1
|
Yang X, Zhang J, Wang L, Zhang C, Xu P, Li Y, Yu S, Li Y. BR signalling haplotypes contribute to indica-japonica differentiation for grain yield and quality in rice. PLANT BIOTECHNOLOGY JOURNAL 2025; 23:1618-1636. [PMID: 39919070 PMCID: PMC12018826 DOI: 10.1111/pbi.14610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/19/2024] [Accepted: 01/22/2025] [Indexed: 02/09/2025]
Abstract
The functional difference of natural variations in conserved BR signalling genes and the genetic basis of rice indica-japonica differentiation are important yet unknown. Here, we discovered natural variations of the four key components (OsBRI1, OsBAK1, OsGSK3 and OsBZR1) in BR signalling pathway by GWAS using an indicator of indica-japonica differentiation in rice. Two major BR signalling haplotypes (BSHs), caused by co-selected variations of the four genetically unlinked genes, were identified to be highly differentiated between rice subspecies. The genetic contributions of BSHs to grain yield and quality were much higher than that of each component. Introducing alleles of japonica into indica employing substitution lines of OsBAK1, complementation lines of OsGSK3 and genetic populations of OsBRI1/OsBAK1/OsGSK3 confirmed their functional differences between two subspecies. The BSH differentiation led to weaker interaction between OsBRI1 and OsBAK1, stronger autophosphorylation and kinase activity of OsGSK3, less RNA/proteins and stronger phosphorylation of OsBZR1, and weaker BR sensitivity in indica than japonica rice, and regular expression trends of BR-response genes between subspecies, and then synergistically enhanced yield and superior quality of indica. Our results demonstrate that BSHs contribute to rice inter-subspecies diversity, and will provide proof-of-concept breeding strategy and useful targets in crops.
Collapse
Affiliation(s)
- Xinyi Yang
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan)Huazhong Agricultural UniversityWuhanChina
- Hubei Hongshan LaboratoryWuhanChina
| | - Juncheng Zhang
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan)Huazhong Agricultural UniversityWuhanChina
- Hubei Hongshan LaboratoryWuhanChina
| | - Lusheng Wang
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan)Huazhong Agricultural UniversityWuhanChina
- Hubei Hongshan LaboratoryWuhanChina
| | - Chunyu Zhang
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan)Huazhong Agricultural UniversityWuhanChina
- Hubei Hongshan LaboratoryWuhanChina
| | - Pengkun Xu
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan)Huazhong Agricultural UniversityWuhanChina
- Hubei Hongshan LaboratoryWuhanChina
| | - Yanhua Li
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan)Huazhong Agricultural UniversityWuhanChina
- Hubei Hongshan LaboratoryWuhanChina
| | - Sibin Yu
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan)Huazhong Agricultural UniversityWuhanChina
- Hubei Hongshan LaboratoryWuhanChina
| | - Yibo Li
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan)Huazhong Agricultural UniversityWuhanChina
- Hubei Hongshan LaboratoryWuhanChina
| |
Collapse
|
2
|
Liu B, Meng S, Yang J, Wu J, Peng Y, Zhang J, Ye N. Carbohydrate flow during grain filling: Phytohormonal regulation and genetic control in rice (Oryza sativa). JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2025; 67:1086-1104. [PMID: 40192007 PMCID: PMC12016746 DOI: 10.1111/jipb.13904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 03/06/2025] [Indexed: 04/24/2025]
Abstract
Both the filling and development of grain are key processes determining agriculture production and reproductive growth in rice. The processes of grain filling and endosperm development are crucial for the accumulation of major storage compounds in rice grains. This requires extensive remobilization of carbon reserves from source to sink and the precise regulation of sucrose-to-starch conversion. Both the developmental sequence of the panicle and environmental signals influence the carbon flow between the leaves, leaf sheath, stem, and spikelets during grain filling. This, in turn, affects endosperm development and the production of storage compounds. In this review, we synthesize recent insight into grain development in rice, focusing on the dynamic changes in phytohormones and how their homeostasis integrates developmental and environmental cues to control grain filling in the developing panicle. We also highlight recent advances in the genetic control of carbohydrate remobilization and the transcriptional regulatory networks governing carbohydrate metabolism and grain development in rice. The asynchronous initiation and imbalance in grain filling limit the full yield potential of cereal crops. The "superior/inferior spikelets" serve as a model system for understanding the regulatory mechanisms underlying grain filling and development. Systematic research on carbohydrate flow and phytohormone crosstalk could enhance our understanding of optimizing yield production in cereal crops. Additionally, a thorough analysis of key genetic regulatory mechanisms can offer a genetic foundation and targets for precisely adjusting grain filling traits, ultimately aiding in the development of high-yield crop varieties.
Collapse
Affiliation(s)
- Bohan Liu
- College of AgronomyHunan Agricultural UniversityChangsha410128China
- Yuelushan LaboratoryChangsha410128China
| | - Shuan Meng
- College of AgronomyHunan Agricultural UniversityChangsha410128China
- Yuelushan LaboratoryChangsha410128China
| | - Jianchang Yang
- Key Laboratory of Crop Genetics and Physiology of Jiangsu ProvinceYangzhou UniversityYangzhou225009China
| | - Jun Wu
- College of AgronomyHunan Agricultural UniversityChangsha410128China
- Yuelushan LaboratoryChangsha410128China
| | - Yan Peng
- College of AgronomyHunan Agricultural UniversityChangsha410128China
- Yuelushan LaboratoryChangsha410128China
| | - Jianhua Zhang
- Department of BiologyHong Kong Baptist UniversityHong Kong999077China
- School of Life Sciences and State Key Laboratory of AgrobiotechnologyThe Chinese University of Hong KongHong Kong999077China
| | - Nenghui Ye
- College of AgronomyHunan Agricultural UniversityChangsha410128China
- Yuelushan LaboratoryChangsha410128China
| |
Collapse
|
3
|
Jain R, Dhaka N, Krishnan K, Yadav G, Priyam P, Sharma MK, Sharma RA. Temporal Gene Expression Profiles From Pollination to Seed Maturity in Sorghum Provide Core Candidates for Engineering Seed Traits. PLANT, CELL & ENVIRONMENT 2025; 48:2662-2690. [PMID: 39248611 DOI: 10.1111/pce.15134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/12/2024] [Accepted: 08/19/2024] [Indexed: 09/10/2024]
Abstract
Sorghum (Sorghum bicolor (L.) Moench) is a highly nutritional multipurpose millet crop. However, the genetic and molecular regulatory mechanisms governing sorghum grain development and the associated agronomic traits remain unexplored. In this study, we performed a comprehensive transcriptomic analysis of pistils collected 1-2 days before pollination, and developing seeds collected -2, 10, 20 and 30 days after pollination of S. bicolor variety M35-1. Out of 31 337 genes expressed in these stages, 12 804 were differentially expressed in the consecutive stages of seed development. These exhibited 10 dominant expression patterns correlated with the distinct pathways and gene functions. Functional analysis, based on the pathway mapping, transcription factor enrichment and orthology, delineated the key patterns associated with pollination, fertilization, early seed development, grain filling and seed maturation. Furthermore, colocalization with previously reported quantitative trait loci (QTLs) for grain weight/size revealed 48 differentially expressed genes mapping to these QTL regions. Comprehensive literature mining integrated with QTL mapping and expression data shortlisted 25, 17 and 8 core candidates for engineering grain size, starch and protein content, respectively.
Collapse
Affiliation(s)
- Rubi Jain
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Namrata Dhaka
- Department of Biotechnology, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Mahendergarh, Haryana, India
| | - Kushagra Krishnan
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Garima Yadav
- Department of Biotechnology, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Mahendergarh, Haryana, India
| | - Prachi Priyam
- Department of Biotechnology, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Mahendergarh, Haryana, India
| | | | - Rita A Sharma
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS) Pilani, Pilani, Rajasthan, India
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, India
| |
Collapse
|
4
|
Zolkiewicz K, Ahmar S, Gruszka D. Genetic manipulations of brassinosteroid-related genes improve various agronomic traits and yield in cereals enabling new biotechnological revolution: Achievements and perspectives. Biotechnol Adv 2025; 81:108556. [PMID: 40081782 DOI: 10.1016/j.biotechadv.2025.108556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 03/05/2025] [Accepted: 03/06/2025] [Indexed: 03/16/2025]
Abstract
Brassinosteroids (BRs) are steroid phytohormones which regulate various developmental and physiological processes throughout plant life cycle, from seed development and germination, up to modulation of reproduction and senescence. Importantly, mutants defective in the BR biosynthesis or response show various degree of plant height reduction (dwarfism or semi-dwarfism). This agronomic trait is of particular importance considering that in contrast to tall cereal varieties, semi-dwarf cereal plants are more tolerant to lodging which occurs during unfavorable weather conditions and constitutes a serious threat to plant reproduction and yield. Moreover, it was shown that the BR deficiency or insensitivity lead to erect stature of cereal plants what enables increase in planting density and yield. The valuable combinations of these traits make the BR-related mutants exceptional alternatives in breeding programs. Noteworthy, BRs play a noticeable role in regulation of grain/kernel shape and size. Therefore, these crucial agronomic traits may be manipulated specifically in BR-dependent manner. Importantly, the semi-dwarf mutants have been successfully introduced into cereal breeding programs in the past, and new semi-dwarf mutants developed through application of gene editing approach have been recently reported as promising alternatives for development of novel, high-yielding cereal cultivars. This review presents a comprehensive description of genetic manipulations of the BR-related genes aimed at improvements of various agronomic traits in the major cereal crops - rice, wheat, maize, and barley. These improvements may be achieved through application of panicle- or grain-specific promoters, overexpression or gain-of-function approaches, gene silencing, and targeted gene editing.
Collapse
Affiliation(s)
- Karolina Zolkiewicz
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, Katowice, Poland
| | - Sunny Ahmar
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, Katowice, Poland
| | - Damian Gruszka
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, Katowice, Poland.
| |
Collapse
|
5
|
Liu W, Wang X, Zhao Z, Wu H, Lu W, Huang M, Zhang X, Zhang J, Mao J, Li J, Liu L. NcBRI1 positively regulate vascular development and promote biomass production in Neolamarckia cadamba. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 352:112352. [PMID: 39638094 DOI: 10.1016/j.plantsci.2024.112352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/12/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024]
Abstract
Brassinosteroids (BRs) are essential phytohormones that play a crucial role in plant growth and development. However, our understanding of BR receptors and their functions in tree species is currently limited. In this study, we looked for potential BR receptor genes in the burflower-tree (Neolamarckia cadamba) genome. We identified five candidate gene from sequence analysis and phylogenetic reconstruction. Among these genes, Neolamarckia cadamba BRASSINOSTEROID-INSENSITIVE 1 (NcBRI1) is ubiquitously expressed in all tested tissues and encodes a functional BR receptor localized to the plasma membrane. Ectopic expression of NcBRI1 in the Arabidopsis (Arabidopsis thaliana) loss-of-function BRI1 mutant bri1-5 not only rescued its growth retardation phenotype but also facilitated vascular development by reactivating BR signal transduction. Furthermore, overexpression of NcBRI1 promoted vascular formation and cell elongation in transgenic hairy roots of Neolamarckia cadamba. By contrast, microRNA-mediated knockdown of NcBRI1 resulted in delayed vascular development and smaller cells. Importantly, we found that manipulation of NcBRI1 in Neolamarckia cadamba can enhance the biomass of hairy roots. These findings highlight the critical role of NcBRI1 in BR signaling and its significant influence on vascular development and rapid growth in Neolamarckia cadamba.
Collapse
Affiliation(s)
- Wenjie Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Xiaoping Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Zeping Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Huixiang Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Wei Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Mengjiao Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Xin Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Jianjun Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Juan Mao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Jianming Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Linchuan Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
6
|
Ueda T, Taniguchi Y, Adachi S, Shenton M, Hori K, Tanaka J. Gene Pyramiding Strategies for Sink Size and Source Capacity for High-Yield Japonica Rice Breeding. RICE (NEW YORK, N.Y.) 2025; 18:6. [PMID: 39945924 PMCID: PMC11825427 DOI: 10.1186/s12284-025-00756-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 01/13/2025] [Indexed: 02/16/2025]
Abstract
In Japan, high-yielding indica rice cultivars such as 'Habataki', 'Takanari', and 'Hokuriku 193' have been bred, and many genes related to the high-yield traits have been isolated from these and other indica cultivars. Many such genes are expected to be effective in increasing the yield of japonica rice, including those that increase sink size. It has been expected that high-yielding japonica rice could be bred by introducing sink-size genes into the genetic background of japonica cultivars such as 'Koshihikari', which show strong cold tolerance, have good taste characteristics, and fetch a high price. However, the corresponding near-isogenic lines did not necessarily produce high yields when tested in the field. In this review, we summarize information on the major high-yield-related rice genes and discuss pyramiding strategies to further increase the yield of japonica rice. In parallel with increasing sink size, source capacity needs to be increased by increasing photosynthetic rate per unit leaf area (single leaf photosynthesis), improving canopy structure, and increasing translocation capacity during the ripening stage. To implement these strategies, innovative breeding methodologies that efficiently produce the combinations of desired alleles are required.
Collapse
Affiliation(s)
- Tadamasa Ueda
- Institute of Crop Science, National Agriculture and Food Research Organization (NARO), 2-1-2 Kannondai, Tsukuba, Ibaraki, 305-8518, Japan
| | - Yojiro Taniguchi
- Institute of Crop Science, National Agriculture and Food Research Organization (NARO), 2-1-2 Kannondai, Tsukuba, Ibaraki, 305-8518, Japan
| | - Shunsuke Adachi
- Tokyo University of Agriculture and Technology, Fuchu, Tokyo, 183-8509, Japan
| | - Matthew Shenton
- Institute of Crop Science, National Agriculture and Food Research Organization (NARO), 2-1-2 Kannondai, Tsukuba, Ibaraki, 305-8518, Japan
| | - Kiyosumi Hori
- Institute of Crop Science, National Agriculture and Food Research Organization (NARO), 2-1-2 Kannondai, Tsukuba, Ibaraki, 305-8518, Japan
| | - Junichi Tanaka
- NARO Headquarters, 3-1-1 Kannondai, Tsukuba, Ibaraki, 305-8518, Japan.
- Graduate School of Science and Technology, University of Tsukuba, Tsukuba, Ibaraki, 305-8577, Japan.
| |
Collapse
|
7
|
Miao R, Lin Q, Cao P, Zhou C, Feng M, Lan J, Luo S, Zhang F, Wu H, Hao Q, Zheng H, Ma T, Huang Y, Mou C, Nguyen T, Cheng Z, Guo X, Liu S, Jiang L, Wan J. SMALL AND ROUND GRAIN is involved in the brassinosteroid signaling pathway which regulates grain size in rice. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2025. [PMID: 39936852 DOI: 10.1111/jipb.13861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 01/15/2025] [Indexed: 02/13/2025]
Abstract
Grain size is a key determinant of 1,000-grain weight, one of three factors determining grain yield. However, the complete regulatory network controlling grain size has not been fully clarified. Here, we identified a rice mutant, named small and round grain (srg) that exhibits semi-dwarf stature and small grain size. Cytological analysis showed that cell length and number of spikelet epidermal cells of the srg mutant are reduced, indicating that SRG controls grain size by promoting cell elongation and increasing cell number. SRG encodes a kinesin belonging to the kinesin-1 subfamily and is extensively expressed in different plant tissues with relatively high expression in young panicles. SRG protein is mainly located in the nucleus and cell membrane. Expression of the SRG gene was induced by brassinolide through the brassinosteroid (BR) responsive factor OsWRKY53 and SRG protein was phosphorylated by BR-activated kinase OsBSK3 to prevent its degradation. In addition, microtubule (MT) morphology was abnormal and disordered in the srg and cr-1 mutants. These findings suggest that BR likely stabilizes orderly assembly and arrangement of MTs by stabilizing SRG proteins, thus promoting grain size. SRG overexpression lines produced more tillers and significantly larger and heavier grains to increase 1,000-grain weight, suggesting that SRG has potential to increase grain yield. Our study indicated that SRG is a new BR responsive factor and BR might regulate grain size by influencing the expression of SRG.
Collapse
Affiliation(s)
- Rong Miao
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Nanjing National Field Scientific Observation and Research Station for Rice Germplasm, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qibing Lin
- State Key Laboratory of Crop Gene Resource and Breeding, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Penghui Cao
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Nanjing National Field Scientific Observation and Research Station for Rice Germplasm, Nanjing Agricultural University, Nanjing, 210095, China
- Suzhou Academy of Agricultural Sciences, Suzhou, 215105, China
| | - Chunlei Zhou
- State Key Laboratory of Crop Gene Resource and Breeding, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Miao Feng
- State Key Laboratory of Crop Gene Resource and Breeding, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jie Lan
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Nanjing National Field Scientific Observation and Research Station for Rice Germplasm, Nanjing Agricultural University, Nanjing, 210095, China
| | - Sheng Luo
- State Key Laboratory of Crop Gene Resource and Breeding, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Fulin Zhang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Nanjing National Field Scientific Observation and Research Station for Rice Germplasm, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hongmin Wu
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Nanjing National Field Scientific Observation and Research Station for Rice Germplasm, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qixian Hao
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Nanjing National Field Scientific Observation and Research Station for Rice Germplasm, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hai Zheng
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Nanjing National Field Scientific Observation and Research Station for Rice Germplasm, Nanjing Agricultural University, Nanjing, 210095, China
| | - Tengfei Ma
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Nanjing National Field Scientific Observation and Research Station for Rice Germplasm, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yunshuai Huang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Nanjing National Field Scientific Observation and Research Station for Rice Germplasm, Nanjing Agricultural University, Nanjing, 210095, China
| | - Changling Mou
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Nanjing National Field Scientific Observation and Research Station for Rice Germplasm, Nanjing Agricultural University, Nanjing, 210095, China
| | - Thanhliem Nguyen
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Nanjing National Field Scientific Observation and Research Station for Rice Germplasm, Nanjing Agricultural University, Nanjing, 210095, China
- Faculty of Natural Sciences, Quynhon University, Quynhon, 590000, Binhdinh, Vietnam
| | - Zhijun Cheng
- State Key Laboratory of Crop Gene Resource and Breeding, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xiuping Guo
- State Key Laboratory of Crop Gene Resource and Breeding, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Shijia Liu
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Nanjing National Field Scientific Observation and Research Station for Rice Germplasm, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ling Jiang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Nanjing National Field Scientific Observation and Research Station for Rice Germplasm, Nanjing Agricultural University, Nanjing, 210095, China
- Zhongshan Biological Breeding Laboratory, Nanjing, 210095, China
| | - Jianmin Wan
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Nanjing National Field Scientific Observation and Research Station for Rice Germplasm, Nanjing Agricultural University, Nanjing, 210095, China
- State Key Laboratory of Crop Gene Resource and Breeding, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Zhongshan Biological Breeding Laboratory, Nanjing, 210095, China
| |
Collapse
|
8
|
Shi G, Bu Y, Chi L, Zhang X, Meng Y, Zhang S, Tian G. NtLPA1 overexpression regulates the growth of tobacco and enhances resistance to blight. Transgenic Res 2025; 34:8. [PMID: 39786624 DOI: 10.1007/s11248-024-00420-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 11/17/2024] [Indexed: 01/12/2025]
Abstract
The involvement of Loose Plant Architecture 1 (LPA1) in regulating plant growth and leaf angle has been previously demonstrated. However, the fundamental genetic background remains unidentified. To further understand the tissue expression profile of the NtLPA1 gene, an overexpression vector (pBI121-NtLPA1) was developed and employed to modify tobacco using the leaf disc method genetically. Validation confirmed the generation of transgenic tobacco plants with NtLPA1 overexpression. The findings indicated that increased NtLPA1 overexpression substantially decreased plant auxin sensitivity and modulated signal transduction and polar transport, significantly reducing leaf angle, diminished leaf area during early and late growth stages, and shortened root length. In summary, NtLPA1 augmented tobacco resistance to severe shin disease by modulating the expression of disease-associated genes PBZ1, PR1b, and the growth regulator auxin polar transport factor PIN1.
Collapse
Affiliation(s)
- Guiqin Shi
- School of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, China.
| | - Yanxiao Bu
- School of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, China
| | - Lei Chi
- School of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, China
| | - Xifeng Zhang
- Shaanxi Tobacco Company Baoji City Company, Baoji, 721000, Shaanxi, China
| | - Yuqing Meng
- School of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, China
| | - Shijie Zhang
- Shaanxi Tobacco Company Baoji City Company, Baoji, 721000, Shaanxi, China
| | - Geng Tian
- Shaanxi Tobacco Company Baoji City Company, Baoji, 721000, Shaanxi, China.
| |
Collapse
|
9
|
Pankaj R, Lima RB, Figueiredo DD. Hormonal regulation and crosstalk during early endosperm and seed coat development. PLANT REPRODUCTION 2024; 38:5. [PMID: 39724433 PMCID: PMC11671439 DOI: 10.1007/s00497-024-00516-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 12/13/2024] [Indexed: 12/28/2024]
Abstract
KEY MESSAGE This review covers the latest developments on the regulation of early seed development by phytohormones. The development of seeds in flowering plants starts with the fertilization of the maternal gametes by two paternal sperm cells. This leads to the formation of two products, embryo and endosperm, which are surrounded by a tissue of maternal sporophytic origin, called the seed coat. The development of each of these structures is under tight genetic control. Moreover, several phytohormones have been shown to modulate the development of all three seed compartments and have been implicated in the communication between them. This is particularly relevant, as embryo, endosperm, and seed coat have to coordinate their development for successful seed formation. Here, we review the latest advances on the hormonal regulation of early seed development in the model plant species Arabidopsis thaliana, with a focus on the endosperm and the seed coat. Moreover, we highlight how phytohormones serve as mechanisms of non-cell autonomous communication between these two compartments and how they are determinant in shaping seed formation.
Collapse
Affiliation(s)
- R Pankaj
- Max Planck Institute of Molecular Plant Physiology, Potsdam Science Park, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - R B Lima
- Max Planck Institute of Molecular Plant Physiology, Potsdam Science Park, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - D D Figueiredo
- Max Planck Institute of Molecular Plant Physiology, Potsdam Science Park, Am Mühlenberg 1, 14476, Potsdam, Germany.
| |
Collapse
|
10
|
Luo J, He C, Yan S, Jiang C, Chen A, Li K, Zhu Y, Gui S, Yang N, Xiao Y, Wu S, Zhang F, Liu T, Wang J, Huang W, Yang Y, Wang H, Yang W, Li W, Zhuo L, Fernie AR, Zhan J, Wang L, Yan J. A metabolic roadmap of waxy corn flavor. MOLECULAR PLANT 2024; 17:1883-1898. [PMID: 39533712 DOI: 10.1016/j.molp.2024.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 09/16/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024]
Abstract
As well as being a popular vegetable crop worldwide, waxy corn represents an important amylopectin source, but little is known about its breeding history and flavor characteristics. In this study, through comparative-omic analyses between 318 diverse waxy corn and 507 representative field corn inbred lines we revealed that many metabolic pathways and genes exhibited selection characteristics during the breeding history of waxy corn, contributing to the divergence between waxy and field corn. We showed that waxy corn is not only altered in its glutinous property but also its sweetness, aroma, and palatability are all significantly affected. A substantial proportion (43%) of flavor-related metabolites have pleiotropic effects, affecting both flavor and yield characteristics, and 27% of these metabolites are related to antagonistic outcomes on yield and flavor. Furthermore, through multiple concrete examples, we demonstrated how yield and quality are coordinately or antagonistically regulated at the genetic level. In particular, some sweet molecules, such as DIMBOA and raffinose, which do not participate in the starch biosynthesis pathway, were identified as potential targets for breeding a new type of "sweet-waxy" corn. Taken together, our findings shed light on the historical selection of waxy corn and demonstrate the genetic and metabolic basis of waxy corn flavor, collectively providing valuable resources and knowledge for future crop breeding for improved nutritional quality.
Collapse
Affiliation(s)
- Jingyun Luo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China; Wuhan GrandOmics Biosciences Co., Ltd, Wuhan, China
| | - Chunmei He
- Maize Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Shijuan Yan
- Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Chenglin Jiang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - An Chen
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Kun Li
- Crop Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory of Crop Genetic Improvement, Guangzhou 510640, China
| | - Yongli Zhu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Songtao Gui
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Ning Yang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Yingjie Xiao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Shenshen Wu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Fajun Zhang
- Maize Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Tieshan Liu
- Maize Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Juan Wang
- Maize Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Wenjie Huang
- Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Yanhua Yang
- Anhui Fengda Seed Industry Co., Ltd, Hefei, China
| | - Haiyan Wang
- Anhui Fengda Seed Industry Co., Ltd, Hefei, China
| | - Wenyu Yang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Wenqiang Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Lin Zhuo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Alisdair R Fernie
- Department of Molecular Physiology, Max-Planck-Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Junpeng Zhan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Liming Wang
- Maize Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China.
| | - Jianbing Yan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China; Yazhouwan National Laboratory, Sanya 572024, China.
| |
Collapse
|
11
|
Lima RB, Figueiredo DD. Sex on Steroids: How Brassinosteroids Shape Reproductive Development in Flowering Plants. PLANT & CELL PHYSIOLOGY 2024; 65:1581-1600. [PMID: 38668644 PMCID: PMC11558549 DOI: 10.1093/pcp/pcae050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/27/2024] [Accepted: 04/24/2024] [Indexed: 11/14/2024]
Abstract
Since the discovery of brassinolide in the pollen of rapeseed, brassinosteroids (BRs) have consistently been associated with reproductive traits. However, compared to what is known for how BRs shape vegetative development, the understanding of how these hormones regulate reproductive traits is comparatively still lacking. Nevertheless, there is now considerable evidence that BRs regulate almost all aspects of reproduction, from ovule and pollen formation to seed and fruit development. Here, we review the current body of knowledge on how BRs regulate reproductive processes in plants and what is known about how these pathways are transduced at the molecular level. We also discuss how the manipulation of BR biosynthesis and signaling can be a promising avenue for improving crop traits that rely on efficient reproduction. We thus propose that BRs hold an untapped potential for plant breeding, which could contribute to attaining food security in the coming years.
Collapse
Affiliation(s)
- Rita B Lima
- Plant Reproductive Biology and Epigenetics, Max Planck Institute of Molecular Plant Physiology, Potsdam Science Park, Am Mühlenberg 1, Potsdam 14476, Germany
| | - Duarte D Figueiredo
- Plant Reproductive Biology and Epigenetics, Max Planck Institute of Molecular Plant Physiology, Potsdam Science Park, Am Mühlenberg 1, Potsdam 14476, Germany
| |
Collapse
|
12
|
Zhang Q, Wu R, Hong T, Wang D, Li Q, Wu J, Zhang H, Zhou K, Yang H, Zhang T, Liu J, Wang N, Ling Y, Yang Z, He G, Zhao F. Natural variation in the promoter of qRBG1/OsBZR5 underlies enhanced rice yield. Nat Commun 2024; 15:8565. [PMID: 39362889 PMCID: PMC11449933 DOI: 10.1038/s41467-024-52928-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 09/24/2024] [Indexed: 10/05/2024] Open
Abstract
Seed size, a key determinant of rice yield, is regulated by brassinosteroid (BR); however, the BR pathway in rice has not been fully elucidated. Here, we report the cloning and characterization of the quantitative trait locus Rice Big Grain 1 (qRBG1) from single-segment substitution line Z499. Our data show that qRBG1Z is an unselected rare promoter variation that reduces qRBG1 expression to increase cell number and size, resulting in larger grains, whereas qRBG1 overexpression causes smaller grains in recipient Nipponbare. We demonstrate that qRBG1 encodes a non-canonical BES1 (Bri1-EMS-Suppressor1)/BZR1(Brassinazole-Resistant1) family member, OsBZR5, that regulates grain size upon phosphorylation by OsGSK2 (GSK3-like Kinase2) and binding to D2 (DWARF2) and OFP1 (Ovate-Family-Protein1) promoters. qRBG1 interacts with OsBZR1 to synergistically repress D2, and to antagonistically mediate OFP1 for grain size. Our results reveal a regulatory network controlling grain size via OsGSK2-qRBG1-OsBZR1-D2-OFP1 module, providing a target for improving rice yield.
Collapse
Affiliation(s)
- Qiuli Zhang
- Rice Research Institute, Key Laboratory of Crop Molecular Improvement, Academy of Agricultural Sciences, Ministry of Education, Southwest University, Chongqing, 400715, China
| | - Renhong Wu
- Rice Research Institute, Key Laboratory of Crop Molecular Improvement, Academy of Agricultural Sciences, Ministry of Education, Southwest University, Chongqing, 400715, China
| | - Tao Hong
- Rice Research Institute, Key Laboratory of Crop Molecular Improvement, Academy of Agricultural Sciences, Ministry of Education, Southwest University, Chongqing, 400715, China
| | - Dachuan Wang
- Rice Research Institute, Key Laboratory of Crop Molecular Improvement, Academy of Agricultural Sciences, Ministry of Education, Southwest University, Chongqing, 400715, China
| | - Qiaolong Li
- Rice Research Institute, Key Laboratory of Crop Molecular Improvement, Academy of Agricultural Sciences, Ministry of Education, Southwest University, Chongqing, 400715, China
| | - Jiayi Wu
- Rice Research Institute, Key Laboratory of Crop Molecular Improvement, Academy of Agricultural Sciences, Ministry of Education, Southwest University, Chongqing, 400715, China
| | - Han Zhang
- Rice Research Institute, Key Laboratory of Crop Molecular Improvement, Academy of Agricultural Sciences, Ministry of Education, Southwest University, Chongqing, 400715, China
| | - Kai Zhou
- Rice Research Institute, Key Laboratory of Crop Molecular Improvement, Academy of Agricultural Sciences, Ministry of Education, Southwest University, Chongqing, 400715, China
| | - Hongxia Yang
- Rice Research Institute, Key Laboratory of Crop Molecular Improvement, Academy of Agricultural Sciences, Ministry of Education, Southwest University, Chongqing, 400715, China
| | - Ting Zhang
- Rice Research Institute, Key Laboratory of Crop Molecular Improvement, Academy of Agricultural Sciences, Ministry of Education, Southwest University, Chongqing, 400715, China
| | - JinXiang Liu
- Rice Research Institute, Key Laboratory of Crop Molecular Improvement, Academy of Agricultural Sciences, Ministry of Education, Southwest University, Chongqing, 400715, China
| | - Nan Wang
- Rice Research Institute, Key Laboratory of Crop Molecular Improvement, Academy of Agricultural Sciences, Ministry of Education, Southwest University, Chongqing, 400715, China
| | - Yinghua Ling
- Rice Research Institute, Key Laboratory of Crop Molecular Improvement, Academy of Agricultural Sciences, Ministry of Education, Southwest University, Chongqing, 400715, China
| | - Zhenglin Yang
- Rice Research Institute, Key Laboratory of Crop Molecular Improvement, Academy of Agricultural Sciences, Ministry of Education, Southwest University, Chongqing, 400715, China
| | - Guanghua He
- Rice Research Institute, Key Laboratory of Crop Molecular Improvement, Academy of Agricultural Sciences, Ministry of Education, Southwest University, Chongqing, 400715, China.
| | - Fangming Zhao
- Rice Research Institute, Key Laboratory of Crop Molecular Improvement, Academy of Agricultural Sciences, Ministry of Education, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
13
|
Kumar P, Gill HS, Singh M, Kaur K, Koupal D, Talukder S, Bernardo A, Amand PS, Bai G, Sehgal SK. Characterization of flag leaf morphology identifies a major genomic region controlling flag leaf angle in the US winter wheat (Triticum aestivum L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:205. [PMID: 39141073 PMCID: PMC11324803 DOI: 10.1007/s00122-024-04701-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 07/27/2024] [Indexed: 08/15/2024]
Abstract
KEY MESSAGE Multi-environmental characterization of flag leaf morphology traits in the US winter wheat revealed nine stable genomic regions for different flag leaf-related traits including a major region governing flag leaf angle. Flag leaf in wheat is the primary contributor to accumulating photosynthetic assimilates. Flag leaf morphology (FLM) traits determine the overall canopy structure and capacity to intercept the light, thus influencing photosynthetic efficiency. Hence, understanding the genetic control of these traits could be useful for breeding desirable ideotypes in wheat. We used a panel of 272 accessions from the hard winter wheat (HWW) region of the USA to investigate the genetic architecture of five FLM traits including flag leaf length (FLL), width (FLW), angle (FLANG), length-width ratio, and area using multilocation field experiments. Multi-environment GWAS using 14,537 single-nucleotide polymorphisms identified 36 marker-trait associations for different traits, with nine being stable across environments. A novel and major stable region for FLANG (qFLANG.1A) was identified on chromosome 1A accounting for 9-13% variation. Analysis of spatial distribution for qFLANG.1A in a set of 2354 breeding lines from the HWW region showed a higher frequency of allele associated with narrow leaf angle. A KASP assay was developed for allelic discrimination of qFLANG.1A and was used for its independent validation in a diverse set of spring wheat accessions. Furthermore, candidate gene analysis for two regions associated with FLANG identified seven putative genes of interest for each of the two regions. The present study enhances our understanding of the genetic control of FLM in wheat, particularly FLANG, and these results will be useful for dissecting the genes underlying canopy architecture in wheat facilitating the development of climate-resilient wheat varieties.
Collapse
Affiliation(s)
- Pradeep Kumar
- Department of Agronomy, Horticulture and Plant Science, South Dakota State University, Brookings, SD, USA
| | - Harsimardeep S Gill
- Department of Agronomy, Horticulture and Plant Science, South Dakota State University, Brookings, SD, USA
| | - Mandeep Singh
- Department of Agronomy, Horticulture and Plant Science, South Dakota State University, Brookings, SD, USA
| | - Karanjot Kaur
- Department of Agronomy, Horticulture and Plant Science, South Dakota State University, Brookings, SD, USA
| | - Dante Koupal
- Department of Agronomy, Horticulture and Plant Science, South Dakota State University, Brookings, SD, USA
| | - Shyamal Talukder
- Department of Soil and Crop Sciences, Texas A&M University, Texas A&M AgriLife Research Center, Beaumont, TX, USA
| | - Amy Bernardo
- USDA-ARS, Hard Winter Wheat Genetics Research Unit, Manhattan, KS, USA
| | - Paul St Amand
- USDA-ARS, Hard Winter Wheat Genetics Research Unit, Manhattan, KS, USA
| | - Guihua Bai
- USDA-ARS, Hard Winter Wheat Genetics Research Unit, Manhattan, KS, USA
| | - Sunish K Sehgal
- Department of Agronomy, Horticulture and Plant Science, South Dakota State University, Brookings, SD, USA.
| |
Collapse
|
14
|
Zada A, Lv M, Li J. Molecular Lesions in BRI1 and Its Orthologs in the Plant Kingdom. Int J Mol Sci 2024; 25:8111. [PMID: 39125682 PMCID: PMC11312156 DOI: 10.3390/ijms25158111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 07/15/2024] [Accepted: 07/18/2024] [Indexed: 08/12/2024] Open
Abstract
Brassinosteroids (BRs) are an essential group of plant hormones regulating numerous aspects of plant growth, development, and stress responses. BRI1, along with its co-receptor BAK1, are involved in brassinosteroid sensing and early events in the BR signal transduction cascade. Mutational analysis of a particular gene is a powerful strategy for investigating its biochemical role. Molecular genetic studies, predominantly in Arabidopsis thaliana, but progressively in numerous other plants, have identified many mutants of the BRI1 gene and its orthologs to gain insight into its structure and function. So far, the plant kingdom has identified up to 40 bri1 alleles in Arabidopsis and up to 30 bri1 orthologs in different plants. These alleles exhibit phenotypes that are identical in terms of development and growth. Here, we have summarized bri1 alleles in Arabidopsis and its orthologs present in various plants including monocots and dicots. We have discussed the possible mechanism responsible for the specific allele. Finally, we have briefly debated the importance of these alleles in the research field and the agronomically valuable traits they offer to improve plant varieties.
Collapse
Affiliation(s)
- Ahmad Zada
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Minghui Lv
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Jia Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| |
Collapse
|
15
|
Wang B, Bu Y, Zhang G, Liu N, Feng Z, Gong Y. Comparative transcriptome analysis of vegetable soybean grain discloses genes essential for grain quality. BMC PLANT BIOLOGY 2024; 24:491. [PMID: 38825702 PMCID: PMC11145879 DOI: 10.1186/s12870-024-05214-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 05/29/2024] [Indexed: 06/04/2024]
Abstract
BACKGROUND Vegetable soybean is an important vegetable crop in world. Seed size and soluble sugar content are considered crucial indicators of quality in vegetable soybean, and there is a lack of clarity on the molecular basis of grain quality in vegetable soybean. RESULTS In this context, we performed a comprehensive comparative transcriptome analysis of seeds between a high-sucrose content and large-grain variety (Zhenong 6, ZN6) and a low-sucrose content and small-grain variety (Williams 82, W82) at three developmental stages, i.e. stage R5 (Beginning Seed), stage R6 (Full Seed), and stage R7 (Beginning Maturity). The transcriptome analysis showed that 17,107 and 13,571 differentially expressed genes (DEGs) were identified in ZN6 at R6 (vs. R5) and R7 (vs. R6), respectively, whereas 16,203 and 16,032 were detected in W82. Gene expression pattern and DEGs functional enrichment proposed genotype-specific biological processes during seed development. The genes participating in soluble sugar biosynthesis such as FKGP were overexpressed in ZN6, whereas those responsible for lipid and protein metabolism such as ALDH3 were more enhanced in W82, exhibiting different dry material accumulation between two genotypes. Furthermore, hormone-associated transcriptional factors involved in seed size regulation such as BEH4 were overrepresented in ZN6, exhibiting different seed size regulation processes between two genotypes. CONCLUSIONS Herein, we not only discovered the differential expression of genes encoding metabolic enzymes involved in seed composition, but also identified a type of hormone-associated transcriptional factors overexpressed in ZN6, which may regulate seed size and soluble content. This study provides new insights into the underlying causes of differences in the soybean metabolites and appearance, and suggests that genetic data can be used to improve its appearance and textural quality.
Collapse
Affiliation(s)
- Bin Wang
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, 198, Shiqiao Rd, Hangzhou, 310021, Zhejiang, China.
- Key Laboratory of Vegetable Legumes Germplasm Enhancement and Molecular Breeding in Southern China of Ministry of Agriculture and Rural Affairs, 198, Shiqiao Rd, Hangzhou, 310021, Zhejiang, China.
| | - Yuanpeng Bu
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, 198, Shiqiao Rd, Hangzhou, 310021, Zhejiang, China
- Key Laboratory of Vegetable Legumes Germplasm Enhancement and Molecular Breeding in Southern China of Ministry of Agriculture and Rural Affairs, 198, Shiqiao Rd, Hangzhou, 310021, Zhejiang, China
| | - Guwen Zhang
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, 198, Shiqiao Rd, Hangzhou, 310021, Zhejiang, China
- Key Laboratory of Vegetable Legumes Germplasm Enhancement and Molecular Breeding in Southern China of Ministry of Agriculture and Rural Affairs, 198, Shiqiao Rd, Hangzhou, 310021, Zhejiang, China
| | - Na Liu
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, 198, Shiqiao Rd, Hangzhou, 310021, Zhejiang, China
- Key Laboratory of Vegetable Legumes Germplasm Enhancement and Molecular Breeding in Southern China of Ministry of Agriculture and Rural Affairs, 198, Shiqiao Rd, Hangzhou, 310021, Zhejiang, China
| | - Zhijuan Feng
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, 198, Shiqiao Rd, Hangzhou, 310021, Zhejiang, China
- Key Laboratory of Vegetable Legumes Germplasm Enhancement and Molecular Breeding in Southern China of Ministry of Agriculture and Rural Affairs, 198, Shiqiao Rd, Hangzhou, 310021, Zhejiang, China
| | - Yaming Gong
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, 198, Shiqiao Rd, Hangzhou, 310021, Zhejiang, China.
- Key Laboratory of Vegetable Legumes Germplasm Enhancement and Molecular Breeding in Southern China of Ministry of Agriculture and Rural Affairs, 198, Shiqiao Rd, Hangzhou, 310021, Zhejiang, China.
| |
Collapse
|
16
|
Huang K, Wang Y, Li Y, Zhang B, Zhang L, Duan P, Xu R, Wang D, Liu L, Zhang G, Zhang H, Wang C, Guo N, Hao J, Luo Y, Zhu X, Li Y. Modulation of histone acetylation enables fully mechanized hybrid rice breeding. NATURE PLANTS 2024; 10:954-970. [PMID: 38831046 DOI: 10.1038/s41477-024-01720-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 05/08/2024] [Indexed: 06/05/2024]
Abstract
Hybrid rice has achieved high grain yield and greatly contributes to food security, but the manual-labour-intensive hybrid seed production process limits fully mechanized hybrid rice breeding. For next-generation hybrid seed production, the use of small-grain male sterile lines to mechanically separate small hybrid seeds from mixed harvest is promising. However, it is difficult to find ideal grain-size genes for breeding ideal small-grain male sterile lines without penalties in the number of hybrid seeds and hybrid rice yield. Here we report that the use of small-grain alleles of the ideal grain-size gene GSE3 in male sterile lines enables fully mechanized hybrid seed production and dramatically increases hybrid seed number in three-line and two-line hybrid rice systems. The GSE3 gene encodes a histone acetyltransferase that binds histones and influences histone acetylation levels. GSE3 is recruited by the transcription factor GS2 to the promoters of their co-regulated grain-size genes and influences the histone acetylation status of their co-regulated genes. Field trials demonstrate that genome editing of GSE3 can be used to immediately improve current elite male sterile lines of hybrid rice for fully mechanized hybrid rice breeding, providing a new perspective for mechanized hybrid breeding in other crops.
Collapse
Affiliation(s)
- Ke Huang
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- Hainan Seed Industry Laboratory, Sanya, China
| | - Yuexing Wang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Yingjie Li
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- Hainan Seed Industry Laboratory, Sanya, China
| | - Baolan Zhang
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Limin Zhang
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Penggen Duan
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Ran Xu
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Dekai Wang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Lijie Liu
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agriculture, University of Chinese Academy of Sciences, Beijing, China
| | - Guozheng Zhang
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Hao Zhang
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agriculture, University of Chinese Academy of Sciences, Beijing, China
| | - Chenjie Wang
- School of Breeding and Multiplication, Hainan University, Sanya, China
| | - Nian Guo
- School of Breeding and Multiplication, Hainan University, Sanya, China
| | - Jianqin Hao
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yuehua Luo
- School of Breeding and Multiplication, Hainan University, Sanya, China
| | - Xudong Zhu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China.
| | - Yunhai Li
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.
- College of Advanced Agriculture, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
17
|
Zhang H, Tang S, Wang H, Wang Y, Zhi H, Liu B, Zhang R, Ma Q, Jia G, Feng B, Diao X. Genetic diversity of grain yield traits and identification of a grain weight gene SiTGW6 in foxtail millet. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:84. [PMID: 38493242 DOI: 10.1007/s00122-024-04586-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 02/20/2024] [Indexed: 03/18/2024]
Abstract
KEY MESSAGE Agronomic traits were evaluated in 1250 foxtail millet accessions, and a crucial gene SiTGW6 governing grain yield was identified. Elite haplotypes and dCAPS markers developed for SiTGW6 facilitate molecular breeding. A comprehensive evaluation of phenotypic characteristics and genetic diversity in germplasm resources are important for gene discovery and breeding improvements. In this study, we conducted a comprehensive evaluation of 1250 foxtail millet varieties, assessing seven grain yield-related traits and fourteen common agronomic traits over two years. Principal component analysis, correlation analysis, and cluster analysis revealed a strong positive correlation between 1000-grain weight and grain width with grain yield, emphasizing their importance in foxtail millet breeding. Additionally, we found that panicle weight positively correlated with 1000-grain weight but negatively correlated with branch and tiller numbers, indicating selection factors during domestication and breeding. Using this information, we identified 27 germplasm resources suitable for high-yield foxtail millet breeding. Furthermore, through an integration of haplotype variations and phenotype association analysis, we pinpointed a crucial gene, SiTGW6, responsible for governing grain yield in foxtail millet. SiTGW6 encodes an IAA-glucose hydrolase, primarily localized in the cytoplasm and predominantly expressed in flowering panicles. Employing RNAseq analysis, we identified 1439 differentially expressed genes across various SiTGW6 haplotypes. Functional enrichment analysis indicating that SiTGW6 regulates grain yield through the orchestration of auxin and glucan metabolism, as well as plant hormone signaling pathways. Additionally, we have identified elite haplotypes and developed dCAPS markers for SiTGW6, providing valuable technical tools to facilitate molecular breeding efforts in foxtail millet.
Collapse
Affiliation(s)
- Hui Zhang
- College of Agronomy, State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, 712100, Shaanxi Province, China
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Sha Tang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Honglu Wang
- College of Agronomy, State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, 712100, Shaanxi Province, China
| | - Yannan Wang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Hui Zhi
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Bin Liu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Renliang Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Qian Ma
- College of Agronomy, State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, 712100, Shaanxi Province, China
| | - Guanqing Jia
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Baili Feng
- College of Agronomy, State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, 712100, Shaanxi Province, China.
| | - Xianmin Diao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
18
|
Cheng YS, Sun YD, Xing JY, Zhan L, Li XJ, Huang J, Zhao MH, Guo ZF. Transcriptomic and functional analyzes reveal that the brassinosteroid insensitive 1 receptor (OsBRI1) regulates cold tolerance in rice. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 208:108472. [PMID: 38442627 DOI: 10.1016/j.plaphy.2024.108472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/20/2024] [Accepted: 02/26/2024] [Indexed: 03/07/2024]
Abstract
Brassinosteroids (BR) play crucial roles in plant development and abiotic stresses in plants. Exogenous application of BR can significantly enhance cold tolerance in rice. However, the regulatory relationship between cold tolerance and the BR signaling pathway in rice remains largely unknown. Here, we characterized functions of the BR receptor OsBRI1 in response to cold tolerance in rice using its loss-of-function mutant (d61-1). Our results showed that mutant d61-1 was less tolerant to cold stress than wild-type (WT). Besides, d61-1 had lower levels than WT for some physiological parameters, including catalase activity (CAT), superoxide dismutase activity (SOD), peroxidase activity (POD), peroxidase activity (PRO), soluble protein, and soluble sugar content, while malondialdehyde content (MDA) and relative electrical conductivity (REC) levels in d61-1 were higher than those in WT plants. These results indicated that the loss of OsBRI1 function resulted in decreased cold tolerance in rice. In addition, we performed RNA sequencing (RNA-seq) of WT and d61-1 mutant under cold stress. Numerous common and unique differentially expressed genes (DEGs) with up- and down-regulation were observed in WT and d61-1 mutant. Some DEGs were expressed to various degrees, even opposite, between CK1 vs. T1 (WT) and CK2 vs. T2 (d61-1). Among these specific DEGs, some typical genes are involved in plant tolerance to cold stress. Through weighted correlation network analysis (WGCNA), 50 hub genes were screened in the turquoise and blue module. Many genes were involved in cold stress and plant hormone, such as Os01g0279800 (BRI1-associated receptor kinase 1 precursor), Os10g0513200 (Dwarf and tiller-enhancing 1, DTE1), Os02g0706400 (MYB-related transcription factor, OsRL3), etc. Differential expression levels of some genes were verified in WT and d61-1 under cold stress using qRT-PCR. These valuable findings and gene resources will be critical for understanding the regulatory relationships between cold stress tolerance and the BR signaling pathways in rice.
Collapse
Affiliation(s)
- Yi-Shan Cheng
- Key Laboratory of Agricultural Biotechnology of Liaoning Province, College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang, 110161, China
| | - Ye-Dong Sun
- Key Laboratory of Agricultural Biotechnology of Liaoning Province, College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang, 110161, China
| | - Jia-Ying Xing
- Key Laboratory of Agricultural Biotechnology of Liaoning Province, College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang, 110161, China
| | - Lu Zhan
- Key Laboratory of Agricultural Biotechnology of Liaoning Province, College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang, 110161, China
| | - Xiu-Jie Li
- Key Laboratory of Agricultural Biotechnology of Liaoning Province, College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang, 110161, China
| | - Jing Huang
- Department of Agronomy, College of Agriculture, Purdue University, West Lafayette, IN, 47907, United States
| | - Ming-Hui Zhao
- Rice Research Institute/Collaborative Innovation Center for Genetic Improvement and High Quality and Efficiency Production of Northeast Japonica Rice in China, Shenyang Agricultural University, Shenyang, 110161, China.
| | - Zhi-Fu Guo
- Key Laboratory of Agricultural Biotechnology of Liaoning Province, College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang, 110161, China.
| |
Collapse
|
19
|
Sun X, Xie Y, Xu K, Li J. Regulatory networks of the F-box protein FBX206 and OVATE family proteins modulate brassinosteroid biosynthesis to regulate grain size and yield in rice. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:789-801. [PMID: 37818650 DOI: 10.1093/jxb/erad397] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 10/10/2023] [Indexed: 10/12/2023]
Abstract
F-box proteins participate in the regulation of many processes, including cell division, development, and plant hormone responses. Brassinosteroids (BRs) regulate plant growth and development by activating core transcriptional and other multiple factors. In rice, OVATE family proteins (OFPs) participate in BR signalling and regulate grain size. Here we identified an F-box E3 ubiquitin ligase, FBX206, that acts as a negative factor in BR signalling and regulates grain size and yield in rice. Suppressed expression of FBX206 by RNAi leads to promoted plant growth and increased grain yield. Molecular analyses showed that the expression levels of BR biosynthetic genes were up-regulated, whereas those of BR catabolic genes were down-regulated in FBX206-RNAi plants, resulting in the accumulation of 28-homoBL, one of the bioactive BRs. FBX206 interacted with OsOFP8, a positive regulator in BR signalling, and OsOFP19, a negative regulator in BR signalling. SCFFBX206 mediated the degradation of OsOFP8 but suppressed OsOFP19 degradation. OsOFP8 interacted with OsOFP19, and the reciprocal regulation between OsOFP8 and OsOFP19 required the presence of FBX206. FBX206 itself was ubiquitinated and degraded, but interactions of OsOFP8 and OsOFP19 synergistically suppressed the degradation of FBX206. Genetic interactions indicated an additive effect between FBX206 and OsOFP8 and epistatic effects of OsOFP19 on FBX206 and OsOFP8. Our study reveals the regulatory networks of FBX206, OsOFP8, and OsOFP19 in BR signalling that regulate grain size and yield in rice.
Collapse
Affiliation(s)
- Xiaoxuan Sun
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- South China National Botanical Garden, Guangzhou 510650, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yonghong Xie
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Kaizun Xu
- Guangxi Key Laboratory of Agro-environment and Agric-products Safety, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Jianxiong Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning 530004, China
- Guangxi Key Laboratory of Agro-environment and Agric-products Safety, College of Agriculture, Guangxi University, Nanning 530004, China
| |
Collapse
|
20
|
Yang Y, Chu C, Qian Q, Tong H. Leveraging brassinosteroids towards the next Green Revolution. TRENDS IN PLANT SCIENCE 2024; 29:86-98. [PMID: 37805340 DOI: 10.1016/j.tplants.2023.09.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/24/2023] [Accepted: 09/08/2023] [Indexed: 10/09/2023]
Abstract
The use of gibberellin-related dwarfing genes significantly increased grain yield during the Green Revolution. Brassinosteroids (BRs) play a vital role in regulating agronomic traits and stress resistance. The potential of BR-related genes in crop improvement has been well demonstrated, positioning BRs as crucial targets for the next agricultural biotechnological revolution. However, BRs exert pleiotropic effects on plants, and thus present both opportunities and challenges for their application. Recent research suggests promising strategies for leveraging BR regulatory molecules for crop improvement, such as exploring function-specific genes, identifying beneficial alleles, inducing favorable mutations, and optimizing spatial hormone distribution. Advancing our understanding of the roles of BRs in plants is imperative to implement these strategies effectively.
Collapse
Affiliation(s)
- Yanzhao Yang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Chengcai Chu
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Qian Qian
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Hongning Tong
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
21
|
Zou T, Zhang K, Zhang J, Liu S, Liang J, Liu J, Zhu J, Liang Y, Wang S, Deng Q, Liu H, Jin J, Li P, Li S. DWARF AND LOW-TILLERING 2 functions in brassinosteroid signaling and controls plant architecture and grain size in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:1766-1783. [PMID: 37699038 DOI: 10.1111/tpj.16464] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/22/2023] [Accepted: 09/01/2023] [Indexed: 09/14/2023]
Abstract
Brassinosteroids (BRs) are a class of steroid phytohormones that control various aspects of plant growth and development. Several transcriptional factors (TFs) have been suggested to play roles in BR signaling. However, their possible relationship remains largely unknown. Here, we identified a rice mutant dwarf and low-tillering 2 (dlt2) with altered plant architecture, increased grain width, and reduced BR sensitivity. DLT2 encodes a GIBBERELLIN INSENSITIVE (GAI)-REPRESSOR OF GAI (RGA)-SCARECROW (GRAS) TF that is mainly localized in the nucleus and has weak transcriptional activity. Our further genetic and biochemical analyses indicate that DLT2 interacts with two BR-signaling-related TFs, DLT and BRASSINAZOLE-RESISTANT 1, and probably modulates their transcriptional activity. These findings imply that DLT2 is implicated in a potentially transcriptional complex that mediates BR signaling and rice development and suggests that DLT2 could be a potential target for improving rice architecture and grain morphology. This work also sheds light on the role of rice GRAS members in regulating numerous developmental processes.
Collapse
Affiliation(s)
- Ting Zou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Kaixuan Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Jing Zhang
- Technical Center of Chengdu Customs, Chengdu, 610041, Sichuan, China
| | - Sijing Liu
- Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Jing Liang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Jiaxu Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Jun Zhu
- Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yueyang Liang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Shiquan Wang
- Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Qiming Deng
- Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Huainian Liu
- Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Jinghua Jin
- Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Ping Li
- Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Shuangcheng Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| |
Collapse
|
22
|
Xue C, Qiu F, Wang Y, Li B, Zhao KT, Chen K, Gao C. Tuning plant phenotypes by precise, graded downregulation of gene expression. Nat Biotechnol 2023; 41:1758-1764. [PMID: 36894598 DOI: 10.1038/s41587-023-01707-w] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 02/07/2023] [Indexed: 03/11/2023]
Abstract
The ability to control gene expression and generate quantitative phenotypic changes is essential for breeding new and desired traits into crops. Here we report an efficient, facile method for downregulating gene expression to predictable, desired levels by engineering upstream open reading frames (uORFs). We used base editing or prime editing to generate de novo uORFs or to extend existing uORFs by mutating their stop codons. By combining these approaches, we generated a suite of uORFs that incrementally downregulate the translation of primary open reading frames (pORFs) to 2.5-84.9% of the wild-type level. By editing the 5' untranslated region of OsDLT, which encodes a member of the GRAS family and is involved in the brassinosteroid transduction pathway, we obtained, as predicted, a series of rice plants with varied plant heights and tiller numbers. These methods offer an efficient way to obtain genome-edited plants with graded expression of traits.
Collapse
Affiliation(s)
- Chenxiao Xue
- State Key Laboratory of Plant Cell and Chromosome Engineering, Center for Genome Editing, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Fengti Qiu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Center for Genome Editing, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yuxiang Wang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Center for Genome Editing, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Boshu Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, Center for Genome Editing, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | | | - Kunling Chen
- State Key Laboratory of Plant Cell and Chromosome Engineering, Center for Genome Editing, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Caixia Gao
- State Key Laboratory of Plant Cell and Chromosome Engineering, Center for Genome Editing, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
23
|
Gasparis S, Miłoszewski MM. Genetic Basis of Grain Size and Weight in Rice, Wheat, and Barley. Int J Mol Sci 2023; 24:16921. [PMID: 38069243 PMCID: PMC10706642 DOI: 10.3390/ijms242316921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/27/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
Grain size is a key component of grain yield in cereals. It is a complex quantitative trait controlled by multiple genes. Grain size is determined via several factors in different plant development stages, beginning with early tillering, spikelet formation, and assimilates accumulation during the pre-anthesis phase, up to grain filling and maturation. Understanding the genetic and molecular mechanisms that control grain size is a prerequisite for improving grain yield potential. The last decade has brought significant progress in genomic studies of grain size control. Several genes underlying grain size and weight were identified and characterized in rice, which is a model plant for cereal crops. A molecular function analysis revealed most genes are involved in different cell signaling pathways, including phytohormone signaling, transcriptional regulation, ubiquitin-proteasome pathway, and other physiological processes. Compared to rice, the genetic background of grain size in other important cereal crops, such as wheat and barley, remains largely unexplored. However, the high level of conservation of genomic structure and sequences between closely related cereal crops should facilitate the identification of functional orthologs in other species. This review provides a comprehensive overview of the genetic and molecular bases of grain size and weight in wheat, barley, and rice, focusing on the latest discoveries in the field. We also present possibly the most updated list of experimentally validated genes that have a strong effect on grain size and discuss their molecular function.
Collapse
Affiliation(s)
- Sebastian Gasparis
- Plant Breeding and Acclimatization Institute—National Research Institute in Radzików, 05-870 Błonie, Poland;
| | | |
Collapse
|
24
|
López-Fernández M, García-Abadillo J, Uauy C, Ruiz M, Giraldo P, Pascual L. Genome wide association in Spanish bread wheat landraces identifies six key genomic regions that constitute potential targets for improving grain yield related traits. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:244. [PMID: 37957405 PMCID: PMC10643358 DOI: 10.1007/s00122-023-04492-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 10/24/2023] [Indexed: 11/15/2023]
Abstract
KEY MESSAGE Association mapping conducted in 189 Spanish bread wheat landraces revealed six key genomic regions that constitute stable QTLs for yield and include 15 candidate genes. Genetically diverse landraces provide an ideal population to conduct association analysis. In this study, association mapping was conducted in a collection of 189 Spanish bread wheat landraces whose genomic diversity had been previously assessed. These genomic data were combined with characterization for yield-related traits, including grain size and shape, and phenological traits screened across five seasons. The association analysis revealed a total of 881 significant marker trait associations, involving 434 markers across the genome, that could be grouped in 366 QTLs based on linkage disequilibrium. After accounting for days to heading, we defined 33 high density QTL genomic regions associated to at least four traits. Considering the importance of detecting stable QTLs, 6 regions associated to several grain traits and thousand kernel weight in at least three environments were selected as the most promising ones to harbour targets for breeding. To dissect the genetic cause of the observed associations, we studied the function and in silico expression of the 413 genes located inside these six regions. This identified 15 candidate genes that provide a starting point for future analysis aimed at the identification and validation of wheat yield related genes.
Collapse
Affiliation(s)
- Matilde López-Fernández
- Department of Biotechnology-Plant Biology, School of Agricultural, Food and Biosystems Engineering (ETSIAAB), Universidad Politécnica de Madrid (UPM), Madrid, Spain
| | - Julián García-Abadillo
- Department of Biotechnology and Plant Biology, Centre for Biotechnology and Plant Genomics (CBGP), Universidad Politécnica de Madrid (UPM), Madrid, Spain
| | - Cristobal Uauy
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Magdalena Ruiz
- Instituto Nacional de Investigacion y Tecnologia Agraria y Alimentaria (INIA), CSIC, Autovía A2, Km. 36.2. Finca La Canaleja, 28805, Alcalá de Henares, Madrid, Spain
| | - Patricia Giraldo
- Department of Biotechnology-Plant Biology, School of Agricultural, Food and Biosystems Engineering (ETSIAAB), Universidad Politécnica de Madrid (UPM), Madrid, Spain.
| | - Laura Pascual
- Department of Biotechnology-Plant Biology, School of Agricultural, Food and Biosystems Engineering (ETSIAAB), Universidad Politécnica de Madrid (UPM), Madrid, Spain
| |
Collapse
|
25
|
Alkafaas SS, Abdallah AM, Hussien AM, Bedair H, Abdo M, Ghosh S, Elkafas SS, Apollon W, Saki M, Loutfy SA, Onyeaka H, Hessien M. A study on the effect of natural products against the transmission of B.1.1.529 Omicron. Virol J 2023; 20:191. [PMID: 37626376 PMCID: PMC10464336 DOI: 10.1186/s12985-023-02160-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
BACKGROUND The recent outbreak of the Coronavirus pandemic resulted in a successful vaccination program launched by the World Health Organization. However, a large population is still unvaccinated, leading to the emergence of mutated strains like alpha, beta, delta, and B.1.1.529 (Omicron). Recent reports from the World Health Organization raised concerns about the Omicron variant, which emerged in South Africa during a surge in COVID-19 cases in November 2021. Vaccines are not proven completely effective or safe against Omicron, leading to clinical trials for combating infection by the mutated virus. The absence of suitable pharmaceuticals has led scientists and clinicians to search for alternative and supplementary therapies, including dietary patterns, to reduce the effect of mutated strains. MAIN BODY This review analyzed Coronavirus aetiology, epidemiology, and natural products for combating Omicron. Although the literature search did not include keywords related to in silico or computational research, in silico investigations were emphasized in this study. Molecular docking was implemented to compare the interaction between natural products and Chloroquine with the ACE2 receptor protein amino acid residues of Omicron. The global Omicron infection proceeding SARS-CoV-2 vaccination was also elucidated. The docking results suggest that DGCG may bind to the ACE2 receptor three times more effectively than standard chloroquine. CONCLUSION The emergence of the Omicron variant has highlighted the need for alternative therapies to reduce the impact of mutated strains. The current review suggests that natural products such as DGCG may be effective in binding to the ACE2 receptor and combating the Omicron variant, however, further research is required to validate the results of this study and explore the potential of natural products to mitigate COVID-19.
Collapse
Affiliation(s)
- Samar Sami Alkafaas
- Molecular Cell Biology Unit, Division of Biochemistry, Department of Chemistry, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| | - Abanoub Mosaad Abdallah
- Narcotic Research Department, National Center for Social and Criminological Research (NCSCR), Giza, 11561, Egypt
| | - Aya Misbah Hussien
- Biotechnology Department at Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| | - Heba Bedair
- Botany Department, Faculty of Science, Tanta University, Tanta, Egypt
| | - Mahmoud Abdo
- Division of Biochemistry, Department of Chemistry, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Soumya Ghosh
- Department of Genetics, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein, 9301, South Africa.
| | - Sara Samy Elkafas
- Production Engineering and Mechanical Design Department, Faculty of Engineering, Menofia University, Menofia, Egypt
| | - Wilgince Apollon
- Department of Agricultural and Food Engineering, Faculty of Agronomy, Universidad Autónoma de Nuevo León, Francisco Villa S/N, Ex-Hacienda El Canadá, 66050, General Escobedo, Nuevo León, Mexico
| | - Morteza Saki
- Department of Microbiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Samah A Loutfy
- Virology and Immunology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, Egypt
- Nanotechnology Research Center, British University, Cairo, Egypt
| | - Helen Onyeaka
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| | - Mohamed Hessien
- Molecular Cell Biology Unit, Division of Biochemistry, Department of Chemistry, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| |
Collapse
|
26
|
Wang D, Hao X, Xu L, Zhao M, Wang C, Yu X, Kong Y, Lu M, Zhou G, Chai G, Tang X. Fine-tuning brassinosteroid biosynthesis via 3'UTR-dependent decay of CPD mRNA modulates wood formation in Populus. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:1852-1858. [PMID: 37203882 DOI: 10.1111/jipb.13509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 05/18/2023] [Indexed: 05/20/2023]
Abstract
Brassinosteroids (BRs) are plant hormones that regulate wood formation in trees. Currently, little is known about the post-transcriptional regulation of BR synthesis. Here, we show that during wood formation, fine-tuning BR synthesis requires 3'UTR-dependent decay of Populus CONSTITUTIVE PHOTOMORPHOGENIC DWARF 1 (PdCPD1). Overexpression of PdCPD1 or its 3' UTR fragment resulted in a significant increase of BR levels and inhibited secondary growth. In contrast, transgenic poplars repressing PdCPD1 3' UTR expression displayed moderate levels of BR and promoted wood formation. We show that the Populus GLYCINE-RICH RNA-BINDING PROTEIN 1 (PdGRP1) directly binds to a GU-rich element in 3' UTR of PdCPD1, leading to its mRNA decay. We thus provide a post-transcriptional mechanism underlying BRs synthesis during wood formation, which may be useful for genetic manipulation of wood biomass in trees.
Collapse
Affiliation(s)
- Dian Wang
- College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xiaoning Hao
- College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, China
| | - Li Xu
- College of Resources and Environment, Qingdao Agricultural University, Qingdao, 266109, China
| | - Mengyan Zhao
- College of Resources and Environment, Qingdao Agricultural University, Qingdao, 266109, China
| | - Congpeng Wang
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xihao Yu
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yingzhen Kong
- College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, China
| | - Mengzhu Lu
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, 311300, China
| | - Gongke Zhou
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, 266109, China
| | - Guohua Chai
- College of Resources and Environment, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xianfeng Tang
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, 266109, China
| |
Collapse
|
27
|
Shalmani A, Ullah U, Tai L, Zhang R, Jing XQ, Muhammd I, Bhanbhro N, Liu WT, Li WQ, Chen KM. OsBBX19-OsBTB97/OsBBX11 module regulates spikelet development and yield production in rice. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023:111779. [PMID: 37355232 DOI: 10.1016/j.plantsci.2023.111779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/09/2023] [Accepted: 06/20/2023] [Indexed: 06/26/2023]
Abstract
Spikelet and floral-related organs are important agronomic traits for rice grain yield. BTB (broad-complex, tram track, and bric-abrac) proteins control various developmental functions in plants; however, the molecular mechanism of BTB proteins underlying grain development and yield production is still unknown. Here, we evaluated the molecular mechanism of a previously unrecognized functional gene, namely OsBTB97 that regulates the floral and spikelet-related organs which greatly affect the final grain yield. We found that the knockdown of the OsBTB97 gene had significant impacts on the development of spikelet-related organs and grain size, resulting in a decrease in yield, by altering the transcript levels of various spikelet- and grain-related genes. Furthermore, we found that the knockout mutants of two BBX genes, OsBBX11 and OsBBX19, which interact with the OsBTB97 protein at translation and transcriptional level, respectively, displayed lower OsBTB97 expression, suggesting the genetic relationship between the BTB protein and the BBX transcription factors in rice. Taken together, our study dissects the function of the novel OsBTB97 by interacting with two BBX proteins and an OsBBX19-OsBTB97/OsBBX11 module might function in the spikelet development and seed production in rice. The outcome of the present study provides promising knowledge about BTB proteins in the improvement of crop production in plants.
Collapse
Affiliation(s)
- Abdullah Shalmani
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, China
| | - Uzair Ullah
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, China
| | - Li Tai
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, China
| | - Ran Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, China
| | - Xiu-Qing Jing
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, China
| | - Izhar Muhammd
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, China
| | - Nadeem Bhanbhro
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, China
| | - Wen-Ting Liu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, China
| | - Wen-Qiang Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, China
| | - Kun-Ming Chen
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
28
|
Tang S, Zhao Z, Liu X, Sui Y, Zhang D, Zhi H, Gao Y, Zhang H, Zhang L, Wang Y, Zhao M, Li D, Wang K, He Q, Zhang R, Zhang W, Jia G, Tang W, Ye X, Wu C, Diao X. An E2-E3 pair contributes to seed size control in grain crops. Nat Commun 2023; 14:3091. [PMID: 37248257 DOI: 10.1038/s41467-023-38812-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 05/15/2023] [Indexed: 05/31/2023] Open
Abstract
Understanding the molecular mechanisms that regulate grain yield is important for improving agricultural productivity. Protein ubiquitination controls various aspects of plant growth but lacks understanding on how E2-E3 enzyme pairs impact grain yield in major crops. Here, we identified a RING-type E3 ligase SGD1 and its E2 partner SiUBC32 responsible for grain yield control in Setaria italica. The conserved role of SGD1 was observed in wheat, maize, and rice. Furthermore, SGD1 ubiquitinates the brassinosteroid receptor BRI1, stabilizing it and promoting plant growth. Overexpression of an elite SGD1 haplotype improved grain yield by about 12.8% per plant, and promote complex biological processes such as protein processing in endoplasmic reticulum, stress responses, photosystem stabilization, and nitrogen metabolism. Our research not only identifies the SiUBC32-SGD1-BRI1 genetic module that contributes to grain yield improvement but also provides a strategy for exploring key genes controlling important traits in Poaceae crops using the Setaria model system.
Collapse
Affiliation(s)
- Sha Tang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zhiying Zhao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xiaotong Liu
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
- Key Laboratory of Agricultural Water Resources, Hebei Laboratory of Agricultural, Water-Saving, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, 050021, China
| | - Yi Sui
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Dandan Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Hui Zhi
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yuanzhu Gao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Hui Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Linlin Zhang
- College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yannan Wang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Meicheng Zhao
- Key Laboratory of Agricultural Water Resources, Hebei Laboratory of Agricultural, Water-Saving, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, 050021, China
| | - Dongdong Li
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Ke Wang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Qiang He
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Renliang Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Wei Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Guanqing Jia
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Wenqiang Tang
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Xingguo Ye
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Chuanyin Wu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xianmin Diao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
29
|
Li Y, Tao F, Hao Y, Tong J, Xiao Y, He Z, Reynolds M. Variations in phenological, physiological, plant architectural and yield-related traits, their associations with grain yield and genetic basis. ANNALS OF BOTANY 2023; 131:503-519. [PMID: 36655618 PMCID: PMC10072080 DOI: 10.1093/aob/mcad003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND AND AIMS Physiological and morphological traits play essential roles in wheat (Triticum aestivum) growth and development. In particular, photosynthesis is a limitation to yield. Increasing photosynthesis in wheat has been identified as an important strategy to increase yield. However, the genotypic variations and the genomic regions governing morphological, architectural and photosynthesis traits remain unexplored. METHODS Here, we conducted a large-scale investigation of the phenological, physiological, plant architectural and yield-related traits, involving 32 traits for 166 wheat lines during 2018-2020 in four environments, and performed a genome-wide association study with wheat 90K and 660K single nucleotide polymorphism (SNP) arrays. KEY RESULTS These traits exhibited considerable genotypic variations in the wheat diversity panel. Higher yield was associated with higher net photosynthetic rate (r = 0.41, P < 0.01), thousand-grain weight (r = 0.36, P < 0.01) and truncated and lanceolate shape, but shorter plant height (r = -0.63, P < 0.01), flag leaf angle (r = -0.49, P < 0.01) and spike number per square metre (r = -0.22, P < 0.01). Genome-wide association mapping discovered 1236 significant stable loci detected in the four environments among the 32 traits using SNP markers. Trait values have a cumulative effect as the number of the favourable alleles increases, and significant progress has been made in determining phenotypic values and favourable alleles over the years. Eleven elite cultivars and 14 traits associated with grain yield per plot (GY) were identified as potential parental lines and as target traits to develop high-yielding cultivars. CONCLUSIONS This study provides new insights into the phenotypic and genetic elucidation of physiological and morphological traits in wheat and their associations with GY, paving the way for discovering their underlying gene control and for developing enhanced ideotypes in wheat breeding.
Collapse
Affiliation(s)
- Yibo Li
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | | | - Yuanfeng Hao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jingyang Tong
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yonggui Xiao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | | | - Matthew Reynolds
- International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico
| |
Collapse
|
30
|
Paravar A, Maleki Farahani S, Rezazadeh A. Morphological, physiological and biochemical response of L allemantia species to elevated temperature and light duration during seed development. Heliyon 2023; 9:e15149. [PMID: 37123928 PMCID: PMC10133671 DOI: 10.1016/j.heliyon.2023.e15149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/27/2023] [Accepted: 03/28/2023] [Indexed: 05/02/2023] Open
Abstract
Seed weight, storability, and germinability can depend on maternal plant's environment. However, there is slight information about the effect of light and temperature on seed quality of Lallemantia species. The purpose of this research was to determine the properties of physio-biochemical of maternal plant, seed quality, and seed chemical composition of Lallemantia species (Lallemantia iberica and Lallemantia royleana) under temperature (15 °C, 25 °C, and 35 °C) and photoperiod (8 hd-1, 16 hd-1, and 24 hd-1) maternal plants environment. Increasing temperature and photoperiod caused a reduction in leaf chlorophyll, stomatal movement, total soluble sugar, superoxide dismutase (SOD), catalase (CAT), and ascorbate peroxidase (APX) enzymes activities, and an increment in malondialdehyde (MDA) and hydrogen peroxide (H2O2) content of seeds. However, the highest weight, germination, vigor index, and longevity, seed chemical compositions were obtained in offspring which matured under 25 °C for 16 hd-1. The highest germination, oil, and relative percentage of fatty acids (oleic acid (OA), linoleic acid (LA), and linolenic acid (LNA)) were obtained in L. iberica seeds. On the contrary, longevity, mucilage, and sucrose were more abundant in L. royleana seeds. Overall, this research has clearly shown that temperature and light quality and quantity of maternal plant's environment have an immensely effect on producing of seeds with high-quality. However, it is necessary to investigate the impact of the epigenetic mechanisms of the maternal plant on the offspring in future studies.
Collapse
Affiliation(s)
- Arezoo Paravar
- Department of Crop Production and Plant Breeding, College of Agriculture, Shahed University, Tehran, Iran
| | - Saeideh Maleki Farahani
- Department of Crop Production and Plant Breeding, College of Agriculture, Shahed University, Tehran, Iran
- Corresponding author.
| | - Alireza Rezazadeh
- Department of Plant Protection, College of Agriculture, Shahed University, Tehran, Iran
| |
Collapse
|
31
|
Yang Z, Qin T, Jin H, Wang J, Li C, Lim KJ, Wang Z. Quantitative Phosphoproteomic Analysis Reveals Potential Regulatory Mechanisms of Early Fruit Enlargement in Pecan ( Carya illinoinensis). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:4901-4914. [PMID: 36938622 DOI: 10.1021/acs.jafc.2c08876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Pecan (Carya illinoinensis) is a popular tree nut. Its fruit development undergoes slow growth, rapid expansion, core hardening, and kernel maturation stages. However, little is known about how pecan initiates fruit development and enlargement after pollination. In this study, we performed the first large-scale identification of potential phosphorylation sites and proteins at early development of pecan fruit by a label-free phosphoproteomic quantification technique. A total of 2155 phosphosites were identified from 1953 phosphopeptides covering 1311 phosphoproteins in unpollinated pistils and fruits at 5 and 9 weeks after pollination. Of these, 699 nonredundant phosphoproteins were differentially phosphorylated (DP). Furthermore, the phosphorylation intensity of DP proteins in brassinolide (BR) and auxin signaling were analyzed, and the function of CiBZR1 was investigated. Ectopic expression of CiBZR1 resulted in BR response phenotypes with curled leaves and fruit, while enlarged seed size in Arabidopsis. Subcellular localization and transcriptional activation activity assay demonstrated that CiBZR1 distributed in both the nucleus and cytoplasm with transcriptional activity. When two phosphosites mutated, CiBZR1S201P,S205G moved to the nucleus completely, while the transcriptional activity remained unchanged. Taken together, our data reveal extensive phosphoproteins and lay a foundation to comprehensively dissect the potential post-translational regulation mechanism of early development of pecan fruit.
Collapse
Affiliation(s)
- Zhengfu Yang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an District, 311300 Hangzhou, Zhejiang, China
| | - Tao Qin
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an District, 311300 Hangzhou, Zhejiang, China
| | - Hongmiao Jin
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an District, 311300 Hangzhou, Zhejiang, China
| | - Jiani Wang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an District, 311300 Hangzhou, Zhejiang, China
| | - Caiyun Li
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an District, 311300 Hangzhou, Zhejiang, China
| | - Kean-Jin Lim
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an District, 311300 Hangzhou, Zhejiang, China
| | - Zhengjia Wang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an District, 311300 Hangzhou, Zhejiang, China
| |
Collapse
|
32
|
Lan D, Cao L, Liu M, Ma F, Yan P, Zhang X, Hu J, Niu F, He S, Cui J, Yuan X, Yang J, Wang Y, Luo X. The identification and characterization of a plant height and grain length related gene hfr131 in rice. FRONTIERS IN PLANT SCIENCE 2023; 14:1152196. [PMID: 37035088 PMCID: PMC10080003 DOI: 10.3389/fpls.2023.1152196] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 03/13/2023] [Indexed: 06/19/2023]
Abstract
Plant height and grain size are important agronomic traits affecting rice yield. Various plant hormones participate in the regulation of plant height and grain size in rice. However, how these hormones cooperate to regulate plant height and grain size is poorly understood. In this study, we identified a brassinosteroid-related gene, hfr131, from an introgression line constructed using Oryza longistaminata, that caused brassinosteroid insensitivity and reduced plant height and grain length in rice. Further study showed that hfr131 is a new allele of OsBRI1 with a single-nucleotide polymorphism (G to A) in the coding region, leading to a T988I conversion at a conserved site of the kinase domain. By combining yeast one-hybrid assays, chromatin immunoprecipitation-quantitative PCR and gene expression quantification, we demonstrated that OsARF17, an auxin response factor, could bind to the promoter region of HFR131 and positively regulated HFR131 expression, thereby regulating the plant height and grain length, and influencing brassinosteroid sensitivity. Haplotype analysis showed that the consociation of OsAFR17Hap1 /HFR131Hap6 conferred an increase in grain length. Overall, this study identified hfr131 as a new allele of OsBRI1 that regulates plant height and grain length in rice, revealed that brassinosteroid and auxin might coordinate through OsARF17-HFR131 interaction, and provided a potential breeding target for improvement of rice yield.
Collapse
Affiliation(s)
- Dengyong Lan
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology (Ministry of Education), School of Life Sciences, Fudan University, Shanghai, China
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Department of Ecology and Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Liming Cao
- Institute of Crop Breeding and Cultivation, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Mingyu Liu
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology (Ministry of Education), School of Life Sciences, Fudan University, Shanghai, China
| | - Fuying Ma
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology (Ministry of Education), School of Life Sciences, Fudan University, Shanghai, China
| | - Peiwen Yan
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology (Ministry of Education), School of Life Sciences, Fudan University, Shanghai, China
| | - Xinwei Zhang
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology (Ministry of Education), School of Life Sciences, Fudan University, Shanghai, China
| | - Jian Hu
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology (Ministry of Education), School of Life Sciences, Fudan University, Shanghai, China
| | - Fuan Niu
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology (Ministry of Education), School of Life Sciences, Fudan University, Shanghai, China
- Institute of Crop Breeding and Cultivation, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Shicong He
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology (Ministry of Education), School of Life Sciences, Fudan University, Shanghai, China
| | - Jinhao Cui
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology (Ministry of Education), School of Life Sciences, Fudan University, Shanghai, China
| | - Xinyu Yuan
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology (Ministry of Education), School of Life Sciences, Fudan University, Shanghai, China
| | - Jinshui Yang
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology (Ministry of Education), School of Life Sciences, Fudan University, Shanghai, China
| | - Ying Wang
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology (Ministry of Education), School of Life Sciences, Fudan University, Shanghai, China
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Department of Ecology and Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Xiaojin Luo
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology (Ministry of Education), School of Life Sciences, Fudan University, Shanghai, China
- Ministry of Education, Key Laboratory of Crop Physiology, Ecology and Genetic Breeding College of Agronomy, Jiangxi Agricultural University, Nanchang, China
| |
Collapse
|
33
|
Li J, Zhang B, Duan P, Yan L, Yu H, Zhang L, Li N, Zheng L, Chai T, Xu R, Li Y. An endoplasmic reticulum-associated degradation-related E2-E3 enzyme pair controls grain size and weight through the brassinosteroid signaling pathway in rice. THE PLANT CELL 2023; 35:1076-1091. [PMID: 36519262 PMCID: PMC10015164 DOI: 10.1093/plcell/koac364] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 11/08/2022] [Accepted: 12/12/2022] [Indexed: 05/16/2023]
Abstract
Grain size is an important agronomic trait, but our knowledge about grain size determination in crops is still limited. Endoplasmic reticulum (ER)-associated degradation (ERAD) is a special ubiquitin proteasome system that is involved in degrading misfolded or incompletely folded proteins in the ER. Here, we report that SMALL GRAIN 3 (SMG3) and DECREASED GRAIN SIZE 1 (DGS1), an ERAD-related E2-E3 enzyme pair, regulate grain size and weight through the brassinosteroid (BR) signaling pathway in rice (Oryza sativa). SMG3 encodes a homolog of Arabidopsis (Arabidopsis thaliana) UBIQUITIN CONJUGATING ENZYME 32, which is a conserved ERAD-associated E2 ubiquitin conjugating enzyme. SMG3 interacts with another grain size regulator, DGS1. Loss of function of SMG3 or DGS1 results in small grains, while overexpression of SMG3 or DGS1 leads to long grains. Further analyses showed that DGS1 is an active E3 ubiquitin ligase and colocates with SMG3 in the ER. SMG3 and DGS1 are involved in BR signaling. DGS1 ubiquitinates the BR receptor BRASSINOSTEROID INSENSITIVE 1 (BRI1) and affects its accumulation. Genetic analysis suggests that SMG3, DGS1, and BRI1 act together to regulate grain size and weight. In summary, our findings identify an ERAD-related E2-E3 pair that regulates grain size and weight, which gives insight into the function of ERAD in grain size control and BR signaling.
Collapse
Affiliation(s)
- Jing Li
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Plant Cell and Chromosome Engineering, CAS Centre for Excellence in Molecular Plant Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Baolan Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, CAS Centre for Excellence in Molecular Plant Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Penggen Duan
- State Key Laboratory of Plant Cell and Chromosome Engineering, CAS Centre for Excellence in Molecular Plant Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Li Yan
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Plant Cell and Chromosome Engineering, CAS Centre for Excellence in Molecular Plant Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Haiyue Yu
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Plant Cell and Chromosome Engineering, CAS Centre for Excellence in Molecular Plant Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Limin Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, CAS Centre for Excellence in Molecular Plant Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Na Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, CAS Centre for Excellence in Molecular Plant Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Leiying Zheng
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Tuanyao Chai
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ran Xu
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya 572025, China
- College of Tropical Crops Hainan University, Hainan University, Haikou 570288, China
| | - Yunhai Li
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Plant Cell and Chromosome Engineering, CAS Centre for Excellence in Molecular Plant Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- The Innovative of Seed Design, Chinese Academy of Sciences, Sanya 572025, China
| |
Collapse
|
34
|
Kumari K, Behera HT, Nayak PP, Sinha A, Nandi A, Ghosh A, Saha U, Suar M, Panda PK, Verma SK, Raina V. Amelioration of lipopeptide biosurfactants for enhanced antibacterial and biocompatibility through molecular antioxidant property by methoxy and carboxyl moieties. Biomed Pharmacother 2023; 161:114493. [PMID: 36906974 DOI: 10.1016/j.biopha.2023.114493] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/27/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
Biosurfactants having surface-active biomolecules have been the cynosure in environment research due to their vast application. However, the lack of information about their low-cost production and detailed mechanistic biocompatibility limits the applicability. The study explores techniques for the production and design of low-cost, biodegradable, and non-toxic biosurfactants from Brevibacterium casei strain LS14 and excavates the mechanistic details of their biomedical properties like antibacterial effects and biocompatibility. Taguchi's design of experiment was used to optimize for enhancing biosurfactant production by optimal factor combinations like Waste glycerol (1%v/v), peptone (1%w/v), NaCl 0.4% (w/v), and pH 6. Under optimal conditions, the purified biosurfactant reduced the surface tension to 35 mN/m from 72.8 mN/m (MSM) and a critical micelle concentration of 25 mg/ml was achieved. Spectroscopic analyses of the purified biosurfactant using Nuclear Magnetic Resonance suggested it as a lipopeptide biosurfactant. The evaluation of mechanistic antibacterial, antiradical, antiproliferative, and cellular effects indicated the efficient antibacterial activity (against Pseudomonas aeruginosa) of biosurfactants due to free radical scavenging activity and oxidative stress. Moreover, the cellular cytotoxicity was estimated by MTT and other cellular assays revealing the phenomenon as the dose-dependent induction of apoptosis due to free radical scavenging with an LC50 of 55.6 ± 2.3 mg/ml.
Collapse
Affiliation(s)
- Khushbu Kumari
- School of Biotechnology, KIIT-DU, Bhubaneswar 751024, India
| | | | | | - Adrija Sinha
- School of Biotechnology, KIIT-DU, Bhubaneswar 751024, India
| | - Aditya Nandi
- School of Biotechnology, KIIT-DU, Bhubaneswar 751024, India
| | - Aishee Ghosh
- School of Biotechnology, KIIT-DU, Bhubaneswar 751024, India
| | - Utsa Saha
- School of Biotechnology, KIIT-DU, Bhubaneswar 751024, India
| | | | - Pritam Kumar Panda
- Department of Physics and Astronomy (Materials Theory), Uppsala University, 75121, Sweden.
| | - Suresh K Verma
- School of Biotechnology, KIIT-DU, Bhubaneswar 751024, India.
| | - Vishakha Raina
- School of Biotechnology, KIIT-DU, Bhubaneswar 751024, India.
| |
Collapse
|
35
|
Plant Metabolomics: An Overview of the Role of Primary and Secondary Metabolites against Different Environmental Stress Factors. Life (Basel) 2023; 13:life13030706. [PMID: 36983860 PMCID: PMC10051737 DOI: 10.3390/life13030706] [Citation(s) in RCA: 71] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/02/2023] [Accepted: 02/28/2023] [Indexed: 03/08/2023] Open
Abstract
Several environmental stresses, including biotic and abiotic factors, adversely affect the growth and development of crops, thereby lowering their yield. However, abiotic factors, e.g., drought, salinity, cold, heat, ultraviolet radiations (UVr), reactive oxygen species (ROS), trace metals (TM), and soil pH, are extremely destructive and decrease crop yield worldwide. It is expected that more than 50% of crop production losses are due to abiotic stresses. Moreover, these factors are responsible for physiological and biochemical changes in plants. The response of different plant species to such stresses is a complex phenomenon with individual features for several species. In addition, it has been shown that abiotic factors stimulate multi-gene responses by making modifications in the accumulation of the primary and secondary metabolites. Metabolomics is a promising way to interpret biotic and abiotic stress tolerance in plants. The study of metabolic profiling revealed different types of metabolites, e.g., amino acids, carbohydrates, phenols, polyamines, terpenes, etc, which are accumulated in plants. Among all, primary metabolites, such as amino acids, carbohydrates, lipids polyamines, and glycine betaine, are considered the major contributing factors that work as osmolytes and osmoprotectants for plants from various environmental stress factors. In contrast, plant-derived secondary metabolites, e.g., phenolics, terpenoids, and nitrogen-containing compounds (alkaloids), have no direct role in the growth and development of plants. Nevertheless, such metabolites could play a significant role as a defense by protecting plants from biotic factors such as herbivores, insects, and pathogens. In addition, they can enhance the resistance against abiotic factors. Therefore, metabolomics practices are becoming essential and influential in plants by identifying different phytochemicals that are part of the acclimation responses to various stimuli. Hence, an accurate metabolome analysis is important to understand the basics of stress physiology and biochemistry. This review provides insight into the current information related to the impact of biotic and abiotic factors on variations of various sets of metabolite levels and explores how primary and secondary metabolites help plants in response to these stresses.
Collapse
|
36
|
Hong Y, Zhang M, Xu R. Genetic Localization and Homologous Genes Mining for Barley Grain Size. Int J Mol Sci 2023; 24:ijms24054932. [PMID: 36902360 PMCID: PMC10003025 DOI: 10.3390/ijms24054932] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/27/2023] [Accepted: 02/27/2023] [Indexed: 03/08/2023] Open
Abstract
Grain size is an important agronomic trait determining barley yield and quality. An increasing number of QTLs (quantitative trait loci) for grain size have been reported due to the improvement in genome sequencing and mapping. Elucidating the molecular mechanisms underpinning barley grain size is vital for producing elite cultivars and accelerating breeding processes. In this review, we summarize the achievements in the molecular mapping of barley grain size over the past two decades, highlighting the results of QTL linkage analysis and genome-wide association studies. We discuss the QTL hotspots and predict candidate genes in detail. Moreover, reported homologs that determine the seed size clustered into several signaling pathways in model plants are also listed, providing the theoretical basis for mining genetic resources and regulatory networks of barley grain size.
Collapse
Affiliation(s)
- Yi Hong
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225127, China
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou 225127, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225127, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Mengna Zhang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225127, China
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou 225127, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225127, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Rugen Xu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225127, China
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou 225127, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225127, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Correspondence:
| |
Collapse
|
37
|
Li B, Liu X, Guo Y, Deng L, Qu L, Yan M, Li M, Wang T. BnaC01.BIN2, a GSK3-like kinase, modulates plant height and yield potential in Brassica napus. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:29. [PMID: 36867248 DOI: 10.1007/s00122-023-04325-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
Using map-based cloning and transgenic transformation, we revealed that glycogen kinase synthase 3-like kinase, BnaC01.BIN2, modulates plant height and yield in rapeseed. The modification of plant height is one of the most important goals in rapeseed breeding. Although several genes that regulate rapeseed plant height have been identified, the genetics mechanisms underlying rapeseed plant height regulation remain poorly understood, and desirable genetic resources for rapeseed ideotype breeding are scarce. Here, we map-based cloned and functionally verified that the rapeseed semi-dominant gene, BnDF4, greatly affects rapeseed plant height. Specifically, BnDF4 encodes brassinosteroid (BR)-insensitive 2, a glycogen synthase kinase 3 primarily expressed in the lower internodes to modulate rapeseed plant height by blocking basal internode-cell elongation. Transcriptome data showed that several cell expansion-related genes involving auxin and BRs pathways were significantly downregulated in the semi-dwarf mutant. Heterozygosity in the BnDF4 allele results in small stature with no marked differences in other agronomic traits. Using BnDF4 in the heterozygous condition, the hybrid displayed strong yield heterosis through optimum intermediate plant height. Our results provide a desirable genetic resource for breeding semi-dwarf rapeseed phenotypes and support an effective strategy for breeding rapeseed hybrid varieties with strong yield heterosis.
Collapse
Affiliation(s)
- Bao Li
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha, 410125, China
- Hunan Hybrid Rapeseed Engineering and Technology Research Center, Changsha, 410125, China
| | - Xinhong Liu
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha, 410125, China
- Hunan Hybrid Rapeseed Engineering and Technology Research Center, Changsha, 410125, China
| | - Yiming Guo
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha, 410125, China
- Hunan Hybrid Rapeseed Engineering and Technology Research Center, Changsha, 410125, China
| | - Lichao Deng
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha, 410125, China
- Hunan Hybrid Rapeseed Engineering and Technology Research Center, Changsha, 410125, China
| | - Liang Qu
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha, 410125, China
- Hunan Hybrid Rapeseed Engineering and Technology Research Center, Changsha, 410125, China
| | - Mingli Yan
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha, 410125, China
- Hunan Hybrid Rapeseed Engineering and Technology Research Center, Changsha, 410125, China
| | - Mei Li
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha, 410125, China.
- Hunan Hybrid Rapeseed Engineering and Technology Research Center, Changsha, 410125, China.
| | - Tonghua Wang
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha, 410125, China.
- Hunan Hybrid Rapeseed Engineering and Technology Research Center, Changsha, 410125, China.
| |
Collapse
|
38
|
Ishii H, Ishikawa A, Yumoto E, Kurokura T, Asahina M, Shimada Y, Nakamura A. Propiconazole-induced brassinosteroid deficiency reduces female fertility by inhibiting female gametophyte development in woodland strawberry. PLANT CELL REPORTS 2023; 42:587-598. [PMID: 36629883 DOI: 10.1007/s00299-023-02981-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
In woodland strawberry, a brassinosteroid biosynthesis inhibitor propiconazole induced typical brassinosteroid-deficient phenotypes and decreased female fertility due to attenuated female gametophyte development. Brassinosteroids (BRs) play roles in various aspects of plant development. We investigated the physiological roles of BRs in the woodland strawberry, Fragaria vesca. BR-level-dependent phenotypes were observed using a BR biosynthetic inhibitor, propiconazole (PCZ), and the most active natural BR, brassinolide (BL). Endogenous BL and castasterone, the active BRs, were below detectable levels in PCZ-treated woodland strawberry. The plants were typical BR-deficient phenotypes, and all phenotypes were restored by treatment with BL. These observations indicate that PCZ is an effective inhibitor of BR in woodland strawberry. Only one gene for each major step of BR biosynthesis in Arabidopsis is encoded in the woodland strawberry genome. BR biosynthetic genes are highly expressed during the early stage of fruit development. Emasculated flowers treated with BL failed to develop fruit, implying that BR is not involved in parthenocarpic fruit development. Similar to BR-deficient and BR-insensitive Arabidopsis mutants, female fertility was lower in PCZ-treated plants than in mock-treated plants due to failed attraction of the pollen tube to the ovule. In PCZ-treated plants, expression of FveMYB98, the homologous gene for Arabidopsis MYB98 (a marker for synergid cells), was downregulated. Ovules were smaller in PCZ-treated plants than in mock-treated plants, and histological analysis implied that the development of more than half of female gametophytes was arrested at the early stage in PCZ-treated plants. Our findings explain how BRs function during female gametophyte development in woodland strawberry.
Collapse
Affiliation(s)
- Hikari Ishii
- Yokohama City University, Kihara Institute for Biological Research, Maioka 641-12, Totsuka, Yokohama, Kanagawa, 244-0813, Japan
| | - Ami Ishikawa
- Yokohama City University, Kihara Institute for Biological Research, Maioka 641-12, Totsuka, Yokohama, Kanagawa, 244-0813, Japan
| | - Emi Yumoto
- Advanced Instrumental Analysis Center, Teikyo University, 1-1 Toyosatodai, Utsunomiya, Tochigi, 321-8505, Japan
| | - Takeshi Kurokura
- Faculty of Agriculture, Utsunomiya University, 350 Mine, Utsunomiya, Tochigi, 321-8505, Japan
| | - Masashi Asahina
- Advanced Instrumental Analysis Center, Teikyo University, 1-1 Toyosatodai, Utsunomiya, Tochigi, 321-8505, Japan
- Department of Biosciences, Teikyo University, 1-1 Toyosatodai, Utsunomiya, Tochigi, 320-8551, Japan
| | - Yukihisa Shimada
- Yokohama City University, Kihara Institute for Biological Research, Maioka 641-12, Totsuka, Yokohama, Kanagawa, 244-0813, Japan
| | - Ayako Nakamura
- Yokohama City University, Kihara Institute for Biological Research, Maioka 641-12, Totsuka, Yokohama, Kanagawa, 244-0813, Japan.
| |
Collapse
|
39
|
Molecular bases of rice grain size and quality for optimized productivity. Sci Bull (Beijing) 2023; 68:314-350. [PMID: 36710151 DOI: 10.1016/j.scib.2023.01.026] [Citation(s) in RCA: 72] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/30/2022] [Accepted: 01/16/2023] [Indexed: 01/19/2023]
Abstract
The accomplishment of further optimization of crop productivity in grain yield and quality is a great challenge. Grain size is one of the crucial determinants of rice yield and quality; all of these traits are typical quantitative traits controlled by multiple genes. Research advances have revealed several molecular and developmental pathways that govern these traits of agronomical importance. This review provides a comprehensive summary of these pathways, including those mediated by G-protein, the ubiquitin-proteasome system, mitogen-activated protein kinase, phytohormone, transcriptional regulators, and storage product biosynthesis and accumulation. We also generalize the excellent precedents for rice variety improvement of grain size and quality, which utilize newly developed gene editing and conventional gene pyramiding capabilities. In addition, we discuss the rational and accurate breeding strategies, with the aim of better applying molecular design to breed high-yield and superior-quality varieties.
Collapse
|
40
|
Gupta A, Bhardwaj M, Tran LSP. Integration of Auxin, Brassinosteroid and Cytokinin in the Regulation of Rice Yield. PLANT & CELL PHYSIOLOGY 2023; 63:1848-1856. [PMID: 36255097 DOI: 10.1093/pcp/pcac149] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 10/11/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
Crop varieties with a high yield are most desirable in the present context of the ever-growing human population. Mostly, the yield traits are governed by a complex of numerous molecular and genetic facets modulated by various quantitative trait loci (QTLs). With the identification and molecular characterizations of yield-associated QTLs over recent years, the central role of phytohormones in regulating plant yield is becoming more apparent. Most often, different groups of phytohormones work in close association to orchestrate yield attributes. Understanding this cross talk would thus provide new venues for phytohormone pyramiding by editing a single gene or QTL(s) for yield improvement. Here, we review a few important findings to integrate the knowledge on the roles of auxin, brassinosteroid and cytokinin and how a single gene or a QTL could govern cross talk among multiple phytohormones to determine the yield traits.
Collapse
Affiliation(s)
- Aarti Gupta
- Department of Life Sciences, POSTECH Biotech Center, Pohang University of Science and Technology, 77 Cheongam-Ro, Namgu, Pohang-si 37673, South Korea
| | - Mamta Bhardwaj
- Department of Botany, Hindu Girls College, Maharshi Dayanand University, Sonipat 131001, India
| | - Lam-Son Phan Tran
- Institute of Research and Development, Duy Tan University, 03 Quang Trung, Da Nang, TX 79409, Vietnam
- Department of Plant and Soil Science, Institute of Genomics for Crop Abiotic Stress Tolerance, Texas Tech University, Lubbock, TX 79409, USA
| |
Collapse
|
41
|
Xu M, Kong K, Miao L, He J, Liu T, Zhang K, Yue X, Jin T, Gai J, Li Y. Identification of major quantitative trait loci and candidate genes for seed weight in soybean. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:22. [PMID: 36688967 PMCID: PMC9870841 DOI: 10.1007/s00122-023-04299-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
Four major quantitative trait loci for 100-seed weight were identified in a soybean RIL population under five environments, and the most likely candidate genes underlying these loci were identified. Seed weight is an important target of soybean breeding. However, the genes underlying the major quantitative trait loci (QTL) controlling seed weight remain largely unknown. In this study, a soybean population of 300 recombinant inbred lines (RILs) derived from a cross between PI595843 (PI) and WH was used to map the QTL and identify candidate genes for seed weight. The RIL population was genotyped through whole genome resequencing, and phenotyped for 100-seed weight under five environments. A total of 38 QTL were detected, and four major QTL, each explained at least 10% of the variation in 100-seed weight, were identified. Six candidate genes within these four major QTL regions were identified by analyses of their tissue expression patterns, gene annotations, and differential gene expression levels in soybean seeds during four developmental stages between two parental lines. Further sequence variation analyses revealed a C to T substitution in the first exon of the Glyma.19G143300, resulting in an amino acid change between PI and WH, and thus leading to a different predicted kinase domain, which might affect its protein function. Glyma.19G143300 is highly expressed in soybean seeds and encodes a leucine-rich repeat receptor-like protein kinase (LRR-RLK). Its predicted protein has typical domains of LRR-RLK family, and phylogenetic analyses reveled its similarity with the known LRR-RLK protein XIAO (LOC_Os04g48760), which is involved in controlling seed size. The major QTL and candidate genes identified in this study provide useful information for molecular breeding of new soybean cultivars with desirable seed weight.
Collapse
Affiliation(s)
- Mengge Xu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Key Laboratory for Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
| | - Keke Kong
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Key Laboratory for Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
| | - Long Miao
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Key Laboratory for Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
| | - Jianbo He
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Key Laboratory for Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
| | - Tengfei Liu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Key Laboratory for Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
| | - Kai Zhang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Key Laboratory for Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
| | - Xiuli Yue
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Key Laboratory for Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
| | - Ting Jin
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Key Laboratory for Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
| | - Junyi Gai
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Key Laboratory for Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
| | - Yan Li
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Key Laboratory for Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China.
| |
Collapse
|
42
|
H. El-Sappah A, Qi S, A. Soaud S, Huang Q, M. Saleh A, A. S. Abourehab M, Wan L, Cheng GT, Liu J, Ihtisham M, Noor Z, Rouf Mir R, Zhao X, Yan K, Abbas M, Li J. Natural resistance of tomato plants to Tomato yellow leaf curl virus. FRONTIERS IN PLANT SCIENCE 2022; 13:1081549. [PMID: 36600922 PMCID: PMC9807178 DOI: 10.3389/fpls.2022.1081549] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
Tomato yellow leaf curl virus (TYLCV) is one of the most harmful afflictions in the world that affects tomato growth and production. Six regular antagonistic genes (Ty-1, Ty-2, Ty-3, Ty-4, ty-5, and Ty-6) have been transferred from wild germplasms to commercial cultivars as TYLCV protections. With Ty-1 serving as an appropriate source of TYLCV resistance, only Ty-1, Ty-2, and Ty-3 displayed substantial levels of opposition in a few strains. It has been possible to clone three TYLCV opposition genes (Ty-1/Ty-3, Ty-2, and ty-5) that target three antiviral safety mechanisms. However, it significantly impacts obtaining permanent resistance to TYLCV, trying to maintain opposition whenever possible, and spreading opposition globally. Utilizing novel methods, such as using resistance genes and identifying new resistance resources, protects against TYLCV in tomato production. To facilitate the breeders make an informed decision and testing methods for TYLCV blockage, this study highlights the portrayal of typical obstruction genes, common opposition sources, and subatomic indicators. The main goal is to provide a fictitious starting point for the identification and application of resistance genes as well as the maturation of tomato varieties that are TYLCV-resistant.
Collapse
Affiliation(s)
- Ahmed H. El-Sappah
- Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, Sichuan, China
- Genetics Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Shiming Qi
- College of Agriculture and Ecological Engineering, Hexi University, Zhangye, China
| | - Salma A. Soaud
- Genetics Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Qiulan Huang
- Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, Sichuan, China
| | - Alaa M. Saleh
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | | | - Lingyun Wan
- Key Laboratory of Guangxi for High-quality Formation and Utilization of Dao-di Herbs, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Guo-ting Cheng
- Shaanxi Key Laboratory of Chinese Jujube, College of Life Science, Yan’an University, Yan’an, China
| | - Jingyi Liu
- College of Horticulture, Northwest A&F University, Yangling, China
| | - Muhammad Ihtisham
- Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, Sichuan, China
| | - Zarqa Noor
- School of Chemical Engineering Beijing Institute of Technology, Beijing, China
| | - Reyazul Rouf Mir
- Division of Genetics and Plant Breeding, Faculty of Agriculture (FoA), SKUAST–Kashmir, Sopore, India
| | - Xin Zhao
- Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, Sichuan, China
| | - Kuan Yan
- Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, Sichuan, China
| | - Manzar Abbas
- Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, Sichuan, China
| | - Jia Li
- Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, Sichuan, China
| |
Collapse
|
43
|
Zhao N, Yuan R, Usman B, Qin J, Yang J, Peng L, Mackon E, Liu F, Qin B, Li R. Detection of QTLs Regulating Six Agronomic Traits of Rice Based on Chromosome Segment Substitution Lines of Common Wild Rice ( Oryza rufipogon Griff.) and Mapping of qPH1.1 and qLMC6.1. Biomolecules 2022; 12:biom12121850. [PMID: 36551278 PMCID: PMC9775987 DOI: 10.3390/biom12121850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/06/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Wild rice is a primary source of genes that can be utilized to generate rice cultivars with advantageous traits. Chromosome segment substitution lines (CSSLs) are consisting of a set of consecutive and overlapping donor chromosome segments in a recipient's genetic background. CSSLs are an ideal genetic population for mapping quantitative traits loci (QTLs). In this study, 59 CSSLs from the common wild rice (Oryza rufipogon Griff.) accession DP15 under the indica rice cultivar (O. sativa L. ssp. indica) variety 93-11 background were constructed through multiple backcrosses and marker-assisted selection (MAS). Through high-throughput whole genome re-sequencing (WGRS) of parental lines, 12,565 mapped InDels were identified and designed for polymorphic molecular markers. The 59 CSSLs library covered 91.72% of the genome of common wild rice accession DP15. The DP15-CSSLs displayed variation in six economic traits including grain length (GL), grain width (GW), thousand-grain weight (TGW), grain length-width ratio (GLWR), plant height (PH), and leaf margin color (LMC), which were finally attributed to 22 QTLs. A homozygous CSSL line and a purple leave margin CSSL line were selected to construct two secondary genetic populations for the QTLs mapping. Thus, the PH-controlling QTL qPH1.1 was mapped to a region of 4.31-Mb on chromosome 1, and the LMC-controlling QTL qLMC6.1 was mapped to a region of 370-kb on chromosome 6. Taken together, these identified novel QTLs/genes from common wild rice can potentially promote theoretical knowledge and genetic applications to rice breeders worldwide.
Collapse
Affiliation(s)
- Neng Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Ruizhi Yuan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Babar Usman
- Graduate School of Green-Bio Science and Crop Biotech Institute, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Jiaming Qin
- Maize Research Institute, Guangxi Academy of Agricultural Science, Nanning 530007, China
| | - Jinlian Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Liyun Peng
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning 530005, China
| | - Enerand Mackon
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning 530005, China
| | - Fang Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Baoxiang Qin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Rongbai Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning 530004, China
- Correspondence:
| |
Collapse
|
44
|
Chen J, Huang Y, Liu X, Chen G, Liu L, Cheng Z, Song W, Han L, Wang S, Wang L, Li M, Zhang X, Zhao J. CsIAGLU Regulates the Angle of Leaf Petiole by Affecting Endogenous Content of Auxin in Cucumber ( Cucumis sativus L.). Genes (Basel) 2022; 13:genes13122216. [PMID: 36553483 PMCID: PMC9777852 DOI: 10.3390/genes13122216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
The leaf angle is an important factor determining plant shoot architecture that may boost crop yield by increasing photosynthetic efficiency and facilitating high-density planting. Auxin is an important phytohormone involved in leaf angle regulation. Here, we identified two Single-Nucleotide Polymorphisms (SNPs) in the Indoleacetic Acid (IAA) glucosyltransferase gene CsIAGLU in 80 re-sequenced cucumber lines, of which the CsIAGLU717G,1234T is the dominant allele associated with a small leaf pedicle angle (LPA), whereas CsIAGLU717C,1234A is linked with a large LPA. CsIAGLU was highly expressed in leaves and petioles. In natural cucumber populations, the expression of CsIAGLU was negatively correlated with the LPA. The mutation of CsIAGLU induced by the CRISPR-Cas9 system resulted in elevated free IAA levels and enlarged cell expansion on the adaxial side of the petiole base, thus producing a greater LPA. Consistently, exogenous IAA treatment led to increased LPA and cell size. Therefore, our findings suggest that CsIAGLU functions as a negative regulator of LPA development via auxin-mediated cell expansion in cucumber, providing a valuable strategy for cucumber breeding with small LPAs.
Collapse
|
45
|
Qiao J, Zhang Y, Han S, Chang S, Gao Z, Qi Y, Qian Q. OsARF4 regulates leaf inclination via auxin and brassinosteroid pathways in rice. FRONTIERS IN PLANT SCIENCE 2022; 13:979033. [PMID: 36247537 PMCID: PMC9561258 DOI: 10.3389/fpls.2022.979033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 08/29/2022] [Indexed: 06/16/2023]
Abstract
Leaf inclination is a vital agronomic trait and is important for plant architecture that affects photosynthetic efficiency and grain yield. To understand the molecular mechanisms underlying regulation of leaf inclination, we constructed an auxin response factor (arf) rice mutant-osarf4-showing increased leaf inclination using CRISPR/Cas9 gene editing technology. OsARF4 encodes a nuclear protein that is expressed in the lamina joint (LJ) at different developmental stages in rice. Histological analysis indicated that an increase in cell differentiation on the adaxial side resulted in increased leaf inclination in the osarf4 mutants; however, OsARF4-overexpressing lines showed a decrease in leaf inclination, resulting in erect leaves. Additionally, a decrease in the content and distribution of indole-3-acetic acid (IAA) in osarf4 mutant led to a greater leaf inclination, whereas the OsARF4-overexpressing lines showed the opposite phenotype with increased IAA content. RNA-sequencing analysis revealed that the expression of genes related to brassinosteroid (BR) biosynthesis and response was different in the mutants and overexpressing lines, suggesting that OsARF4 participates in the BR signaling pathway. Moreover, BR sensitivity assay revealed that OsARF4-overexpressing lines were more sensitive to exogenous BR treatment than the mutants. In conclusion, OsARF4, a transcription factor in auxin signaling, participates in leaf inclination regulation and links auxin and BR signaling pathways. Our results provide a novel insight into l leaf inclination regulation, and have significant implications for improving rice architecture and grain yield.
Collapse
Affiliation(s)
- Jiyue Qiao
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, China
| | - Yanjun Zhang
- Key Laboratory of Herbage and Endemic Crop Biology of Ministry of Education, Inner Mongolia Key Laboratory of Herbage and Endemic Crop Biotechnology, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - ShaqiLa Han
- Key Laboratory of Herbage and Endemic Crop Biology of Ministry of Education, Inner Mongolia Key Laboratory of Herbage and Endemic Crop Biotechnology, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Senqiu Chang
- Key Laboratory of Herbage and Endemic Crop Biology of Ministry of Education, Inner Mongolia Key Laboratory of Herbage and Endemic Crop Biotechnology, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Zhenyu Gao
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Yanhua Qi
- Key Laboratory of Herbage and Endemic Crop Biology of Ministry of Education, Inner Mongolia Key Laboratory of Herbage and Endemic Crop Biotechnology, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Qian Qian
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
46
|
Zhao J, Ren B, Zhao B, Liu P, Zhang J. Yield of summer maize hybrids with different growth duration determined by light and temperature resource use efficiency from silking to physiological maturity stage. FRONTIERS IN PLANT SCIENCE 2022; 13:992311. [PMID: 36247586 PMCID: PMC9557109 DOI: 10.3389/fpls.2022.992311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/05/2022] [Indexed: 06/16/2023]
Abstract
In order to explore the physiological mechanism of different yield of summer maize (Zea mays L.) hybrids with different growth duration, a field experiment was conducted to study the growth stage, leaf photosynthetic characteristics, dry matter accumulation (DMA), transport and distribution characteristics and yield of the early maturity hybrid Denghai 518 (DH518) and the mid-late maturity hybrid Denghai 605 (DH605) from 2017 to 2021. The results showed that the yield of DH605 was significantly higher than that of DH518. The growth period of DH518 was 7-10 days shorter and the days of the growth stage of the sowing-silking stage (R1) were 5-6 days shorter compared to that of DH605. The contribution to grain dry matter by leaf and stalk dry matter remobilization (DMRC) of DH518 was significantly higher than that of DH605. There was a significant negative correlation between pre-silking growth days and harvest index (HI). The 13C distribution to grains of DH518 was significantly higher than that of DH605, and the HI and the corresponding contribution of HI to yield was also higher than that of DH605. The light and temperature resource use efficiency from silking to physiological maturity stage of DH605 was significantly higher than that of DH518. The yield per GDD of DH605 increased by 7.25% than that of DH518. At post-silking, the duration of higher leaf area index (DLAI) (>56 days) and active photosynthesis duration (APD) (>50 days) of DH605 were longer compared with that of DH518, and the average plant growth rate was 7.15% higher than that of DH518, which significantly increased the DMA of DH605. Therefore, the significant reduction of DH518 yield compared with DH605 was not due to the shortening of the growth stage of sowing-R1, but the lower light and temperature resource use efficiency from silking to physiological maturity stage.
Collapse
|
47
|
Zhang Y, Han E, Peng Y, Wang Y, Wang Y, Geng Z, Xu Y, Geng H, Qian Y, Ma S. Rice co-expression network analysis identifies gene modules associated with agronomic traits. PLANT PHYSIOLOGY 2022; 190:1526-1542. [PMID: 35866684 PMCID: PMC9516743 DOI: 10.1093/plphys/kiac339] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
Abstract
Identifying trait-associated genes is critical for rice (Oryza sativa) improvement, which usually relies on map-based cloning, quantitative trait locus analysis, or genome-wide association studies. Here we show that trait-associated genes tend to form modules within rice gene co-expression networks, a feature that can be exploited to discover additional trait-associated genes using reverse genetics. We constructed a rice gene co-expression network based on the graphical Gaussian model using 8,456 RNA-seq transcriptomes, which assembled into 1,286 gene co-expression modules functioning in diverse pathways. A number of the modules were enriched with genes associated with agronomic traits, such as grain size, grain number, tiller number, grain quality, leaf angle, stem strength, and anthocyanin content, and these modules are considered to be trait-associated gene modules. These trait-associated gene modules can be used to dissect the genetic basis of rice agronomic traits and to facilitate the identification of trait genes. As an example, we identified a candidate gene, OCTOPUS-LIKE 1 (OsOPL1), a homolog of the Arabidopsis (Arabidopsis thaliana) OCTOPUS gene, from a grain size module and verified it as a regulator of grain size via functional studies. Thus, our network represents a valuable resource for studying trait-associated genes in rice.
Collapse
Affiliation(s)
- Yu Zhang
- MOE Key Laboratory for Cellular Dynamics, School of Life Sciences, University of Science and Technology of China, Innovation Academy for Seed Design, Chinese Academy of Sciences, Hefei, China
| | - Ershang Han
- MOE Key Laboratory for Cellular Dynamics, School of Life Sciences, University of Science and Technology of China, Innovation Academy for Seed Design, Chinese Academy of Sciences, Hefei, China
| | - Yuming Peng
- MOE Key Laboratory for Cellular Dynamics, School of Life Sciences, University of Science and Technology of China, Innovation Academy for Seed Design, Chinese Academy of Sciences, Hefei, China
| | - Yuzhou Wang
- MOE Key Laboratory for Cellular Dynamics, School of Life Sciences, University of Science and Technology of China, Innovation Academy for Seed Design, Chinese Academy of Sciences, Hefei, China
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yifan Wang
- MOE Key Laboratory for Cellular Dynamics, School of Life Sciences, University of Science and Technology of China, Innovation Academy for Seed Design, Chinese Academy of Sciences, Hefei, China
| | - Zhenxing Geng
- MOE Key Laboratory for Cellular Dynamics, School of Life Sciences, University of Science and Technology of China, Innovation Academy for Seed Design, Chinese Academy of Sciences, Hefei, China
| | - Yupu Xu
- MOE Key Laboratory for Cellular Dynamics, School of Life Sciences, University of Science and Technology of China, Innovation Academy for Seed Design, Chinese Academy of Sciences, Hefei, China
| | - Haiying Geng
- MOE Key Laboratory for Cellular Dynamics, School of Life Sciences, University of Science and Technology of China, Innovation Academy for Seed Design, Chinese Academy of Sciences, Hefei, China
| | | | | |
Collapse
|
48
|
Wu C, Cui K, Fahad S. Heat Stress Decreases Rice Grain Weight: Evidence and Physiological Mechanisms of Heat Effects Prior to Flowering. Int J Mol Sci 2022; 23:10922. [PMID: 36142833 PMCID: PMC9504709 DOI: 10.3390/ijms231810922] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/02/2022] [Accepted: 09/15/2022] [Indexed: 11/16/2022] Open
Abstract
Heat stress during the preflowering panicle initiation stage seriously decreases rice grain weight in an invisible way and has not been given enough attention. The current review aims to (i) specify the heat effects on rice grain weight during the panicle initiation stage compared with the most important grain-filling stage; and (ii) discuss the physiological mechanisms of the decreased rice grain weight induced by heat during panicle initiation in terms of assimilate supply and phytohormone regulation, which are key physiological processes directly regulating rice grain weight. We emphasize that the effect of heat during the panicle initiation stage on rice grain weight is more serious than that during the grain-filling stage. Heat stress during the panicle initiation stage induces alterations in endogenous phytohormones, leading to the inhibition of the photosynthesis of functional leaves (source) and the formation of vascular bundles (flow), thus reducing the accumulation and transport of nonstructural carbohydrates and the growth of lemmata and paleae. The disruptions in the "flow" and restrictions in the preanthesis "source" tissue reduce grain size directly and decrease grain plumpness indirectly, resulting in a reduction in the final grain weight, which could be the direct physiological causes of the lower rice grain weight induced by heat during the panicle initiation stage. We highlight the seriousness of preflowering heat stress on rice grain weight, which can be regarded as an invisible disaster. The physiological mechanisms underlying the lower grain weight induced by heat during panicle initiation show a certain novelty because they distinguish this stage from the grain-filling stage. Additionally, a number of genes that control grain size through phytohormones have been summarized, but their functions have not yet been fully tested under heat conditions, except for the Grain Size and Abiotic stress tolerance 1 (GSA1) and BRASSINOSTEROID INSENSITIVE1 (OsBRI1) genes, which are reported to respond rapidly to heat stress. The mechanisms of reduced rice grain weight induced by heat during the panicle initiation stage should be studied in more depth in terms of molecular pathways.
Collapse
Affiliation(s)
- Chao Wu
- Guangxi Key Laboratory of Plant Functional Phytochemicals and Sustainable Utilization, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin 541006, China
| | - Kehui Cui
- National Key Laboratory of Crop Genetic Improvement, MOA Key Laboratory of Crop Ecophysiology and Farming Systems in the Middle Reaches of the Yangtze River, Huazhong Agricultural University, Wuhan 430070, China
| | - Shah Fahad
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, Haikou 570228, China
| |
Collapse
|
49
|
Liu C, Ma T, Yuan D, Zhou Y, Long Y, Li Z, Dong Z, Duan M, Yu D, Jing Y, Bai X, Wang Y, Hou Q, Liu S, Zhang J, Chen S, Li D, Liu X, Li Z, Wang W, Li J, Wei X, Ma B, Wan X. The OsEIL1-OsERF115-target gene regulatory module controls grain size and weight in rice. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:1470-1486. [PMID: 35403801 PMCID: PMC9342608 DOI: 10.1111/pbi.13825] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 04/03/2022] [Accepted: 04/07/2022] [Indexed: 06/14/2023]
Abstract
Grain size is one of the essential determinants of rice yield. Our previous studies revealed that ethylene plays an important role in grain-size control; however, the precise mechanism remains to be determined. Here, we report that the ethylene response factor OsERF115 functions as a key downstream regulator for ethylene-mediated grain development. OsERF115 encodes an AP2/ERF-type transcriptional factor that is specifically expressed in young spikelets and developing caryopses. Overexpression of OsERF115 significantly increases grain length, width, thickness and weight by promoting longitudinal elongation and transverse division of spikelet hull cells, as well as enhancing grain-filling activity, whereas its knockout mutations lead to the opposite effects, suggesting that OsERF115 positively regulates grain size and weight. OsERF115 transcription is strongly induced by ethylene, and OsEIL1 directly binds to the promoter to activate its expression. OsERF115 acts as a transcriptional repressor to directly or indirectly modulate a set of grain-size genes during spikelet growth and endosperm development. Importantly, haplotype analysis reveals that the SNP variations in the EIN3-binding sites of OsERF115 promoter are significantly associated with the OsERF115 expression levels and grain weight, suggesting that natural variations in the OsERF115 promoter contribute to grain-size diversity. In addition, the OsERF115 orthologues are identified only in grass species, implying a conserved and unique role in the grain development of cereal crops. Our results provide insights into the molecular mechanism of ethylene-mediated grain-size control and a potential strategy based on the OsEIL1-OsERF115-target gene regulatory module for genetic improvement of rice yield.
Collapse
Affiliation(s)
- Chang Liu
- Shunde Graduate SchoolResearch Center of Biology and AgricultureZhongzhi International Institute of Agricultural BiosciencesUniversity of Science and Technology BeijingBeijingChina
- Beijing Engineering Laboratory of Main Crop Bio‐Tech BreedingBeijing International Science and Technology Cooperation Base of Bio‐Tech BreedingBeijing Solidwill Sci‐Tech Co. Ltd.BeijingChina
| | - Tian Ma
- Guangdong Laboratory for Lingnan Modern AgricultureCollege of AgricultureSouth China Agricultural UniversityGuangzhouChina
| | - Dingyang Yuan
- State Key Laboratory of Hybrid RiceHunan Hybrid Rice Research CentreChangshaChina
- College of AgronomyHunan Agricultural UniversityChangshaChina
| | - Yang Zhou
- State Key Laboratory of Plant GenomicsInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
| | - Yan Long
- Shunde Graduate SchoolResearch Center of Biology and AgricultureZhongzhi International Institute of Agricultural BiosciencesUniversity of Science and Technology BeijingBeijingChina
- Beijing Engineering Laboratory of Main Crop Bio‐Tech BreedingBeijing International Science and Technology Cooperation Base of Bio‐Tech BreedingBeijing Solidwill Sci‐Tech Co. Ltd.BeijingChina
| | - Ziwen Li
- Shunde Graduate SchoolResearch Center of Biology and AgricultureZhongzhi International Institute of Agricultural BiosciencesUniversity of Science and Technology BeijingBeijingChina
- Beijing Engineering Laboratory of Main Crop Bio‐Tech BreedingBeijing International Science and Technology Cooperation Base of Bio‐Tech BreedingBeijing Solidwill Sci‐Tech Co. Ltd.BeijingChina
| | - Zhenying Dong
- Shunde Graduate SchoolResearch Center of Biology and AgricultureZhongzhi International Institute of Agricultural BiosciencesUniversity of Science and Technology BeijingBeijingChina
- Beijing Engineering Laboratory of Main Crop Bio‐Tech BreedingBeijing International Science and Technology Cooperation Base of Bio‐Tech BreedingBeijing Solidwill Sci‐Tech Co. Ltd.BeijingChina
| | - Meijuan Duan
- College of AgronomyHunan Agricultural UniversityChangshaChina
| | - Dong Yu
- College of AgronomyHunan Agricultural UniversityChangshaChina
| | - Yizhi Jing
- Shunde Graduate SchoolResearch Center of Biology and AgricultureZhongzhi International Institute of Agricultural BiosciencesUniversity of Science and Technology BeijingBeijingChina
| | - Xiaoyue Bai
- Shunde Graduate SchoolResearch Center of Biology and AgricultureZhongzhi International Institute of Agricultural BiosciencesUniversity of Science and Technology BeijingBeijingChina
| | - Yanbo Wang
- Shunde Graduate SchoolResearch Center of Biology and AgricultureZhongzhi International Institute of Agricultural BiosciencesUniversity of Science and Technology BeijingBeijingChina
| | - Quancan Hou
- Shunde Graduate SchoolResearch Center of Biology and AgricultureZhongzhi International Institute of Agricultural BiosciencesUniversity of Science and Technology BeijingBeijingChina
- Beijing Engineering Laboratory of Main Crop Bio‐Tech BreedingBeijing International Science and Technology Cooperation Base of Bio‐Tech BreedingBeijing Solidwill Sci‐Tech Co. Ltd.BeijingChina
| | - Shuangshuang Liu
- Shunde Graduate SchoolResearch Center of Biology and AgricultureZhongzhi International Institute of Agricultural BiosciencesUniversity of Science and Technology BeijingBeijingChina
- Beijing Engineering Laboratory of Main Crop Bio‐Tech BreedingBeijing International Science and Technology Cooperation Base of Bio‐Tech BreedingBeijing Solidwill Sci‐Tech Co. Ltd.BeijingChina
| | - Jin‐Song Zhang
- State Key Laboratory of Plant GenomicsInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
| | - Shou‐Yi Chen
- State Key Laboratory of Plant GenomicsInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
| | - Dayong Li
- National Engineering Research Center for VegetablesBeijing Vegetable Research CenterBeijing Academy of Agriculture and Forestry ScienceBeijingChina
| | - Xue Liu
- National Engineering Research Center for VegetablesBeijing Vegetable Research CenterBeijing Academy of Agriculture and Forestry ScienceBeijingChina
| | - Zhikang Li
- Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Wensheng Wang
- Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Jinping Li
- Beijing Engineering Laboratory of Main Crop Bio‐Tech BreedingBeijing International Science and Technology Cooperation Base of Bio‐Tech BreedingBeijing Solidwill Sci‐Tech Co. Ltd.BeijingChina
| | - Xun Wei
- Shunde Graduate SchoolResearch Center of Biology and AgricultureZhongzhi International Institute of Agricultural BiosciencesUniversity of Science and Technology BeijingBeijingChina
- Beijing Engineering Laboratory of Main Crop Bio‐Tech BreedingBeijing International Science and Technology Cooperation Base of Bio‐Tech BreedingBeijing Solidwill Sci‐Tech Co. Ltd.BeijingChina
| | - Biao Ma
- Guangdong Laboratory for Lingnan Modern AgricultureCollege of AgricultureSouth China Agricultural UniversityGuangzhouChina
| | - Xiangyuan Wan
- Shunde Graduate SchoolResearch Center of Biology and AgricultureZhongzhi International Institute of Agricultural BiosciencesUniversity of Science and Technology BeijingBeijingChina
- Beijing Engineering Laboratory of Main Crop Bio‐Tech BreedingBeijing International Science and Technology Cooperation Base of Bio‐Tech BreedingBeijing Solidwill Sci‐Tech Co. Ltd.BeijingChina
| |
Collapse
|
50
|
Wu Q, Liu Y, Xie Z, Yu B, Sun Y, Huang J. OsNAC016 regulates plant architecture and drought tolerance by interacting with the kinases GSK2 and SAPK8. PLANT PHYSIOLOGY 2022; 189:1296-1313. [PMID: 35333328 PMCID: PMC9237679 DOI: 10.1093/plphys/kiac146] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 03/04/2022] [Indexed: 05/04/2023]
Abstract
Ideal plant architecture and drought tolerance are important determinants of yield potential in rice (Oryza sativa). Here, we found that OsNAC016, a rice NAC (NAM, ATAF, and CUC) transcription factor, functions as a regulator in the crosslink between brassinosteroid (BR)-mediated plant architecture and abscisic acid (ABA)-regulated drought responses. The loss-of-function mutant osnac016 exhibited erect leaves and shortened internodes, but OsNAC016-overexpressing plants had opposite phenotypes. Further investigation revealed that OsNAC016 regulated the expression of the BR biosynthesis gene D2 by binding to its promoter. Moreover, OsNAC016 interacted with and was phosphorylated by GSK3/SHAGGY-LIKE KINASE2 (GSK2), a negative regulator in the BR pathway. Meanwhile, the mutant osnac016 had improved drought stress tolerance, supported by a decreased water loss rate and enhanced stomatal closure in response to exogenous ABA, but OsNAC016-overexpressing plants showed attenuated drought tolerance and reduced ABA sensitivity. Further, OSMOTIC STRESS/ABA-ACTIVATED PROTEIN KINASE8 (SAPK8) phosphorylated OsNAC016 and reduced its stability. The ubiquitin/26S proteasome system is an important degradation pathway of OsNAC016 via the interaction with PLANT U-BOX PROTEIN43 (OsPUB43) that mediates the ubiquitination of OsNAC016. Notably, RNA-sequencing analysis revealed global roles of OsNAC016 in promoting BR-mediated gene expression and repressing ABA-dependent drought-responsive gene expression, which was confirmed by chromatin immunoprecipitation quantitative PCR analysis. Our findings establish that OsNAC016 is positively involved in BR-regulated rice architecture, negatively modulates ABA-mediated drought tolerance, and is regulated by GSK2, SAPK8, and OsPUB43 through posttranslational modification. Our data provide insights into how plants balance growth and survival by coordinately regulating the growth-promoting signaling pathway and response under abiotic stresses.
Collapse
Affiliation(s)
- Qi Wu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, China
| | - Yingfan Liu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, China
| | - Zizhao Xie
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, China
| | - Bo Yu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, China
| | - Ying Sun
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, China
| | | |
Collapse
|