1
|
Maravilha RM, Fernandes T, Barros PM, Leitão ST, Rubiales D, Vaz Patto MC, Santos C. A dual transcriptome analysis reveals accession-specific resistance responses in Lathyrus sativus against Erysiphe pisi. FRONTIERS IN PLANT SCIENCE 2025; 16:1542926. [PMID: 40110352 PMCID: PMC11921622 DOI: 10.3389/fpls.2025.1542926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 02/12/2025] [Indexed: 03/22/2025]
Abstract
Lathyrus sativus (grass pea) is a valuable crop for sustainable agriculture, offering dietary benefits and desirable agronomic traits. However, its yield stability is limited by diseases such as powdery mildew caused by Erysiphe pisi. Increasing fungal resistance to pesticides and environmental concerns demand the development of resistant crop varieties. To identify key defense mechanisms and effector genes involved in the Lathyrus sativus-Erysiphe pisi interaction we analyzed four L. sativus accessions exhibiting varying resistance to E. pisi (resistant, partially resistant, partially susceptible, and susceptible) using a dual RNA-Seq experiment across different time points. We observed a host biphasic response, characterized by an initial burst of gene expression, followed by a quiescent phase, and a subsequent wave of intense gene expression. Common L. sativus defense mechanisms included antifungal protein expression, cell wall reinforcement, and reactive oxygen species-mediated defense. These defenses involved respectively Bowman-Birk type proteinase inhibitors, peptidyl-prolyl cis-trans isomerases and mannitol dehydrogenases. The resistant accession specifically activated early reinforcement of structural barriers associated with lignin biosynthesis and the phenylpropanoid pathway, along with sustained chemical defenses (e.g. eugenol synthase 1), epigenetic regulation, and oxidative stress responses thorough peroxidases and heat shock proteins. The partial resistant accession exhibited a front-loaded defense response at early infection stages. Contrastingly, the partially susceptible accession exhibited a weaker baseline defense, with a slower and less robust response targeting pathogen infection. We identified potential E. pisi effectors, including genes involved in cell wall hydrolysis (e.g. mannosidase DCW1), nutrient acquisition (e.g. secreted alpha-glucosidase), and virulence (e.g. SnodProt1), with a higher diversity of effectors identified in the susceptible accession. In conclusion, this study identifies novel targets such as NLRs and effectors, antifungal proteins and genes related to cell wall reinforcement, within the complex Lathyrus sativus-Erysiphe pisi interaction to support future breeding programs aimed at enhancing resistance to E. pisi in L. sativus and related species.
Collapse
Affiliation(s)
- Rita M Maravilha
- Genetics and Genomics of Plant Complex Traits, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Telma Fernandes
- Genetics and Genomics of Plant Complex Traits, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Pedro M Barros
- Genetics and Genomics of Plant Complex Traits, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Susana T Leitão
- Genetics and Genomics of Plant Complex Traits, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Diego Rubiales
- Resistlab, Instituto de Agricultura Sostenible, Consejo Superior de Investigaciones Científicas, Córdoba, Spain
| | - Maria Carlota Vaz Patto
- Genetics and Genomics of Plant Complex Traits, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Carmen Santos
- Genetics and Genomics of Plant Complex Traits, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| |
Collapse
|
2
|
Tian H, Xu L, Li X, Zhang Y. Salicylic acid: The roles in plant immunity and crosstalk with other hormones. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2025; 67:773-785. [PMID: 39714102 PMCID: PMC11951402 DOI: 10.1111/jipb.13820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 11/26/2024] [Indexed: 12/24/2024]
Abstract
Land plants use diverse hormones to coordinate their growth, development and responses against biotic and abiotic stresses. Salicylic acid (SA) is an essential hormone in plant immunity, with its levels and signaling tightly regulated to ensure a balanced immune output. Over the past three decades, molecular genetic analyses performed primarily in Arabidopsis have elucidated the biosynthesis and signal transduction pathways of key plant hormones, including abscisic acid, jasmonic acid, ethylene, auxin, cytokinin, brassinosteroids, and gibberellin. Crosstalk between different hormones has become a major focus in plant biology with the goal of obtaining a full picture of the plant hormone signaling network. This review highlights the roles of SA in plant immunity and summarizes our current understanding of the pairwise interactions of SA with other major plant hormones. The complexity of these interactions is discussed, with the hope of stimulating research to address existing knowledge gaps in hormone crosstalk, particularly in the context of balancing plant growth and defense.
Collapse
Affiliation(s)
- Hainan Tian
- Key Laboratory of Bio‐resource and Eco‐environment of Ministry of EducationThe College of Life SciencesSichuan UniversityChengdu610064SichuanChina
| | - Lu Xu
- Department of BotanyUniversity of British ColumbiaVancouverV6T 1Z4BCCanada
| | - Xin Li
- Department of BotanyUniversity of British ColumbiaVancouverV6T 1Z4BCCanada
- Michael Smith LaboratoriesUniversity of British ColumbiaVancouverV6T 1Z4BCCanada
| | - Yuelin Zhang
- Key Laboratory of Bio‐resource and Eco‐environment of Ministry of EducationThe College of Life SciencesSichuan UniversityChengdu610064SichuanChina
| |
Collapse
|
3
|
Foret J, Kim JG, Sattely ES, Mudgett MB. Transcriptome analysis reveals role of transcription factor WRKY70 in early N-hydroxy-pipecolic acid signaling. PLANT PHYSIOLOGY 2024; 197:kiae544. [PMID: 39404105 DOI: 10.1093/plphys/kiae544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 07/31/2024] [Indexed: 12/24/2024]
Abstract
N-Hydroxy-pipecolic acid (NHP) is a mobile metabolite essential for inducing and amplifying systemic acquired resistance (SAR) following a pathogen attack. Early phases of NHP signaling leading to immunity have remained elusive. Here, we report the early transcriptional changes mediated by NHP and the role salicylic acid (SA) plays during this response in Arabidopsis (Arabidopsis thaliana). We show that distinct waves of expression within minutes to hours of NHP treatment include increased expression of WRKY transcription factor genes as the primary transcriptional response, followed by the induction of WRKY-regulated defense genes as the secondary response. Most genes induced by NHP within minutes were SA dependent, whereas those induced within hours were SA independent. These data suggest that NHP induces the primary transcriptional response under basal levels of SA and that new SA biosynthesis via ISOCHORISMATE SYNTHASE 1/SA-INDUCTION DEFICIENT 2 is dispensable for inducing the secondary transcriptional response. We demonstrate that WRKY70 is required for the induced expression of a set of genes defining some of the secondary transcriptional response, SAR protection, and NHP-dependent enhancement of reactive oxygen species production in response to flagellin treatment. Our study highlights the key genes and pathways defining early NHP responses and the role of WRKY70 in regulating NHP-dependent transcription.
Collapse
Affiliation(s)
- Jessica Foret
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Jung-Gun Kim
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Elizabeth S Sattely
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | | |
Collapse
|
4
|
Cale NL, Walker PL, Sankar S, Robertson SM, Wilkins O, Belmonte MF. Global mRNA profiling reveals the effect of boron as a crop protection tool against Sclerotinia sclerotiorum. AOB PLANTS 2024; 16:plae056. [PMID: 39529684 PMCID: PMC11551614 DOI: 10.1093/aobpla/plae056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 09/25/2024] [Indexed: 11/16/2024]
Abstract
Sclerotinia sclerotiorum, the causal agent of white mould, is a necrotrophic fungal pathogen responsible for extensive crop loss. Current control options rely heavily on the application of chemical fungicides that are becoming less effective and may lead to the development of fungal resistance. In the current study, we used a foliar application of boron to protect Brassica napus (canola) from S. sclerotiorum infection using whole-plant infection assays. Application of boron to aerial surfaces of the canola plant reduced the number of S. sclerotiorum-forming lesions by 87 % compared to an untreated control. Dual RNA sequencing revealed the effect of boron on both the host plant and fungal pathogen during the infection process. Differential gene expression analysis and gene ontology term enrichment further revealed the mode of action of a foliar boron spray at the mRNA level. A single foliar application of boron primed the plant defence response through the induction of genes associated with systemic acquired resistance while an application of boron followed by S. sclerotiorum infection-induced genes associated with defence response-related cellular signalling cascades. Additionally, in S. sclerotiorum inoculated on boron-treated B. napus, we uncovered gene activity in response to salicylic acid breakdown, consistent with salicylic acid-dependent systemic acquired resistance induction within the host plant. Taken together, this study demonstrates that a foliar application of boron results in priming of the B. napus plant defence response, likely through systemic acquired resistance, thereby contributing to increased tolerance to S. sclerotiorum infection.
Collapse
Affiliation(s)
- Natalie L Cale
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
| | - Philip L Walker
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, Morden, Manitoba, R6M 1Y5, Canada
| | - Sanjana Sankar
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
| | - Sean M Robertson
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
| | - Olivia Wilkins
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
| | - Mark F Belmonte
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
| |
Collapse
|
5
|
Sato Y, Weng Y, Shimazaki T, Yoshida K, Nihei KI, Okamoto M. Temporal dynamics of N-hydroxypipecolic acid and salicylic acid pathways in the disease response to powdery mildew in wheat. Biochem Biophys Res Commun 2024; 734:150624. [PMID: 39226738 DOI: 10.1016/j.bbrc.2024.150624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 08/28/2024] [Indexed: 09/05/2024]
Abstract
Wheat (Triticum aestivum) is a major staple crop worldwide, and its yields are significantly threatened by wheat powdery mildew (Blumeria graminis f. sp. tritici). Enhancing disease resistance in wheat is crucial for meeting global food demand. This study investigated the disease response in wheat, focusing on the bioactive small molecules salicylic acid (SA), pipecolic acid (Pip), and N-hydroxypipecolic acid (NHP), to provide new insights for molecular breeding. We found that endogenous levels of SA, Pip, and NHP significantly increased in infected plants, with Pip and NHP levels rising earlier than those of SA. Notably, the rate of increase of NHP was substantially higher than that of SA. The gene expression levels of SARD1 and CBP60g, which are transcription factors for SA, Pip, and NHP biosynthesis, increased significantly during the early stages of infection. We also found that during the later stages of infection, the expression of ALD1, SARD4, and FMO1, which encode enzymes for Pip and NHP biosynthesis, dramatically increased. Additionally, ICS1, which encodes a key enzyme involved in SA biosynthesis, also showed increased expression during the later stages of infection. The temporal changes in ICS1 transcription closely mirrored the behavior of endogenous SA levels, suggesting that the ICS pathway is the primary route for SA biosynthesis in wheat. In conclusion, our results suggest that the early accumulation of Pip and NHP cooperates with SA in the disease response against wheat powdery mildew infection.
Collapse
Affiliation(s)
- Yuki Sato
- Center for Sustainable Resource Science (CSRS), RIKEN, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan; Graduate School of Regional Development and Creativity, Utsunomiya University, 350 Mine-machi, Utsunomiya, Tochigi 321-8505, Japan; Department of Applied Biological Chemistry, School of Agriculture, Utsunomiya University, 350 Mine-machi, Utsunomiya, Tochigi. 321-8505, Japan; Center for Bioscience Research and Education, Utsunomiya University, 350 Mine-machi, Utsunomiya, Tochigi 321-8505, Japan
| | - Yuanjie Weng
- Center for Sustainable Resource Science (CSRS), RIKEN, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan; Center for Bioscience Research and Education, Utsunomiya University, 350 Mine-machi, Utsunomiya, Tochigi 321-8505, Japan; United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo, 183-8509, Japan
| | - Taichi Shimazaki
- Graduate School of Regional Development and Creativity, Utsunomiya University, 350 Mine-machi, Utsunomiya, Tochigi 321-8505, Japan; Department of Applied Biological Chemistry, School of Agriculture, Utsunomiya University, 350 Mine-machi, Utsunomiya, Tochigi. 321-8505, Japan; Center for Bioscience Research and Education, Utsunomiya University, 350 Mine-machi, Utsunomiya, Tochigi 321-8505, Japan
| | - Kentaro Yoshida
- Graduate School of Agriculture, Kyoto University (Yoshida North Campus), Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Ken-Ichi Nihei
- Department of Applied Biological Chemistry, School of Agriculture, Utsunomiya University, 350 Mine-machi, Utsunomiya, Tochigi. 321-8505, Japan; United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo, 183-8509, Japan
| | - Masanori Okamoto
- Center for Sustainable Resource Science (CSRS), RIKEN, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan; Center for Bioscience Research and Education, Utsunomiya University, 350 Mine-machi, Utsunomiya, Tochigi 321-8505, Japan; Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama, Kanagawa 236-0027, Japan.
| |
Collapse
|
6
|
Sukaoun K, Tsuchiya T, Uchiyama H. Pathogen challenge in Arabidopsis cotyledons induces enhanced disease resistance at newly formed rosette leaves via sustained upregulation of WRKY70. Genes Cells 2024. [PMID: 39467643 DOI: 10.1111/gtc.13179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 10/21/2024] [Accepted: 10/22/2024] [Indexed: 10/30/2024]
Abstract
Pathogenic microorganisms often target seedlings shortly after germination. If plants exhibit resistance or resilience to pathogens, those exposed to pathogen challenge may grow further and form new unchallenged leaves. The purpose of this study was to examine disease resistance in the newly formed leaves of plants subjected to pathogen challenge. We used Arabidopsis thaliana and the oomycete pathogen Hyaloperonospora arabidopsidis (Hpa) as the model pathosystem. We found that Arabidopsis seedlings primarily challenged with the avirulent isolate Hpa exhibited enhanced disease resistance against the virulent isolate Hpa in newly formed rosette leaves (NFRLs). Our observations indicated that the transcript levels of the transcription factor gene WRKY70, which is essential for full resistance to the virulent isolate HpaNoco2, were elevated and maintained at high levels in the NFRLs. In contrast, the transcript levels of the salicylic acid marker gene PR1 and systemic acquired resistance-related genes did not exhibit sustained elevation. The maintenance of increased transcript levels of WRKY70 operated independently of non-expressor of pathogenesis-related gene 1. These findings suggest that prolonged upregulation of WRKY70 represents a defensive state synchronized with plant development to ensure survival against subsequent infections.
Collapse
Affiliation(s)
- Kanoknipa Sukaoun
- Applied Life Sciences, Graduate School of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa, Japan
| | - Tokuji Tsuchiya
- Applied Life Sciences, Graduate School of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa, Japan
| | - Hiroshi Uchiyama
- Applied Life Sciences, Graduate School of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa, Japan
| |
Collapse
|
7
|
Pale M, Pérez-Torres CA, Arenas-Huertero C, Villafán E, Sánchez-Rangel D, Ibarra-Laclette E. Genome-Wide Transcriptional Response of Avocado to Fusarium sp. Infection. PLANTS (BASEL, SWITZERLAND) 2024; 13:2886. [PMID: 39458832 PMCID: PMC11511450 DOI: 10.3390/plants13202886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/20/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024]
Abstract
The avocado crop is relevant for its economic importance and because of its unique evolutionary history. However, there is a lack of information regarding the molecular processes during the defense response against fungal pathogens. Therefore, using a genome-wide approach in this work, we investigated the transcriptional response of the Mexican horticultural race of avocado (Persea americana var. drymifolia), including miRNAs profile and their possible targets. For that, we established an avocado-Fusarium hydroponic pathosystem and studied the response for 21 days. To guarantee robustness in the analysis, first, we improved the avocado genome assembly available for this variety, resulting in 822.49 Mbp in length with 36,200 gene models. Then, using an RNA-seq approach, we identified 13,778 genes differentially expressed in response to the Fusarium infection. According to their expression profile across time, these genes can be clustered into six groups, each associated with specific biological processes. Regarding non-coding RNAs, 8 of the 57 mature miRNAs identified in the avocado genome are responsive to infection caused by Fusarium, and the analysis revealed a total of 569 target genes whose transcript could be post-transcriptionally regulated. This study represents the first research in avocados to comprehensively explore the role of miRNAs in orchestrating defense responses against Fusarium spp. Also, this work provides valuable data about the genes involved in the intricate response of the avocado during fungal infection.
Collapse
Affiliation(s)
- Michel Pale
- Red de Estudios Moleculares Avanzados (REMAV), Instituto de Ecología, A.C. (INECOL), Xalapa 91073, Veracruz, Mexico; (M.P.); (C.-A.P.-T.); (E.V.)
| | - Claudia-Anahí Pérez-Torres
- Red de Estudios Moleculares Avanzados (REMAV), Instituto de Ecología, A.C. (INECOL), Xalapa 91073, Veracruz, Mexico; (M.P.); (C.-A.P.-T.); (E.V.)
- Investigador por México-CONAHCYT en el Instituto de Ecología, A.C. (INECOL), Xalapa 91073, Veracruz, Mexico
| | - Catalina Arenas-Huertero
- Facultad de Ciencias, Universidad Autónoma de San Luis Potosí, San Luis Potosí 78295, San Luis Potosí, Mexico;
| | - Emanuel Villafán
- Red de Estudios Moleculares Avanzados (REMAV), Instituto de Ecología, A.C. (INECOL), Xalapa 91073, Veracruz, Mexico; (M.P.); (C.-A.P.-T.); (E.V.)
| | - Diana Sánchez-Rangel
- Red de Estudios Moleculares Avanzados (REMAV), Instituto de Ecología, A.C. (INECOL), Xalapa 91073, Veracruz, Mexico; (M.P.); (C.-A.P.-T.); (E.V.)
- Investigador por México-CONAHCYT en el Instituto de Ecología, A.C. (INECOL), Xalapa 91073, Veracruz, Mexico
| | - Enrique Ibarra-Laclette
- Red de Estudios Moleculares Avanzados (REMAV), Instituto de Ecología, A.C. (INECOL), Xalapa 91073, Veracruz, Mexico; (M.P.); (C.-A.P.-T.); (E.V.)
| |
Collapse
|
8
|
Hou Y, Gan J, Fan Z, Sun L, Garg V, Wang Y, Li S, Bao P, Cao B, Varshney RK, Zhao H. Haplotype-based pangenomes reveal genetic variations and climate adaptations in moso bamboo populations. Nat Commun 2024; 15:8085. [PMID: 39278956 PMCID: PMC11402969 DOI: 10.1038/s41467-024-52376-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 08/30/2024] [Indexed: 09/18/2024] Open
Abstract
Moso bamboo (Phyllostachys edulis), an ecologically and economically important forest species in East Asia, plays vital roles in carbon sequestration and climate change mitigation. However, intensifying climate change threatens moso bamboo survival. Here we generate high-quality haplotype-based pangenome assemblies for 16 representative moso bamboo accessions and integrated these assemblies with 427 previously resequenced accessions. Characterization of the haplotype-based pangenome reveals extensive genetic variation, predominantly between haplotypes rather than within accessions. Many genes with allele-specific expression patterns are implicated in climate responses. Integrating spatiotemporal climate data reveals more than 1050 variations associated with pivotal climate factors, including temperature and precipitation. Climate-associated variations enable the prediction of increased genetic risk across the northern and western regions of China under future emissions scenarios, underscoring the threats posed by rising temperatures. Our integrated haplotype-based pangenome elucidates moso bamboo's local climate adaptation mechanisms and provides critical genomic resources for addressing intensifying climate pressures on this essential bamboo. More broadly, this study demonstrates the power of long-read sequencing in dissecting adaptive traits in climate-sensitive species, advancing evolutionary knowledge to support conservation.
Collapse
Affiliation(s)
- Yinguang Hou
- Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Centre for Bamboo and Rattan, Beijing, 100102, China
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, Beijing, 100102, China
| | - Junwei Gan
- Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Centre for Bamboo and Rattan, Beijing, 100102, China
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, Beijing, 100102, China
| | - Zeyu Fan
- Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Centre for Bamboo and Rattan, Beijing, 100102, China
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, Beijing, 100102, China
| | - Lei Sun
- Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Centre for Bamboo and Rattan, Beijing, 100102, China
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, Beijing, 100102, China
| | - Vanika Garg
- Centre for Crop & Food Innovation, WA State Agricultural Biotechnology Centre, Food Futures Institute, Murdoch University, Murdoch, WA, 6150, Australia
| | - Yu Wang
- Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Centre for Bamboo and Rattan, Beijing, 100102, China
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, Beijing, 100102, China
| | - Shanying Li
- Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Centre for Bamboo and Rattan, Beijing, 100102, China
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, Beijing, 100102, China
| | - Pengfei Bao
- Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Centre for Bamboo and Rattan, Beijing, 100102, China
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, Beijing, 100102, China
| | - Bingchen Cao
- Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Centre for Bamboo and Rattan, Beijing, 100102, China
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, Beijing, 100102, China
| | - Rajeev K Varshney
- Centre for Crop & Food Innovation, WA State Agricultural Biotechnology Centre, Food Futures Institute, Murdoch University, Murdoch, WA, 6150, Australia
| | - Hansheng Zhao
- Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Centre for Bamboo and Rattan, Beijing, 100102, China.
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, Beijing, 100102, China.
| |
Collapse
|
9
|
Cao L, Karapetyan S, Yoo H, Chen T, Mwimba M, Zhang X, Dong X. H 2O 2 sulfenylates CHE, linking local infection to the establishment of systemic acquired resistance. Science 2024; 385:1211-1217. [PMID: 39265009 PMCID: PMC11586058 DOI: 10.1126/science.adj7249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 04/16/2024] [Accepted: 07/05/2024] [Indexed: 09/14/2024]
Abstract
In plants, a local infection can lead to systemic acquired resistance (SAR) through increased production of salicylic acid (SA). For many years, the identity of the mobile signal and its direct transduction mechanism for systemic SA synthesis in initiating SAR have been debated. We found that in Arabidopsis thaliana, after a local infection, the conserved cysteine residue of the transcription factor CCA1 HIKING EXPEDITION (CHE) undergoes sulfenylation in systemic tissues, which enhances its binding to the promoter of the SA-synthesis gene ISOCHORISMATE SYNTHASE1 (ICS1) and increases SA production. Furthermore, hydrogen peroxide (H2O2) produced through NADPH oxidases is the mobile signal that sulfenylates CHE in a concentration-dependent manner. Accumulation of SA and the previously reported signal molecules, such as N-hydroxypipecolic acid (NHP), then form a signal amplification loop to establish SAR.
Collapse
Affiliation(s)
- Lijun Cao
- Department of Biology, Box 90338, Duke University, Durham, NC 27708, USA
- Howard Hughes Medical Institute, Duke University, Durham, NC 27708, USA
| | - Sargis Karapetyan
- Department of Biology, Box 90338, Duke University, Durham, NC 27708, USA
- Howard Hughes Medical Institute, Duke University, Durham, NC 27708, USA
| | - Heejin Yoo
- Department of Biology, Box 90338, Duke University, Durham, NC 27708, USA
- Howard Hughes Medical Institute, Duke University, Durham, NC 27708, USA
| | - Tianyuan Chen
- Department of Biology, Box 90338, Duke University, Durham, NC 27708, USA
- Howard Hughes Medical Institute, Duke University, Durham, NC 27708, USA
| | - Musoki Mwimba
- Department of Biology, Box 90338, Duke University, Durham, NC 27708, USA
- Howard Hughes Medical Institute, Duke University, Durham, NC 27708, USA
| | - Xing Zhang
- Department of Biology, Box 90338, Duke University, Durham, NC 27708, USA
- Howard Hughes Medical Institute, Duke University, Durham, NC 27708, USA
| | - Xinnian Dong
- Department of Biology, Box 90338, Duke University, Durham, NC 27708, USA
- Howard Hughes Medical Institute, Duke University, Durham, NC 27708, USA
| |
Collapse
|
10
|
Singh P, St Clair JB, Lind BM, Cronn R, Wilhelmi NP, Feau N, Lu M, Vidakovic DO, Hamelin RC, Shaw DC, Aitken SN, Yeaman S. Genetic architecture of disease resistance and tolerance in Douglas-fir trees. THE NEW PHYTOLOGIST 2024; 243:705-719. [PMID: 38803110 DOI: 10.1111/nph.19797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 03/18/2024] [Indexed: 05/29/2024]
Abstract
Understanding the genetic basis of how plants defend against pathogens is important to monitor and maintain resilient tree populations. Swiss needle cast (SNC) and Rhabdocline needle cast (RNC) epidemics are responsible for major damage of forest ecosystems in North America. Here we investigate the genetic architecture of tolerance and resistance to needle cast diseases in Douglas-fir (Pseudotsuga menziesii) caused by two fungal pathogens: SNC caused by Nothophaeocryptopus gaeumannii, and RNC caused by Rhabdocline pseudotsugae. We performed case-control genome-wide association analyses and found disease resistance and tolerance in Douglas-fir to be polygenic and under strong selection. We show that stomatal regulation as well as ethylene and jasmonic acid pathways are important for resisting SNC infection, and secondary metabolite pathways play a role in tolerating SNC once the plant is infected. We identify a major transcriptional regulator of plant defense, ERF1, as the top candidate for RNC resistance. Our findings shed light on the highly polygenic architectures underlying fungal disease resistance and tolerance and have important implications for forestry and conservation as the climate changes.
Collapse
Affiliation(s)
- Pooja Singh
- Department of Biological Sciences, University of Calgary, Calgary, AB, T2N 1N4, Canada
- Aquatic Ecology & Evolution Division, Institute of Ecology and Evolution, University of Bern, Bern, CH-3012, Switzerland
- Department of Fish Ecology & Evolution, Swiss Federal Institute of Aquatic Science and Technology (EAWAG), Kastanienbaum, CH-6047, Switzerland
| | - J Bradley St Clair
- USDA Forest Service, Pacific Northwest Research Station, 3200 SW Jefferson Way, Corvallis, OR, 97331, USA
| | - Brandon M Lind
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, V6T1Z4, BC, Canada
| | - Richard Cronn
- USDA Forest Service, Pacific Northwest Research Station, 3200 SW Jefferson Way, Corvallis, OR, 97331, USA
| | - Nicholas P Wilhelmi
- Forest Health Protection, USDA Forest Service, Arizona Zone, Flagstaff, AZ, 86001, USA
| | - Nicolas Feau
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, V6T1Z4, BC, Canada
| | - Mengmeng Lu
- Department of Biological Sciences, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Dragana Obreht Vidakovic
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, V6T1Z4, BC, Canada
| | - Richard C Hamelin
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, V6T1Z4, BC, Canada
| | - David C Shaw
- Department of Forest Engineering, Resources and Management, Oregon State University, Corvallis, OR, 97331, USA
| | - Sally N Aitken
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, V6T1Z4, BC, Canada
| | - Sam Yeaman
- Department of Biological Sciences, University of Calgary, Calgary, AB, T2N 1N4, Canada
| |
Collapse
|
11
|
Zhang W, Maksym R, Georgii E, Geist B, Schäffner AR. SA and NHP glucosyltransferase UGT76B1 affects plant defense in both SID2- and NPR1-dependent and independent manner. PLANT CELL REPORTS 2024; 43:149. [PMID: 38780624 PMCID: PMC11116260 DOI: 10.1007/s00299-024-03228-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/02/2024] [Indexed: 05/25/2024]
Abstract
KEY MESSAGE The small-molecule glucosyltransferase loss-of-function mutant ugt76b1 exhibits both SID2- or NPR1-dependent and independent facets of enhanced plant immunity, whereupon FMO1 is required for the SID2 and NPR1 independence. The small-molecule glucosyltransferase UGT76B1 inactivates salicylic acid (SA), isoleucic acid (ILA), and N-hydroxypipecolic acid (NHP). ugt76b1 loss-of-function plants manifest an enhanced defense status. Thus, we were interested how UGT76B1 genetically integrates in defense pathways and whether all impacts depend on SA and NHP. We study the integration of UGT76B1 by transcriptome analyses of ugt76b1. The comparison of transcripts altered by the loss of UGT76B1 with public transcriptome data reveals both SA-responsive, ISOCHORISMATE SYNTHASE 1/SALICYLIC ACID INDUCTION DEFICIENT 2 (ICS1/SID2)- and NON EXPRESSOR OF PR GENES 1 (NPR1)-dependent, consistent with the role of UGT76B1 in glucosylating SA, and SA-non-responsive, SID2/NPR1-independent genes. We also discovered that UGT76B1 impacts on a group of genes showing non-SA-responsiveness and regulation by infections independent from SID2/NPR1. Enhanced resistance of ugt76b1 against Pseudomonas syringae is partially independent from SID2 and NPR1. In contrast, the ugt76b1-activated resistance is completely dependent on FMO1 encoding the NHP-synthesizing FLAVIN-DEPENDENT MONOOXYGENASE 1). Moreover, FMO1 ranks top among the ugt76b1-induced SID2- and NPR1-independent pathogen responsive genes, suggesting that FMO1 determines the SID2- and NPR1-independent effect of ugt76b1. Furthermore, the genetic study revealed that FMO1, ENHANCED DISEASE SUSCEPTIBILITY 1 (EDS1), SID2, and NPR1 are required for the SA-JA crosstalk and senescence development of ugt76b1, indicating that EDS1 and FMO1 have a similar effect like stress-induced SA biosynthesis (SID2) or the key SA signaling regulator NPR1. Thus, UGT76B1 influences both SID2/NPR1-dependent and independent plant immunity, and the SID2/NPR1 independence is relying on FMO1 and its product NHP, another substrate of UGT76B1.
Collapse
Affiliation(s)
- Wei Zhang
- Institute of Biochemical Plant Pathology, Department of Environmental Sciences, Helmholtz Zentrum München, Neuherberg, Germany.
- College of Life Sciences, Jiangsu University, Jiangsu, People's Republic of China.
| | - Rafał Maksym
- Institute of Biochemical Plant Pathology, Department of Environmental Sciences, Helmholtz Zentrum München, Neuherberg, Germany
| | - Elisabeth Georgii
- Institute of Biochemical Plant Pathology, Department of Environmental Sciences, Helmholtz Zentrum München, Neuherberg, Germany
| | - Birgit Geist
- Institute of Biochemical Plant Pathology, Department of Environmental Sciences, Helmholtz Zentrum München, Neuherberg, Germany
| | - Anton R Schäffner
- Institute of Biochemical Plant Pathology, Department of Environmental Sciences, Helmholtz Zentrum München, Neuherberg, Germany.
| |
Collapse
|
12
|
Gandham P, Rajasekaran K, Sickler C, Mohan H, Gilbert M, Baisakh N. MicroRNA (miRNA) profiling of maize genotypes with differential response to Aspergillus flavus implies zma-miR156-squamosa promoter binding protein (SBP) and zma-miR398/zma-miR394-F -box combinations involved in resistance mechanisms. STRESS BIOLOGY 2024; 4:26. [PMID: 38727957 PMCID: PMC11087424 DOI: 10.1007/s44154-024-00158-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 03/05/2024] [Indexed: 05/13/2024]
Abstract
Maize (Zea mays), a major food crop worldwide, is susceptible to infection by the saprophytic fungus Aspergillus flavus that can produce the carcinogenic metabolite aflatoxin (AF) especially under climate change induced abiotic stressors that favor mold growth. Several studies have used "-omics" approaches to identify genetic elements with potential roles in AF resistance, but there is a lack of research identifying the involvement of small RNAs such as microRNAs (miRNAs) in maize-A. flavus interaction. In this study, we compared the miRNA profiles of three maize lines (resistant TZAR102, moderately resistant MI82, and susceptible Va35) at 8 h, 3 d, and 7 d after A. flavus infection to investigate possible regulatory antifungal role of miRNAs. A total of 316 miRNAs (275 known and 41 putative novel) belonging to 115 miRNA families were identified in response to the fungal infection across all three maize lines. Eighty-two unique miRNAs were significantly differentially expressed with 39 miRNAs exhibiting temporal differential regulation irrespective of the maize genotype, which targeted 544 genes (mRNAs) involved in diverse molecular functions. The two most notable biological processes involved in plant immunity, namely cellular responses to oxidative stress (GO:00345990) and reactive oxygen species (GO:0034614) were significantly enriched in the resistant line TZAR102. Coexpression network analysis identified 34 hubs of miRNA-mRNA pairs where nine hubs had a node in the module connected to their target gene with potentially important roles in resistance/susceptible response of maize to A. flavus. The miRNA hubs in resistance modules (TZAR102 and MI82) were mostly connected to transcription factors and protein kinases. Specifically, the module of miRNA zma-miR156b-nb - squamosa promoter binding protein (SBP), zma-miR398a-3p - SKIP5, and zma-miR394a-5p - F-box protein 6 combinations in the resistance-associated modules were considered important candidates for future functional studies.
Collapse
Affiliation(s)
- Prasad Gandham
- School of Plant, Environmental and Soil Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA, 70803, USA
| | - Kanniah Rajasekaran
- Food and Feed Safety Research Unit, Southern Regional Research Center, USDA-ARS, New Orleans, LA, 70726, USA.
| | - Christine Sickler
- Food and Feed Safety Research Unit, Southern Regional Research Center, USDA-ARS, New Orleans, LA, 70726, USA
| | - Harikrishnan Mohan
- School of Plant, Environmental and Soil Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA, 70803, USA
| | - Matthew Gilbert
- Food and Feed Safety Research Unit, Southern Regional Research Center, USDA-ARS, New Orleans, LA, 70726, USA
| | - Niranjan Baisakh
- School of Plant, Environmental and Soil Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA, 70803, USA.
| |
Collapse
|
13
|
Sun S, Bakkeren G. A bird's-eye view: exploration of the flavin-containing monooxygenase superfamily in common wheat. FRONTIERS IN PLANT SCIENCE 2024; 15:1369299. [PMID: 38681221 PMCID: PMC11046709 DOI: 10.3389/fpls.2024.1369299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 02/19/2024] [Indexed: 05/01/2024]
Abstract
The Flavin Monooxygenase (FMO) gene superfamily in plants is involved in various processes most widely documented for its involvement in auxin biosynthesis, specialized metabolite biosynthesis, and plant microbial defense signaling. The roles of FMOs in defense signaling and disease resistance have recently come into focus as they may present opportunities to increase immune responses in plants including leading to systemic acquired resistance, but are not well characterized. We present a comprehensive catalogue of FMOs found in genomes across vascular plants and explore, in depth, 170 wheat TaFMO genes for sequence architecture, cis-acting regulatory elements, and changes due to Transposable Element insertions. A molecular phylogeny separates TaFMOs into three clades (A, B, and C) for which we further report gene duplication patterns, and differential rates of homoeologue expansion and retention among TaFMO subclades. We discuss Clade B TaFMOs where gene expansion is similarly seen in other cereal genomes. Transcriptome data from various studies point towards involvement of subclade B2 TaFMOs in disease responses against both biotrophic and necrotrophic pathogens, substantiated by promoter element analysis. We hypothesize that certain TaFMOs are responsive to both abiotic and biotic stresses, providing potential targets for enhancing disease resistance, plant yield and other important agronomic traits. Altogether, FMOs in wheat and other crop plants present an untapped resource to be exploited for improving the quality of crops.
Collapse
Affiliation(s)
- Sherry Sun
- Department of Botany, The University of British Columbia, Vancouver, BC, Canada
| | - Guus Bakkeren
- Agriculture and Agri-Food Canada, Summerland Research & Development Center, Summerland, BC, Canada
| |
Collapse
|
14
|
Ito S, Sakugawa K, Novianti F, Arie T, Komatsu K. Local Application of Acibenzolar- S-Methyl Treatment Induces Antiviral Responses in Distal Leaves of Arabidopsis thaliana. Int J Mol Sci 2024; 25:1808. [PMID: 38339085 PMCID: PMC10855377 DOI: 10.3390/ijms25031808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/26/2024] [Accepted: 01/28/2024] [Indexed: 02/12/2024] Open
Abstract
Systemic acquired resistance (SAR) is a plant defense mechanism that provides protection against a broad spectrum of pathogens in distal tissues. Recent studies have revealed a concerted function of salicylic acid (SA) and N-hydroxypipecolic acid (NHP) in the establishment of SAR against bacterial pathogens, but it remains unknown whether NHP is also involved in SAR against viruses. We found that the local application of acibenzolar-S-methyl (ASM), a synthetic analog of SA, suppressed plantago asiatica mosaic virus (PlAMV) infection in the distal leaves of Arabidopsis thaliana. This suppression of infection in untreated distal leaves was observed at 1 day, but not at 3 days, after application. ASM application significantly increased the expression of SAR-related genes, including PR1, SID2, and ALD1 after 1 day of application. Viral suppression in distal leaves after local ASM application was not observed in the sid2-2 mutant, which is defective in isochorismate synthase 1 (ICS1), which is involved in salicylic acid synthesis; or in the fmo1 mutant, which is defective in the synthesis of NHP; or in the SA receptor npr1-1 mutant. Finally, we found that the local application of NHP suppressed PlAMV infection in the distal leaves. These results indicate that the local application of ASM induces antiviral SAR against PlAMV through a mechanism involving NHP.
Collapse
Affiliation(s)
- Seiya Ito
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology (TUAT), Fuchu 183-8509, Japan (T.A.)
| | - Kagari Sakugawa
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology (TUAT), Fuchu 183-8509, Japan (T.A.)
| | - Fawzia Novianti
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology (TUAT), Fuchu 183-8509, Japan (T.A.)
| | - Tsutomu Arie
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology (TUAT), Fuchu 183-8509, Japan (T.A.)
- Institute of Global Innovation Research (GIR), Tokyo University of Agriculture and Technology (TUAT), Fuchu 183-8509, Japan
| | - Ken Komatsu
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology (TUAT), Fuchu 183-8509, Japan (T.A.)
- Institute of Global Innovation Research (GIR), Tokyo University of Agriculture and Technology (TUAT), Fuchu 183-8509, Japan
| |
Collapse
|
15
|
Tabassum N, Ahmed HI, Parween S, Sheikh AH, Saad MM, Krattinger SG, Hirt H. Host genotype, soil composition, and geo-climatic factors shape the fonio seed microbiome. MICROBIOME 2024; 12:11. [PMID: 38233870 PMCID: PMC10792890 DOI: 10.1186/s40168-023-01725-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 11/18/2023] [Indexed: 01/19/2024]
Abstract
BACKGROUND Fonio (Digitaria exilis), an orphan millet crop, is the oldest indigenous crop in West Africa. Although the yield is low due to pre-domestication characteristics, the quick maturation time, drought tolerance, and the ability to thrive on poor soils make fonio a climate-smart crop. Being holobionts, plants evolve in close interaction with microbial partners, which is crucial for plant phenology and fitness. As seeds are the bottleneck of vertically transmitting plant microbiota, we proposed to unravel the seed microbiome of the under-domesticated and resilient crop fonio. Our study investigated the bacterial seed endophyte diversity across 126 sequenced fonio accessions from distinct locations in West Africa. We conducted a correlation study of the structures and functions of the seed-associated microbiomes with the native geo-climate and soil structure data. We also performed Genome-wide association studies (GWAS) to identify genetic loci associated with seed endophyte diversity. RESULT We report that fonio millet has diverse heritable seed endophytic taxa. We analyzed the seed microbiomes of 126 fonio accessions and showed that despite the diversity of microbiomes from distinct geographical locations, all fonio genetic groups share a core microbiome. In addition, we observed that native soil composition, geo-climatic factors, and host genotype correlate with the seed microbiomes. GWAS analysis of genetic loci associated with endophyte seed bacterial diversity identified fonio SNPs associated with genes functioning in embryo development and stress/defense response. CONCLUSION Analysis of the seed endophyte of the climate-smart crop fonio indicated that despite possessing a heritable core microbiome, native conditions may shape the overall fonio seed microbiomes in different populations. These distinct microbiomes could play important roles in the adaptation of fonio to different environmental conditions. Our study identified the seed microbiome as a potential target for enhancing crop resilience to climate stress in a sustainable way. Video Abstract.
Collapse
Affiliation(s)
- Naheed Tabassum
- Plant Science Program, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), 23955-6900, Thuwal, Saudi Arabia
- Center for Desert Agriculture, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), 23955-6900, Thuwal, Saudi Arabia
| | - Hanin Ibrahim Ahmed
- Plant Science Program, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), 23955-6900, Thuwal, Saudi Arabia
- Center for Desert Agriculture, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), 23955-6900, Thuwal, Saudi Arabia
| | - Sabiha Parween
- Plant Science Program, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), 23955-6900, Thuwal, Saudi Arabia
- Center for Desert Agriculture, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), 23955-6900, Thuwal, Saudi Arabia
| | - Arsheed H Sheikh
- Plant Science Program, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), 23955-6900, Thuwal, Saudi Arabia
- Center for Desert Agriculture, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), 23955-6900, Thuwal, Saudi Arabia
| | - Maged M Saad
- Plant Science Program, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), 23955-6900, Thuwal, Saudi Arabia.
- Center for Desert Agriculture, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), 23955-6900, Thuwal, Saudi Arabia.
| | - Simon G Krattinger
- Plant Science Program, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), 23955-6900, Thuwal, Saudi Arabia.
- Center for Desert Agriculture, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), 23955-6900, Thuwal, Saudi Arabia.
| | - Heribert Hirt
- Plant Science Program, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), 23955-6900, Thuwal, Saudi Arabia.
- Center for Desert Agriculture, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), 23955-6900, Thuwal, Saudi Arabia.
| |
Collapse
|
16
|
Lan J, Chen S, Pico J, Ao K, Xia S, Wang S, Li X, Castellarin SD, Zhang Y. Epigenetic regulation of N-hydroxypipecolic acid biosynthesis by the AIPP3-PHD2-CPL2 complex. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:2660-2671. [PMID: 37867412 DOI: 10.1111/jipb.13577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 10/20/2023] [Indexed: 10/24/2023]
Abstract
N-Hydroxypipecolic acid (NHP) is a signaling molecule crucial for systemic acquired resistance (SAR), a systemic immune response in plants that provides long-lasting and broad-spectrum protection against secondary pathogen infections. To identify negative regulators of NHP biosynthesis, we performed a forward genetic screen to search for mutants with elevated expression of the NHP biosynthesis gene FLAVIN-DEPENDENT MONOOXYGENASE 1 (FMO1). Analysis of two constitutive expression of FMO1 (cef) and one induced expression of FMO1 (ief) mutants revealed that the AIPP3-PHD2-CPL2 protein complex, which is involved in the recognition of the histone modification H3K27me3 and transcriptional repression, contributes to the negative regulation of FMO1 expression and NHP biosynthesis. Our study suggests that epigenetic regulation plays a crucial role in controlling FMO1 expression and NHP levels in plants.
Collapse
Affiliation(s)
- Jiameng Lan
- Department of Botany, University of British Columbia, Vancouver, V6T 1Z4, Canada
| | - Siyu Chen
- Department of Botany, University of British Columbia, Vancouver, V6T 1Z4, Canada
- Laboratory of Plant Molecular Genetics & Crop Gene Editing, School of Life Sciences, Linyi University, Linyi, 276005, China
| | - Joana Pico
- Wine Research Centre, Faculty of Land and Food Systems, University of British Columbia, Vancouver, V6T 1Z4, Canada
| | - Kevin Ao
- Department of Botany, University of British Columbia, Vancouver, V6T 1Z4, Canada
- Michael Smith Laboratories, University of British Columbia, Vancouver, V6T 1Z4, Canada
| | - Shitou Xia
- Hunan Provincial Key Laboratory of Phytohormones, Hunan Agricultural University, Changsha, 410125, China
| | - Shucai Wang
- Laboratory of Plant Molecular Genetics & Crop Gene Editing, School of Life Sciences, Linyi University, Linyi, 276005, China
| | - Xin Li
- Department of Botany, University of British Columbia, Vancouver, V6T 1Z4, Canada
- Michael Smith Laboratories, University of British Columbia, Vancouver, V6T 1Z4, Canada
| | - Simone D Castellarin
- Wine Research Centre, Faculty of Land and Food Systems, University of British Columbia, Vancouver, V6T 1Z4, Canada
| | - Yuelin Zhang
- Department of Botany, University of British Columbia, Vancouver, V6T 1Z4, Canada
- College of Life Science, Sichuan University, Chengdu, 610064, China
| |
Collapse
|
17
|
Zhao P, Ma X, Zhang R, Cheng M, Niu Y, Shi X, Ji W, Xu S, Wang X. Integration of genome-wide association study, linkage analysis, and population transcriptome analysis to reveal the TaFMO1-5B modulating seminal root growth in bread wheat. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:1385-1400. [PMID: 37713270 DOI: 10.1111/tpj.16432] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 07/10/2023] [Accepted: 08/12/2023] [Indexed: 09/16/2023]
Abstract
Bread wheat, one of the keystone crops for global food security, is challenged by climate change and resource shortage. The root system plays a vital role in water and nutrient absorption, making it essential for meeting the growing global demand. Here, using an association-mapping population composed of 406 accessions, we identified QTrl.Rs-5B modulating seminal root development with a genome-wide association study and validated its genetic effects with two F5 segregation populations. Transcriptome-wide association study prioritized TaFMO1-5B, a gene encoding the flavin-containing monooxygenases, as the causal gene for QTrl.Rs-5B, whose expression levels correlate negatively with the phenotyping variations among our population. The lines silenced for TaFMO1-5B consistently showed significantly larger seminal roots in different genetic backgrounds. Additionally, the agriculture traits measured in multiple environments showed that QTrl.Rs-5B also affects yield component traits and plant architecture-related traits, and its favorable haplotype modulates these traits toward that of modern cultivars, suggesting the application potential of QTrl.Rs-5B for wheat breeding. Consistently, the frequency of the favorable haplotype of QTrl.Rs-5B increased with habitat expansion and breeding improvement of bread wheat. In conclusion, our findings identified and demonstrated the effects of QTrl.Rs-5B on seminal root development and illustrated that it is a valuable genetic locus for wheat root improvement.
Collapse
Affiliation(s)
- Peng Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xiuyun Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Ruize Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Mingzhu Cheng
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yaxin Niu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xue Shi
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Wanquan Ji
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Shengbao Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xiaoming Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
18
|
Velmurugan S, Ashajyothi M, Charishma K, Kumar S, Balamurugan A, Javed M, Karwa S, Prakash G, Subramanian S, Gogoi R, Eke P, Kumar A. Enhancing defense against rice blast disease: Unveiling the role of leaf endophytic firmicutes in antifungal antibiosis and induced systemic resistance. Microb Pathog 2023; 184:106326. [PMID: 37648175 DOI: 10.1016/j.micpath.2023.106326] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 09/01/2023]
Abstract
Rice remains the primary staple for more than half of the world's population, yet its cultivation faces numerous challenges, including both biotic and abiotic stresses. One significant obstacle is the prevalence of rice blast disease, which substantially diminishes productivity and increases cultivation costs due to frequent fungicide applications. Consequently, the presence of fungicide residues in rice raises concerns about compliance with international maximum residue limits (MRLs). While host resistance has proven effective, it often remains vulnerable to new variants of the Magnaporthe oryzae pathogen. Therefore, there is a critical need to explore innovative management strategies that can complement or enhance existing methods. An unexplored avenue involves harnessing endophytic bacterial communities. To this end, the present study investigates the potential of eleven endophytic Bacillus spp. in suppressing Pyricularia oryzae, promoting plant growth, and eliciting a defense response through phyllobacterization. The results indicate that the secreted metabolome and volatilome of seven tested isolates demonstrate inhibitory effects against P.oryzae, ranging from a minimum of 40% to a maximum of 70%. Bacillus siamensis L34, B. amyloliquefaciens RA37, B. velezensis L12, and B. subtilis B18 produce antifungal antibiotics targeting P.oryzae. Additionally, B. subtilis S4 and B. subtilis S6 emerge as excellent inducers of systemic resistance against blast disease, as evidenced by elevated activity of biochemical defense enzymes such as peroxidase, polyphenol oxidase, and total phenol content. However, a balance between primary metabolic activity (e.g., chlorophyll content, chlorophyll fluorescence, and photosynthetic rate) and defense activity is observed. Furthermore, specific endophytic Bacillus spp. significantly stimulates defense-related genes, including OsPAD4, OsFMO1, and OsEDS1. These findings underscore the multifaceted potential of endophytic Bacillus in managing blast disease through antibiosis and induced systemic resistance. In conclusion, this study highlights the promising role of endophytic Bacillus spp. as a viable option for blast disease management. Their ability to inhibit the pathogen and induce systemic resistance makes them a valuable addition to the existing strategies. However, it is crucial to consider the trade-off between primary metabolic activity and defense response when implementing these bacteria-based approaches.
Collapse
Affiliation(s)
| | | | | | - Shanu Kumar
- ICAR - Indian Agricultural Research Institute, New Delhi, 110012, India
| | | | - Mohammed Javed
- ICAR - Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Sourabh Karwa
- ICAR - Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Ganesan Prakash
- ICAR - Indian Agricultural Research Institute, New Delhi, 110012, India
| | - S Subramanian
- ICAR - Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Robin Gogoi
- ICAR - Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Pierre Eke
- ICAR - Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Aundy Kumar
- ICAR - Indian Agricultural Research Institute, New Delhi, 110012, India.
| |
Collapse
|
19
|
Li Q, Zhou M, Chhajed S, Yu F, Chen S, Zhang Y, Mou Z. N-hydroxypipecolic acid triggers systemic acquired resistance through extracellular NAD(P). Nat Commun 2023; 14:6848. [PMID: 37891163 PMCID: PMC10611778 DOI: 10.1038/s41467-023-42629-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
Systemic acquired resistance (SAR) is a long-lasting broad-spectrum plant defense mechanism induced in distal systemic tissues by mobile signals generated at the primary infection site. Despite the discoveries of multiple potential mobile signals, how these signals cooperate to trigger downstream SAR signaling is unknown. Here, we show that endogenous extracellular nicotinamide adenine dinucleotide (phosphate) [eNAD(P)] accumulates systemically upon pathogen infection and that both eNAD(P) and the lectin receptor kinase (LecRK), LecRK-VI.2, are required in systemic tissues for the establishment of SAR. Moreover, putative mobile signals, e.g., N-hydroxypipecolic acid (NHP), trigger de novo systemic eNAD(P) accumulation largely through the respiratory burst oxidase homolog RBOHF-produced reactive oxygen species (ROS). Importantly, NHP-induced systemic immunity mainly depends on ROS, eNAD(P), LecRK-VI.2, and BAK1, indicating that NHP induces SAR primarily through the ROS-eNAD(P)-LecRK-VI.2/BAK1 signaling pathway. Our results suggest that mobile signals converge on eNAD(P) in systemic tissues to trigger SAR through LecRK-VI.2.
Collapse
Affiliation(s)
- Qi Li
- Department of Microbiology and Cell Science, University of Florida, P.O. Box 110700, Gainesville, FL, 32611, USA
| | - Mingxi Zhou
- Department of Microbiology and Cell Science, University of Florida, P.O. Box 110700, Gainesville, FL, 32611, USA
- Plant Molecular and Cellular Biology Program, University of Florida, P.O. Box 110690, Gainesville, FL, 32611, USA
| | - Shweta Chhajed
- Department of Biology, University of Florida, P.O. Box 118525, Gainesville, FL, 32611, USA
| | - Fahong Yu
- Interdisciplinary Center for Biotechnology Research, University of Florida, P.O. Box 103622, Gainesville, FL, 32610, USA
| | - Sixue Chen
- Department of Biology, University of Mississippi, Oxford, MS, 38677-1848, USA
| | - Yanping Zhang
- Interdisciplinary Center for Biotechnology Research, University of Florida, P.O. Box 103622, Gainesville, FL, 32610, USA
| | - Zhonglin Mou
- Department of Microbiology and Cell Science, University of Florida, P.O. Box 110700, Gainesville, FL, 32611, USA.
- Plant Molecular and Cellular Biology Program, University of Florida, P.O. Box 110690, Gainesville, FL, 32611, USA.
| |
Collapse
|
20
|
Löwe M, Jürgens K, Zeier T, Hartmann M, Gruner K, Müller S, Yildiz I, Perrar M, Zeier J. N-hydroxypipecolic acid primes plants for enhanced microbial pattern-induced responses. FRONTIERS IN PLANT SCIENCE 2023; 14:1217771. [PMID: 37645466 PMCID: PMC10461098 DOI: 10.3389/fpls.2023.1217771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 07/11/2023] [Indexed: 08/31/2023]
Abstract
The bacterial elicitor flagellin induces a battery of immune responses in plants. However, the rates and intensities by which metabolically-related defenses develop upon flagellin-sensing are comparatively moderate. We report here that the systemic acquired resistance (SAR) inducer N-hydroxypipecolic acid (NHP) primes Arabidopsis thaliana plants for strongly enhanced metabolic and transcriptional responses to treatment by flg22, an elicitor-active peptide fragment of flagellin. While NHP powerfully activated priming of the flg22-induced accumulation of the phytoalexin camalexin, biosynthesis of the stress hormone salicylic acid (SA), generation of the NHP biosynthetic precursor pipecolic acid (Pip), and accumulation of the stress-inducible lipids γ-tocopherol and stigmasterol, it more modestly primed for the flg22-triggered generation of aromatic and branched-chain amino acids, and expression of FLG22-INDUCED RECEPTOR-KINASE1. The characterization of the biochemical and immune phenotypes of a set of different Arabidopsis single and double mutants impaired in NHP and/or SA biosynthesis indicates that, during earlier phases of the basal immune response of naïve plants to Pseudomonas syringae infection, NHP and SA mutually promote their biosynthesis and additively enhance camalexin formation, while SA prevents extraordinarily high NHP levels in later interaction periods. Moreover, SA and NHP additively contribute to Arabidopsis basal immunity to bacterial and oomycete infection, as well as to the flagellin-induced acquired resistance response that is locally observed in plant tissue exposed to exogenous flg22. Our data reveal mechanistic similarities and differences between the activation modes of flagellin-triggered acquired resistance in local tissue and the SAR state that is systemically induced in plants upon pathogen attack. They also corroborate that the NHP precursor Pip has no independent immune-related activity.
Collapse
Affiliation(s)
- Marie Löwe
- Institute for Molecular Ecophysiology of Plants, Department of Biology, Heinrich Heine University, Düsseldorf, Germany
| | - Katharina Jürgens
- Institute for Molecular Ecophysiology of Plants, Department of Biology, Heinrich Heine University, Düsseldorf, Germany
| | - Tatyana Zeier
- Institute for Molecular Ecophysiology of Plants, Department of Biology, Heinrich Heine University, Düsseldorf, Germany
| | - Michael Hartmann
- Institute for Molecular Ecophysiology of Plants, Department of Biology, Heinrich Heine University, Düsseldorf, Germany
| | - Katrin Gruner
- Institute for Molecular Ecophysiology of Plants, Department of Biology, Heinrich Heine University, Düsseldorf, Germany
| | - Sylvia Müller
- Institute for Molecular Ecophysiology of Plants, Department of Biology, Heinrich Heine University, Düsseldorf, Germany
| | - Ipek Yildiz
- Institute for Molecular Ecophysiology of Plants, Department of Biology, Heinrich Heine University, Düsseldorf, Germany
| | - Mona Perrar
- Institute for Molecular Ecophysiology of Plants, Department of Biology, Heinrich Heine University, Düsseldorf, Germany
| | - Jürgen Zeier
- Institute for Molecular Ecophysiology of Plants, Department of Biology, Heinrich Heine University, Düsseldorf, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University, Düsseldorf, Germany
| |
Collapse
|
21
|
Cao L, Yoo H, Chen T, Mwimba M, Zhang X, Dong X. H 2O 2 sulfenylates CHE linking local infection to establishment of systemic acquired resistance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.27.550865. [PMID: 37546937 PMCID: PMC10402168 DOI: 10.1101/2023.07.27.550865] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
In plants, a local infection can lead to systemic acquired resistance (SAR) through increased production of salicylic acid (SA). For 30 years, the identity of the mobile signal and its direct transduction mechanism for systemic SA synthesis in initiating SAR have been hotly debated. We found that, upon pathogen challenge, the cysteine residue of transcription factor CHE undergoes sulfenylation in systemic tissues, enhancing its binding to the promoter of SA-synthesis gene, ICS1, and increasing SA production. This occurs independently of previously reported pipecolic acid (Pip) signal. Instead, H2O2 produced by NADPH oxidase, RBOHD, is the mobile signal that sulfenylates CHE in a concentration-dependent manner. This modification serves as a molecular switch that activates CHE-mediated SA-increase and subsequent Pip-accumulation in systemic tissues to synergistically induce SAR.
Collapse
Affiliation(s)
- Lijun Cao
- Department of Biology, Box 90338, Duke University, Durham, NC 27708, USA
- Howard Hughes Medical Institute, Duke University, Durham, NC 27708, USA
| | - Heejin Yoo
- Department of Biology, Box 90338, Duke University, Durham, NC 27708, USA
- Howard Hughes Medical Institute, Duke University, Durham, NC 27708, USA
| | - Tianyuan Chen
- Department of Biology, Box 90338, Duke University, Durham, NC 27708, USA
- Howard Hughes Medical Institute, Duke University, Durham, NC 27708, USA
| | - Musoki Mwimba
- Department of Biology, Box 90338, Duke University, Durham, NC 27708, USA
- Howard Hughes Medical Institute, Duke University, Durham, NC 27708, USA
| | - Xing Zhang
- Department of Biology, Box 90338, Duke University, Durham, NC 27708, USA
- Howard Hughes Medical Institute, Duke University, Durham, NC 27708, USA
| | - Xinnian Dong
- Department of Biology, Box 90338, Duke University, Durham, NC 27708, USA
- Howard Hughes Medical Institute, Duke University, Durham, NC 27708, USA
| |
Collapse
|
22
|
Yildiz I, Gross M, Moser D, Petzsch P, Köhrer K, Zeier J. N-hydroxypipecolic acid induces systemic acquired resistance and transcriptional reprogramming via TGA transcription factors. PLANT, CELL & ENVIRONMENT 2023; 46:1900-1920. [PMID: 36790086 DOI: 10.1111/pce.14572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 02/12/2023] [Indexed: 05/04/2023]
Abstract
N-hydroxypipecolic acid (NHP) accumulates in pathogen-inoculated and distant leaves of the Arabidopsis shoot and induces systemic acquired resistance (SAR) in dependence of the salicylic acid (SA) receptor NPR1. We report here that SAR triggered by exogenous NHP treatment requires the function of the transcription factors TGA2/5/6 in addition to NPR1, and is further positively affected by TGA1/4. Consistently, a tga2/5/6 triple knockout mutant is fully impaired in NHP-induced SAR gene expression, while a tga1/4 double mutant shows an attenuated, partial transcriptional response to NHP. Moreover, tga2/5/6 and tga1/4 exhibited fully and strongly impaired pathogen-triggered SAR, respectively, while SA-induced resistance was more moderately compromised in both lines. At the same time, tga2/5/6 was not and tga1/4 only partially impaired in the accumulation of NHP and SA at sites of bacterial attack. Strikingly, SAR gene expression in the systemic tissue induced by local bacterial inoculation or locally applied NHP fully required functional TGA2/5/6 and largely depended on TGA1/4 factors. The systemic accumulation of NHP and SA was attenuated but not abolished in the SAR-compromised and transcriptionally blocked tga mutants, suggesting their transport from inoculated to systemic tissue. Our results indicate the existence of a critical TGA- and NPR1-dependent transcriptional module that mediates the induction of SAR and systemic defence gene expression by NHP.
Collapse
Affiliation(s)
- Ipek Yildiz
- Department of Biology, Institute for Molecular Ecophysiology of Plants, Heinrich Heine University, Düsseldorf, Germany
| | - Marlene Gross
- Department of Biology, Institute for Molecular Ecophysiology of Plants, Heinrich Heine University, Düsseldorf, Germany
| | - Denise Moser
- Department of Biology, Institute for Molecular Ecophysiology of Plants, Heinrich Heine University, Düsseldorf, Germany
| | - Patrick Petzsch
- Biological and Medical Research Center (BMFZ), Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Karl Köhrer
- Biological and Medical Research Center (BMFZ), Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Jürgen Zeier
- Department of Biology, Institute for Molecular Ecophysiology of Plants, Heinrich Heine University, Düsseldorf, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University, Düsseldorf, Germany
| |
Collapse
|
23
|
Fu Y, Fan B, Li X, Bao H, Zhu C, Chen Z. Autophagy and multivesicular body pathways cooperate to protect sulfur assimilation and chloroplast functions. PLANT PHYSIOLOGY 2023; 192:886-909. [PMID: 36852939 PMCID: PMC10231471 DOI: 10.1093/plphys/kiad133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 01/23/2023] [Accepted: 02/02/2023] [Indexed: 06/01/2023]
Abstract
Autophagy and multivesicular bodies (MVBs) represent 2 closely related lysosomal/vacuolar degradation pathways. In Arabidopsis (Arabidopsis thaliana), autophagy is stress-induced, with deficiency in autophagy causing strong defects in stress responses but limited effects on growth. LYST-INTERACTING PROTEIN 5 (LIP5) is a key regulator of stress-induced MVB biogenesis, and mutation of LIP5 also strongly compromises stress responses with little effect on growth in Arabidopsis. To determine the functional interactions of these 2 pathways in Arabidopsis, we generated mutations in both the LIP5 and AUTOPHAGY-RELATED PROTEIN (ATG) genes. atg5/lip5 and atg7/lip5 double mutants displayed strong synergistic phenotypes in fitness characterized by stunted growth, early senescence, reduced survival, and greatly diminished seed production under normal growth conditions. Transcriptome and metabolite analysis revealed that chloroplast sulfate assimilation was specifically downregulated at early seedling stages in the atg7/lip5 double mutant prior to the onset of visible phenotypes. Overexpression of adenosine 5'-phosphosulfate reductase 1, a key enzyme in sulfate assimilation, substantially improved the growth and fitness of the atg7/lip5 double mutant. Comparative multi-omic analysis further revealed that the atg7/lip5 double mutant was strongly compromised in other chloroplast functions including photosynthesis and primary carbon metabolism. Premature senescence and reduced survival of atg/lip5 double mutants were associated with increased accumulation of reactive oxygen species and overactivation of stress-associated programs. Blocking PHYTOALEXIN DEFICIENT 4 and salicylic acid signaling prevented early senescence and death of the atg7/lip5 double mutant. Thus, stress-responsive autophagy and MVB pathways play an important cooperative role in protecting essential chloroplast functions including sulfur assimilation under normal growth conditions to suppress salicylic-acid-dependent premature cell-death and promote plant growth and fitness.
Collapse
Affiliation(s)
- Yunting Fu
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Baofang Fan
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907-2054, USA
| | - Xifeng Li
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Hexigeduleng Bao
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907-2054, USA
| | - Cheng Zhu
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Zhixiang Chen
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907-2054, USA
| |
Collapse
|
24
|
Hönig M, Roeber VM, Schmülling T, Cortleven A. Chemical priming of plant defense responses to pathogen attacks. FRONTIERS IN PLANT SCIENCE 2023; 14:1146577. [PMID: 37223806 PMCID: PMC10200928 DOI: 10.3389/fpls.2023.1146577] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 04/17/2023] [Indexed: 05/25/2023]
Abstract
Plants can acquire an improved resistance against pathogen attacks by exogenous application of natural or artificial compounds. In a process called chemical priming, application of these compounds causes earlier, faster and/or stronger responses to pathogen attacks. The primed defense may persist over a stress-free time (lag phase) and may be expressed also in plant organs that have not been directly treated with the compound. This review summarizes the current knowledge on the signaling pathways involved in chemical priming of plant defense responses to pathogen attacks. Chemical priming in induced systemic resistance (ISR) and systemic acquired resistance (SAR) is highlighted. The roles of the transcriptional coactivator NONEXPRESSOR OF PR1 (NPR1), a key regulator of plant immunity, induced resistance (IR) and salicylic acid signaling during chemical priming are underlined. Finally, we consider the potential usage of chemical priming to enhance plant resistance to pathogens in agriculture.
Collapse
Affiliation(s)
- Martin Hönig
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences (DCPS), Freie Universität Berlin, Berlin, Germany
- Department of Chemical Biology, Faculty of Science, Palacký University, Olomouc, Czechia
| | - Venja M. Roeber
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences (DCPS), Freie Universität Berlin, Berlin, Germany
| | - Thomas Schmülling
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences (DCPS), Freie Universität Berlin, Berlin, Germany
| | - Anne Cortleven
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences (DCPS), Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
25
|
Paauw M, van Hulten M, Chatterjee S, Berg JA, Taks NW, Giesbers M, Richard MMS, van den Burg HA. Hydathode immunity protects the Arabidopsis leaf vasculature against colonization by bacterial pathogens. Curr Biol 2023; 33:697-710.e6. [PMID: 36731466 DOI: 10.1016/j.cub.2023.01.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 10/27/2022] [Accepted: 01/09/2023] [Indexed: 02/04/2023]
Abstract
Plants prevent disease by passively and actively protecting potential entry routes against invading microbes. For example, the plant immune system actively guards roots, wounds, and stomata. How plants prevent vascular disease upon bacterial entry via guttation fluids excreted from specialized glands at the leaf margin remains largely unknown. These so-called hydathodes release xylem sap when root pressure is too high. By studying hydathode colonization by both hydathode-adapted (Xanthomonas campestris pv. campestris) and non-adapted pathogenic bacteria (Pseudomonas syringae pv. tomato) in immunocompromised Arabidopsis mutants, we show that the immune hubs BAK1 and EDS1-PAD4-ADR1 restrict bacterial multiplication in hydathodes. Both immune hubs effectively confine bacterial pathogens to hydathodes and lower the number of successful escape events of an hydathode-adapted pathogen toward the xylem. A second layer of defense, which is dependent on the plant hormones' pipecolic acid and to a lesser extent on salicylic acid, reduces the vascular spread of the pathogen. Thus, besides glands, hydathodes represent a potent first line of defense against leaf-invading microbes.
Collapse
Affiliation(s)
- Misha Paauw
- Molecular Plant Pathology, Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Marieke van Hulten
- Molecular Plant Pathology, Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Sayantani Chatterjee
- Molecular Plant Pathology, Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Jeroen A Berg
- Molecular Plant Pathology, Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Nanne W Taks
- Molecular Plant Pathology, Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Marcel Giesbers
- Wageningen Electron Microscopy Centre, Department of Plant Sciences, Wageningen University & Research, Droevendaalsesteeg 4, 6708 PB Wageningen, The Netherlands
| | - Manon M S Richard
- Molecular Plant Pathology, Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Harrold A van den Burg
- Molecular Plant Pathology, Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands.
| |
Collapse
|
26
|
Gaba Y, Bhowal B, Pareek A, Singla-Pareek SL. Genomic Survey of Flavin Monooxygenases in Wild and Cultivated Rice Provides Insight into Evolution and Functional Diversities. Int J Mol Sci 2023; 24:4190. [PMID: 36835601 PMCID: PMC9960948 DOI: 10.3390/ijms24044190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/08/2023] [Accepted: 01/12/2023] [Indexed: 02/22/2023] Open
Abstract
The flavin monooxygenase (FMO) enzyme was discovered in mammalian liver cells that convert a carcinogenic compound, N-N'-dimethylaniline, into a non-carcinogenic compound, N-oxide. Since then, many FMOs have been reported in animal systems for their primary role in the detoxification of xenobiotic compounds. In plants, this family has diverged to perform varied functions like pathogen defense, auxin biosynthesis, and S-oxygenation of compounds. Only a few members of this family, primarily those involved in auxin biosynthesis, have been functionally characterized in plant species. Thus, the present study aims to identify all the members of the FMO family in 10 different wild and cultivated Oryza species. Genome-wide analysis of the FMO family in different Oryza species reveals that each species has multiple FMO members in its genome and that this family is conserved throughout evolution. Taking clues from its role in pathogen defense and its possible function in ROS scavenging, we have also assessed the involvement of this family in abiotic stresses. A detailed in silico expression analysis of the FMO family in Oryza sativa subsp. japonica revealed that only a subset of genes responds to different abiotic stresses. This is supported by the experimental validation of a few selected genes using qRT-PCR in stress-sensitive Oryza sativa subsp. indica and stress-sensitive wild rice Oryza nivara. The identification and comprehensive in silico analysis of FMO genes from different Oryza species carried out in this study will serve as the foundation for further structural and functional studies of FMO genes in rice as well as other crop types.
Collapse
Affiliation(s)
- Yashika Gaba
- Plant Stress Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India
| | - Bidisha Bhowal
- Plant Stress Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India
| | - Ashwani Pareek
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Sneh Lata Singla-Pareek
- Plant Stress Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India
| |
Collapse
|
27
|
Bauer K, Nayem S, Lehmann M, Wenig M, Shu LJ, Ranf S, Geigenberger P, Vlot AC. β-D-XYLOSIDASE 4 modulates systemic immune signaling in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2023; 13:1096800. [PMID: 36816482 PMCID: PMC9931724 DOI: 10.3389/fpls.2022.1096800] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 12/28/2022] [Indexed: 06/18/2023]
Abstract
Pectin- and hemicellulose-associated structures of plant cell walls participate in defense responses against pathogens of different parasitic lifestyles. The resulting immune responses incorporate phytohormone signaling components associated with salicylic acid (SA) and jasmonic acid (JA). SA plays a pivotal role in systemic acquired resistance (SAR), a form of induced resistance that - after a local immune stimulus - confers long-lasting, systemic protection against a broad range of biotrophic invaders. β-D-XYLOSIDASE 4 (BXL4) protein accumulation is enhanced in the apoplast of plants undergoing SAR. Here, two independent Arabidopsis thaliana mutants of BXL4 displayed compromised systemic defenses, while local resistance responses to Pseudomonas syringae remained largely intact. Because both phloem-mediated and airborne systemic signaling were abrogated in the mutants, the data suggest that BXL4 is a central component in SAR signaling mechanisms. Exogenous xylose, a possible product of BXL4 enzymatic activity in plant cell walls, enhanced systemic defenses. However, GC-MS analysis of SAR-activated plants revealed BXL4-associated changes in the accumulation of certain amino acids and soluble sugars, but not xylose. In contrast, the data suggest a possible role of pectin-associated fucose as well as of the polyamine putrescine as regulatory components of SAR. This is the first evidence of a central role of cell wall metabolic changes in systemic immunity. Additionally, the data reveal a so far unrecognized complexity in the regulation of SAR, which might allow the design of (crop) plant protection measures including SAR-associated cell wall components.
Collapse
Affiliation(s)
- Kornelia Bauer
- Department of Environmental Science, Institute of Biochemical Plant Pathology, Helmholtz Munich, Neuherberg, Germany
| | - Shahran Nayem
- Department of Environmental Science, Institute of Biochemical Plant Pathology, Helmholtz Munich, Neuherberg, Germany
| | - Martin Lehmann
- Faculty of Biology, Ludwig-Maximilians University of Munich, Munich, Germany
| | - Marion Wenig
- Department of Environmental Science, Institute of Biochemical Plant Pathology, Helmholtz Munich, Neuherberg, Germany
| | - Lin-Jie Shu
- TUM School of Life Sciences Weihenstephan, Chair of Phytopathology, Technical University of Munich, Freising, Germany
| | - Stefanie Ranf
- TUM School of Life Sciences Weihenstephan, Chair of Phytopathology, Technical University of Munich, Freising, Germany
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Peter Geigenberger
- Faculty of Biology, Ludwig-Maximilians University of Munich, Munich, Germany
| | - A. Corina Vlot
- Department of Environmental Science, Institute of Biochemical Plant Pathology, Helmholtz Munich, Neuherberg, Germany
- Faculty of Life Sciences: Food, Nutrition, and Health, Chair of Crop Plant Genetics, University of Bayreuth, Kulmbach, Germany
| |
Collapse
|
28
|
Rawat AA, Hartmann M, Harzen A, Lugan R, Stolze SC, Forzani C, Abts L, Reißenweber S, Rayapuram N, Nakagami H, Zeier J, Hirt H. OXIDATIVE SIGNAL-INDUCIBLE1 induces immunity by coordinating N-hydroxypipecolic acid, salicylic acid, and camalexin synthesis. THE NEW PHYTOLOGIST 2023; 237:1285-1301. [PMID: 36319610 PMCID: PMC10107268 DOI: 10.1111/nph.18592] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
Expression of OXIDATIVE SIGNAL-INDUCIBLE1 (OXI1) is induced by a number of stress conditions and regulates the interaction of plants with pathogenic and beneficial microbes. In this work, we generated Arabidopsis OXI1 knockout and genomic OXI1 overexpression lines and show by transcriptome, proteome, and metabolome analysis that OXI1 triggers ALD1, SARD4, and FMO1 expressions to promote the biosynthesis of pipecolic acid (Pip) and N-hydroxypipecolic acid (NHP). OXI1 contributes to enhanced immunity by induced SA biosynthesis via CBP60g-induced expression of SID2 and camalexin accumulation via WRKY33-targeted transcription of PAD3. OXI1 regulates genes involved in reactive oxygen species (ROS) generation such as RbohD and RbohF. OXI1 knock out plants show enhanced expression of nuclear and chloroplast genes of photosynthesis and enhanced growth under ambient conditions, while OXI1 overexpressing plants accumulate NHP, SA, camalexin, and ROS and show a gain-of-function (GOF) cell death phenotype and enhanced pathogen resistance. The OXI1 GOF phenotypes are completely suppressed when compromising N-hydroxypipecolic acid (NHP) synthesis in the fmo1 or ald1 background, showing that OXI1 regulation of immunity is mediated via the NHP pathway. Overall, these results show that OXI1 plays a key role in basal and effector-triggered plant immunity by regulating defense and programmed cell death via biosynthesis of salicylic acid, N-hydroxypipecolic acid, and camalexin.
Collapse
Affiliation(s)
- Anamika A. Rawat
- Darwin21 Desert Initiative, Biological and Environmental Sciences and Engineering DivisionKing Abdullah University of Science and Technology (KAUST)Thuwal23955Saudi Arabia
| | - Michael Hartmann
- Department of Biology, Institute for Molecular Ecophysiology of PlantsHeinrich Heine UniversityUniversitätsstraße 1DüsseldorfD‐40225Germany
| | - Anne Harzen
- Max Planck Institute for Plant Breeding ResearchCologneD‐50829Germany
| | - Raphael Lugan
- UMR QualisudAvignon UniversitéAvignon Cedex 984916France
| | | | - Celine Forzani
- Department of Plant Molecular BiologyUniversity of ViennaDr. Bohrgasse 9Vienna1030Austria
| | - Laura Abts
- Department of Biology, Institute for Molecular Ecophysiology of PlantsHeinrich Heine UniversityUniversitätsstraße 1DüsseldorfD‐40225Germany
| | - Sophie Reißenweber
- Department of Biology, Institute for Molecular Ecophysiology of PlantsHeinrich Heine UniversityUniversitätsstraße 1DüsseldorfD‐40225Germany
| | - Naganand Rayapuram
- Darwin21 Desert Initiative, Biological and Environmental Sciences and Engineering DivisionKing Abdullah University of Science and Technology (KAUST)Thuwal23955Saudi Arabia
| | - Hirofumi Nakagami
- Max Planck Institute for Plant Breeding ResearchCologneD‐50829Germany
| | - Jürgen Zeier
- Department of Biology, Institute for Molecular Ecophysiology of PlantsHeinrich Heine UniversityUniversitätsstraße 1DüsseldorfD‐40225Germany
- Cluster of Excellence on Plant Sciences (CEPLAS)Heinrich Heine UniversityUniversitätsstraße 1DüsseldorfD‐40225Germany
| | - Heribert Hirt
- Darwin21 Desert Initiative, Biological and Environmental Sciences and Engineering DivisionKing Abdullah University of Science and Technology (KAUST)Thuwal23955Saudi Arabia
- Department of Plant Molecular BiologyUniversity of ViennaDr. Bohrgasse 9Vienna1030Austria
- Institute of Plant Sciences Paris‐Saclay IPS2, CNRS, INRAe, Université Paris‐Sud, Université Evry, Université Paris‐SaclayBâtiment63091405 OrsayFrance
| |
Collapse
|
29
|
Lim GH. Regulation of Salicylic Acid and N-Hydroxy-Pipecolic Acid in Systemic Acquired Resistance. THE PLANT PATHOLOGY JOURNAL 2023; 39:21-27. [PMID: 36760046 PMCID: PMC9929166 DOI: 10.5423/ppj.rw.10.2022.0145] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/22/2022] [Accepted: 12/22/2022] [Indexed: 06/18/2023]
Abstract
In plants, salicylic acid (SA) is a central immune signal that is involved in both local and systemic acquired resistance (SAR). In addition to SA, several other chemical signals are also involved in SAR and these include N-hydroxy-pipecolic acid (NHP), a newly discovered plant metabolite that plays a crucial role in SAR. Recent discoveries have led to a better understanding of the biosynthesis of SA and NHP and their signaling during plant defense responses. Here, I review the recent progress in role of SA and NHP in SAR. In addition, I discuss how these signals cooperate with other SAR-inducing chemicals to regulate SAR.
Collapse
Affiliation(s)
- Gah-Hyun Lim
- Department of Biological Sciences, Pusan National University, Busan 46241,
Korea
- Department of Integrated Biological Science, Pusan National University, Busan 46241,
Korea
| |
Collapse
|
30
|
Patel A, Sahu KP, Mehta S, Javed M, Balamurugan A, Ashajyothi M, Sheoran N, Ganesan P, Kundu A, Gopalakrishnan S, Gogoi R, Kumar A. New Insights on Endophytic Microbacterium-Assisted Blast Disease Suppression and Growth Promotion in Rice: Revelation by Polyphasic Functional Characterization and Transcriptomics. Microorganisms 2023; 11:microorganisms11020362. [PMID: 36838327 PMCID: PMC9963279 DOI: 10.3390/microorganisms11020362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/24/2022] [Accepted: 01/01/2023] [Indexed: 02/05/2023] Open
Abstract
Plant growth-promoting endophytic microbes have drawn the attention of researchers owing to their ability to confer fitness benefits in many plant species. Here, we report agriculturally beneficial traits of rice-leaf-adapted endophytic Microbacterium testaceum. Our polyphasic taxonomic investigations revealed its identity as M. testaceum. The bacterium displayed typical endophytism in rice leaves, indicated by the green fluorescence of GFP-tagged M. testaceum in confocal laser scanning microscopy. Furthermore, the bacterium showed mineral solubilization and production of IAA, ammonia, and hydrolytic enzymes. Tobacco leaf infiltration assay confirmed its non-pathogenic nature on plants. The bacterium showed antifungal activity on Magnaporthe oryzae, as exemplified by secreted and volatile organic metabolome-mediated mycelial growth inhibition. GC-MS analysis of the volatilome of M. testaceum indicated the abundance of antimicrobial compounds. Bacterization of rice seedlings showed phenotypic traits of MAMP-triggered immunity (MTI), over-expression of OsNPR1 and OsCERK, and the consequent blast suppressive activity. Strikingly, M. testaceum induced the transcriptional tradeoff between physiological growth and host defense pathways as indicated by up- and downregulated DEGs. Coupled with its plant probiotic features and the defense elicitation activity, the present study paves the way for developing Microbacterium testaceum-mediated bioformulation for sustainably managing rice blast disease.
Collapse
|
31
|
Singh A. GIGANTEA regulates PAD4 transcription to promote pathogen defense against Hyaloperonospora arabidopsidis in Arabidopsis thaliana. PLANT SIGNALING & BEHAVIOR 2022; 17:2058719. [PMID: 35379074 PMCID: PMC8986176 DOI: 10.1080/15592324.2022.2058719] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/21/2022] [Accepted: 03/21/2022] [Indexed: 05/27/2023]
Abstract
Plants have evolved a network of complex signaling pathways that allow them to cope with the fluctuations of internal and external environmental cues. GIGANTEA (GI), a well-known, highly conserved plant nuclear protein, has been shown to regulate multiple biological functions in plants such as circadian rhythm, light signaling, cold tolerance, hormone signaling, and photoperiodic flowering. Recently, the role of GI in disease tolerance against different pathogens has come to light; however, a detailed mechanism to understand the role of GI in pathogen defense remains largely unexplained. Here, we report that GIGANTEA is upregulated upon infection with a virulent oomycete pathogen, Hyaloperonospora arabidopsidis (Hpa), in Arabidopsis thaliana accession Col-0. To investigate the role of GI in Arabidopsis defense, we examined the pathogen infection phenotype of gi mutant plants and found that gi-100 mutant was highly susceptible to Hpa Noco2 infection. Notably, the quantitative real-time PCR showed that PHYTOALEXIN DEFICIENT4 (PAD4) and several PAD4-regulated downstream genes were downregulated upon Noco2 infection in gi-100 mutant as compared to Col-0 plants. Furthermore, the chromatin immunoprecipitation results show that GI can directly bind to the intronic region of the PAD4 gene, which might explain the mechanism of GI function in regulating disease resistance in plants. Taken together, our results suggest that GI expression is induced upon Hpa pathogen infection and GI can regulate the expression of PAD4 to promote resistance against the oomycete pathogen Hyaloperonospora arabidopsidis in Arabidopsis thaliana.
Collapse
Affiliation(s)
- Anamika Singh
- School of Biological Sciences, National Institute of Science Education and Research (Niser) Bhubaneswar, Jatni, India
- Homi Bhabha National Institute, Training School Complex, Mumbai, India
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| |
Collapse
|
32
|
Patel A, Sahu KP, Mehta S, Balamurugan A, Kumar M, Sheoran N, Kumar S, Krishnappa C, Ashajyothi M, Kundu A, Goyal T, Narayanasamy P, Kumar A. Rice leaf endophytic Microbacterium testaceum: Antifungal actinobacterium confers immunocompetence against rice blast disease. Front Microbiol 2022; 13:1035602. [PMID: 36619990 PMCID: PMC9810758 DOI: 10.3389/fmicb.2022.1035602] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 11/07/2022] [Indexed: 12/24/2022] Open
Abstract
Genetic and functional characteristics of rice leaf endophytic actinobacterial member, Microbacterium are described. Morphotyping, multilocus sequence analysis and transmission electron microscopy indicated the species identity of the endophytic bacterium, OsEnb-ALM-D18, as Microbacterium testaceum. The endophytic Microbacterium showed probiotic solubilization of plant nutrients/minerals, produced hydrolytic enzyme/phytohormones, and showed endophytism in rice seedlings. Further, the endophytic colonization by M. testaceum OsEnb-ALM-D18 was confirmed using reporter gene coding for green fluorescence protein. Microbacterium OsEnb-ALM-D18 showed volatilome-mediated antibiosis (95.5% mycelial inhibition) on Magnaporthe oryzae. Chemical profiling of M. testaceum OsEnb-ALM-D18 volatilome revealed the abundance of 9-Octadecenoic acid, Hexadecanoic acid, 4-Methyl-2-pentanol, and 2,5-Dihydro-thiophene. Upon endobacterization of rice seedlings, M. testaceum altered shoot and root phenotype suggestive of activated defense. Over 80.0% blast disease severity reduction was observed on the susceptible rice cultivar Pusa Basmati-1 upon foliar spray with M. testaceum. qPCR-based gene expression analysis showed induction of OsCERK1, OsPAD4, OsNPR1.3, and OsFMO1 suggestive of endophytic immunocompetence against blast disease. Moreover, M. testaceum OsEnb-ALM-D18 conferred immunocompetence, and antifungal antibiosis can be the future integrated blast management strategy.
Collapse
Affiliation(s)
- Asharani Patel
- ICAR-Indian Agricultural Research Institute, New Delhi, India
| | | | - Sahil Mehta
- ICAR-Indian Agricultural Research Institute, New Delhi, India
| | | | - Mukesh Kumar
- ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Neelam Sheoran
- ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Shanu Kumar
- ICAR-Indian Agricultural Research Institute, New Delhi, India
| | | | | | - Aditi Kundu
- ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Tushar Goyal
- ICAR-Indian Agricultural Research Institute, New Delhi, India
| | | | - Aundy Kumar
- ICAR-Indian Agricultural Research Institute, New Delhi, India,*Correspondence: Aundy Kumar, ; ; orcid.org/0000-0002-7401-9885
| |
Collapse
|
33
|
Soares JM, Weber KC, Qiu W, Mahmoud LM, Grosser JW, Dutt M. Overexpression of the salicylic acid binding protein 2 (SABP2) from tobacco enhances tolerance against Huanglongbing in transgenic citrus. PLANT CELL REPORTS 2022; 41:2305-2320. [PMID: 36107199 DOI: 10.1007/s00299-022-02922-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
Overexpression of the salicylic acid binding protein 2 (SABP2) gene from Tobacco results in enhanced tolerance to Huanglongbing (HLB; citrus greening disease) in transgenic sweet oranges. Huanglongbing (HLB), the most destructive citrus disease, is caused by Candidatus Liberibacter asiaticus (CaLas). Currently, no cure for this disease exists, and all commercially planted cultivars are highly susceptible. Salicylic Acid Binding Protein 2 (SABP2) is a well-characterized protein essential for establishing systemic acquired resistance (SAR) in tobacco. The constitutive over expression of SABP2 from tobacco (NtSABP2) in 'Hamlin' sweet orange resulted in the production of several transgenic lines with variable transcript levels. Transient expression of the NtSABP2-EGFP fusion protein in Nicotiana benthamiana plants demonstrated that NtSABP2 was cytosolic in its subcellular localization. In a long-term field study, we identified a SABP2 transgenic line with significantly reduced HLB symptoms that maintained a consistently low CaLas titer. Transcriptome analysis of this selected transgenic line demonstrated upregulation of several genes related to plant defense and SAR pathways. Genes, such as NPR family genes and those coding for monooxygenases and lipoxygenases, were upregulated in the 35S-NtSABP2 overexpressing line and might be candidates for incorporation into our citrus improvement program.
Collapse
Affiliation(s)
- Juliana M Soares
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL, 33850, USA
| | - Kyle C Weber
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL, 33850, USA
| | - Wenming Qiu
- Institute of Fruit and Tea, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China
| | - Lamiaa M Mahmoud
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL, 33850, USA
- Pomology Department, Faculty of Agriculture, Mansoura University, Mansoura, 35516, Egypt
| | - Jude W Grosser
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL, 33850, USA
| | - Manjul Dutt
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL, 33850, USA.
| |
Collapse
|
34
|
Yoo SJ, Choi HJ, Noh SW, Cecchini NM, Greenberg JT, Jung HW. Genetic requirements for infection-specific responses in conferring disease resistance in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2022; 13:1068438. [PMID: 36523630 PMCID: PMC9745044 DOI: 10.3389/fpls.2022.1068438] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 11/09/2022] [Indexed: 06/01/2023]
Abstract
Immunity in plants arises from defense regulatory circuits that can be conceptualized as modules. Both the types (and isolates) of pathogen and the repertoire of plant receptors may cause different modules to be activated and affect the magnitude of activation. Two major defense enzymes of Arabidopsis are ALD1 and ICS1/SID2. ALD1 is an aminotransferase needed for producing the metabolites pipecolic acid, hydroxy-pipecolic acid, and possibly other defense signals. ICS1/SID2 produces isochorismate, an intermediate in the synthesis of salicylic acid (SA) and SA-derivatives. Metabolites resulting from the activation of these enzymes are found in petiole exudates and may serve as priming signals for systemic disease resistance in Arabidopsis. Mutants lacking ALD1 are known to have reduced SA accumulation. To further investigate the role of ALD1 in relation to the SA-related module, immunity phenotypes of double mutants that disrupt ALD1 and ICS1/SID2 or SA perception by NPR1 were compared with each single mutant after infection by different Pseudomonas strains. Exudates collected from these mutants after infection were also evaluated for their ability to confer disease resistance when applied to wild-type plants. During infection with virulent or attenuated strains, the loss of ALD1 does not increase the susceptibility of npr1 or sid2 mutants, suggesting the main role of ALD1 in this context is in amplifying the SA-related module. In contrast, after an infection that leads to strong pathogen recognition via the cytoplasmic immune receptor RPS2, ALD1 acts additively with both NPR1 and ICS1/SID2 to suppress pathogen growth. The additive effects are observed in early basal defense responses as well as SA-related events. Thus, there are specific conditions that dictate whether the modules independently contribute to immunity to provide additive protection during infection. In the exudate experiments, intact NPR1 and ICS1/SID2, but not ALD1 in the donor plants were needed for conferring immunity. Mixing exudates showed that loss of SID2 yields exudates that suppress active exudates from wild-type or ald1 plants. This indicates that ICS1/SID2 may not only lead to positive defense signals, but also prevent a suppressive signal(s).
Collapse
Affiliation(s)
- Sung-Je Yoo
- Department of Molecular Genetics, Dong-A University, Busan, South Korea
| | - Hyo Ju Choi
- Department of Molecular Genetics, Dong-A University, Busan, South Korea
| | - Seong Woo Noh
- Department of Applied Bioscience, Dong-A University, Busan, South Korea
| | - Nicolás M. Cecchini
- Departamento de Química Biológica Ranwel Caputto, Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Jean T. Greenberg
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL, United States
| | - Ho Won Jung
- Department of Molecular Genetics, Dong-A University, Busan, South Korea
- Department of Applied Bioscience, Dong-A University, Busan, South Korea
| |
Collapse
|
35
|
Ramírez-Zavaleta CY, García-Barrera LJ, Rodríguez-Verástegui LL, Arrieta-Flores D, Gregorio-Jorge J. An Overview of PRR- and NLR-Mediated Immunities: Conserved Signaling Components across the Plant Kingdom That Communicate Both Pathways. Int J Mol Sci 2022; 23:12974. [PMID: 36361764 PMCID: PMC9654257 DOI: 10.3390/ijms232112974] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 09/10/2023] Open
Abstract
Cell-surface-localized pattern recognition receptors (PRRs) and intracellular nucleotide-binding domain and leucine-rich repeat receptors (NLRs) are plant immune proteins that trigger an orchestrated downstream signaling in response to molecules of microbial origin or host plant origin. Historically, PRRs have been associated with pattern-triggered immunity (PTI), whereas NLRs have been involved with effector-triggered immunity (ETI). However, recent studies reveal that such binary distinction is far from being applicable to the real world. Although the perception of plant pathogens and the final mounting response are achieved by different means, central hubs involved in signaling are shared between PTI and ETI, blurring the zig-zag model of plant immunity. In this review, we not only summarize our current understanding of PRR- and NLR-mediated immunities in plants, but also highlight those signaling components that are evolutionarily conserved across the plant kingdom. Altogether, we attempt to offer an overview of how plants mediate and integrate the induction of the defense responses that comprise PTI and ETI, emphasizing the need for more evolutionary molecular plant-microbe interactions (EvoMPMI) studies that will pave the way to a better understanding of the emergence of the core molecular machinery involved in the so-called evolutionary arms race between plants and microbes.
Collapse
Affiliation(s)
- Candy Yuriria Ramírez-Zavaleta
- Programa Académico de Ingeniería en Biotecnología—Cuerpo Académico Procesos Biotecnológicos, Universidad Politécnica de Tlaxcala, Av. Universidad Politécnica 1, Tepeyanco 90180, Mexico
| | - Laura Jeannette García-Barrera
- Instituto de Biotecnología y Ecología Aplicada (INBIOTECA), Universidad Veracruzana, Av. de las Culturas, Veracruzanas No. 101, Xalapa 91090, Mexico
- Centro de Investigación en Biotecnología Aplicada, Instituto Politécnico Nacional, Carretera Estatal Santa Inés Tecuexcomac-Tepetitla Km.1.5, Santa Inés-Tecuexcomac-Tepetitla 90700, Mexico
| | | | - Daniela Arrieta-Flores
- Programa Académico de Ingeniería en Biotecnología—Cuerpo Académico Procesos Biotecnológicos, Universidad Politécnica de Tlaxcala, Av. Universidad Politécnica 1, Tepeyanco 90180, Mexico
- Departamento de Biotecnología, Universidad Autónoma Metropolitana, Iztapalapa, Ciudad de México 09310, Mexico
| | - Josefat Gregorio-Jorge
- Consejo Nacional de Ciencia y Tecnología—Comisión Nacional del Agua, Av. Insurgentes Sur 1582, Col. Crédito Constructor, Del. Benito Juárez, Ciudad de México 03940, Mexico
| |
Collapse
|
36
|
Orf I, Tenenboim H, Omranian N, Nikoloski Z, Fernie AR, Lisec J, Brotman Y, Bromke MA. Transcriptomic and Metabolomic Analysis of a Pseudomonas-Resistant versus a Susceptible Arabidopsis Accession. Int J Mol Sci 2022; 23:ijms232012087. [PMID: 36292941 PMCID: PMC9603445 DOI: 10.3390/ijms232012087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/06/2022] [Accepted: 10/08/2022] [Indexed: 11/24/2022] Open
Abstract
Accessions of one plant species may show significantly different levels of susceptibility to stresses. The Arabidopsis thaliana accessions Col-0 and C24 differ significantly in their resistance to the pathogen Pseudomonas syringae pv. tomato (Pst). To help unravel the underlying mechanisms contributing to this naturally occurring variance in resistance to Pst, we analyzed changes in transcripts and compounds from primary and secondary metabolism of Col-0 and C24 at different time points after infection with Pst. Our results show that the differences in the resistance of Col-0 and C24 mainly involve mechanisms of salicylic-acid-dependent systemic acquired resistance, while responses of jasmonic-acid-dependent mechanisms are shared between the two accessions. In addition, arginine metabolism and differential activity of the biosynthesis pathways of aliphatic glucosinolates and indole glucosinolates may also contribute to the resistance. Thus, this study highlights the difference in the defense response strategies utilized by different genotypes.
Collapse
Affiliation(s)
- Isabel Orf
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Hezi Tenenboim
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Nooshin Omranian
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam, Germany
- Bioinformatics Group, Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany
| | - Zoran Nikoloski
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam, Germany
- Bioinformatics Group, Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany
| | - Alisdair R. Fernie
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Jan Lisec
- Department of Analytical Chemistry, Federal Institute for Materials Research and Testing, Richard-Willstätter-Straße 11, 12489 Berlin, Germany
| | - Yariv Brotman
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
- Correspondence: (Y.B.); (M.A.B.)
| | - Mariusz A. Bromke
- Department of Biochemistry and Immunochemistry, Wroclaw Medical University, ul. Chałubińskiego 10, 50-367 Wrocław, Poland
- Correspondence: (Y.B.); (M.A.B.)
| |
Collapse
|
37
|
Biniaz Y, Tahmasebi A, Tahmasebi A, Albrectsen BR, Poczai P, Afsharifar A. Transcriptome Meta-Analysis Identifies Candidate Hub Genes and Pathways of Pathogen Stress Responses in Arabidopsis thaliana. BIOLOGY 2022; 11:1155. [PMID: 36009782 PMCID: PMC9404733 DOI: 10.3390/biology11081155] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/25/2022] [Accepted: 07/29/2022] [Indexed: 11/17/2022]
Abstract
Following a pathogen attack, plants defend themselves using multiple defense mechanisms to prevent infections. We used a meta-analysis and systems-biology analysis to search for general molecular plant defense responses from transcriptomic data reported from different pathogen attacks in Arabidopsis thaliana. Data from seven studies were subjected to meta-analysis, which revealed a total of 3694 differentially expressed genes (DEGs), where both healthy and infected plants were considered. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis further suggested that the DEGs were involved in several biosynthetic metabolic pathways, including those responsible for the biosynthesis of secondary metabolites and pathways central to photosynthesis and plant-pathogen interactions. Using network analysis, we highlight the importance of WRKY40, WRKY46 and STZ, and suggest that they serve as major points in protein-protein interactions. This is especially true regarding networks of composite-metabolic responses by pathogens. In summary, this research provides a new approach that illuminates how different mechanisms of transcriptome responses can be activated in plants under pathogen infection and indicates that common genes vary in their ability to regulate plant responses to the pathogens studied herein.
Collapse
Affiliation(s)
- Yaser Biniaz
- Plant Virology Research Center, Faculty of Agriculture, Shiraz University, Shiraz 7194685115, Iran;
| | - Ahmad Tahmasebi
- Institute of Biotechnology, Faculty of Agriculture, Shiraz University, Shiraz 7194685115, Iran;
| | - Aminallah Tahmasebi
- Department of Agriculture, Minab Higher Education Center, University of Hormozgan, Bandar Abbas 7916193145, Iran;
- Plant Protection Research Group, University of Hormozgan, Bandar Abbas 7916193145, Iran
| | - Benedicte Riber Albrectsen
- Department of Plant Physiology, Faculty of Science and Technology, Umeå University, 901 87 Umeå, Sweden;
| | - Péter Poczai
- Botany Unit, Finnish Museum of Natural History, University of Helsinki, P.O. Box 7, FI-00014 Helsinki, Finland
- Faculty of Biological and Environmental Sciences, University of Helsinki, P.O. Box 65, FI-00065 Helsinki, Finland
- Institute of Advanced Studies Kőszeg (iASK), P.O. Box 4, H-9731 Kőszeg, Hungary
| | - Alireza Afsharifar
- Plant Virology Research Center, Faculty of Agriculture, Shiraz University, Shiraz 7194685115, Iran;
| |
Collapse
|
38
|
Tirnaz S, Miyaji N, Takuno S, Bayer PE, Shimizu M, Akter MA, Edwards D, Batley J, Fujimoto R. Whole-Genome DNA Methylation Analysis in Brassica rapa subsp. perviridis in Response to Albugo candida Infection. FRONTIERS IN PLANT SCIENCE 2022; 13:849358. [PMID: 35812966 PMCID: PMC9261781 DOI: 10.3389/fpls.2022.849358] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
DNA methylation is an epigenetic mark associated with several mechanisms in plants including immunity mechanisms. However, little is known about the regulatory role of DNA methylation in the resistance response of Brassica species against fungal diseases. White rust, caused by the fungus Albugo candida, is one of the most widespread and destructive diseases of all the cultivated Brassica species, particularly Brassica rapa L. and Brassica juncea (L.) Czern and Coss. Here, we investigate whole-genome DNA methylation modifications of B. rapa subsp. perviridis in response to white rust. As a result, 233 and 275 differentially methylated regions (DMRs) in the susceptible cultivar "Misugi" and the resistant cultivar "Nanane" were identified, respectively. In both cultivars, more than half of the DMRs were associated with genes (DMR-genes). Gene expression analysis showed that 13 of these genes were also differentially expressed between control and infected samples. Gene ontology enrichment analysis of DMR genes revealed their involvement in various biological processes including defense mechanisms. DMRs were unevenly distributed around genes in susceptible and resistant cultivars. In "Misugi," DMRs tended to be located within genes, while in "Nanane," DMRs tended to be located up and downstream of the genes. However, CG DMRs were predominantly located within genes in both cultivars. Transposable elements also showed association with all three sequence contexts of DMRs but predominantly with CHG and CHH DMRs in both cultivars. Our findings indicate the occurrence of DNA methylation modifications in B. rapa in response to white rust infection and suggest a potential regulatory role of DNA methylation modification in defense mechanisms which could be exploited to improve disease resistance.
Collapse
Affiliation(s)
- Soodeh Tirnaz
- School of Biological Sciences, University of Western Australia, Crawley, WA, Australia
| | - Naomi Miyaji
- Graduate School of Agricultural Science, Kobe University, Kobe, Japan
- Iwate Biotechnology Research Center, Kitakami, Japan
| | - Shohei Takuno
- Department of Evolutionary Studies of Biosystems, SOKENDAI, The Graduate University for Advanced Studies, Hayama, Japan
| | - Philipp E. Bayer
- School of Biological Sciences, University of Western Australia, Crawley, WA, Australia
| | | | - Mst. Arjina Akter
- Graduate School of Agricultural Science, Kobe University, Kobe, Japan
- Department of Plant Pathology, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - David Edwards
- School of Biological Sciences, University of Western Australia, Crawley, WA, Australia
| | - Jacqueline Batley
- School of Biological Sciences, University of Western Australia, Crawley, WA, Australia
| | - Ryo Fujimoto
- Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| |
Collapse
|
39
|
Sahu KP, Kumar A, Sakthivel K, Reddy B, Kumar M, Patel A, Sheoran N, Gopalakrishnan S, Prakash G, Rathour R, Gautam RK. Deciphering core phyllomicrobiome assemblage on rice genotypes grown in contrasting agroclimatic zones: implications for phyllomicrobiome engineering against blast disease. ENVIRONMENTAL MICROBIOME 2022; 17:28. [PMID: 35619157 PMCID: PMC9134649 DOI: 10.1186/s40793-022-00421-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 05/09/2022] [Indexed: 05/16/2023]
Abstract
BACKGROUND With its adapted microbial diversity, the phyllosphere contributes microbial metagenome to the plant holobiont and modulates a host of ecological functions. Phyllosphere microbiome (hereafter termed phyllomicrobiome) structure and the consequent ecological functions are vulnerable to a host of biotic (Genotypes) and abiotic factors (Environment) which is further compounded by agronomic transactions. However, the ecological forces driving the phyllomicrobiome assemblage and functions are among the most understudied aspects of plant biology. Despite the reports on the occurrence of diverse prokaryotic phyla such as Proteobacteria, Firmicutes, Bacteroides, and Actinobacteria in phyllosphere habitat, the functional characterization leading to their utilization for agricultural sustainability is not yet explored. Currently, the metabarcoding by Next-Generation-Sequencing (mNGS) technique is a widely practised strategy for microbiome investigations. However, the validation of mNGS annotations by culturomics methods is not integrated with the microbiome exploration program. In the present study, we combined the mNGS with culturomics to decipher the core functional phyllomicrobiome of rice genotypes varying for blast disease resistance planted in two agroclimatic zones in India. There is a growing consensus among the various stakeholder of rice farming for an ecofriendly method of disease management. Here, we proposed phyllomicrobiome assisted rice blast management as a novel strategy for rice farming in the future. RESULTS The tropical "Island Zone" displayed marginally more bacterial diversity than that of the temperate 'Mountain Zone' on the phyllosphere. Principal coordinate analysis indicated converging phyllomicrobiome profiles on rice genotypes sharing the same agroclimatic zone. Interestingly, the rice genotype grown in the contrasting zones displayed divergent phyllomicrobiomes suggestive of the role of environment on phyllomicrobiome assembly. The predominance of phyla such as Proteobacteria, Actinobacteria, and Firmicutes was observed in the phyllosphere irrespective of the genotypes and climatic zones. The core-microbiome analysis revealed an association of Acidovorax, Arthrobacter, Bacillus, Clavibacter, Clostridium, Cronobacter, Curtobacterium, Deinococcus, Erwinia, Exiguobacterium, Hymenobacter, Kineococcus, Klebsiella, Methylobacterium, Methylocella, Microbacterium, Nocardioides, Pantoea, Pedobacter, Pseudomonas, Salmonella, Serratia, Sphingomonas and Streptomyces on phyllosphere. The linear discriminant analysis (LDA) effect size (LEfSe) method revealed distinct bacterial genera in blast-resistant and susceptible genotypes, as well as mountain and island climate zones. SparCC based network analysis of phyllomicrobiome showed complex intra-microbial cooperative or competitive interactions on the rice genotypes. The culturomic validation of mNGS data confirmed the occurrence of Acinetobacter, Aureimonas, Curtobacterium, Enterobacter, Exiguobacterium, Microbacterium, Pantoea, Pseudomonas, and Sphingomonas in the phyllosphere. Strikingly, the contrasting agroclimatic zones showed genetically identical bacterial isolates suggestive of vertical microbiome transmission. The core-phyllobacterial communities showed secreted and volatile compound mediated antifungal activity on M. oryzae. Upon phyllobacterization (a term coined for spraying bacterial cells on the phyllosphere), Acinetobacter, Aureimonas, Pantoea, and Pseudomonas conferred immunocompetence against blast disease. Transcriptional analysis revealed activation of defense genes such as OsPR1.1, OsNPR1, OsPDF2.2, OsFMO, OsPAD4, OsCEBiP, and OsCERK1 in phyllobacterized rice seedlings. CONCLUSIONS PCoA indicated the key role of agro-climatic zones to drive phyllomicrobiome assembly on the rice genotypes. The mNGS and culturomic methods showed Acinetobacter, Aureimonas, Curtobacterium, Enterobacter, Exiguobacterium, Microbacterium, Pantoea, Pseudomonas, and Sphingomonas as core phyllomicrobiome of rice. Genetically identical Pantoea intercepted on the phyllosphere from the well-separated agroclimatic zones is suggestive of vertical transmission of phyllomicrobiome. The phyllobacterization showed potential for blast disease suppression by direct antibiosis and defense elicitation. Identification of functional core-bacterial communities on the phyllosphere and their co-occurrence dynamics presents an opportunity to devise novel strategies for rice blast management through phyllomicrobiome reengineering in the future.
Collapse
Affiliation(s)
- Kuleshwar Prasad Sahu
- Division of Plant Pathology, ICAR - Indian Agricultural Research Institute, New Delhi, 110012, India
| | - A Kumar
- Division of Plant Pathology, ICAR - Indian Agricultural Research Institute, New Delhi, 110012, India.
| | - K Sakthivel
- Division of Field Crop Improvement and Protection, ICAR-Central Island Agricultural Research Institute, Port Blair, Andaman and Nicobar Islands, 744101, India
| | - Bhaskar Reddy
- Division of Plant Pathology, ICAR - Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Mukesh Kumar
- Division of Plant Pathology, ICAR - Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Asharani Patel
- Division of Plant Pathology, ICAR - Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Neelam Sheoran
- Division of Plant Pathology, ICAR - Indian Agricultural Research Institute, New Delhi, 110012, India
| | | | - Ganesan Prakash
- Division of Plant Pathology, ICAR - Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Rajeev Rathour
- Department of Agricultural Biotechnology, CSK Himachal Pradesh Agricultural University, Palampur, Himachal Pradesh, 176062, India
| | - R K Gautam
- Division of Field Crop Improvement and Protection, ICAR-Central Island Agricultural Research Institute, Port Blair, Andaman and Nicobar Islands, 744101, India
| |
Collapse
|
40
|
Huang X, Liu Y, Huang J, Fernando WGD, Li X, Xia S. Activation of NLR-Mediated Autoimmunity in Arabidopsis Early in Short Days 4 Mutant. FRONTIERS IN PLANT SCIENCE 2022; 13:881212. [PMID: 35693184 PMCID: PMC9174647 DOI: 10.3389/fpls.2022.881212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 05/04/2022] [Indexed: 06/15/2023]
Abstract
From a reverse genetic screen using CRISPR/Cas9 gene editing tool, we unintentionally identified an autoimmune mutant. Map-based cloning and whole-genome sequencing revealed that it contains a deletion in SMALL UBIQUITIN-RELATED MODIFIER (SUMO) protease encoding gene EARLY IN SHORT DAYS 4 (ESD4). Previous studies reported that esd4 mutants accumulate elevated levels of plant defense hormone salicylic acid (SA). However, upregulated PATHOGENESIS-RELATED GENE 1 (PR1) expression in esd4 only partly relies on SA level. In this study, we show that plant metabolite N-hydroxypipecolic acid (NHP) biosynthetic genes are upregulated in esd4, and NHP biosynthesis mutant flavin-dependent-monooxygenase 1 (fmo1) partially suppresses the autoimmune phenotypes of esd4, suggestive of a requirement of NHP signaling for the autoimmunity in esd4. As activation of nucleotide-binding leucine-rich repeat immune receptors (NLRs) are associates with the biosynthesis of SA and NHP and lipase-like protein ENHANCED DISEASE SUSCEPTIBILITY 1 (EDS1) is a key component downstream of many NLRs, we examined the relationship between EDS1 and ESD4 by analyzing the eds1 esd4 double mutant. We found that eds1 largely suppresses esd4 autoimmunity and blocks the elevated expressions of SA and NHP biosynthesis-related genes in esd4. Overall, our study provides evidence supporting the hypothesis that SUMO protease ESD4 likely targets a yet to be identified guardee of NLR by removing its SUMO modification to avoid recognition by the cognate NLR. Loss of ESD4 results in activation of NLR-mediated autoimmunity.
Collapse
Affiliation(s)
- Xingchuan Huang
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - Yanan Liu
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Jianhua Huang
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Department of Botany, University of British Columbia, Vancouver, BC, Canada
| | | | - Xin Li
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Department of Botany, University of British Columbia, Vancouver, BC, Canada
| | - Shitou Xia
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| |
Collapse
|
41
|
Protein glycosylation changes during systemic acquired resistance in Arabidopsis thaliana. Int J Biol Macromol 2022; 212:381-392. [PMID: 35623457 DOI: 10.1016/j.ijbiomac.2022.05.126] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 05/08/2022] [Accepted: 05/17/2022] [Indexed: 01/01/2023]
Abstract
N-glycosylation, an important post-translational modification of proteins in all eukaryotes, has been clearly shown to be involved in numerous diseases in mammalian systems. In contrast, little is known regarding the role of protein N-glycosylation in plant defensive responses to pathogen infection. We identified, for the first time, glycoproteins related to systemic acquired resistance (SAR) in an Arabidopsis thaliana model, using a glycoproteomics platform based on high-resolution mass spectrometry. 407 glycosylation sites corresponding to 378 glycopeptides and 273 unique glycoproteins were identified. 65 significantly changed glycoproteins with 80 N-glycosylation sites were detected in systemic leaves of SAR-induced plants, including numerous GDSL-like lipases, thioglucoside glucohydrolases, kinases, and glycosidases. Functional enrichment analysis revealed that significantly changed glycoproteins were involved mainly in N-glycan biosynthesis and degradation, phenylpropanoid biosynthesis, cutin and wax biosynthesis, and plant-pathogen interactions. Comparative analysis of glycoproteomics and proteomics data indicated that glycoproteomics analysis is an efficient method for screening proteins associated with SAR. The present findings clarify glycosylation status and sites of A. thaliana proteins, and will facilitate further research on roles of glycoproteins in SAR induction.
Collapse
|
42
|
Cortleven A, Roeber VM, Frank M, Bertels J, Lortzing V, Beemster GTS, Schmülling T. Photoperiod Stress in Arabidopsis thaliana Induces a Transcriptional Response Resembling That of Pathogen Infection. FRONTIERS IN PLANT SCIENCE 2022; 13:838284. [PMID: 35646013 PMCID: PMC9134115 DOI: 10.3389/fpls.2022.838284] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/07/2022] [Indexed: 06/15/2023]
Abstract
Plants are exposed to regular diurnal rhythms of light and dark. Changes in the photoperiod by the prolongation of the light period cause photoperiod stress in short day-adapted Arabidopsis thaliana. Here, we report on the transcriptional response to photoperiod stress of wild-type A. thaliana and photoperiod stress-sensitive cytokinin signaling and clock mutants and identify a core set of photoperiod stress-responsive genes. Photoperiod stress caused altered expression of numerous reactive oxygen species (ROS)-related genes. Photoperiod stress-sensitive mutants displayed similar, but stronger transcriptomic changes than wild-type plants. The alterations showed a strong overlap with those occurring in response to ozone stress, pathogen attack and flagellin peptide (flg22)-induced PAMP triggered immunity (PTI), which have in common the induction of an apoplastic oxidative burst. Interestingly, photoperiod stress triggers transcriptional changes in jasmonic acid (JA) and salicylic acid (SA) biosynthesis and signaling and results in increased JA, SA and camalexin levels. These responses are typically observed after pathogen infections. Consequently, photoperiod stress increased the resistance of Arabidopsis plants to a subsequent infection by Pseudomonas syringae pv. tomato DC3000. In summary, we show that photoperiod stress causes transcriptional reprogramming resembling plant pathogen defense responses and induces systemic acquired resistance (SAR) in the absence of a pathogen.
Collapse
Affiliation(s)
- Anne Cortleven
- Dahlem Centre of Plant Sciences, Institute of Biology/Applied Genetics, Freie Universität Berlin, Berlin, Germany
| | - Venja M. Roeber
- Dahlem Centre of Plant Sciences, Institute of Biology/Applied Genetics, Freie Universität Berlin, Berlin, Germany
| | - Manuel Frank
- Dahlem Centre of Plant Sciences, Institute of Biology/Applied Genetics, Freie Universität Berlin, Berlin, Germany
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Jonas Bertels
- Laboratory for Integrated Molecular Plant Physiology, Department of Biology, University of Antwerp, Antwerp, Belgium
| | - Vivien Lortzing
- Institute of Biology/Applied Zoology—Animal Ecology, Dahlem Centre of Plant Sciences, Freie Universität Berlin, Berlin, Germany
| | - Gerrit T. S. Beemster
- Laboratory for Integrated Molecular Plant Physiology, Department of Biology, University of Antwerp, Antwerp, Belgium
| | - Thomas Schmülling
- Dahlem Centre of Plant Sciences, Institute of Biology/Applied Genetics, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
43
|
Lapin D, Johanndrees O, Wu Z, Li X, Parker JE. Molecular innovations in plant TIR-based immunity signaling. THE PLANT CELL 2022; 34:1479-1496. [PMID: 35143666 PMCID: PMC9153377 DOI: 10.1093/plcell/koac035] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 01/27/2022] [Indexed: 05/19/2023]
Abstract
A protein domain (Toll and Interleukin-1 receptor [TIR]-like) with homology to animal TIRs mediates immune signaling in prokaryotes and eukaryotes. Here, we present an overview of TIR evolution and the molecular versatility of TIR domains in different protein architectures for host protection against microbial attack. Plant TIR-based signaling emerges as being central to the potentiation and effectiveness of host defenses triggered by intracellular and cell-surface immune receptors. Equally relevant for plant fitness are mechanisms that limit potent TIR signaling in healthy tissues but maintain preparedness for infection. We propose that seed plants evolved a specialized protein module to selectively translate TIR enzymatic activities to defense outputs, overlaying a more general function of TIRs.
Collapse
Affiliation(s)
- Dmitry Lapin
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne 50829, Germany
- Plant-Microbe Interactions, Department of Biology, Utrecht University, Utrecht 3584 CH, The Netherlands
| | - Oliver Johanndrees
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne 50829, Germany
| | - Zhongshou Wu
- Michael Smith Labs and Department of Botany, University of British Columbia, Vancouver BC V6T 1Z4, Canada
| | - Xin Li
- Michael Smith Labs and Department of Botany, University of British Columbia, Vancouver BC V6T 1Z4, Canada
| | - Jane E Parker
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne 50829, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), Duesseldorf 40225, Germany
| |
Collapse
|
44
|
Shields A, Shivnauth V, Castroverde CDM. Salicylic Acid and N-Hydroxypipecolic Acid at the Fulcrum of the Plant Immunity-Growth Equilibrium. FRONTIERS IN PLANT SCIENCE 2022; 13:841688. [PMID: 35360332 PMCID: PMC8960316 DOI: 10.3389/fpls.2022.841688] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/14/2022] [Indexed: 05/31/2023]
Abstract
Salicylic acid (SA) and N-hydroxypipecolic acid (NHP) are two central plant immune signals involved in both resistance at local sites of pathogen infection (basal resistance) and at distal uninfected sites after primary infection (systemic acquired resistance). Major discoveries and advances have led to deeper understanding of their biosynthesis and signaling during plant defense responses. In addition to their well-defined roles in immunity, recent research is emerging on their direct mechanistic impacts on plant growth and development. In this review, we will first provide an overview of how SA and NHP regulate local and systemic immune responses in plants. We will emphasize how these two signals are mutually potentiated and are convergent on multiple aspects-from biosynthesis to homeostasis, and from signaling to gene expression and phenotypic responses. We will then highlight how SA and NHP are emerging to be crucial regulators of the growth-defense balance, showcasing recent multi-faceted studies on their metabolism, receptor signaling and direct growth/development-related host targets. Overall, this article reflects current advances and provides future outlooks on SA/NHP biology and their functional significance as central signals for plant immunity and growth. Because global climate change will increasingly influence plant health and resilience, it is paramount to fundamentally understand how these two tightly linked plant signals are at the nexus of the growth-defense balance.
Collapse
|
45
|
The major plant sphingolipid long chain base phytosphingosine inhibits growth of bacterial and fungal plant pathogens. Sci Rep 2022; 12:1081. [PMID: 35058538 PMCID: PMC8776846 DOI: 10.1038/s41598-022-05083-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 12/21/2021] [Indexed: 12/24/2022] Open
Abstract
Sphingolipid long chain bases (LCBs) are building blocks of sphingolipids and can serve as signalling molecules, but also have antimicrobial activity and were effective in reducing growth of a range of human pathogens. In plants, LCBs are linked to cell death processes and the regulation of defence reactions against pathogens, but their role in directly influencing growth of plant-interacting microorganisms has received little attention. Therefore, we tested the major plant LCB phytosphingosine in in vitro tests with the plant pathogenic fungi Verticillium longisporum, Fusarium graminearum and Sclerotinia sclerotiorum, the plant symbiotic fungal endophyte Serendipita indica, the bacterial pathogens Pseudomonas syringae pv. tomato (Pst), Agrobacterium tumefaciens, and the related beneficial strain Rhizobium radiobacter. Phytosphingosine inhibited growth of these organisms at micromolar concentrations. Among the fungal pathogens, S. sclerotiorum was the most, and F. graminearum was the least sensitive. 15.9 μg/mL phytosphingosine effectively killed 95% of the three bacterial species. Plant disease symptoms and growth of Pst were also inhibited by phytosphingosine when co-infiltrated into Arabidopsis leaves, with no visible negative effect on host tissue. Taken together, we demonstrate that the plant LCB phytosphingosine inhibits growth of plant-interacting microorganisms. We discuss the potential of elevated LCB levels to enhance plant pathogen resistance.
Collapse
|
46
|
Luo F, Yu Z, Zhou Q, Huang A. Multi-Omics-Based Discovery of Plant Signaling Molecules. Metabolites 2022; 12:metabo12010076. [PMID: 35050197 PMCID: PMC8777911 DOI: 10.3390/metabo12010076] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/06/2022] [Accepted: 01/11/2022] [Indexed: 02/01/2023] Open
Abstract
Plants produce numerous structurally and functionally diverse signaling metabolites, yet only relatively small fractions of which have been discovered. Multi-omics has greatly expedited the discovery as evidenced by increasing recent works reporting new plant signaling molecules and relevant functions via integrated multi-omics techniques. The effective application of multi-omics tools is the key to uncovering unknown plant signaling molecules. This review covers the features of multi-omics in the context of plant signaling metabolite discovery, highlighting how multi-omics addresses relevant aspects of the challenges as follows: (a) unknown functions of known metabolites; (b) unknown metabolites with known functions; (c) unknown metabolites and unknown functions. Based on the problem-oriented overview of the theoretical and application aspects of multi-omics, current limitations and future development of multi-omics in discovering plant signaling metabolites are also discussed.
Collapse
Affiliation(s)
| | | | - Qian Zhou
- Correspondence: (Q.Z.); (A.H.); Tel.: +86-755-8801-8496 (Q.Z. & A.H.)
| | - Ancheng Huang
- Correspondence: (Q.Z.); (A.H.); Tel.: +86-755-8801-8496 (Q.Z. & A.H.)
| |
Collapse
|
47
|
Khan MSS, Islam F, Chen H, Chang M, Wang D, Liu F, Fu ZQ, Chen J. Transcriptional Coactivators: Driving Force of Plant Immunity. FRONTIERS IN PLANT SCIENCE 2022; 13:823937. [PMID: 35154230 PMCID: PMC8831314 DOI: 10.3389/fpls.2022.823937] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 01/10/2022] [Indexed: 05/03/2023]
Abstract
Salicylic acid (SA) is a plant defense signal that mediates local and systemic immune responses against pathogen invasion. However, the underlying mechanism of SA-mediated defense is very complex due to the involvement of various positive and negative regulators to fine-tune its signaling in diverse pathosystems. Upon pathogen infections, elevated level of SA promotes massive transcriptional reprogramming in which Non-expresser of PR genes 1 (NPR1) acts as a central hub and transcriptional coactivator in defense responses. Recent findings show that Enhanced Disease Susceptibility 1 (EDS1) also functions as a transcriptional coactivator and stimulates the expression of PR1 in the presence of NPR1 and SA. Furthermore, EDS1 stabilizes NPR1 protein level, while NPR1 sustains EDS1 expression during pathogenic infection. The interaction of NPR1 and EDS1 coactivators initiates transcriptional reprogramming by recruiting cyclin-dependent kinase 8 in the Mediator complex to control immune responses. In this review, we highlight the recent breakthroughs that considerably advance our understanding on how transcriptional coactivators interact with their functional partners to trigger distinct pathways to facilitate immune responses, and how SA accumulation induces dynamic changes in NPR1 structure for transcriptional reprogramming. In addition, the functions of different Mediator subunits in SA-mediated plant immunity are also discussed in light of recent discoveries. Taken together, the available evidence suggests that transcriptional coactivators are essential and potent regulators of plant defense pathways and play crucial roles in coordinating plant immune responses during plant-pathogen interactions.
Collapse
Affiliation(s)
| | - Faisal Islam
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, China
| | - Huan Chen
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Department of Biological Sciences, University of South Carolina, Columbia, SC, United States
| | - Ming Chang
- The Key Laboratory of Bio-interactions and Plant Health, College of Life Science, Nanjing Agricultural University, Nanjing, China
| | - Daowen Wang
- State Key Laboratory of Wheat and Maize Crop Science and College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Fengquan Liu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- *Correspondence: Fengquan Liu,
| | - Zheng Qing Fu
- Department of Biological Sciences, University of South Carolina, Columbia, SC, United States
- Zheng Qing Fu,
| | - Jian Chen
- International Genome Center, Jiangsu University, Zhenjiang, China
- Jian Chen,
| |
Collapse
|
48
|
Sahu KP, Patel A, Kumar M, Sheoran N, Mehta S, Reddy B, Eke P, Prabhakaran N, Kumar A. Integrated Metabarcoding and Culturomic-Based Microbiome Profiling of Rice Phyllosphere Reveal Diverse and Functional Bacterial Communities for Blast Disease Suppression. Front Microbiol 2021; 12:780458. [PMID: 34917058 PMCID: PMC8669949 DOI: 10.3389/fmicb.2021.780458] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 10/20/2021] [Indexed: 11/13/2022] Open
Abstract
Phyllosphere-the harsh foliar plant part exposed to vagaries of environmental and climatic variables is a unique habitat for microbial communities. In the present work, we profiled the phyllosphere microbiome of the rice plants using 16S rRNA gene amplicon sequencing (hereafter termed metabarcoding) and the conventional microbiological methods (culturomics) to decipher the microbiome assemblage, composition, and their functions such as antibiosis and defense induction against rice blast disease. The blast susceptible rice genotype (PRR78) harbored far more diverse bacterial species (294 species) than the resistant genotype (Pusa1602) that showed 193 species. Our metabarcoding of bacterial communities in phyllomicrobiome revealed the predominance of the phylum, Proteobacteria, and its members Pantoea, Enterobacter, Pseudomonas, and Erwinia on the phyllosphere of both rice genotypes. The microbiological culturomic validation of metabarcoding-taxonomic annotation further confirmed the prevalence of 31 bacterial isolates representing 11 genera and 16 species with the maximum abundance of Pantoea. The phyllomicrobiome-associated bacterial members displayed antifungal activity on rice blast fungus, Magnaporthe oryzae, by volatile and non-volatile metabolites. Upon phyllobacterization of rice cultivar PB1, the bacterial species such as Enterobacter sacchari, Microbacterium testaceum, Pantoea ananatis, Pantoea dispersa, Pantoea vagans, Pseudomonas oryzihabitans, Rhizobium sp., and Sphingomonas sp. elicited a defense response and contributed to the suppression of blast disease. qRT-PCR-based gene expression analysis indicated over expression of defense-associated genes such as OsCEBiP, OsCERK1, and phytohormone-associated genes such as OsPAD4, OsEDS1, OsPR1.1, OsNPR1, OsPDF2.2, and OsFMO in phyllobacterized rice seedlings. The phyllosphere bacterial species showing blast suppressive activity on rice were found non-plant pathogenic in tobacco infiltration assay. Our comparative microbiome interrogation of the rice phyllosphere culminated in the isolation and identification of agriculturally significant bacterial communities for blast disease management in rice farming through phyllomicrobiome engineering in the future.
Collapse
Affiliation(s)
- Kuleshwar Prasad Sahu
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Asharani Patel
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Mukesh Kumar
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Neelam Sheoran
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Sahil Mehta
- Crop Improvement Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Bhaskar Reddy
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Pierre Eke
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | | | - Aundy Kumar
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| |
Collapse
|
49
|
Uc-Chuc MA, Kú-González ÁF, Jiménez-Ramírez IA, Loyola-Vargas VM. Identification, analysis, and modeling of the YUCCA protein family genome-wide in Coffea canephora. Proteins 2021; 90:1005-1024. [PMID: 34890079 DOI: 10.1002/prot.26293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 11/04/2021] [Accepted: 12/02/2021] [Indexed: 12/17/2022]
Abstract
Auxin is involved in almost every aspect of plant growth and development, from embryogenesis to senescence. Indole-3-acetic acid (IAA) is the main known natural auxin that is synthesized by enzymes tryptophan aminotransferase of arabidopsis (TAA) and YUCCA (YUC) of the flavin-containing monooxygenases family (FMO) from one of the tryptophan-dependent pathways. Genome-wide identification and comprehensive analysis of the YUC-protein family have been conducted in Coffea canephora in the present study. A total of 10 members CcYUC gene family were identified in C. canephora. Phylogenetic analysis revealed that the CcYUC protein family is evolutionarily conserved, and they consist of four groups. In contrast, bioinformatic analysis predicted a hydrophobic transmembrane helix (TMH) for one CcYUC (YUC10) member only. Isoelectric point (pI), molecular mass (Ms), signal peptide, subcellular localization, and phosphorylation sites were predicted for CcYUC proteins. YUC enzymes require the prosthetic group flavin adenine dinucleotide (FAD) and the cofactor nicotinamide adenine dinucleotide phosphate (NADPH) for their enzymatic activity. Therefore, we include the molecular docking for CcYUC2-FAD-NADPH-IPyA and yucasin, which is a specific inhibitor for YUC activity. The docking results showed FAD and NADPH binding at the big and small domain sites, respectively, in CcYUC2. IPyA binds very close to FAD along the big domain, and yucasin competes for the same site as IPA, blocking IAA production. Furthermore, in silico point mutations affect the stability of the CcYUC2-4 proteins.
Collapse
Affiliation(s)
- Miguel A Uc-Chuc
- Centro de Investigación Científica de Yucatán, Unidad de Bioquímica y Biología Molecular de Plantas, Mérida, Mexico
| | - Ángela F Kú-González
- Centro de Investigación Científica de Yucatán, Unidad de Bioquímica y Biología Molecular de Plantas, Mérida, Mexico
| | - Irma A Jiménez-Ramírez
- Centro de Investigación Científica de Yucatán, Unidad de Bioquímica y Biología Molecular de Plantas, Mérida, Mexico
| | - Víctor M Loyola-Vargas
- Centro de Investigación Científica de Yucatán, Unidad de Bioquímica y Biología Molecular de Plantas, Mérida, Mexico
| |
Collapse
|
50
|
Nair A, Goyal I, Voß E, Mrozek P, Prajapati S, Thurow C, Tietze L, Tittmann K, Gatz C. N-hydroxypipecolic acid-induced transcription requires the salicylic acid signaling pathway at basal SA levels. PLANT PHYSIOLOGY 2021; 187:2803-2819. [PMID: 34890459 PMCID: PMC8644824 DOI: 10.1093/plphys/kiab433] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 08/31/2021] [Indexed: 05/04/2023]
Abstract
Systemic acquired resistance (SAR) is a plant immune response established in uninfected leaves after colonization of local leaves with biotrophic or hemibiotrophic pathogens. The amino acid-derived metabolite N-hydroxypipecolic acid (NHP) travels from infected to systemic leaves, where it activates salicylic acid (SA) biosynthesis through the isochorismate pathway. The resulting increased SA levels are essential for induction of a large set of SAR marker genes and full SAR establishment. In this study, we show that pharmacological treatment of Arabidopsis thaliana with NHP induces a subset of SAR-related genes even in the SA induction-deficient2 (sid2/isochorismate synthase1) mutant, which is devoid of NHP-induced SA. NHP-mediated induction is abolished in sid2-1 NahG plants, in which basal SA levels are degraded. The SA receptor NON-EXPRESSOR OF PATHOGENESIS-RELATED GENES1 (NPR1) and its interacting TGACG SEQUENCE-SPECIFIC BINDING PROTEIN (TGA) transcription factors are required for the NHP-mediated induction of SAR genes at resting SA levels. Isothermal titration analysis determined a KD of 7.9 ± 0.5 µM for the SA/NPR1 complex, suggesting that basal levels of SA would not bind to NPR1 unless yet unknown potentially NHP-induced processes increase the affinity. Moreover, the nucleocytoplasmic protein PHYTOALEXIN DEFICIENT4 is required for a slight NHP-mediated increase in NPR1 protein levels and NHP-induced expression of SAR-related genes. Our experiments have unraveled that NHP requires basal SA and components of the SA signaling pathway to induce SAR genes. Still, the mechanism of NHP perception remains enigmatic.
Collapse
Affiliation(s)
- Aswin Nair
- Department of Plant Molecular Biology and Physiology, Albrecht-von-Haller Institute for Plant Sciences, Georg-August University Göttingen, Julia-Lermontowa-Weg 3, 37077 Göttingen, Germany
| | - Isha Goyal
- Department of Plant Molecular Biology and Physiology, Albrecht-von-Haller Institute for Plant Sciences, Georg-August University Göttingen, Julia-Lermontowa-Weg 3, 37077 Göttingen, Germany
| | - Edgar Voß
- Institute of Organic and Biomolecular Chemistry, Georg-August University Göttingen, Tammannstr. 2, 37077 Göttingen, Germany
| | - Pascal Mrozek
- Department of Plant Molecular Biology and Physiology, Albrecht-von-Haller Institute for Plant Sciences, Georg-August University Göttingen, Julia-Lermontowa-Weg 3, 37077 Göttingen, Germany
| | - Sabin Prajapati
- Department of Molecular Enzymology, Göttingen Centre for Molecular Biosciences and Albrecht-von-Haller Institute, Georg-August University Göttingen, Julia-Lermontowa-Weg 3, 37077 Göttingen, Germany
- Department of Structural Dynamics, Max-Planck-Institute for Biophysical Chemistry, Am Faßberg 11, 37077 Göttingen, Germany
| | - Corinna Thurow
- Department of Plant Molecular Biology and Physiology, Albrecht-von-Haller Institute for Plant Sciences, Georg-August University Göttingen, Julia-Lermontowa-Weg 3, 37077 Göttingen, Germany
| | - Lutz Tietze
- Institute of Organic and Biomolecular Chemistry, Georg-August University Göttingen, Tammannstr. 2, 37077 Göttingen, Germany
| | - Kai Tittmann
- Department of Molecular Enzymology, Göttingen Centre for Molecular Biosciences and Albrecht-von-Haller Institute, Georg-August University Göttingen, Julia-Lermontowa-Weg 3, 37077 Göttingen, Germany
- Department of Structural Dynamics, Max-Planck-Institute for Biophysical Chemistry, Am Faßberg 11, 37077 Göttingen, Germany
| | - Christiane Gatz
- Department of Plant Molecular Biology and Physiology, Albrecht-von-Haller Institute for Plant Sciences, Georg-August University Göttingen, Julia-Lermontowa-Weg 3, 37077 Göttingen, Germany
- Author for communication:
| |
Collapse
|