1
|
Hua L, Song R, Hao X, Zhang J, Liu Y, Luo J, Ren X, Li H, Wang G, Rehman SU, Wu J, Fu D, Dong Y, Wang X, Zhang C, Chen S. Manipulation of the brown glume and internode 1 gene leads to alterations in the colouration of lignified tissues, lignin content and pathogen resistance in wheat. PLANT BIOTECHNOLOGY JOURNAL 2025; 23:1548-1564. [PMID: 39905983 PMCID: PMC12018827 DOI: 10.1111/pbi.14604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 01/01/2025] [Accepted: 01/15/2025] [Indexed: 02/06/2025]
Abstract
Lignin is a crucial component of the cell wall, providing mechanical support and protection against biotic and abiotic stresses. However, little is known about wheat lignin-related mutants and their roles in pathogen defence. Here, we identified an ethyl methanesulfonate (EMS)-derived Aegilops tauschii mutant named brown glume and internode 1 (bgi1), which exhibits reddish-brown pigmentation in various tissues, including internodes, spikes and glumes. Using map-based cloning and single nucleotide polymorphism (SNP) analysis, we identified AET6Gv20438400 (BGI1) as the leading candidate gene, encoding the TaCAD1 protein. The mutation occurred in the splice acceptor site of the first intron, resulting in a premature stop codon in BGI1. We validated the function of BGI1 using loss-of-function EMS and gene editing knockout mutants, both of which displayed reddish-brown pigmentation in lignified tissues. BGI1 knockout mutants exhibited reduced lignin content and shearing force relative to wild type, while BGI1 overexpression transgenic plants showed increased lignin content and enhanced disease resistance against common root rot and Fusarium crown rot. We confirmed that BGI1 exhibits CAD activity both in vitro and in vivo, playing an important role in lignin biosynthesis. BGI1 was highly expressed in the stem and spike, with its localisation observed in the cytoplasm. Transcriptome analysis revealed the regulatory networks associated with BGI1. Finally, we demonstrated that BGI1 interacts with TaPYL-1D, potentially involved in the abscisic acid signalling pathway. The identification and functional characterisation of BGI1 significantly advance our understanding of CAD proteins in lignin biosynthesis and plant defence against pathogen infection in wheat.
Collapse
Affiliation(s)
- Lei Hua
- State Key Laboratory of Wheat ImprovementPeking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in WeifangShandongChina
| | - Rui Song
- State Key Laboratory of Wheat ImprovementPeking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in WeifangShandongChina
| | - Xiaohua Hao
- State Key Laboratory of Wheat ImprovementPeking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in WeifangShandongChina
| | - Jing Zhang
- State Key Laboratory of Wheat ImprovementPeking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in WeifangShandongChina
| | - Yanna Liu
- State Key Laboratory of Wheat ImprovementPeking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in WeifangShandongChina
| | - Jing Luo
- State Key Laboratory of Wheat ImprovementPeking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in WeifangShandongChina
| | - Xiaopeng Ren
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant ProtectionHebei Agricultural UniversityBaodingHebeiChina
| | - Hongna Li
- State Key Laboratory of Wheat ImprovementPeking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in WeifangShandongChina
| | - Guiping Wang
- State Key Laboratory of Wheat ImprovementPeking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in WeifangShandongChina
| | - Shams ur Rehman
- State Key Laboratory of Wheat ImprovementPeking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in WeifangShandongChina
| | - Jiajie Wu
- National Key Laboratory of Wheat Improvement, College of AgronomyShandong Agricultural UniversityTaianShandongChina
| | - Daolin Fu
- National Key Laboratory of Wheat Improvement, College of AgronomyShandong Agricultural UniversityTaianShandongChina
| | - Yuxiu Dong
- National Key Laboratory of Wheat Improvement, College of Life SciencesShandong Agricultural UniversityTaianShandongChina
| | - Xiaodong Wang
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant ProtectionHebei Agricultural UniversityBaodingHebeiChina
| | - Chaozhong Zhang
- National Key Laboratory of Wheat Improvement, College of AgronomyShandong Agricultural UniversityTaianShandongChina
- Department of Plant SciencesUniversity of California, DavisDavisCaliforniaUSA
| | - Shisheng Chen
- State Key Laboratory of Wheat ImprovementPeking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in WeifangShandongChina
| |
Collapse
|
2
|
Li W, Zhang J, Zhang W, Zhang Q, Wang H, Xu T, Chen Z, Zhang Z. The F box protein INHIBITOR FOR BROWN FURROWS 1 (IBF1) regulates flavonoid accumulation in rice hull by promoting degradation of chalcone synthase 1. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e70105. [PMID: 40121665 DOI: 10.1111/tpj.70105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 02/18/2025] [Accepted: 03/04/2025] [Indexed: 03/25/2025]
Abstract
Flavonoids are secondary metabolites of plants that play various roles in plants. The transcriptional level regulation of flavonoid synthesis in plants has been extensively studied, but research on the protein level of flavonoid synthesis in plants is still limited. In the present study, a brown hull mutant, bh2, was screened from an ethane methyl sulfonate (EMS)-induced bank from the seeds of the indica cultivar RH2B. The bh2 mutant exhibited a brown hull phenotype and higher levels of total flavonoids and anthocyanins compared with wild-type plants. We identified the gene INHIBITOR FOR BROWN FURROWS 1 (IBF1) in the bh2 mutant through MutMap analysis and subsequently cloned it. IBF1 encodes an F-box protein and is involved in the formation of an SCF (S-phase kinase-associated protein 1 [SKP1], Cullin, and F-box) complex with the Oryza sativa SKP1-like proteins OSK1/OSK20. Through yeast two-hybrid, bimolecular fluorescence complementation, and pull-down assays, the interaction of IBF1 with chalcone synthase 1 (CHS1) was confirmed. This interaction facilitated the degradation of CHS1 through the ubiquitin-26S proteasome system. The ibf1 chs1 double mutants exhibited normal hull color, restoring the phenotype of ibf1. Genetic analysis suggested that IBF1 regulates hull color in a CHS1-dependent manner. Collectively, our study suggests that IBF1 serves as a crucial negative regulator that controls flavonoid biosynthesis by mediating CHS1 degradation, thereby regulating hull color.
Collapse
Affiliation(s)
- Weiyan Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guang-zhou, 510642, China
| | - Jingjing Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guang-zhou, 510642, China
| | - Wan Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guang-zhou, 510642, China
| | - Qiuxin Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guang-zhou, 510642, China
| | - Haoyuan Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guang-zhou, 510642, China
| | - Tingting Xu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guang-zhou, 510642, China
| | - Zhongxian Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guang-zhou, 510642, China
| | - Zemin Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guang-zhou, 510642, China
| |
Collapse
|
3
|
Zhu T, Du M, Chen H, Li G, Wang M, Meng L. Recent insights into anthocyanin biosynthesis, gene involvement, distribution regulation, and domestication process in rice (Oryza sativa L.). PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 349:112282. [PMID: 39389316 DOI: 10.1016/j.plantsci.2024.112282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/05/2024] [Accepted: 10/07/2024] [Indexed: 10/12/2024]
Abstract
Anthocyanins are water-soluble natural pigments found broadly in plants. As members of the flavonoid family, they are widely distributed in various tissues and organs, including roots, leaves, and flowers, responsible for purple, red, blue, and orange colors. Beyond pigmentation, anthocyanins play a role in plant propagation, stress response, defense mechanisms, and human health benefits. Anthocyanin biosynthesis involves a series of conserved enzymes encoded by structural genes regulated by various transcription factors. In rice, anthocyanin-mediated pigmentation serves as an important morphological marker for varietal identification and purification, a critical nutrient source, and a key trait in studying rice domestication. Anthocyanin biosynthesis in rice is regulated by a ternary conserved MBW transcriptional complexes comprising MYB transcription factors (TFs), basic-helix-loop-helix (bHLH) TFs, and WD40 repeat protein, which activate the expression of structure genes. Wild rice (Oryza rufipogon) commonly has purple hull, purple stigma, purple apiculus, purple leaf, and red pericarp due to the accumulations of anthocyanin or proanthocyanin. However, most cultivated rice (Oryza sativa) varieties lose the anthocyanin phenotypes due to the function variations of some regulators including OsC1, OsRb, and Rc and the structure gene OsDFR. Over the past decades, significant progress has been made in understanding the molecular and genetic mechanisms of anthocyanin biosynthesis. This review summarizes research progress in rice anthocyanin biosynthetic pathways, genes involvements, distribution regulations, and domestication processes. Furthermore, it discusses future prospects for anthocyanin biosynthesis research in rice, aiming to provide a theoretical foundation for future investigations and applications, and to assist in breeding new rice varieties with organ-targeted anthocyanin deposition.
Collapse
Affiliation(s)
- Taotao Zhu
- College of Agriculture and Biology of Liaocheng University, Liaocheng 252000, China
| | - Mengxue Du
- College of Agriculture and Biology of Liaocheng University, Liaocheng 252000, China
| | - Huilin Chen
- College of Agriculture and Biology of Liaocheng University, Liaocheng 252000, China
| | - Gang Li
- College of Agriculture and Biology of Liaocheng University, Liaocheng 252000, China
| | - Mengping Wang
- College of Agriculture and Biology of Liaocheng University, Liaocheng 252000, China
| | - Lingzhi Meng
- College of Agriculture and Biology of Liaocheng University, Liaocheng 252000, China; Institute of Huanghe Studies, Liaocheng University, Liaocheng 252000, China.
| |
Collapse
|
4
|
Li H, Guo J, Li K, Gao Y, Li H, Long L, Chu Z, Du Y, Zhao X, Zhao B, Lan C, Botella JR, Zhang X, Jia KP, Miao Y. Regulation of lignin biosynthesis by GhCAD37 affects fiber quality and anther vitality in upland cotton. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:2846-2860. [PMID: 39559968 DOI: 10.1111/tpj.17149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/13/2024] [Accepted: 11/05/2024] [Indexed: 11/20/2024]
Abstract
Cotton stands as a pillar in the textile industry due to its superior natural fibers. Lignin, a complex polymer synthesized from phenylalanine and deposited in mature cotton fibers, is believed to be essential for fiber quality, although the precise effects remain largely unclear. In this study, we characterized two ubiquitously expressed cinnamyl alcohol dehydrogenases (CAD), GhCAD37A and GhCAD37D (GhCAD37A/D), in Gossypium hirsutum. GhCAD37A/D possess CAD enzymatic activities, to catalyze the generation of monolignol products during lignin biosynthesis. Analysis of transgenic cotton knockout and overexpressing plants revealed that GhCAD37A/D are important regulators of fiber quality, positively impacting breaking strength but negatively affecting fiber length and elongation percentage by modulating lignin biosynthesis in fiber cells. Moreover, GhCAD37A/D are shown to modulate anther vitality and affect stem lodging trait in cotton by influencing lignin biosynthesis in the vascular bundles of anther and stem, respectively. Additionally, our study revealed that Ghcad37A/D knockout plants displayed red stem xylem, likely due to the overaccumulation of aldehyde intermediates in the phenylpropanoid metabolism pathway, as indicated by metabolomics analysis. Thus, our work illustrates that GhCAD37A/D are two important enzymes of lignin biosynthesis in different cotton organs, influencing fiber quality, anther vitality, and stem lodging.
Collapse
Affiliation(s)
- Haipeng Li
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Henan, 475004, PR China
- Sanya Institute of Henan University, Sanya, Hainan, 572025, China
| | - Jinggong Guo
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Henan, 475004, PR China
- Sanya Institute of Henan University, Sanya, Hainan, 572025, China
| | - Kun Li
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Henan, 475004, PR China
- Sanya Institute of Henan University, Sanya, Hainan, 572025, China
| | - Yuwen Gao
- Sanya Institute of Henan University, Sanya, Hainan, 572025, China
| | - Hang Li
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Henan, 475004, PR China
| | - Lu Long
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Henan, 475004, PR China
| | - Zongyan Chu
- Sanya Institute of Henan University, Sanya, Hainan, 572025, China
| | - Yubei Du
- Kaifeng Academy of Agriculture and Forestry, Kaifeng, China
| | - Xulong Zhao
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Henan, 475004, PR China
| | - Bing Zhao
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Henan, 475004, PR China
| | - Chen Lan
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Henan, 475004, PR China
| | - José Ramón Botella
- Plant Genetic Engineering Laboratory, School of Agriculture and Food Sciences, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Xuebin Zhang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Henan, 475004, PR China
| | - Kun-Peng Jia
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Henan, 475004, PR China
- Sanya Institute of Henan University, Sanya, Hainan, 572025, China
| | - Yuchen Miao
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Henan, 475004, PR China
- Sanya Institute of Henan University, Sanya, Hainan, 572025, China
| |
Collapse
|
5
|
An F, Chen T, Zhu W, Xiao X, Xue J, Luo X, Wei Z, Li K, Chen S, Cai J. Systematic Analysis of Cinnamyl Alcohol Dehydrogenase Family in Cassava and Validation of MeCAD13 and MeCAD28 in Lignin Synthesis and Postharvest Physiological Deterioration. Int J Mol Sci 2024; 25:11668. [PMID: 39519220 PMCID: PMC11546318 DOI: 10.3390/ijms252111668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/26/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Cassava (Manihot esculenta Crantz) is used as a biomass energy material and an effective supplement for food and feed. Cinnamyl alcohol dehydrogenase (CAD) catalyzes the final step of lignin biosynthesis and is responsible for various stresses. However, systematic investigations of the CAD gene family in cassava have been poorly understood. In this study, a genome-wide survey and bioinformatics analysis of CAD gene family was performed, transcriptomics, qRT-PCR, gene silencing and stress of yeast cell were used for excavate and validate the candidate MeCADs gene. 36 MeCADs genes unevenly distributed across 12 chromosomes were identified. Through phylogenetic analyses alongside their Arabidopsis counterparts, these MeCADs were divided into four groups, each containing a similar structure and conserved motifs. Interestingly, transcriptome data analysis revealed that 32 MeCAD genes were involved in the postharvest physiological deterioration (PPD) process, whereas 27 MeCAD genes showed significant changes. Additionally, the relative quantitative analysis of 6 MeCAD genes demonstrated that they were sensitive to PPD, suggesting that they may be involved in the regulation of PPD. Silencing MeCAD13 and MeCAD28 further showed that lignin content significantly decreased in the leaves. The wound-stress tolerance of transgenic yeast cells was enhanced after transformation with MeCAD13 and MeCAD28. MeCAD13 and MeCAD28 may play positive roles in lignin biosynthesis and PPD response, respectively. These results provided a systematic functional analysis of MeCADs in cassava and paved a new way to genetically modify lignin biosynthesis and PPD tolerance.
Collapse
Affiliation(s)
- Feifei An
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Ministry of Agriculture for Germplasm Resources Conservation and Utilization of Cassava, Haikou 571101, China; (F.A.); (W.Z.); (X.X.); (J.X.); (X.L.); (Z.W.); (K.L.)
- National Key Laboratory for Tropical Crop Breeding, Sanya 572025, China
| | - Ting Chen
- Postgraduate Department, Hainan normal university, Haikou 571158, China;
| | - Wenli Zhu
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Ministry of Agriculture for Germplasm Resources Conservation and Utilization of Cassava, Haikou 571101, China; (F.A.); (W.Z.); (X.X.); (J.X.); (X.L.); (Z.W.); (K.L.)
| | - Xinhui Xiao
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Ministry of Agriculture for Germplasm Resources Conservation and Utilization of Cassava, Haikou 571101, China; (F.A.); (W.Z.); (X.X.); (J.X.); (X.L.); (Z.W.); (K.L.)
| | - Jingjing Xue
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Ministry of Agriculture for Germplasm Resources Conservation and Utilization of Cassava, Haikou 571101, China; (F.A.); (W.Z.); (X.X.); (J.X.); (X.L.); (Z.W.); (K.L.)
- National Key Laboratory for Tropical Crop Breeding, Sanya 572025, China
| | - Xiuqin Luo
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Ministry of Agriculture for Germplasm Resources Conservation and Utilization of Cassava, Haikou 571101, China; (F.A.); (W.Z.); (X.X.); (J.X.); (X.L.); (Z.W.); (K.L.)
- National Key Laboratory for Tropical Crop Breeding, Sanya 572025, China
| | - Zhuowen Wei
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Ministry of Agriculture for Germplasm Resources Conservation and Utilization of Cassava, Haikou 571101, China; (F.A.); (W.Z.); (X.X.); (J.X.); (X.L.); (Z.W.); (K.L.)
| | - Kaimian Li
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Ministry of Agriculture for Germplasm Resources Conservation and Utilization of Cassava, Haikou 571101, China; (F.A.); (W.Z.); (X.X.); (J.X.); (X.L.); (Z.W.); (K.L.)
- National Key Laboratory for Tropical Crop Breeding, Sanya 572025, China
| | - Songbi Chen
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Ministry of Agriculture for Germplasm Resources Conservation and Utilization of Cassava, Haikou 571101, China; (F.A.); (W.Z.); (X.X.); (J.X.); (X.L.); (Z.W.); (K.L.)
- National Key Laboratory for Tropical Crop Breeding, Sanya 572025, China
| | - Jie Cai
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Ministry of Agriculture for Germplasm Resources Conservation and Utilization of Cassava, Haikou 571101, China; (F.A.); (W.Z.); (X.X.); (J.X.); (X.L.); (Z.W.); (K.L.)
- National Key Laboratory for Tropical Crop Breeding, Sanya 572025, China
| |
Collapse
|
6
|
Hong Z, Xu H, Shen Y, Liu C, Guo F, Muhammad S, Zhang Y, Niu H, Li S, Zhou W, Wu L. Bioengineering for robust tolerance against cold and drought stresses via co-overexpressing three Cu-miRNAs in major food crops. Cell Rep 2024; 43:114828. [PMID: 39368086 DOI: 10.1016/j.celrep.2024.114828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/03/2024] [Accepted: 09/19/2024] [Indexed: 10/07/2024] Open
Abstract
Environmental stresses threaten global food security by reducing major crop productivity. MicroRNAs (miRNAs), a class of small non-coding RNAs, function as master regulators of gene expression in plants. In this study, we co-overexpressed three copper-miRNAs (miR397, miR408, and miR528) in three major food crops (referred to as 3miR-OE), which simultaneously silenced several target laccase genes, resulting in reduced lignin contents but increased flavonoid metabolites. Importantly, we observed that, compared to wild-type and single miRNA overexpression lines, the 3miR-OE transgenic Japonica and Indica rice exhibited significantly enhanced tolerance against cold and drought stresses throughout the growth period. In addition, 3miR-OE transgenic maize and wheat also exhibited robust resistance to cold and water-deficit conditions, suggesting that co-overexpressing three Cu-miRNAs is a powerful tool for improving resilience to abiotic stresses across diverse crops. Altogether, we have developed a bioengineering strategy to maintain crop growth and yield under unfavorable environmental conditions.
Collapse
Affiliation(s)
- Zheyuan Hong
- Hainan Yazhou Bay Seed Laboratory, Hainan Institute, Zhejiang University, Sanya, Hainan 572000, China; National Key Laboratory of Rice Biology and Zhejiang Provincial Key Laboratory of Crop Germplasm Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Hang Xu
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
| | - Yuxin Shen
- National Key Laboratory of Rice Biology and Zhejiang Provincial Key Laboratory of Crop Germplasm Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Chuanjia Liu
- Hainan Yazhou Bay Seed Laboratory, Hainan Institute, Zhejiang University, Sanya, Hainan 572000, China; National Key Laboratory of Rice Biology and Zhejiang Provincial Key Laboratory of Crop Germplasm Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Fu Guo
- Hainan Yazhou Bay Seed Laboratory, Hainan Institute, Zhejiang University, Sanya, Hainan 572000, China
| | - Sajid Muhammad
- National Key Laboratory of Rice Biology and Zhejiang Provincial Key Laboratory of Crop Germplasm Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yaqi Zhang
- Hainan Yazhou Bay Seed Laboratory, Hainan Institute, Zhejiang University, Sanya, Hainan 572000, China; National Key Laboratory of Rice Biology and Zhejiang Provincial Key Laboratory of Crop Germplasm Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Hongbin Niu
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, Center for Crop Genome Engineering, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Shengping Li
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Weijun Zhou
- National Key Laboratory of Rice Biology and Zhejiang Provincial Key Laboratory of Crop Germplasm Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Liang Wu
- Hainan Yazhou Bay Seed Laboratory, Hainan Institute, Zhejiang University, Sanya, Hainan 572000, China; National Key Laboratory of Rice Biology and Zhejiang Provincial Key Laboratory of Crop Germplasm Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
7
|
Shad MA, Li X, Rao MJ, Luo Z, Li X, Ali A, Wang L. Exploring Lignin Biosynthesis Genes in Rice: Evolution, Function, and Expression. Int J Mol Sci 2024; 25:10001. [PMID: 39337489 PMCID: PMC11432410 DOI: 10.3390/ijms251810001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/09/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
Lignin is nature's second most abundant vascular plant biopolymer, playing significant roles in mechanical support, water transport, and stress responses. This study identified 90 lignin biosynthesis genes in rice based on phylogeny and motif constitution, and they belong to PAL, C4H, 4CL, HCT, C3H, CCoAOMT, CCR, F5H, COMT, and CAD families. Duplication events contributed largely to the expansion of these gene families, such as PAL, CCoAOMT, CCR, and CAD families, mainly attributed to tandem and segmental duplication. Microarray data of 33 tissue samples covering the entire life cycle of rice suggested fairly high PAL, HCT, C3H, CCoAOMT, CCR, COMT, and CAD gene expressions and rather variable C4H, 4CL, and F5H expressions. Some members of lignin-related genes (OsCCRL11, OsHCT1/2/5, OsCCoAOMT1/3/5, OsCOMT, OsC3H, OsCAD2, and OsPAL1/6) were expressed in all tissues examined. The expression patterns of lignin-related genes can be divided into two major groups with eight subgroups, each showing a distinct co-expression in tissues representing typically primary and secondary cell wall constitutions. Some lignin-related genes were strongly co-expressed in tissues typical of secondary cell walls. Combined HPLC analysis showed increased lignin monomer (H, G, and S) contents from young to old growth stages in five genotypes. Based on 90 genes' microarray data, 27 genes were selected for qRT-PCR gene expression analysis. Four genes (OsPAL9, OsCAD8C, OsCCR8, and OsCOMTL4) were significantly negatively correlated with lignin monomers. Furthermore, eleven genes were co-expressed in certain genotypes during secondary growth stages. Among them, six genes (OsC3H, OsCAD2, OsCCR2, OsCOMT, OsPAL2, and OsPAL8) were overlapped with microarray gene expressions, highlighting their importance in lignin biosynthesis.
Collapse
Affiliation(s)
- Munsif Ali Shad
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, 100 Daxue Rd., Nanning 530004, China; (M.A.S.)
| | - Xukai Li
- College of Life Sciences, Shanxi Agricultural University, Taigu 030801, China
- Biomass & Bioenergy Research Centre, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Muhammad Junaid Rao
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou 311300, China
| | - Zixuan Luo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, 100 Daxue Rd., Nanning 530004, China; (M.A.S.)
| | - Xianlong Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, 100 Daxue Rd., Nanning 530004, China; (M.A.S.)
| | - Aamir Ali
- College of Agriculture, Shanxi Agricultural University, Taigu 030801, China
| | - Lingqiang Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, 100 Daxue Rd., Nanning 530004, China; (M.A.S.)
- Biomass & Bioenergy Research Centre, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
8
|
Wu M, Li Y, Liu Z, Xia L, Xiang Y, Zhao L, Yang X, Li Z, Xie X, Wang L, Wang R, Xu S, Yang J. Genome-wide identification of the CAD gene family and functional analysis of putative bona fide CAD genes in tobacco ( Nicotiana tabacum L.). FRONTIERS IN PLANT SCIENCE 2024; 15:1400213. [PMID: 39040505 PMCID: PMC11261167 DOI: 10.3389/fpls.2024.1400213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 06/11/2024] [Indexed: 07/24/2024]
Abstract
Cinnamyl alcohol dehydrogenase (CAD) plays a crucial role in lignin biosynthesis, and the gene family encoding various CAD isozymes has been cloned and characterized in numerous plant species. However, limited information regarding the CAD gene family in tobacco is currently available. In this study, we identified 10 CAD genes in Nicotiana tabacum, four in N. tomentosiformis, and six in N. sylvestris. The nucleotide and amino acid sequences of these tobacco CADs demonstrate high levels of similarity, whereas the putative protein sequences conservatively possessed two Zn2+ binding motifs and an NADP(H) cofactor binding motif. Both NtCAD1 and NtCAD2 had conservative substrate binding sites, similar to those possessed by bona fide CADs, and evidence from phylogenetic analysis as well as expression profiling supported their role as bona fide CADs involved in lignin biosynthesis. NtCAD1 has two paralogous genes, NtCAD1-1 and NtCAD1-2. Enzyme activity analysis revealed that NtCAD1-1 and NtCAD1-2 had a high affinity to coniferyl aldehyde, p-coumaryl aldehyde, and sinapyl aldehyde, whereas NtCAD2 preferred coniferyl aldehyde and p-coumaryl aldehyde as substrates. The kinetic parameter assay revealed that NtCAD1-2 functions as the most efficient enzyme. Downregulation of both NtCAD1-1 and NtCAD1-2 resulted in reddish-brown stems without significant changes in lignin content. Furthermore, NtCAD1-1, NtCAD1-2, and NtCAD2 showed distinct expression patterns in response to biotic and abiotic stresses, as well as different phytohormones. Our findings suggest that NtCAD1-1 and NtCAD1-2 are involved in lignin biosynthesis, with NtCAD1-2 also participating in both biological and abiotic stresses, whereas NtCAD2 plays a distinct role mainly in responding to biological and abiotic stresses in tobacco.
Collapse
Affiliation(s)
- Mingzhu Wu
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of China National Tobacco Corporation (CNTC), Zhengzhou, China
| | - Yijun Li
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of China National Tobacco Corporation (CNTC), Zhengzhou, China
| | - Zhengtai Liu
- Nanjing University of Chinese Medicine, Nanjing, China
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Lin Xia
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of China National Tobacco Corporation (CNTC), Zhengzhou, China
| | - Yiyu Xiang
- Nanjing University of Chinese Medicine, Nanjing, China
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Lijie Zhao
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of China National Tobacco Corporation (CNTC), Zhengzhou, China
| | - Xiaobei Yang
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of China National Tobacco Corporation (CNTC), Zhengzhou, China
| | - Zefeng Li
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of China National Tobacco Corporation (CNTC), Zhengzhou, China
| | - Xiaodong Xie
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of China National Tobacco Corporation (CNTC), Zhengzhou, China
| | - Lin Wang
- College of Life Science, Henan Agricultural University, Zhengzhou, China
| | - Ren Wang
- Nanjing University of Chinese Medicine, Nanjing, China
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Sheng Xu
- Nanjing University of Chinese Medicine, Nanjing, China
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Jun Yang
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of China National Tobacco Corporation (CNTC), Zhengzhou, China
| |
Collapse
|
9
|
Simoni S, Vangelisti A, Clemente C, Usai G, Santin M, Ventimiglia M, Mascagni F, Natali L, Angelini LG, Cavallini A, Tavarini S, Giordani T. Transcriptomic Analyses Reveal Insights into the Shared Regulatory Network of Phenolic Compounds and Steviol Glycosides in Stevia rebaudiana. Int J Mol Sci 2024; 25:2136. [PMID: 38396813 PMCID: PMC10889303 DOI: 10.3390/ijms25042136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/02/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
Stevia rebaudiana (Bertoni) is a highly valuable crop for the steviol glycoside content in its leaves, which are no-calorie sweeteners hundreds of times more potent than sucrose. The presence of health-promoting phenolic compounds, particularly flavonoids, in the leaf of S. rebaudiana adds further nutritional value to this crop. Although all these secondary metabolites are highly desirable in S. rebaudiana leaves, the genes regulating the biosynthesis of phenolic compounds and the shared gene network between the regulation of biosynthesis of steviol glycosides and phenolic compounds still need to be investigated in this species. To identify putative candidate genes involved in the synergistic regulation of steviol glycosides and phenolic compounds, four genotypes with different contents of these compounds were selected for a pairwise comparison RNA-seq analysis, yielding 1136 differentially expressed genes. Genes that highly correlate with both steviol glycosides and phenolic compound accumulation in the four genotypes of S. rebaudiana were identified using the weighted gene co-expression network analysis. The presence of UDP-glycosyltransferases 76G1, 76H1, 85C1, and 91A1, and several genes associated with the phenylpropanoid pathway, including peroxidase, caffeoyl-CoA O-methyltransferase, and malonyl-coenzyme A:anthocyanin 3-O-glucoside-6″-O-malonyltransferase, along with 21 transcription factors like SCL3, WRK11, and MYB111, implied an extensive and synergistic regulatory network involved in enhancing the production of such compounds in S. rebaudiana leaves. In conclusion, this work identified a variety of putative candidate genes involved in the biosynthesis and regulation of particular steviol glycosides and phenolic compounds that will be useful in gene editing strategies for increasing and steering the production of such compounds in S. rebaudiana as well as in other species.
Collapse
Affiliation(s)
- Samuel Simoni
- Department of Agriculture, Food and Environment (DAFE), University of Pisa, Via del Borghetto, 80, 56124 Pisa, Italy (C.C.); (M.S.); (M.V.); (S.T.)
| | - Alberto Vangelisti
- Department of Agriculture, Food and Environment (DAFE), University of Pisa, Via del Borghetto, 80, 56124 Pisa, Italy (C.C.); (M.S.); (M.V.); (S.T.)
| | - Clarissa Clemente
- Department of Agriculture, Food and Environment (DAFE), University of Pisa, Via del Borghetto, 80, 56124 Pisa, Italy (C.C.); (M.S.); (M.V.); (S.T.)
| | - Gabriele Usai
- Department of Agriculture, Food and Environment (DAFE), University of Pisa, Via del Borghetto, 80, 56124 Pisa, Italy (C.C.); (M.S.); (M.V.); (S.T.)
| | - Marco Santin
- Department of Agriculture, Food and Environment (DAFE), University of Pisa, Via del Borghetto, 80, 56124 Pisa, Italy (C.C.); (M.S.); (M.V.); (S.T.)
| | - Maria Ventimiglia
- Department of Agriculture, Food and Environment (DAFE), University of Pisa, Via del Borghetto, 80, 56124 Pisa, Italy (C.C.); (M.S.); (M.V.); (S.T.)
| | - Flavia Mascagni
- Department of Agriculture, Food and Environment (DAFE), University of Pisa, Via del Borghetto, 80, 56124 Pisa, Italy (C.C.); (M.S.); (M.V.); (S.T.)
| | - Lucia Natali
- Department of Agriculture, Food and Environment (DAFE), University of Pisa, Via del Borghetto, 80, 56124 Pisa, Italy (C.C.); (M.S.); (M.V.); (S.T.)
| | - Luciana G. Angelini
- Department of Agriculture, Food and Environment (DAFE), University of Pisa, Via del Borghetto, 80, 56124 Pisa, Italy (C.C.); (M.S.); (M.V.); (S.T.)
- Interdepartmental Research Centre “Nutraceuticals and Food for Health—NUTRAFOOD”, University of Pisa, Via del Borghetto, 80, 56124 Pisa, Italy
| | - Andrea Cavallini
- Department of Agriculture, Food and Environment (DAFE), University of Pisa, Via del Borghetto, 80, 56124 Pisa, Italy (C.C.); (M.S.); (M.V.); (S.T.)
| | - Silvia Tavarini
- Department of Agriculture, Food and Environment (DAFE), University of Pisa, Via del Borghetto, 80, 56124 Pisa, Italy (C.C.); (M.S.); (M.V.); (S.T.)
- Interdepartmental Research Centre “Nutraceuticals and Food for Health—NUTRAFOOD”, University of Pisa, Via del Borghetto, 80, 56124 Pisa, Italy
| | - Tommaso Giordani
- Department of Agriculture, Food and Environment (DAFE), University of Pisa, Via del Borghetto, 80, 56124 Pisa, Italy (C.C.); (M.S.); (M.V.); (S.T.)
| |
Collapse
|
10
|
Chen J, Liu Y, Liu M, Guo W, Wang Y, He Q, Chen W, Liao Y, Zhang W, Gao Y, Dong K, Ren R, Yang T, Zhang L, Qi M, Li Z, Zhao M, Wang H, Wang J, Qiao Z, Li H, Jiang Y, Liu G, Song X, Deng Y, Li H, Yan F, Dong Y, Li Q, Li T, Yang W, Cui J, Wang H, Zhou Y, Zhang X, Jia G, Lu P, Zhi H, Tang S, Diao X. Pangenome analysis reveals genomic variations associated with domestication traits in broomcorn millet. Nat Genet 2023; 55:2243-2254. [PMID: 38036791 PMCID: PMC10703678 DOI: 10.1038/s41588-023-01571-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 10/17/2023] [Indexed: 12/02/2023]
Abstract
Broomcorn millet (Panicum miliaceum L.) is an orphan crop with the potential to improve cereal production and quality, and ensure food security. Here we present the genetic variations, population structure and diversity of a diverse worldwide collection of 516 broomcorn millet genomes. Population analysis indicated that the domesticated broomcorn millet originated from its wild progenitor in China. We then constructed a graph-based pangenome of broomcorn millet based on long-read de novo genome assemblies of 32 representative accessions. Our analysis revealed that the structural variations were highly associated with transposable elements, which influenced gene expression when located in the coding or regulatory regions. We also identified 139 loci associated with 31 key domestication and agronomic traits, including candidate genes and superior haplotypes, such as LG1, for panicle architecture. Thus, the study's findings provide foundational resources for developing genomics-assisted breeding programs in broomcorn millet.
Collapse
Affiliation(s)
- Jinfeng Chen
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
| | - Yang Liu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Minxuan Liu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wenlei Guo
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yongqiang Wang
- Institute of Cotton, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, China
| | - Qiang He
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Weiyao Chen
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yi Liao
- College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Wei Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuanzhu Gao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Kongjun Dong
- Crop Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou, China
| | - Ruiyu Ren
- Crop Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou, China
| | - Tianyu Yang
- Crop Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou, China
| | - Liyuan Zhang
- Chifeng Academy of Agricultural and Animal Husbandry Sciences, Chifeng, China
| | - Mingyu Qi
- Chifeng Academy of Agricultural and Animal Husbandry Sciences, Chifeng, China
| | - Zhiguang Li
- Chifeng Academy of Agricultural and Animal Husbandry Sciences, Chifeng, China
| | - Min Zhao
- Chifeng Academy of Agricultural and Animal Husbandry Sciences, Chifeng, China
| | - Haigang Wang
- Center for Agricultural Genetic Resources Research, Shanxi Agricultural University, Taiyuan, China
| | - Junjie Wang
- Center for Agricultural Genetic Resources Research, Shanxi Agricultural University, Taiyuan, China
| | - Zhijun Qiao
- Center for Agricultural Genetic Resources Research, Shanxi Agricultural University, Taiyuan, China
| | - Haiquan Li
- Institute of Millet Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, China
| | - Yanmiao Jiang
- Institute of Millet Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, China
| | - Guoqing Liu
- Institute of Millet Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, China
| | - Xiaoqiang Song
- High Latitude Crops Institute to Shanxi Academy, Shanxi Agricultural University (Shanxi Academy of Agricultural Sciences), Datong, China
| | - Yarui Deng
- High Latitude Crops Institute to Shanxi Academy, Shanxi Agricultural University (Shanxi Academy of Agricultural Sciences), Datong, China
| | - Hai Li
- High Latitude Crops Institute to Shanxi Academy, Shanxi Agricultural University (Shanxi Academy of Agricultural Sciences), Datong, China
| | - Feng Yan
- Qiqihar Sub-academy of Heilongjiang Academy of Agricultural Sciences, Qiqihar, China
| | - Yang Dong
- Qiqihar Sub-academy of Heilongjiang Academy of Agricultural Sciences, Qiqihar, China
| | - Qingquan Li
- Qiqihar Sub-academy of Heilongjiang Academy of Agricultural Sciences, Qiqihar, China
| | - Tao Li
- Institute of Crop Sciences, Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, China
| | - Wenyao Yang
- Institute of Crop Sciences, Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, China
| | - Jianghui Cui
- College of Agronomy, Hebei Agricultural University, Baoding, China
| | - Hongru Wang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Yongfeng Zhou
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Xiaoming Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Guanqing Jia
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ping Lu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hui Zhi
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Sha Tang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.
| | - Xianmin Diao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.
| |
Collapse
|
11
|
Guo S, Chai S, Guo Y, Shi X, Han F, Qu T, Xing L, Yang Q, Gao J, Gao X, Feng B, Song H, Yang P. Mapping of major QTL and candidate gene analysis for hull colour in foxtail millet (Setaria italica (L.) P. Beauv.). BMC Genomics 2023; 24:458. [PMID: 37582696 PMCID: PMC10428602 DOI: 10.1186/s12864-023-09517-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 07/13/2023] [Indexed: 08/17/2023] Open
Abstract
BACKGROUND Hull colour is an important morphological marker for selection in seed production of foxtail millet. However, the molecular mechanisms underlying hull colour variation remain unknown. RESULTS An F7 recombinant inbred line (RIL) population containing 215 lines derived from Hongjiugu × Yugu18 was used to analyze inheritance and detect the quantitative trait loci (QTL) for four hull colour traits using major gene plus polygene mixed inheritance analysis and composite interval mapping (CIM) in four environments. Genetic analysis revealed that the hull colour L* value (HCL*) was controlled by two major genes plus additive polygenes, the hull colour a* value (HCa*) was controlled by three major genes, the hull colour b* value (HCb*) was controlled by two major genes plus polygenes, and the hull colour C* value (HCC*) was controlled by four major genes. A high-density genetic linkage map covering 1227.383 cM of the foxtail millet genome, with an average interval of 0.879 cM between adjacent bin markers, was constructed using 1420 bin markers. Based on the genetic linkage map and the phenotypic data, a total of 39 QTL were detected for these four hull colour traits across four environments, each explaining 1.50%-49.20% of the phenotypic variation. Of these, six environmentally stable major QTL were co-localized to regions on chromosomes 1 and 9, playing a major role in hull colour. There were 556 annotated genes within the two QTL regions. Based on the functions of homologous genes in Arabidopsis and the Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) gene annotations, five genes were predicted as candidate genes for further studies. CONCLUSIONS This is the first study to use an inheritance model and QTL mapping to determine the genetic mechanisms of hull colour trait in foxtail millet. We identified six major environmentally stable QTL and predicted five potential candidate genes to be associated with hull colour. These results advance the current understanding of the genetic mechanisms underlying hull colour traits in foxtail millet and provide additional resources for application in genomics-assisted breeding and potential isolation and functional characterization of the candidate genes.
Collapse
Affiliation(s)
- Shuqing Guo
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest A & F University, Taicheng Road, Yangling, 712100, Shaanxi, China
| | - Shaohua Chai
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest A & F University, Taicheng Road, Yangling, 712100, Shaanxi, China
| | - Yan Guo
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest A & F University, Taicheng Road, Yangling, 712100, Shaanxi, China
| | - Xing Shi
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest A & F University, Taicheng Road, Yangling, 712100, Shaanxi, China
| | - Fei Han
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest A & F University, Taicheng Road, Yangling, 712100, Shaanxi, China
| | - Ting Qu
- Institute of Millet Crops, Anyang Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Lu Xing
- Institute of Millet Crops, Anyang Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Qinghua Yang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest A & F University, Taicheng Road, Yangling, 712100, Shaanxi, China
| | - Jinfeng Gao
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest A & F University, Taicheng Road, Yangling, 712100, Shaanxi, China
| | - Xiaoli Gao
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest A & F University, Taicheng Road, Yangling, 712100, Shaanxi, China
| | - Baili Feng
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest A & F University, Taicheng Road, Yangling, 712100, Shaanxi, China
| | - Hui Song
- Institute of Millet Crops, Anyang Academy of Agricultural Sciences, Anyang, 455000, Henan, China.
| | - Pu Yang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest A & F University, Taicheng Road, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
12
|
Wang Z, Yao XM, Jia CH, Xu BY, Wang JY, Liu JH, Jin ZQ. Identification and analysis of lignin biosynthesis genes related to fruit ripening and stress response in banana ( Musa acuminata L. AAA group, cv. Cavendish). FRONTIERS IN PLANT SCIENCE 2023; 14:1072086. [PMID: 37035063 PMCID: PMC10074854 DOI: 10.3389/fpls.2023.1072086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 02/28/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND Lignin is a key component of the secondary cell wall of plants, providing mechanical support and facilitating water transport as well as having important impact effects in response to a variety of biological and abiotic stresses. RESULTS In this study, we identified 104 genes from ten enzyme gene families related to lignin biosynthesis in Musa acuminata genome and found the number of MaCOMT gene family was the largest, while MaC3Hs had only two members. MaPALs retained the original members, and the number of Ma4CLs in lignin biosynthesis was significantly less than that of flavonoids. Segmental duplication existed in most gene families, except for MaC3Hs, and tandem duplication was the main way to expand the number of MaCOMTs. Moreover, the expression profiles of lignin biosynthesis genes during fruit development, postharvest ripening stages and under various abiotic and biological stresses were investigated using available RNA-sequencing data to obtain fruit ripening and stress response candidate genes. Finally, a co-expression network of lignin biosynthesis genes was constructed by weighted gene co-expression network analysis to elucidate the lignin biosynthesis genes that might participate in lignin biosynthesis in banana during development and in response to stresses. CONCLUSION This study systematically identified the lignin biosynthesis genes in the Musa acuminata genome, providing important candidate genes for further functional analysis. The identification of the major genes involved in lignin biosynthesis in banana provides the basis for the development of strategies to improve new banana varieties tolerant to biological and abiotic stresses with high yield and high quality.
Collapse
Affiliation(s)
- Zhuo Wang
- Key Laboratory of Tropical Crop Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China
- Hainan Academy of Tropical Agricultural Resource, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China
- Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Sanya, Hainan, China
| | - Xiao-ming Yao
- Beijing Genomics Institute (BGI)-Sanya, Beijing Genomics Institute (BGI)-Shenzhen, Sanya, China
| | - Cai-hong Jia
- Key Laboratory of Tropical Crop Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China
- Hainan Academy of Tropical Agricultural Resource, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China
| | - Bi-yu Xu
- Key Laboratory of Tropical Crop Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China
- Hainan Academy of Tropical Agricultural Resource, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China
| | - Jing-yi Wang
- Key Laboratory of Tropical Crop Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China
- Hainan Academy of Tropical Agricultural Resource, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China
| | - Ju-hua Liu
- Key Laboratory of Tropical Crop Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China
- Hainan Academy of Tropical Agricultural Resource, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China
- Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Sanya, Hainan, China
| | - Zhi-qiang Jin
- Key Laboratory of Tropical Crop Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China
- Hainan Academy of Tropical Agricultural Resource, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China
- Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Sanya, Hainan, China
| |
Collapse
|
13
|
Zhao N, Yuan R, Usman B, Qin J, Yang J, Peng L, Mackon E, Liu F, Qin B, Li R. Detection of QTLs Regulating Six Agronomic Traits of Rice Based on Chromosome Segment Substitution Lines of Common Wild Rice ( Oryza rufipogon Griff.) and Mapping of qPH1.1 and qLMC6.1. Biomolecules 2022; 12:biom12121850. [PMID: 36551278 PMCID: PMC9775987 DOI: 10.3390/biom12121850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/06/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Wild rice is a primary source of genes that can be utilized to generate rice cultivars with advantageous traits. Chromosome segment substitution lines (CSSLs) are consisting of a set of consecutive and overlapping donor chromosome segments in a recipient's genetic background. CSSLs are an ideal genetic population for mapping quantitative traits loci (QTLs). In this study, 59 CSSLs from the common wild rice (Oryza rufipogon Griff.) accession DP15 under the indica rice cultivar (O. sativa L. ssp. indica) variety 93-11 background were constructed through multiple backcrosses and marker-assisted selection (MAS). Through high-throughput whole genome re-sequencing (WGRS) of parental lines, 12,565 mapped InDels were identified and designed for polymorphic molecular markers. The 59 CSSLs library covered 91.72% of the genome of common wild rice accession DP15. The DP15-CSSLs displayed variation in six economic traits including grain length (GL), grain width (GW), thousand-grain weight (TGW), grain length-width ratio (GLWR), plant height (PH), and leaf margin color (LMC), which were finally attributed to 22 QTLs. A homozygous CSSL line and a purple leave margin CSSL line were selected to construct two secondary genetic populations for the QTLs mapping. Thus, the PH-controlling QTL qPH1.1 was mapped to a region of 4.31-Mb on chromosome 1, and the LMC-controlling QTL qLMC6.1 was mapped to a region of 370-kb on chromosome 6. Taken together, these identified novel QTLs/genes from common wild rice can potentially promote theoretical knowledge and genetic applications to rice breeders worldwide.
Collapse
Affiliation(s)
- Neng Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Ruizhi Yuan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Babar Usman
- Graduate School of Green-Bio Science and Crop Biotech Institute, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Jiaming Qin
- Maize Research Institute, Guangxi Academy of Agricultural Science, Nanning 530007, China
| | - Jinlian Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Liyun Peng
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning 530005, China
| | - Enerand Mackon
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning 530005, China
| | - Fang Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Baoxiang Qin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Rongbai Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning 530004, China
- Correspondence:
| |
Collapse
|
14
|
Liu Y, Wu Q, Qin Z, Huang J. Transcription factor OsNAC055 regulates GA-mediated lignin biosynthesis in rice straw. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 325:111455. [PMID: 36152809 DOI: 10.1016/j.plantsci.2022.111455] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 09/04/2022] [Indexed: 06/16/2023]
Abstract
Crop straws represent enormous biomass resource that mainly contain secondary cell walls (SCWs) consisting of cellulose, hemicelluloses and lignin. Nevertheless, the regulatory mechanism of SCW biosynthesis still needs to be well understood. In this study, we identified a rice NAC (NAM, ATAF1/2, CUC2) transcription factor OsNAC055 that regulates GA-mediated lignin biosynthesis. As a nucleus-localized transcription factor, OsNAC055 exhibits the transcriptional activation activity. Overexpression of OsNAC055 increases the lignin content in rice straw. Transcriptomic analyses showed that the expression of multiple lignin biosynthetic genes was increased in OsNAC055-overexpressing plants. Further ChIP-qPCR analysis and transient transactivation assays indicated that OsNAC055 directly activates rice lignin biosynthetic genes CINNAMOYL-CoA REDUCTASE 10 (OsCCR10) and CINNAMYL ALCOHOL DEHYDROGENASE 2 (OsCAD2) by binding to their promoters. On the other hand, phytohormone measurement showed that OsNAC055 overexpression significantly increased exogenous GA3 levels in rice plants by regulating GA biosynthetic gene OsGA20ox2. Moreover, yeast two-hybrid and bimolecular fluorescence complement (BiFC) assays indicated that OsNAC055 interacts with SLENDER RICE1 (SLR1), the repressor in GA signaling. More importantly, exogenous GA treatment markedly enhanced the transcription of OsCCR10 and OsCAD2, suggesting the role of GA in lignin biosynthesis. Together, our results provide the evidence that OsNAC055 functions as an essential transcription factor to regulate the GA-mediated lignin biosynthesis, which provides a strategy for manipulating lignin production.
Collapse
Affiliation(s)
- Yingfan Liu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, China
| | - Qi Wu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, China
| | - Zhongliang Qin
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, China
| | - Junli Huang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, China.
| |
Collapse
|
15
|
Chao N, Huang S, Kang X, Yidilisi K, Dai M, Liu L. Systematic functional characterization of cinnamyl alcohol dehydrogenase family members revealed their functional divergence in lignin biosynthesis and stress responses in mulberry. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 186:145-156. [PMID: 35849944 DOI: 10.1016/j.plaphy.2022.07.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/27/2022] [Accepted: 07/07/2022] [Indexed: 06/15/2023]
Abstract
Mulberry (Morus) is used as a feed additive and biofuel materials. Cinnamyl alcohol dehydrogenase (CAD; EC 1.1.1.95) catalyzes the final step of monolignol biosynthesis and is responsible for various monolignols. Five MaCADs from Morus alba were cloned and functionally characterized in the present study. These MaCADs encoded proteins with 357-364 amino acids, and the putative protein sequences conservatively possessed two Zn2+ binding motifs and an NADP(H) cofactor binding motif. However, MaCAD1, 2, and 5 shared similar amino acids at substrate binding positions that differed from those possessed by bona fide CADs. MaCAD3 and 4 had conservative substrate binding sites, and both phylogenetic and expression profile analysis indicated they were bona fide CADs involved in lignin biosynthesis. The enzymatic assay showed that MaCAD1 and 5 had a high affinity to p-coumaryl aldehyde. MaCAD4 preferentially used coniferyl aldehyde and sinapyl aldehyde as substrates. His-72 and Tyr-124 in MaCAD1 stabilized p-coumaryl aldehyde, and may have resulted in the substrate preference for p-coumaryl aldehyde. Down-regulation of MaCADs in mulberry showed that MaCAD3/4 were dominant CADs that functioned in monolignol biosynthesis, and decreased MaCAD3/4 resulted in significant decreases of lignin content in both stems and leaves. MaCADs exhibited different expression patterns in response to various stresses, indicating their possible diverse roles. MaCAD2 and MaCAD5 may play positive roles in response to drought and cold stresses, respectively. These results provide a systematic functional analysis of MaCADs in mulberry and an important foundation for the genetic modification of the monolignol pathway in mulberry.
Collapse
Affiliation(s)
- Nan Chao
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212018, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, 212018, China
| | - Shuai Huang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212018, China
| | - Xiaoru Kang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212018, China
| | - Keermula Yidilisi
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212018, China
| | - Mingjie Dai
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212018, China
| | - Li Liu
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212018, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, 212018, China.
| |
Collapse
|
16
|
Zhang F, Yang L, Huang W, Luo X, Xie J, Hu B, Chen Y. Flavonoid Metabolic Profiles and Gene Mapping of Rice (Oryza sativa L.) Purple Gradient Grain Hulls. RICE (NEW YORK, N.Y.) 2022; 15:43. [PMID: 35934754 PMCID: PMC9357590 DOI: 10.1186/s12284-022-00589-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
Rice (Oryza sativa L.) grain hull color is an easily observable trait and regarded as a crucial morphological marker in rice breeding. Here, a purple gradient grain hull mutant (pg) was found from natural mutations of a straw-white grain hull rice variety IARI 6184B (Orzya sativa L. subsp. indica). The color of the mutant grain hulls changed from straw-white to pink, then purple, and finally brownish-yellow. Ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) identified 217 flavonoids, including 18 anthocyanins, among which cyanidin O-syringic acid had the highest concentration in pink (66.2 × 106) and purple (68.0 × 106) grain hulls. The relative contents of hesperetin O-malonyl-hexoside, apigenin derivatives, genistein derivatives, and kaempferol 3-O derivatives were consistently downregulated during pg grain hull development. Conversely, 12 anthocyanins were upregulated in colored hulls, and cyanidin 3-O-malonylhexoside was abundant only in pink and purple grain hulls. Moreover, the candidate gene was mapped into a 1.38 Mb region on chromosome 4 through bulked segregant analysis based on deep sequencing (BSA-seq) and gene mapping approaches. These results increased our understanding of anthocyanin biosynthesis in rice grains, helping rice breeders to select new rice varieties with desirable grain traits.
Collapse
Affiliation(s)
- Fantao Zhang
- Laboratory of Plant Genetic Improvement and Biotechnology, College of Life Sciences, Jiangxi Normal University, No 99, Ziyang Road, Nanchang, 330022, Jiangxi, China
| | - Limin Yang
- Laboratory of Plant Genetic Improvement and Biotechnology, College of Life Sciences, Jiangxi Normal University, No 99, Ziyang Road, Nanchang, 330022, Jiangxi, China
| | - Wenxue Huang
- Laboratory of Plant Genetic Improvement and Biotechnology, College of Life Sciences, Jiangxi Normal University, No 99, Ziyang Road, Nanchang, 330022, Jiangxi, China
| | - Xiangdong Luo
- Laboratory of Plant Genetic Improvement and Biotechnology, College of Life Sciences, Jiangxi Normal University, No 99, Ziyang Road, Nanchang, 330022, Jiangxi, China
| | - Jiankun Xie
- Laboratory of Plant Genetic Improvement and Biotechnology, College of Life Sciences, Jiangxi Normal University, No 99, Ziyang Road, Nanchang, 330022, Jiangxi, China
| | - Biaolin Hu
- Rice Research Institute, Jiangxi Academy of Agricultural Sciences/National Engineering Laboratory for Rice (Nanchang), No 1738, Liangtangbei Road, Nanchang, 330200, Jiangxi, China.
| | - Yaling Chen
- Laboratory of Plant Genetic Improvement and Biotechnology, College of Life Sciences, Jiangxi Normal University, No 99, Ziyang Road, Nanchang, 330022, Jiangxi, China.
| |
Collapse
|
17
|
Li Y, Wang R, Pei Y, Yu W, Wu W, Li D, Hu Z. Phylogeny and functional characterization of the cinnamyl alcohol dehydrogenase gene family in Phryma leptostachya. Int J Biol Macromol 2022; 217:407-416. [PMID: 35841957 DOI: 10.1016/j.ijbiomac.2022.07.063] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 07/07/2022] [Accepted: 07/08/2022] [Indexed: 11/05/2022]
Abstract
Phryma leptostachya has attracted increasing attention because it is rich in furofuran lignans with a wide range of biological activities. Biosynthesis of furofuran lignans begins with the dimerization of coniferyl alcohol, one of the monolignol. Cinnamyl alcohol dehydrogenase (CAD) catalyzes the final step of monolignol biosynthesis, reducing cinnamyl aldehydes to cinnamyl alcohol. As it is in the terminal position of monolignol biosynthesis, its type and activity can cause significant changes in the total amount and composition of lignans. Herein, combined with bioinformatics analysis and in vitro enzyme assays, we clarified that CAD in P. leptostachya belonged to a multigene family, and identified nearly the entire CAD gene family. Our in-depth characterization about the functions and structures of two major CAD isoforms, PlCAD2 and PlCAD3, showed that PlCAD2 exhibited the highest catalytic activity, and coniferyl aldehyde was its preferred substrate, followed by PlCAD3, and sinapyl aldehyde was its preferred substrate. Considering the accumulation patterns of furofuran lignans and expression patterns of PlCADs, we speculated that PlCAD2 was the predominant CAD isoform responsible for furofuran lignans biosynthesis in P. leptostachya. Moreover, these CADs found here can also provide effective biological parts for lignans and lignins biosynthesis.
Collapse
Affiliation(s)
- Yankai Li
- Institute of Pesticide Science, College of Plant Protection, Northwest A & F University, Yangling, Shaanxi 712100, China; Key Laboratory for Botanical Pesticide R & D of Shaanxi Province, Yangling, Shaanxi 712100, China
| | - Rui Wang
- Institute of Pesticide Science, College of Plant Protection, Northwest A & F University, Yangling, Shaanxi 712100, China; Key Laboratory for Botanical Pesticide R & D of Shaanxi Province, Yangling, Shaanxi 712100, China
| | - Yakun Pei
- Institute of Pesticide Science, College of Plant Protection, Northwest A & F University, Yangling, Shaanxi 712100, China; Key Laboratory for Botanical Pesticide R & D of Shaanxi Province, Yangling, Shaanxi 712100, China
| | - Wenwen Yu
- Institute of Pesticide Science, College of Plant Protection, Northwest A & F University, Yangling, Shaanxi 712100, China; Key Laboratory for Botanical Pesticide R & D of Shaanxi Province, Yangling, Shaanxi 712100, China
| | - Wenjun Wu
- Institute of Pesticide Science, College of Plant Protection, Northwest A & F University, Yangling, Shaanxi 712100, China; Key Laboratory for Botanical Pesticide R & D of Shaanxi Province, Yangling, Shaanxi 712100, China
| | - Ding Li
- College of Chemistry & Pharmacy, Northwest A & F University, Yangling, Shaanxi 712100, China.
| | - Zhaonong Hu
- Institute of Pesticide Science, College of Plant Protection, Northwest A & F University, Yangling, Shaanxi 712100, China; Key Laboratory for Botanical Pesticide R & D of Shaanxi Province, Yangling, Shaanxi 712100, China; Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture, Yangling, Shaanxi 712100, China.
| |
Collapse
|
18
|
Han X, Zhao Y, Chen Y, Xu J, Jiang C, Wang X, Zhuo R, Lu MZ, Zhang J. Lignin biosynthesis and accumulation in response to abiotic stresses in woody plants. FORESTRY RESEARCH 2022; 2:9. [PMID: 39525415 PMCID: PMC11524291 DOI: 10.48130/fr-2022-0009] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 06/13/2022] [Indexed: 11/16/2024]
Abstract
Woody plants have to experience various abiotic stresses due to their immobility and perennial characteristics. However, woody plants have evolved a series of specific regulation pathways in physiological and molecular mechanisms to deal with adverse environments. Compared with herbaceous plants, perennial woody plants have the advantages of developed roots and hard stems, and increased secondary xylem, which can strengthen the vascular system of the plants. The lignification process involves the lignin deposition on the cell wall by oxidation and polymerization of lignin monomer, which plays an important role in abiotic stress tolerance. This review focuses on recent progress in the biosynthesis, content, and accumulation of lignin in response to various abiotic stresses in plants. The role of transcription factors is also discussed in regulating lignin biosynthesis to enhance abiotic stress tolerance via changing cell wall lignification. Although woody plants shared similar lignin biosynthesis mechanisms with herbaceous plants, the temporal and spatial expression and stress response profiles of lignin biosynthetic genes provide the basis for the differences in stress tolerance of various species. An in-depth understanding of the role of lignin in the abiotic stress tolerance of woody plants will lay the foundation for the next step in tree resistance breeding through genetic engineering.
Collapse
Affiliation(s)
- Xiaojiao Han
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding of Zhejiang Province, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang 311400, China
| | - Yanqiu Zhao
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou, Zhejiang 311300, China
| | - Yinjie Chen
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou, Zhejiang 311300, China
| | - Jing Xu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding of Zhejiang Province, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang 311400, China
| | - Cheng Jiang
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou, Zhejiang 311300, China
| | - Xiaqin Wang
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou, Zhejiang 311300, China
| | - Renying Zhuo
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding of Zhejiang Province, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang 311400, China
| | - Meng-Zhu Lu
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou, Zhejiang 311300, China
| | - Jin Zhang
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou, Zhejiang 311300, China
| |
Collapse
|
19
|
Kouhen M, García-Caparrós P, Twyman RM, Abdelly C, Mahmoudi H, Schillberg S, Debez A. Improving environmental stress resilience in crops by genome editing: insights from extremophile plants. Crit Rev Biotechnol 2022; 43:559-574. [PMID: 35606905 DOI: 10.1080/07388551.2022.2042481] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In basic and applied sciences, genome editing has become an indispensable tool, especially the versatile and adaptable CRISPR/Cas9 system. Using CRISPR/Cas9 in plants has enabled modifications of many valuable traits, including environmental stress tolerance, an essential aspect when it comes to ensuring food security under climate change pressure. The CRISPR toolbox enables faster and more precise plant breeding by facilitating: multiplex gene editing, gene pyramiding, and de novo domestication. In this paper, we discuss the most recent advances in CRISPR/Cas9 and alternative CRISPR-based systems, along with the technical challenges that remain to be overcome. A revision of the latest proof-of-concept and functional characterization studies has indeed provided more insight into the quantitative traits affecting crop yield and stress tolerance. Additionally, we focus on the applications of CRISPR/Cas9 technology in regard to extremophile plants, due to their significance on: industrial, ecological and economic levels. These still unexplored genetic resources could provide the means to harden our crops against the threat of climate change, thus ensuring food security over the next century.
Collapse
Affiliation(s)
- Mohamed Kouhen
- Centre of Biotechnology of Borj-Cedria (CBBC), Laboratory of Extremophile Plants (LPE), Hammam-Lif, Tunisia.,Department of Biosciences and Territory, University of Molise, Pesche, Italy
| | - Pedro García-Caparrós
- Agronomy Department of Superior School Engineering, University of Almeria, CIAIMBITAL, Almería, Spain
| | | | - Chedly Abdelly
- Centre of Biotechnology of Borj-Cedria (CBBC), Laboratory of Extremophile Plants (LPE), Hammam-Lif, Tunisia
| | - Henda Mahmoudi
- International Center for Biosaline Agriculture, Academic City, Near Zayed University, Dubai, United Arab Emirates
| | - Stefan Schillberg
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
| | - Ahmed Debez
- Centre of Biotechnology of Borj-Cedria (CBBC), Laboratory of Extremophile Plants (LPE), Hammam-Lif, Tunisia
| |
Collapse
|
20
|
Geng X, Gao Z, Zhao L, Zhang S, Wu J, Yang Q, Liu S, Chen X. Comparative transcriptome analysis of resistant and susceptible wheat in response to Rhizoctonia cerealis. BMC PLANT BIOLOGY 2022; 22:235. [PMID: 35534832 PMCID: PMC9087934 DOI: 10.1186/s12870-022-03584-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 04/07/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Sheath blight is an important disease caused by Rhizoctonia cerealis that affects wheat yields worldwide. No wheat varieties have been identified with high resistance or immunity to sheath blight. Understanding the sheath blight resistance mechanism is essential for controlling this disease. In this study, we investigated the response of wheat to Rhizoctonia cerealis infection by analyzing the cytological changes and transcriptomes of common wheat 7182 with moderate sensitivity to sheath blight and H83 with moderate resistance. RESULTS The cytological observation showed that the growth of Rhizoctonia cerealis on the surface and its expansion inside the leaf sheath tissue were more rapid in the susceptible material. According to the transcriptome sequencing results, a total of 88685 genes were identified in both materials, including 20156 differentially expressed genes (DEGs) of which 12087 was upregulated genes and 8069 was downregulated genes. At 36 h post-inoculation, compared with the uninfected control, 11498 DEGs were identified in resistant materials, with 5064 downregulated genes and 6434 upregulated genes, and 13058 genes were detected in susceptible materials, with 6759 downregulated genes and 6299 upregulated genes. At 72 h post-inoculation, compared with the uninfected control, 6578 DEGs were detected in resistant materials, with 2991 downregulated genes and 3587 upregulated genes, and 7324 genes were detected in susceptible materials, with 4119 downregulated genes and 3205 upregulated genes. Functional annotation and enrichment analysis showed that the main pathways enriched for the DEGs included biosynthesis of secondary metabolites, carbon metabolism, plant hormone signal transduction, and plant-pathogen interaction. In particular, phenylpropane biosynthesis pathway is specifically activated in resistant variety H83 after infection. Many DEGs also belonged to the MYB, AP2, NAC, and WRKY transcription factor families. CONCLUSIONS Thus, we suggest that the normal functioning of plant signaling pathways and differences in the expression of key genes and transcription factors in some important metabolic pathways may be important for defending wheat against sheath blight. These findings may facilitate further exploration of the sheath blight resistance mechanism in wheat and the cloning of related genes.
Collapse
Affiliation(s)
- Xingxia Geng
- Shaanxi Key Laboratory of Genetic Engineering for Plant Breeding, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Zhen Gao
- Shaanxi Key Laboratory of Genetic Engineering for Plant Breeding, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Li Zhao
- Shaanxi Key Laboratory of Genetic Engineering for Plant Breeding, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Shufa Zhang
- Shaanxi Key Laboratory of Genetic Engineering for Plant Breeding, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jun Wu
- Shaanxi Key Laboratory of Genetic Engineering for Plant Breeding, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Qunhui Yang
- Shaanxi Key Laboratory of Genetic Engineering for Plant Breeding, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Shuhui Liu
- Shaanxi Key Laboratory of Genetic Engineering for Plant Breeding, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xinhong Chen
- Shaanxi Key Laboratory of Genetic Engineering for Plant Breeding, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
21
|
Uawisetwathana U, Jamboonsri W, Bamrungthai J, Jitthiang P, Nookaew I, Karoonuthaisiri N. Metabolite profiles of brown planthopper-susceptible and resistant rice (Oryza sativa) varieties associated with infestation and mechanical stimuli. PHYTOCHEMISTRY 2022; 194:113044. [PMID: 34864385 DOI: 10.1016/j.phytochem.2021.113044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 11/26/2021] [Accepted: 11/27/2021] [Indexed: 06/13/2023]
Abstract
Understanding brown planthopper (BPH) resistance mechanism will expedite selective breeding of better BPH resistant lines of rice (Oryza sativa). Metabolic responses during BPH infestation derived from wound stress imposed by insect feeding, comparing with mechanical piercing will provide an insight into resistance mechanism in rice. Therefore, this study aimed to compare the metabolic responses of needle piercing treatment and BPH feeding treatment in BPH-susceptible (KD) and BPH-resistant (RH) varieties at four different time points (0, 6, 24 and 96 h) using liquid chromatography-high resolution mass spectrometry (LC-HRMS). Phenotypes of RH were not different among the treatments, whereas KD exhibited hopperburn symptom at 96 h post-BPH infestation. Principal component and cluster analyses revealed that metabolite profiles between KD and RH were different in response to both insect and mechanical stimuli. Metabolite profiles of RH under BPH and mechanical treatments at 24 and 96 h were different from the untreated, whereas metabolite profiles of KD after BPH infestation at 24 and 96 h were distinct from needle piercing and no treatment, suggesting that the resistant variety has an ability to adapt and defend both mechanical and insect stimuli. Metabolomics result showed that BPH infestation perturbed purine salvage biosynthesis (e.g., inosine, hypoxanthine) in both varieties, amino acid biosynthesis (e.g., phenylalanine, tryptophan) in KD, while the infestation perturbed lysine metabolism (pipecolic acid) and phenylpropanoid pathway (2-anisic acid) only in RH. BPH and mechanical stimuli perturbed phenylamide only in RH, but not in KD. These findings revealed that different rice varieties utilize different metabolites in response to insect and mechanical stimuli, resulting in different degrees of resistance.
Collapse
Affiliation(s)
- Umaporn Uawisetwathana
- Microarray Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Nueng, Khlong Luang, Pathumthani, 12120, Thailand.
| | - Watchareewan Jamboonsri
- Innovative Plant Biotechnology and Precision Agriculture Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Nueng, Pathum Thani, 12120, Thailand
| | - Jakrin Bamrungthai
- Microarray Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Nueng, Khlong Luang, Pathumthani, 12120, Thailand
| | - Prapatsorn Jitthiang
- Microarray Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Nueng, Khlong Luang, Pathumthani, 12120, Thailand
| | - Intawat Nookaew
- College of Medicine, Department Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Nitsara Karoonuthaisiri
- Microarray Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Nueng, Khlong Luang, Pathumthani, 12120, Thailand; Institute for Global Food Security, Queen's University, Belfast, Biological Sciences Building, 19 Chlorine Gardens, Belfast, BT9 5DL, United Kingdom
| |
Collapse
|
22
|
Shao Y, Shen Y, He F, Li Z. QTL Identification for Stem Fiber, Strength and Rot Resistance in a DH Population from an Alien Introgression of Brassica napus. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11030373. [PMID: 35161354 PMCID: PMC8840419 DOI: 10.3390/plants11030373] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 01/21/2022] [Accepted: 01/21/2022] [Indexed: 05/31/2023]
Abstract
Stem fiber, stem strength and stem-rot resistance are important agronomic traits in Brassica napus. To understand the molecular mechanism that controls the stem-related traits, we investigated the stem lignin (ADL), cellulose (Cel), hemicellulose (Hem) content, S/G monolignol ratio (SG), stem breaking force (BF), breaking strength (F) and Sclerotinia sclerotiorum resistance (SSR). Each trait was significantly positively or negatively correlated with more than three of the other six traits. QTL mapping for ADL, Cel, Hem, SG, BF, F and SSR were performed using a doubled haploid population derived from an intertribal B. napus introgression line 'Y689' crossed with B. napus cv. 'Westar'. A total of 67 additive QTL were identified and integrated into 55 consensus QTL by meta-analysis. Among the 55 consensus QTL, 23 (41.8%) QTL were co-located and were integrated into 11 unique QTL. The QTL by environment (Q × E) interactions were analyzed and 22 combined QTL were identified. In addition, candidate genes within the QTL intervals were proposed based on the known function of Arabidopsis orthologs. These results provided valuable information for improving lodging resistance, S. sclerotiorum resistance and mechanized harvesting of B. napus.
Collapse
Affiliation(s)
- Yujiao Shao
- College of Chemistry and Life Science, Hubei University of Education, Wuhan 430070, China;
| | - Yusen Shen
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Feifei He
- Department of Natural Sciences, Shantou Polytechnic, Shantou 515078, China;
| | - Zaiyun Li
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China;
| |
Collapse
|
23
|
Vasupalli N, Hou D, Singh RM, Wei H, Zou LH, Yrjälä K, Wu A, Lin X. Homo- and Hetero-Dimers of CAD Enzymes Regulate Lignification and Abiotic Stress Response in Moso Bamboo. Int J Mol Sci 2021; 22:ijms222312917. [PMID: 34884720 PMCID: PMC8657895 DOI: 10.3390/ijms222312917] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/21/2021] [Accepted: 11/26/2021] [Indexed: 11/16/2022] Open
Abstract
Lignin biosynthesis enzymes form complexes for metabolic channelling during lignification and these enzymes also play an essential role in biotic and abiotic stress response. Cinnamyl alcohol dehydrogenase (CAD) is a vital enzyme that catalyses the reduction of aldehydes to alcohols, which is the final step in the lignin biosynthesis pathway. In the present study, we identified 49 CAD enzymes in five Bambusoideae species and analysed their phylogenetic relationships and conserved domains. Expression analysis of Moso bamboo PheCAD genes in several developmental tissues and stages revealed that among the PheCAD genes, PheCAD2 has the highest expression level and is expressed in many tissues and PheCAD1, PheCAD6, PheCAD8 and PheCAD12 were also expressed in most of the tissues studied. Co-expression analysis identified that the PheCAD2 positively correlates with most lignin biosynthesis enzymes, indicating that PheCAD2 might be the key enzyme involved in lignin biosynthesis. Further, more than 35% of the co-expressed genes with PheCADs were involved in biotic or abiotic stress responses. Abiotic stress transcriptomic data (SA, ABA, drought, and salt) analysis identified that PheCAD2, PheCAD3 and PheCAD5 genes were highly upregulated, confirming their involvement in abiotic stress response. Through yeast two-hybrid analysis, we found that PheCAD1, PheCAD2 and PheCAD8 form homo-dimers. Interestingly, BiFC and pull-down experiments identified that these enzymes form both homo- and hetero- dimers. These data suggest that PheCAD genes are involved in abiotic stress response and PheCAD2 might be a key lignin biosynthesis pathway enzyme. Moreover, this is the first report to show that three PheCAD enzymes form complexes and that the formation of PheCAD homo- and hetero- dimers might be tissue specific.
Collapse
Affiliation(s)
- Naresh Vasupalli
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou 311300, China; (N.V.); (D.H.); (H.W.); (L.-H.Z.); (K.Y.)
| | - Dan Hou
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou 311300, China; (N.V.); (D.H.); (H.W.); (L.-H.Z.); (K.Y.)
| | - Rahul Mohan Singh
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China;
| | - Hantian Wei
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou 311300, China; (N.V.); (D.H.); (H.W.); (L.-H.Z.); (K.Y.)
| | - Long-Hai Zou
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou 311300, China; (N.V.); (D.H.); (H.W.); (L.-H.Z.); (K.Y.)
| | - Kim Yrjälä
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou 311300, China; (N.V.); (D.H.); (H.W.); (L.-H.Z.); (K.Y.)
- Department of Forest Sciences, University of Helsinki, 00014 Helsinki, Finland
| | - Aimin Wu
- Guangdong Key Laboratory for Innovative Development and Utilisation of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China;
- State Key Laboratory for Conservation and Utilisation of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
| | - Xinchun Lin
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou 311300, China; (N.V.); (D.H.); (H.W.); (L.-H.Z.); (K.Y.)
- Correspondence: ; Tel.: +86-18958162317
| |
Collapse
|
24
|
Xie H, Hou J, Fu N, Wei M, Li Y, Yu K, Song H, Li S, Liu J. Identification of QTL related to anther color and hull color by RAD sequencing in a RIL population of Setaria italica. BMC Genomics 2021; 22:556. [PMID: 34281524 PMCID: PMC8290542 DOI: 10.1186/s12864-021-07882-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 06/30/2021] [Indexed: 11/13/2022] Open
Abstract
Background Foxtail millet (Setaria italica) is one of the oldest domesticated crops and has been considered as an ideal model plant for C4 grasses. It has abundant type of anther and hull colors which is not only a most intuitive morphological marker for color selection in seed production, but also has very important biological significance for the study of molecular mechanism of regulating the synthesis and metabolism of flavonoids and lignin. However, only a few genetic studies have been reported for anther color and hull color in foxtail millet. Results Quantitative trait loci (QTL) analysis for anther color and hull color was conducted using 400 F6 and F7 recombinant inbreed lines (RILs) derived from a cross between parents Yugu18 and Jigu19. Using restriction-site associated DNA sequencing, 43,001 single-nucleotide polymorphisms (SNPs) and 3,022 indels were identified between both the parents and the RILs. A total of 1,304 bin markers developed from the SNPs and indels were used to construct a genetic map that spanned 2196 cM of the foxtail millet genome with an average of 1.68 cM/bin. Combined with this genetic map and the phenotypic data observed in two locations for two years, two QTL located on chromosome 6 (Chr6) in a 1.215-Mb interval (33,627,819–34,877,940 bp) for anther color (yellow - white) and three QTL located on Chr1 in a 6.23-Mb interval (1–6,229,734 bp) for hull color (gold-reddish brown) were detected. To narrow the QTL regions identified from the genetic map and QTL analysis, we developed a new method named “inconsistent rate analysis” and efficiently narrowed the QTL regions of anther color into a 60-kb interval (34.13–34.19 Mb) in Chr6, and narrowed the QTL regions of hull color into 70-kb (5.43–5.50 Mb) and 30-kb (5.69–5.72 Mb) intervals in Chr1. Two genes (Seita.6G228600.v2.2 and Seita.6G228700.v2.2) and a cinnamyl alcohol dehydrogenase (CAD) gene (Seita.1G057300.v2.2) with amino acid changes between the parents detected by whole-genome resequencing were identified as candidate genes for anther and hull color, respectively. Conclusions This work presents the related QTL and candidate genes of anther and hull color in foxtail millet and developed a new method named inconsistent rate analysis to detect the chromosome fragments linked with the quality trait in RILs. This is the first study of the QTL related to hull color in foxtail millet and clarifying that the CAD gene (Seita.1G057300.v2.2) is the key gene responsible for this trait. It lays the foundation for further cloning of the functional genes and provides a powerful tool to detect the chromosome fragments linked with quality traits in RILs. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07882-x.
Collapse
Affiliation(s)
- Huifang Xie
- Anyang Academy of Agriculture Sciences, 455000, Anyang, Henan, China
| | - Junliang Hou
- BGI Institute of Applied Agriculture, BGI-Shenzhen, 518120, Shenzhen, Guangdong, China
| | - Nan Fu
- Anyang Academy of Agriculture Sciences, 455000, Anyang, Henan, China
| | - Menghan Wei
- Anyang Academy of Agriculture Sciences, 455000, Anyang, Henan, China
| | - Yunfei Li
- BGI Institute of Applied Agriculture, BGI-Shenzhen, 518120, Shenzhen, Guangdong, China
| | - Kang Yu
- BGI Institute of Applied Agriculture, BGI-Shenzhen, 518120, Shenzhen, Guangdong, China
| | - Hui Song
- Anyang Academy of Agriculture Sciences, 455000, Anyang, Henan, China
| | - Shiming Li
- BGI Institute of Applied Agriculture, BGI-Shenzhen, 518120, Shenzhen, Guangdong, China.
| | - Jinrong Liu
- Anyang Academy of Agriculture Sciences, 455000, Anyang, Henan, China.
| |
Collapse
|
25
|
Chen C, Chang J, Wang S, Lu J, Liu Y, Si H, Sun G, Ma C. Cloning, expression analysis and molecular marker development of cinnamyl alcohol dehydrogenase gene in common wheat. PROTOPLASMA 2021; 258:881-889. [PMID: 33443712 DOI: 10.1007/s00709-021-01607-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 01/04/2021] [Indexed: 05/27/2023]
Abstract
In common wheat, stem strength is one of the key factors for lodging resistance, which is influenced by lignin content. Cinnamyl alcohol dehydrogenase (CAD) is a vital enzyme in the pathway of lignin biosynthesis. Cloning and marker development of the CAD gene could be helpful for lodging resistance breeding. In this study, the full-length genomic DNA sequence of CAD gene in wheat was cloned by using homologous strategy. A marker 5-f2r2 was developed based on CAD sequence and used to genotype 258 wheat lines. Four haplotype combinations of CAD genes were identified in 258 wheat lines. Correction analyses among the CAD gene expression, CAD activity, and stem strength indicated significant positive correlation between CAD gene expression and CAD activity, between wheat CAD activity and wheat stem strength. The haplotype combination B is significantly associated with the lower enzyme activity and weak stem strength, which was supported by the level of CAD gene expression. The CAD activity and stem strength of wheat could be distinguished to some extent using this pair of specific primer 5-f2r2 designed in this study, indicating that the sequence targeted site (STS) marker 5-f2r2 could be used in marker assistant selection (MAS) breeding.
Collapse
Affiliation(s)
- Can Chen
- School of Agronomy, Anhui Agricultural University, Hefei, 230036, China
- Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, 230036, China
| | - Jingming Chang
- School of Agronomy, Anhui Agricultural University, Hefei, 230036, China
- Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, 230036, China
| | - Sheng Wang
- School of Agronomy, Anhui Agricultural University, Hefei, 230036, China
- Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, 230036, China
| | - Jie Lu
- School of Agronomy, Anhui Agricultural University, Hefei, 230036, China
- Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, 230036, China
| | - Yi Liu
- School of Agronomy, Anhui Agricultural University, Hefei, 230036, China
- Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, 230036, China
| | - Hongqi Si
- School of Agronomy, Anhui Agricultural University, Hefei, 230036, China.
- Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, 230036, China.
| | - Genlou Sun
- Biology Department, Saint Mary's University, Halifax, NS, B3H 3C3, Canada.
| | - Chuanxi Ma
- School of Agronomy, Anhui Agricultural University, Hefei, 230036, China.
- Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, 230036, China.
- National United Engineering Laboratory for Crop Stress Resistance Breeding, Hefei, 230036, China.
- Anhui Key Laboratory of Crop Biology, Hefei, 230036, China.
| |
Collapse
|
26
|
Chen H, Fang R, Deng R, Li J. The OsmiRNA166b-OsHox32 pair regulates mechanical strength of rice plants by modulating cell wall biosynthesis. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:1468-1480. [PMID: 33560572 PMCID: PMC8313131 DOI: 10.1111/pbi.13565] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 01/28/2021] [Indexed: 05/20/2023]
Abstract
The plant cell wall provides mechanical strength to support plant growth and development and to determine plant architecture. Cellulose and mixed-linkage glucan (MLG) present in primary cell wall, whereas cellulose, lignin and hemicellulose exist in secondary cell wall. Biosynthesis of the cell wall biopolymers needs the coordinated transcriptional regulation of all the biosynthetic genes. The module of OsmiR166b-OsHox32 regulates expression levels of the genes related to biosynthesis of MLG, cellulose and lignin. Transgenic plants knocking down miR166b (STTM166b) by short tandem target mimic (STTM) technology or overexpressing OsHox32 (OEHox32) showed drooping leaves and brittle culms. Due to accumulation of less lignin and cellulose, the cell wall thickness of STTM166b and OEHox32 plants was reduced when compared to that of wild-type plants. Overexpression of miR166b (OE166b) in rice plants or knocking down of OsHox32 by RNA interference (RNAiHox32) led to increased thickness of cell walls and enhanced mechanical strength of culms. Molecular analyses showed that OsmiR166b-OsHox32 pair regulates cell wall-related gene expression. OsHox32 binds to the promoters of OsCAD2 and OsCESA7 to suppress the expression levels of these two genes. The suppression of OsCAD2 is synergistic when OsHox32 is co-expressed with OSH15 (Oryza sativa homeobox 15). OsHox32 interacts with OSH15, and the START domain of OsHox32, harbouring the miR166b cleavage site, is required for the interaction of these two proteins. Our results demonstrate that OsmiR166b-OsHox32 pair plays important roles not only in plant growth and development but also in plant architecture by regulating the cell wall-related gene expression.
Collapse
Affiliation(s)
- Hong Chen
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, and Guangdong Provincial Key Laboratory of Applied BotanySouth China Botanical GardenChinese Academy of SciencesGuangzhouChina
- University of Chinese Academy of SciencesBeijingChina
| | - Ruiqiu Fang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, and Guangdong Provincial Key Laboratory of Applied BotanySouth China Botanical GardenChinese Academy of SciencesGuangzhouChina
- Institute of Maize and Featured Upland CropsZhejiang Academy of Agricultural SciencesDongyangZhejiangChina
| | - Rufang Deng
- Public Laboratory of SciencesSouth China Botanical GardenChinese Academy of SciencesGuangzhouChina
| | - Jianxiong Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesCollege of AgricultureGuangxi UniversityNanningChina
| |
Collapse
|
27
|
Saluja M, Zhu F, Yu H, Walia H, Sattler SE. Loss of COMT activity reduces lateral root formation and alters the response to water limitation in sorghum brown midrib (bmr) 12 mutant. THE NEW PHYTOLOGIST 2021; 229:2780-2794. [PMID: 33124063 DOI: 10.1111/nph.17051] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 10/22/2020] [Indexed: 06/11/2023]
Abstract
Lignin is a key target for modifying lignocellulosic biomass for efficient biofuel production. Brown midrib 12 (bmr12) encodes the sorghum caffeic acid O-methyltransferase (COMT) and is one of the key enzymes in monolignol biosynthesis. Loss of function mutations in COMT reduces syringyl (S) lignin subunits and improves biofuel conversion rate. Although lignin plays an important role in maintaining cell wall integrity of xylem vessels, physiological and molecular consequences due to loss of COMT on root growth and adaptation to water deficit remain unexplored. We addressed this gap by evaluating the root morphology, anatomy and transcriptome of bmr12 mutant. The mutant had reduced lateral root density (LRD) and altered root anatomy and response to water limitation. The wild-type exhibits similar phenotypes under water stress, suggesting that bmr12 may be in a water deficit responsive state even in well-watered conditions. bmr12 had increased transcript abundance of genes involved in (a)biotic stress response, gibberellic acid (GA) biosynthesis and signaling. We show that bmr12 is more sensitive to exogenous GA application and present evidence for the role of GA in regulating reduced LRD in bmr12. These findings elucidate the phenotypic and molecular consequences of COMT deficiency under optimal and water stress environments in grasses.
Collapse
Affiliation(s)
- Manny Saluja
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA
| | - Feiyu Zhu
- Computer Science and Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA
| | - Hongfeng Yu
- Computer Science and Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA
| | - Harkamal Walia
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA
| | - Scott E Sattler
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA
- Wheat, Sorghum and Forage Research Unit, USDA-ARS, Lincoln, NE, 68583, USA
| |
Collapse
|
28
|
Liu X, Van Acker R, Voorend W, Pallidis A, Goeminne G, Pollier J, Morreel K, Kim H, Muylle H, Bosio M, Ralph J, Vanholme R, Boerjan W. Rewired phenolic metabolism and improved saccharification efficiency of a Zea mays cinnamyl alcohol dehydrogenase 2 (zmcad2) mutant. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 105:1240-1257. [PMID: 33258151 DOI: 10.1111/tpj.15108] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/24/2020] [Accepted: 11/26/2020] [Indexed: 06/12/2023]
Abstract
Lignocellulosic biomass is an abundant byproduct from cereal crops that can potentially be valorized as a feedstock to produce biomaterials. Zea mays CINNAMYL ALCOHOL DEHYDROGENASE 2 (ZmCAD2) is involved in lignification, and is a promising target to improve the cellulose-to-glucose conversion of maize stover. Here, we analyzed a field-grown zmcad2 Mutator transposon insertional mutant. Zmcad2 mutant plants had an 18% lower Klason lignin content, whereas their cellulose content was similar to that of control lines. The lignin in zmcad2 mutants contained increased levels of hydroxycinnamaldehydes, i.e. the substrates of ZmCAD2, ferulic acid and tricin. Ferulates decorating hemicelluloses were not altered. Phenolic profiling further revealed that hydroxycinnamaldehydes are partly converted into (dihydro)ferulic acid and sinapic acid and their derivatives in zmcad2 mutants. Syringyl lactic acid hexoside, a metabolic sink in CAD-deficient dicot trees, appeared not to be a sink in zmcad2 maize. The enzymatic cellulose-to-glucose conversion efficiency was determined after 10 different thermochemical pre-treatments. Zmcad2 yielded significantly higher conversions compared with controls for almost every pre-treatment. However, the relative increase in glucose yields after alkaline pre-treatment was not higher than the relative increase when no pre-treatment was applied, suggesting that the positive effect of the incorporation of hydroxycinnamaldehydes was leveled off by the negative effect of reduced p-coumarate levels in the cell wall. Taken together, our results reveal how phenolic metabolism is affected in CAD-deficient maize, and further support mutating CAD genes in cereal crops as a promising strategy to improve lignocellulosic biomass for sugar-platform biorefineries.
Collapse
Affiliation(s)
- Xinyu Liu
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Rebecca Van Acker
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Wannes Voorend
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Andreas Pallidis
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Geert Goeminne
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Metabolomics Core, Ghent, Belgium
| | - Jacob Pollier
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
- VIB Metabolomics Core, Ghent, Belgium
| | - Kris Morreel
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Hoon Kim
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA
- Department of Energy's Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, Madison, Wisconsin, 53726, USA
| | - Hilde Muylle
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | | | - John Ralph
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA
- Department of Energy's Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, Madison, Wisconsin, 53726, USA
| | - Ruben Vanholme
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Wout Boerjan
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| |
Collapse
|
29
|
Genome-wide analysis of general phenylpropanoid and monolignol-specific metabolism genes in sugarcane. Funct Integr Genomics 2021; 21:73-99. [PMID: 33404914 DOI: 10.1007/s10142-020-00762-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 11/23/2020] [Accepted: 11/27/2020] [Indexed: 10/22/2022]
Abstract
Lignin is the main component of secondary cell walls and is essential for plant development and defense. However, lignin is recognized as a major recalcitrant factor for efficiency of industrial biomass processing. Genes involved in general phenylpropanoid and monolignol-specific metabolism in sugarcane have been previously analyzed at the transcriptomic level. Nevertheless, the number of genes identified in this species is still very low. The recently released sugarcane genome sequence has allowed the genome-wide characterization of the 11 gene families involved in the monolignol biosynthesis branch of the phenylpropanoid pathway. After an exhaustive analysis of sugarcane genomes, 438 haplotypes derived from 175 candidate genes from Saccharum spontaneum and 144 from Saccharum hybrid R570 were identified as associated with this biosynthetic route. The phylogenetic analyses, combined with the search for protein conserved residues involved in the catalytic activity of the encoded enzymes, were employed to identify the family members potentially involved in developmental lignification. Accordingly, 15 candidates were identified as bona fide lignin biosynthesis genes: PTAL1, PAL2, C4H4, 4CL1, HCT1, HCT2, C3'H1, C3'H2, CCoAOMT1, COMT1, F5H1, CCR1, CCR2, CAD2, and CAD7. For this core set of lignin biosynthetic genes, we searched for the chromosomal location, the gene expression pattern, the promoter cis-acting elements, and microRNA targets. Altogether, our results present a comprehensive characterization of sugarcane general phenylpropanoid and monolignol-specific genes, providing the basis for further functional studies focusing on lignin biosynthesis manipulation and biotechnological strategies to improve sugarcane biomass utilization.
Collapse
|
30
|
Liu S, Zhao L, Liao Y, Luo Z, Wang H, Wang P, Zhao H, Xia J, Huang CF. Dysfunction of the 4-coumarate:coenzyme A ligase 4CL4 impacts aluminum resistance and lignin accumulation in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 104:1233-1250. [PMID: 32989851 DOI: 10.1111/tpj.14995] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 09/03/2020] [Indexed: 05/22/2023]
Abstract
The root cell wall is the first and primary target of aluminum (Al) toxicity. Monocots such as rice (Oryza sativa) can accumulate appreciable levels of hydroxycinnamic acids (HCAs) to modify and cross-link hemicellulose and/or lignin of the cell wall. Nevertheless, it is unclear whether this HCA-mediated modification of the cell wall is important for Al accumulation and resistance. We previously isolated and characterized a rice ral1 (resistance to aluminum 1) mutant that shows enhanced Al resistance. In this study, we cloned RAL1 and found that it encodes the 4-coumarate:coenzyme A ligase 4CL4, an enzyme putatively involved in lignin biosynthesis. Mutation of RAL1/4CL4 reduces lignin content and increases the accumulation of its substrates 4-coumaric acid (PA) and ferulic acid (FA). We demonstrate that altered lignin accumulation is not required for the enhanced Al resistance in ral1/4cl4 mutants. We found that the increased accumulation of PA and FA can reduce Al binding to hemicellulose and consequently enhance Al resistance in ral1/4cl4 mutants. Al stress is able to trigger PA and FA accumulation, which is likely caused by the repression of the expression of RAL1/4CL4 and its homologous genes. Our results thus reveal that Al-induced PA and FA accumulation is actively and positively involved in Al resistance in rice through the modification of the cell wall and thereby the reduced Al binding to the cell wall.
Collapse
Affiliation(s)
- Shuo Liu
- Shanghai Center for Plant Stress Biology & National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Li Zhao
- Shanghai Center for Plant Stress Biology & National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Yonghui Liao
- Shanghai Center for Plant Stress Biology & National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Zhenling Luo
- Shanghai Center for Plant Stress Biology & National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Hua Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Peng Wang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Han Zhao
- Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Jixing Xia
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, 530004, China
| | - Chao-Feng Huang
- Shanghai Center for Plant Stress Biology & National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
31
|
Gene Mapping, Genome-Wide Transcriptome Analysis, and WGCNA Reveals the Molecular Mechanism for Triggering Programmed Cell Death in Rice Mutant pir1. PLANTS 2020; 9:plants9111607. [PMID: 33228024 PMCID: PMC7699392 DOI: 10.3390/plants9111607] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 11/17/2020] [Accepted: 11/17/2020] [Indexed: 01/13/2023]
Abstract
Programmed cell death (PCD) is involved in plant growth and development and in resistance to biotic and abiotic stress. To understand the molecular mechanism that triggers PCD, phenotypic and physiological analysis was conducted using the first three leaves of mutant rice PCD-induced-resistance 1(pir1) and its wild-type ZJ22. The 2nd and 3rd leaves of pir1 had a lesion mimic phenotype, which was shown to be an expression of PCD induced by H2O2-accumulation. The PIR1 gene was mapped in a 498 kb-interval between the molecular markers RM3321 and RM3616 on chromosome 5, and further analysis suggested that the PCD phenotype of pir1 is controlled by a novel gene for rice PCD. By comparing the mutant with wild type rice, 1679, 6019, and 4500 differentially expressed genes (DEGs) were identified in the three leaf positions, respectively. KEGG analysis revealed that DEGs were most highly enriched in phenylpropanoid biosynthesis, alpha-linolenic acid metabolism, and brassinosteroid biosynthesis. In addition, conjoint analysis of transcriptome data by weighted gene co-expression network analysis (WGCNA) showed that the turquoise module of the 18 identified modules may be related to PCD. There are close interactions or indirect cross-regulations between the differential genes that are significantly enriched in the phenylpropanoid biosynthesis pathway and the hormone biosynthesis pathway in this module, which indicates that these genes may respond to and trigger PCD.
Collapse
|
32
|
Xiong W, Li Y, Wu Z, Ma L, Liu Y, Qin L, Liu J, Hu Z, Guo S, Sun J, Yang G, Chai M, Zhang C, Lu X, Fu C. Characterization of Two New brown midrib1 Mutations From an EMS-Mutagenic Maize Population for Lignocellulosic Biomass Utilization. FRONTIERS IN PLANT SCIENCE 2020; 11:594798. [PMID: 33312186 PMCID: PMC7703671 DOI: 10.3389/fpls.2020.594798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 10/15/2020] [Indexed: 06/12/2023]
Abstract
Gene mutations linked to lignin biosynthesis are responsible for the brown midrib (bm) phenotypes. The bm mutants have a brown-reddish midrib associated with changes in lignin content and composition. Maize bm1 is caused by a mutation of the cinnamyl alcohol dehydrogenase gene ZmCAD2. Here, we generated two new bm1 mutant alleles (bm1-E1 and bm1-E2) through EMS mutagenesis, which contained a single nucleotide mutation (Zmcad2-1 and Zmcad2-2). The corresponding proteins, ZmCAD2-1 and ZmCAD2-2 were modified with Cys103Ser and Gly185Asp, which resulted in no enzymatic activity in vitro. Sequence alignment showed that CAD proteins have high similarity across plants and that Cys103 and Gly185 are conserved in higher plants. The lack of enzymatic activity when Cys103 was replaced for other amino acids indicates that Cys103 is required for its enzyme activity. Enzymatic activity of proteins encoded by CAD genes in bm1-E plants is 23-98% lower than in the wild type, which leads to lower lignin content and different lignin composition. The bm1-E mutants have higher saccharification efficiency in maize and could therefore provide new and promising breeding resources in the future.
Collapse
Affiliation(s)
- Wangdan Xiong
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- Grassland Agri-Husbandry Research Center, College of Grassland Science, Qingdao Agricultural University, Qingdao, China
| | - Yu Li
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhenying Wu
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Lichao Ma
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- Grassland Agri-Husbandry Research Center, College of Grassland Science, Qingdao Agricultural University, Qingdao, China
| | - Yuchen Liu
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Li Qin
- Institute of Molecular Breeding for Maize, Qilu Normal University, Jinan, China
| | - Jisheng Liu
- Institute of Molecular Breeding for Maize, Qilu Normal University, Jinan, China
| | - Zhubing Hu
- Collaborative Innovation Center of Crop Stress Biology, Henan Province and Institute of Plant Stress Biology, Henan University, Kaifeng, China
| | - Siyi Guo
- Collaborative Innovation Center of Crop Stress Biology, Henan Province and Institute of Plant Stress Biology, Henan University, Kaifeng, China
| | - Juan Sun
- Grassland Agri-Husbandry Research Center, College of Grassland Science, Qingdao Agricultural University, Qingdao, China
| | - Guofeng Yang
- Grassland Agri-Husbandry Research Center, College of Grassland Science, Qingdao Agricultural University, Qingdao, China
| | - Maofeng Chai
- Grassland Agri-Husbandry Research Center, College of Grassland Science, Qingdao Agricultural University, Qingdao, China
| | - Chunyi Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaoduo Lu
- Institute of Molecular Breeding for Maize, Qilu Normal University, Jinan, China
| | - Chunxiang Fu
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| |
Collapse
|
33
|
Nguyen DT, Gomez LD, Harper A, Halpin C, Waugh R, Simister R, Whitehead C, Oakey H, Nguyen HT, Nguyen TV, Duong TX, McQueen-Mason SJ. Association mapping identifies quantitative trait loci (QTL) for digestibility in rice straw. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:165. [PMID: 33062051 PMCID: PMC7545568 DOI: 10.1186/s13068-020-01807-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 09/27/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND The conversion of lignocellulosic biomass from agricultural waste into biofuels and chemicals is considered a promising way to provide sustainable low carbon products without compromising food security. However, the use of lignocellulosic biomass for biofuel and chemical production is limited by the cost-effectiveness of the production process due to its recalcitrance to enzymatic hydrolysis and fermentable sugar release (i.e., saccharification). Rice straw is a particularly attractive feedstock because millions of tons are currently burned in the field each year for disposal. The aim of this study was to explore the underlying natural genetic variation that impacts the recalcitrance of rice (Oryza sativa) straw to enzymatic saccharification. Ultimately, we wanted to investigate whether we could identify genetic markers that could be used in rice breeding to improve commercial cultivars for this trait. Here, we describe the development and characterization of a Vietnamese rice genome-wide association panel, high-throughput analysis of rice straw saccharification and lignin content, and the results from preliminary genome-wide association studies (GWAS) of the combined data sets. We identify both QTL and plausible candidate genes that may have an impact on the saccharification of rice straw. RESULTS We assembled a diversity panel comprising 151 rice genotypes (Indica and Japonica types) from commercial, historical elite cultivars, and traditional landraces grown in Vietnam. The diversity panel was genotyped using genotype by sequencing (GBS) methods yielding a total of 328,915 single nucleotide polymorphisms (SNPs). We collected phenotypic data from stems of these 151 genotypes for biomass saccharification and lignin content. Using GWAS on the indica genotypes over 2 years we identified ten significant QTL for saccharification (digestibility) and seven significant QTL for lignin. One QTL on chromosome 11 occurred in both GWAS for digestibility and for lignin. Seven QTL for digestibility, on CH2, CH6, CH7, CH8, and CH11, were observed in both years of the study. The QTL regions for saccharification include three potential candidate genes that have been previously reported to influence digestibility: OsAT10; OsIRX9; and OsMYB58/63-L. CONCLUSIONS Despite the difficulties associated with multi-phasic analysis of complex traits in novel germplasm, a moderate resolution GWAS successfully identified genetic associations encompassing both known and/or novel genes involved in determining the saccharification potential and lignin content of rice straw. Plausible candidates within QTL regions, in particular those with roles in cell wall biosynthesis, were identified but will require validation to confirm their value for application in rice breeding.
Collapse
Affiliation(s)
- Duong T. Nguyen
- Plant Biotechnology Division,, Field Crops Research Institute (FCRI), Hai Duong, Vietnam
- School of Agriculture and Environment, University of Western Australia (UWA), Crawley, WA Australia
| | - Leonardo D. Gomez
- Centre for Novel Agricultural Products (CNAP), University of York (UoY), Wentworth Way, York, UK
| | - Andrea Harper
- Centre for Novel Agricultural Products (CNAP), University of York (UoY), Wentworth Way, York, UK
| | - Claire Halpin
- Division of Plant Sciences, School of Life Sciences, University of Dundee (UoD), Dundee, UK
| | - Robbie Waugh
- Division of Plant Sciences, School of Life Sciences, University of Dundee (UoD), Dundee, UK
- Cell, and Molecular Genetics, The James Hutton Institute (JHI), Invergowrie Dundee, UK
- School of Agriculture Food and Wine, University of Adelaide, Waite Campus, Adelaide, SA Australia
| | - Rachael Simister
- Centre for Novel Agricultural Products (CNAP), University of York (UoY), Wentworth Way, York, UK
| | - Caragh Whitehead
- Centre for Novel Agricultural Products (CNAP), University of York (UoY), Wentworth Way, York, UK
| | - Helena Oakey
- Division of Plant Sciences, School of Life Sciences, University of Dundee (UoD), Dundee, UK
- School of Agriculture Food and Wine, University of Adelaide, Waite Campus, Adelaide, SA Australia
| | - Huong T. Nguyen
- Plant Biotechnology Division,, Field Crops Research Institute (FCRI), Hai Duong, Vietnam
| | - Tuat V. Nguyen
- Vietnam Academy of Agricultural Sciences, Hanoi, Vietnam
| | - Tu X. Duong
- Plant Biotechnology Division,, Field Crops Research Institute (FCRI), Hai Duong, Vietnam
| | - Simon J. McQueen-Mason
- Centre for Novel Agricultural Products (CNAP), University of York (UoY), Wentworth Way, York, UK
| |
Collapse
|
34
|
Sun X, Ma Y, Yang C, Li J. Rice OVATE family protein 6 regulates leaf angle by modulating secondary cell wall biosynthesis. PLANT MOLECULAR BIOLOGY 2020; 104:249-261. [PMID: 32715397 DOI: 10.1007/s11103-020-01039-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 07/20/2020] [Indexed: 06/11/2023]
Abstract
Secondary cell wall not only provides rigidity and mechanical resistance to plants, but also has a large impact on plant growth and adaptation to environments. Biosynthesis of secondary cell wall is regulated by a complicated signaling transduction network; however, it is still unclear how the transcriptional regulation of secondary cell wall biosynthesis works at the molecular level. Here, we report in rice that OVATE family proteins 6 (OsOFP6) is a positive regulator in modulating expression of the genes related to biosynthesis of the secondary cell wall. Transgenic plants with knock-down of OsOFP6 by RNA interference showed increased leaf angle, which resulted from the thinner secondary cell wall with reduced amounts of cellulose and lignin, whilst overexpression of OsOFP6 in rice led to the thinker secondary cell wall with increased lignin content. Protein-protein interaction analysis revealed that OsOFP6 interacts with Oryza sativa homeobox 15 (OSH15), a class I KNOX protein. The interaction of OsOFP6 and OSH15 enhanced the transcriptional activity of OSH15 which binds to the promoter of OsIRX9 (Oryza sativa IRREGULAR XYLEM 9). Taken together, our study provides insights into the function of OsOFP6 in regulating leaf angle and the control of biosynthesis of secondary cell wall.
Collapse
Affiliation(s)
- Xiaoxuan Sun
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, Botanical Garden, Chinese Academy of Sciences, Guangzhou, South China, 510650, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yamei Ma
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, Botanical Garden, Chinese Academy of Sciences, Guangzhou, South China, 510650, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chao Yang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, Botanical Garden, Chinese Academy of Sciences, Guangzhou, South China, 510650, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jianxiong Li
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, Botanical Garden, Chinese Academy of Sciences, Guangzhou, South China, 510650, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, 510650, China.
| |
Collapse
|
35
|
Onohata T, Gomi K. Overexpression of jasmonate-responsive OsbHLH034 in rice results in the induction of bacterial blight resistance via an increase in lignin biosynthesis. PLANT CELL REPORTS 2020; 39:1175-1184. [PMID: 32424468 DOI: 10.1007/s00299-020-02555-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 05/09/2020] [Indexed: 06/11/2023]
Abstract
OsbHLH034 acts as a positive regulator in jasmonate signaling in rice. Jasmonic acid (JA) is a plant hormone under strict regulation by various transcription factors (TFs) that acts as a signaling compound in the regulation of plant defense responses and development. Here, we report that a basic helix-loop-helix (bHLH)-type TF, OsbHLH034, plays an important role in the JA-mediated resistance response against rice bacterial blight caused by Xanthomonas oryzae pv. oryzae. The expression of OsbHLH034 was upregulated at a late phase after JA treatment. OsbHLH034 interacted with a Jasmonate ZIM-domain (JAZ) protein, OsJAZ9, in both plant and yeast cells. Transgenic rice plants overexpressing OsbHLH034 exhibited a JA-hypersensitive phenotype and increased resistance against rice bacterial blight. Conversely, OsbHLH034-overexpressing plants exhibited high sensitivity to salt stress. The expression of some JA-responsive secretory-type peroxidase genes was upregulated in the OsbHLH034-overexpressing rice plants. Concomitantly, the lignin content significantly increased in these transgenic plants compared to that in the wild-type. These results indicate that OsbHLH034 acts as a positive regulator of the JA-mediated defense response in rice.
Collapse
Affiliation(s)
- Tomonori Onohata
- Plant Genome and Resource Research Center, Faculty of Agriculture, Kagawa University, Miki, Kagawa, 761-0795, Japan
| | - Kenji Gomi
- Plant Genome and Resource Research Center, Faculty of Agriculture, Kagawa University, Miki, Kagawa, 761-0795, Japan.
| |
Collapse
|
36
|
Integrated Analysis of mRNA and microRNA Elucidates the Regulation of Glycyrrhizic Acid Biosynthesis in Glycyrrhiza uralensis Fisch. Int J Mol Sci 2020; 21:ijms21093101. [PMID: 32353999 PMCID: PMC7247157 DOI: 10.3390/ijms21093101] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/13/2020] [Accepted: 04/21/2020] [Indexed: 01/24/2023] Open
Abstract
Licorice (Glycyrrhiza) is a staple Chinese herbal medicine in which the primary bioactive compound is glycyrrhizic acid (GA), which has important pharmacological functions. To date, the structural genes involved in GA biosynthesis have been identified. However, the regulation of these genes in G. uralensis has not been elucidated. In this study, we performed a comprehensive analysis based on the transcriptome and small RNAome by high-throughput sequencing. In total, we identified 18 structural GA genes and 3924 transporter genes. We identified genes encoding 2374 transporters, 1040 transcription factors (TFs), 262 transcriptional regulators (TRs) and 689 protein kinases (PKs), which were coexpressed with at least one structural gene. We also identified 50,970 alternative splicing (AS) events, in which 17 structural genes exhibited AS. Finally, we also determined that miRNAs potentially targeted 4 structural genes, and 318, 8, and 218 miRNAs potentially regulated 150 TFs, 34 TRs, and 88 PKs, respectively, related to GA. Overall, the results of this study helped to elucidate the gene expression and regulation of GA biosynthesis in G. uralensis, provided a theoretical basis for the synthesis of GA via synthetic biology, and laid a foundation for the cultivation of new varieties of licorice with high GA content.
Collapse
|
37
|
Kashihara K, Onohata T, Yariuchi R, Tanaka S, Akimitsu K, Gomi K. The overexpression of OsSRO1a, which encodes an OsNINJA1- and OsMYC2-interacting protein, negatively affects OsMYC2-mediated jasmonate signaling in rice. PLANT CELL REPORTS 2020; 39:489-500. [PMID: 31900582 DOI: 10.1007/s00299-019-02504-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 12/23/2019] [Indexed: 06/10/2023]
Abstract
OsNINJA1-interacting protein, OsSRO1a, acts as a mediator that suppresses OsMYC2 activity in response to JA. Jasmonic acid (JA) is an important plant hormone for the stable growth and development of higher plants. The rice gene NOVEL INTERACTOR OF JAZ1 (OsNINJA1) interacts with Jasmonate ZIM-domain (JAZ) proteins and is a repressor of JA signaling. In this study, we identified several OsNINJA1-interacting proteins in rice from a yeast two-hybrid screen. Among the newly identified genes, we focused on SIMILAR TO RCD ONE1a (OsSRO1a) and investigated its role in JA signaling. Full-length OsSRO1a interacted with OsNINJA1 in plant cells but not in yeast cells. OsSRO1a also interacted with OsMYC2, a positive transcription factor in JA signaling, in both plant and yeast cells. The expression of OsSRO1a was upregulated at a late phase after JA treatment. Transgenic rice plants overexpressing OsSRO1a exhibited JA-insensitive phenotypes. In wild-type plants, JA induces resistance against rice bacterial blight, but this phenotype was suppressed in the OsSRO1a-overexpressing plants. Furthermore, the degradation of chlorophyll under dark-induced senescence conditions and the JA-induced upregulation of OsMYC2-responsive genes were suppressed in the OsSRO1a-overexpressing plants. These results suggest that OsSRO1a is a negative regulator of the OsMYC2-mediated JA signaling pathway in rice.
Collapse
Affiliation(s)
- Keita Kashihara
- Faculty of Agriculture, Plant Genome and Resource Research Center, Kagawa University, Miki, Kagawa, 761-0795, Japan
| | - Tomonori Onohata
- Faculty of Agriculture, Plant Genome and Resource Research Center, Kagawa University, Miki, Kagawa, 761-0795, Japan
| | - Rina Yariuchi
- Faculty of Agriculture, Plant Genome and Resource Research Center, Kagawa University, Miki, Kagawa, 761-0795, Japan
| | - Suzumi Tanaka
- Faculty of Agriculture, Plant Genome and Resource Research Center, Kagawa University, Miki, Kagawa, 761-0795, Japan
| | - Kazuya Akimitsu
- Faculty of Agriculture, Plant Genome and Resource Research Center, Kagawa University, Miki, Kagawa, 761-0795, Japan
| | - Kenji Gomi
- Faculty of Agriculture, Plant Genome and Resource Research Center, Kagawa University, Miki, Kagawa, 761-0795, Japan.
| |
Collapse
|
38
|
Jardim-Messeder D, da Franca Silva T, Fonseca JP, Junior JN, Barzilai L, Felix-Cordeiro T, Pereira JC, Rodrigues-Ferreira C, Bastos I, da Silva TC, de Abreu Waldow V, Cassol D, Pereira W, Flausino B, Carniel A, Faria J, Moraes T, Cruz FP, Loh R, Van Montagu M, Loureiro ME, de Souza SR, Mangeon A, Sachetto-Martins G. Identification of genes from the general phenylpropanoid and monolignol-specific metabolism in two sugarcane lignin-contrasting genotypes. Mol Genet Genomics 2020; 295:717-739. [PMID: 32124034 DOI: 10.1007/s00438-020-01653-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 02/12/2020] [Indexed: 11/29/2022]
Abstract
The phenylpropanoid pathway is an important route of secondary metabolism involved in the synthesis of different phenolic compounds such as phenylpropenes, anthocyanins, stilbenoids, flavonoids, and monolignols. The flux toward monolignol biosynthesis through the phenylpropanoid pathway is controlled by specific genes from at least ten families. Lignin polymer is one of the major components of the plant cell wall and is mainly responsible for recalcitrance to saccharification in ethanol production from lignocellulosic biomass. Here, we identified and characterized sugarcane candidate genes from the general phenylpropanoid and monolignol-specific metabolism through a search of the sugarcane EST databases, phylogenetic analysis, a search for conserved amino acid residues important for enzymatic function, and analysis of expression patterns during culm development in two lignin-contrasting genotypes. Of these genes, 15 were cloned and, when available, their loci were identified using the recently released sugarcane genomes from Saccharum hybrid R570 and Saccharum spontaneum cultivars. Our analysis points out that ShPAL1, ShPAL2, ShC4H4, Sh4CL1, ShHCT1, ShC3H1, ShC3H2, ShCCoAOMT1, ShCOMT1, ShF5H1, ShCCR1, ShCAD2, and ShCAD7 are strong candidates to be bona fide lignin biosynthesis genes. Together, the results provide information about the candidate genes involved in monolignol biosynthesis in sugarcane and may provide useful information for further molecular genetic studies in sugarcane.
Collapse
Affiliation(s)
- Douglas Jardim-Messeder
- Laboratório de Genômica Funcional e Transdução de Sinal, Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Tatiane da Franca Silva
- Laboratório de Genômica Funcional e Transdução de Sinal, Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Departamento de Biotecnologia, Escola de Engenharia de Lorena, Universidade de São Paulo, Lorena, São Paulo, Brazil
| | - Jose Pedro Fonseca
- Laboratório de Genômica Funcional e Transdução de Sinal, Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - José Nicomedes Junior
- Laboratório de Genômica Funcional e Transdução de Sinal, Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Centro de Pesquisa e Desenvolvimento Leopoldo Américo Miguez de Mello, Gerência de Biotecnologia, CENPES, Petrobras, Rio de Janeiro, Brazil
| | - Lucia Barzilai
- Laboratório de Genômica Funcional e Transdução de Sinal, Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Thais Felix-Cordeiro
- Laboratório de Genômica Funcional e Transdução de Sinal, Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Joyce Carvalho Pereira
- Laboratório de Genômica Funcional e Transdução de Sinal, Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Clara Rodrigues-Ferreira
- Laboratório de Genômica Funcional e Transdução de Sinal, Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Isabela Bastos
- Laboratório de Genômica Funcional e Transdução de Sinal, Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Tereza Cristina da Silva
- Laboratório de Genômica Funcional e Transdução de Sinal, Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Vinicius de Abreu Waldow
- Centro de Pesquisa e Desenvolvimento Leopoldo Américo Miguez de Mello, Gerência de Biotecnologia, CENPES, Petrobras, Rio de Janeiro, Brazil
| | - Daniela Cassol
- Laboratório de Genômica Funcional e Transdução de Sinal, Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Willian Pereira
- Departamento de Química, Universidade Federal Rural do Rio de Janeiro, Seropédica, Rio de Janeiro, Brazil
| | - Bruno Flausino
- Laboratório de Genômica Funcional e Transdução de Sinal, Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Adriano Carniel
- Laboratório de Genômica Funcional e Transdução de Sinal, Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Centro de Pesquisa e Desenvolvimento Leopoldo Américo Miguez de Mello, Gerência de Biotecnologia, CENPES, Petrobras, Rio de Janeiro, Brazil
| | - Jessica Faria
- Laboratório de Genômica Funcional e Transdução de Sinal, Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Thamirys Moraes
- Laboratório de Genômica Funcional e Transdução de Sinal, Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fernanda P Cruz
- Laboratório de Genômica Funcional e Transdução de Sinal, Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Roberta Loh
- Laboratório de Genômica Funcional e Transdução de Sinal, Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto Federal de Educação, Ciência e Tecnologia do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marc Van Montagu
- Institute of Plant Biotechnology Outreach, Gent University, Technologiepark 3, Zwijnaarde, 9052, Gent, Belgium
| | - Marcelo Ehlers Loureiro
- Laboratório de Fisiologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Sonia Regina de Souza
- Departamento de Química, Universidade Federal Rural do Rio de Janeiro, Seropédica, Rio de Janeiro, Brazil
| | - Amanda Mangeon
- Laboratório de Genômica Funcional e Transdução de Sinal, Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Gilberto Sachetto-Martins
- Laboratório de Genômica Funcional e Transdução de Sinal, Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
39
|
Xu W, Tang W, Wang C, Ge L, Sun J, Qi X, He Z, Zhou Y, Chen J, Xu Z, Ma YZ, Chen M. SiMYB56 Confers Drought Stress Tolerance in Transgenic Rice by Regulating Lignin Biosynthesis and ABA Signaling Pathway. FRONTIERS IN PLANT SCIENCE 2020; 11:785. [PMID: 32625221 PMCID: PMC7314972 DOI: 10.3389/fpls.2020.00785] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 05/18/2020] [Indexed: 05/19/2023]
Abstract
Foxtail millet (Setaria italica) originated in China and is generally cultivated in arid and barren soil. Through long-term harsh environmental selection, foxtail millet has acquired significant drought resistance. However, the molecular mechanism of foxtail millet drought resistance is still unknown. Here, we identified a drought-induced R2R3-MYB transcription factor SiMYB56 in foxtail millet. Overexpression of SiMYB56 significantly enhances tolerance to drought stress in transgenic rice plants at both the vegetative and the reproductive stage and has no adverse effect on its normal growth. Compared with wild-type controls, SiMYB56-overexpressing rice plants had lower MDA content and higher lignin content under drought conditions. Quantitative real-time PCR and Transcriptional activity assays demonstrated that SiMYB56 could activate expression of lignin biosynthesis genes under drought conditions. Also, we found that overexpression of SiMYB56 can led to ABA accumulation in the seeds transgenic rice plants. Further experiments showed that Overexpression of SiMYB56 can upregulate the expression of ABA synthesis and response related genes under drought conditions. In conclusion, SiMYB56 may enhance the drought resistance of transgenic rice plants by regulating lignin biosynthesis and ABA signaling pathway, making SiMYB56 a candidate gene for drought resistance improvement in gramineous crops.
Collapse
Affiliation(s)
- Weiya Xu
- National Key Facility for Crop Genetic Resources and Genetic Improvement, Key Laboratory of Crop Genetics and Breeding, Ministry of Agriculture, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wensi Tang
- National Key Facility for Crop Genetic Resources and Genetic Improvement, Key Laboratory of Crop Genetics and Breeding, Ministry of Agriculture, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chunxiao Wang
- National Key Facility for Crop Genetic Resources and Genetic Improvement, Key Laboratory of Crop Genetics and Breeding, Ministry of Agriculture, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Linhao Ge
- National Key Facility for Crop Genetic Resources and Genetic Improvement, Key Laboratory of Crop Genetics and Breeding, Ministry of Agriculture, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jianchang Sun
- Institute of Crop Sciences, Ningxia Academy of Agriculture and Forestry Sciences, Yongning, China
| | - Xin Qi
- National Key Facility for Crop Genetic Resources and Genetic Improvement, Key Laboratory of Crop Genetics and Breeding, Ministry of Agriculture, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhang He
- National Key Facility for Crop Genetic Resources and Genetic Improvement, Key Laboratory of Crop Genetics and Breeding, Ministry of Agriculture, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yongbin Zhou
- National Key Facility for Crop Genetic Resources and Genetic Improvement, Key Laboratory of Crop Genetics and Breeding, Ministry of Agriculture, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jun Chen
- National Key Facility for Crop Genetic Resources and Genetic Improvement, Key Laboratory of Crop Genetics and Breeding, Ministry of Agriculture, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhaoshi Xu
- National Key Facility for Crop Genetic Resources and Genetic Improvement, Key Laboratory of Crop Genetics and Breeding, Ministry of Agriculture, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - You-Zhi Ma
- National Key Facility for Crop Genetic Resources and Genetic Improvement, Key Laboratory of Crop Genetics and Breeding, Ministry of Agriculture, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
- *Correspondence: You-Zhi Ma,
| | - Ming Chen
- National Key Facility for Crop Genetic Resources and Genetic Improvement, Key Laboratory of Crop Genetics and Breeding, Ministry of Agriculture, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
- Ming Chen,
| |
Collapse
|
40
|
Kasirajan L, Valiyaparambth R, Kubandiran A, Velu J. Isolation, cloning and expression analysis of cinnamyl alcohol dehydrogenase (CAD) involved in phenylpropanoid pathway of Erianthus arundinaceus, a wild relative of sugarcane. 3 Biotech 2020; 10:11. [PMID: 31857939 DOI: 10.1007/s13205-019-1998-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 11/25/2019] [Indexed: 10/25/2022] Open
Abstract
In this study we have cloned and characterized cinnamyl alcohol dehydrogenase (CAD) involved in phenylpropanoid pathway which can be utilized for biomass modification for improved saccharification efficiency. The full length gene CAD is of 4 kb containing four exons and three introns, among which the exon 1 and 2 of 88 and 116 bp were conserved with sorghum and Miscanthus CADs. The coding region of CAD was identified with 1098 bp open reading frame (ORF), for 365 amino acids. In the PROSITE analysis, a zinc-containing alcohol dehydrogenase signature (GHEVVGEVVEVGPEV) and an NADP-binding domain motif (GLGGLG) was identified, while the motif analysis showed unique signature sequence of "LEPYLA" at 258-264 aa which was absent in the CAD sequences of other crops. This sequence information on CAD from Erianthus a bioenergy crop might be useful for subsequent research on lignin engineering for improved biomass conversion and for unravelling the impact of lignin on cell wall mechanics.
Collapse
|
41
|
Altered lignocellulose chemical structure and molecular assembly in CINNAMYL ALCOHOL DEHYDROGENASE-deficient rice. Sci Rep 2019; 9:17153. [PMID: 31748605 PMCID: PMC6868246 DOI: 10.1038/s41598-019-53156-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 10/29/2019] [Indexed: 12/31/2022] Open
Abstract
Lignin is a complex phenylpropanoid polymer deposited in plant cell walls. Lignin has long been recognized as an important limiting factor for the polysaccharide-oriented biomass utilizations. To mitigate lignin-associated biomass recalcitrance, numerous mutants and transgenic plants that produce lignocellulose with reduced lignin contents and/or lignins with altered chemical structures have been produced and characterised. However, it is not fully understood how altered lignin chemistry affects the supramolecular structure of lignocellulose, and consequently, its utilization properties. Herein, we conducted comprehensive chemical and supramolecular structural analyses of lignocellulose produced by a rice cad2 mutant deficient in CINNAMYL ALCOHOL DEHYDROGENASE (CAD), which encodes a key enzyme in lignin biosynthesis. By using a solution-state two-dimensional NMR approach and complementary chemical methods, we elucidated the structural details of the altered lignins enriched with unusual hydroxycinnamaldehyde-derived substructures produced by the cad2 mutant. In parallel, polysaccharide assembly and the molecular mobility of lignocellulose were investigated by solid-state 13C MAS NMR, nuclear magnetic relaxation, X-ray diffraction, and Simon's staining analyses. Possible links between CAD-associated lignin modifications (in terms of total content and chemical structures) and changes to the lignocellulose supramolecular structure are discussed in the context of the improved biomass saccharification efficiency of the cad2 rice mutant.
Collapse
|
42
|
Tomita M, Tanaka J. Semidwarf Gene d60 Affected by Ubiquitous Gamete Lethal Gene gal Produced Rare Double Dwarf with d30 via Recombination Breaking Repulsion-Phase Linkage on Rice Chromosome 2. Genes (Basel) 2019; 10:E874. [PMID: 31683634 PMCID: PMC6895840 DOI: 10.3390/genes10110874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 10/17/2019] [Accepted: 10/18/2019] [Indexed: 11/30/2022] Open
Abstract
The genotype of gal and d60 were investigated in 33 rice varieties chosen from representative semidwarf and dwarf rice varieties. These were crossed with three tester lines, the d60Gal line (genotype d60d60GalGal), the D60gal line (Koshihikari, D60D60galgal), and the D60Gal line (D60D60GalGal). Each F1 plant was measured for culm length, and seed fertility. As a result, all F1 lines with the d60Gal line showed tallness and partial sterility, reduced by 25% in average from those with the D60gal line (Koshihikari) and the D60Gal line. These data indicated that the genotype of the 33 varieties is D60D60galgal and that the d60 locus is not allelic to those of sd1, d1, d2, d6, d18k, d29, d30, d35, d49, d50, and qCL1 involved in the 33 varieties. In addition, the gal gene is not complementarily activated with the semidwarf and dwarf genes described above, other than d60. The Gal gene will be ubiquitously distributed in rice. It is emphasized that Gal is a rare and valuable mutant gene essential to the transmission of d60. The double dwarf genotype of homozygous d30d60 was rarely gained in the F3 of the d30 line × d60 line by breaking their repulsion d60-D30 linkage on chromosome 2.
Collapse
Affiliation(s)
- Motonori Tomita
- Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan.
| | - Jun Tanaka
- Faculty of Agriculture, Tottori University, 4-101 Koyama Minami, Tottori 680-8550, Japan.
| |
Collapse
|
43
|
Su X, Zhao Y, Wang H, Li G, Cheng X, Jin Q, Cai Y. Transcriptomic analysis of early fruit development in Chinese white pear (Pyrus bretschneideri Rehd.) and functional identification of PbCCR1 in lignin biosynthesis. BMC PLANT BIOLOGY 2019; 19:417. [PMID: 31604417 PMCID: PMC6788021 DOI: 10.1186/s12870-019-2046-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 09/20/2019] [Indexed: 05/02/2023]
Abstract
BACKGROUND The content of stone cells and lignin is one of the key factors affecting the quality of pear fruit. In a previous study, we determined the developmental regularity of stone cells and lignin in 'Dangshan Su' pear fruit 15-145 days after pollination (DAP). However, the development of fruit stone cells and lignin before 15 DAP has not been heavily researched. RESULTS In this study, we found that primordial stone cells began to appear at 7 DAP and that the fruit had formed a large number of stone cells at 15 DAP. Subsequently, transcriptome sequencing was performed on fruits at 0, 7, and 15 DAP and identified 3834 (0 vs. 7 DAP), 4049 (7 vs. 15 DAP) and 5763 (0 vs. 15 DAP) DEGs. During the 7-15 DAP period, a large number of key enzyme genes essential for lignin biosynthesis are gradually up-regulated, and their expression pattern is consistent with the accumulation of lignin in this period. Further analysis found that the biosynthesis of S-type lignin in 'Dangshan Su' pear does not depend on the catalytic activity of PbSAD but is primarily generated by the catalytic activity of caffeoyl-CoA through CCoAOMT, CCR, F5H, and CAD. We cloned PbCCR1, 2 and analysed their functions in Chinese white pear lignin biosynthesis. PbCCR1 and 2 have a degree of functional redundancy; both demonstrate the ability to participate in lignin biosynthesis. However, PbCCR1 may be the major gene for lignin biosynthesis, while PbCCR2 has little effect on lignin biosynthesis. CONCLUSIONS Our results revealed that 'Dangshan Su' pear began to form a large number of stone cells and produce lignin after 7 DAP and mainly accumulated materials from 0 to 7 DAP. PbCCR1 is mainly involved in the biosynthesis of lignin in 'Dangshan Su' pear and plays a positive role in lignin biosynthesis.
Collapse
Affiliation(s)
- Xueqiang Su
- School of Life Science, Anhui Agricultural University, Hefei, Anhui China
| | - Yu Zhao
- School of Life Science, Anhui Agricultural University, Hefei, Anhui China
| | - Han Wang
- School of Life Science, Anhui Agricultural University, Hefei, Anhui China
| | - Guohui Li
- School of Life Science, Anhui Agricultural University, Hefei, Anhui China
| | - Xi Cheng
- School of Life Science, Anhui Agricultural University, Hefei, Anhui China
| | - Qing Jin
- School of Life Science, Anhui Agricultural University, Hefei, Anhui China
| | - Yongping Cai
- School of Life Science, Anhui Agricultural University, Hefei, Anhui China
| |
Collapse
|
44
|
Lam PY, Lui ACW, Yamamura M, Wang L, Takeda Y, Suzuki S, Liu H, Zhu FY, Chen MX, Zhang J, Umezawa T, Tobimatsu Y, Lo C. Recruitment of specific flavonoid B-ring hydroxylases for two independent biosynthesis pathways of flavone-derived metabolites in grasses. THE NEW PHYTOLOGIST 2019; 223:204-219. [PMID: 30883799 DOI: 10.1111/nph.15795] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Accepted: 03/08/2019] [Indexed: 05/19/2023]
Abstract
In rice (Oryza sativa), OsF2H and OsFNSII direct flavanones to independent pathways that form soluble flavone C-glycosides and tricin-type metabolites (both soluble and lignin-bound), respectively. Production of soluble tricin metabolites requires CYP75B4 as a chrysoeriol 5'-hydroxylase. Meanwhile, the close homologue CYP75B3 is a canonical flavonoid 3'-hydroxylase (F3'H). However, their precise roles in the biosynthesis of soluble flavone C-glycosides and tricin-lignins in cell walls remain unknown. We examined CYP75B3 and CYP75B4 expression in vegetative tissues, analyzed extractable flavonoid profiles, cell wall structure and digestibility of their mutants, and investigated catalytic activities of CYP75B4 orthologues in grasses. CYP75B3 and CYP75B4 showed co-expression patterns with OsF2H and OsFNSII, respectively. CYP75B3 is the sole F3'H in flavone C-glycosides biosynthesis, whereas CYP75B4 alone provides sufficient 3',5'-hydroxylation for tricin-lignin deposition. CYP75B4 mutation results in production of apigenin-incorporated lignin and enhancement of cell wall digestibility. Moreover, tricin pathway-specific 3',5'-hydroxylation activities are conserved in sorghum CYP75B97 and switchgrass CYP75B11. CYP75B3 and CYP75B4 represent two different pathway-specific enzymes recruited together with OsF2H and OsFNSII, respectively. Interestingly, the OsF2H-CYP75B3 and OsFNSII-CYP75B4 pairs appear to be conserved in grasses. Finally, manipulation of tricin biosynthesis through CYP75B4 orthologues can be a promising strategy to improve digestibility of grass biomass for biofuel and biomaterial production.
Collapse
Affiliation(s)
- Pui Ying Lam
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
| | - Andy C W Lui
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Masaomi Yamamura
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
| | - Lanxiang Wang
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Yuri Takeda
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
| | - Shiro Suzuki
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
| | - Hongjia Liu
- The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Fu-Yuan Zhu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, China
| | - Mo-Xian Chen
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Jianhua Zhang
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
- State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Toshiaki Umezawa
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
- Research Unit for Global Sustainability Studies, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
| | - Yuki Tobimatsu
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
| | - Clive Lo
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| |
Collapse
|
45
|
Miyamoto T, Takada R, Tobimatsu Y, Takeda Y, Suzuki S, Yamamura M, Osakabe K, Osakabe Y, Sakamoto M, Umezawa T. OsMYB108 loss-of-function enriches p-coumaroylated and tricin lignin units in rice cell walls. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 98:975-987. [PMID: 30773774 DOI: 10.1111/tpj.14290] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 02/08/2019] [Accepted: 02/14/2019] [Indexed: 05/23/2023]
Abstract
Breeding approaches to enrich lignins in biomass could be beneficial to improving the biorefinery process because lignins increase biomass heating value and represent a potent source of valuable aromatic chemicals. However, despite the fact that grasses are promising lignocellulose feedstocks, limited information is yet available for molecular-breeding approaches to upregulate lignin biosynthesis in grass species. In this study, we generated lignin-enriched transgenic rice (Oryza sativa), a model grass species, via targeted mutagenesis of the transcriptional repressor OsMYB108 using CRISPR/Cas9-mediated genome editing. The OsMYB108-knockout rice mutants displayed increased expressions of lignin biosynthetic genes and enhanced lignin deposition in culm cell walls. Chemical and two-dimensional nuclear magnetic resonance (NMR) analyses revealed that the mutant cell walls were preferentially enriched in γ-p-coumaroylated and tricin lignin units, both of which are typical and unique components in grass lignins. NMR analysis also showed that the relative abundances of major lignin linkage types were altered in the OsMYB108 mutants.
Collapse
Affiliation(s)
- Takuji Miyamoto
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Rie Takada
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Yuki Tobimatsu
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Yuri Takeda
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Shiro Suzuki
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Masaomi Yamamura
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Keishi Osakabe
- Faculty of Bioscience and Bioindustry, Tokushima University, Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Yuriko Osakabe
- Faculty of Bioscience and Bioindustry, Tokushima University, Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Masahiro Sakamoto
- Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Toshiaki Umezawa
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto, 611-0011, Japan
- Research Unit for Development of Global Sustainability, Kyoto University, Uji, Kyoto, 611-0011, Japan
| |
Collapse
|
46
|
Low Lignin Mutants and Reduction of Lignin Content in Grasses for Increased Utilisation of Lignocellulose. AGRONOMY-BASEL 2019. [DOI: 10.3390/agronomy9050256] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Biomass rich in lignocellulose from grasses is a major source for biofuel production and animal feed. However, the presence of lignin in cell walls limits its efficient utilisation such as in its bioconversion to biofuel. Reduction of the lignin content or alteration of its structure in crop plants have been pursued, either by regulating genes encoding enzymes in the lignin biosynthetic pathway using biotechnological techniques or by breeding naturally-occurring low lignin mutant lines. The aim of this review is to provide a summary of these studies, focusing on lignin (monolignol) biosynthesis and composition in grasses and, where possible, the impact on recalcitrance to bioconversion. An overview of transgenic crops of the grass family with regulated gene expression in lignin biosynthesis is presented, including the effect on lignin content and changes in the ratio of p-hydroxyphenyl (H), guaiacyl (G) and syringyl (S) units. Furthermore, a survey is provided of low-lignin mutants in grasses, including cereals in particular, summarising their origin and phenotypic traits together with genetics and the molecular function of the various genes identified.
Collapse
|
47
|
Lignin engineering to improve saccharification and digestibility in grasses. Curr Opin Biotechnol 2019; 56:223-229. [DOI: 10.1016/j.copbio.2019.02.013] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 02/12/2019] [Accepted: 02/13/2019] [Indexed: 11/19/2022]
|
48
|
Yan X, Liu J, Kim H, Liu B, Huang X, Yang Z, Lin YCJ, Chen H, Yang C, Wang JP, Muddiman DC, Ralph J, Sederoff RR, Li Q, Chiang VL. CAD1 and CCR2 protein complex formation in monolignol biosynthesis in Populus trichocarpa. THE NEW PHYTOLOGIST 2019; 222:244-260. [PMID: 30276825 DOI: 10.1111/nph.15505] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 09/20/2018] [Indexed: 05/18/2023]
Abstract
Lignin is the major phenolic polymer in plant secondary cell walls and is polymerized from monomeric subunits, the monolignols. Eleven enzyme families are implicated in monolignol biosynthesis. Here, we studied the functions of members of the cinnamyl alcohol dehydrogenase (CAD) and cinnamoyl-CoA reductase (CCR) families in wood formation in Populus trichocarpa, including the regulatory effects of their transcripts and protein activities on monolignol biosynthesis. Enzyme activity assays from stem-differentiating xylem (SDX) proteins showed that RNAi suppression of PtrCAD1 in P. trichocarpa transgenics caused a reduction in SDX CCR activity. RNAi suppression of PtrCCR2, the only CCR member highly expressed in SDX, caused a reciprocal reduction in SDX protein CAD activities. The enzyme assays of mixed and coexpressed recombinant proteins supported physical interactions between PtrCAD1 and PtrCCR2. Biomolecular fluorescence complementation and pull-down/co-immunoprecipitation experiments supported a hypothesis of PtrCAD1/PtrCCR2 heterodimer formation. These results provide evidence for the formation of PtrCAD1/PtrCCR2 protein complexes in monolignol biosynthesis in planta.
Collapse
Affiliation(s)
- Xiaojing Yan
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, 100091, China
- Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Jie Liu
- Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC, 27695, USA
| | - Hoon Kim
- Department of Biochemistry and DOE Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin, Madison, WI, 53726, USA
| | - Baoguang Liu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
- Department of Forestry, Beihua University, Jilin, 132013, China
| | - Xiong Huang
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, 100091, China
| | - Zhichang Yang
- W.M. Keck FT-ICR Mass Spectrometry Laboratory, Department of Chemistry, North Carolina State University, Raleigh, NC, 27695, USA
| | - Ying-Chung Jimmy Lin
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
- Department of Life Sciences, Institute of Plant Biology, College of Life Science, National Taiwan University, Taipei, 10617, Taiwan
| | - Hao Chen
- Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC, 27695, USA
| | - Chenmin Yang
- Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC, 27695, USA
| | - Jack P Wang
- Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC, 27695, USA
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
| | - David C Muddiman
- W.M. Keck FT-ICR Mass Spectrometry Laboratory, Department of Chemistry, North Carolina State University, Raleigh, NC, 27695, USA
| | - John Ralph
- Department of Biochemistry and DOE Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin, Madison, WI, 53726, USA
| | - Ronald R Sederoff
- Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC, 27695, USA
| | - Quanzi Li
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, 100091, China
- Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Vincent L Chiang
- Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC, 27695, USA
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
| |
Collapse
|
49
|
Mutuku JM, Cui S, Hori C, Takeda Y, Tobimatsu Y, Nakabayashi R, Mori T, Saito K, Demura T, Umezawa T, Yoshida S, Shirasu K. The Structural Integrity of Lignin Is Crucial for Resistance against Striga hermonthica Parasitism in Rice. PLANT PHYSIOLOGY 2019; 179:1796-1809. [PMID: 30670602 PMCID: PMC6446757 DOI: 10.1104/pp.18.01133] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 01/13/2019] [Indexed: 05/22/2023]
Abstract
Striga species are parasitic weeds that seriously constrain the productivity of food staples, including cereals and legumes, in Sub-Saharan Africa and Asia. In eastern and central Africa, Striga spp. infest as much as 40 million hectares of smallholder farmland causing total crop failure during severe infestation. As the molecular mechanisms underlying resistance are yet to be elucidated, we undertook a comparative metabolome study using the Striga-resistant rice (Oryza sativa) cultivar 'Nipponbare' and the susceptible cultivar 'Koshihikari'. We found that a number of metabolites accumulated preferentially in the Striga-resistant cultivar upon Striga hermonthica infection. Most apparent was increased deposition of lignin, a phenylpropanoid polymer mainly composed of p-hydroxyphenyl (H), guaiacyl (G), and syringyl (S) aromatic units, around the site of interaction in Nipponbare. The increased deposition of lignin was accompanied by induction of the expression of corresponding enzyme-encoding genes in the phenylpropanoid pathway. In addition, perturbing normal lignin composition by knocking down or overexpressing the genes that regulate lignin composition, i.e. p-COUMARATE 3-HYDROXYLASE or FERULATE 5-HYDROXYLASE, enhanced susceptibility of Nipponbare to S hermonthica infection. These results demonstrate that enhanced lignin deposition and maintenance of the structural integrity of lignin polymers deposited at the infection site are crucial for postattachment resistance against S hermonthica.
Collapse
Affiliation(s)
- J Musembi Mutuku
- Biosciences Eastern and Central Africa - International Livestock Research Institute (BecA-ILRI) Hub, 00100 Nairobi, Kenya
| | - Songkui Cui
- Institute for Research Initiatives, Division for Research Strategy, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
- RIKEN Center for Sustainable Resource Science, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Chiaki Hori
- Research Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan
| | - Yuri Takeda
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Yuki Tobimatsu
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Ryo Nakabayashi
- RIKEN Center for Sustainable Resource Science, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Tetsuya Mori
- RIKEN Center for Sustainable Resource Science, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Kazuki Saito
- RIKEN Center for Sustainable Resource Science, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
- Graduate School of Pharmaceutical Sciences, Chiba University, Chuo-ku, Chiba 260-8675, Japan
| | - Taku Demura
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Toshiaki Umezawa
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto 611-0011, Japan
- Research Unit for Development and Global Sustainability, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Satoko Yoshida
- Institute for Research Initiatives, Division for Research Strategy, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
- RIKEN Center for Sustainable Resource Science, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Ken Shirasu
- RIKEN Center for Sustainable Resource Science, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
- Graduate School of Biological Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
50
|
Liu S, Huang Y, Xu H, Zhao M, Xu Q, Li F. Genetic enhancement of lodging resistance in rice due to the key cell wall polymer lignin, which affects stem characteristics. BREEDING SCIENCE 2018; 68:508-515. [PMID: 30697111 PMCID: PMC6345238 DOI: 10.1270/jsbbs.18050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 07/12/2018] [Indexed: 05/28/2023]
Abstract
Lodging in crops seriously restricts plant growth and grain production. The genetic modification of cell walls to enhance plant mechanical strength has been suggested as a promising approach toward improving lodging resistance. However, because of the complexity of the plant cell wall, the exact effects of its polymers on plant lodging resistance remain elusive. To address this issue, we performed large-scale analyses of a total of 56 rice (Oryza sativa L.) varieties that displayed distinct cell wall component and lodging index. Lignin was identified as the key cell wall polymer that positively determines lodging resistance in rice. Correlation analysis between cell wall composition and plant morphological characteristics revealed that lignin enhanced rice lodging resistance by largely increasing the mechanical strength of the basal stem and reducing plant height. Further characterization of four representative rice varieties, ShenNong9903, YanJian218, KongYu131, and ShenNongK33, displaying varied levels of lodging resistance, revealed the multiple candidate genes (PAL, CoMT, 4CL3, CAD2, CAD7 and CCR20) responsible for increasing lignin level. Hence, our results demonstrate that the high lignin level in the cell wall predominately improves lodging resistance and suggest target genes for the genetic modification of lignin towards breeding rice with high lodging resistance.
Collapse
|