1
|
Amosova AV, Yurkevich OY, Semenov AR, Samatadze TE, Sokolova DV, Artemyeva AM, Zoshchuk SA, Muravenko OV. Genome Studies in Amaranthus cruentus L. and A. hypochondriacus L. Based on Repeatomic and Cytogenetic Data. Int J Mol Sci 2024; 25:13575. [PMID: 39769338 PMCID: PMC11678860 DOI: 10.3390/ijms252413575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/09/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
Amaranthus cruentus L. and Amaranthus hypochondriacus L. are valuable and promising food crops for multi-purpose use that are distributed worldwide in temperate, subtropical, and tropical zones. However, their karyotypes and genomic relationships still remain insufficiently studied. For the first time, a comparative repeatome analysis of A. cruentus and A. hypochondriacus was performed based on the available NGS data; bioinformatic analyses using RepeatExplorer/TAREAN pipelines; and chromosome FISH mapping of 45S rDNA, 5S rDNA, and the most abundant satellite DNAs. In the repeatomes of these species, interspecific variations in the amount of Ty3/Gypsy and Ty1/Copia retroelements, DNA transposons, ribosomal, and satellite DNA were detected. In the repeatomes of both species, shared satDNAs with high sequence similarity were identified. The chromosome distribution patterns of four effective molecular markers, 45S rDNA, 5S rDNA, AmC4, and AmC9, allowed us to identify all chromosome pairs in the species karyotypes, construct unique karyograms of A. cruentus and A. hypochondriacus, and confirm the close relationship between their genomes. These results are important for comparative karyotypic studies within the genus Amaranthus. Our findings demonstrated that cytogenomic analyses might provide important data on genomic relationships within Amaranthus and increase knowledge on genome organization in these valuable crops.
Collapse
Affiliation(s)
- Alexandra V. Amosova
- Engelhardt Institute of Molecular Biology of Russian Academy of Sciences, 119991 Moscow, Russia
| | - Olga Yu. Yurkevich
- Engelhardt Institute of Molecular Biology of Russian Academy of Sciences, 119991 Moscow, Russia
| | - Alexey R. Semenov
- Engelhardt Institute of Molecular Biology of Russian Academy of Sciences, 119991 Moscow, Russia
| | - Tatiana E. Samatadze
- Engelhardt Institute of Molecular Biology of Russian Academy of Sciences, 119991 Moscow, Russia
| | - Diana V. Sokolova
- Federal Research Center N.I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR), 190000 St. Petersburg, Russia
| | - Anna M. Artemyeva
- Federal Research Center N.I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR), 190000 St. Petersburg, Russia
| | - Svyatoslav A. Zoshchuk
- Engelhardt Institute of Molecular Biology of Russian Academy of Sciences, 119991 Moscow, Russia
| | - Olga V. Muravenko
- Engelhardt Institute of Molecular Biology of Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
2
|
Xin H, Wang Y, Zhang W, Bao Y, Neumann P, Ning Y, Zhang T, Wu Y, Jiang N, Jiang J, Xi M. Celine, a long interspersed nuclear element retrotransposon, colonizes in the centromeres of poplar chromosomes. PLANT PHYSIOLOGY 2024; 195:2787-2798. [PMID: 38652695 PMCID: PMC11288735 DOI: 10.1093/plphys/kiae214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 02/27/2024] [Accepted: 03/14/2024] [Indexed: 04/25/2024]
Abstract
Centromeres in most multicellular eukaryotes are composed of long arrays of repetitive DNA sequences. Interestingly, several transposable elements, including the well-known long terminal repeat centromeric retrotransposon of maize (CRM), were found to be enriched in functional centromeres marked by the centromeric histone H3 (CENH3). Here, we report a centromeric long interspersed nuclear element (LINE), Celine, in Populus species. Celine has colonized preferentially in the CENH3-associated chromatin of every poplar chromosome, with 84% of the Celine elements localized in the CENH3-binding domains. In contrast, only 51% of the CRM elements were bound to CENH3 domains in Populus trichocarpa. These results suggest different centromere targeting mechanisms employed by Celine and CRM elements. Nevertheless, the high target specificity seems to be detrimental to further amplification of the Celine elements, leading to a shorter life span and patchy distribution among plant species compared with the CRM elements. Using a phylogenetically guided approach, we were able to identify Celine-like LINE elements in tea plant (Camellia sinensis) and green ash tree (Fraxinus pennsylvanica). The centromeric localization of these Celine-like LINEs was confirmed in both species. We demonstrate that the centromere targeting property of Celine-like LINEs is of primitive origin and has been conserved among distantly related plant species.
Collapse
Affiliation(s)
- Haoyang Xin
- State Key Laboratory of Tree Genetics and Breeding/Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Yiduo Wang
- The State Key Laboratory of Crop Genetics and Germplasm Enhancement/Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| | - Wenli Zhang
- The State Key Laboratory of Crop Genetics and Germplasm Enhancement/Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| | - Yu Bao
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Co-Innovation Centre for Modern Production Technology of Grain Crops/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Pavel Neumann
- Biology Centre, Czech Academy of Sciences, Institute of Plant Molecular Biology, České Budějovice 37005, Czech Republic
| | - Yihang Ning
- State Key Laboratory of Tree Genetics and Breeding/Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Tao Zhang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Co-Innovation Centre for Modern Production Technology of Grain Crops/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Yufeng Wu
- The State Key Laboratory of Crop Genetics and Germplasm Enhancement/Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| | - Ning Jiang
- Department of Horticulture, Michigan State University, East Lansing, MI 48824, USA
- Michigan State University AgBioResearch, East Lansing, MI 48824, USA
| | - Jiming Jiang
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA
- Department of Horticulture, Michigan State University, East Lansing, MI 48824, USA
- Michigan State University AgBioResearch, East Lansing, MI 48824, USA
| | - Mengli Xi
- State Key Laboratory of Tree Genetics and Breeding/Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
3
|
Lin T, Xu X, Du H, Fan X, Chen Q, Hai C, Zhou Z, Su X, Kou L, Gao Q, Deng L, Jiang J, You H, Ma Y, Cheng Z, Wang G, Liang C, Zhang G, Yu H, Li J. Extensive sequence divergence between the reference genomes of Taraxacum kok-saghyz and Taraxacum mongolicum. SCIENCE CHINA. LIFE SCIENCES 2022; 65:515-528. [PMID: 34939160 DOI: 10.1007/s11427-021-2033-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 11/25/2021] [Indexed: 12/15/2022]
Abstract
Plants belonging to the genus Taraxacum are widespread all over the world, which contain rubber-producing and non-rubber-producing species. However, the genomic basis underlying natural rubber (NR) biosynthesis still needs more investigation. Here, we presented high-quality genome assemblies of rubber-producing T. kok-saghyz TK1151 and non-rubber-producing T. mongolicum TM5. Comparative analyses uncovered a large number of genetic variations, including inversions, translocations, presence/absence variations, as well as considerable protein divergences between the two species. Two gene duplication events were found in these two Taraxacum species, including one common ancestral whole-genome triplication and one subsequent round of gene amplification. In genomes of both TK1151 and TM5, we identified the genes encoding for each step in the NR biosynthesis pathway and found that the SRPP and CPT gene families have experienced a more obvious expansion in TK1151 compared to TM5. This study will have large-ranging implications for the mechanism of NR biosynthesis and genetic improvement of NR-producing crops.
Collapse
Affiliation(s)
- Tao Lin
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China.,State Key Laboratory of Agrobiotechnology, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Xia Xu
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Huilong Du
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China.,School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, 071002, China
| | - Xiuli Fan
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qingwen Chen
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chunyan Hai
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zijian Zhou
- State Key Laboratory of Agrobiotechnology, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Xiao Su
- State Key Laboratory of Agrobiotechnology, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Liquan Kou
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Qiang Gao
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Lingwei Deng
- Biotechnology Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China
| | - Jinsheng Jiang
- Biotechnology Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China
| | - Hanli You
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yihua Ma
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhukuan Cheng
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Guodong Wang
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Chengzhi Liang
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Guomin Zhang
- Biotechnology Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China.
| | - Hong Yu
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Jiayang Li
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China.,Guangdong Laboratory of Lingnan Modern Agriculture, Guangzhou, 510642, China
| |
Collapse
|
4
|
Maryenti T, Ishii T, Okamoto T. Development and regeneration of wheat-rice hybrid zygotes produced by in vitro fertilization system. THE NEW PHYTOLOGIST 2021; 232:2369-2383. [PMID: 34545570 PMCID: PMC9293317 DOI: 10.1111/nph.17747] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 09/14/2021] [Indexed: 05/20/2023]
Abstract
Hybridization plays a decisive role in the evolution and diversification of angiosperms. However, the mechanisms of wide hybridization remain open because pre- and post-fertilization barriers limit the production and development of inter-subfamily/intergeneric zygotes, respectively. We examined hybridization between wheat and rice using an in vitro fertilization (IVF) system to bypass these barriers. Several gamete combinations of allopolyploid wheat-rice hybrid zygotes were successfully produced, and the developmental profiles of hybrid zygotes were analyzed. Hybrid zygotes derived from one rice egg cell and one wheat sperm cell ceased at the multicellular embryo-like structure stage. This developmental barrier was overcome by adding one wheat egg cell to the wheat-rice hybrid zygote. In the reciprocal combination, one wheat egg and one rice sperm cell, the resulting hybrid zygotes failed to divide. However, doubling the dosage of rice sperm cell allowed the hybrid zygotes to develop into plantlets. Rice chromosomes appeared to be progressively eliminated during the early developmental stage of these hybrid embryos, and c. 20% of regenerated plants showed abnormal morphology. These results suggest that hybrid breakdown can be overcome through optimization of gamete combinations, and the present hybrid will provide a new horizon for utilization of inter-subfamily genetic resources.
Collapse
Affiliation(s)
- Tety Maryenti
- Department of Biological SciencesTokyo Metropolitan UniversityMinami‐osawa 1‐1Hachioji, Tokyo192‐0397Japan
| | - Takayoshi Ishii
- Arid Land Research Center (ALRC)Tottori University1390 HamasakaTottori680‐0001Japan
| | - Takashi Okamoto
- Department of Biological SciencesTokyo Metropolitan UniversityMinami‐osawa 1‐1Hachioji, Tokyo192‐0397Japan
| |
Collapse
|
5
|
Shi W, Ji J, Xue Z, Zhang F, Miao Y, Yang H, Tang D, Du G, Li Y, Shen Y, Cheng Z. PRD1, a homologous recombination initiation factor, is involved in spindle assembly in rice meiosis. THE NEW PHYTOLOGIST 2021; 230:585-600. [PMID: 33421144 DOI: 10.1111/nph.17178] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 12/23/2020] [Indexed: 05/25/2023]
Abstract
The bipolar spindle structure in meiosis is essential for faithful chromosome segregation. PUTATIVE RECOMBINATION INITIATION DEFECT 1 (PRD1) previously has been shown to participate in the formation of DNA double strand breaks (DSBs). However, the role of PRD1 in meiotic spindle assembly has not been elucidated. Here, we reveal by both genetic analysis and immunostaining technology that PRD1 is involved in spindle assembly in rice (Oryza sativa) meiosis. We show that DSB formation and bipolar spindle assembly are disturbed in prd1 meiocytes. PRD1 signals display a dynamic pattern of localization from covering entire chromosomes at leptotene to congregating at the centromere region after leptotene. Centromeric localization of PRD1 signals depends on the organization of leptotene chromosomes, but not on DSB formation and axis establishment. PRD1 exhibits interaction and co-localization with several kinetochore components. We also find that bi-orientation of sister kinetochores within a univalent induced by mutation of REC8 can restore bipolarity in prd1. Furthermore, PRD1 directly interacts with REC8 and SGO1, suggesting that PRD1 may play a role in regulating the orientation of sister kinetochores. Taken together, we speculate that PRD1 promotes bipolar spindle assembly, presumably by modulating the orientation of sister kinetochores in rice meiosis.
Collapse
Affiliation(s)
- Wenqing Shi
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jianhui Ji
- Jiangsu Key Laboratory for Eco-Agriculture Biotechnology around Hongze Lake, Huaiyin Normal University, Huaian, 223300, China
| | - Zhihui Xue
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Fanfan Zhang
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yongjie Miao
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Han Yang
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Ding Tang
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Guijie Du
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yafei Li
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yi Shen
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zhukuan Cheng
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| |
Collapse
|
6
|
Fu R, Wang C, Shen H, Zhang J, Higgins JD, Liang W. Rice OsBRCA2 Is Required for DNA Double-Strand Break Repair in Meiotic Cells. FRONTIERS IN PLANT SCIENCE 2020; 11:600820. [PMID: 33304374 PMCID: PMC7701097 DOI: 10.3389/fpls.2020.600820] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 10/27/2020] [Indexed: 06/06/2023]
Abstract
The mammalian BREAST CANCER 2 (BRCA2) gene is a tumor suppressor that plays a crucial role in DNA repair and homologous recombination (HR). Here, we report the identification and characterization of OsBRCA2, the rice orthologue of human BRCA2. Osbrca2 mutant plants exhibit normal vegetative growth but experience complete male and female sterility as a consequence of severe meiotic defects. Pairing, synapsis and recombination are impaired in osbrca2 male meiocytes, leading to chromosome entanglements and fragmentation. In the absence of OsBRCA2, localization to the meiotic chromosome axes of the strand-invasion proteins OsRAD51 and OsDMC1 is severely reduced and in vitro OsBRCA2 directly interacts with OsRAD51 and OsDMC1. These results indicate that OsBRCA2 is essential for facilitating the loading of OsRAD51 and OsDMC1 onto resected ends of programmed double-strand breaks (DSB) during meiosis to promote single-end invasions of homologous chromosomes and accurate recombination. In addition, treatment of osbrca2-1 seedlings with mitomycin C (MMC) led to hypersensitivity. As MMC is a genotoxic agent that creates DNA lesions in the somatic cells that can only be repaired by HR, these results suggest that OsBRCA2 has a conserved role in DSB repair and HR in rice.
Collapse
Affiliation(s)
- Ruifeng Fu
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University–University of Adelaide Joint Centre for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Chong Wang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University–University of Adelaide Joint Centre for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Hongyu Shen
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University–University of Adelaide Joint Centre for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Jie Zhang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University–University of Adelaide Joint Centre for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - James D. Higgins
- Department of Genetics and Genome Biology, University of Leicester,Leicester, United Kingdom
| | - Wanqi Liang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University–University of Adelaide Joint Centre for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
7
|
Setiawan AB, Teo CH, Kikuchi S, Sassa H, Kato K, Koba T. Centromeres of Cucumis melo L. comprise Cmcent and two novel repeats, CmSat162 and CmSat189. PLoS One 2020; 15:e0227578. [PMID: 31945109 PMCID: PMC6964814 DOI: 10.1371/journal.pone.0227578] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 12/20/2019] [Indexed: 12/29/2022] Open
Abstract
Centromeres are prerequisite for accurate segregation and are landmarks of primary constrictions of metaphase chromosomes in eukaryotes. In melon, high-copy-number satellite DNAs (SatDNAs) were found at various chromosomal locations such as centromeric, pericentromeric, and subtelomeric regions. In the present study, utilizing the published draft genome sequence of melon, two new SatDNAs (CmSat162 and CmSat189) of melon were identified and their chromosomal distributions were confirmed using fluorescence in situ hybridization. DNA probes prepared from these SatDNAs were successfully hybridized to melon somatic and meiotic chromosomes. CmSat162 was located on 12 pairs of melon chromosomes and co-localized with the centromeric repeat, Cmcent, at the centromeric regions. In contrast, CmSat189 was found to be located not only on centromeric regions but also on specific regions of the chromosomes, allowing the characterization of individual chromosomes of melon. It was also shown that these SatDNAs were transcribed in melon. These results suggest that CmSat162 and CmSat189 might have some functions at the centromeric regions.
Collapse
Affiliation(s)
- Agus Budi Setiawan
- Laboratory of Genetics and Plant Breeding, Graduate School of Horticulture, Chiba University, Matsudo, Chiba, Japan
| | - Chee How Teo
- Center for Research in Biotechnology for Agriculture, University of Malaya, Kuala Lumpur, Malaysia
| | - Shinji Kikuchi
- Laboratory of Genetics and Plant Breeding, Graduate School of Horticulture, Chiba University, Matsudo, Chiba, Japan
| | - Hidenori Sassa
- Laboratory of Genetics and Plant Breeding, Graduate School of Horticulture, Chiba University, Matsudo, Chiba, Japan
| | - Kenji Kato
- Graduate School of Environmental and Life Science, Okayama University, Kita-ku, Okayama, Japan
| | - Takato Koba
- Laboratory of Genetics and Plant Breeding, Graduate School of Horticulture, Chiba University, Matsudo, Chiba, Japan
- * E-mail:
| |
Collapse
|
8
|
Shi W, Tang D, Shen Y, Xue Z, Zhang F, Zhang C, Ren L, Liu C, Du G, Li Y, Yan C, Cheng Z. OsHOP2 regulates the maturation of crossovers by promoting homologous pairing and synapsis in rice meiosis. THE NEW PHYTOLOGIST 2019; 222:805-819. [PMID: 30584664 DOI: 10.1111/nph.15664] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 12/07/2018] [Indexed: 05/07/2023]
Abstract
Meiotic recombination is closely linked with homologous pairing and synapsis. Previous studies have shown that HOMOLOGOUS PAIRING PROTEIN2 (HOP2), plays an essential role in homologous pairing and synapsis. However, the mechanism by which HOP2 regulates crossover (CO) formation has not been elucidated. Here, we show that OsHOP2 mediates the maturation of COs by promoting homologous pairing and synapsis in rice (Oryza sativa) meiosis. We used a combination of genetic analysis, immunolocalization and super-resolution imaging to analyze the function of OsHOP2 in rice meiosis. We showed that full-length pairing, synapsis and CO formation are disturbed in Oshop2 meiocytes. Moreover, structured illumination microscopy showed that OsHOP2 localized to chromatin and displayed considerable co-localization with axial elements (AEs) and central elements (CEs). Importantly, the interaction between OsHOP2 and a transverse filament protein of synaptonemal complex (ZEP1), provided further evidence that OsHOP2 was involved in assembly or stabilization of the structure of the synaptonemal complex (SC). Although the initiation of recombination and CO designation occur normally in Oshop2 mutants, mature COs were severely reduced, and human enhancer of invasion 10 (HEI10)10 foci were only present on the synapsed region. Putting the data together, we speculate that OsHOP2 may serve as a global regulator to coordinate homologous pairing, synapsis and meiotic recombination in rice meiosis.
Collapse
Affiliation(s)
- Wenqing Shi
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Ding Tang
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yi Shen
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zhihui Xue
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Fanfan Zhang
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Chao Zhang
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lijun Ren
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Changzhen Liu
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guijie Du
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yafei Li
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Changjie Yan
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| | - Zhukuan Cheng
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
9
|
Clonal seeds from hybrid rice by simultaneous genome engineering of meiosis and fertilization genes. Nat Biotechnol 2019; 37:283-286. [PMID: 30610223 DOI: 10.1038/s41587-018-0003-0] [Citation(s) in RCA: 165] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 12/11/2018] [Indexed: 12/17/2022]
Abstract
Heterosis, or hybrid vigor, is exploited by breeders to produce elite high-yielding crop lines, but beneficial phenotypes are lost in subsequent generations owing to genetic segregation. Clonal propagation through seeds would enable self-propagation of F1 hybrids. Here we report a strategy to enable clonal reproduction of F1 rice hybrids through seeds. We fixed the heterozygosity of F1 hybrid rice by multiplex CRISPR-Cas9 genome editing of the REC8, PAIR1 and OSD1 meiotic genes to produce clonal diploid gametes and tetraploid seeds. Next, we demonstrated that editing the MATRILINEAL (MTL) gene (involved in fertilization) could induce formation of haploid seeds in hybrid rice. Finally, we combined fixation of heterozygosity and haploid induction by simultaneous editing of all four genes (REC8, PAIR1, OSD1 and MTL) in hybrid rice and obtained plants that could propagate clonally through seeds. Application of our method may enable self-propagation of a broad range of elite F1 hybrid crops.
Collapse
|
10
|
Novais-Cruz M, Alba Abad M, van IJcken WFJ, Galjart N, Jeyaprakash AA, Maiato H, Ferrás C. Mitotic progression, arrest, exit or death relies on centromere structural integrity, rather than de novo transcription. eLife 2018; 7:36898. [PMID: 30080136 PMCID: PMC6128689 DOI: 10.7554/elife.36898] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 08/03/2018] [Indexed: 12/30/2022] Open
Abstract
Recent studies have challenged the prevailing dogma that transcription is repressed during mitosis. Transcription was also proposed to sustain a robust spindle assembly checkpoint (SAC) response. Here, we used live-cell imaging of human cells, RNA-seq and qPCR to investigate the requirement for de novo transcription during mitosis. Under conditions of persistently unattached kinetochores, transcription inhibition with actinomycin D, or treatment with other DNA-intercalating drugs, delocalized the chromosomal passenger complex (CPC) protein Aurora B from centromeres, compromising SAC signaling and cell fate. However, we were unable to detect significant changes in mitotic transcript levels. Moreover, inhibition of transcription independently of DNA intercalation had no effect on Aurora B centromeric localization, SAC response, mitotic progression, exit or death. Mechanistically, we show that DNA intercalating agents reduce the interaction of the CPC with nucleosomes. Thus, mitotic progression, arrest, exit or death is determined by centromere structural integrity, rather than de novo transcription.
Collapse
Affiliation(s)
- Marco Novais-Cruz
- Chromosome Instability & Dynamics Laboratory, Instituto de Biologia Molecular e CelularUniversidade do PortoPortoPortugal
- Instituto de Investigação e Inovação em Saúde (i3S)Universidade do PortoPortoPortugal
| | - Maria Alba Abad
- Wellcome Trust Centre for Cell BiologyUniversity of EdinburghEdinburghUnited Kingdom
| | | | - Niels Galjart
- Department of Cell BiologyErasmus Medical CenterRotterdamNetherlands
| | - A Arockia Jeyaprakash
- Wellcome Trust Centre for Cell BiologyUniversity of EdinburghEdinburghUnited Kingdom
| | - Helder Maiato
- Chromosome Instability & Dynamics Laboratory, Instituto de Biologia Molecular e CelularUniversidade do PortoPortoPortugal
- Instituto de Investigação e Inovação em Saúde (i3S)Universidade do PortoPortoPortugal
- Cell Division Group, Experimental Biology Unit, Department of Biomedicine, Faculdade de MedicinaUniversidade do PortoPortoPortugal
| | - Cristina Ferrás
- Chromosome Instability & Dynamics Laboratory, Instituto de Biologia Molecular e CelularUniversidade do PortoPortoPortugal
- Instituto de Investigação e Inovação em Saúde (i3S)Universidade do PortoPortoPortugal
| |
Collapse
|
11
|
De novo genome assembly of Oryza granulata reveals rapid genome expansion and adaptive evolution. Commun Biol 2018; 1:84. [PMID: 30271965 PMCID: PMC6123737 DOI: 10.1038/s42003-018-0089-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Accepted: 06/08/2018] [Indexed: 12/18/2022] Open
Abstract
The wild relatives of rice have adapted to different ecological environments and constitute a useful reservoir of agronomic traits for genetic improvement. Here we present the ~777 Mb de novo assembled genome sequence of Oryza granulata. Recent bursts of long-terminal repeat retrotransposons, especially RIRE2, led to a rapid twofold increase in genome size after O. granulata speciation. Universal centromeric tandem repeats are absent within its centromeres, while gypsy-type LTRs constitute the main centromere-specific repetitive elements. A total of 40,116 protein-coding genes were predicted in O. granulata, which is close to that of Oryza sativa. Both the copy number and function of genes involved in photosynthesis and energy production have undergone positive selection during the evolution of O. granulata, which might have facilitated its adaptation to the low light habitats. Together, our findings reveal the rapid genome expansion, distinctive centromere organization, and adaptive evolution of O. granulata. Zhigang Wu, Dongming Fang, Rui Yang, et al. present the genome assembly of a wild rice species Oryza granulata, revealing critical insights about the rapid genome expansion and evolution observed in the Oryza genus. They find that recent bursts of LTR retrotransposons have led to the rapid increase in O. granulate genome size following speciation.
Collapse
|
12
|
He Y, Wang C, Higgins JD, Yu J, Zong J, Lu P, Zhang D, Liang W. MEIOTIC F-BOX Is Essential for Male Meiotic DNA Double-Strand Break Repair in Rice. THE PLANT CELL 2016; 28:1879-93. [PMID: 27436711 PMCID: PMC5006700 DOI: 10.1105/tpc.16.00108] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 05/31/2016] [Accepted: 07/18/2016] [Indexed: 05/21/2023]
Abstract
F-box proteins constitute a large superfamily in plants and play important roles in controlling many biological processes, but the roles of F-box proteins in male meiosis in plants remain unclear. Here, we identify the rice (Oryza sativa) F-box gene MEIOTIC F-BOX (MOF), which is essential for male meiotic progression. MOF belongs to the FBX subfamily and is predominantly active during leptotene to pachytene of prophase I. mof meiocytes display disrupted telomere bouquet formation, impaired pairing and synapsis of homologous chromosomes, and arrested meiocytes at late prophase I, followed by apoptosis. Although normal, programmed double-stranded DNA breaks (DSBs) form in mof mutants, foci of the phosphorylated histone variant γH2AX, a marker for DSBs, persist in the mutant, indicating that many of the DSBs remained unrepaired. The recruitment of Completion of meiosis I (COM1) and Radiation sensitive51C (RAD51C) to DSBs is severely compromised in mutant meiocytes, indicating that MOF is crucial for DSB end-processing and repair. Further analyses showed that MOF could physically interact with the rice SKP1-like Protein1 (OSK1), indicating that MOF functions as a component of the SCF E3 ligase to regulate meiotic progression in rice. Thus, this study reveals the essential role of an F-box protein in plant meiosis and provides helpful information for elucidating the roles of the ubiquitin proteasome system in plant meiotic progression.
Collapse
Affiliation(s)
- Yi He
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 20040, China
| | - Chong Wang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 20040, China
| | - James D Higgins
- Department of Genetics, University of Leicester, Leicester LE1 7RH, United Kingdom
| | - Junping Yu
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 20040, China
| | - Jie Zong
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 20040, China
| | - Pingli Lu
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Dabing Zhang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 20040, China School of Agriculture, Food and Wine, University of Adelaide, Urrbrae, South Australia 5064, Australia
| | - Wanqi Liang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 20040, China
| |
Collapse
|
13
|
Xin Q, Shen Y, Li X, Lu W, Wang X, Han X, Dong F, Wan L, Yang G, Hong D, Cheng Z. MS5 Mediates Early Meiotic Progression and Its Natural Variants May Have Applications for Hybrid Production in Brassica napus. THE PLANT CELL 2016; 28:1263-78. [PMID: 27194707 PMCID: PMC4944402 DOI: 10.1105/tpc.15.01018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 05/16/2016] [Indexed: 05/02/2023]
Abstract
During meiotic prophase I, chromatin undergoes dynamic changes to establish a structural basis for essential meiotic events. However, the mechanism that coordinates chromosome structure and meiotic progression remains poorly understood in plants. Here, we characterized a spontaneous sterile mutant MS5(b)MS5(b) in oilseed rape (Brassica napus) and found its meiotic chromosomes were arrested at leptotene. MS5 is preferentially expressed in reproductive organs and encodes a Brassica-specific protein carrying conserved coiled-coil and DUF626 domains with unknown function. MS5 is essential for pairing of homologs in meiosis, but not necessary for the initiation of DNA double-strand breaks. The distribution of the axis element-associated protein ASY1 occurs independently of MS5, but localization of the meiotic cohesion subunit SYN1 requires functional MS5. Furthermore, both the central element of the synaptonemal complex and the recombination element do not properly form in MS5(b)MS5(b) mutants. Our results demonstrate that MS5 participates in progression of meiosis during early prophase I and its allelic variants lead to differences in fertility, which may provide a promising strategy for pollination control for heterosis breeding.
Collapse
Affiliation(s)
- Qiang Xin
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yi Shen
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xi Li
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Wei Lu
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China College of Life Science, South-central University for Nationalities, Wuhan 430074, China
| | - Xiang Wang
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xue Han
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Faming Dong
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Lili Wan
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Guangsheng Yang
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Dengfeng Hong
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhukuan Cheng
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
14
|
Isolation and Identification of a Functional Centromere Element in the Wild Rice Species Oryza granulata with the GG Genome. J Genet Genomics 2015; 42:699-702. [DOI: 10.1016/j.jgg.2015.09.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 09/14/2015] [Accepted: 09/15/2015] [Indexed: 11/21/2022]
|
15
|
Zhang B, Wang M, Tang D, Li Y, Xu M, Gu M, Cheng Z, Yu H. XRCC3 is essential for proper double-strand break repair and homologous recombination in rice meiosis. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:5713-25. [PMID: 26034131 DOI: 10.1093/jxb/erv253] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
RAD51 paralogues play important roles in the assembly and stabilization of RAD51 nucleoprotein filaments, which promote homologous pairing and strand exchange reactions in organisms ranging from yeast to vertebrates. XRCC3, a RAD51 paralogue, has been characterized in budding yeast, mouse, and Arabidopsis. In the present study, XRCC3 in rice was identified and characterized. The rice xrcc3 mutant exhibited normal vegetative growth but complete male and female sterility. Cytological investigations revealed that homologous pairing and synapsis were severely disrupted in the mutant. Meiotic chromosomes were frequently entangled from diplotene to metaphase I, resulting in chromosome fragmentation at anaphase I. The immunostaining signals from γH2AX were regular, implying that double-strand break (DSB) formation was normal in xrcc3 meiocytes. However, COM1 was not detected on early prophase I chromosomes, suggesting that the DSB end-processing system was destroyed in the mutant. Moreover, abnormal chromosome localization of RAD51C, DMC1, ZEP1, ZIP4, and MER3 was observed in xrcc3. Taken together, the results suggest that XRCC3 plays critical roles in both DSB repair and homologous chromosome recombination during rice meiosis.
Collapse
Affiliation(s)
- Bingwei Zhang
- Key Laboratory of Plant Functional Genomics of Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology/ Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Mo Wang
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Ding Tang
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yafei Li
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Meng Xu
- Key Laboratory of Plant Functional Genomics of Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology/ Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Minghong Gu
- Key Laboratory of Plant Functional Genomics of Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology/ Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Zhukuan Cheng
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Hengxiu Yu
- Key Laboratory of Plant Functional Genomics of Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology/ Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
16
|
Cai Z, Liu H, He Q, Pu M, Chen J, Lai J, Li X, Jin W. Differential genome evolution and speciation of Coix lacryma-jobi L. and Coix aquatica Roxb. hybrid guangxi revealed by repetitive sequence analysis and fine karyotyping. BMC Genomics 2014; 15:1025. [PMID: 25425126 PMCID: PMC4256728 DOI: 10.1186/1471-2164-15-1025] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 11/19/2014] [Indexed: 02/07/2023] Open
Abstract
Abstract Background Coix, Sorghum and Zea are closely related plant genera in the subtribe Maydeae. Coix comprises 9–11 species with different ploidy levels (2n = 10, 20, 30, and 40). The exclusively cultivated C. lacryma-jobi L. (2n = 20) is widely used in East and Southeast Asia for food and medicinal applications. Three fertile cytotypes (2n = 10, 20, and 40) have been reported for C. aquatica Roxb. One sterile cytotype (2n = 30) closely related to C. aquatica has been recently found in Guangxi of China. This putative hybrid has been named C. aquatica HG (Hybrid Guangxi). The genome composition and the evolutionary history of C. lacryma-jobi and C. aquatica HG are largely unclear. Results About 76% of the genome of C. lacryma-jobi and 73% of the genome of C. aquatica HG are repetitive DNA sequences as shown by low coverage genome sequencing followed by similarity-based cluster analysis. In addition, long terminal repeat (LTR) retrotransposable elements are dominant repetitive sequences in these two genomes, and the proportions of many repetitive sequences in whole genome varied greatly between the two species, indicating evolutionary divergence of them. We also found that a novel 102 bp variant of centromeric satellite repeat CentX and two other satellites only appeared in C. aquatica HG. The results from FISH analysis with repeat probe cocktails and the data from chromosomes pairing in meiosis metaphase showed that C. lacryma-jobi is likely a diploidized paleotetraploid species and C. aquatica HG is possibly a recently formed hybrid. Furthermore, C. lacryma-jobi and C. aquatica HG shared more co-existing repeat families and higher sequence similarity with Sorghum than with Zea. Conclusions The composition and abundance of repetitive sequences are divergent between the genomes of C. lacryma-jobi and C. aquatica HG. The results from fine karyotyping analysis and chromosome pairing suggested diploidization of C. lacryma-jobi during evolution and C. aquatica HG is a recently formed hybrid. The genome-wide comparison of repetitive sequences indicated that the repeats in Coix were more similar to those in Sorghum than to those in Zea, which is consistent with the phylogenetic relationship reported by previous work. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-1025) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Weiwei Jin
- National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, Coordinated Research Center for Crop Biology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
17
|
Yi C, Zhang W, Dai X, Li X, Gong Z, Zhou Y, Liang G, Gu M. Identification and diversity of functional centromere satellites in the wild rice species Oryza brachyantha. Chromosome Res 2014; 21:725-37. [PMID: 24077888 DOI: 10.1007/s10577-013-9374-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Accepted: 07/05/2013] [Indexed: 11/28/2022]
Abstract
The centromere is a key chromosomal component for sister chromatid cohesion and is the site for kinetochore assembly and spindle fiber attachment, allowing each sister chromatid to faithfully segregate to each daughter cell during cell division. It is not clear what types of sequences act as functional centromeres and how centromere sequences are organized in Oryza brachyantha, an FF genome species. In this study, we found that the three classes of centromere-specific CentO-F satellites (CentO-F1, CentO-F2, and CentOF3) in O. brachyantha share no homology with the CentO satellites in Oryza sativa. The three classes of CentO-F satellites are all located within the chromosomal regions to which the spindle fibers attach and are characterized by megabase tandem arrays that are flanked by centromere-specific retrotransposons, CRR-F, in the O. brachyantha centromeres. Although these CentO-F satellites are quantitatively variable among 12 O. brachyantha centromeres, immunostaining with an antibody specific to CENH3 indicates that they are colocated with CENH3 in functional centromere regions. Our results demonstrate that the three classes of CentO-F satellites may be the major components of functional centromeres in O. brachyantha.
Collapse
|
18
|
Che L, Wang K, Tang D, Liu Q, Chen X, Li Y, Hu Q, Shen Y, Yu H, Gu M, Cheng Z. OsHUS1 facilitates accurate meiotic recombination in rice. PLoS Genet 2014; 10:e1004405. [PMID: 24901798 PMCID: PMC4046934 DOI: 10.1371/journal.pgen.1004405] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 04/15/2014] [Indexed: 11/18/2022] Open
Abstract
Meiotic recombination normally takes place between allelic sequences on homologs. This process can also occur between non-allelic homologous sequences. Such ectopic interaction events can lead to chromosome rearrangements and are normally avoided. However, much remains unknown about how these ectopic interaction events are sensed and eliminated. In this study, using a screen in rice, we characterized a homolog of HUS1 and explored its function in meiotic recombination. In Oshus1 mutants, in conjunction with nearly normal homologous pairing and synapsis, vigorous, aberrant ectopic interactions occurred between nonhomologous chromosomes, leading to multivalent formation and subsequent chromosome fragmentation. These ectopic interactions relied on programed meiotic double strand breaks and were formed in a manner independent of the OsMER3-mediated interference-sensitive crossover pathway. Although early homologous recombination events occurred normally, the number of interference-sensitive crossovers was reduced in the absence of OsHUS1. Together, our results indicate that OsHUS1 might be involved in regulating ectopic interactions during meiosis, probably by forming the canonical RAD9-RAD1-HUS1 (9-1-1) complex. Meiosis is a special type of cell division that generates gametes for sexual reproduction. During meiosis, recombination not only occurs between allelic sequences on homologs, but also between non-allelic homologous sequences at dispersed loci. Such ectopic recombination is the main cause of chromosomal alterations and accounts for numerous genomic disorders in humans. To ensure genomic integrity, those ectopic recombinations must be quickly resolved. Despite the importance of ectopic recombination suppression, the mechanism underlying this process still remains largely unknown. Here, using rice as a model system, we identified the rice HUS1 homolog, a member of the RAD9-RAD1-HUS1 (9-1-1) complex, and elucidated its roles in meiotic recombination. In Oshus1, vigorous ectopic interactions occur between nonhomologous chromosomes, and the number of crossovers is reduced. We suspect that OsHUS1 participates in regulating ectopic interactions during meiosis, probably by forming the canonical RAD9-RAD1-HUS1 (9-1-1) complex.
Collapse
Affiliation(s)
- Lixiao Che
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Kejian Wang
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Ding Tang
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Qiaoquan Liu
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Key Laboratory of Plant Functional Genomics of Ministry of Education, Yangzhou University, Yangzhou, China
| | - Xiaojun Chen
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yafei Li
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Qing Hu
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yi Shen
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Hengxiu Yu
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Key Laboratory of Plant Functional Genomics of Ministry of Education, Yangzhou University, Yangzhou, China
| | - Minghong Gu
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Key Laboratory of Plant Functional Genomics of Ministry of Education, Yangzhou University, Yangzhou, China
| | - Zhukuan Cheng
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
19
|
Li X, Chang Y, Xin X, Zhu C, Li X, Higgins JD, Wu C. Replication protein A2c coupled with replication protein A1c regulates crossover formation during meiosis in rice. THE PLANT CELL 2013; 25:3885-99. [PMID: 24122830 PMCID: PMC3877797 DOI: 10.1105/tpc.113.118042] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 09/15/2013] [Accepted: 09/25/2013] [Indexed: 05/18/2023]
Abstract
Replication protein A (RPA) is a conserved heterotrimeric protein complex comprising RPA1, RPA2, and RPA3 subunits involved in multiple DNA metabolism pathways attributable to its single-stranded DNA binding property. Unlike other species possessing a single RPA2 gene, rice (Oryza sativa) possesses three RPA2 paralogs, but their functions remain unclear. In this study, we identified RPA2c, a rice gene preferentially expressed during meiosis. A T-DNA insertional mutant (rpa2c) exhibited reduced bivalent formation, leading to chromosome nondisjunction. In rpa2c, chiasma frequency is reduced by ~78% compared with the wild type and is accompanied by loss of the obligate chiasma. The residual ~22% chiasmata fit a Poisson distribution, suggesting loss of crossover control. RPA2c colocalized with the meiotic cohesion subunit REC8 and the axis-associated protein PAIR2. Localization of REC8 was necessary for loading of RPA2c to the chromosomes. In addition, RPA2c partially colocalized with MER3 during late leptotene, thus indicating that RPA2c is required for class I crossover formation at a late stage of homologous recombination. Furthermore, we identified RPA1c, an RPA1 subunit with nearly overlapping distribution to RPA2c, required for ~79% of chiasmata formation. Our results demonstrate that an RPA complex comprising RPA2c and RPA1c is required to promote meiotic crossovers in rice.
Collapse
Affiliation(s)
- Xingwang Li
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, Hubei Province, China
| | - Yuxiao Chang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, Hubei Province, China
| | - Xiaodong Xin
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, Hubei Province, China
| | - Chunmei Zhu
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, Hubei Province, China
| | - Xianghua Li
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, Hubei Province, China
| | - James D. Higgins
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Changyin Wu
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, Hubei Province, China
- Address correspondence to
| |
Collapse
|
20
|
Ji J, Tang D, Wang M, Li Y, Zhang L, Wang K, Li M, Cheng Z. MRE11 is required for homologous synapsis and DSB processing in rice meiosis. Chromosoma 2013; 122:363-76. [PMID: 23793712 DOI: 10.1007/s00412-013-0421-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 05/23/2013] [Accepted: 06/07/2013] [Indexed: 11/26/2022]
Abstract
Mre11, a conserved protein found in organisms ranging from yeast to multicellular organisms, is required for normal meiotic recombination. Mre11 interacts with Rad50 and Nbs1/Xrs2 to form a complex (MRN/X) that participates in double-strand break (DSB) ends processing. In this study, we silenced the MRE11 gene in rice and detailed its function using molecular and cytological methods. The OsMRE11-deficient plants exhibited normal vegetative growth but could not set seed. Cytological analysis indicated that in the OsMRE11-deficient plants, homologous pairing was totally inhibited, and the chromosomes were completely entangled as a formation of multivalents at metaphase I, leading to the consequence of serious chromosome fragmentation during anaphase I. Immunofluorescence studies further demonstrated that OsMRE11 is required for homologous synapsis and DSB processing but is dispensable for meiotic DSB formation. We found that OsMRE11 protein was located on meiotic chromosomes from interphase to late pachytene. This protein showed normal localization in zep1, Oscom1 and Osmer3, as well as in OsSPO11-1(RNAi) plants, but not in pair2 and pair3 mutants. Taken together, our results provide evidence that OsMRE11 performs a function essential for maintaining the normal HR process and inhibiting non-homologous recombination during meiosis.
Collapse
Affiliation(s)
- Jianhui Ji
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Wang M, Tang D, Luo Q, Jin Y, Shen Y, Wang K, Cheng Z. BRK1, a Bub1-related kinase, is essential for generating proper tension between homologous kinetochores at metaphase I of rice meiosis. THE PLANT CELL 2012; 24:4961-73. [PMID: 23243128 PMCID: PMC3556969 DOI: 10.1105/tpc.112.105874] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Revised: 11/11/2012] [Accepted: 11/26/2012] [Indexed: 05/19/2023]
Abstract
Bub1 (for budding uninhibited by benzimidazole 1), one of the main spindle checkpoint kinases, acts as a kinetochore scaffold for assembling other checkpoint proteins. Here, we identify a plant Bub1-related kinase 1 (BRK1) in rice (Oryza sativa). The brk1 mutants are sterile due to the precocious separation of sister chromatids at the onset of anaphase I. The centromeric recruitment of SHUGOSHIN1 and phosphorylation of histone H2A at Thr-134 (H2A-pT134) depend on BRK1. Although the homologs can faithfully separate from each other at the end of meiosis I, the uncorrected merotelic attachment of paired sister kinetochores at the early stage of metaphase I in brk1 reduces the tension across homologous kinetochores, causes the metaphase I spindle to be aberrantly shaped, and subsequently affects the synchronicity of homolog separation at the onset of anaphase I. In addition, the phosphorylation of inner centromeric histone H3 at Ser-10 (H3-pS10) during diakinesis depends on BRK1. Therefore, we speculate that BRK1 may be required for normal localization of Aurora kinase before the onset of metaphase I, which is responsible for correcting the merotelic attachment.
Collapse
Affiliation(s)
- Mo Wang
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Ding Tang
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Qiong Luo
- College of Plant Protection,Yunnan Agricultural University, Kunming 650201, China
| | - Yi Jin
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yi Shen
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Kejian Wang
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhukuan Cheng
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
22
|
Wang Y, Cheng Z, Huang J, Shi Q, Hong Y, Copenhaver GP, Gong Z, Ma H. The DNA replication factor RFC1 is required for interference-sensitive meiotic crossovers in Arabidopsis thaliana. PLoS Genet 2012; 8:e1003039. [PMID: 23144629 PMCID: PMC3493451 DOI: 10.1371/journal.pgen.1003039] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2012] [Accepted: 09/05/2012] [Indexed: 11/18/2022] Open
Abstract
During meiotic recombination, induced double-strand breaks (DSBs) are processed into crossovers (COs) and non-COs (NCO); the former are required for proper chromosome segregation and fertility. DNA synthesis is essential in current models of meiotic recombination pathways and includes only leading strand DNA synthesis, but few genes crucial for DNA synthesis have been tested genetically for their functions in meiosis. Furthermore, lagging strand synthesis has been assumed to be unnecessary. Here we show that the Arabidopsis thaliana DNA REPLICATION FACTOR C1 (RFC1) important for lagging strand synthesis is necessary for fertility, meiotic bivalent formation, and homolog segregation. Loss of meiotic RFC1 function caused abnormal meiotic chromosome association and other cytological defects; genetic analyses with other meiotic mutations indicate that RFC1 acts in the MSH4-dependent interference-sensitive pathway for CO formation. In a rfc1 mutant, residual pollen viability is MUS81-dependent and COs exhibit essentially no interference, indicating that these COs form via the MUS81-dependent interference-insensitive pathway. We hypothesize that lagging strand DNA synthesis is important for the formation of double Holliday junctions, but not alternative recombination intermediates. That RFC1 is found in divergent eukaryotes suggests a previously unrecognized and highly conserved role for DNA synthesis in discriminating between recombination pathways. Meiotic recombination is important for pairing and sustained association of homologous chromosomes (homologs), thereby ensuring proper homolog segregation and normal fertility. DNA synthesis is thought to be required for meiotic recombination, but few genes coding for DNA synthesis factors have been studied for possible meiotic functions because their essential roles in the mitotic cell cycle make it difficult to study their meiotic functions due to the lethality of corresponding null mutations. Current models for meiotic recombination only include leading strand DNA synthesis. We found that the Arabidopsis gene encoding the DNA REPLICATION FACTOR C1 (RFC1) important for lagging strand synthesis promotes meiotic recombination via a specific pathway for crossovers (COs) that involves the formation of double Holliday Junction (dHJ) intermediates. Therefore, lagging strand DNA synthesis is likely important for meiotic recombination. Because DNA synthesis is a highly conserved process and meiotic recombination is highly similar among budding yeast, mammals, and flowering plants, the proposed function of lagging strand synthesis for meiotic recombination might be a general feature of meiosis.
Collapse
Affiliation(s)
- Yingxiang Wang
- State Key Laboratory of Genetic Engineering, Institute of Plant Biology, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Zhihao Cheng
- State Key Laboratory of Genetic Engineering, Institute of Plant Biology, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Jiyue Huang
- State Key Laboratory of Genetic Engineering, Institute of Plant Biology, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Qian Shi
- State Key Laboratory of Genetic Engineering, Institute of Plant Biology, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Yue Hong
- State Key Laboratory of Genetic Engineering, Institute of Plant Biology, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Gregory P. Copenhaver
- Department of Biology and the Carolina Center for Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States of America
| | - Zhizhong Gong
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Hong Ma
- State Key Laboratory of Genetic Engineering, Institute of Plant Biology, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- * E-mail:
| |
Collapse
|
23
|
Vaquero-Sedas MI, Luo C, Vega-Palas MA. Analysis of the epigenetic status of telomeres by using ChIP-seq data. Nucleic Acids Res 2012; 40:e163. [PMID: 22855559 PMCID: PMC3505975 DOI: 10.1093/nar/gks730] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Accepted: 07/06/2012] [Indexed: 01/17/2023] Open
Abstract
The chromatin structure of eukaryotic telomeres plays an essential role in telomere functions. However, their study might be impaired by the presence of interstitial telomeric sequences (ITSs), which have a widespread distribution in different model systems. We have developed a simple approach to study the chromatin structure of Arabidopsis telomeres independently of ITSs by analyzing ChIP-seq data. This approach could be used to study the chromatin structure of telomeres in some other eukaryotes. The analysis of ChIP-seq experiments revealed that Arabidopsis telomeres have higher density of histone H3 than centromeres, which might reflects their short nucleosomal organization. These experiments also revealed that Arabidopsis telomeres have lower levels of heterochromatic marks than centromeres (H3K9(Me2) and H3K27(Me)), higher levels of some euchromatic marks (H3K4(Me2) and H3K9Ac) and similar or lower levels of other euchromatic marks (H3K4(Me3), H3K36(Me2), H3K36(Me3) and H3K18Ac). Interestingly, the ChIP-seq experiments also revealed that Arabidopsis telomeres exhibit high levels of H3K27(Me3), a repressive mark that associates with many euchromatic genes. The epigenetic profile of Arabidopsis telomeres is closely related to the previously defined chromatin state 2. This chromatin state is found in 23% of Arabidopsis genes, many of which are repressed or lowly expressed. At least, in part, this scenario is similar in rice.
Collapse
Affiliation(s)
- María I. Vaquero-Sedas
- Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC-Universidad de Sevilla, IBVF (CSIC-USE), c/ Américo Vespucio n° 49, 41092 Seville, Spain and Department of Plant Biology and Pathology, Rutgers University, New Brunswick, NJ, USA
| | - Chongyuan Luo
- Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC-Universidad de Sevilla, IBVF (CSIC-USE), c/ Américo Vespucio n° 49, 41092 Seville, Spain and Department of Plant Biology and Pathology, Rutgers University, New Brunswick, NJ, USA
| | - Miguel A. Vega-Palas
- Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC-Universidad de Sevilla, IBVF (CSIC-USE), c/ Américo Vespucio n° 49, 41092 Seville, Spain and Department of Plant Biology and Pathology, Rutgers University, New Brunswick, NJ, USA
| |
Collapse
|
24
|
Song X, Li P, Zhai J, Zhou M, Ma L, Liu B, Jeong DH, Nakano M, Cao S, Liu C, Chu C, Wang XJ, Green PJ, Meyers BC, Cao X. Roles of DCL4 and DCL3b in rice phased small RNA biogenesis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 69:462-74. [PMID: 21973320 DOI: 10.1111/j.1365-313x.2011.04805.x] [Citation(s) in RCA: 224] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Higher plants have evolved multiple proteins in the RNase III family to produce and regulate different classes of small RNAs with specialized molecular functions. In rice (Oryza sativa), numerous genomic clusters are targeted by one of two microRNAs (miRNAs), miR2118 and miR2275, to produce secondary small interfering RNAs (siRNAs) of either 21 or 24 nucleotides in a phased manner. The biogenesis requirements or the functions of the phased small RNAs are completely unknown. Here we examine the rice Dicer-Like (DCL) family, including OsDCL1, -3a, -3b and -4. By deep sequencing of small RNAs from different tissues of the wild type and osdcl4-1, we revealed that the processing of 21-nucleotide siRNAs, including trans-acting siRNAs (tasiRNA) and over 1000 phased small RNA loci, was largely dependent on OsDCL4. Surprisingly, the processing of 24-nucleotide phased small RNA requires the DCL3 homolog OsDCL3b rather than OsDCL3a, suggesting functional divergence within DCL3 family. RNA ligase-mediated 5' rapid amplification of cDNA ends and parallel analysis of RNA ends (PARE)/degradome analysis confirmed that most of the 21- and 24-nucleotide phased small RNA clusters were initiated from the target sites of miR2118 and miR2275, respectively. Furthermore, the accumulation of the two triggering miRNAs requires OsDCL1 activity. Finally, we show that phased small RNAs are preferentially produced in the male reproductive organs and are likely to be conserved in monocots. Our results revealed significant roles of OsDCL4, OsDCL3b and OsDCL1 in the 21- and 24-nucleotide phased small RNA biogenesis pathway in rice.
Collapse
Affiliation(s)
- Xianwei Song
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Tek AL, Kashihara K, Murata M, Nagaki K. Functional centromeres in Astragalus sinicus include a compact centromere-specific histone H3 and a 20-bp tandem repeat. Chromosome Res 2011; 19:969-78. [PMID: 22065151 DOI: 10.1007/s10577-011-9247-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Revised: 09/16/2011] [Accepted: 10/03/2011] [Indexed: 11/30/2022]
Abstract
The centromere plays an essential role for proper chromosome segregation during cell division and usually harbors long arrays of tandem repeated satellite DNA sequences. Although this function is conserved among eukaryotes, the sequences of centromeric DNA repeats are variable. Most of our understanding of functional centromeres, which are defined by localization of a centromere-specific histone H3 (CENH3) protein, comes from model organisms. The components of the functional centromere in legumes are poorly known. The genus Astragalus is a member of the legumes and bears the largest numbers of species among angiosperms. Therefore, we studied the components of centromeres in Astragalus sinicus. We identified the CenH3 homolog of A. sinicus, AsCenH3 that is the most compact in size among higher eukaryotes. A CENH3-based assay revealed the functional centromeric DNA sequences from A. sinicus, called CentAs. The CentAs repeat is localized in A. sinicus centromeres, and comprises an AT-rich tandem repeat with a monomer size of 20 nucleotides.
Collapse
Affiliation(s)
- Ahmet L Tek
- Institute of Plant Science and Resources, Okayama University, Kurashiki, 710-0046, Japan.
| | | | | | | |
Collapse
|
26
|
Zhao X, Lu J, Zhang Z, Hu J, Huang S, Jin W. Comparison of the distribution of the repetitive DNA sequences in three variants of Cucumis sativus reveals their phylogenetic relationships. J Genet Genomics 2011; 38:39-45. [PMID: 21338951 DOI: 10.1016/j.jcg.2010.12.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Revised: 12/20/2010] [Accepted: 12/24/2010] [Indexed: 01/08/2023]
Abstract
Repetitive DNA sequences with variability in copy number or/and sequence polymorphism can be employed as useful molecular markers to study phylogenetics and identify species/chromosomes when combined with fluorescence in situ hybridization (FISH). Cucumis sativus has three variants, Cucumis sativus L. var. sativus, Cucumis sativus L. var. hardwickii and Cucumis sativus L. var. xishuangbannesis. The phylogenetics among these three variants has not been well explored using cytological landmarks. Here, we concentrate on the organization and distribution of highly repetitive DNA sequences in cucumbers, with emphasis on the differences between cultivar and wild cucumber. The diversity of chromosomal karyotypes in cucumber and its relatives was detected in our study. Thereby, sequential FISH with three sets of multi-probe cocktails (combined repetitive DNA with chromosome-specific fosmid clones as probes) were conducted on the same metaphase cell, which helped us to simultaneously identify each of the 7 metaphase chromosomes of wild cucumber C. sativus var. hardwickii. A standardized karyotype of somatic metaphase chromosomes was constructed. Our data also indicated that the relationship between cultivar cucumber and C. s. var. xishuangbannesis was closer than that of C. s. var. xishuangbannesis and C. s. var. hardwickii.
Collapse
Affiliation(s)
- Xin Zhao
- National Maize Improvement Center of China, Key Laboratory of Crop Genetic Improvement and Genome of Ministry of Agriculture, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | | | | | | | | | | |
Collapse
|
27
|
Fang SA, Eu TI, Chung MC. Isolation and characterization of genome-specific markers in Oryza species with the BB genome. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2011; 181:300-308. [PMID: 21763541 DOI: 10.1016/j.plantsci.2011.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2010] [Revised: 05/18/2011] [Accepted: 06/06/2011] [Indexed: 05/31/2023]
Abstract
Wild species of rice with many valuable agronomic traits are an important genetic resource for improving cultivated rice by wide hybridization. Genome- or chromosome-specific markers are useful for monitoring genome introgression and for identifying genome components. From 47 random amplified polymorphic DNAs (RAPDs) of nine Oryza species, three bands (Ogla225, Opun225, and Opun246) were found to be genome specific with distinct sizes. Their specificities were further characterized by Southern hybridization, sequence analysis, and fluorescent in situ hybridization (FISH). Ogla225 is specifically amplified from the AA genome but homologous sequences were conserved among Oryza species. Opun225 occurs at a low copy number although is specifically amplified from Oryza punctata. There are estimated 2000-3300 repeats of Opun246 in each haploid genome of Oryza species with the BB or BBCC genome. Clusters of Opun246 repeats were detected at heterochromatic regions on almost all chromosomes of the BB genomes by FISH. Opun246 may be a useful marker for monitoring the introgression of BB genome or for identifying the conserved components of BB genome in genetic resource. The results from this study and our previous study both indicate that numerous unique repeats play role in the differentiation of the BB genome from other Oryza genomes.
Collapse
Affiliation(s)
- Shao-An Fang
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | | | | |
Collapse
|
28
|
Wang M, Tang D, Wang K, Shen Y, Qin B, Miao C, Li M, Cheng Z. OsSGO1 maintains synaptonemal complex stabilization in addition to protecting centromeric cohesion during rice meiosis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 67:583-594. [PMID: 21615569 DOI: 10.1111/j.1365-313x.2011.04615.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Shugoshin is a conserved protein in eukaryotes that protects the centromeric cohesin of sister chromatids from cleavage by separase during meiosis. In this study, we identify the rice (Oryza sativa, 2n=2x=24) homolog of ZmSGO1 in maize (Zea mays), named OsSGO1. During both mitosis and meiosis, OsSGO1 is recruited from nucleoli onto centromeres at the onset of prophase. In the Tos17-insertional Ossgo1-1 mutant, centromeres of sister chromatids separate precociously from each other from metaphase I, which causes unequal chromosome segregation during meiosis II. Moreover, the release of OsSGO1 from nucleoli is completely blocked in Ossgo1-1, which leads to the absence of OsSGO1 in centromeric regions after the onset of mitosis and meiosis. Furthermore, the timely assembly and maintenance of synaptonemal complexes during early prophase I are affected in Ossgo1 mutants. Finally, we found that the centromeric localization of OsSGO1 depends on OsAM1, not other meiotic proteins such as OsREC8, PAIR2, OsMER3, or ZEP1.
Collapse
Affiliation(s)
- Mo Wang
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Valdivia MM, Hamdouch K, Ortiz M, Astola A. CENPA a genomic marker for centromere activity and human diseases. Curr Genomics 2011; 10:326-35. [PMID: 20119530 PMCID: PMC2729997 DOI: 10.2174/138920209788920985] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2009] [Revised: 05/25/2009] [Accepted: 05/28/2009] [Indexed: 01/15/2023] Open
Abstract
Inheritance of genetic material requires that chromosomes segregate faithfully during cell division. Failure in this process can drive to aneuploidy phenomenon. Kinetochores are unique centromere macromolecular protein structures that attach chromosomes to the spindle for a proper movement and segregation. A unique type of nucleosomes of centromeric chromatin provides the base for kinetochore formation. A specific histone H3 variant, CENPA, replaces conventional histone H3 and together with centromere-specific-DNA-binding factors directs the assembly of active kinetochores. Recent studies on CENPA nucleosomal structure, epigenetic inheritance of centromeric chromatin and transcription of pericentric heterochromatin provide new clues to our understanding of centromere structure and function. This review highlights the role and dynamics of CENPA assembly into centromeres and the potential contribution of this kinetochore protein to autoimmune and cancer diseases in humans.
Collapse
Affiliation(s)
- Manuel M Valdivia
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad de Cádiz, 11510 Puerto Real, Cádiz, Spain.
| | | | | | | |
Collapse
|
30
|
Shao T, Tang D, Wang K, Wang M, Che L, Qin B, Yu H, Li M, Gu M, Cheng Z. OsREC8 is essential for chromatid cohesion and metaphase I monopolar orientation in rice meiosis. PLANT PHYSIOLOGY 2011; 156:1386-96. [PMID: 21606318 PMCID: PMC3135945 DOI: 10.1104/pp.111.177428] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Accepted: 05/20/2011] [Indexed: 05/18/2023]
Abstract
The successful transmission of chromosomes during mitosis and meiosis relies on the establishment and subsequent release of cohesion between replicated chromatids. Cohesion is mediated by a four-subunit structural maintenance of chromosome complex, called cohesins. REC8 is a key component of this meiotic cohesion complex in most model organisms studied to date. Here, we isolated and dissected the functions of OsREC8, a rice (Oryza sativa) REC8 homolog, using two null Osrec8 mutants. We showed that OsREC8 encodes a protein that localized to meiotic chromosomes from approximately meiotic interphase to metaphase I. Homologous pairing and telomere bouquet formation were abnormal in Osrec8 meiocytes. Furthermore, fluorescent in situ hybridization experiments on Osrec8 meiocytes demonstrated that the mutation eliminated meiotic centromeric cohesion completely during prophase I and also led to the bipolar orientation of the kinetochores during the first meiotic division and accordingly resulted in premature separation of sister chromatid during meiosis I. Immunolocalization analyses revealed that the loading of PAIR2, PAIR3, OsMER3, and ZEP1 all depended on OsREC8. By contrast, the presence of the OsREC8 signal in pair2, pair3, Osmer3, and zep1 mutants indicated that the loading of OsREC8 did not rely on these four proteins. These results suggest that OsREC8 has several essential roles in the meiotic processes.
Collapse
|
31
|
Epigenetic profiling of heterochromatic satellite DNA. Chromosoma 2011; 120:409-22. [PMID: 21594600 DOI: 10.1007/s00412-011-0325-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2011] [Revised: 04/07/2011] [Accepted: 05/04/2011] [Indexed: 10/18/2022]
Abstract
Sugar beet (Beta vulgaris) chromosomes consist of large heterochromatic blocks in pericentromeric, centromeric, and intercalary regions comprised of two different highly abundant DNA satellite families. To investigate DNA methylation at single base resolution at heterochromatic regions, we applied a method for strand-specific bisulfite sequencing of more than 1,000 satellite monomers followed by statistical analyses. As a result, we uncovered diversity in the distribution of different methylation patterns in both satellite families. Heavily methylated CG and CHG (H=A, T, or C) sites occur more frequently in intercalary heterochromatin, while CHH sites, with the exception of CAA, are only sparsely methylated, in both intercalary and pericentromeric/centromeric heterochromatin. We show that the difference in DNA methylation intensity is correlated to unequal distribution of heterochromatic histone H3 methylation marks. While clusters of H3K9me2 were absent from pericentromeric heterochromatin and restricted only to intercalary heterochromatic regions, H3K9me1 and H3K27me1 were observed in all types of heterochromatin. By sequencing of a small RNA library consisting of 6.76 million small RNAs, we identified small interfering RNAs (siRNAs) of 24 nucleotides in size which originated from both strands of the satellite DNAs. We hypothesize an involvement of these siRNAs in the regulation of DNA and histone methylation for maintaining heterochromatin.
Collapse
|
32
|
Abstract
The events occurring at the onset of meiosis have not been fully elucidated. In the present study, OsAM1 was identified in rice (Oryza sativa L.) by map-based cloning. OsAM1, a homolog of Arabidopsis SWI1 and maize AM1, encodes a protein with a coiled-coil domain in its central region. In the Osam1 mutant, pollen mother cells are arrested at leptotene, showing that OsAM1 is required for the leptotene-zygotene transition. Immunocytological analysis revealed that OsAM1 exists as foci in early prophase I meiocytes. Very faint OsREC8 foci persisted in the Osam1 mutant, indicating that OsAM1 is not required for the initial meiotic recruitment of OsREC8. In the absence of OsAM1, many other critical meiotic components, including PAIR2, ZEP1 and OsMER3, could not be correctly installed onto chromosomes. In contrast, in pair2, Osmer3 and zep1 mutants, OsAM1 could be loaded normally, suggesting that OsAM1 plays a fundamental role in building the proper chromosome structure at the beginning of meiosis.
Collapse
|
33
|
Yu H, Wang M, Tang D, Wang K, Chen F, Gong Z, Gu M, Cheng Z. OsSPO11-1 is essential for both homologous chromosome pairing and crossover formation in rice. Chromosoma 2010; 119:625-36. [DOI: 10.1007/s00412-010-0284-7] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Revised: 06/20/2010] [Accepted: 06/24/2010] [Indexed: 12/01/2022]
|
34
|
[Detection of maize centromeric repeats in the relatives of maize using fluorescence in situ hybridization]. YI CHUAN = HEREDITAS 2010; 32:264-70. [PMID: 20233704 DOI: 10.3724/sp.j.1005.2010.00264] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In order to analyze the conservation of maize centromeric satellite DNA (CentC) and centromeric retrotransposon (CRM) in the subspecies and relatives of Zea mays, dual fluorescence in situ hybridization (FISH) was used to detect the existence and distribution of the above two repetitive sequences in Zea mays ssp. mexicana, Z. diploperennis, Z. perennis, Tripsacum dactyloides, Coix lacryma-jobi, and Sorghum bicolor. In Z. mays ssp. mexicana, Z. diploperennis, and Z. perennis, both CentC and CRM probes produced strong or relatively strong signals in the centromeric regions of all chromosomes. There was an obvious variation in the intensity of hybridization signals on different chromosomes, indicating that different centromeres have different amounts of CentC and CRM sequences. In some centromeres, the intensity of CentC signals differed from that of CRM signals and was free from overlapping. In T. dactyloides, only weak CentC and CRM signals were detected in the centromeric regions of most chromosomes, while in C. lacryma-jobi and S. bicolor only relatively strong or strong CRM signals primarily located in the centromeric regions were detected. This result indicates that CentC is highly conserved among the subspecies of Z. mays and the species of Zea, and has high conservation in Tripsacum, a genus that is most closely related to Zea, and CRM is conserved among the species of grass family either closely or distantly related to Zea.
Collapse
|
35
|
Wang M, Wang K, Tang D, Wei C, Li M, Shen Y, Chi Z, Gu M, Cheng Z. The central element protein ZEP1 of the synaptonemal complex regulates the number of crossovers during meiosis in rice. THE PLANT CELL 2010; 22:417-30. [PMID: 20154151 PMCID: PMC2845403 DOI: 10.1105/tpc.109.070789] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2009] [Revised: 01/18/2009] [Accepted: 01/27/2010] [Indexed: 05/18/2023]
Abstract
ZEP1, a transverse filament (TF) protein, is the rice (Oryza sativa) homolog of Arabidopsis thaliana ZYP1. In the Tos17-insertional zep1 mutants, homologous chromosomes align along the entire length of the chromosome, but the synaptonemal complex is not assembled in early prophase I. Crossovers are well formed, and 12 bivalents could be detected from diakinesis to metaphase I, which leads to equal chromosomal segregation in anaphase I. Moreover, the number of crossovers has a tendency to be increased compared with that in the wild type. These phenomena are different from the TF mutants identified so far in other organisms. Chiasma terminalization of the bivalent, which occurs frequently in the wild type, seldom occurred in zep1. Transmission electron micrographs and immunodetection using an antibody against ZEP1 showed that ZEP1 is the central element of the synaptonemal complex. Although PAIR2 and MER3 were loaded normally in zep1, their dissociation was delayed severely compared with the wild type. In addition, ZEP1 is reloaded onto chromosomes in early microspores as the chromosome decondense, suggesting that ZEP1 might have other biological functions during this process.
Collapse
Affiliation(s)
- Mo Wang
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Kejian Wang
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Ding Tang
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Cunxu Wei
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Key Laboratory of Plant Functional Genomics of Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Ming Li
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yi Shen
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhengchang Chi
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Key Laboratory of Plant Functional Genomics of Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Minghong Gu
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Key Laboratory of Plant Functional Genomics of Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Zhukuan Cheng
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- Address correspondence to
| |
Collapse
|
36
|
Ohmido N, Ishimaru A, Kato S, Sato S, Tabata S, Fukui K. Integration of cytogenetic and genetic linkage maps of Lotus japonicus, a model plant for legumes. Chromosome Res 2010; 18:287-99. [PMID: 20076998 DOI: 10.1007/s10577-009-9103-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2009] [Revised: 11/05/2009] [Accepted: 11/25/2009] [Indexed: 01/26/2023]
|
37
|
Ohmido N, Fukui K, Kinoshita T. Recent advances in rice genome and chromosome structure research by fluorescence in situ hybridization (FISH). PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2010; 86:103-16. [PMID: 20154468 PMCID: PMC3417561 DOI: 10.2183/pjab.86.103] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2009] [Accepted: 01/04/2010] [Indexed: 05/28/2023]
Abstract
Fluorescence in situ hybridization (FISH) is an effective method for the physical mapping of genes and repetitive DNA sequences on chromosomes. Physical mapping of unique nucleotide sequences on specific rice chromosome regions was performed using a combination of chromosome identification and highly sensitive FISH. Increases in the detection sensitivity of smaller DNA sequences and improvements in spatial resolution have ushered in a new phase in FISH technology. Thus, it is now possible to perform in situ hybridization on somatic chromosomes, pachytene chromosomes, and even on extended DNA fibers (EDFs). Pachytene-FISH allows the integration of genetic linkage maps and quantitative chromosome maps. Visualization methods using FISH can reveal the spatial organization of the centromere, heterochromatin/euchromatin, and the terminal structures of rice chromosomes. Furthermore, EDF-FISH and the DNA combing technique can resolve a spatial distance of 1 kb between adjacent DNA sequences, and the detection of even a 300-bp target is now feasible. The copy numbers of various repetitive sequences and the sizes of various DNA molecules were quantitatively measured using the molecular combing technique. This review describes the significance of these advances in molecular cytology in rice and discusses future applications in plant studies using visualization techniques.
Collapse
Affiliation(s)
- Nobuko Ohmido
- Graduate School of Human Development and Environment, Kobe University, Kobe, Japan.
| | | | | |
Collapse
|
38
|
Unstable transmission of rice chromosomes without functional centromeric repeats in asexual propagation. Chromosome Res 2009; 17:863-72. [DOI: 10.1007/s10577-009-9073-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2009] [Revised: 08/02/2009] [Accepted: 08/18/2009] [Indexed: 12/17/2022]
|
39
|
Ferri F, Bouzinba-Segard H, Velasco G, Hubé F, Francastel C. Non-coding murine centromeric transcripts associate with and potentiate Aurora B kinase. Nucleic Acids Res 2009; 37:5071-80. [PMID: 19542185 PMCID: PMC2731909 DOI: 10.1093/nar/gkp529] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Non-coding RNAs are emerging as key players in many fundamental biological processes, including specification of higher-order chromatin structure. We examined the implication of RNA transcribed from mouse centromeric minor satellite repeats in the formation and function of centromere-associated complexes. Here we show that the levels of minor satellite RNA vary during cell-cycle progression, peaking in G2/M phase, concomitant with accumulation of proteins of the chromosomal passenger complex near the centromere. Consistent with this, we describe that murine minor satellite RNA are components of CENP-A-associated centromeric fractions and associate with proteins of the chromosomal passenger complex Aurora B and Survivin at the onset of mitosis. Interactions of endogenous Aurora B with CENP-A and Survivin are sensitive to RNaseA. Likewise, the kinase activity of Aurora B requires an RNA component. More importantly, Aurora B kinase activity can be potentiated by minor satellite RNA. In addition, decreased Aurora B activity after RNA depletion can be specifically rescued by restitution of these transcripts. Together, our data provide new functional evidence for minor satellite transcripts as key partners and regulators of the mitotic kinase Aurora B.
Collapse
Affiliation(s)
| | | | | | | | - Claire Francastel
- *To whom correspondence should be addressed. Tel: +33 1 57 27 89 18; Fax: +33 1 57 27 89 11;
| |
Collapse
|
40
|
Abstract
Centromeres are sites for assembly of the chromosomal structures that mediate faithful segregation at mitosis and meiosis. Plant and animal centromeres are typically located in megabase-sized arrays of tandem satellite repeats, making their precise mapping difficult. However, some rice centromeres are largely embedded in nonsatellite DNA, providing an excellent model to study centromere structure and evolution. We used chromatin immunoprecipitation and 454 sequencing to define the boundaries of nine of the 12 centromeres of rice. Centromere regions from chromosomes 8 and 9 were found to share synteny, most likely reflecting an ancient genome duplication. For four centromeres, we mapped discrete subdomains of binding by the centromeric histone variant CENH3. These subdomains were depleted in both intact and nonfunctional genes relative to interspersed subdomains lacking CENH3. The intergenic location of rice centromeric chromatin resembles the situation for human neocentromeres and supports a model of the evolution of centromeres from gene-poor regions. Before a cell divides, its chromosomes must be duplicated and then separated to provide each daughter cell with an identical genome copy. To accomplish this separation, the cell-division apparatus attaches to structures on the chromosomes called centromeres. Most plant and animal centromeres contain highly repetitive DNA sequences and specific proteins such as CENH3; however, it is not known which of the many repeats bind CENH3. Some rice centromeres, however, consist largely of single-copy DNA, providing a tractable model for investigating CENH3-binding patterns. Using modern DNA sequencing technology and an antibody to CENH3, we were able to find which sequences in the rice genome are bound by CENH3. We uncovered evidence that one centromere, Cen8, which has lost much of its repetitive content through a rearrangement within the last approximately 5 million years, is derived from a highly repetitive centromeric region that was duplicated along with the rest of the genome 50–70 million years ago. We also found that CENH3 is bound discontinuously in centromeric subdomains that have fewer genes than subdomains lacking CENH3. These results suggest, not only that centromeres evolve in gene-poor regions, but also how centromeres might evolve from single-copy to repetitive sequences. A key centromere protein is found to bind discontinuously to subdomains of centromeres that are depleted in genes, suggesting that centromeres evolve in gene-poor regions.
Collapse
|
41
|
|
42
|
Morency E, Sabra M, Catez F, Texier P, Lomonte P. A novel cell response triggered by interphase centromere structural instability. ACTA ACUST UNITED AC 2007; 177:757-68. [PMID: 17548509 PMCID: PMC2064277 DOI: 10.1083/jcb.200612107] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Interphase centromeres are crucial domains for the proper assembly of kinetochores at the onset of mitosis. However, it is not known whether the centromere structure is under tight control during interphase. This study uses the peculiar property of the infected cell protein 0 of herpes simplex virus type 1 to induce centromeric structural damage, revealing a novel cell response triggered by centromere destabilization. It involves centromeric accumulation of the Cajal body–associated coilin and fibrillarin as well as the survival motor neuron proteins. The response, which we have termed interphase centromere damage response (iCDR), was observed in all tested human and mouse cells, indicative of a conserved mechanism. Knockdown cells for several constitutive centromere proteins have shown that the loss of centromeric protein B provokes the centromeric accumulation of coilin. We propose that the iCDR is part of a novel safeguard mechanism that is dedicated to maintaining interphase centromeres compatible with the correct assembly of kinetochores, microtubule binding, and completion of mitosis.
Collapse
Affiliation(s)
- Eric Morency
- Viral Silencing and Centromeric Instability Team, Université Lyon 1, Lyon F-69003, France
| | | | | | | | | |
Collapse
|
43
|
Carchilan M, Delgado M, Ribeiro T, Costa-Nunes P, Caperta A, Morais-Cecílio L, Jones RN, Viegas W, Houben A. Transcriptionally active heterochromatin in rye B chromosomes. THE PLANT CELL 2007; 19:1738-49. [PMID: 17586652 PMCID: PMC1955731 DOI: 10.1105/tpc.106.046946] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2006] [Revised: 05/23/2007] [Accepted: 05/31/2007] [Indexed: 05/02/2023]
Abstract
B chromosomes (Bs) are dispensable components of the genomes of numerous species. Thus far, there is a lack of evidence for any transcripts of Bs in plants, with the exception of some rDNA sequences. Here, we show that the Giemsa banding-positive heterochromatic subterminal domain of rye (Secale cereale) Bs undergoes decondensation during interphase. Contrary to the heterochromatic regions of A chromosomes, this domain is simultaneously marked by trimethylated H3K4 and by trimethylated H3K27, an unusual combination of apparently conflicting histone modifications. Notably, both types of B-specific high copy repeat families (E3900 and D1100) of the subterminal domain are transcriptionally active, although with different tissue type-dependent activity. No small RNAs were detected specifically for the presence of Bs. The lack of any significant open reading frame and the highly heterogeneous size of mainly polyadenylated transcripts indicate that the noncoding RNA may function as structural or catalytic RNA.
Collapse
Affiliation(s)
- Mariana Carchilan
- Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Hong JP, Byun MY, Koo DH, An K, Bang JW, Chung IK, An G, Kim WT. Suppression of RICE TELOMERE BINDING PROTEIN 1 results in severe and gradual developmental defects accompanied by genome instability in rice. THE PLANT CELL 2007; 19:1770-81. [PMID: 17586654 PMCID: PMC1955717 DOI: 10.1105/tpc.107.051953] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Although several potential telomere binding proteins have been identified in higher plants, their in vivo functions are still unknown at the plant level. Both knockout and antisense mutants of RICE TELOMERE BINDING PROTEIN1 (RTBP1) exhibited markedly longer telomeres relative to those of the wild type, indicating that the amount of functional RTBP1 is inversely correlated with telomere length. rtbp1 plants displayed progressive and severe developmental abnormalities in both germination and postgermination growth of vegetative organs over four generations (G1 to G4). Reproductive organ formation, including panicles, stamens, and spikelets, was also gradually and severely impaired in G1 to G4 mutants. Up to 11.4, 17.2, and 26.7% of anaphases in G2, G3, and G4 mutant pollen mother cells, respectively, exhibited one or more chromosomal fusions, and this progressively increasing aberrant morphology was correlated with an increased frequency of anaphase bridges containing telomeric repeat DNA. Furthermore, 35S:anti-RTBP1 plants expressing lower levels of RTBP1 mRNA exhibited developmental phenotypes intermediate between the wild type and mutants in all aspects examined, including telomere length, vegetative and reproductive growth, and degree of genomic anomaly. These results suggest that RTBP1 plays dual roles in rice (Oryza sativa), as both a negative regulator of telomere length and one of positive and functional components for proper architecture of telomeres.
Collapse
Affiliation(s)
- Jong-Pil Hong
- Department of Biology, College of Science, Yonsei University, Seoul, Korea
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
Rice (Oryza sativa) has become an important model plant species in numerous research projects involving genome, molecular and evolutionary biology. In this review we describe the reasons why rice provides an excellent model system for centromere and heterochromatin research. In most multicellular eukaryotes, centromeres and heterochromatic domains contain long arrays of repetitive DNA elements that are recalcitrant to DNA sequencing. In contrast, three rice centromeres and the majority of the cytologically defined heterochromatin in the rice genome have been sequenced to high quality, providing an unparalleled resource compared to other model multicellular eukaryotes. Most importantly, active genes have been discovered in the functional domains of several rice centromeres. The centromeric genes and sequence resources provide an unprecedented opportunity to study function and evolution of centromeres and centromere-associated genes.
Collapse
Affiliation(s)
- Huihuang Yan
- Department of Horticulture, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | |
Collapse
|
46
|
Kim H, San Miguel P, Nelson W, Collura K, Wissotski M, Walling JG, Kim JP, Jackson SA, Soderlund C, Wing RA. Comparative physical mapping between Oryza sativa (AA genome type) and O. punctata (BB genome type). Genetics 2007; 176:379-90. [PMID: 17339227 PMCID: PMC1893071 DOI: 10.1534/genetics.106.068783] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2006] [Accepted: 02/09/2007] [Indexed: 11/18/2022] Open
Abstract
A comparative physical map of the AA genome (Oryza sativa) and the BB genome (O. punctata) was constructed by aligning a physical map of O. punctata, deduced from 63,942 BAC end sequences (BESs) and 34,224 fingerprints, onto the O. sativa genome sequence. The level of conservation of each chromosome between the two species was determined by calculating a ratio of BES alignments. The alignment result suggests more divergence of intergenic and repeat regions in comparison to gene-rich regions. Further, this characteristic enabled localization of heterochromatic and euchromatic regions for each chromosome of both species. The alignment identified 16 locations containing expansions, contractions, inversions, and transpositions. By aligning 40% of the punctata BES on the map, 87% of the punctata FPC map covered 98% of the O. sativa genome sequence. The genome size of O. punctata was estimated to be 8% larger than that of O. sativa with individual chromosome differences of 1.5-16.5%. The sum of expansions and contractions observed in regions >500 kb were similar, suggesting that most of the contractions/expansions contributing to the genome size difference between the two species are small, thus preserving the macro-collinearity between these species, which diverged approximately 2 million years ago.
Collapse
Affiliation(s)
- HyeRan Kim
- Arizona Genomics Institute, University of Arizona, Tucson, Arizona 85721, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Zheng Q, Li B, Mu S, Zhou H, Li Z. Physical mapping of the blue-grained gene(s) from Thinopyrum ponticum by GISH and FISH in a set of translocation lines with different seed colors in wheat. Genome 2007; 49:1109-14. [PMID: 17110991 DOI: 10.1139/g06-073] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The original blue-grained wheat, Blue 58, was a substitution line derived from hybridization between common wheat (Triticum aestivum L., 2n=6x=42, ABD) and tall wheatgrass (Thinopyrum ponticum Liu & Wang=Agropyron elongatum, 2n=10x=70, StStEeEbEx), in which one pair of 4D chromosomes was replaced by a pair of alien 4Ag chromosomes (unknown group 4 chromosome from A. ponticum). Blue aleurone might be a useful cytological marker in chromosome engineering and wheat breeding. Cytogenetic analysis showed that blue aleurone was controlled by chromosome 4Ag. GISH analysis proved that the 4Ag was a recombination chromosome; its centromeric and pericentromeric regions were from an E-genome chromosome, but the distal regions of its two arms were from an St-genome chromosome. On its short arm, there was a major pAs1 hybridization band, which was very close to the centromere. GISH and FISH analysis in a set of translocation lines with different seed colors revealed that the gene(s) controlling the blue pigment was located on the long arm of 4Ag. It was physically mapped to the 0.71-0.80 regions (distance measured from the centromere of 4Ag). The blue color is a consequence of dosage of this small chromosome region derived from the St genome. We speculate that the blue-grained gene(s) could activate the anthocyanin biosynthetic pathway of wheat.
Collapse
Affiliation(s)
- Qi Zheng
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | | | |
Collapse
|
48
|
Jiang L, Zhang W, Xia Z, Jiang G, Qian Q, Li A, Cheng Z, Zhu L, Mao L, Zhai W. A paracentric inversion suppresses genetic recombination at the FON3 locus with breakpoints corresponding to sequence gaps on rice chromosome 11L. Mol Genet Genomics 2006; 277:263-72. [PMID: 17143630 DOI: 10.1007/s00438-006-0196-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2006] [Revised: 11/09/2006] [Accepted: 11/10/2006] [Indexed: 10/23/2022]
Abstract
Paracentric inversion is known to inhibit genetic recombination between normal and inverted chromosomal segments in heterozygous arrangements. Insect inversion polymorphisms have been studied to reveal adaptive processes for maintaining genetic variation. We report the first paracentric inversion in rice (Oryza sativa), which was discovered in our effort to clone the floral organ number gene FON3. Recombination at the FON3 locus on the long arm of chromosome 11 was severely suppressed over a distance of more than 36 cM. An extensive screening among 8,242 F(2) progeny failed to detect any recombinants. Cytological analysis revealed a loop-like structure on pachytene chromosomes, whereas FISH analysis showed the migration of a BAC clone from a distal location to a position closer to the centromere. Interestingly, the locations where the genetic recombination suppression began were coincided with the positions of two physical gaps on the chromosome 11, suggesting a correlation between the physical gaps, the inversion breakpoints. Transposons and retrotransposons, and tandemly arranged members of gene families were among the sequences immediately flanking the gaps. Taken together, we propose that the genetic suppression at the FON3 locus was caused by a paracentric inversion. The possible genetic mechanism causing such a spontaneous inversion was proposed.
Collapse
Affiliation(s)
- Li Jiang
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Topp CN, Dawe RK. Reinterpreting pericentromeric heterochromatin. CURRENT OPINION IN PLANT BIOLOGY 2006; 9:647-53. [PMID: 17015032 DOI: 10.1016/j.pbi.2006.09.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2006] [Accepted: 09/19/2006] [Indexed: 05/12/2023]
Abstract
In fission yeast, pericentromeric heterochromatin is directly responsible for the sister chromatid cohesion that assures accurate chromosome segregation. In plants, however, heterochromatin and chromosome segregation appear to be largely unrelated: chromosome transmission is impaired by mutations in cohesion but not by mutations that affect heterochromatin formation. We argue that the formation of pericentromeric heterochromatin is primarily a response to constraints on chromosome mechanics that disfavor the transmission of recombination events in pericentromeric regions. This effect allows pericentromeres to expand to enormous sizes by the accumulation of transposons and through large-scale insertions and inversions. Although sister chromatid cohesion is spatially limited to pericentromeric regions at mitosis and meiosis II, the cohesive domains appear to be defined independently of heterochromatin. The available data from plants suggest that sister chromatid cohesion is marked by histone phosphorylation and mediated by Aurora kinases.
Collapse
Affiliation(s)
- Christopher N Topp
- Department of Plant Biology, University of Georgia, Athens, Georgia 30602, USA
| | | |
Collapse
|
50
|
Yan H, Ito H, Nobuta K, Ouyang S, Jin W, Tian S, Lu C, Venu RC, Wang GL, Green PJ, Wing RA, Buell CR, Meyers BC, Jiang J. Genomic and genetic characterization of rice Cen3 reveals extensive transcription and evolutionary implications of a complex centromere. THE PLANT CELL 2006; 18:2123-33. [PMID: 16877494 PMCID: PMC1560911 DOI: 10.1105/tpc.106.043794] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The centromere is the chromosomal site for assembly of the kinetochore where spindle fibers attach during cell division. In most multicellular eukaryotes, centromeres are composed of long tracts of satellite repeats that are recalcitrant to sequencing and fine-scale genetic mapping. Here, we report the genomic and genetic characterization of the complete centromere of rice (Oryza sativa) chromosome 3. Using a DNA fiber-fluorescence in situ hybridization approach, we demonstrated that the centromere of chromosome 3 (Cen3) contains approximately 441 kb of the centromeric satellite repeat CentO. Cen3 includes an approximately 1,881-kb domain associated with the centromeric histone CENH3. This CENH3-associated chromatin domain is embedded within a 3,113-kb region that lacks genetic recombination. Extensive transcription was detected within the CENH3 binding domain based on comprehensive annotation of protein-coding genes coupled with empirical measurements of mRNA levels using RT-PCR and massively parallel signature sequencing. Genes <10 kb from the CentO satellite array were expressed in several rice tissues and displayed histone modification patterns consistent with euchromatin, suggesting that rice centromeric chromatin accommodates normal gene expression. These results support the hypothesis that centromeres can evolve from gene-containing genomic regions.
Collapse
Affiliation(s)
- Huihuang Yan
- Department of Horticulture, University of Wisconsin, Madison, 53706, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|