, B3 and zf-CW domains for VAL1/2/3, Alfin and Plant HomeoDomain (PHD) domains for AL1–7, ING and PHD domains for ING1/2, Bromoadjacent homology (BAT) and PHD domains for EBS/SHL. Six new motifs are uncovered in EMF1. The PRC1 core components RING1 and BMI1, and the associated factors VAL1/2/3, AL1–7, ING1/2, and EBS/SHL exist from alga to higher plants, whereas LHP1 only occurs in higher plants. EMF1 and VRN1 are present only in eudicots. PRC1 components undergo duplication in the plant evolution. Most of plants carry the homologous core component LHP1, the associated factor EMF1, and several homologs in RING1, BMI1, VRN1, AL1–7, ING1/2/3, and EBS/SHL. Cabbage, cotton, poplar, orange and maize often exhibit more gene copies than other species. Domain organization analysis shows that duplicated gene functions may be of diverse. Conclusions The PRC1 core components RING1 and BMI1, and the associated factors VAL1/2/3, AL1–7, ING1/2, and EBS/SHL originate from algae. The core component LHP1 is from moss and the associated factors EMF1 and VRN1 are from dicotyledon. PRC1 components are of functional redundancy and diversity in evolution. Electronic supplementary material The online version of this article (10.1186/s12864-019-5905-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yong Huang
- Key Laboratory of Crop Epigenetic Regulation and Development in Hunan Province, Hunan Agricultural University, Changsha, 410128, China.,International Associated Laboratory of CNRS-FU-HAU on Plant Epigenome Research, Hunan Agricultural University, Changsha, 410128, China.,Key Laboratory of Plant Genetics and Molecular Biology of Education Department of Hunan Province, Hunan Agricultural University, Changsha, 410128, China
| | - Ling Jiang
- Key Laboratory of Crop Epigenetic Regulation and Development in Hunan Province, Hunan Agricultural University, Changsha, 410128, China.,International Associated Laboratory of CNRS-FU-HAU on Plant Epigenome Research, Hunan Agricultural University, Changsha, 410128, China.,Key Laboratory of Plant Genetics and Molecular Biology of Education Department of Hunan Province, Hunan Agricultural University, Changsha, 410128, China
| | - Bo-Yu Liu
- Key Laboratory of Crop Epigenetic Regulation and Development in Hunan Province, Hunan Agricultural University, Changsha, 410128, China.,International Associated Laboratory of CNRS-FU-HAU on Plant Epigenome Research, Hunan Agricultural University, Changsha, 410128, China.,Key Laboratory of Plant Genetics and Molecular Biology of Education Department of Hunan Province, Hunan Agricultural University, Changsha, 410128, China
| | - Cheng-Fang Tan
- Key Laboratory of Crop Epigenetic Regulation and Development in Hunan Province, Hunan Agricultural University, Changsha, 410128, China.,International Associated Laboratory of CNRS-FU-HAU on Plant Epigenome Research, Hunan Agricultural University, Changsha, 410128, China.,Key Laboratory of Plant Genetics and Molecular Biology of Education Department of Hunan Province, Hunan Agricultural University, Changsha, 410128, China
| | - Dong-Hong Chen
- State Key Laboratory of Subtropical Silviculture, SFGA Engineering Research Center for Dendrobium catenatum (D. officinale), Zhejiang A&F University, Hangzhou, 311300, China
| | - Wen-Hui Shen
- International Associated Laboratory of CNRS-FU-HAU on Plant Epigenome Research, Hunan Agricultural University, Changsha, 410128, China.,Institut de Biologie Mole'culaire des Plantes du CNRS, Universite' de Strasbourg, 12 rue du Ge'ne'ralZimmer, 67084, Strasbourg Cedex, France
| | - Ying Ruan
- Key Laboratory of Crop Epigenetic Regulation and Development in Hunan Province, Hunan Agricultural University, Changsha, 410128, China. .,International Associated Laboratory of CNRS-FU-HAU on Plant Epigenome Research, Hunan Agricultural University, Changsha, 410128, China. .,Key Laboratory of Plant Genetics and Molecular Biology of Education Department of Hunan Province, Hunan Agricultural University, Changsha, 410128, China.
| |
Collapse
|
27
|
Xia F, Sun T, Yang S, Wang X, Chao J, Li X, Hu J, Cui M, Liu G, Wang D, Sun Y. Insight into the B3Transcription Factor Superfamily and Expression Profiling of B3 Genes in Axillary Buds after Topping in Tobacco( Nicotiana tabacum L.). Genes (Basel) 2019; 10:E164. [PMID: 30791672 PMCID: PMC6409620 DOI: 10.3390/genes10020164] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/06/2019] [Accepted: 02/12/2019] [Indexed: 12/11/2022] Open
Abstract
Members of the plant-specific B3 transcription factor superfamily play important roles in various growth and developmental processes in plants. Even though there are many valuable studies on B3 genes in other species, little is known about the B3 superfamily in tobacco. We identified 114 B3 proteins from tobacco using comparative genome analysis. These proteins were classified into four subfamilies based on their phylogenetic relationships, and include the ARF, RAV, LAV, and REM subfamilies. The chromosomal locations, gene structures, conserved protein motifs, and sub-cellular localizations of the tobacco B3 proteins were analyzed. The patterns of exon-intron numbers and arrangement and the protein structures of the tobacco B3 proteins were in general agreement with their phylogenetic relationships. The expression patterns of 114 B3 genes revealed that many B3 genes show tissue-specific expression. The expression levels of B3 genes in axillary buds after topping showed that the REM genes are mainly up-regulated in response to topping, while the ARF genes are down-regulated after topping.
Collapse
Affiliation(s)
- Fei Xia
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
- Key Laboratory for Tobacco Gene Resources, State Tobacco Monopoly Administration, Qingdao 266101, China.
- Graduate School of Chinese Academy of Agricultural Science, Beijing 100081, China.
| | - Tingting Sun
- Graduate School of Chinese Academy of Agricultural Science, Beijing 100081, China.
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310006, China.
| | - Shuangjuan Yang
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China.
| | - Xiao Wang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
- Key Laboratory for Tobacco Gene Resources, State Tobacco Monopoly Administration, Qingdao 266101, China.
- Graduate School of Chinese Academy of Agricultural Science, Beijing 100081, China.
| | - Jiangtao Chao
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
- Key Laboratory for Tobacco Gene Resources, State Tobacco Monopoly Administration, Qingdao 266101, China.
| | - Xiaoxu Li
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
- Key Laboratory for Tobacco Gene Resources, State Tobacco Monopoly Administration, Qingdao 266101, China.
- Graduate School of Chinese Academy of Agricultural Science, Beijing 100081, China.
| | - Junhua Hu
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
- Key Laboratory for Tobacco Gene Resources, State Tobacco Monopoly Administration, Qingdao 266101, China.
- Graduate School of Chinese Academy of Agricultural Science, Beijing 100081, China.
| | - Mengmeng Cui
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
- Key Laboratory for Tobacco Gene Resources, State Tobacco Monopoly Administration, Qingdao 266101, China.
| | - Guanshan Liu
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
- Key Laboratory for Tobacco Gene Resources, State Tobacco Monopoly Administration, Qingdao 266101, China.
| | - Dawei Wang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
- Key Laboratory for Tobacco Gene Resources, State Tobacco Monopoly Administration, Qingdao 266101, China.
| | - Yuhe Sun
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
- Key Laboratory for Tobacco Gene Resources, State Tobacco Monopoly Administration, Qingdao 266101, China.
| |
Collapse
|
28
|
Lepiniec L, Devic M, Roscoe TJ, Bouyer D, Zhou DX, Boulard C, Baud S, Dubreucq B. Molecular and epigenetic regulations and functions of the LAFL transcriptional regulators that control seed development. PLANT REPRODUCTION 2018; 31:291-307. [PMID: 29797091 DOI: 10.1007/s00497-018-0337-2] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Accepted: 05/10/2018] [Indexed: 05/20/2023]
Abstract
The LAFL (i.e. LEC1, ABI3, FUS3, and LEC2) master transcriptional regulators interact to form different complexes that induce embryo development and maturation, and inhibit seed germination and vegetative growth in Arabidopsis. Orthologous genes involved in similar regulatory processes have been described in various angiosperms including important crop species. Consistent with a prominent role of the LAFL regulators in triggering and maintaining embryonic cell fate, their expression appears finely tuned in different tissues during seed development and tightly repressed in vegetative tissues by a surprisingly high number of genetic and epigenetic factors. Partial functional redundancies and intricate feedback regulations of the LAFL have hampered the elucidation of the underpinning molecular mechanisms. Nevertheless, genetic, genomic, cellular, molecular, and biochemical analyses implemented during the last years have greatly improved our knowledge of the LALF network. Here we summarize and discuss recent progress, together with current issues required to gain a comprehensive insight into the network, including the emerging function of LEC1 and possibly LEC2 as pioneer transcription factors.
Collapse
Affiliation(s)
- L Lepiniec
- IJPB (Institut Jean-Pierre Bourgin), INRA, AgroParisTech, CNRS, Université Paris-Saclay, RD10, 78026, Versailles, France.
| | - M Devic
- Régulations Epigénétiques et Développement de la Graine, ERL 5300 CNRS-IRD UMR DIADE, IRD centre de Montpellier, 911 Avenue Agropolis, BP 64501, 34394, Montpellier, France
- Laboratoire d'Océanographie Microbienne, Observatoire Océanologique, Sorbonne Universités, Université Pierre et Marie Curie (Paris 06) & Centre National pour la Recherche Scientifique CNRS UMR 7621, 66650, Banyuls-sur-Mer, France
| | - T J Roscoe
- Régulations Epigénétiques et Développement de la Graine, ERL 5300 CNRS-IRD UMR DIADE, IRD centre de Montpellier, 911 Avenue Agropolis, BP 64501, 34394, Montpellier, France
- Laboratoire d'Océanographie Microbienne, Observatoire Océanologique, Sorbonne Universités, Université Pierre et Marie Curie (Paris 06) & Centre National pour la Recherche Scientifique CNRS UMR 7621, 66650, Banyuls-sur-Mer, France
| | - D Bouyer
- Institut de Biologie de l'ENS, CNRS UMR8197, Ecole Normale Supérieure, 46 rue d'Ulm, 75230, Paris Cedex 05, France
| | - D-X Zhou
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris Sud 11, Université Paris-Saclay, 91405, Orsay, France
| | - C Boulard
- IJPB (Institut Jean-Pierre Bourgin), INRA, AgroParisTech, CNRS, Université Paris-Saclay, RD10, 78026, Versailles, France
| | - S Baud
- IJPB (Institut Jean-Pierre Bourgin), INRA, AgroParisTech, CNRS, Université Paris-Saclay, RD10, 78026, Versailles, France
| | - B Dubreucq
- IJPB (Institut Jean-Pierre Bourgin), INRA, AgroParisTech, CNRS, Université Paris-Saclay, RD10, 78026, Versailles, France
| |
Collapse
|
29
|
Wu B, Zhang M, Su S, Liu H, Gan J, Ma J. Structural insight into the role of VAL1 B3 domain for targeting to FLC locus in Arabidopsis thaliana. Biochem Biophys Res Commun 2018; 501:415-422. [PMID: 29733847 DOI: 10.1016/j.bbrc.2018.05.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Accepted: 05/01/2018] [Indexed: 11/19/2022]
Abstract
Vernalization is a pivotal stage for some plants involving many epigenetic changes during cold exposure. In Arabidopsis, an essential step in vernalization for further flowering is successful silence the potent floral repressor Flowering Locus C (FLC) by repressing histone mark. AtVal1 is a multi-function protein containing five domains that participate into many recognition processes and is validated to recruit the repress histone modifier PHD-PRC2 complex and interact with components of the ASAP complex target to the FLC nucleation region through recognizing a cis element known as CME (cold memory element) by its plant-specific B3 domain. Here, we determine the crystal structure of the B3 domain in complex with Sph/RY motif in CME. Our structural analysis reveals the specific DNA recognition by B3 domain, combined with our in vitro experiments, we provide the structural insight into the important implication of AtVAL1-B3 domain in flowering process.
Collapse
Affiliation(s)
- Baixing Wu
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Centre of Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China.
| | - Mengmeng Zhang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Centre of Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Shichen Su
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Centre of Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Hehua Liu
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Physiology and Biophysics, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Jianhua Gan
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Physiology and Biophysics, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Jinbiao Ma
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Centre of Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China.
| |
Collapse
|
30
|
Sasnauskas G, Kauneckaitė K, Siksnys V. Structural basis of DNA target recognition by the B3 domain of Arabidopsis epigenome reader VAL1. Nucleic Acids Res 2018; 46:4316-4324. [PMID: 29660015 PMCID: PMC5934628 DOI: 10.1093/nar/gky256] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 03/08/2018] [Accepted: 03/27/2018] [Indexed: 11/14/2022] Open
Abstract
Arabidopsis thaliana requires a prolonged period of cold exposure during winter to initiate flowering in a process termed vernalization. Exposure to cold induces epigenetic silencing of the FLOWERING LOCUS C (FLC) gene by Polycomb group (PcG) proteins. A key role in this epigenetic switch is played by transcriptional repressors VAL1 and VAL2, which specifically recognize Sph/RY DNA sequences within FLC via B3 DNA binding domains, and mediate recruitment of PcG silencing machinery. To understand the structural mechanism of site-specific DNA recognition by VAL1, we have solved the crystal structure of VAL1 B3 domain (VAL1-B3) bound to a 12 bp oligoduplex containing the canonical Sph/RY DNA sequence 5'-CATGCA-3'/5'-TGCATG-3'. We find that VAL1-B3 makes H-bonds and van der Waals contacts to DNA bases of all six positions of the canonical Sph/RY element. In agreement with the structure, in vitro DNA binding studies show that VAL1-B3 does not tolerate substitutions at any position of the 5'-TGCATG-3' sequence. The VAL1-B3-DNA structure presented here provides a structural model for understanding the specificity of plant B3 domains interacting with the Sph/RY and other DNA sequences.
Collapse
Affiliation(s)
- Giedrius Sasnauskas
- Institute of Biotechnology, Vilnius University, Saulėtekio al. 7, LT-10257 Vilnius, Lithuania
| | - Kotryna Kauneckaitė
- Institute of Biotechnology, Vilnius University, Saulėtekio al. 7, LT-10257 Vilnius, Lithuania
| | - Virginijus Siksnys
- Institute of Biotechnology, Vilnius University, Saulėtekio al. 7, LT-10257 Vilnius, Lithuania
| |
Collapse
|
31
|
Chen N, Veerappan V, Abdelmageed H, Kang M, Allen RD. HSI2/VAL1 Silences AGL15 to Regulate the Developmental Transition from Seed Maturation to Vegetative Growth in Arabidopsis. THE PLANT CELL 2018; 30:600-619. [PMID: 29475938 PMCID: PMC5894832 DOI: 10.1105/tpc.17.00655] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 01/30/2018] [Accepted: 02/20/2018] [Indexed: 05/18/2023]
Abstract
Gene expression during seed development in Arabidopsis thaliana is controlled by transcription factors including LEAFY COTYLEDON1 (LEC1) and LEC2, ABA INSENSITIVE3 (ABI3), FUSCA3 (FUS3), known as LAFL proteins, and AGAMOUS-LIKE15 (AGL15). The transition from seed maturation to germination and seedling growth requires the transcriptional silencing of these seed maturation-specific factors leading to downregulation of structural genes including those that encode seed storage proteins, oleosins, and dehydrins. During seed germination and vegetative growth, B3-domain protein HSI2/VAL1 is required for the transcriptional silencing of LAFL genes. Here, we report chromatin immunoprecipitation analysis indicating that HSI2/VAL1 binds to the upstream sequences of the AGL15 gene but not at LEC1, ABI3, FUS3, or LEC2 loci. Functional analysis indicates that the HSI2/VAL1 B3 domain interacts with two RY elements upstream of the AGL15 coding region and at least one of them is required for HSI2/VAL1-dependent AGL15 repression. Expression analysis of the major seed maturation regulatory genes LEC1, ABI3, FUS3, and LEC2 in different genetic backgrounds demonstrates that HSI2/VAL1 is epistatic to AGL15 and represses the seed maturation regulatory program through downregulation of AGL15 by deposition of H3K27me3 at this locus. This hypothesis is further supported by results that show that HSI2/VAL1 physically interacts with the Polycomb Repressive Complex 2 component protein MSI1, which is also enriched at the AGL15 locus.
Collapse
Affiliation(s)
- Naichong Chen
- Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, Oklahoma 73401
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, Oklahoma 74074
| | - Vijaykumar Veerappan
- Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, Oklahoma 73401
- Department of Biology, Eastern Connecticut State University, Willimantic, Connecticut 06226
| | - Haggag Abdelmageed
- Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, Oklahoma 73401
- Department of Agricultural Botany, Faculty of Agriculture, Cairo University, Giza 12613, Egypt
| | - Miyoung Kang
- Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, Oklahoma 73401
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, Oklahoma 74074
| | - Randy D Allen
- Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, Oklahoma 73401
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, Oklahoma 74074
| |
Collapse
|
32
|
Yuan W, Luo X, Li Z, Yang W, Wang Y, Liu R, Du J, He Y. A cis cold memory element and a trans epigenome reader mediate Polycomb silencing of FLC by vernalization in Arabidopsis. Nat Genet 2016; 48:1527-1534. [DOI: 10.1038/ng.3712] [Citation(s) in RCA: 127] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 10/07/2016] [Indexed: 12/16/2022]
|
33
|
Chhun T, Chong SY, Park BS, Wong ECC, Yin JL, Kim M, Chua NH. HSI2 Repressor Recruits MED13 and HDA6 to Down-Regulate Seed Maturation Gene Expression Directly During Arabidopsis Early Seedling Growth. PLANT & CELL PHYSIOLOGY 2016; 57:1689-706. [PMID: 27335347 DOI: 10.1093/pcp/pcw095] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 05/01/2016] [Indexed: 05/25/2023]
Abstract
Arabidopsis HSI2 (HIGH-LEVEL EXPRESSION OF SUGAR-INDUCIBLE GENE 2) which carries a EAR (ERF-associated amphiphilic repression) motif acts as a repressor of seed maturation genes and lipid biosynthesis, whereas MEDIATOR (MED) is a conserved multiprotein complex linking DNA-bound transcription factors to RNA polymerase II transcription machinery. How HSI2 executes its repressive function through MED is hitherto unknown. Here, we show that HSI2 and its homolog, HSI2-lik (HSL1), are able to form homo- and heterocomplexes. Both factors bind to the TRAP240 domain of MED13, a subunit of the MED CDK8 module. Mutant alleles of the med13 mutant show elevated seed maturation gene expression and increased lipid accumulation in cotyledons; in contrast, HSI2- or MED13-overexpressing plants display the opposite phenotypes. The overexpression phenotypes of HSI2 and MED13 are abolished in med13 and hsi2 hsl1, respectively, indicating that HSI2 and MED13 together are required for these functions. The HSI2 C-terminal region interacts with HDA6, whose overexpression also reduces seed maturation gene expression and lipid accumulation. Moreover, HSI2, MED13 and HDA6 bind to the proximal promoter and 5'-coding regions of seed maturation genes. Taken together, our results suggest that HSI2 recruits MED13 and HDA6 to suppress directly a subset of seed maturation genes post-germination.
Collapse
Affiliation(s)
- Tory Chhun
- Temasek Life Sciences Laboratory, National University of Singapore, 1 Research Link, Singapore 117604, Singapore
| | - Suet Yen Chong
- Temasek Life Sciences Laboratory, National University of Singapore, 1 Research Link, Singapore 117604, Singapore
| | - Bong Soo Park
- Temasek Life Sciences Laboratory, National University of Singapore, 1 Research Link, Singapore 117604, Singapore
| | - Eriko Chi Cheng Wong
- Temasek Life Sciences Laboratory, National University of Singapore, 1 Research Link, Singapore 117604, Singapore
| | - Jun-Lin Yin
- Temasek Life Sciences Laboratory, National University of Singapore, 1 Research Link, Singapore 117604, Singapore
| | - Mijung Kim
- Temasek Life Sciences Laboratory, National University of Singapore, 1 Research Link, Singapore 117604, Singapore
| | - Nam-Hai Chua
- Laboratory of Plant Molecular Biology, The Rockefeller University, 1230 York Avenue, New York, NY 10065-6399, USA
| |
Collapse
|
34
|
Schneider A, Aghamirzaie D, Elmarakeby H, Poudel AN, Koo AJ, Heath LS, Grene R, Collakova E. Potential targets of VIVIPAROUS1/ABI3-LIKE1 (VAL1) repression in developing Arabidopsis thaliana embryos. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 85:305-19. [PMID: 26678037 DOI: 10.1111/tpj.13106] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 11/28/2015] [Accepted: 12/01/2015] [Indexed: 05/06/2023]
Abstract
Developing Arabidopsis seeds accumulate oils and seed storage proteins synthesized by the pathways of primary metabolism. Seed development and metabolism are positively regulated by transcription factors belonging to the LAFL (LEC1, AB13, FUSCA3 and LEC2) regulatory network. The VAL gene family encodes repressors of the seed maturation program in germinating seeds, although they are also expressed during seed maturation. The possible regulatory role of VAL1 in seed development has not been studied to date. Reverse genetics revealed that val1 mutant seeds accumulated elevated levels of proteins compared with the wild type, suggesting that VAL1 functions as a repressor of seed metabolism; however, in the absence of VAL1, the levels of metabolites, ABA, auxin and jasmonate derivatives did not change significantly in developing embryos. Two VAL1 splice variants were identified through RNA sequencing analysis: a full-length form and a truncated form lacking the plant homeodomain-like domain associated with epigenetic repression. None of the transcripts encoding the core LAFL network transcription factors were affected in val1 embryos. Instead, activation of VAL1 by FUSCA3 appears to result in the repression of a subset of seed maturation genes downstream of core LAFL regulators, as 39% of transcripts in the FUSCA3 regulon were derepressed in the val1 mutant. The LEC1 and LEC2 regulons also responded, but to a lesser extent. Additional 832 transcripts that were not LAFL targets were derepressed in val1 mutant embryos. These transcripts are candidate targets of VAL1, acting through epigenetic and/or transcriptional repression.
Collapse
Affiliation(s)
- Andrew Schneider
- Department of Plant Pathology, Physiology, and Weed Science, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Delasa Aghamirzaie
- Genetics, Bioinformatics and Computational Biology, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Haitham Elmarakeby
- Department of Computer Science, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Arati N Poudel
- Division of Biochemistry, University of Missouri, Columbia, MO, 65211, USA
| | - Abraham J Koo
- Division of Biochemistry, University of Missouri, Columbia, MO, 65211, USA
| | - Lenwood S Heath
- Department of Computer Science, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Ruth Grene
- Department of Plant Pathology, Physiology, and Weed Science, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Eva Collakova
- Department of Plant Pathology, Physiology, and Weed Science, Virginia Tech, Blacksburg, VA, 24061, USA
| |
Collapse
|
35
|
Wang Y, Cao L, Zhang Y, Cao C, Liu F, Huang F, Qiu Y, Li R, Lou X. Map-based cloning and characterization of BPH29, a B3 domain-containing recessive gene conferring brown planthopper resistance in rice. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:6035-45. [PMID: 26136269 PMCID: PMC4566989 DOI: 10.1093/jxb/erv318] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Rice (Oryza sativa L.) production, essential for global food security, is threatened by the brown planthopper (BPH). The breeding of host-resistant crops is an economical and environmentally friendly strategy for pest control, but few resistance gene resources have thus far been cloned. An indica rice introgression line RBPH54, derived from wild rice Oryza rufipogon, has been identified with sustainable resistance to BPH, which is governed by recessive alleles at two loci. In this study, a map-based cloning approach was used to fine-map one resistance gene locus to a 24kb region on the short arm of chromosome 6. Through genetic analysis and transgenic experiments, BPH29, a resistance gene containing a B3 DNA-binding domain, was cloned. The tissue specificity of BPH29 is restricted to vascular tissue, the location of BPH attack. In response to BPH infestation, RBPH54 activates the salicylic acid signalling pathway and suppresses the jasmonic acid/ethylene-dependent pathway, similar to plant defence responses to biotrophic pathogens. The cloning and characterization of BPH29 provides insights into molecular mechanisms of plant-insect interactions and should facilitate the breeding of rice host-resistant varieties.
Collapse
Affiliation(s)
- Ying Wang
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Liming Cao
- Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Yuexiong Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources and College of Agriculture, Guangxi University, Nanning 530004, China
| | - Changxiang Cao
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Fang Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources and College of Agriculture, Guangxi University, Nanning 530004, China
| | - Fengkuan Huang
- Plant Protection Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Yongfu Qiu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources and College of Agriculture, Guangxi University, Nanning 530004, China
| | - Rongbai Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources and College of Agriculture, Guangxi University, Nanning 530004, China
| | - Xiaojin Lou
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200438, China
| |
Collapse
|
36
|
Mouriz A, López-González L, Jarillo JA, Piñeiro M. PHDs govern plant development. PLANT SIGNALING & BEHAVIOR 2015; 10:e993253. [PMID: 26156103 PMCID: PMC4622442 DOI: 10.4161/15592324.2014.993253] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 11/18/2014] [Indexed: 05/22/2023]
Abstract
Posttranslational modifications present in the amino-terminal tails of histones play a pivotal role in the chromatin-mediated regulation of gene expression patterns that control plant developmental transitions. Therefore, the function of protein domains that specifically recognize these histone covalent modifications and recruit chromatin remodeling complexes and the transcriptional machinery to modulate gene expression is essential for a proper control of plant development. Plant HomeoDomain (PHD) motifs act as effectors that can specifically bind a number of histone modifications and mediate the activation or repression of underlying genes. In this review we summarize recent findings that emphasize the crucial role of this versatile family of chromatin "reader" domains in the transcriptional regulation of plant developmental processes such as meiosis and postmeiotic events during pollen maturation, embryo meristem initiation and root development, germination as well as flowering time.
Collapse
Affiliation(s)
- Alfonso Mouriz
- Centro de Biotecnología y Genómica de Plantas; Instituto Nacional de Investigaciones Agrarias-Universidad Politécnica de Madrid; Madrid, Spain
| | - Leticia López-González
- Centro de Biotecnología y Genómica de Plantas; Instituto Nacional de Investigaciones Agrarias-Universidad Politécnica de Madrid; Madrid, Spain
| | - Jose A Jarillo
- Centro de Biotecnología y Genómica de Plantas; Instituto Nacional de Investigaciones Agrarias-Universidad Politécnica de Madrid; Madrid, Spain
| | | |
Collapse
|
37
|
Veerappan V, Chen N, Reichert AI, Allen RD. HSI2/VAL1 PHD-like domain promotes H3K27 trimethylation to repress the expression of seed maturation genes and complex transgenes in Arabidopsis seedlings. BMC PLANT BIOLOGY 2014; 14:293. [PMID: 25367506 PMCID: PMC4232687 DOI: 10.1186/s12870-014-0293-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 10/17/2014] [Indexed: 05/22/2023]
Abstract
BACKGROUND The novel mutant allele hsi2-4 was isolated in a genetic screen to identify Arabidopsis mutants with constitutively elevated expression of a glutathione S-transferase F8::luciferase (GSTF8::LUC) reporter gene in Arabidopsis. The hsi2-4 mutant harbors a point mutation that affects the plant homeodomain (PHD)-like domain in HIGH-LEVEL EXPRESSION OF SUGAR-INDUCIBLE GENE2 (HSI2)/VIVIPAROUS1/ABI3-LIKE1 (VAL1). In hsi2-4 seedlings, expression of this LUC transgene and certain endogenous seed-maturation genes is constitutively enhanced. The parental reporter line (WT LUC ) that was used for mutagenesis harbors two independent transgene loci, Kan R and Kan S . Both loci express luciferase whereas only the Kan R locus confers resistance to kanamycin. RESULTS Here we show that both transgene loci harbor multiple tandem insertions at single sites. Luciferase expression from these sites is regulated by the HSI2 PHD-like domain, which is required for the deposition of repressive histone methylation marks (H3K27me3) at both Kan R and Kan S loci. Expression of LUC and Neomycin Phosphotransferase II transgenes is associated with dynamic changes in H3K27me3 levels, and the activation marks H3K4me3 and H3K36me3 but does not appear to involve repressive H3K9me2 marks, DNA methylation or histone deacetylation. However, hsi2-2 and hsi2-4 mutants are partially resistant to growth inhibition associated with exposure to the DNA methylation inhibitor 5-aza-2'-deoxycytidine. HSI2 is also required for the repression of a subset of regulatory and structural seed maturation genes in vegetative tissues and H3K27me3 marks associated with most of these genes are also HSI2-dependent. CONCLUSIONS These data implicate HSI2 PHD-like domain in the regulation of gene expression involving histone modifications and DNA methylation-mediated epigenetic mechanisms.
Collapse
Affiliation(s)
- Vijaykumar Veerappan
- />Institute for Agricultural Biosciences, Oklahoma State University, 3210 Sam Noble Parkway, Ardmore, OK 73401 USA
- />Current address: Department of Biological Sciences, University of North Texas, Denton, TX 76203-5017 USA
| | - Naichong Chen
- />Institute for Agricultural Biosciences, Oklahoma State University, 3210 Sam Noble Parkway, Ardmore, OK 73401 USA
| | - Angelika I Reichert
- />Institute for Agricultural Biosciences, Oklahoma State University, 3210 Sam Noble Parkway, Ardmore, OK 73401 USA
| | - Randy D Allen
- />Institute for Agricultural Biosciences, Oklahoma State University, 3210 Sam Noble Parkway, Ardmore, OK 73401 USA
| |
Collapse
|
38
|
Upadhyay RK, Gupta A, Ranjan S, Singh R, Pathre UV, Nath P, Sane AP. The EAR motif controls the early flowering and senescence phenotype mediated by over-expression of SlERF36 and is partly responsible for changes in stomatal density and photosynthesis. PLoS One 2014; 9:e101995. [PMID: 25036097 PMCID: PMC4103849 DOI: 10.1371/journal.pone.0101995] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2014] [Accepted: 06/13/2014] [Indexed: 12/29/2022] Open
Abstract
The EAR motif is a small seven amino acid motif associated with active repression of several target genes. We had previously identified SlERF36 as an EAR motif containing gene from tomato and shown that its over-expression results in early flowering and senescence and a 25-35% reduction of stomatal density, photosynthesis and stomatal conductance in transgenic tobacco. In order to understand the role of the EAR motif in governing the phenotypes, we have expressed the full-length SlERF36 and a truncated form, lacking the EAR motif under the CaMV35S promoter, in transgenic Arabidopsis. Plants over-expressing the full-length SlERF36 show prominent early flowering under long day as well as short day conditions. The early flowering leads to an earlier onset of senescence in these transgenic plants which in turn reduces vegetative growth, affecting rosette, flower and silique sizes. Stomatal number is reduced by 38-39% while photosynthesis and stomatal conductance decrease by about 30-40%. Transgenic plants over-expressing the truncated version of SlERF36 (lacking the C-terminal EAR motif), show phenotypes largely matching the control with normal flowering and senescence indicating that the early flowering and senescence is governed by the EAR motif. On the other hand, photosynthetic rates and stomatal number were also reduced in plants expressing SlERF36ΔEAR although to a lesser degree compared to the full- length version indicating that these are partly controlled by the EAR motif. These studies show that the major phenotypic changes in plant growth caused by over-expression of SlERF36 are actually mediated by the EAR motif.
Collapse
Affiliation(s)
- Rakesh Kumar Upadhyay
- Plant Gene Expression Lab, CSIR-National Botanical Research Institute (Council of Scientific and Industrial Research), Lucknow, India
- Sustainable Agricultural Systems Laboratory, USDA-ARS, Beltsville Agricultural Research Center, Beltsville, Maryland, United States of America
- Department of Biology, Pennsylvania State University, Harrisburg, Pennsylvania, United States of America
| | - Asmita Gupta
- Plant Gene Expression Lab, CSIR-National Botanical Research Institute (Council of Scientific and Industrial Research), Lucknow, India
| | - Sanjay Ranjan
- Department of Plant Physiology, CSIR-National Botanical Research Institute (Council of Scientific and Industrial Research), Lucknow, India
| | - Ruchi Singh
- Department of Plant Physiology, CSIR-National Botanical Research Institute (Council of Scientific and Industrial Research), Lucknow, India
| | - Uday V. Pathre
- Department of Plant Physiology, CSIR-National Botanical Research Institute (Council of Scientific and Industrial Research), Lucknow, India
| | - Pravendra Nath
- Plant Gene Expression Lab, CSIR-National Botanical Research Institute (Council of Scientific and Industrial Research), Lucknow, India
| | - Aniruddha P. Sane
- Plant Gene Expression Lab, CSIR-National Botanical Research Institute (Council of Scientific and Industrial Research), Lucknow, India
| |
Collapse
|
39
|
Tausta SL, Li P, Si Y, Gandotra N, Liu P, Sun Q, Brutnell TP, Nelson T. Developmental dynamics of Kranz cell transcriptional specificity in maize leaf reveals early onset of C4-related processes. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:3543-55. [PMID: 24790109 PMCID: PMC4085964 DOI: 10.1093/jxb/eru152] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The comparison of the cell-specific transcriptomes of bundle sheath (BS) and mesophyll (M) cells from successive developmental stages of maize (Zea mays) leaves reveals that the number of genes preferentially transcribed in one cell type or the other varies considerably from the sink-source transition to mature photosynthetic stages. The number of differentially expressed (DE) genes is maximal at a stage well before full maturity, including those that encode key functions for C4 photosynthesis. The developmental dynamics of BS/M differential expression can be used to identify candidates for other C4-related functions and to simplify the identification of specific pathways members from otherwise complex gene families. A significant portion of the candidates for C4-related transcription factors identified with this developmental DE strategy overlap with those identified in studies using alternative strategies, thus providing independent support for their potential importance.
Collapse
Affiliation(s)
- S Lori Tausta
- Department of Molecular, Cellular & Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Pinghua Li
- College of Agriculture, Shandong Agricultural University, Taian 271018, China
| | - Yaqing Si
- Department of Statistics, Iowa State University, Ames, IA 50011, USA
| | - Neeru Gandotra
- Department of Molecular, Cellular & Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Peng Liu
- Department of Statistics, Iowa State University, Ames, IA 50011, USA
| | - Qi Sun
- Institute of Biotechnology, Cornell University, Ithaca NY 14850, USA
| | | | - Timothy Nelson
- Department of Molecular, Cellular & Developmental Biology, Yale University, New Haven, CT 06511, USA
| |
Collapse
|
40
|
Abstract
From mammals to plants, the Polycomb Group (PcG) machinery plays a crucial role in maintaining the repression of genes that are not required in a specific differentiation status. However, the mechanism by which PcG machinery mediates gene repression is still largely unknown in plants. Compared to animals, few PcG proteins have been identified in plants, not only because just some of these proteins are clearly conserved to their animal counterparts, but also because some PcG functions are carried out by plant-specific proteins, most of them as yet uncharacterized. For a long time, the apparent lack of Polycomb Repressive Complex (PRC)1 components in plants was interpreted according to the idea that plants, as sessile organisms, do not need a long-term repression, as they must be able to respond rapidly to environmental signals; however, some PRC1 components have been recently identified, indicating that this may not be the case. Furthermore, new data regarding the recruitment of PcG complexes and maintenance of PcG repression in plants have revealed important differences to what has been reported so far. This review highlights recent progress in plant PcG function, focusing on the role of the putative PRC1 components.
Collapse
Affiliation(s)
- Myriam Calonje
- Institute of Plant Biochemistry and Photosynthesis (IBVF), Avenida América Vespucio, 49, Isla de La Cartuja, 41092 Seville, Spain
| |
Collapse
|
41
|
Persak H, Pitzschke A. Dominant repression by Arabidopsis transcription factor MYB44 causes oxidative damage and hypersensitivity to abiotic stress. Int J Mol Sci 2014; 15:2517-37. [PMID: 24531138 PMCID: PMC3958865 DOI: 10.3390/ijms15022517] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 01/17/2014] [Accepted: 01/28/2014] [Indexed: 11/24/2022] Open
Abstract
In any living species, stress adaptation is closely linked with major changes of the gene expression profile. As a substrate protein of the rapidly stress-induced mitogen-activated protein kinase MPK3, Arabidopsis transcription factor MYB44 likely acts at the front line of stress-induced re-programming. We recently characterized MYB44 as phosphorylation-dependent positive regulator of salt stress signaling. Molecular events downstream of MYB44 are largely unknown. Although MYB44 binds to the MBSII element in vitro, it has no discernible effect on MBSII-driven reporter gene expression in plant co-transfection assays. This may suggest limited abundance of a synergistic co-regulator. MYB44 carries a putative transcriptional repression (Ethylene responsive element binding factor-associated Amphiphilic Repression, EAR) motif. We employed a dominant repressor strategy to gain insights into MYB44-conferred stress resistance. Overexpression of a MYB44-REP fusion markedly compromised salt and drought stress tolerance—the opposite was seen in MYB44 overexpression lines. MYB44-mediated resistance likely results from induction of tolerance-enhancing, rather than from repression of tolerance-diminishing factors. Salt stress-induced accumulation of destructive reactive oxygen species is efficiently prevented in transgenic MYB44, but accelerated in MYB44-REP lines. Furthermore, heterologous overexpression of MYB44-REP caused tissue collapse in Nicotiana. A mechanistic model of MAPK-MYB-mediated enhancement in the antioxidative capacity and stress tolerance is proposed. Genetic engineering of MYB44 variants with higher trans-activating capacity may be a means to further raise stress resistance in crops.
Collapse
Affiliation(s)
- Helene Persak
- Department of Applied Genetics and Cell Biology (DAGZ), University of Natural Resources and Applied Life Sciences (BOKU), Muthgasse 18, Vienna A-1190, Austria.
| | - Andrea Pitzschke
- Department of Applied Genetics and Cell Biology (DAGZ), University of Natural Resources and Applied Life Sciences (BOKU), Muthgasse 18, Vienna A-1190, Austria.
| |
Collapse
|
42
|
Jia H, McCarty DR, Suzuki M. Distinct roles of LAFL network genes in promoting the embryonic seedling fate in the absence of VAL repression. PLANT PHYSIOLOGY 2013; 163:1293-305. [PMID: 24043445 PMCID: PMC3813651 DOI: 10.1104/pp.113.220988] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 09/08/2013] [Indexed: 05/18/2023]
Abstract
The transition between seed and seedling phases of development is coordinated by an interaction between the closely related ABSCISIC ACID-INSENSITIVE3 (ABI3), FUSCA3 (FUS3), and LEAFY COTYLEDON2 (LEC2; AFL) and VIVIPAROUS1/ABI3-LIKE (VAL) clades of the B3 transcription factor family that respectively activate and repress the seed maturation program. In the val1 val2 double mutant, derepression of the LEC1, LEC1-LIKE (L1L), and AFL (LAFL) network is associated with misexpression of embryonic characteristics resulting in arrested seedling development. We show that while the frequency of the embryonic fate in val1 val2 seedlings depends on the developmental timing of seed rescue, VAL proteins repress LAFL genes during germination, but not during seed development. Quantitative analysis of LAFL mutants that suppress the val1 val2 seedling phenotype revealed distinct roles of LAFL genes in promoting activation of the LAFL network. LEC2 and FUS3 are both essential for coordinate activation of the network, whereas effects of LEC1, L1L, and ABI3 are additive. Suppression of the val1 val2 seedling phenotype by the B3 domain-deficient abi3-12 mutation indicates that ABI3 activation of the LAFL network requires the B3 DNA-binding domain. In the VAL-deficient background, coordinate regulation of the LAFL network is observed over a wide range of genetic and developmental conditions. Our findings highlight distinct functional roles and interactions of LAFL network genes that are uncovered in the absence of VAL repressors.
Collapse
|
43
|
Sharma N, Bender Y, Boyle K, Fobert PR. High-level expression of sugar inducible gene2 (HSI2) is a negative regulator of drought stress tolerance in Arabidopsis. BMC PLANT BIOLOGY 2013; 13:170. [PMID: 24168327 PMCID: PMC3893512 DOI: 10.1186/1471-2229-13-170] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Accepted: 10/02/2013] [Indexed: 05/08/2023]
Abstract
BACKGROUND HIGH-LEVEL EXPRESSION OF SUGAR INDUCIBLE GENE2 (HSI2), also known as VAL1, is a B3 domain transcriptional repressor that acts redundantly with its closest relative, HSI2-LIKE1 (HSL1), to suppress the seed maturation program following germination. Mutant hsi2 hsl1 seedlings are arrested early in development and differentially express a number of abiotic stress-related genes. To test the potential requirement for HSI2 during abiotic stress, hsi2 single mutants and plants overexpressing HSI2 were subjected to simulated drought stress by withholding watering, and characterized through physiological, metabolic and gene expression studies. RESULTS The hsi2 mutants demonstrated reduced wilting and maintained higher relative water content than wild-type after withholding watering, while the overexpressing lines displayed the opposite phenotype. The hsi2 mutant displayed lower constitutive and ABA-induced stomatal conductance than wild-type and accumulated lower levels of ABA metabolites and several osmolytes and osmoprotectants following water withdrawal. Microarray comparisons between wild-type and the hsi2 mutant revealed that steady-state levels of numerous stress-induced genes were up-regulated in the mutant in the absence of stress but down-regulated at visible wilting. Plants with altered levels of HSI2 responded to exogenous application of ABA and a long-lived ABA analog, but the hsi2 mutant did not show altered expression of several ABA-responsive or ABA signalling genes 4 hr after application. CONCLUSIONS These results implicate HSI2 as a negative regulator of drought stress response in Arabidopsis, acting, at least in part, by regulating transpirational water loss. Metabolic and global transcript profiling comparisons of the hsi2 mutant and wild-type plants do not support a model whereby the greater drought tolerance observed in the hsi2 mutant is conferred by the accumulation of known osmolytes and osmoprotectants. Instead, data are consistent with mutants experiencing a relatively milder dehydration stress following water withdrawal.
Collapse
MESH Headings
- Abscisic Acid/pharmacology
- Adaptation, Physiological/drug effects
- Adaptation, Physiological/genetics
- Arabidopsis/drug effects
- Arabidopsis/genetics
- Arabidopsis/physiology
- Arabidopsis Proteins/genetics
- Arabidopsis Proteins/metabolism
- DNA, Bacterial/genetics
- Down-Regulation/drug effects
- Down-Regulation/genetics
- Droughts
- Gene Expression Regulation, Plant/drug effects
- Gene Ontology
- Kinetics
- Metabolome/drug effects
- Metabolome/genetics
- Molecular Sequence Annotation
- Mutagenesis, Insertional/drug effects
- Mutagenesis, Insertional/genetics
- Mutation/genetics
- Oligonucleotide Array Sequence Analysis
- Plant Stomata/drug effects
- Plant Stomata/genetics
- Plant Stomata/physiology
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Repressor Proteins/genetics
- Repressor Proteins/metabolism
- Reproducibility of Results
- Stress, Physiological/drug effects
- Stress, Physiological/genetics
- Transcriptome/genetics
Collapse
Affiliation(s)
- Nirmala Sharma
- National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK S7N 0W9, Canada
| | - Yarnel Bender
- National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK S7N 0W9, Canada
| | - Kerry Boyle
- National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK S7N 0W9, Canada
| | - Pierre R Fobert
- National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK S7N 0W9, Canada
| |
Collapse
|
44
|
Guo X, Hou X, Fang J, Wei P, Xu B, Chen M, Feng Y, Chu C. The rice GERMINATION DEFECTIVE 1, encoding a B3 domain transcriptional repressor, regulates seed germination and seedling development by integrating GA and carbohydrate metabolism. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 75:403-16. [PMID: 23581288 PMCID: PMC3813988 DOI: 10.1111/tpj.12209] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 04/08/2013] [Accepted: 04/11/2013] [Indexed: 05/19/2023]
Abstract
It has been shown that seed development is regulated by a network of transcription factors in Arabidopsis including LEC1 (LEAFY COTYLEDON1), L1L (LEC1-like) and the B3 domain factors LEC2, FUS3 (FUSCA3) and ABI3 (ABA-INSENSITIVE3); however, molecular and genetic regulation of seed development in cereals is poorly understood. To understand seed development and seed germination in cereals, a large-scale screen was performed using our T-DNA mutant population, and a mutant germination-defective1 (gd1) was identified. In addition to the severe germination defect, the gd1 mutant also shows a dwarf phenotype and abnormal flower development. Molecular and biochemical analyses revealed that GD1 encodes a B3 domain-containing transcription factor with repression activity. Consistent with the dwarf phenotype of gd1, expression of the gibberelic acid (GA) inactivation gene OsGA2ox3 is increased dramatically, accompanied by reduced expression of GA biosynthetic genes including OsGA20ox1, OsGA20ox2 and OsGA3ox2 in gd1, resulting in a decreased endogenous GA₄ level. Exogenous application of GA not only induced GD1 expression, but also partially rescued the dwarf phenotype of gd1. Furthermore, GD1 binds to the promoter of OsLFL1, a LEC2/FUS3-like gene of rice, via an RY element, leading to significant up-regulation of OsLFL1 and a large subset of seed maturation genes in the gd1 mutant. Plants over-expressing OsLFL1 partly mimic the gd1 mutant. In addition, expression of GD1 was induced under sugar treatment, and the contents of starch and soluble sugar are altered in the gd1 mutant. These data indicate that GD1 participates directly or indirectly in regulating GA and carbohydrate homeostasis, and further regulates rice seed germination and seedling development.
Collapse
Affiliation(s)
- Xiaoli Guo
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijing, 100101, China
| | - Xiaomei Hou
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijing, 100101, China
- Graduate University of the Chinese Academy of SciencesBeijing, 100049, China
| | - Jun Fang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijing, 100101, China
- For correspondence (e-mail or )
| | - Piwei Wei
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijing, 100101, China
| | - Bo Xu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijing, 100101, China
- Graduate University of the Chinese Academy of SciencesBeijing, 100049, China
| | - Mingluan Chen
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education) Department of Chemistry, Wuhan UniversityWuhan, 430072, China
| | - Yuqi Feng
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education) Department of Chemistry, Wuhan UniversityWuhan, 430072, China
| | - Chengcai Chu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijing, 100101, China
- For correspondence (e-mail or )
| |
Collapse
|
45
|
Peng FY, Weselake RJ. Genome-wide identification and analysis of the B3 superfamily of transcription factors in Brassicaceae and major crop plants. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2013; 126:1305-19. [PMID: 23377560 DOI: 10.1007/s00122-013-2054-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Accepted: 01/09/2013] [Indexed: 05/04/2023]
Abstract
The plant-specific B3 superfamily of transcription factors has diverse functions in plant growth and development. Using a genome-wide domain analysis, we identified 92, 187, 58, 90, 81, 55, and 77 B3 transcription factor genes in the sequenced genome of Arabidopsis, Brassica rapa, castor bean (Ricinus communis), cocoa (Theobroma cacao), soybean (Glycine max), maize (Zea mays), and rice (Oryza sativa), respectively. The B3 superfamily has substantially expanded during the evolution in eudicots particularly in Brassicaceae, as compared to monocots in the analysis. We observed domain duplication in some of these B3 proteins, forming more complex domain architectures than currently understood. We found that the length of B3 domains exhibits a large variation, which may affect their exact number of α-helices and β-sheets in the core structure of B3 domains, and possibly have functional implications. Analysis of the public microarray data indicated that most of the B3 gene pairs encoding Arabidopsis-rice orthologs are preferentially expressed in different tissues, suggesting their different roles in these two species. Using ESTs in crops, we identified many B3 genes preferentially expressed in reproductive tissues. In a sequence-based quantitative trait loci analysis in rice and maize, we have found many B3 genes associated with traits such as grain yield, seed weight and number, and protein content. Our results provide a framework for future studies into the function of B3 genes in different phases of plant development, especially the ones related to traits in major crops.
Collapse
Affiliation(s)
- Fred Y Peng
- Agricultural Lipid Biotechnology Program, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | | |
Collapse
|
46
|
Wang F, Perry SE. Identification of direct targets of FUSCA3, a key regulator of Arabidopsis seed development. PLANT PHYSIOLOGY 2013; 161:1251-64. [PMID: 23314941 PMCID: PMC3585594 DOI: 10.1104/pp.112.212282] [Citation(s) in RCA: 182] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Accepted: 01/10/2013] [Indexed: 05/18/2023]
Abstract
FUSCA3 (FUS3) is a B3 domain transcription factor that is a member of the LEAFY COTYLEDON (LEC) group of genes. The LEC genes encode proteins that also include LEC2, a B3 domain factor related to FUS3, and LEC1, a CCAAT box-binding factor. LEC1, LEC2, and FUS3 are essential for plant embryo development. All three loss-of-function mutants in Arabidopsis (Arabidopsis thaliana) prematurely exit embryogenesis and enter seedling developmental programs. When ectopically expressed, these genes promote embryo programs in seedlings. We report on chromatin immunoprecipitation-tiling array experiments to globally map binding sites for FUS3 that, along with other published work to assess transcriptomes in response to FUS3, allow us to determine direct from indirect targets. Many transcription factors associated with embryogenesis are direct targets of FUS3, as are genes involved in the seed maturation program. FUS3 regulates genes encoding microRNAs that, in turn, control transcripts encoding transcription factors involved in developmental phase changes. Examination of direct targets of FUS3 reveals that FUS3 acts primarily or exclusively as a transcriptional activator. Regulation of microRNA-encoding genes is one mechanism by which FUS3 may repress indirect target genes. FUS3 also directly up-regulates VP1/ABI3-LIKE1 (VAL1), encoding a B3 domain protein that functions as a repressor of transcription. VAL1, along with VAL2 and VAL3, is involved in the transition from embryo to seedling development. Many genes are responsive to FUS3 and to VAL1/VAL2 but with opposite regulatory consequences. The emerging picture is one of complex cross talk and interactions among embryo transcription factors and their target genes.
Collapse
|
47
|
Rice zinc finger protein DST enhances grain production through controlling Gn1a/OsCKX2 expression. Proc Natl Acad Sci U S A 2013; 110:3167-72. [PMID: 23382237 DOI: 10.1073/pnas.1300359110] [Citation(s) in RCA: 176] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The phytohormone cytokinin (CK) positively regulates the activity and function of the shoot apical meristem (SAM), which is a major parameter determining seed production. The rice (Oryza sativa L.) Gn1a/OsCKX2 (Grain number 1a/Cytokinin oxidase 2) gene, which encodes a cytokinin oxidase, has been identified as a major quantitative trait locus contributing to grain number improvement in rice breeding practice. However, the molecular mechanism of how the expression of OsCKX2 is regulated in planta remains elusive. Here, we report that the zinc finger transcription factor DROUGHT AND SALT TOLERANCE (DST) directly regulates OsCKX2 expression in the reproductive meristem. DST-directed expression of OsCKX2 regulates CK accumulation in the SAM and, therefore, controls the number of the reproductive organs. We identify that DST(reg1), a semidominant allele of the DST gene, perturbs DST-directed regulation of OsCKX2 expression and elevates CK levels in the reproductive SAM, leading to increased meristem activity, enhanced panicle branching, and a consequent increase of grain number. Importantly, the DST(reg1) allele provides an approach to pyramid the Gn1a-dependent and Gn1a-independent effects on grain production. Our study reveals that, as a unique regulator of reproductive meristem activity, DST may be explored to facilitate the genetic enhancement of grain production in rice and other small grain cereals.
Collapse
|
48
|
Analysis of dormant bud (Banjhi) specific transcriptome of tea (Camellia sinensis (L.) O. Kuntze) from cDNA library revealed dormancy-related genes. Appl Biochem Biotechnol 2013; 169:1405-17. [PMID: 23315209 DOI: 10.1007/s12010-012-0070-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Accepted: 12/26/2012] [Indexed: 01/27/2023]
Abstract
Bud dormancy is of ecological and economical interest due to its impact on tea (Camellia sinensis (L.) O. Kuntze) plant growth and yield. Growth regulation associated with dormancy is an essential element in plant's life cycle that leads to changes in expression of large number of genes. In order to identify and provide a picture of the transcriptome profile, cDNA library was constructed from dormant bud (banjhi) of tea. Sequence and gene ontology analysis of 3,500 clones, in many cases, enabled their functional categorization concerning the bud growth. Based on the cDNA library data, the putative role of identified genes from tea is discussed in relation to growth and dormancy, which includes morphogenesis, cellular differentiation, tropism, cell cycle, signaling, and various metabolic pathways. There was a higher representation of unknown processes such as unknown molecular functions (65.80 %), unknown biological processes (62.46 %), and unknown cellular components (67.42 %). However, these unknown transcripts represented a novel component of transcripts in tea plant bud growth and/or dormancy development. The identified transcripts and expressed sequence tags provides a valuable public resource and preliminary insights into the molecular mechanisms of bud dormancy regulation. Further, the findings will be the target of future expression experiments, particularly for further identification of dormancy-related genes in this species.
Collapse
|
49
|
Zhou Y, Tan B, Luo M, Li Y, Liu C, Chen C, Yu CW, Yang S, Dong S, Ruan J, Yuan L, Zhang Z, Zhao L, Li C, Chen H, Cui Y, Wu K, Huang S. HISTONE DEACETYLASE19 interacts with HSL1 and participates in the repression of seed maturation genes in Arabidopsis seedlings. THE PLANT CELL 2013; 25:134-48. [PMID: 23362207 PMCID: PMC3584530 DOI: 10.1105/tpc.112.096313] [Citation(s) in RCA: 133] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2012] [Revised: 12/21/2012] [Accepted: 12/30/2012] [Indexed: 05/18/2023]
Abstract
The seed maturation genes are specifically and highly expressed during late embryogenesis. In this work, yeast two-hybrid, bimolecular fluorescence complementation, and coimmunoprecipitation assays revealed that HISTONE DEACETYLASE19 (HDA19) interacted with the HIGH-LEVEL EXPRESSION OF SUGAR-INDUCIBLE GENE2-LIKE1 (HSL1), and the zinc-finger CW [conserved Cys (C) and Trp (W) residues] domain of HSL1 was responsible for the interaction. Furthermore, we found that mutations in HDA19 resulted in the ectopic expression of seed maturation genes in seedlings, which was associated with increased levels of gene activation marks, such as Histone H3 acetylation (H3ac), Histone H4 acetylation (H4ac), and Histone H3 Lys 4 tri-methylation (H3K4me3), but decreased levels of the gene repression mark Histone H3 Lys 27 tri-methylation (H3K27me3) in the promoter and/or coding regions. In addition, elevated transcription of certain seed maturation genes was also found in the hsl1 mutant seedlings, which was also accompanied by the enrichment of gene activation marks but decreased levels of the gene repression mark. Chromatin immunoprecipitation assays showed that HDA19 could directly bind to the chromatin of the seed maturation genes. These results suggest that HDA19 and HSL1 may act together to repress seed maturation gene expression during germination. Further genetic analyses revealed that the homozygous hsl1 hda19 double mutants are embryonic lethal, suggesting that HDA19 and HSL1 may play a vital role during embryogenesis.
Collapse
Affiliation(s)
- Yi Zhou
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resource, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Bin Tan
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resource, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Ming Luo
- Institute of Plant Biology, College of Life Science, National Taiwan University, Taipei 106, Taiwan
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Yin Li
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resource, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Chen Liu
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resource, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Chen Chen
- Agriculture and Agri-Food Canada, Southern Crop Protection and Food Research Centre, London, Ontario N5V 4T3, Canada
| | - Chun-Wei Yu
- Institute of Plant Biology, College of Life Science, National Taiwan University, Taipei 106, Taiwan
| | - Songguang Yang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Shuai Dong
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resource, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Jiuxiao Ruan
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resource, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Liangbin Yuan
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resource, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Zhou Zhang
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resource, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Linmao Zhao
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Chenlong Li
- Agriculture and Agri-Food Canada, Southern Crop Protection and Food Research Centre, London, Ontario N5V 4T3, Canada
| | - Huhui Chen
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resource, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yuhai Cui
- Agriculture and Agri-Food Canada, Southern Crop Protection and Food Research Centre, London, Ontario N5V 4T3, Canada
| | - Keqiang Wu
- Institute of Plant Biology, College of Life Science, National Taiwan University, Taipei 106, Taiwan
| | - Shangzhi Huang
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resource, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
- Address correspondences to
| |
Collapse
|
50
|
Junker A, Mönke G, Rutten T, Keilwagen J, Seifert M, Thi TMN, Renou JP, Balzergue S, Viehöver P, Hähnel U, Ludwig-Müller J, Altschmied L, Conrad U, Weisshaar B, Bäumlein H. Elongation-related functions of LEAFY COTYLEDON1 during the development of Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 71:427-42. [PMID: 22429691 DOI: 10.1111/j.1365-313x.2012.04999.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The transcription factor LEAFY COTYLEDON1 (LEC1) controls aspects of early embryogenesis and seed maturation in Arabidopsis thaliana. To identify components of the LEC1 regulon, transgenic plants were derived in which LEC1 expression was inducible by dexamethasone treatment. The cotyledon-like leaves and swollen root tips developed by these plants contained seed-storage compounds and resemble the phenotypes produced by increased auxin levels. In agreement with this, LEC1 was found to mediate up-regulation of the auxin synthesis gene YUCCA10. Auxin accumulated primarily in the elongation zone at the root-hypocotyl junction (collet). This accumulation correlates with hypocotyl growth, which is either inhibited in LEC1-induced embryonic seedlings or stimulated in the LEC1-induced long-hypocotyl phenotype, therefore resembling etiolated seedlings. Chromatin immunoprecipitation analysis revealed a number of phytohormone- and elongation-related genes among the putative LEC1 target genes. LEC1 appears to be an integrator of various regulatory events, involving the transcription factor itself as well as light and hormone signalling, especially during somatic and early zygotic embryogenesis. Furthermore, the data suggest non-embryonic functions for LEC1 during post-germinative etiolation.
Collapse
Affiliation(s)
- Astrid Junker
- Leibniz Institute of Plant Genetics and Crop Plant Research, Corrensstraße 3, D-06466 Gatersleben, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|