1
|
Gomathi R, Kohila S, Viswanathan R, Krishnapriya V, Appunu C, Kumar RA, Alagupalamuthirsolai M, Manimekalai R, Elayaraja K, Kaverinathan K. Comparative Proteomic Analysis of High-Temperature Response in Sugarcane (Saccharum spp.). SUGAR TECH 2025; 27:193-207. [DOI: 10.1007/s12355-024-01400-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 03/12/2024] [Indexed: 01/11/2025]
|
2
|
Zhang R, Cui X, Zhao P. Rapidly Evolved Genes in Three Reaumuria Transcriptomes and Potential Roles of Pentatricopeptide Repeat Superfamily Proteins in Endangerment of R. trigyna. Int J Mol Sci 2024; 25:11065. [PMID: 39456846 PMCID: PMC11508020 DOI: 10.3390/ijms252011065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/04/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Reaumuria genus (Tamaricaceae) is widely distributed across the desert and semi-desert regions of Northern China, playing a crucial role in the restoration and protection of desert ecosystems. Previous studies mainly focused on the physiological responses to environmental stresses; however, due to the limited availability of genomic information, the underlying mechanism of morphological and ecological differences among the Reaumuria species remains poorly understood. In this study, we presented the first catalog of expressed transcripts for R. kaschgarica, a sympatric species of xerophyte R. soongorica. We further performed the pair-wise transcriptome comparison to determine the conserved and divergent genes among R. soongorica, R. kaschgarica, and the relict recretohalophyte R. trigyna. Annotation of the 600 relatively conserved genes revealed that some common genetic modules are employed by the Reaumuria species to confront with salt and drought stresses in arid environment. Among the 250 genes showing strong signs of positive selection, eight pentatricopeptide repeat (PPR) superfamily protein genes were specifically identified, including seven PPR genes in the R. soongorica vs. R. trigyna comparison and one PPR gene in the R. kaschgarica vs. R. trigyna comparison, while the cyclin D3 gene was found in the R. soongorica vs. R. trigyna comparison. These findings suggest that genetic variations in PPR genes may affect the fertility system or compromise the extent of organelle RNA editing in R. trigyna. The present study provides valuable genomic information for R. kaschgarica and preliminarily reveals the conserved genetic bases for the abiotic stress adaptation and interspecific divergent selection in the Reaumuria species. The rapidly evolved PPR and cyclin D3 genes provide new insights on the endangerment of R. trigyna and the leaf length difference among the Reaumuria species.
Collapse
Affiliation(s)
- Ruizhen Zhang
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China;
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions, Gansu Province, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Xiaoyun Cui
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China;
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions, Gansu Province, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Pengshan Zhao
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China;
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions, Gansu Province, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|
3
|
Dmitrieva VA, Tyutereva EV, Voitsekhovskaja OV. What can reactive oxygen species (ROS) tell us about the action mechanism of herbicides and other phytotoxins? Free Radic Biol Med 2024; 220:92-110. [PMID: 38663829 DOI: 10.1016/j.freeradbiomed.2024.04.233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 05/09/2024]
Abstract
Reactive oxygen species (ROS) are formed in plant cells continuously. When ROS production exceeds the antioxidant capacity of the cells, oxidative stress develops which causes damage of cell components and may even lead to the induction of programmed cell death (PCD). The levels of ROS production increase upon abiotic stress, but also during pathogen attack in response to elicitors, and upon application of toxic compounds such as synthetic herbicides or natural phytotoxins. The commercial value of many synthetic herbicides is based on weed death as result of oxidative stress, and for a number of them, the site and the mechanism of ROS production have been characterized. This review summarizes the current knowledge on ROS production in plants subjected to different groups of synthetic herbicides and natural phytotoxins. We suggest that the use of ROS-specific fluorescent probes and of ROS-specific marker genes can provide important information on the mechanism of action of these toxins. Furthermore, we propose that, apart from oxidative damage, elicitation of ROS-induced PCD is emerging as one of the important processes underlying the action of herbicides and phytotoxins.
Collapse
Affiliation(s)
- Valeria A Dmitrieva
- Laboratory of Molecular and Ecological Physiology, Komarov Botanical Institute of the Russian Academy of Sciences, Saint Petersburg, 197022, Russia; Laboratory of Phytotoxicology and Biotechnology, All-Russian Institute of Plant Protection, Saint Petersburg, 196608, Russia
| | - Elena V Tyutereva
- Laboratory of Molecular and Ecological Physiology, Komarov Botanical Institute of the Russian Academy of Sciences, Saint Petersburg, 197022, Russia
| | - Olga V Voitsekhovskaja
- Laboratory of Molecular and Ecological Physiology, Komarov Botanical Institute of the Russian Academy of Sciences, Saint Petersburg, 197022, Russia.
| |
Collapse
|
4
|
Zhang FJ, Li ZY, Zhang DE, Ma N, Wang YX, Zhang TT, Zhao Q, Zhang Z, You CX, Lu XY. Identification of Hsp20 gene family in Malus domestica and functional characterization of Hsp20 class I gene MdHsp18.2b. PHYSIOLOGIA PLANTARUM 2024; 176:e14288. [PMID: 38644531 DOI: 10.1111/ppl.14288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 03/23/2024] [Indexed: 04/23/2024]
Abstract
Heat shock protein 20 (Hsp20) is a small molecule heat shock protein that plays an important role in plant growth, development, and stress resistance. Little is known about the function of Hsp20 family genes in apple (Malus domestica). Here, we performed a genome-wide analysis of the apple Hsp20 gene family, and a total of 49 Hsp20s genes were identified from the apple genome. Phylogenetic analysis revealed that the 49 genes were divided into 11 subfamilies, and MdHsp18.2b, a member located in the CI branch, was selected as a representative member for functional characterization. Treatment with NaCl and Botryosphaeria dothidea (B. dothidea), the causal agent of apple ring rot disease, significantly induced MdHsp18.2b transcription level. Further analysis revealed that overexpressing MdHsp18.2b reduced the resistance to salt stress but enhanced the resistance to B. dothidea infection in apple calli. Moreover, MdHsp18.2b positively regulated anthocyanin accumulation in apple calli. Physiology assays revealed that MdHsp18.2b promoted H2O2 production, even in the absence of stress factors, which might contribute to its functions in response to NaCl and B. dothidea infection. Hsps usually function as homo- or heterooligomers, and we found that MdHsp18.2b could form a heterodimer with MdHsp17.9a and MdHsp17.5, two members from the same branch with MdHsp18.2b in the phylogenetic tree. Therefore, we identified 49 Hsp20s genes from the apple genome and found that MdHsp18.2b was involved in regulating plant resistance to salt stress and B. dothidea infection, as well as in regulating anthocyanin accumulation in apple calli.
Collapse
Affiliation(s)
- Fu-Jun Zhang
- Department of Horticulture, College of Agriculture, Key Laboratory of Special Fruits & Vegetables Cultivation Physiology and Germplasm Resources Utilization of Xinjiang Production and Construction Group, Shihezi University, Shihezi, Xinjiang, China
- College of Horticultural Science and Engineering, National Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai'an, Shandong, China
| | - Zhao-Yang Li
- College of Horticultural Science and Engineering, National Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai'an, Shandong, China
| | - De-En Zhang
- Department of Horticulture, College of Agriculture, Key Laboratory of Special Fruits & Vegetables Cultivation Physiology and Germplasm Resources Utilization of Xinjiang Production and Construction Group, Shihezi University, Shihezi, Xinjiang, China
| | - Ning Ma
- College of Horticultural Science and Engineering, National Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai'an, Shandong, China
| | - Yong-Xu Wang
- Department of Horticulture, College of Agriculture, Key Laboratory of Special Fruits & Vegetables Cultivation Physiology and Germplasm Resources Utilization of Xinjiang Production and Construction Group, Shihezi University, Shihezi, Xinjiang, China
- College of Horticultural Science and Engineering, National Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai'an, Shandong, China
| | - Ting-Ting Zhang
- Department of Horticulture, College of Agriculture, Key Laboratory of Special Fruits & Vegetables Cultivation Physiology and Germplasm Resources Utilization of Xinjiang Production and Construction Group, Shihezi University, Shihezi, Xinjiang, China
- College of Horticultural Science and Engineering, National Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai'an, Shandong, China
| | - Qiang Zhao
- College of Horticulture, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Zhenlu Zhang
- College of Horticultural Science and Engineering, National Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai'an, Shandong, China
| | - Chun-Xiang You
- College of Horticultural Science and Engineering, National Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai'an, Shandong, China
| | - Xiao-Yan Lu
- Department of Horticulture, College of Agriculture, Key Laboratory of Special Fruits & Vegetables Cultivation Physiology and Germplasm Resources Utilization of Xinjiang Production and Construction Group, Shihezi University, Shihezi, Xinjiang, China
| |
Collapse
|
5
|
Zhang C, Zhang Y, Su Z, Shen Z, Song H, Cai Z, Xu J, Guo L, Zhang Y, Guo S, Sun M, Li S, Yu M. Integrated analysis of HSP20 genes in the developing flesh of peach: identification, expression profiling, and subcellular localization. BMC PLANT BIOLOGY 2023; 23:663. [PMID: 38129812 PMCID: PMC10740231 DOI: 10.1186/s12870-023-04621-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 11/20/2023] [Indexed: 12/23/2023]
Abstract
BACKGROUND Plant HSP20s are not only synthesized in response to heat stress but are also involved in plant biotic and abiotic stress resistance, normal metabolism, development, differentiation, survival, ripening, and death. Thus, HSP20 family genes play very important and diverse roles in plants. To our knowledge, HSP20 family genes in peach have not yet been characterized in detail, and little is known about their possible function in the development of red flesh in peach. RESULTS In total, 44 PpHSP20 members were identified in the peach genome in this study. Forty-four PpHSP20s were classified into 10 subfamilies, CI, CII, CIII, CV, CVI, CVII, MII, CP, ER, and Po, containing 18, 2, 2, 10, 5, 1, 1, 2, 1, and 2 proteins, respectively. Among the 44 PpHSP20 genes, 6, 4, 4, 3, 7, 11, 5, and 4 PpHSP20 genes were located on chromosomes 1 to 8, respectively. In particular, approximately 15 PpHSP20 genes were located at both termini or one terminus of each chromosome. A total of 15 tandem PpHSP20 genes were found in the peach genome, which belonged to five tandemly duplicated groups. Overall, among the three cultivars, the number of PpHSP20 genes with higher expression levels in red flesh was greater than that in yellow or white flesh. The expression profiling for most of the PpHSP20 genes in the red-fleshed 'BJ' was higher overall at the S3 stage than at the S2, S4-1, and S4-2 stages, with the S3 stage being a very important period of transformation from a white color to the gradual anthocyanin accumulation in the flesh of this cultivar. The subcellular localizations of 16 out of 19 selected PpHSP20 proteins were in accordance with the corresponding subfamily classification and naming. Additionally, to our knowledge, Prupe.3G034800.1 is the first HSP20 found in plants that has the dual targets of both the endoplasmic reticulum and nucleus. CONCLUSIONS This study provides a comprehensive understanding of PpHSP20s, lays a foundation for future analyses of the unknown function of PpHSP20 family genes in red-fleshed peach fruit and advances our understanding of plant HSP20 genes.
Collapse
Affiliation(s)
- Chunhua Zhang
- Institute of Pomology, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, Jiangsu Province, China
| | - Yanping Zhang
- Suzhou Polytechnic Institute of Agriculture, Suzhou, Jiangsu Province, China
| | - Ziwen Su
- Institute of Pomology, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, Jiangsu Province, China
| | - Zhijun Shen
- Institute of Pomology, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, Jiangsu Province, China
| | - Hongfeng Song
- Institute of Pomology, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, Jiangsu Province, China
| | - Zhixiang Cai
- Institute of Pomology, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, Jiangsu Province, China
| | - Jianlan Xu
- Institute of Pomology, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, Jiangsu Province, China
| | - Lei Guo
- Institute of Pomology, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, Jiangsu Province, China
| | - Yuanyuan Zhang
- Institute of Pomology, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, Jiangsu Province, China
| | - Shaolei Guo
- Institute of Pomology, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, Jiangsu Province, China
| | - Meng Sun
- Institute of Pomology, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, Jiangsu Province, China
| | - Shenge Li
- Institute of Pomology, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, Jiangsu Province, China
| | - Mingliang Yu
- Institute of Pomology, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, Jiangsu Province, China.
| |
Collapse
|
6
|
Mishra S, Spaccarotella K, Gido J, Samanta I, Chowdhary G. Effects of Heat Stress on Plant-Nutrient Relations: An Update on Nutrient Uptake, Transport, and Assimilation. Int J Mol Sci 2023; 24:15670. [PMID: 37958654 PMCID: PMC10649217 DOI: 10.3390/ijms242115670] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/22/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
As a consequence of global climate change, the frequency, severity, and duration of heat stress are increasing, impacting plant growth, development, and reproduction. While several studies have focused on the physiological and molecular aspects of heat stress, there is growing concern that crop quality, particularly nutritional content and phytochemicals important for human health, is also negatively impacted. This comprehensive review aims to provide profound insights into the multifaceted effects of heat stress on plant-nutrient relationships, with a particular emphasis on tissue nutrient concentration, the pivotal nutrient-uptake proteins unique to both macro- and micronutrients, and the effects on dietary phytochemicals. Finally, we propose a new approach to investigate the response of plants to heat stress by exploring the possible role of plant peroxisomes in the context of heat stress and nutrient mobilization. Understanding these complex mechanisms is crucial for developing strategies to improve plant nutrition and resilience during heat stress.
Collapse
Affiliation(s)
- Sasmita Mishra
- Department of Biology, Kean University, 1000 Morris Avenue, Union, NJ 07083, USA
| | - Kim Spaccarotella
- Department of Biology, Kean University, 1000 Morris Avenue, Union, NJ 07083, USA
| | - Jaclyn Gido
- Department of Biology, Kean University, 1000 Morris Avenue, Union, NJ 07083, USA
| | - Ishita Samanta
- Plant Molecular Biology Laboratory, School of Biotechnology, KIIT—Kalinga Institute of Industrial Technology, Bhubaneswar 751024, Odisha, India (G.C.)
| | - Gopal Chowdhary
- Plant Molecular Biology Laboratory, School of Biotechnology, KIIT—Kalinga Institute of Industrial Technology, Bhubaneswar 751024, Odisha, India (G.C.)
| |
Collapse
|
7
|
Bhattacharyya S, Giridhar M, Meier B, Peiter E, Vothknecht UC, Chigri F. Global transcriptome profiling reveals root- and leaf-specific responses of barley ( Hordeum vulgare L.) to H 2O 2. FRONTIERS IN PLANT SCIENCE 2023; 14:1223778. [PMID: 37771486 PMCID: PMC10523330 DOI: 10.3389/fpls.2023.1223778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 08/23/2023] [Indexed: 09/30/2023]
Abstract
In cereal crops, such as barley (Hordeum vulgare L.), the ability to appropriately respond to environmental cues is an important factor for yield stability and thus for agricultural production. Reactive oxygen species (ROS), such as hydrogen peroxide (H2O2), are key components of signal transduction cascades involved in plant adaptation to changing environmental conditions. H2O2-mediated stress responses include the modulation of expression of stress-responsive genes required to cope with different abiotic and biotic stresses. Despite its importance, knowledge of the effects of H2O2 on the barley transcriptome is still scarce. In this study, we identified global transcriptomic changes induced after application of 10 mM H2O2 to five-day-old barley plants. In total, 1883 and 1001 differentially expressed genes (DEGs) were identified in roots and leaves, respectively. Most of these DEGs were organ-specific, with only 209 DEGs commonly regulated and 37 counter-regulated between both plant parts. A GO term analysis further confirmed that different processes were affected in roots and leaves. It revealed that DEGs in leaves mostly comprised genes associated with hormone signaling, response to H2O2 and abiotic stresses. This includes many transcriptions factors and small heat shock proteins. DEGs in roots mostly comprised genes linked to crucial aspects of H2O2 catabolism and oxidant detoxification, glutathione metabolism, as well as cell wall modulation. These categories include many peroxidases and glutathione transferases. As with leaves, the H2O2 response category in roots contains small heat shock proteins, however, mostly different members of this family were affected and they were all regulated in the opposite direction in the two plant parts. Validation of the expression of the selected commonly regulated DEGs by qRT-PCR was consistent with the RNA-seq data. The data obtained in this study provide an insight into the molecular mechanisms of oxidative stress responses in barley, which might also play a role upon other stresses that induce oxidative bursts.
Collapse
Affiliation(s)
| | - Maya Giridhar
- Institute for Cellular and Molecular Botany, University of Bonn, Bonn, Germany
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany
| | - Bastian Meier
- Institute of Agricultural and Nutritional Sciences, Faculty of Natural Sciences III, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Edgar Peiter
- Institute of Agricultural and Nutritional Sciences, Faculty of Natural Sciences III, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Ute C. Vothknecht
- Institute for Cellular and Molecular Botany, University of Bonn, Bonn, Germany
| | - Fatima Chigri
- Institute for Cellular and Molecular Botany, University of Bonn, Bonn, Germany
| |
Collapse
|
8
|
Pelayo MA, Morishita F, Sawada H, Matsushita K, Iimura H, He Z, Looi LS, Katagiri N, Nagamori A, Suzuki T, Širl M, Soukup A, Satake A, Ito T, Yamaguchi N. AGAMOUS regulates various target genes via cell cycle-coupled H3K27me3 dilution in floral meristems and stamens. THE PLANT CELL 2023; 35:2821-2847. [PMID: 37144857 PMCID: PMC10396370 DOI: 10.1093/plcell/koad123] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/08/2023] [Accepted: 04/09/2023] [Indexed: 05/06/2023]
Abstract
The MADS domain transcription factor AGAMOUS (AG) regulates floral meristem termination by preventing maintenance of the histone modification lysine 27 of histone H3 (H3K27me3) along the KNUCKLES (KNU) coding sequence. At 2 d after AG binding, cell division has diluted the repressive mark H3K27me3, allowing activation of KNU transcription prior to floral meristem termination. However, how many other downstream genes are temporally regulated by this intrinsic epigenetic timer and what their functions are remain unknown. Here, we identify direct AG targets regulated through cell cycle-coupled H3K27me3 dilution in Arabidopsis thaliana. Expression of the targets KNU, AT HOOK MOTIF NUCLEAR LOCALIZED PROTEIN18 (AHL18), and PLATZ10 occurred later in plants with longer H3K27me3-marked regions. We established a mathematical model to predict timing of gene expression and manipulated temporal gene expression using the H3K27me3-marked del region from the KNU coding sequence. Increasing the number of del copies delayed and reduced KNU expression in a polycomb repressive complex 2- and cell cycle-dependent manner. Furthermore, AHL18 was specifically expressed in stamens and caused developmental defects when misexpressed. Finally, AHL18 bound to genes important for stamen growth. Our results suggest that AG controls the timing of expression of various target genes via cell cycle-coupled dilution of H3K27me3 for proper floral meristem termination and stamen development.
Collapse
Affiliation(s)
- Margaret Anne Pelayo
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma 630-0192, Japan
| | - Fumi Morishita
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma 630-0192, Japan
| | - Haruka Sawada
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma 630-0192, Japan
| | - Kasumi Matsushita
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma 630-0192, Japan
| | - Hideaki Iimura
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma 630-0192, Japan
| | - Zemiao He
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117604, Singapore
| | - Liang Sheng Looi
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma 630-0192, Japan
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117604, Singapore
| | - Naoya Katagiri
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma 630-0192, Japan
| | - Asumi Nagamori
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma 630-0192, Japan
| | - Takamasa Suzuki
- Department of Biological Chemistry, College of Bioscience and Biotechnology, Chubu University, Kasugai 487-8501, Japan
| | - Marek Širl
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague 12844, Czech Republic
| | - Aleš Soukup
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague 12844, Czech Republic
| | - Akiko Satake
- Department of Biology, Faculty of Science, Kyushu University, Nishi-ku 819-0395, Japan
| | - Toshiro Ito
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma 630-0192, Japan
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117604, Singapore
| | - Nobutoshi Yamaguchi
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma 630-0192, Japan
| |
Collapse
|
9
|
Jin X, Ackah M, Acheampong A, Zhang Q, Wang L, Lin Q, Qiu C, Zhao W. Genome-Wide Identification of Candidate Genes Associated with Heat Stress in Mulberry ( Morus alba L.). Curr Issues Mol Biol 2023; 45:4151-4167. [PMID: 37232733 DOI: 10.3390/cimb45050264] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/11/2023] [Accepted: 05/04/2023] [Indexed: 05/27/2023] Open
Abstract
Mulberry (Morus alba L.) is an economically important plant for the silk industry and has the possibility of contributing immensely to Chinese pharmacopeia because of its health benefits. Domesticated silkworms feed only on mulberry leaves, meaning that the worms' survival depends on the mulberry tree. Mulberry production is threatened by climate change and global warming. However, the regulatory mechanisms of mulberry responses to heat are poorly understood. We performed transcriptome analysis of high-temperature-stressed (42 °C) M. alba seedlings using RNA-Seq technologies. A total of 703 differentially expressed genes (DEGs) were discovered from 18,989 unigenes. Among these, 356 were up-regulated, and 347 were down-regulated. KEGG analysis revealed that most DEGs were enriched in valine, leucine and isoleucine degradation, and in starch and sucrose metabolism, alpha-linolenic acid metabolism, carotenoid biosynthesis and galactose metabolism, among others. In addition, TFs such as the NAC, HSF, IAA1, MYB, AP2, GATA, WRKY, HLH and TCP families were actively involved in response to high temperatures. Moreover, we used RT-qPCR to confirm the expression changes of eight genes under heat stress observed in the RNA-Seq analysis. This study provides M. alba transcriptome profiles under heat stress and provides theoretical bases to researchers for better understanding mulberry heat response mechanisms and breeding heat-tolerant mulberry plants.
Collapse
Affiliation(s)
- Xin Jin
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Michael Ackah
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Adolf Acheampong
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Qiaonan Zhang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Lei Wang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Qiang Lin
- Guangxi Sericultural Research Institute, Guangxi Zhuang Autonomous Regin, Nanning 530007, China
| | - Changyu Qiu
- Guangxi Sericultural Research Institute, Guangxi Zhuang Autonomous Regin, Nanning 530007, China
| | - Weiguo Zhao
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| |
Collapse
|
10
|
Small heat shock proteins operate as molecular chaperones in the mitochondrial intermembrane space. Nat Cell Biol 2023; 25:467-480. [PMID: 36690850 PMCID: PMC10014586 DOI: 10.1038/s41556-022-01074-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 12/12/2022] [Indexed: 01/24/2023]
Abstract
Mitochondria are complex organelles with different compartments, each harbouring their own protein quality control factors. While chaperones of the mitochondrial matrix are well characterized, it is poorly understood which chaperones protect the mitochondrial intermembrane space. Here we show that cytosolic small heat shock proteins are imported under basal conditions into the mitochondrial intermembrane space, where they operate as molecular chaperones. Protein misfolding in the mitochondrial intermembrane space leads to increased recruitment of small heat shock proteins. Depletion of small heat shock proteins leads to mitochondrial swelling and reduced respiration, while aggregation of aggregation-prone substrates is countered in their presence. Charcot-Marie-Tooth disease-causing mutations disturb the mitochondrial function of HSPB1, potentially linking previously observed mitochondrial dysfunction in Charcot-Marie-Tooth type 2F to its role in the mitochondrial intermembrane space. Our results reveal that small heat shock proteins form a chaperone system that operates in the mitochondrial intermembrane space.
Collapse
|
11
|
Huang J, Hai Z, Wang R, Yu Y, Chen X, Liang W, Wang H. Genome-wide analysis of HSP20 gene family and expression patterns under heat stress in cucumber ( Cucumis sativus L.). FRONTIERS IN PLANT SCIENCE 2022; 13:968418. [PMID: 36035708 PMCID: PMC9412230 DOI: 10.3389/fpls.2022.968418] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 07/27/2022] [Indexed: 05/03/2023]
Abstract
Cucumber is an important vegetable in China, and its yield and cultivation area are among the largest in the world. Excessive temperatures lead to high-temperature disorder in cucumber. Heat shock protein 20 (HSP20), an essential protein in the process of plant growth and development, is a universal protective protein with stress resistance. HSP20 plays crucial roles in plants under stress. In this study, we characterized the HSP20 gene family in cucumber by studying chromosome location, gene duplication, phylogenetic relationships, gene structure, conserved motifs, protein-protein interaction (PPI) network, and cis-regulatory elements. A total of 30 CsHSP20 genes were identified, distributed across 6 chromosomes, and classified into 11 distinct subgroups based on conserved motif composition, gene structure analyses, and phylogenetic relationships. According to the synteny analysis, cucumber had a closer relationship with Arabidopsis and soybean than with rice and maize. Collinearity analysis revealed that gene duplication, including tandem and segmental duplication, occurred as a result of positive selection and purifying selection. Promoter analysis showed that the putative promoters of CsHSP20 genes contained growth, stress, and hormone cis-elements, which were combined with protein-protein interaction networks to reveal their potential function mechanism. We further analyzed the gene expression of CsHSP20 genes under high stress and found that the majority of the CsHSP20 genes were upregulated, suggesting that these genes played a positive role in the heat stress-mediated pathway at the seedling stage. These results provide comprehensive information on the CsHSP20 gene family in cucumber and lay a solid foundation for elucidating the biological functions of CsHSP20. This study also provides valuable information on the regulation mechanism of the CsHSP20 gene family in the high-temperature resistance of cucumber.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Huahua Wang
- College of Life Science, Henan Normal University, Xinxiang, China
| |
Collapse
|
12
|
Wang H, Dong Z, Chen J, Wang M, Ding Y, Xue Q, Liu W, Niu Z, Ding X. Genome-wide identification and expression analysis of the Hsp20, Hsp70 and Hsp90 gene family in Dendrobium officinale. FRONTIERS IN PLANT SCIENCE 2022; 13:979801. [PMID: 36035705 PMCID: PMC9399769 DOI: 10.3389/fpls.2022.979801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
Dendrobium officinale, an important orchid plant with great horticultural and medicinal values, frequently suffers from abiotic or biotic stresses in the wild, which may influence its well-growth. Heat shock proteins (Hsps) play essential roles in the abiotic stress response of plants. However, they have not been systematically investigated in D. officinale. Here, we identified 37 Hsp20 genes (DenHsp20s), 43 Hsp70 genes (DenHsp70s) and 4 Hsp90 genes (DenHsp90s) in D. officinale genome. These genes were classified into 8, 4 and 2 subfamilies based on phylogenetic analysis and subcellular predication, respectively. Sequence analysis showed that the same subfamily members have relatively conserved gene structures and similar protein motifs. Moreover, we identified 33 pairs of paralogs containing 30 pairs of tandem duplicates and 3 pairs of segmental duplicates among these genes. There were 7 pairs in DenHsp70s under positive selection, which may have important functions in helping cells withstand extreme stress. Numerous gene promoter sequences contained stress and hormone response cis-elements, especially light and MeJA response elements. Under MeJA stress, DenHsp20s, DenHsp70s and DenHsp90s responded to varying degrees, among which DenHsp20-5,6,7,16 extremely up-regulated, which may have a strong stress resistance. Therefore, these findings could provide useful information for evolutional and functional investigations of Hsp20, Hsp70 and Hsp90 genes in D. officinale.
Collapse
Affiliation(s)
- Hongman Wang
- College of Life Sciences, Nanjing Normal University, Nanjing, China
- Jiangsu Provincial Engineering Research Center for Technical Industrialization for Dendrobium, Nanjing, China
| | - Zuqi Dong
- College of Life Sciences, Nanjing Normal University, Nanjing, China
- Jiangsu Provincial Engineering Research Center for Technical Industrialization for Dendrobium, Nanjing, China
- College of Forestry, Beijing Forestry University, Beijing, China
| | - Jianbing Chen
- College of Forestry, Beijing Forestry University, Beijing, China
| | - Meng Wang
- College of Forestry, Beijing Forestry University, Beijing, China
| | - Yuting Ding
- College of Forestry, Beijing Forestry University, Beijing, China
| | - Qingyun Xue
- College of Life Sciences, Nanjing Normal University, Nanjing, China
- Jiangsu Provincial Engineering Research Center for Technical Industrialization for Dendrobium, Nanjing, China
| | - Wei Liu
- College of Life Sciences, Nanjing Normal University, Nanjing, China
- Jiangsu Provincial Engineering Research Center for Technical Industrialization for Dendrobium, Nanjing, China
| | - Zhitao Niu
- College of Life Sciences, Nanjing Normal University, Nanjing, China
- Jiangsu Provincial Engineering Research Center for Technical Industrialization for Dendrobium, Nanjing, China
| | - Xiaoyu Ding
- College of Life Sciences, Nanjing Normal University, Nanjing, China
- Jiangsu Provincial Engineering Research Center for Technical Industrialization for Dendrobium, Nanjing, China
| |
Collapse
|
13
|
Muhammad D, Smith KA, Bartel B. Plant peroxisome proteostasis-establishing, renovating, and dismantling the peroxisomal proteome. Essays Biochem 2022; 66:229-242. [PMID: 35538741 PMCID: PMC9375579 DOI: 10.1042/ebc20210059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 12/28/2022]
Abstract
Plant peroxisomes host critical metabolic reactions and insulate the rest of the cell from reactive byproducts. The specialization of peroxisomal reactions is rooted in how the organelle modulates its proteome to be suitable for the tissue, environment, and developmental stage of the organism. The story of plant peroxisomal proteostasis begins with transcriptional regulation of peroxisomal protein genes and the synthesis, trafficking, import, and folding of peroxisomal proteins. The saga continues with assembly and disaggregation by chaperones and degradation via proteases or the proteasome. The story concludes with organelle recycling via autophagy. Some of these processes as well as the proteins that facilitate them are peroxisome-specific, while others are shared among organelles. Our understanding of translational regulation of plant peroxisomal protein transcripts and proteins necessary for pexophagy remain based in findings from other models. Recent strides to elucidate transcriptional control, membrane dynamics, protein trafficking, and conditions that induce peroxisome turnover have expanded our knowledge of plant peroxisomal proteostasis. Here we review our current understanding of the processes and proteins necessary for plant peroxisome proteostasis-the emergence, maintenance, and clearance of the peroxisomal proteome.
Collapse
Affiliation(s)
| | - Kathryn A Smith
- Department of BioSciences, Rice University, Houston, TX 77005, U.S.A
| | - Bonnie Bartel
- Department of BioSciences, Rice University, Houston, TX 77005, U.S.A
| |
Collapse
|
14
|
Meng X, Wang N, He H, Tan Q, Wen B, Zhang R, Fu X, Xiao W, Chen X, Li D, Li L. Prunus persica transcription factor PpNAC56 enhances heat resistance in transgenic tomatoes. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 182:194-201. [PMID: 35525200 DOI: 10.1016/j.plaphy.2022.04.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/19/2022] [Accepted: 04/27/2022] [Indexed: 06/14/2023]
Abstract
Members of the NAC (NAM, ATAF1,2 and CUC2) transcription factor family are involved in numerous processes of plant growth and development and play an important role in the response to abiotic stresses such as salinity, drought and heat, but little research on this topic has been done in peach. In this study, we analyzed the expression patterns of PpNAC56 under abiotic stress and found that PpNAC56 responded to high-temperature stress. To verify the function of PpNAC56, we overexpressed this gene in tomato plants and found that, compared with WT plants, the transgenic tomato plants could accumulate more osmoregulatory substances after high-temperature treatment and thus were more heat resistance. Then, using Y2H, BIFC, and pull-down assays, we found that PpNAC56 could interact with PpMIEL1. In addition, Y1H and dual-luciferase assays verified that PpNAC56 could activate the expression of PpHSP17.4 and PpSnRK2D. The above experimental results demonstrate that PpNAC56 plays an important role in the plant response to heat stress.
Collapse
Affiliation(s)
- Xiangguang Meng
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, PR China; State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, PR China; Shandong Province Collaborative Innovation Center for High-quality and High-efficiency Vegetable Production, Tai'an, 271018, PR China
| | - Ning Wang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, PR China; State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, PR China; Shandong Province Collaborative Innovation Center for High-quality and High-efficiency Vegetable Production, Tai'an, 271018, PR China
| | - Huajie He
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, PR China; State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, PR China; Shandong Province Collaborative Innovation Center for High-quality and High-efficiency Vegetable Production, Tai'an, 271018, PR China
| | - Qiuping Tan
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, PR China; State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, PR China; Shandong Province Collaborative Innovation Center for High-quality and High-efficiency Vegetable Production, Tai'an, 271018, PR China
| | - Binbin Wen
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, PR China; State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, PR China; Shandong Province Collaborative Innovation Center for High-quality and High-efficiency Vegetable Production, Tai'an, 271018, PR China
| | - Rui Zhang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, PR China; State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, PR China; Shandong Province Collaborative Innovation Center for High-quality and High-efficiency Vegetable Production, Tai'an, 271018, PR China
| | - Xiling Fu
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, PR China; State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, PR China; Shandong Province Collaborative Innovation Center for High-quality and High-efficiency Vegetable Production, Tai'an, 271018, PR China
| | - Wei Xiao
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, PR China; State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, PR China; Shandong Province Collaborative Innovation Center for High-quality and High-efficiency Vegetable Production, Tai'an, 271018, PR China
| | - Xiude Chen
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, PR China; State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, PR China; Shandong Province Collaborative Innovation Center for High-quality and High-efficiency Vegetable Production, Tai'an, 271018, PR China
| | - Dongmei Li
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, PR China; State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, PR China; Shandong Province Collaborative Innovation Center for High-quality and High-efficiency Vegetable Production, Tai'an, 271018, PR China.
| | - Ling Li
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, PR China; State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, PR China; Shandong Province Collaborative Innovation Center for High-quality and High-efficiency Vegetable Production, Tai'an, 271018, PR China.
| |
Collapse
|
15
|
Cui F, Taier G, Wang X, Wang K. Genome-Wide Analysis of the HSP20 Gene Family and Expression Patterns of HSP20 Genes in Response to Abiotic Stresses in Cynodon transvaalensis. Front Genet 2021; 12:732812. [PMID: 34567082 PMCID: PMC8455957 DOI: 10.3389/fgene.2021.732812] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 08/10/2021] [Indexed: 11/13/2022] Open
Abstract
African bermudagrass (Cynodon transvaalensis Burtt-Davy) is an important warm-season turfgrass and forage grass species. Heat shock protein 20 (HSP20) is a diverse, ancient, and important protein family. To date, HSP20 genes have not been characterized genome-widely in African bermudagrass. Here, we confirmed 41 HSP20 genes in African bermudagrass genome. On the basis of the phylogenetic tree and cellular locations, the HSP20 proteins were classified into 12 subfamilies. Motif composition was consistent with the phylogeny. Moreover, we identified 15 pairs of paralogs containing nine pairs of tandem duplicates and six pairs of WGD/segmental duplicates of HSP20 genes. Unsurprisingly, the syntenic genes revealed that African bermudagrass had a closer evolutionary relationship with monocots (maize and rice) than dicots (Arabidopsis and soybean). The expression patterns of HSP20 genes were identified with the transcriptome data under abiotic stresses. According to the expression profiles, HSP20 genes could be clustered into three groups (Groups I, II, and III). Group I was the largest, and these genes were up-regulated in response to heat stress as expected. In Group II, one monocot-specific HSP20, CtHSP20-14 maintained higher expression levels under optimum temperature and low temperature, but not high temperature. Moreover, a pair of WGD/segmental duplicates CtHSP20-9 and CtHSP20-10 were among the most conserved HSP20s across different plant species, and they seemed to be positively selected in response to extreme temperatures during evolution. A total of 938 cis-elements were captured in the putative promoters of HSP20 genes. Almost half of the cis-elements were stress responsive, indicating that the expression pattern of HSP20 genes under abiotic stresses might be largely regulated by the cis-elements. Additionally, three-dimensional structure simulations and protein-protein interaction networks were incorporated to resolve the function mechanism of HSP20 proteins. In summary, the findings fulfilled the HSP20 family analysis and could provide useful information for further functional investigations of the specific HSP20s (e.g., CtHSP20-9, CtHSP20-10, and CtHSP20-14) in African bermudagrass.
Collapse
Affiliation(s)
- Fengchao Cui
- Department of Turfgrass Science and Engineering, College of Grassland Science and Technology, China Agricultural University, Beijing, China
| | - Geli Taier
- Department of Turfgrass Science and Engineering, College of Grassland Science and Technology, China Agricultural University, Beijing, China
| | - Xiangfeng Wang
- National Maize Improvement Center, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Kehua Wang
- Department of Turfgrass Science and Engineering, College of Grassland Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
16
|
Uhrig RG, Echevarría‐Zomeño S, Schlapfer P, Grossmann J, Roschitzki B, Koerber N, Fiorani F, Gruissem W. Diurnal dynamics of the Arabidopsis rosette proteome and phosphoproteome. PLANT, CELL & ENVIRONMENT 2021; 44:821-841. [PMID: 33278033 PMCID: PMC7986931 DOI: 10.1111/pce.13969] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 11/23/2020] [Accepted: 11/26/2020] [Indexed: 05/11/2023]
Abstract
Plant growth depends on the diurnal regulation of cellular processes, but it is not well understood if and how transcriptional regulation controls diurnal fluctuations at the protein level. Here, we report a high-resolution Arabidopsis thaliana (Arabidopsis) leaf rosette proteome acquired over a 12 hr light:12 hr dark diurnal cycle and the phosphoproteome immediately before and after the light-to-dark and dark-to-light transitions. We quantified nearly 5,000 proteins and 800 phosphoproteins, of which 288 fluctuated in their abundance and 226 fluctuated in their phosphorylation status. Of the phosphoproteins, 60% were quantified for changes in protein abundance. This revealed six proteins involved in nitrogen and hormone metabolism that had concurrent changes in both protein abundance and phosphorylation status. The diurnal proteome and phosphoproteome changes involve proteins in key cellular processes, including protein translation, light perception, photosynthesis, metabolism and transport. The phosphoproteome at the light-dark transitions revealed the dynamics at phosphorylation sites in either anticipation of or response to a change in light regime. Phosphorylation site motif analyses implicate casein kinase II and calcium/calmodulin-dependent kinases among the primary light-dark transition kinases. The comparative analysis of the diurnal proteome and diurnal and circadian transcriptome established how mRNA and protein accumulation intersect in leaves during the diurnal cycle of the plant.
Collapse
Affiliation(s)
- R. Glen Uhrig
- Department of BiologyInstitute of Molecular Plant Biology, ETH ZurichZurichSwitzerland
- Department of Biological SciencesUniversity of AlbertaEdmontonAlbertaCanada
| | | | - Pascal Schlapfer
- Department of BiologyInstitute of Molecular Plant Biology, ETH ZurichZurichSwitzerland
| | - Jonas Grossmann
- Functional Genomics Center ZurichUniversity of ZurichZurichSwitzerland
| | - Bernd Roschitzki
- Functional Genomics Center ZurichUniversity of ZurichZurichSwitzerland
| | - Niklas Koerber
- Institute of Bio‐ and GeosciencesIBG‐2: Plant Sciences, Forschungszentrum Jülich GmbHJülichGermany
| | - Fabio Fiorani
- Institute of Bio‐ and GeosciencesIBG‐2: Plant Sciences, Forschungszentrum Jülich GmbHJülichGermany
| | - Wilhelm Gruissem
- Department of BiologyInstitute of Molecular Plant Biology, ETH ZurichZurichSwitzerland
- Institute of BiotechnologyNational Chung Hsing UniversityTaichungTaiwan
| |
Collapse
|
17
|
Kechasov D, de Grahl I, Endries P, Reumann S. Evolutionary Maintenance of the PTS2 Protein Import Pathway in the Stramenopile Alga Nannochloropsis. Front Cell Dev Biol 2020; 8:593922. [PMID: 33330478 PMCID: PMC7710942 DOI: 10.3389/fcell.2020.593922] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 10/13/2020] [Indexed: 12/18/2022] Open
Abstract
The stramenopile alga Nannochloropsis evolved by secondary endosymbiosis of a red alga by a heterotrophic host cell and emerged as a promising organism for biotechnological applications, such as the production of polyunsaturated fatty acids and biodiesel. Peroxisomes play major roles in fatty acid metabolism but experimental analyses of peroxisome biogenesis and metabolism in Nannochloropsis are not reported yet. In fungi, animals, and land plants, soluble proteins of peroxisomes are targeted to the matrix by one of two peroxisome targeting signals (type 1, PTS1, or type 2, PTS2), which are generally conserved across kingdoms and allow the prediction of peroxisomal matrix proteins from nuclear genome sequences. Because diatoms lost the PTS2 pathway secondarily, we investigated its presence in the stramenopile sister group of diatoms, the Eustigmatophyceae, represented by Nannochloropsis. We detected a full-length gene of a putative PEX7 ortholog coding for the cytosolic receptor of PTS2 proteins and demonstrated its expression in Nannochloropsis gaditana. The search for predicted PTS2 cargo proteins in N. gaditana yielded several candidates. In vivo subcellular targeting analyses of representative fusion proteins in different plant expression systems demonstrated that two predicted PTS2 domains were indeed functional and sufficient to direct a reporter protein to peroxisomes. Peroxisome targeting of the predicted PTS2 cargo proteins was further confirmed in Nannochloropsis oceanica by confocal and transmission electron microscopy. Taken together, the results demonstrate for the first time that one group of stramenopile algae maintained the import pathway for PTS2 cargo proteins. To comprehensively map and model the metabolic capabilities of Nannochloropsis peroxisomes, in silico predictions needs to encompass both the PTS1 and the PTS2 matrix proteome.
Collapse
Affiliation(s)
- Dmitry Kechasov
- Centre for Organelle Research, University of Stavanger, Stavanger, Norway
| | - Imke de Grahl
- Plant Biochemistry and Infection Biology, Institute for Plant Science and Microbiology, Universität Hamburg, Hamburg, Germany
| | - Pierre Endries
- Plant Biochemistry and Infection Biology, Institute for Plant Science and Microbiology, Universität Hamburg, Hamburg, Germany
| | - Sigrun Reumann
- Centre for Organelle Research, University of Stavanger, Stavanger, Norway
- Plant Biochemistry and Infection Biology, Institute for Plant Science and Microbiology, Universität Hamburg, Hamburg, Germany
| |
Collapse
|
18
|
Kataya ARA, Elshobaky A, Heidari B, Dugassa NF, Thelen JJ, Lillo C. Multi-targeted trehalose-6-phosphate phosphatase I harbors a novel peroxisomal targeting signal 1 and is essential for flowering and development. PLANTA 2020; 251:98. [PMID: 32306103 PMCID: PMC7214503 DOI: 10.1007/s00425-020-03389-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 04/10/2020] [Indexed: 05/13/2023]
Abstract
This work reveals information about new peroxisomal targeting signals type 1 and identifies trehalose-6-phosphate phosphatase I as multitargeted and is implicated in plant development, reproduction, and stress response. A putative, non-canonical peroxisomal targeting signal type 1 (PTS1) Pro-Arg-Met > was identified in the extreme C-terminus of trehalose-6-phosphate phosphatase (TPP)I. TPP catalyzes the final step of trehalose synthesis, and the enzyme was previously characterized to be nuclear only (Krasensky et al. in Antioxid Redox Signal 21(9):1289-1304, 2014). Here we show that the TPPI C-terminal decapeptide ending with Pro-Arg-Met > or Pro-Lys-Met > can indeed function as a PTS1. Upon transient expression in two plant expression systems, the free C- or N-terminal end led to the full-length TPPI targeting to peroxisomes and plastids, respectively. The nucleus and nucleolus targeting of the full-length TPPI was observed in both cases. The homozygous T-DNA insertion line of TPPI showed a pleiotropic phenotype including smaller leaves, shorter roots, delayed flowering, hypersensitivity to salt, and a sucrose dependent seedling development. Our results identify novel PTS1s, and TPPI as a protein multi-targeted to peroxisomes, plastids, nucleus, and nucleolus. Altogether our findings implicate an essential role for TPPI in development, reproduction, and cell signaling.
Collapse
Affiliation(s)
- Amr R A Kataya
- Centre for Organelle Research, Faculty of Science and Technology, University of Stavanger, 4036, Stavanger, Norway.
- Department of Biochemistry, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, USA.
| | - Ahmed Elshobaky
- Centre for Organelle Research, Faculty of Science and Technology, University of Stavanger, 4036, Stavanger, Norway
- Botany Department, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt
| | - Behzad Heidari
- Centre for Organelle Research, Faculty of Science and Technology, University of Stavanger, 4036, Stavanger, Norway
- Department of Plant Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Nemie-Feyissa Dugassa
- Centre for Organelle Research, Faculty of Science and Technology, University of Stavanger, 4036, Stavanger, Norway
| | - Jay J Thelen
- Department of Biochemistry, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - Cathrine Lillo
- Centre for Organelle Research, Faculty of Science and Technology, University of Stavanger, 4036, Stavanger, Norway
| |
Collapse
|
19
|
Guo LM, Li J, He J, Liu H, Zhang HM. A class I cytosolic HSP20 of rice enhances heat and salt tolerance in different organisms. Sci Rep 2020; 10:1383. [PMID: 31992813 PMCID: PMC6987133 DOI: 10.1038/s41598-020-58395-8] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 01/13/2020] [Indexed: 01/07/2023] Open
Abstract
Small heat shock proteins (sHSPs) have been thought to function as chaperones, protecting their targets from denaturation and aggregation when organisms are subjected to various biotic and abiotic stresses. We previously reported an sHSP from Oryza sativa (OsHSP20) that homodimerizes and forms granules within the cytoplasm but its function was unclear. We now show that OsHSP20 transcripts were significantly up-regulated by heat shock and high salinity but not by drought. A recombinant protein was purified and shown to inhibit the thermal aggregation of the mitochondrial malate dehydrogenase (MDH) enzyme in vitro, and this molecular chaperone activity suggested that OsHSP20 might be involved in stress resistance. Heterologous expression of OsHSP20 in Escherichia coli or Pichia pastoris cells enhanced heat and salt stress tolerance when compared with the control cultures. Transgenic rice plants constitutively overexpressing OsHSP20 and exposed to heat and salt treatments had longer roots and higher germination rates than those of control plants. A series of assays using its truncated mutants showed that its N-terminal arm plus the ACD domain was crucial for its homodimerization, molecular chaperone activity in vitro, and stress tolerance in vivo. The results supported the viewpoint that OsHSP20 could confer heat and salt tolerance by its molecular chaperone activity in different organisms and also provided a more thorough characterization of HSP20-mediated stress tolerance in O. sativa.
Collapse
Affiliation(s)
- Liu-Ming Guo
- Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.,College of Chemistry and Life Science, Zhejiang Normal University, Jinhua, 321004, China
| | - Jing Li
- Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Jing He
- Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.,College of Chemistry and Life Science, Zhejiang Normal University, Jinhua, 321004, China
| | - Han Liu
- Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.,College of Chemistry and Life Science, Zhejiang Normal University, Jinhua, 321004, China
| | - Heng-Mu Zhang
- Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China. .,College of Chemistry and Life Science, Zhejiang Normal University, Jinhua, 321004, China.
| |
Collapse
|
20
|
Singh D, Singh CK, Taunk J, Jadon V, Pal M, Gaikwad K. Genome wide transcriptome analysis reveals vital role of heat responsive genes in regulatory mechanisms of lentil (Lens culinaris Medikus). Sci Rep 2019; 9:12976. [PMID: 31506558 PMCID: PMC6736890 DOI: 10.1038/s41598-019-49496-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 08/23/2019] [Indexed: 01/29/2023] Open
Abstract
The present study reports the role of morphological, physiological and reproductive attributes viz. membrane stability index (MSI), osmolytes accumulations, antioxidants activities and pollen germination for heat stress tolerance in contrasting genotypes. Heat stress increased proline and glycine betaine (GPX) contents, induced superoxide dismutase (SOD), ascorbate peroxidase (APX) and glutathione peroxidase (GPX) activities and resulted in higher MSI in PDL-2 (tolerant) compared to JL-3 (sensitive). In vitro pollen germination of tolerant genotype was higher than sensitive one under heat stress. In vivo stressed pollens of tolerant genotype germinated well on stressed stigma of sensitive genotype, while stressed pollens of sensitive genotype did not germinate on stressed stigma of tolerant genotype. De novo transcriptome analysis of both the genotypes showed that number of contigs ranged from 90,267 to 104,424 for all the samples with N50 ranging from 1,755 to 1,844 bp under heat stress and control conditions. Based on assembled unigenes, 194,178 high-quality Single Nucleotide Polymorphisms (SNPs), 141,050 microsatellites and 7,388 Insertion-deletions (Indels) were detected. Expression of 10 genes was evaluated using quantitative Real Time Polymerase Chain Reaction (RT-qPCR). Comparison of differentially expressed genes (DEGs) under different combinations of heat stress has led to the identification of candidate DEGs and pathways. Changes in expression of physiological and pollen phenotyping related genes were also reaffirmed through transcriptome data. Cell wall and secondary metabolite pathways are found to be majorly affected under heat stress. The findings need further analysis to determine genetic mechanism involved in heat tolerance of lentil.
Collapse
Affiliation(s)
- Dharmendra Singh
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India.
| | - Chandan Kumar Singh
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Jyoti Taunk
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Vasudha Jadon
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Madan Pal
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India.
| | - Kishor Gaikwad
- ICAR-National Research Centre on Plant Biotechnology, Pusa Campus, New Delhi, 110012, India
| |
Collapse
|
21
|
Falter C, Thu NBA, Pokhrel S, Reumann S. New guidelines for fluorophore application in peroxisome targeting analyses in transient plant expression systems. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2019; 61:884-899. [PMID: 30791204 DOI: 10.1111/jipb.12791] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 02/14/2019] [Indexed: 06/09/2023]
Abstract
Peroxisome research has been revolutionized by proteome studies combined with in vivo subcellular targeting analyses. Yellow and cyan fluorescent protein (YFP and CFP) are the classical fluorophores of plant peroxisome research. In the new transient expression system of Arabidopsis seedlings co-cultivated with Agrobacterium we detected the YFP fusion of one candidate protein in peroxisomes, but only upon co-transformation with the peroxisome marker, CFP-PTS1. The data suggested that the YFP fusion was directed to peroxisomes due to its weak heterodimerization ability with CFP-PTS1, allowing piggy-back import into peroxisomes. Indeed, if co-expressed with monomeric Cerulean-PTS1 (mCer-PTS1), the YFP fusion was no longer matrix localized. We systematically investigated the occurrence and extent of dimerization-based piggy-back import for different fluorophore combinations in five major transient plant expression systems. In Arabidopsis seedlings and tobacco leaves both untagged YFP and monomeric Venus were imported into peroxisomes if co-expressed with CFP-PTS1 but not with mCer-PTS1. By contrast, piggy-back import of cytosolic proteins was not observed in Arabidopsis and tobacco protoplasts or in onion epidermal cells for any fluorophore combination at any time point. Based on these important results we formulate new guidelines for fluorophore usage and experimental design to guarantee reliable identification of novel plant peroxisomal proteins.
Collapse
Affiliation(s)
- Christian Falter
- Plant Biochemistry and Infection Biology, Institute of Plant Science and Microbiology, University of Hamburg, Hamburg, Germany
| | - Nguyen Binh Anh Thu
- Plant Biochemistry and Infection Biology, Institute of Plant Science and Microbiology, University of Hamburg, Hamburg, Germany
| | - Saugat Pokhrel
- Plant Biochemistry and Infection Biology, Institute of Plant Science and Microbiology, University of Hamburg, Hamburg, Germany
| | - Sigrun Reumann
- Plant Biochemistry and Infection Biology, Institute of Plant Science and Microbiology, University of Hamburg, Hamburg, Germany
| |
Collapse
|
22
|
Huang LJ, Cheng GX, Khan A, Wei AM, Yu QH, Yang SB, Luo DX, Gong ZH. CaHSP16.4, a small heat shock protein gene in pepper, is involved in heat and drought tolerance. PROTOPLASMA 2019; 256:39-51. [PMID: 29946904 DOI: 10.1007/s00709-018-1280-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 06/18/2018] [Indexed: 05/08/2023]
Abstract
Environmental stress affects growth and development of crops, and reduces yield and quality of crops. To cope with environmental stressors, plants have sophisticated defense mechanisms, including the HSF/HSP pathway. Here, we identify the expression pattern of CaHSP16.4 in thermo-tolerant and thermo-sensitive pepper (Capsicum annuum L.) lines. Under heat stress, R9 thermo-tolerant line had higher CaHSP16.4 expression level than the B6 thermo-sensitive line. Under drought stress, expression pattern of CaHSP16.4 was dynamic. Initially, CaHSP16.4 was downregulated then CaHSP16.4 significantly increased. Subcellular localization assay showed that CaHSP16.4 localizes in cytoplasm and nucleus. In the R9 line, silencing of CaHSP16.4 resulted in a significant increase in malonaldehyde content and a significant reduction in total chlorophyll content, suggesting that silencing of CaHSP16.4 reduces heat and drought stresses tolerance. Overexpression of CaHSP16.4 enhances tolerance to heat stress in Arabidopsis. Under heat stress, the survival rate of CaHSP16.4 overexpression lines was significantly higher than wild type. Furthermore, under heat, drought, and combined stress conditions, the CaHSP16.4-overexpression lines had lower relative electrolytic leakage and malonaldehyde content, higher total chlorophyll content, and higher activity levels of superoxide dismutase, catalase, ascorbic acid peroxidase, and glutathione peroxidase compared to wild type. Furthermore, the expression levels of the stress response genes in the overexpression lines were higher than the wild type. These results indicate that the overexpression of CaHSP16.4 enhances the ability of reactive oxygen species scavenging under heat and drought stress.
Collapse
Affiliation(s)
- Liu-Jun Huang
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Guo-Xin Cheng
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Abid Khan
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Ai-Min Wei
- Tianjin Vegetable Research Center, Tianjin, 300192, People's Republic of China
| | - Qing-Hui Yu
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, People's Republic of China
| | - Sheng-Bao Yang
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, People's Republic of China
| | - De-Xu Luo
- Xuhuai Region Huaiyin Institute of Agricultural Sciences, Huai'an, 223001, Jiangsu, People's Republic of China
| | - Zhen-Hui Gong
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China.
| |
Collapse
|
23
|
Zhang L, Hu W, Gao Y, Pan H, Zhang Q. A cytosolic class II small heat shock protein, PfHSP17.2, confers resistance to heat, cold, and salt stresses in transgenic Arabidopsis. Genet Mol Biol 2018; 41:649-660. [PMID: 30235397 PMCID: PMC6136373 DOI: 10.1590/1678-4685-gmb-2017-0206] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 01/11/2018] [Indexed: 11/22/2022] Open
Abstract
We cloned and characterized the full-length coding sequence of a small heat shock (sHSP) gene, PfHSP17.2, from Primula forrestii leaves following heat stress treatment. Homology and phylogenetic analysis suggested that PfHSP17.2 is a cytosolic class II sHSP, which was further supported by the cytosolic localization of transient expression of PfHSP17.2 fused with green fluorescent protein reporter. Expression analysis showed that PfHSP17.2 was highly inducible by heat stress in almost all the vegetative and generative tissues and was expressed under salt, cold, and oxidative stress conditions as well. Moreover, the expression of PfHSP17.2 in P. forrestii was detected in certain developmental growth stages. Transgenic Arabidopsis thaliana constitutively expressing PfHSP17.2 displayed increased thermotolerance and higher resistance to salt and cold compared with wild type plants. It is suggested that PfHSP17.2 plays a key role in heat and other abiotic stresses.
Collapse
Affiliation(s)
- Lu Zhang
- Department of Landscape Architecture, School of Civil Engineering and Architecture, Zhejiang Sci-Tech University, Hangzhou, Zhejiang Province, China.,College of Landscape Architecture, Beijing Forestry University, China National Engineering Research Center for Floriculture, Beijing, China
| | - Weijuan Hu
- College of Landscape Architecture, Beijing Forestry University, China National Engineering Research Center for Floriculture, Beijing, China
| | - Yike Gao
- College of Landscape Architecture, Beijing Forestry University, China National Engineering Research Center for Floriculture, Beijing, China
| | - Huitang Pan
- College of Landscape Architecture, Beijing Forestry University, China National Engineering Research Center for Floriculture, Beijing, China
| | - Qixiang Zhang
- College of Landscape Architecture, Beijing Forestry University, China National Engineering Research Center for Floriculture, Beijing, China
| |
Collapse
|
24
|
Prinsi B, Negri AS, Failla O, Scienza A, Espen L. Root proteomic and metabolic analyses reveal specific responses to drought stress in differently tolerant grapevine rootstocks. BMC PLANT BIOLOGY 2018; 18:126. [PMID: 29925320 PMCID: PMC6011575 DOI: 10.1186/s12870-018-1343-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 06/06/2018] [Indexed: 05/15/2023]
Abstract
BACKGROUND Roots play a central role in plant response to water stress (WS). They are involved in its perception and signalling to the leaf as well as in allowing the plant to adapt to maintaining an adequate water balance. Only a few studies have investigated the molecular/biochemical responses to WS in roots of perennial plants, such as grapevine. This study compares two grapevine rootstock genotypes (i.e. 101.14 and M4) with different tolerance to WS, evaluating the responses at proteomic and metabolite levels. RESULTS WS induced changes in the abundance of several proteins in both genotypes (17 and 22% of the detected proteins in 101.14 and M4, respectively). The proteomic analysis revealed changes in many metabolic pathways that fitted well with the metabolite data. M4 showed metabolic responses which were potentially able to counteract the WS effects, such as the drop in cell turgor, increased oxidative stress and loss of cell structure integrity/functionality. However, in 101.14 it was evident that the roots were suffering more severely from these effects. We found that many proteins classified as active in energy metabolism, hormone metabolism, protein, secondary metabolism and stress functional classes showed particular differences between the two rootstocks. CONCLUSION The proteomic/metabolite comparative analysis carried out provides new information on the possible biochemical and molecular strategies adopted by grapevine roots to counteract WS. Although further work is needed to define in detail the role(s) of the proteins and metabolites that characterize WS response, this study, involving the M4 rootstock genotype, highlights that osmotic responses, modulations of C metabolism, mitochondrial functionality and some specific responses to stress occurring in the roots play a primary role in Vitis spp. tolerance to this type of abiotic stress.
Collapse
Affiliation(s)
- Bhakti Prinsi
- Dipartimento di Scienze Agrarie e Ambientali - Produzione, Territorio, Agroenergia (DiSAA), Università degli Studi di Milano, Via Celoria, 2, 20133 Milano, Italy
| | - Alfredo Simone Negri
- Dipartimento di Scienze Agrarie e Ambientali - Produzione, Territorio, Agroenergia (DiSAA), Università degli Studi di Milano, Via Celoria, 2, 20133 Milano, Italy
| | - Osvaldo Failla
- Dipartimento di Scienze Agrarie e Ambientali - Produzione, Territorio, Agroenergia (DiSAA), Università degli Studi di Milano, Via Celoria, 2, 20133 Milano, Italy
| | - Attilio Scienza
- Dipartimento di Scienze Agrarie e Ambientali - Produzione, Territorio, Agroenergia (DiSAA), Università degli Studi di Milano, Via Celoria, 2, 20133 Milano, Italy
| | - Luca Espen
- Dipartimento di Scienze Agrarie e Ambientali - Produzione, Territorio, Agroenergia (DiSAA), Università degli Studi di Milano, Via Celoria, 2, 20133 Milano, Italy
| |
Collapse
|
25
|
Komatsu S, Hashiguchi A. Subcellular Proteomics: Application to Elucidation of Flooding-Response Mechanisms in Soybean. Proteomes 2018; 6:E13. [PMID: 29495455 PMCID: PMC5874772 DOI: 10.3390/proteomes6010013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 02/13/2018] [Accepted: 02/23/2018] [Indexed: 02/06/2023] Open
Abstract
Soybean, which is rich in protein and oil, is cultivated in several climatic zones; however, its growth is markedly decreased by flooding. Proteomics is a useful tool for understanding the flooding-response mechanism in soybean. Subcellular proteomics has the potential to elucidate localized cellular responses and investigate communications among subcellular components during plant growth and during stress. Under flooding, proteins related to signaling, stress and the antioxidative system are increased in the plasma membrane; scavenging enzymes for reactive-oxygen species are suppressed in the cell wall; protein translation is suppressed through inhibition of proteins related to preribosome biogenesis and mRNA processing in the nucleus; levels of proteins involved in the electron transport chain are reduced in the mitochondrion; and levels of proteins related to protein folding are decreased in the endoplasmic reticulum. This review discusses the advantages of a gel-free/label-free proteomic technique and methods of plant subcellular purification. It also summarizes cellular events in soybean under flooding and discusses future prospects for generation of flooding-tolerant soybean.
Collapse
Affiliation(s)
- Setsuko Komatsu
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan.
| | - Akiko Hashiguchi
- Faculty of Medicine, University of Tsukuba, Tsukuba 305-8577, Japan.
| |
Collapse
|
26
|
Abstract
Plant peroxisomes are required for a number of fundamental physiological processes, such as primary and secondary metabolism, development and stress response. Indexing the dynamic peroxisome proteome is prerequisite to fully understanding the importance of these organelles. Mass Spectrometry (MS)-based proteome analysis has allowed the identification of novel peroxisomal proteins and pathways in a relatively high-throughput fashion and significantly expanded the list of proteins and biochemical reactions in plant peroxisomes. In this chapter, we summarize the experimental proteomic studies performed in plants, compile a list of ~200 confirmed Arabidopsis peroxisomal proteins, and discuss the diverse plant peroxisome functions with an emphasis on the role of Arabidopsis MS-based proteomics in discovering new peroxisome functions. Many plant peroxisome proteins and biochemical pathways are specific to plants, substantiating the complexity, plasticity and uniqueness of plant peroxisomes. Mapping the full plant peroxisome proteome will provide a knowledge base for the improvement of crop production, quality and stress tolerance.
Collapse
Affiliation(s)
- Ronghui Pan
- MSU-Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA
| | - Jianping Hu
- MSU-Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA.
- Plant Biology Department, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
27
|
Activation of catalase activity by a peroxisome-localized small heat shock protein Hsp17.6CII. J Genet Genomics 2017; 44:395-404. [PMID: 28869112 DOI: 10.1016/j.jgg.2017.03.009] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 03/01/2017] [Accepted: 03/27/2017] [Indexed: 01/02/2023]
Abstract
Plant catalases are important antioxidant enzymes and are indispensable for plant to cope with adverse environmental stresses. However, little is known how catalase activity is regulated especially at an organelle level. In this study, we identified that small heat shock protein Hsp17.6CII (AT5G12020) interacts with and activates catalases in the peroxisome of Arabidopsis thaliana. Although Hsp17.6CII is classified into the cytosol-located small heat shock protein subfamily, we found that Hsp17.6CII is located in the peroxisome. Moreover, Hsp17.6CII contains a novel non-canonical peroxisome targeting signal 1 (PTS1), QKL, 16 amino acids upstream from the C-terminus. The QKL signal peptide can partially locate GFP to peroxisome, and mutations in the tripeptide lead to the abolishment of this activity. In vitro catalase activity assay and holdase activity assay showed that Hsp17.6CII increases CAT2 activity and prevents it from thermal aggregation. These results indicate that Hsp17.6CII is a peroxisome-localized catalase chaperone. Overexpression of Hsp17.6CII conferred enhanced catalase activity and tolerance to abiotic stresses in Arabidopsis. Interestingly, overexpression of Hsp17.6CII in catalase-deficient mutants, nca1-3 and cat2 cat3, failed to rescue their stress-sensitive phenotypes and catalase activity, suggesting that Hsp17.6CII-mediated stress response is dependent on NCA1 and catalase activity. Overall, we identified a novel peroxisome-located catalase chaperone that is involved in plant abiotic stress resistance by activating catalase activity.
Collapse
|
28
|
Landi S, Esposito S. Nitrate Uptake Affects Cell Wall Synthesis and Modeling. FRONTIERS IN PLANT SCIENCE 2017; 8:1376. [PMID: 28848580 PMCID: PMC5550703 DOI: 10.3389/fpls.2017.01376] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 07/24/2017] [Indexed: 05/27/2023]
Abstract
Nowadays, the relationship(s) about N assimilation and cell wall remodeling in plants remains generally unclear. Enzymes involved in cell wall synthesis/modification, and nitrogen transporters play a critical role in plant growth, differentiation, and response to external stimuli. In this review, a co-expression analysis of nitrate and ammonium transporters of Arabidopsis thaliana was performed in order to explore the functional connection of these proteins with cell-wall related enzymes. This approach highlighted a strict relationship between inorganic nitrogen transporters and cell wall formation, identifying a number of co-expressed remodeling enzymes. The enzymes involved in pectin and xyloglucan synthesis resulted particularly co-regulated together with nitrate carriers, suggesting a connection between nitrate assimilation and cell wall growth regulation. Major Facilitator Carriers, and one chloride channel, are similarly co-expressed with pectin lyase, pectinacetylesterase, and cellulose synthase. Contrarily, ammonium transporters show little or no connection with those genes involved in cell wall synthesis. Different aspects related to plant development, embryogenesis, and abiotic stress response will be discussed, given the importance in plant growth of cell wall synthesis and nitrate uptake. Intriguingly, the improvement of abiotic stress tolerance in crops concerns both these processes indicating the importance in sensing the environmental constraints and mediating a response. These evaluations could help to identify candidate genes for breeding purposes.
Collapse
|
29
|
PLATINUM SENSITIVE 2 LIKE impacts growth, root morphology, seed set, and stress responses. PLoS One 2017; 12:e0180478. [PMID: 28678890 PMCID: PMC5498030 DOI: 10.1371/journal.pone.0180478] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 06/15/2017] [Indexed: 01/04/2023] Open
Abstract
Eukaryotic protein phosphatase 4 (PP4) is a PP2A-type protein phosphatase that is part of a conserved complex with regulatory factors PSY2 and PP4R2. Various lines of Arabidopsis thaliana with mutated PP4 subunit genes were constructed to study the so far completely unknown functions of PP4 in plants. Mutants with knocked out putative functional homolog of the PSY2 LIKE (PSY2L) gene were dwarf and bushy, while plants with knocked out PP4R2 LIKE (PP4R2L) looked very similar to WT. The psy2l seedlings had short roots with disorganized morphology and impaired meristem. Seedling growth was sensitive to the genotoxin cisplatin. Global transcript analysis (RNA-seq) of seedlings and rosette leaves revealed several groups of genes, shared between both types of tissues, strongly influenced by knocked out PSY2L. Receptor kinases, CRINKLY3 and WAG1, important for growth and development, were down-regulated 3–7 times. EUKARYOTIC ELONGATION FACTOR5A1 was down-regulated 4–6 fold. Analysis of hormone sensitive genes indicated that abscisic acid levels were high, while auxin, cytokinin and gibberellic acid levels were low in psy2l. Expression of specific transcription factors involved in regulation of anthocyanin synthesis were strongly elevated, e.g. the master regulator PAP1, and intriguingly TT8, which is otherwise mainly expressed in seeds. The psy2l mutants accumulated anthocyanins under conditions where WT did not, pointing to PSY2L as a possible upstream negative regulator of PAP1 and TT8. Expression of the sugar-phosphate transporter GPT2, important for cellular sugar and phosphate homeostasis, was enhanced 7–8 times. Several DNA damage response genes, including the cell cycle inhibitor gene WEE1, were up-regulated in psy2l. The activation of DNA repair signaling genes, in combination with phenotypic traits showing aberrant root meristem and sensitivity to the genotoxic cisplatin, substantiate the involvement of Arabidopsis PSY2L in maintenance of genome integrity.
Collapse
|
30
|
Transcriptomic basis for drought-resistance in Brassica napus L. Sci Rep 2017; 7:40532. [PMID: 28091614 PMCID: PMC5238399 DOI: 10.1038/srep40532] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 12/07/2016] [Indexed: 01/06/2023] Open
Abstract
Based on transcriptomic data from four experimental settings with drought-resistant and drought-sensitive cultivars under drought and well-watered conditions, statistical analysis revealed three categories encompassing 169 highly differentially expressed genes (DEGs) in response to drought in Brassica napus L., including 37 drought-resistant cultivar-related genes, 35 drought-sensitive cultivar-related genes and 97 cultivar non-specific ones. We provide evidence that the identified DEGs were fairly uniformly distributed on different chromosomes and their expression patterns are variety specific. Except commonly enriched in response to various stimuli or stresses, different categories of DEGs show specific enrichment in certain biological processes or pathways, which indicated the possibility of functional differences among the three categories. Network analysis revealed relationships among the 169 DEGs, annotated biological processes and pathways. The 169 DEGs can be classified into different functional categories via preferred pathways or biological processes. Some pathways might simultaneously involve a large number of shared DEGs, and these pathways are likely to cross-talk and have overlapping biological functions. Several members of the identified DEGs fit to drought stress signal transduction pathway in Arabidopsis thaliana. Finally, quantitative real-time PCR validations confirmed the reproducibility of the RNA-seq data. These investigations are profitable for the improvement of crop varieties through transgenic engineering.
Collapse
|
31
|
Abstract
To date, less than 150 proteins have been located to plant peroxisomes, indicating that unbiased large-scale approaches such as experimental proteome research are required to uncover the remaining yet unknown metabolic functions of this organelle as well as its regulatory mechanisms and membrane proteins. For experimental proteome research, Arabidopsis thaliana is the model plant of choice and an isolation methodology that obtains peroxisomes of sufficient yield and high purity is vital for research on this organelle. However, organelle enrichment is more difficult from Arabidopsis when compared to other plant species and especially challenging for peroxisomes. Leaf peroxisomes from Arabidopsis are very fragile in aqueous solution and show pronounced physical interactions with chloroplasts and mitochondria in vivo that persist in vitro and decrease peroxisome purity. Here, we provide a detailed protocol for the isolation of Arabidopsis leaf peroxisomes using two different types of density gradients (Percoll and sucrose) sequentially that yields approximately 120 μg of peroxisome proteins from 60 g of fresh leaf material. A method is also provided to assess the relative purity of the isolated peroxisomes by immunoblotting to allow selection of the purest peroxisome isolates. To enable the analysis of peroxisomal membrane proteins, an enrichment strategy using sodium carbonate treatment of isolated peroxisome membranes has been adapted to suit isolated leaf peroxisomes and is described here.
Collapse
|
32
|
Identification and characterization of the GhHsp20 gene family in Gossypium hirsutum. Sci Rep 2016; 6:32517. [PMID: 27580529 PMCID: PMC5007520 DOI: 10.1038/srep32517] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 08/08/2016] [Indexed: 02/04/2023] Open
Abstract
In higher plants, Heat Shock Protein 20 (Hsp20) plays crucial roles in growth, development and responses to abiotic stresses. In this study, 94 GhHsp20 genes were identified in G. hirsutum, and these genes were phylogenetically clustered into 14 subfamilies. Out of these, 73 paralogous gene pairs remained in conserved positions on segmental duplicated blocks and only 14 genes clustered into seven tandem duplication event regions. Transcriptome analysis showed that 82 GhHsp20 genes were expressed in at least one tested tissues, indicating that the GhHsp20 genes were involved in physiological and developmental processes of cotton. Further, expression profiles under abiotic stress exhibited that two-thirds of the GhHsp20 genes were responsive to heat stress, while 15 genes were induced by multiple stresses. In addition, qRT-PCR confirmed that 16 GhHsp20 genes were hot-induced, and eight genes were up-regulated under multiple abiotic stresses and stress-related phytohormone treatments. Taken together, our results presented here would be helpful in laying the foundation for understanding the complex mechanisms of GhHsp20 mediated developmental processes and abiotic stress signaling transduction pathways in cotton.
Collapse
|
33
|
Li J, Zhang J, Jia H, Li Y, Xu X, Wang L, Lu M. The Populus trichocarpa PtHSP17.8 involved in heat and salt stress tolerances. PLANT CELL REPORTS 2016; 35:1587-99. [PMID: 27021382 DOI: 10.1007/s00299-016-1973-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 03/21/2016] [Indexed: 05/24/2023]
Abstract
PtHSP17.8 was regulated by various abiotic stresses. Overexpression of PtHSP17.8 enhanced the tolerance to heat and salt stresses through maintain ROS homeostasis and cooperate with stress-related genes in Arabidopsis. Small heat shock proteins (sHSPs) play important roles in response to diverse biotic and abiotic stresses, especially in heat tolerance. However, limited information is available on the stress tolerance roles of sHSPs in woody species. To explore the function of sHSPs in poplar, we isolated and characterized PtHSP17.8 from Populus trichocarpa. Phylogenetic analysis and subcellular localization revealed that PtHSP17.8 was a cytosolic class I sHSP. The gene expression profile of PtHSP17.8 in various tissues showed that it was significantly accumulated in stem and root, which was consistent with the GUS expression pattern driven by promoter of PtHSP17.8. The expression of PtHSP17.8 could be induced by various abiotic stresses and significantly activated by heat stress. Overexpression of PtHSP17.8 enhanced the tolerance to heat and salt stresses in Arabidopsis. The seedling survival rate, root length, relative water content, antioxidative enzyme activities, proline, and soluble sugar content were increased in transgenic Arabidopsis under heat and salt stresses, but not in normal condition. The co-expression network of PtHSP17.8 were constructed and demonstrated many stress responsive genes included. The stress-related genes in the co-expression network were up-regulated in the PtHSP17.8 overexpression seedlings. These results suggest that PtHSP17.8 confers heat and salt tolerances in plants.
Collapse
Affiliation(s)
- Jianbo Li
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Jin Zhang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China.
- Collaborative Innovation Center of Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China.
| | - Huixia Jia
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
- Collaborative Innovation Center of Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Yu Li
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Xiangdong Xu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Lijuan Wang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Mengzhu Lu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China.
- Collaborative Innovation Center of Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China.
| |
Collapse
|
34
|
Wang X, Komatsu S. Plant subcellular proteomics: Application for exploring optimal cell function in soybean. J Proteomics 2016; 143:45-56. [PMID: 26808589 DOI: 10.1016/j.jprot.2016.01.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 01/06/2016] [Accepted: 01/13/2016] [Indexed: 01/11/2023]
Abstract
UNLABELLED Plants have evolved complicated responses to developmental changes and stressful environmental conditions. Subcellular proteomics has the potential to elucidate localized cellular responses and investigate communications among subcellular compartments during plant development and in response to biotic and abiotic stresses. Soybean, which is a valuable legume crop rich in protein and vegetable oil, can grow in several climatic zones; however, the growth and yield of soybean are markedly decreased under stresses. To date, numerous proteomic studies have been performed in soybean to examine the specific protein profiles of cell wall, plasma membrane, nucleus, mitochondrion, chloroplast, and endoplasmic reticulum. In this review, methods for the purification and purity assessment of subcellular organelles from soybean are summarized. In addition, the findings from subcellular proteomic analyses of soybean during development and under stresses, particularly flooding stress, are presented and the proteins regulated among subcellular compartments are discussed. Continued advances in subcellular proteomics are expected to greatly contribute to the understanding of the responses and interactions that occur within and among subcellular compartments during development and under stressful environmental conditions. BIOLOGICAL SIGNIFICANCE Subcellular proteomics has the potential to investigate the cellular events and interactions among subcellular compartments in response to development and stresses in plants. Soybean could grow in several climatic zones; however, the growth and yield of soybean are markedly decreased under stresses. Numerous proteomics of cell wall, plasma membrane, nucleus, mitochondrion, chloroplast, and endoplasmic reticulum was carried out to investigate the respecting proteins and their functions in soybean during development or under stresses. In this review, methods of subcellular-organelle enrichment and purity assessment are summarized. In addition, previous findings of subcellular proteomics are presented, and functional proteins regulated among different subcellular are discussed. Subcellular proteomics contributes greatly to uncovering responses and interactions among subcellular compartments during development and under stressful environmental conditions in soybean.
Collapse
Affiliation(s)
- Xin Wang
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan; National Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba 305-8518, Japan
| | - Setsuko Komatsu
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan; National Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba 305-8518, Japan.
| |
Collapse
|
35
|
Jaspard E, Hunault G. sHSPdb: a database for the analysis of small Heat Shock Proteins. BMC PLANT BIOLOGY 2016; 16:135. [PMID: 27297221 PMCID: PMC4906601 DOI: 10.1186/s12870-016-0820-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 05/24/2016] [Indexed: 05/29/2023]
Abstract
BACKGROUND small Heat Shock Proteins (sHSP) is a wide proteins family. SHSP are found in all kingdoms and they play critical roles in plant stress tolerance mechanisms (as well as in pathogenic microorganisms and are implicated in human diseases). RESULTS sHSPdb (small Heat Shock Proteins database) is an integrated resource containing non-redundant, full-length and curated sequences of sHSP, classified on the basis of amino acids motifs and physico-chemical properties. sHSPdb gathers data about sHSP defined by various databases (Uniprot, PFAM, CDD, InterPro). It provides a browser interface for retrieving information from the whole database and a search interface using various criteria for retrieving a refined subset of entries. Physicochemical properties, amino acid composition and combinations are calculated for each entry. sHSPdb provides automatic statistical analysis of all sHSP properties. Among various possibilities, sHSPdb allows BLAST searches, alignment of selected sequences and submission of sequences. CONCLUSIONS sHSPdb is a new database containing information about sHSP from all kingdoms. sHSPdb provides a classification of sHSP, as well as tools and data for the analysis of the structure - function relationships of sHSP. Data are mainly related to various physico-chemical properties of the amino acids sequences of sHSP. sHSPdb is accessible at http://forge.info.univ-angers.fr/~gh/Shspdb/index.php .
Collapse
Affiliation(s)
- Emmanuel Jaspard
- Université d'Angers, UMR 1345 IRHS, SFR 4207 QUASAV, Angers, France.
- INRA, UMR 1345 IRHS, Beaucouzé, France.
- Agrocampus-Ouest, UMR 1345 IRHS, Angers, France.
| | - Gilles Hunault
- Université d'Angers, Laboratoire d'Hémodynamique, Interaction Fibrose et Invasivité tumorale hépatique, UPRES 3859, IFR 132, F-49045, Angers, France
| |
Collapse
|
36
|
Li ZY, Long RC, Zhang TJ, Yang QC, Kang JM. Molecular cloning and characterization of the MsHSP17.7 gene from Medicago sativa L. Mol Biol Rep 2016; 43:815-26. [PMID: 27193169 PMCID: PMC4947596 DOI: 10.1007/s11033-016-4008-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 05/12/2016] [Indexed: 12/23/2022]
Abstract
Heat shock proteins (HSPs) are ubiquitous protective proteins that play crucial roles in plant development and adaptation to stress, and the aim of this study is to characterize the HSP gene in alfalfa. Here we isolated a small heat shock protein gene (MsHSP17.7) from alfalfa by homology-based cloning. MsHSP17.7 contains a 477-bp open reading frame and encodes a protein of 17.70-kDa. The amino acid sequence shares high identity with MtHSP (93.98 %), PsHSP17.1 (83.13 %), GmHSP17.9 (74.10 %) and SlHSP17.6 (79.25 %). Phylogenetic analysis revealed that MsHSP17.7 belongs to the group of cytosolic class II small heat shock proteins (sHSP), and likely localizes to the cytoplasm. Quantitative RT-PCR indicated that MsHSP17.7 was induced by heat shock, high salinity, peroxide and drought stress. Prokaryotic expression indicated that the salt and peroxide tolerance of Escherichia coli was remarkably enhanced. Transgenic Arabidopsis plants overexpressing MsHSP17.7 exhibited increased root length of transgenic Arabidopsis lines under salt stress compared to the wild-type line. The malondialdehyde (MDA) levels in the transgenic lines were significantly lower than in wild-type, although proline levels were similar between transgenic and wild-type lines. MsHSP17.7 was induced by heat shock, high salinity, oxidative stress and drought stress. Overexpression analysis suggests that MsHSP17.7 might play a key role in response to high salinity stress.
Collapse
Affiliation(s)
- Zhen-Yi Li
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China
| | - Rui-Cai Long
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China
| | - Tie-Jun Zhang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China
| | - Qing-Chuan Yang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China
| | - Jun-Mei Kang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China.
| |
Collapse
|
37
|
Reumann S, Chowdhary G, Lingner T. Characterization, prediction and evolution of plant peroxisomal targeting signals type 1 (PTS1s). BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1863:790-803. [PMID: 26772785 DOI: 10.1016/j.bbamcr.2016.01.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 01/01/2016] [Accepted: 01/04/2016] [Indexed: 12/22/2022]
Abstract
Our knowledge of the proteome of plant peroxisomes and their functional plasticity is far from being complete, primarily due to major technical challenges in experimental proteome research of the fragile cell organelle. Several unexpected novel plant peroxisome functions, for instance in biotin and phylloquinone biosynthesis, have been uncovered recently. Nevertheless, very few regulatory and membrane proteins of plant peroxisomes have been identified and functionally described up to now. To define the matrix proteome of plant peroxisomes, computational methods have emerged as important powerful tools. Novel prediction approaches of high sensitivity and specificity have been developed for peroxisome targeting signals type 1 (PTS1) and have been validated by in vivo subcellular targeting analyses and thermodynamic binding studies with the cytosolic receptor, PEX5. Accordingly, the algorithms allow the correct prediction of many novel peroxisome-targeted proteins from plant genome sequences and the discovery of additional organelle functions. In this review, we provide an overview of methodologies, capabilities and accuracies of available prediction algorithms for PTS1 carrying proteins. We also summarize and discuss recent quantitative, structural and mechanistic information of the interaction of PEX5 with PTS1 carrying proteins in relation to in vivo import efficiency. With this knowledge, we develop a model of how proteins likely evolved peroxisomal targeting signals in the past and still nowadays, in which order the two import pathways might have evolved in the ancient eukaryotic cell, and how the secondary loss of the PTS2 pathway probably happened in specific organismal groups.
Collapse
Affiliation(s)
- S Reumann
- Department of Plant Biochemistry and Infection Biology, Biocentre Klein Flottbek, University of Hamburg, D-22609 Hamburg, Germany; Centre for Organelle Research, University of Stavanger, N-4036 Stavanger, Norway.
| | - G Chowdhary
- Centre for Organelle Research, University of Stavanger, N-4036 Stavanger, Norway; KIIT School of Biotechnology, Campus XI, KIIT University, I-751024 Bhubaneswar, India.
| | - T Lingner
- Department of Bioinformatics, Institute for Microbiology and Genetics, D-37077 Goettingen, Germany.
| |
Collapse
|
38
|
Kataya ARA, Schei E, Lillo C. Towards understanding peroxisomal phosphoregulation in Arabidopsis thaliana. PLANTA 2016; 243:699-717. [PMID: 26649560 DOI: 10.1007/s00425-015-2439-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 11/25/2015] [Indexed: 05/26/2023]
Abstract
This work identifies new protein phosphatases and phosphatase-related proteins targeting peroxisomes, and raises the question of a novel protein import pathway from ER to peroxisomes involving peroxisomal targeting signal type 1 (PTS1) Plant peroxisomes are essential for several processes, for example lipid metabolism, free radical detoxification, development, and stress-related functions. Although research on peroxisomes has been intensified, reversible phosphorylation as a control mechanism in peroxisomes is barely studied. Therefore, it is crucial to identify all peroxisomal proteins involved in phosphoregulation. We here started with protein phosphatases, and searched the Arabidopsis thaliana genome for phosphatase-related proteins with putative peroxisomal targeting signals (PTS). Five potential peroxisomal candidates were detected, from which four were confirmed to target peroxisomes or have a functional PTS. The highly conserved Ser-Ser-Met> was validated for two protein phosphatase 2C (PP2C) family members (POL like phosphatases, PLL2 and PLL3) as a functional peroxisomal targeting signal type 1 (PTS1). Full-length PLL2 and PLL3 fused with a reporter protein targeted peroxisomes in two plant expression systems. A putative protein phosphatase, purple acid phosphatase 7 (PAP7), was found to be dually targeted to ER and peroxisomes and experiments indicated a possible trafficking to peroxisomes via the ER depending on peroxisomal PTS1. In addition, a protein phosphatase 2A regulator (TIP41) was validated to harbor a functional PTS1 (Ser-Lys-Val>), but the full-length protein targeted cytosol and nucleus. Reverse genetics indicated a role for TIP41 in senescence signaling. Mass spectrometry of whole seedlings and isolated peroxisomes was employed, and identified new putative phosphorylated peroxisomal proteins. Previously, only one protein phosphatase, belonging to the phospho-protein phosphatase (PPP) family, was identified as a peroxisomal protein. The present work implies that members of two other main protein phosphatase families, i.e. PP2C and PAP, are also targeting peroxisomes.
Collapse
Affiliation(s)
- Amr R A Kataya
- Faculty of Science and Technology, Centre for Organelle Research, University of Stavanger, N-4036, Stavanger, Norway.
| | - Edit Schei
- Faculty of Science and Technology, Centre for Organelle Research, University of Stavanger, N-4036, Stavanger, Norway
| | - Cathrine Lillo
- Faculty of Science and Technology, Centre for Organelle Research, University of Stavanger, N-4036, Stavanger, Norway.
| |
Collapse
|
39
|
Yang G, Wang C, Wang Y, Guo Y, Zhao Y, Yang C, Gao C. Overexpression of ThVHAc1 and its potential upstream regulator, ThWRKY7, improved plant tolerance of Cadmium stress. Sci Rep 2016; 6:18752. [PMID: 26744182 PMCID: PMC4705465 DOI: 10.1038/srep18752] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 11/25/2015] [Indexed: 01/03/2023] Open
Abstract
As one of the most toxic heavy metals in the environment, cadmium (Cd) poses a severe threat to plant growth. We previously reported that overexpression of the Tamarix hispida V-ATPase c subunit (ThVHAc1) improved the Cd tolerance of Saccharomyces cerevisiae. In the current study, we further explored the Cd tolerance conferred by ThVHAc1 in Arabidopsis and T. hispida. ThVHAc1 transgenic Arabidopsis had higher seed germination, biomass, and chlorophyll content under CdCl2 treatment. In Cd-stressed plants, overexpression of ThVHAc1 significantly improved V-ATPase activity and affected the expression of other V-ATPase subunit-encoding genes. Intriguingly, the lower level of ROS accumulation in ThVHAc1-overexpressing lines under CdCl2 treatment demonstrated that ThVHAc1 may modulate Cd stress tolerance by regulating ROS homeostasis. Transient expression of ThVHAc1 in T. hispida further confirmed these findings. Furthermore, promoter analysis and yeast one-hybrid assay revealed that the transcription factor ThWRKY7 can specifically bind to the WRKY cis-element in the ThVHAc1 promoter. ThWRKY7 exhibited similar expression patterns as ThVHAc1 under CdCl2 treatment and improved Cd tolerance, suggesting that ThWRKY7 may be an upstream regulatory gene of ThVHAc1. Therefore, our results show that the combination of ThVHAc1 and its upstream regulator could be used to improve Cd stress tolerance in woody plants.
Collapse
Affiliation(s)
- Guiyan Yang
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), 26 Hexing Road, Harbin 150040, China
- Laboratory of Walnut Research Center, College of Forestry, Northwest A & F University, Yangling, 712100 Shaanxi, China
| | - Chao Wang
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), 26 Hexing Road, Harbin 150040, China
| | - Yucheng Wang
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), 26 Hexing Road, Harbin 150040, China
| | - Yucong Guo
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), 26 Hexing Road, Harbin 150040, China
| | - Yulin Zhao
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), 26 Hexing Road, Harbin 150040, China
| | - Chuanping Yang
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), 26 Hexing Road, Harbin 150040, China
| | - Caiqiu Gao
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), 26 Hexing Road, Harbin 150040, China
| |
Collapse
|
40
|
The first minutes in the life of a peroxisomal matrix protein. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1863:814-20. [PMID: 26408939 DOI: 10.1016/j.bbamcr.2015.09.025] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 09/18/2015] [Accepted: 09/21/2015] [Indexed: 01/30/2023]
Abstract
In the field of intracellular protein sorting, peroxisomes are most famous by their capacity to import oligomeric proteins. The data supporting this remarkable property are abundant and, understandably, have inspired a variety of hypothetical models on how newly synthesized (cytosolic) proteins reach the peroxisome matrix. However, there is also accumulating evidence suggesting that many peroxisomal oligomeric proteins actually arrive at the peroxisome still as monomers. In support of this idea, recent data suggest that PEX5, the shuttling receptor for peroxisomal matrix proteins, is also a chaperone/holdase, binding newly synthesized peroxisomal proteins in the cytosol and blocking their oligomerization. Here we review the data behind these two different perspectives and discuss their mechanistic implications on this protein sorting pathway.
Collapse
|
41
|
Using Co-Expression Analysis and Stress-Based Screens to Uncover Arabidopsis Peroxisomal Proteins Involved in Drought Response. PLoS One 2015; 10:e0137762. [PMID: 26368942 PMCID: PMC4569587 DOI: 10.1371/journal.pone.0137762] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Accepted: 08/21/2015] [Indexed: 12/13/2022] Open
Abstract
Peroxisomes are essential organelles that house a wide array of metabolic reactions important for plant growth and development. However, our knowledge regarding the role of peroxisomal proteins in various biological processes, including plant stress response, is still incomplete. Recent proteomic studies of plant peroxisomes significantly increased the number of known peroxisomal proteins and greatly facilitated the study of peroxisomes at the systems level. The objectives of this study were to determine whether genes that encode peroxisomal proteins with related functions are co-expressed in Arabidopsis and identify peroxisomal proteins involved in stress response using in silico analysis and mutant screens. Using microarray data from online databases, we performed hierarchical clustering analysis to generate a comprehensive view of transcript level changes for Arabidopsis peroxisomal genes during development and under abiotic and biotic stress conditions. Many genes involved in the same metabolic pathways exhibited co-expression, some genes known to be involved in stress response are regulated by the corresponding stress conditions, and function of some peroxisomal proteins could be predicted based on their co-expression pattern. Since drought caused expression changes to the highest number of genes that encode peroxisomal proteins, we subjected a subset of Arabidopsis peroxisomal mutants to a drought stress assay. Mutants of the LON2 protease and the photorespiratory enzyme hydroxypyruvate reductase 1 (HPR1) showed enhanced susceptibility to drought, suggesting the involvement of peroxisomal quality control and photorespiration in drought resistance. Our study provided a global view of how genes that encode peroxisomal proteins respond to developmental and environmental cues and began to reveal additional peroxisomal proteins involved in stress response, thus opening up new avenues to investigate the role of peroxisomes in plant adaptation to environmental stresses.
Collapse
|
42
|
Mani N, Ramakrishna K, Suguna K. Characterization of rice small heat shock proteins targeted to different cellular organelles. Cell Stress Chaperones 2015; 20:451-60. [PMID: 25624002 PMCID: PMC4406937 DOI: 10.1007/s12192-015-0570-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 01/02/2015] [Accepted: 01/06/2015] [Indexed: 12/11/2022] Open
Abstract
Small heat shock proteins (sHSPs) are a family of ATP-independent molecular chaperones which prevent cellular protein aggregation by binding to misfolded proteins. sHSPs form large oligomers that undergo drastic rearrangement/dissociation in order to execute their chaperone activity in protecting substrates from stress. Substrate-binding sites on sHSPs have been predominantly mapped on their intrinsically disordered N-terminal arms. This region is highly variable in sequence and length across species, and has been implicated in both oligomer formation and in mediating chaperone activity. Here, we present our results on the functional and structural characterization of five sHSPs in rice, each differing in their subcellular localisation, viz., cytoplasm, nucleus, chloroplast, mitochondria and peroxisome. We performed activity assays and dynamic light scattering studies to highlight differences in the chaperone activity and quaternary assembly of sHSPs targeted to various organelles. By cloning constructs that differ in the length and sequence of the tag in the N-terminal region, we have probed the sensitivity of sHSP oligomer assembly and chaperone activity to the length and amino acid composition of the N-terminus. In particular, we have shown that the incorporation of an N-terminal tag has significant consequences on sHSP quaternary structure.
Collapse
Affiliation(s)
- Nandini Mani
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka 560012 India
| | | | - Kaza Suguna
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka 560012 India
| |
Collapse
|
43
|
Haslbeck M, Vierling E. A first line of stress defense: small heat shock proteins and their function in protein homeostasis. J Mol Biol 2015; 427:1537-48. [PMID: 25681016 DOI: 10.1016/j.jmb.2015.02.002] [Citation(s) in RCA: 401] [Impact Index Per Article: 40.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Revised: 02/03/2015] [Accepted: 02/04/2015] [Indexed: 10/24/2022]
Abstract
Small heat shock proteins (sHsps) are virtually ubiquitous molecular chaperones that can prevent the irreversible aggregation of denaturing proteins. sHsps complex with a variety of non-native proteins in an ATP-independent manner and, in the context of the stress response, form a first line of defense against protein aggregation in order to maintain protein homeostasis. In vertebrates, they act to maintain the clarity of the eye lens, and in humans, sHsp mutations are linked to myopathies and neuropathies. Although found in all domains of life, sHsps are quite diverse and have evolved independently in metazoans, plants and fungi. sHsp monomers range in size from approximately 12 to 42kDa and are defined by a conserved β-sandwich α-crystallin domain, flanked by variable N- and C-terminal sequences. Most sHsps form large oligomeric ensembles with a broad distribution of different, sphere- or barrel-like oligomers, with the size and structure of the oligomers dictated by features of the N- and C-termini. The activity of sHsps is regulated by mechanisms that change the equilibrium distribution in tertiary features and/or quaternary structure of the sHsp ensembles. Cooperation and/or co-assembly between different sHsps in the same cellular compartment add an underexplored level of complexity to sHsp structure and function.
Collapse
Affiliation(s)
- Martin Haslbeck
- Department Chemie, Technische Universität München, Lichtenbergstrasse 4, 85 748 Garching, Germany.
| | - Elizabeth Vierling
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Life Science Laboratories, N329 240 Thatcher Road, Amherst, MA 01003-9364, USA.
| |
Collapse
|
44
|
|
45
|
Skoulding NS, Chowdhary G, Deus MJ, Baker A, Reumann S, Warriner SL. Experimental validation of plant peroxisomal targeting prediction algorithms by systematic comparison of in vivo import efficiency and in vitro PTS1 binding affinity. J Mol Biol 2014; 427:1085-101. [PMID: 25498386 DOI: 10.1016/j.jmb.2014.12.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 10/30/2014] [Accepted: 12/04/2014] [Indexed: 01/19/2023]
Abstract
Most peroxisomal matrix proteins possess a C-terminal targeting signal type 1 (PTS1). Accurate prediction of functional PTS1 sequences and their relative strength by computational methods is essential for determination of peroxisomal proteomes in silico but has proved challenging due to high levels of sequence variability of non-canonical targeting signals, particularly in higher plants, and low levels of availability of experimentally validated non-canonical examples. In this study, in silico predictions were compared with in vivo targeting analyses and in vitro thermodynamic binding of mutated variants within the context of one model targeting sequence. There was broad agreement between the methods for entire PTS1 domains and position-specific single amino acid residues, including residues upstream of the PTS1 tripeptide. The hierarchy Leu>Met>Ile>Val at the C-terminal position was determined for all methods but both experimental approaches suggest that Tyr is underweighted in the prediction algorithm due to the absence of this residue in the positive training dataset. A combination of methods better defines the score range that discriminates a functional PTS1. In vitro binding to the PEX5 receptor could discriminate among strong targeting signals while in vivo targeting assays were more sensitive, allowing detection of weak functional import signals that were below the limit of detection in the binding assay. Together, the data provide a comprehensive assessment of the factors driving PTS1 efficacy and provide a framework for the more quantitative assessment of the protein import pathway in higher plants.
Collapse
Affiliation(s)
- Nicola S Skoulding
- School of Chemistry and the Astbury Centre, University of Leeds, Leeds LS2 9JT, UK
| | - Gopal Chowdhary
- Centre for Organelle Research, Faculty of Science and Technology, University of Stavanger, Richard Johansens Gate 4, N-4021 Stavanger, Norway; KIIT School of Biotechnology, Campus XI, KIIT University, I-751024 Bhubaneswar, India
| | - Mara J Deus
- Centre for Organelle Research, Faculty of Science and Technology, University of Stavanger, Richard Johansens Gate 4, N-4021 Stavanger, Norway
| | - Alison Baker
- Centre for Plant Sciences, School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Sigrun Reumann
- Centre for Organelle Research, Faculty of Science and Technology, University of Stavanger, Richard Johansens Gate 4, N-4021 Stavanger, Norway; Department of Biology, Biocentre Klein Flottbek, University of Hamburg, D-22609 Hamburg, Germany
| | - Stuart L Warriner
- School of Chemistry and the Astbury Centre, University of Leeds, Leeds LS2 9JT, UK.
| |
Collapse
|
46
|
In silico identification, phylogenetic and bioinformatic analysis of argonaute genes in plants. Int J Genomics 2014; 2014:967461. [PMID: 25309901 PMCID: PMC4181786 DOI: 10.1155/2014/967461] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 08/03/2014] [Accepted: 08/05/2014] [Indexed: 11/26/2022] Open
Abstract
Argonaute protein family is the key players in pathways of gene silencing and small regulatory RNAs in different organisms. Argonaute proteins can bind small noncoding RNAs and control protein synthesis, affect messenger RNA stability, and even participate in the production of new forms of small RNAs. The aim of this study was to characterize and perform bioinformatic analysis of Argonaute proteins in 32 plant species that their genome was sequenced. A total of 437 Argonaute genes were identified and were analyzed based on lengths, gene structure, and protein structure. Results showed that Argonaute proteins were highly conserved across plant kingdom. Phylogenic analysis divided plant Argonautes into three classes. Argonaute proteins have three conserved domains PAZ, MID and PIWI. In addition to three conserved domains namely, PAZ, MID, and PIWI, we identified few more domains in AGO of some plant species. Expression profile analysis of Argonaute proteins showed that expression of these genes varies in most of tissues, which means that these proteins are involved in regulation of most pathways of the plant system. Numbers of alternative transcripts of Argonaute genes were highly variable among the plants. A thorough analysis of large number of putative Argonaute genes revealed several interesting aspects associated with this protein and brought novel information with promising usefulness for both basic and biotechnological applications.
Collapse
|
47
|
Sommer MS, Schleiff E. Protein targeting and transport as a necessary consequence of increased cellular complexity. Cold Spring Harb Perspect Biol 2014; 6:6/8/a016055. [PMID: 25085907 DOI: 10.1101/cshperspect.a016055] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
With increasing intracellular complexity, a new cell-biological problem that is the allocation of cytoplasmically synthesized proteins to their final destinations within the cell emerged. A special challenge is thereby the translocation of proteins into or across cellular membranes. The underlying mechanisms are only in parts well understood, but it can be assumed that the course of cellular evolution had a deep impact on the design of the required molecular machines. In this article, we aim to summarize the current knowledge and concepts of the evolutionary development of protein trafficking as a necessary premise and consequence of increased cellular complexity.
Collapse
Affiliation(s)
- Maik S Sommer
- Institute for Molecular Biosciences, Department of Biosciences, Molecular Cell Biology of Plants, Goethe University Frankfurt am Main, D-60438 Frankfurt, Germany
| | - Enrico Schleiff
- Institute for Molecular Biosciences, Department of Biosciences, Molecular Cell Biology of Plants, Goethe University Frankfurt am Main, D-60438 Frankfurt, Germany Cluster of Excellence Macromolecular Complexes, Goethe University Frankfurt am Main, D-60438 Frankfurt, Germany Centre of Membrane Proteomics, Goethe University Frankfurt am Main, D-60438 Frankfurt, Germany
| |
Collapse
|
48
|
Expression analysis of nine small heat shock protein genes from Tamarix hispida in response to different abiotic stresses and abscisic acid treatment. Mol Biol Rep 2014; 41:1279-89. [PMID: 24395294 DOI: 10.1007/s11033-013-2973-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2012] [Accepted: 12/24/2013] [Indexed: 01/11/2023]
Abstract
Heat shock proteins (HSPs) play important roles in protecting plants against environmental stresses. Furthermore, small heat shock proteins (sHSPs) are the most ubiquitous HSP subgroup with molecular weights ranging from 15 to 42 kDa. In this study, nine sHSP genes (designated as ThsHSP1-9) were cloned from Tamarix hispida. Their expression patterns in response to cold, heat shock, NaCl, PEG and abscisic acid (ABA) treatments were investigated in the roots and leaves of T. hispida by real-time RT-PCR analysis. The results showed that most of the nine ThsHSP genes were expressed at higher levels in roots than in leaves under normal growth condition. All of ThsHSP genes were highly induced under conditions of cold (4 °C) and different heat shocks (36, 40, 44, 48 and 52 °C). Under NaCl stress, all nine ThsHSPs genes were up-regulated at least one stress time-point in both roots and leaves. Under PEG and ABA treatments, the nine ThsHSPs showed various expression patterns, indicating a complex regulation pathway among these genes. This study represents an important basis for the elucidation of ThsHSP gene function and provides essential information that can be used for stress tolerance genetic engineering in future studies.
Collapse
|
49
|
Reumann S, Singhal R. Isolation of leaf peroxisomes from Arabidopsis for organelle proteome analyses. Methods Mol Biol 2014; 1072:541-52. [PMID: 24136545 DOI: 10.1007/978-1-62703-631-3_36] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The isolation of cell organelles from model organisms in high purity is important for biochemical analyses of single proteins, entire metabolic pathways, and protein complexes and is absolutely essential for organelle proteome analyses. The efficient enrichment of nearly all cell organelles is more difficult from Arabidopsis as compared to traditional model plants and especially challenging for peroxisomes. Leaf peroxisomes are generally very instable in aqueous solution due to the presence of a single membrane and (para-)crystalline inclusions in the matrix. Leaf peroxisomes from Arabidopsis are particularly fragile and, moreover, strongly physically adhere to chloroplasts and mitochondria for largely unknown reasons. Here, we provide a detailed protocol for the isolation of Arabidopsis leaf peroxisomes by Percoll followed by sucrose density gradient centrifugation that yields high purity suitable for proteome analyses. Diverse enzymatic and immuno-biochemical methods are summarized to assess purity and intactness.
Collapse
Affiliation(s)
- Sigrun Reumann
- Centre for Organelle Research, Faculty of Science and Technology, University of Stavanger, Stavanger, Norway
| | | |
Collapse
|
50
|
Corpas FJ, Barroso JB. Functional implications of peroxisomal nitric oxide (NO) in plants. FRONTIERS IN PLANT SCIENCE 2014; 5:97. [PMID: 24672535 PMCID: PMC3956114 DOI: 10.3389/fpls.2014.00097] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 02/27/2014] [Indexed: 05/06/2023]
Affiliation(s)
- Francisco J. Corpas
- Departamento de Bioquímica, Biología Celular y Molecular de Plantas, Estación Experimental del Zaidín, Consejo Superior de Investigaciones CientíficasGranada, Spain
- *Correspondence:
| | - Juan B. Barroso
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Experimentales, Universidad de JaénJaén, Spain
| |
Collapse
|