1
|
Okazaki K, Miyagishima SY, Wada H. Phosphatidylinositol 4-phosphate negatively regulates chloroplast division in Arabidopsis. THE PLANT CELL 2015; 27:663-74. [PMID: 25736058 PMCID: PMC4558672 DOI: 10.1105/tpc.115.136234] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 01/05/2015] [Accepted: 02/15/2015] [Indexed: 05/22/2023]
Abstract
Chloroplast division is performed by the constriction of envelope membranes at the division site. Although constriction of a ring-like protein complex has been shown to be involved in chloroplast division, it remains unknown how membrane lipids participate in the process. Here, we show that phosphoinositides with unknown function in envelope membranes are involved in the regulation of chloroplast division in Arabidopsis thaliana. PLASTID DIVISION1 (PDV1) and PDV2 proteins interacted specifically with phosphatidylinositol 4-phosphate (PI4P). Inhibition of phosphatidylinositol 4-kinase (PI4K) decreased the level of PI4P in chloroplasts and accelerated chloroplast division. Knockout of PI4Kβ2 expression or downregulation of PI4Kα1 expression resulted in decreased levels of PI4P in chloroplasts and increased chloroplast numbers. PI4Kα1 is the main contributor to PI4P synthesis in chloroplasts, and the effect of PI4K inhibition was largely abolished in the pdv1 mutant. Overexpression of DYNAMIN-RELATED PROTEIN5B (DRP5B), another component of the chloroplast division machinery, which is recruited to chloroplasts by PDV1 and PDV2, enhanced the effect of PI4K inhibition, whereas overexpression of PDV1 and PDV2 had additive effects. The amount of DRP5B that associated with chloroplasts increased upon PI4K inhibition. These findings suggest that PI4P is a regulator of chloroplast division in a PDV1- and DRP5B-dependent manner.
Collapse
Affiliation(s)
- Kumiko Okazaki
- Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Meguro-ku, Tokyo 153-8902, Japan
| | - Shin-ya Miyagishima
- Center for Frontier Research, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Hajime Wada
- Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Meguro-ku, Tokyo 153-8902, Japan
| |
Collapse
|
2
|
Ischebeck T, Seiler S, Heilmann I. At the poles across kingdoms: phosphoinositides and polar tip growth. PROTOPLASMA 2010; 240:13-31. [PMID: 20091065 PMCID: PMC2841259 DOI: 10.1007/s00709-009-0093-0] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2009] [Accepted: 11/20/2009] [Indexed: 05/20/2023]
Abstract
Phosphoinositides (PIs) are minor, but essential phospholipid constituents of eukaryotic membranes, and are involved in the regulation of various physiological processes. Recent genetic and cell biological advances indicate that PIs play important roles in the control of polar tip growth in plant cells. In root hairs and pollen tubes, PIs control directional membrane trafficking required for the delivery of cell wall material and membrane area to the growing tip. So far, the exact mechanisms by which PIs control polarity and tip growth are unresolved. However, data gained from the analysis of plant, fungal and animal systems implicate PIs in the control of cytoskeletal dynamics, ion channel activity as well as vesicle trafficking. The present review aims at giving an overview of PI roles in eukaryotic cells with a special focus on functions pertaining to the control of cell polarity. Comparative screening of plant and fungal genomes suggests diversification of the PI system with increasing organismic complexity. The evolutionary conservation of the PI system among eukaryotic cells suggests a role for PIs in tip growing cells in models where PIs so far have not been a focus of attention, such as fungal hyphae.
Collapse
Affiliation(s)
- Till Ischebeck
- Department of Plant Biochemistry, Georg-August-University Göttingen, Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany
| | - Stephan Seiler
- Department of Microbiology and Genetics; and DFG Research Center Molecular Physiology of the Brain (CMPB), Georg-August-University Göttingen, Grisebachstraße 8, 37077 Göttingen, Germany
| | - Ingo Heilmann
- Department of Plant Biochemistry, Georg-August-University Göttingen, Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany
| |
Collapse
|
3
|
Vermeer JEM, Thole JM, Goedhart J, Nielsen E, Munnik T, Gadella TWJ. Imaging phosphatidylinositol 4-phosphate dynamics in living plant cells. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 57:356-72. [PMID: 18785997 DOI: 10.1111/j.1365-313x.2008.03679.x] [Citation(s) in RCA: 137] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Polyphosphoinositides represent a minor group of phospholipids, accounting for less than 1% of the total. Despite their low abundance, these molecules have been implicated in various signalling and membrane trafficking events. Phosphatidylinositol 4-phosphate (PtdIns4P) is the most abundant polyphosphoinositide. (32)Pi-labelling studies have shown that the turnover of PtdIns4P is rapid, but little is known about where in the cell or plant this occurs. Here, we describe the use of a lipid biosensor that monitors PtdIns4P dynamics in living plant cells. The biosensor consists of a fusion between a fluorescent protein and a lipid-binding domain that specifically binds PtdIns4P, i.e. the pleckstrin homology domain of the human protein phosphatidylinositol-4-phosphate adaptor protein-1 (FAPP1). YFP-PH(FAPP1) was expressed in four plant systems: transiently in cowpea protoplasts, and stably in tobacco BY-2 cells, Medicago truncatula roots and Arabidopsis thaliana seedlings. All systems allowed YFP-PH(FAPP1) expression without detrimental effects. Two distinct fluorescence patterns were observed: labelling of motile punctate structures and the plasma membrane. Co-expression studies with organelle markers revealed strong co-labelling with the Golgi marker STtmd-CFP, but not with the endocytic/pre-vacuolar marker GFP-AtRABF2b. Co-expression with the Ptdins3P biosensor YFP-2 x FYVE revealed totally different localization patterns. During cell division, YFP-PH(FAPP1) showed strong labelling of the cell plate, but PtdIns3P was completely absent from the newly formed cell membrane. In root hairs of M. truncatula and A. thaliana, a clear PtdIns4P gradient was apparent in the plasma membrane, with the highest concentration in the tip. This only occurred in growing root hairs, indicating a role for PtdIns4P in tip growth.
Collapse
Affiliation(s)
- Joop E M Vermeer
- Department of Molecular Cytology, Centre for Advanced Microscopy, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
4
|
Alternative metabolic fates of phosphatidylinositol produced by phosphatidylinositol synthase isoforms in Arabidopsis thaliana. Biochem J 2008; 413:115-24. [PMID: 18402553 DOI: 10.1042/bj20071371] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
PtdIns is an important precursor for inositol-containing lipids, including polyphosphoinositides, which have multiple essential functions in eukaryotic cells. It was previously proposed that different regulatory functions of inositol-containing lipids may be performed by independent lipid pools; however, it remains unclear how such subcellular pools are established and maintained. In the present paper, a previously uncharacterized Arabidopsis gene product with similarity to the known Arabidopsis PIS (PtdIns synthase), PIS1, is shown to be an active enzyme, PIS2, capable of producing PtdIns in vitro. PIS1 and PIS2 diverged slightly in substrate preferences for CDP-DAG [cytidinediphospho-DAG (diacylglycerol)] species differing in fatty acid composition, PIS2 preferring unsaturated substrates in vitro. Transient expression of fluorescently tagged PIS1 or PIS2 in onion epidermal cells indicates localization of both enzymes in the ER (endoplasmic reticulum) and, possibly, Golgi, as was reported previously for fungal and mammalian homologues. Constitutive ectopic overexpression of PIS1 or PIS2 in Arabidopsis plants resulted in elevated levels of PtdIns in leaves. PIS2-overexpressors additionally exhibited significantly elevated levels of PtdIns(4)P and PtdIns(4,5)P(2), whereas polyphosphoinositides were not elevated in plants overexpressing PIS1. In contrast, PIS1-overexpressors contained significantly elevated levels of DAG and PtdEtn (phosphatidylethanolamine), an effect not observed in plants overexpressing PIS2. Biochemical analysis of transgenic plants with regards to fatty acids associated with relevant lipids indicates that lipids increasing with PIS1 overexpression were enriched in saturated or monounsaturated fatty acids, whereas lipids increasing with PIS2 overexpression, including polyphosphoinositides, contained more unsaturated fatty acids. The results indicate that PtdIns populations originating from different PIS isoforms may enter alternative routes of metabolic conversion, possibly based on specificity and immediate metabolic context of the biosynthetic enzymes.
Collapse
|
5
|
Villasuso AL, Racagni GE, Machado EE. Phosphatidylinositol kinases as regulators of GA-stimulated alpha-amylase secretion in barley (Hordeum vulgare). PHYSIOLOGIA PLANTARUM 2008; 133:157-166. [PMID: 18282190 DOI: 10.1111/j.1399-3054.2008.01050.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Phosphorylated derivatives of phosphatidylinositol, in association with phosphatidylinositol 3-kinase (PI3 kinase, EC 2.7.1.137) and phosphatidylinositol 4-kinase (PI4 kinase, EC 2.7.1.67), play a key role in regulation of fundamental cell processes. We present evidence for a relationship between alpha-amylase (EC 3.2.1.1) secretion regulated by GA and levels of phosphatidylinositol 3-phosphate and phosphatidylinositol 4-phosphate (PtdIns(4)P) in barley (Hordeum vulgare). Microsomal membranes were incubated in the presence of [gamma-(32)P]ATP, and radiolabeled membrane lipids were extracted and separated by TLC using a boric acid system. Treatment of aleurone layers with GA for short or long periods of time increased PI4 kinase activity. To evaluate the effect of PtdIns(4)P levels on GA signaling, we used phenylarsine oxide (PAO), an inhibitor of PI4 kinase activity. PAO reversibly reduced the alpha-amylase secretion and protoplast cell vacuolation in a dose-dependent manner. Wortmannin showed a similar inhibitory effect on alpha-amylase secretion and PI4 kinase activity. GA evoked only a long-term increase in PI3 kinase activity, which was also affected by PAO. The effect of PAO was suppressed by the reducing agent 2,3-dimercapto-1-propanol (BAL), leading to restoration of secretion, vacuolation and PI4 kinase activity. In contrast, the effect of PAO on PI3 kinase activity was not abolished by BAL, suggesting that PI3 kinase is not involved in the secretion process. Likewise, the compound LY294002 inhibited PI3 kinase but had no effect on the secretion process. These findings indicate that PI4 kinase acts as a positive regulator of early GA signaling in aleurone.
Collapse
Affiliation(s)
- Ana Laura Villasuso
- Química Biológica, FCEFQN, Universidad Nacional de Río Cuarto, X5804BYA Río Cuarto, Córdoba, Argentina
| | | | | |
Collapse
|
6
|
Lou Y, Ma H, Lin WH, Chu ZQ, Mueller-Roeber B, Xu ZH, Xue HW. The highly charged region of plant beta-type phosphatidylinositol 4-kinase is involved in membrane targeting and phospholipid binding. PLANT MOLECULAR BIOLOGY 2006; 60:729-46. [PMID: 16649109 DOI: 10.1007/s11103-005-5548-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2005] [Accepted: 11/29/2005] [Indexed: 05/08/2023]
Abstract
In Arabidopsis thaliana and Oryza sativa, two types of PI 4-kinase (PI4Ks) have been isolated and functionally characterized. The alpha-type PI4Ks (approximately 220 kDa) contain a PH domain, which is lacking in beta-type PI4Ks (approximately 120 kDa). Beta-type PI4Ks, exemplified by Arabidopsis AtPI4Kbeta and rice OsPI4K2, contain a highly charged repetitive segment designated PPC (Plant PI4K Charged) region, which is an unique domain only found in plant beta-type PI4Ks at present. The PPC region has a length of approximately 300 amino acids and harboring 11 (AtPI4Kbeta) and 14 (OsPI4K2) repeats, respectively, of a 20-aa motif. Studies employing a modified yeast-based "Sequence of Membrane-Targeting Detection" system demonstrate that the PPC(OsPI4K2) region, as well as the former 8 and latter 6 repetitive motifs within the PPC region, are able to target fusion proteins to the plasma membrane. Further detection on the transiently expressed GFP fusion proteins in onion epidermal cells showed that the PPC(OsPI4K2) region alone, as well as the region containing repetitive motifs 1-8, was able to direct GFP to the plasma membrane, while the regions containing less repetitive motifs, i.e. 6, 4, 2 or single motif(s) led to predominantly intracellular localization. Agrobacterium-mediated transient expression of PPC-GFP fusion protein further confirms the membrane-targeting capacities of PPC region. In addition, the predominant plasma membrane localization of AtPI4Kbeta was mediated by the PPC region. Recombinant PPC peptide, expressed in E. coli, strongly binds phosphatidic acid, PI and PI4P, but not phosphatidylcholine, PI5P, or PI(4,5)P2 in vitro, providing insights into potential mechanisms for regulating sub-cellular localization and lipid binding for the plant beta-type PI4Ks.
Collapse
Affiliation(s)
- Ying Lou
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Science (SiBS), Chinese Academy of Sciences, Shanghai 200032, P.R. China
| | | | | | | | | | | | | |
Collapse
|
7
|
Stevenson-Paulik J, Love J, Boss WF. Differential regulation of two Arabidopsis type III phosphatidylinositol 4-kinase isoforms. A regulatory role for the pleckstrin homology domain. PLANT PHYSIOLOGY 2003; 132:1053-64. [PMID: 12805633 PMCID: PMC167043 DOI: 10.1104/pp.103.021758] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Here, we compare the regulation and localization of the Arabidopsis type III phosphatidylinositol (PtdIns) 4-kinases, AtPI4Kalpha1 and AtPI4Kbeta1, in Spodoptera frugiperda (Sf9) insect cells. We also explore the role of the pleckstrin homology (PH) domain in regulating AtPI4Kalpha1. Recombinant kinase activity was found to be differentially sensitive to PtdIns-4-phosphate (PtdIns4P), the product of the reaction. The specific activity of AtPI4Kalpha1 was inhibited 70% by 0.5 mm PtdIns4P. The effect of PtdIns4P was not simply due to charge because AtPI4Kalpha1 activity was stimulated approximately 50% by equal concentrations of the other negatively charged lipids, PtdIns3P, phosphatidic acid, and phosphatidyl-serine. Furthermore, inhibition of AtPI4Kalpha1 by PtdIns4P could be alleviated by adding recombinant AtPI4Kalpha1 PH domain, which selectively binds to PtdIns4P (Stevenson et al., 1998). In contrast, the specific activity of AtPI4Kbeta1, which does not have a PH domain, was stimulated 2-fold by PtdIns4P but not other negatively charged lipids. Visualization of green fluorescent protein fusion proteins in insect cells revealed that AtPI4Kalpha1 was associated primarily with membranes in the perinuclear region, whereas AtPI4Kbeta1 was in the cytosol and associated with small vesicles throughout the cytoplasm. Expression of AtPI4Kalpha1 without the PH domain in the insect cells compromised PtdIns 4-kinase activity and caused mislocalization of the kinase. The green fluorescent protein-PH domain alone was associated with intracellular membranes and the plasma membrane. In vitro, the PH domain appeared to be necessary for association of AtPI4Kalpha1 with fine actin filaments. These studies support the idea that the Arabidopsis type III PtdIns 4-kinases are responsible for distinct phosphoinositide pools.
Collapse
|
8
|
Kong XF, Xu ZH, Xue HW. Isolation and functional characterization of the C-terminus of rice phosphatidylinositol 4-kinase in vitro. Cell Res 2003; 13:131-9. [PMID: 12737521 DOI: 10.1038/sj.cr.7290157] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
A partial rice (Oryza sativa L.) cDNA clone, OsPI4K1c, was isolated through screening of a cDNA library constructed from tillering materials. OsPI4K1c encoded a peptide of 608 amino acids with a calculated molecular mass of 68.4 kDa. The OsPI4K1c peptide shared high homology and possessed the highly conserved domains present in most isolated cloned PI4-kinases, i.e. a lipid kinase unique (LKU) domain and a catalytic (CAT) domain. A region with similarity to pleckstrin homology (PH) domain was present in OsPI4K1c as well. Further comparison with genomic sequences in databases revealed that OsPI4K1c is located at the 3'-end of a putative rice PI 4-kinase coding gene OsPI4K1, and its coding region corresponded to the C-terminal half of OsPI4K1 protein. Twelve exons (49-562 bp in size) and 11 introns (77-974 bp in size) were identified in OsPI4K1c. The recombinant protein expressed in Escherichia coli phosphorylates phosphatidylinositol at the D4 position of the inositol ring. OsPI4K1 transcript levels were detected in a low but constitutive manner in shoot, stem, leaf, spike and root tissues and did not change upon treatment with different hormones, calcium and jasmonic acid (JA). However, treatment with salicylic acid (SA) elevated the mRNA level of the OsPI4K1 gene, which suggested the involvement of OsPI4K1 in wounding responses.
Collapse
Affiliation(s)
- Xiang Feng Kong
- National Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Science, The Chinese Academy of Sciences, Shanghai, China
| | | | | |
Collapse
|
9
|
Abstract
Phospholipids are emerging as novel second messengers in plant cells. They are rapidly formed in response to a variety of stimuli via the activation of lipid kinases or phospholipases. These lipid signals can activate enzymes or recruit proteins to membranes via distinct lipid-binding domains, where the local increase in concentration promotes interactions and downstream signaling. Here, the latest developments in phospholipid-based signaling are discussed, including the lipid kinases and phospholipases that are activated, the signals they produce, the domains that bind them, the downstream targets that contain them and the processes they control.
Collapse
Affiliation(s)
- Harold J G Meijer
- Swammerdam Institute for Life Sciences, Department of Plant Physiology, University of Amsterdam, NL-1098 SM Amsterdam, The Netherlands
| | | |
Collapse
|
10
|
Mueller-Roeber B, Pical C. Inositol phospholipid metabolism in Arabidopsis. Characterized and putative isoforms of inositol phospholipid kinase and phosphoinositide-specific phospholipase C. PLANT PHYSIOLOGY 2002; 130:22-46. [PMID: 12226484 PMCID: PMC166537 DOI: 10.1104/pp.004770] [Citation(s) in RCA: 297] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Phosphoinositides (PIs) constitute a minor fraction of total cellular lipids in all eukaryotic cells. They fulfill many important functions through interaction with a wide range of cellular proteins. Members of distinct inositol lipid kinase families catalyze the synthesis of these phospholipids from phosphatidylinositol. The hydrolysis of PIs involves phosphatases and isoforms of PI-specific phospholipase C. Although our knowledge of the roles played by plant PIs is clearly limited at present, there is no doubt that they are involved in many physiological processes during plant growth and development. In this review, we concentrate on inositol lipid-metabolizing enzymes from the model plant Arabidopsis for which biochemical characterization data are available, namely the inositol lipid kinases and PI-specific phospholipase Cs. The biochemical properties and structure of characterized and genome-predicted isoforms are presented and compared with those of the animal enzymes to show that the plant enzymes have some features clearly unique to this kingdom.
Collapse
Affiliation(s)
- Bernd Mueller-Roeber
- Universität Potsdam, Institut für Biochemie und Biologie, Abteilung Molekularbiologie, Karl-Liebknecht-Strasse 25, Haus 20, D-14476 Golm/Potsdam, Germany
| | | |
Collapse
|
11
|
Bovet L, Müller MO, Siegenthaler PA. Three distinct lipid kinase activities are present in spinach chloroplast envelope membranes: phosphatidylinositol phosphorylation is sensitive to wortmannin and not dependent on chloroplast ATP. Biochem Biophys Res Commun 2001; 289:269-75. [PMID: 11708811 DOI: 10.1006/bbrc.2001.5969] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Chloroplast envelope membranes display properties that are important in lipid synthesis, regulation of metabolites, and protein transport, as well as in signal transduction. The recent discovery showing that phosphorylation of lipids occurs in envelope membranes provides a new approach for understanding the role of chloroplast lipids in these processes. The present investigation shows that three major lipid kinase activities are at least present in envelope membranes. These activities greatly depend on external conditions, such as pH, ATP concentrations, temperature, and chloroplast ATP and wortmannin sensitivity. Two types of phosphorylated lipid couples displayed similar intrinsic responses toward these biochemical parameters, namely phosphatidic acid (PA) and its lysoderivative (LPA) and monogalactosyl-phosphate-diacylglycerol (MGpDG) and its lysoderivative (LMGpDG), but not phosphatidylinositol-monophosphate (PIP) and its lysoderivative (LPIP). Phosphorylation of phosphatidylinositol was not dependent on chloroplast ATP, but was sensitive toward wortmannin in intact chloroplasts and outer envelope membrane vesicles.
Collapse
Affiliation(s)
- L Bovet
- Laboratoire de Physiologie Végétale, Université de Neuchâtel, Rue Emile Argand 13, CH-2007 Neuchâtel, Switzerland.
| | | | | |
Collapse
|
12
|
Westergren T, Ekblad L, Jergil B, Sommarin M. Phosphatidylinositol 4-kinase associated with spinach plasma membranes. Isolation and characterization of two distinct forms. PLANT PHYSIOLOGY 1999; 121:507-16. [PMID: 10517842 PMCID: PMC59413 DOI: 10.1104/pp.121.2.507] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/1999] [Accepted: 06/22/1999] [Indexed: 05/21/2023]
Abstract
Highly purified plasma membranes from spinach (Spinacia oleracea L.) leaves contained phosphatidylinositol (PtdIns) kinase activity that was firmly associated with the membrane. The enzyme was solubilized by detergent treatment (2% [w/v] Triton X-100) and purified by heparin-Sepharose and Q-Sepharose chromatography. Two enzymically active fractions, QI and QII, both exhibiting PtdIns 4-kinase activity, were resolved and purified 100- to 300-fold over the plasma membrane. QI and QII shared similar high apparent K(m) values for ATP (approximately 0.45 mM) and PtdIns (approximately 0.2 mM) and were insensitive to inhibition by adenosine. While Mg(2+) was the preferred divalent cation, Mn(2+) could partly substitute in the reaction catalyzed by the QII enzyme but not in that catalyzed by QI. Mn(2+) acted synergistically with suboptimal Mg(2+) concentrations to activate not only the QII enzyme, but also to some extent QI. Both enzymes were inhibited by millimolar concentrations of Ca(2+) and micromolar concentrations of wortmannin. The apparent molecular mass for QI was 120 kD, which was determined by SDS-PAGE and western blotting using an antibody against a peptide unique for lipid kinases and the binding of (3)H-wortmannin, and for QII 65 kD as determined by immunodetection and renaturation of PtdIns kinase activity in the 65-kD region of polyacrylamide gels.
Collapse
Affiliation(s)
- T Westergren
- Department of Plant Biochemistry, Lund University, Box 117, SE-221 00, Lund, Sweden
| | | | | | | |
Collapse
|
13
|
Drøbak BK, Dewey RE, Boss WF. Phosphoinositide kinases and the synthesis of polyphosphoinositides in higher plant cells. INTERNATIONAL REVIEW OF CYTOLOGY 1999; 189:95-130. [PMID: 10333579 DOI: 10.1016/s0074-7696(08)61386-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Phosphoinositides are a family of inositol-containing phospholipids which are present in all eukaryotic cells. Although in most cells these lipids, with the exception of phosphatidylinositol, constitute only a very minor proportion of total cellular lipids, they have received immense attention by researchers in the past 15-20 years. This is due to the discovery that these lipids, rather than just having structural functions, play key roles in a wide range of important cellular processes. Much less is known about the plant phosphoinositides than about their mammalian counterparts. However, it has been established that a functional phosphoinositide system exists in plant cells and it is becoming increasingly clear that inositol-containing lipids are likely to play many important roles throughout the life of a plant. It is not our intention to give an exhaustive overview of all aspects of the field, but rather we focus on the phosphoinositide kinases responsible for the synthesis of all phosphorylated forms of phosphatidylinositol. Also, we mention some of the aspects of current phosphoinositide research which, in our opinion, are most likely to provide a suitable starting point for further research into the role of phosphoinositides in plants.
Collapse
Affiliation(s)
- B K Drøbak
- Department of Cell Biology, John Innes Centre, Norwich, United Kingdom
| | | | | |
Collapse
|
14
|
Xue HW, Pical C, Brearley C, Elge S, Müller-Röber B. A plant 126-kDa phosphatidylinositol 4-kinase with a novel repeat structure. Cloning and functional expression in baculovirus-infected insect cells. J Biol Chem 1999; 274:5738-45. [PMID: 10026194 DOI: 10.1074/jbc.274.9.5738] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phosphatidylinositol metabolism plays a central role in signaling pathways in animals and is also believed to be of importance in signal transduction in higher plants. We report here the molecular cloning of a cDNA encoding a previously unidentified 126-kDa phosphatidylinositol (PI) 4-kinase (AtPI4Kbeta) from the higher plant Arabidopsis thaliana. The novel protein possesses the conserved domains present in animal and yeast PI 4-kinases, namely a lipid kinase unique domain and a catalytic domain. An additional domain, approximately 300 amino acids long, containing a high percentage (46%) of charged amino acids is specific to this plant enzyme. Recombinant AtPI4Kbeta expressed in baculovirus-infected insect (Spodoptera frugiperda) cells phosphorylated phosphatidylinositol exclusively at the D4 position of the inositol ring. Recombinant protein was maximally activated by 0.6% Triton X-100 but was inhibited by adenosine with an IC50 of approximately 200 microM. Wortmannin at a concentration of 10 microM inhibited AtPI4Kbeta activity by approximately 90%. AtPI4Kbeta transcript levels were similar in all tissues analyzed. Light or treatment with hormones or salts did not change AtPI4Kbeta transcript levels to a great extent, indicating constitutive expression of the AtPI4Kbeta gene.
Collapse
Affiliation(s)
- H W Xue
- Max Planck Institute of Molecular Plant Physiology, Karl-Liebknecht-Strabetae 25, Haus 20, D-14476 Golm/Potsdam, Germany
| | | | | | | | | |
Collapse
|
15
|
Stevenson JM, Perera IY, Boss WF. A phosphatidylinositol 4-kinase pleckstrin homology domain that binds phosphatidylinositol 4-monophosphate. J Biol Chem 1998; 273:22761-7. [PMID: 9712908 DOI: 10.1074/jbc.273.35.22761] [Citation(s) in RCA: 115] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Pleckstrin homology (PH) domains are found in many proteins involved in signal transduction, including the family of large molecular mass phosphatidylinositol (PI) 4-kinases. Although the exact function of these newly discovered domains is unknown, it is recognized that they may influence enzyme regulation by binding different ligands. In this study, the recombinant PI 4-kinase PH domain was explored for its ability to bind to different phospholipids. First, we isolated partial cDNAs of the >7-kilobase transcripts of PI 4-kinases from carrot (DcPI4Kalpha) and Arabidopsis (AtPI4Kalpha). The deduced primary sequences were 41% identical and 68% similar to rat and human PI 4-kinases and contained the telltale lipid kinase unique domain, PH domain, and catalytic domain. Antibodies raised against the expressed lipid kinase unique, PH, and catalytic domains identified a polypeptide of 205 kDa in Arabidopsis microsomes and an F-actin-enriched fraction from carrot cells. The 205-kDa immunoaffinity-purified Arabidopsis protein had PI 4-kinase activity. We have used the expressed PH domain to characterize lipid binding properties. The recombinant PH domain selectively bound to phosphatidylinositol 4-monophosphate (PI-4-P), phosphatidylinositol 4,5-bisphosphate (PI-4,5-P2), and phosphatidic acid and did not bind to the 3-phosphoinositides. The PH domain had the highest affinity for PI-4-P, the product of the reaction. Consideration is given to the potential impact that this has on cytoskeletal organization and the PI signaling pathway in cells that have a high PI-4-P/PI-4,5-P2 ratio.
Collapse
Affiliation(s)
- J M Stevenson
- Botany Department, North Carolina State University, Raleigh, North Carolina 27695, USA
| | | | | |
Collapse
|
16
|
Munnik T, Irvine RF, Musgrave A. Phospholipid signalling in plants. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1389:222-72. [PMID: 9512651 DOI: 10.1016/s0005-2760(97)00158-6] [Citation(s) in RCA: 261] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- T Munnik
- Institute for Molecular Cell Biology, BioCentrum Amsterdam, University of Amsterdam, The Netherlands.
| | | | | |
Collapse
|