1
|
Lyu M, Iida H, Eekhout T, Mäkelä M, Muranen S, Ye L, Vatén A, Wybouw B, Wang X, De Rybel B, Mähönen AP. The dynamic and diverse nature of parenchyma cells in the Arabidopsis root during secondary growth. NATURE PLANTS 2025; 11:878-890. [PMID: 40140531 PMCID: PMC12014502 DOI: 10.1038/s41477-025-01938-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 02/06/2025] [Indexed: 03/28/2025]
Abstract
During secondary growth, the vascular cambium produces conductive xylem and phloem cells, while the phellogen (cork cambium) deposits phellem (cork) as the outermost protective barrier. Although most of the secondary tissues are made up of parenchyma cells, which are also produced by both cambia, their diversity and function are poorly understood. Here we combined single-cell RNA sequencing analysis with lineage tracing to recreate developmental trajectories of the cell types in the Arabidopsis root undergoing secondary growth. By analysing 93 reporter lines, we were able to identify 20 different cell types or cell states, many of which have not been described before. We additionally observed distinct transcriptome signatures of parenchyma cells depending on their maturation state and proximity to the conductive cell types. Our data show that both xylem and phloem parenchyma tissues are required for normal formation of conductive tissue cell types. Furthermore, we show that mature phloem parenchyma gradually obtains periderm identity, and this transformation can be accelerated by jasmonate treatment or wounding. Our study thus reveals the diversity of parenchyma cells and their capacity to undergo considerable identity changes during secondary growth.
Collapse
Affiliation(s)
- Munan Lyu
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences and Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - Hiroyuki Iida
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences and Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - Thomas Eekhout
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Centre for Plant Systems Biology, Ghent, Belgium
- VIB Single Cell Core, VIB, Ghent, Belgium
- VIB Single Cell Core, VIB, Leuven, Belgium
| | - Meeri Mäkelä
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences and Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - Sampo Muranen
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences and Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - Lingling Ye
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences and Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - Anne Vatén
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences and Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - Brecht Wybouw
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences and Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - Xin Wang
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences and Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - Bert De Rybel
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.
- VIB Centre for Plant Systems Biology, Ghent, Belgium.
| | - Ari Pekka Mähönen
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences and Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
2
|
Ni B, Klein M, Hossbach B, Feussner K, Hornung E, Herrfurth C, Hamberg M, Feussner I. Arabidopsis GH3.10 conjugates jasmonates. PLANT BIOLOGY (STUTTGART, GERMANY) 2025. [PMID: 40095511 DOI: 10.1111/plb.70001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 01/21/2025] [Indexed: 03/19/2025]
Abstract
Jasmonates regulate plant development and defence. In angiosperms, the canonical bioactive jasmonate is jasmonoyl-isoleucine (JA-Ile), which is formed in Arabidopsis thaliana by JAR1 and GH3.10. In contrast to other jasmonate biosynthesis or perception mutants, however, gh3.10 jar1 knockout lines are still fertile. Therefore we investigated whether further jasmonates and GH3 enzymes contribute to regulation of fertility. Jasmonate levels were analysed by liquid chromatography-mass spectrometry. The substrate range of recombinant GH3.10 and related GH3 enzymes was studied using non-targeted ex vivo metabolomics with flower and leaf extracts of A. thaliana and in vitro enzyme assays. Jasmonate application experiments were performed to study their potential bioactivity. In flowers and wounded leaves of gh3.10 jar1 knockout lines JA-Ile was below the detection limit. While 12-hydroxy-JA was identified as the preferred substrate of GH3.10, no other recombinant GH3 enzymes tested were capable of JA-Ile formation. Additional JA conjugates found in wounded leaves (JA-Gln) or formed in flowers upon MeJA treatment in the absence of JA-Ile (JA-Gln, JA-Asn, JA-Glu) were identified. The aos gh3.10 jar1 was introduced as a novel tool to test for the bioactivity of JA-Gln to regulate fertility. This study found JAR1 and GH3.10 are the only contributors to JA-Ile biosynthesis in Arabidopsis and identified a number of JA conjugates as potential bioactive jasmonates acting in the absence of JA-Ile. However, their contribution in regulating fertility is yet to be conclusively determined.
Collapse
Affiliation(s)
- B Ni
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute, University of Goettingen, Goettingen, Germany
| | - M Klein
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute, University of Goettingen, Goettingen, Germany
| | - B Hossbach
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute, University of Goettingen, Goettingen, Germany
| | - K Feussner
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute, University of Goettingen, Goettingen, Germany
| | - E Hornung
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute, University of Goettingen, Goettingen, Germany
| | - C Herrfurth
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute, University of Goettingen, Goettingen, Germany
- Service Unit for Metabolomics and Lipidomics, Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Goettingen, Germany
| | - M Hamberg
- Division of Physiological Chemistry II, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - I Feussner
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute, University of Goettingen, Goettingen, Germany
- Service Unit for Metabolomics and Lipidomics, Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Goettingen, Germany
- Department of Plant Biochemistry, Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Goettingen, Germany
| |
Collapse
|
3
|
Muhammad D, Clark NM, Tharp NE, Chatt EC, Vierstra RD, Bartel B. Global impacts of peroxisome and pexophagy dysfunction revealed through multi-omics analyses of lon2 and atg2 mutants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:2563-2583. [PMID: 39526456 DOI: 10.1111/tpj.17129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/15/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024]
Abstract
Peroxisomes house diverse metabolic pathways that are essential for plant and animal survival, including enzymes that produce or inactivate toxic byproducts. Despite the importance of peroxisomes and their collaborations with other organelles, the mechanisms that trigger or prevent peroxisome turnover and the cellular impacts of impaired peroxisomes are incompletely understood. When Arabidopsis thaliana LON2, a peroxisomal protein with chaperone and protease capacity, is disrupted, metabolic dysfunction and protein instability in peroxisomes ensue. Paradoxically, preventing autophagy in lon2 mutants appears to normalize peroxisomal metabolism and stabilize peroxisomal proteins-hinting at a role for autophagy in causing the peroxisomal defects observed in lon2 seedlings. Using a combination of transcriptomics, proteomics, and in silico investigations, we compared wild type to lon2 and autophagy null mutants and double mutants. Through this analysis, we found that impeding autophagy via an atg2 null mutation alleviated several of the global defects observed when LON2 is absent. Moreover, we revealed processes influenced by LON2 that are independent of autophagy, including impacts on lipid droplet and chloroplast protein levels. Finally, we identified and classified potential LON2 substrates, which include proteins that might provide signal(s) for pexophagy.
Collapse
Affiliation(s)
- DurreShahwar Muhammad
- Department of Biosciences, Rice University, Houston, Texas, 77005, USA
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, Massachusetts, 01003, USA
| | - Natalie M Clark
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, 02142, USA
| | - Nathan E Tharp
- Department of Biosciences, Rice University, Houston, Texas, 77005, USA
| | - Elizabeth C Chatt
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, 63130, USA
| | - Richard D Vierstra
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, 63130, USA
| | - Bonnie Bartel
- Department of Biosciences, Rice University, Houston, Texas, 77005, USA
| |
Collapse
|
4
|
Grover S, Mou DF, Shrestha K, Puri H, Pingault L, Sattler SE, Louis J. Impaired Brown midrib12 function orchestrates sorghum resistance to aphids via an auxin conjugate indole-3-acetic acid-aspartic acid. THE NEW PHYTOLOGIST 2024; 244:1597-1615. [PMID: 39233513 DOI: 10.1111/nph.20091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 08/08/2024] [Indexed: 09/06/2024]
Abstract
Lignin, a complex heterogenous polymer present in virtually all plant cell walls, plays a critical role in protecting plants from various stresses. However, little is known about how lignin modifications in sorghum will impact plant defense against sugarcane aphids (SCA), a key pest of sorghum. We utilized the sorghum brown midrib (bmr) mutants, which are impaired in monolignol synthesis, to understand sorghum defense mechanisms against SCA. We found that loss of Bmr12 function and overexpression (OE) of Bmr12 provided enhanced resistance and susceptibility to SCA, respectively, as compared with wild-type (WT; RTx430) plants. Monitoring of the aphid feeding behavior indicated that SCA spent more time in reaching the first sieve element phase on bmr12 plants compared with RTx430 and Bmr12-OE plants. A combination of transcriptomic and metabolomic analyses revealed that bmr12 plants displayed altered auxin metabolism upon SCA infestation and specifically, elevated levels of auxin conjugate indole-3-acetic acid-aspartic acid (IAA-Asp) were observed in bmr12 plants compared with RTx430 and Bmr12-OE plants. Furthermore, exogenous application of IAA-Asp restored resistance in Bmr12-OE plants, and artificial diet aphid feeding trial bioassays revealed that IAA-Asp is associated with enhanced resistance to SCA. Our findings highlight the molecular underpinnings that contribute to sorghum bmr12-mediated resistance to SCA.
Collapse
Affiliation(s)
- Sajjan Grover
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA
| | - De-Fen Mou
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA
| | - Kumar Shrestha
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA
| | - Heena Puri
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA
| | - Lise Pingault
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA
| | - Scott E Sattler
- Wheat, Sorghum, and Forage Research Unit, U.S. Department of Agriculture-Agricultural Research Service, Lincoln, NE, 68583, USA
| | - Joe Louis
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA
| |
Collapse
|
5
|
Tu T, Gao Z, Li L, Chen J, Ye K, Xu T, Mai S, Han Q, Chen C, Wu S, Dong Y, Chen J, Huang L, Guan Y, Xie F, Chen X. Soybean symbiotic-nodule zonation and cell differentiation are defined by NIN2 signaling and GH3-dependent auxin homeostasis. Dev Cell 2024; 59:2254-2269.e6. [PMID: 39053471 DOI: 10.1016/j.devcel.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 04/18/2024] [Accepted: 07/02/2024] [Indexed: 07/27/2024]
Abstract
Symbiotic nodules comprise two classes, indeterminate and determinate, defined by the presence/absence of apical meristem and developmental zonation. Why meristem and zonation are absent from determinate nodules remains unclear. Here, we define cell types in developing soybean nodules, highlighting the undifferentiated infection zones and differentiated nitrogen-fixation zones. Auxin governs infection zone maintenance. GRETCHEN HAGEN 3 (GH3) enzymes deactivate auxin by conjugation and promote cell differentiation. gh3 mutants increased undifferentiated cells and enlarged infection zones. The central symbiosis-transcription factor NIN2a activates GH3.1 to reduce auxin levels and facilitates cell differentiation. High auxin promotes NIN2a protein accumulation and enhances signaling, further deactivating auxin and depleting infection zones. Our findings shed light on the NIN2a-GH3-auxin module that drives soybean nodule cell differentiation. This study challenges our understanding of determinate nodule development and proposes that the regulation of nodule zonation offers valuable insights into broader mechanisms of cell differentiation across plant species.
Collapse
Affiliation(s)
- Tianli Tu
- Haixia Institute of Science and Technology, Horticultural Plant Biology and Metabolomics Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhen Gao
- Haixia Institute of Science and Technology, Horticultural Plant Biology and Metabolomics Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Linfang Li
- Haixia Institute of Science and Technology, Horticultural Plant Biology and Metabolomics Center, Fujian Agriculture and Forestry University, Fuzhou, China; College of Agriculture and Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Jiansheng Chen
- Haixia Institute of Science and Technology, Horticultural Plant Biology and Metabolomics Center, Fujian Agriculture and Forestry University, Fuzhou, China; College of Agriculture and Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Kangzhuo Ye
- Haixia Institute of Science and Technology, Horticultural Plant Biology and Metabolomics Center, Fujian Agriculture and Forestry University, Fuzhou, China; College of Agriculture and Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Tao Xu
- Haixia Institute of Science and Technology, Horticultural Plant Biology and Metabolomics Center, Fujian Agriculture and Forestry University, Fuzhou, China; College of Agriculture and Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Siyuan Mai
- Haixia Institute of Science and Technology, Horticultural Plant Biology and Metabolomics Center, Fujian Agriculture and Forestry University, Fuzhou, China; College of Agriculture and Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Qingqing Han
- Haixia Institute of Science and Technology, Horticultural Plant Biology and Metabolomics Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Chaofan Chen
- Haixia Institute of Science and Technology, Horticultural Plant Biology and Metabolomics Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shengwei Wu
- Haixia Institute of Science and Technology, Horticultural Plant Biology and Metabolomics Center, Fujian Agriculture and Forestry University, Fuzhou, China; College of Agriculture and Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Yankun Dong
- Haixia Institute of Science and Technology, Horticultural Plant Biology and Metabolomics Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jiaomei Chen
- Haixia Institute of Science and Technology, Horticultural Plant Biology and Metabolomics Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Laimei Huang
- Haixia Institute of Science and Technology, Horticultural Plant Biology and Metabolomics Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yuefeng Guan
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Fang Xie
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Xu Chen
- Haixia Institute of Science and Technology, Horticultural Plant Biology and Metabolomics Center, Fujian Agriculture and Forestry University, Fuzhou, China.
| |
Collapse
|
6
|
Zhao Y, He Y, Chen X, Li N, Yang T, Hu T, Duan S, Luo X, Jiang L, Chen X, Tao X, Chen J. Different viral effectors hijack TCP17, a key transcription factor for host Auxin synthesis, to promote viral infection. PLoS Pathog 2024; 20:e1012510. [PMID: 39208401 PMCID: PMC11389919 DOI: 10.1371/journal.ppat.1012510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 09/11/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024] Open
Abstract
Auxin is an important class of plant hormones that play an important role in plant growth development, biotic stress response, and viruses often suppress host plant auxin levels to promote infection. However, previous research on auxin-mediated disease resistance has focused mainly on signaling pathway, and the molecular mechanisms of how pathogenic proteins manipulate the biosynthetic pathway of auxin remain poorly understood. TCP is a class of plant-specific transcription factors, of which TCP17 is a member that binds to the promoter of YUCCAs, a key rate-limiting enzyme for auxin synthesis, and promotes the expression of YUCCAs, which is involved in auxin synthesis in plants. In this study, we reported that Tomato spotted wilt virus (TSWV) infection suppressed the expression of YUCCAs through its interaction with TCP17. Further studies revealed that the NSs protein encoded by TSWV disrupts the dimerization of TCP17, thereby inhibit its transcriptional activation ability and reducing the auxin content in plants. Consequently, this interference inhibits the auxin response signal and promotes the TSWV infection. Transgenic plants overexpressing TCP17 exhibit resistance against TSWV infection, whereas plants knocking out TCP17 were more susceptible to TSWV infection. Additionally, proteins encoded by other RNA viruses (BSMV, RSV and TBSV) can also interact with TCP17 and interfere with its dimerization. Notably, overexpression of TCP17 enhanced resistance against BSMV. This suggests that TCP17 plays a crucial role in plant defense against different types of plant viruses that use viral proteins to target this key component of auxin synthesis and promote infection.
Collapse
Affiliation(s)
- Yanxiao Zhao
- School of Plant Protection, Anhui Agricultural University, Hefei, China
- The Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Yong He
- School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Xinyue Chen
- School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Ninghong Li
- School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Tongqing Yang
- The Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Tingting Hu
- School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Shujing Duan
- School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Xuanjie Luo
- The Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Lei Jiang
- School of Plant Protection, Anhui Agricultural University, Hefei, China
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, Hefei, China
| | - Xiaoyang Chen
- School of Plant Protection, Anhui Agricultural University, Hefei, China
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, Hefei, China
| | - Xiaorong Tao
- The Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Jing Chen
- School of Plant Protection, Anhui Agricultural University, Hefei, China
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, Hefei, China
| |
Collapse
|
7
|
Díaz-Cruz GA, Bignell DRD. Exploring the specialized metabolome of the plant pathogen Streptomyces sp. 11-1-2. Sci Rep 2024; 14:10414. [PMID: 38710735 DOI: 10.1038/s41598-024-60630-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 04/25/2024] [Indexed: 05/08/2024] Open
Abstract
Streptomyces bacteria are notable for producing chemically diverse specialized metabolites that exhibit various bioactivities and mediate interactions with different organisms. Streptomyces sp. 11-1-2 is a plant pathogen that produces nigericin and geldanamycin, both of which display toxic effects against various plants. Here, the 'One Strain Many Compounds' approach was used to characterize the metabolic potential of Streptomyces sp. 11-1-2. Organic extracts were prepared from 11-1-2 cultures grown on six different agar media, and the extracts were tested in antimicrobial and plant bioassays and were subjected to untargeted metabolomics and molecular networking. Most extracts displayed strong bioactivity against Gram-positive bacteria and yeast, and they exhibited phytotoxic activity against potato tuber tissue and radish seedlings. Several known specialized metabolites, including musacin D, galbonolide B, guanidylfungin A, meridamycins and elaiophylin, were predicted to be present in the extracts along with closely related compounds with unknown structure and bioactivity. Targeted detection confirmed the presence of elaiophylin in the extracts, and bioassays using pure elaiophylin revealed that it enhances the phytotoxic effects of geldanamycin and nigericin on potato tuber tissue. Overall, this study reveals novel insights into the specialized metabolites that may mediate interactions between Streptomyces sp. 11-1-2 and other bacteria and eukaryotic organisms.
Collapse
Affiliation(s)
- Gustavo A Díaz-Cruz
- Department of Biology, Memorial University of Newfoundland, St. John's, NL, Canada
- Phytopathology Department, Plant Protection Research Center (CIPROC), Agronomy School, Universidad de Costa Rica, San Jose, Costa Rica
| | - Dawn R D Bignell
- Department of Biology, Memorial University of Newfoundland, St. John's, NL, Canada.
| |
Collapse
|
8
|
Cohen JD, Strader LC. An auxin research odyssey: 1989-2023. THE PLANT CELL 2024; 36:1410-1428. [PMID: 38382088 PMCID: PMC11062468 DOI: 10.1093/plcell/koae054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/23/2024] [Accepted: 02/07/2024] [Indexed: 02/23/2024]
Abstract
The phytohormone auxin is at times called the master regulator of plant processes and has been shown to be a central player in embryo development, the establishment of the polar axis, early aspects of seedling growth, as well as growth and organ formation during later stages of plant development. The Plant Cell has been key, since the inception of the journal, to developing an understanding of auxin biology. Auxin-regulated plant growth control is accomplished by both changes in the levels of active hormones and the sensitivity of plant tissues to these concentration changes. In this historical review, we chart auxin research as it has progressed in key areas and highlight the role The Plant Cell played in these scientific developments. We focus on understanding auxin-responsive genes, transcription factors, reporter constructs, perception, and signal transduction processes. Auxin metabolism is discussed from the development of tryptophan auxotrophic mutants, the molecular biology of conjugate formation and hydrolysis, indole-3-butyric acid metabolism and transport, and key steps in indole-3-acetic acid biosynthesis, catabolism, and transport. This progress leads to an expectation of a more comprehensive understanding of the systems biology of auxin and the spatial and temporal regulation of cellular growth and development.
Collapse
Affiliation(s)
- Jerry D Cohen
- Department of Horticultural Science and the Microbial and Plant Genomics Institute, University of Minnesota, Saint Paul, MN 55108, USA
| | - Lucia C Strader
- Department of Biology, Duke University, Durham, NC 27008, USA
| |
Collapse
|
9
|
Luo P, Li TT, Shi WM, Ma Q, Di DW. The Roles of GRETCHEN HAGEN3 (GH3)-Dependent Auxin Conjugation in the Regulation of Plant Development and Stress Adaptation. PLANTS (BASEL, SWITZERLAND) 2023; 12:4111. [PMID: 38140438 PMCID: PMC10747189 DOI: 10.3390/plants12244111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/05/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023]
Abstract
The precise control of free auxin (indole-3-acetic acid, IAA) gradient, which is orchestrated by biosynthesis, conjugation, degradation, hydrolyzation, and transport, is critical for all aspects of plant growth and development. Of these, the GRETCHEN HAGEN 3 (GH3) acyl acid amido synthetase family, pivotal in conjugating IAA with amino acids, has garnered significant interest. Recent advances in understanding GH3-dependent IAA conjugation have positioned GH3 functional elucidation as a hot topic of research. This review aims to consolidate and discuss recent findings on (i) the enzymatic mechanisms driving GH3 activity, (ii) the influence of chemical inhibitor on GH3 function, and (iii) the transcriptional regulation of GH3 and its impact on plant development and stress response. Additionally, we explore the distinct biological functions attributed to IAA-amino acid conjugates.
Collapse
Affiliation(s)
- Pan Luo
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China;
| | - Ting-Ting Li
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; (T.-T.L.); (W.-M.S.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei-Ming Shi
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; (T.-T.L.); (W.-M.S.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qi Ma
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China;
| | - Dong-Wei Di
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; (T.-T.L.); (W.-M.S.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
10
|
Archer L, Mondal HA, Behera S, Twayana M, Patel M, Louis J, Nalam VJ, Keereetaweep J, Chowdhury Z, Shah J. Interplay between MYZUS PERSICAE-INDUCED LIPASE 1 and OPDA signaling in limiting green peach aphid infestation on Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:6860-6873. [PMID: 37696760 DOI: 10.1093/jxb/erad355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 09/09/2023] [Indexed: 09/13/2023]
Abstract
MYZUS PERSICAE-INDUCED LIPASE1 (MPL1) encodes a lipase in Arabidopsis thaliana that is required for limiting infestation by the green peach aphid (GPA; Myzus persicae), an important phloem sap-consuming insect pest. Previously, we demonstrated that MPL1 expression was up-regulated in response to GPA infestation, and GPA fecundity was higher on the mpl1 mutant, compared with the wild-type (WT), and lower on 35S:MPL1 plants that constitutively expressed MPL1 from the 35S promoter. Here, we show that the MPL1 promoter is active in the phloem and expression of the MPL1 coding sequence from the phloem-specific SUC2 promoter in mpl1 is sufficient to restore resistance to GPA. The GPA infestation-associated up-regulation of MPL1 requires CYCLOPHILIN 20-3 (CYP20-3), which encodes a 12-oxo-phytodienoic acid (OPDA)-binding protein that is involved in OPDA signaling, and is required for limiting GPA infestation. OPDA promotes MPL1 expression to limit GPA fecundity, a process that requires CYP20-3 function. These results along with our observation that constitutive expression of MPL1 from the 35S promoter restores resistance to GPA in the cyp20-3 mutant, and MPL1 acts in a feedback loop to limit OPDA levels in GPA-infested plants, suggest that an interplay between MPL1, OPDA, and CYP20-3 contributes to resistance to GPA.
Collapse
Affiliation(s)
- Lani Archer
- Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA
- BioDiscovery Institute, University of North Texas, Denton, TX 76203, USA
| | - Hossain A Mondal
- College of Post Graduate Studies in Agricultural Sciences (CPGS-AS, under Central Agricultural University, Imphal, Manipur), Meghalaya 793103, India
| | - Sumita Behera
- Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA
| | - Moon Twayana
- Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA
- BioDiscovery Institute, University of North Texas, Denton, TX 76203, USA
| | - Monika Patel
- Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA
| | - Joe Louis
- Department of Entomology and Department of Biochemistry, University of Nebraska, Lincoln, NE 68583, USA
| | - Vamsi J Nalam
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO 80523, USA
| | | | - Zulkarnain Chowdhury
- Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA
- BioDiscovery Institute, University of North Texas, Denton, TX 76203, USA
| | - Jyoti Shah
- Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA
- BioDiscovery Institute, University of North Texas, Denton, TX 76203, USA
| |
Collapse
|
11
|
Hladík P, Petřík I, Žukauskaitė A, Novák O, Pěnčík A. Metabolic profiles of 2-oxindole-3-acetyl-amino acid conjugates differ in various plant species. FRONTIERS IN PLANT SCIENCE 2023; 14:1217421. [PMID: 37534287 PMCID: PMC10390838 DOI: 10.3389/fpls.2023.1217421] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 06/28/2023] [Indexed: 08/04/2023]
Abstract
Auxins are a group of phytohormones that play a key role in plant growth and development, mainly presented by the major member of the family - indole-3-acetic acid (IAA). The levels of free IAA are regulated, in addition to de novo biosynthesis, by irreversible oxidative catabolism and reversible conjugation with sugars and amino acids. These conjugates, which serve as inactive storage forms of auxin and/or degradation intermediates, can also be oxidized to form 2-oxindole-3-acetyl-1-O-ß-d-glucose (oxIAA-glc) and oxIAA-amino acids (oxIAA-AAs). Until now, only oxIAA conjugates with aspartate and glutamate have been identified in plants. However, detailed information on the endogenous levels of these and other putative oxIAA-amino acid conjugates in various plant species and their spatial distribution is still not well understood but is finally getting more attention. Herein, we identified and characterized two novel naturally occurring auxin metabolites in plants, namely oxIAA-leucine (oxIAA-Leu) and oxIAA-phenylalanine (oxIAA-Phe). Subsequently, a new liquid chromatography-tandem mass spectrometry method was developed for the determination of a wide range of IAA metabolites. Using this methodology, the quantitative determination of IAA metabolites including newly characterized oxIAA conjugates in roots, shoots and cotyledons of four selected plant models - Arabidopsis thaliana, pea (Pisum sativum L.), wheat (Triticum aestivum L.) and maize (Zea mays L.) was performed to compare auxin metabolite profiles. The distribution of various groups of auxin metabolites differed notably among the studied species as well as their sections. For example, oxIAA-AA conjugates were the major metabolites found in pea, while oxIAA-glc dominated in Arabidopsis. We further compared IAA metabolite levels in plants harvested at different growth stages to monitor the dynamics of IAA metabolite profiles during early seedling development. In general, our results show a great diversity of auxin inactivation pathways among angiosperm plants. We believe that our findings will greatly contribute to a better understanding of IAA homeostasis.
Collapse
Affiliation(s)
- Pavel Hladík
- Laboratory of Growth Regulators, Institute of Experimental Botany, The Czech Academy of Sciences & Faculty of Science, Palacký University, Olomouc, Czechia
| | - Ivan Petřík
- Laboratory of Growth Regulators, Institute of Experimental Botany, The Czech Academy of Sciences & Faculty of Science, Palacký University, Olomouc, Czechia
| | - Asta Žukauskaitė
- Department of Chemical Biology, Faculty of Science, Palacký University, Olomouc, Czechia
| | - Ondřej Novák
- Laboratory of Growth Regulators, Institute of Experimental Botany, The Czech Academy of Sciences & Faculty of Science, Palacký University, Olomouc, Czechia
| | - Aleš Pěnčík
- Laboratory of Growth Regulators, Institute of Experimental Botany, The Czech Academy of Sciences & Faculty of Science, Palacký University, Olomouc, Czechia
| |
Collapse
|
12
|
Fan S, Xu Y, Bai M, Luo F, Yu J, Yang G. Integrated Transcriptome and Metabolome Analysis Revealed the Causal Agent of Primary Bud Necrosis in 'Summer Black' Grape. Int J Mol Sci 2023; 24:10410. [PMID: 37373557 DOI: 10.3390/ijms241210410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/13/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
Primary bud necrosis of grape buds is a physiological disorder that leads to decreased berry yield and has a catastrophic impact on the double cropping system in sub-tropical areas. The pathogenic mechanisms and potential solutions remain unknown. In this study, the progression and irreversibility patterns of primary bud necrosis in 'Summer Black' were examined via staining and transmission electron microscopy observation. Primary bud necrosis was initiated at 60 days after bud break and was characterized by plasmolysis, mitochondrial swelling, and severe damage to other organelles. To reveal the underlying regulatory networks, winter buds were collected during primary bud necrosis progression for integrated transcriptome and metabolome analysis. The accumulation of reactive oxygen species and subsequent signaling cascades disrupted the regulation systems for cellular protein quality. ROS cascade reactions were related to mitochondrial stress that can lead to mitochondrial dysfunction, lipid peroxidation causing damage to membrane structure, and endoplasmic reticulum stress leading to misfolded protein aggregates. All these factors ultimately resulted in primary bud necrosis. Visible tissue browning was associated with the oxidation and decreased levels of flavonoids during primary bud necrosis, while the products of polyunsaturated fatty acids and stilbenes exhibited an increasing trend, leading to a shift in carbon flow from flavonoids to stilbene. Increased ethylene may be closely related to primary bud necrosis, while auxin accelerated cell growth and alleviated necrosis by co-chaperone VvP23-regulated redistribution of auxin in meristem cells. Altogether, this study provides important clues for further study on primary bud necrosis.
Collapse
Affiliation(s)
- Shaogang Fan
- College of Horticulture, Hunan Agricultural University, Changsha 410128, China
| | - Yanshuai Xu
- College of Horticulture, Hunan Agricultural University, Changsha 410128, China
| | - Miao Bai
- College of Horticulture, Hunan Agricultural University, Changsha 410128, China
| | - Feixiong Luo
- College of Horticulture, Hunan Agricultural University, Changsha 410128, China
| | - Jun Yu
- College of Horticulture, Hunan Agricultural University, Changsha 410128, China
| | - Guoshun Yang
- College of Horticulture, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
13
|
Wang B, Wang J, Yang T, Wang J, Dai Q, Zhang F, Xi R, Yu Q, Li N. The transcriptional regulatory network of hormones and genes under salt stress in tomato plants ( Solanum lycopersicum L.). FRONTIERS IN PLANT SCIENCE 2023; 14:1115593. [PMID: 36814758 PMCID: PMC9939653 DOI: 10.3389/fpls.2023.1115593] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 01/12/2023] [Indexed: 06/18/2023]
Abstract
Salt stress has become one of the main limiting factors affecting the normal growth and development of tomatoes as well as fruit quality and yields. To further reveal the regulatory relationships between tomato hormones under salt stress, the interaction between hormones and TF and the genome-wide gene interaction network were analyzed and constructed. After salt treatment, the levels of ABA, SA, and JA were significantly increased, the levels of GA were decreased, and IAA and tZ showed a trend of first increasing and then decreasing. The expression patterns of hormone biosynthesis and signal transduction related genes were analyzed based on RNA-seq analysis, the co-expression network of hormones and genome-wide co-expression networks were constructed using weighted gene co-expression network analysis (WGCNA). The expression patterns of specific transcription factors under salt stress were also systematically analyzed and identified 20 hormone-related candidate genes associated with salt stress. In conclusion, we first revealed the relationship between hormones and genes in tomatoes under salt stress based on hormone and transcriptome expression profiles and constructed a gene regulatory network. A transcriptional regulation model of tomato consisted of six types of hormones was also proposed. Our study provided valuable insights into the molecular mechanisms regulating salt tolerance in tomatoes.
Collapse
Affiliation(s)
- Baike Wang
- Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, Xinjiang, China
| | - Juan Wang
- Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, Xinjiang, China
| | - Tao Yang
- Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, Xinjiang, China
| | - Jinxin Wang
- Research Institute of Soil, Fertilizer and Agricultural Water Conservation, Xinjiang Academy of Agricultural Sciences, Urumqi, Xinjiang, China
| | - Qi Dai
- Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, Xinjiang, China
| | - Fulin Zhang
- Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, Xinjiang, China
- College of Horticulture, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| | - Rui Xi
- Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, Xinjiang, China
- College of Horticulture, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| | - Qinghui Yu
- Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, Xinjiang, China
| | - Ning Li
- Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, Xinjiang, China
| |
Collapse
|
14
|
Liu Y, Mu C, Du D, Yang Y, Li L, Xuan W, Kircher S, Palme K, Li X, Li R. Alkaline stress reduces root waving by regulating PIN7 vacuolar transport. FRONTIERS IN PLANT SCIENCE 2022; 13:1049144. [PMID: 36582637 PMCID: PMC9792863 DOI: 10.3389/fpls.2022.1049144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
Root development and plasticity are assessed via diverse endogenous and environmental cues, including phytohormones, nutrition, and stress. In this study, we observed that roots in model plant Arabidopsis thaliana exhibited waving and oscillating phenotypes under normal conditions but lost this pattern when subjected to alkaline stress. We later showed that alkaline treatment disturbed the auxin gradient in roots and increased auxin signal in columella cells. We further demonstrated that the auxin efflux transporter PIN-FORMED 7 (PIN7) but not PIN3 was translocated to vacuole lumen under alkaline stress. This process is essential for root response to alkaline stress because the pin7 knockout mutants retained the root waving phenotype. Moreover, we provided evidence that the PIN7 vacuolar transport might not depend on the ARF-GEFs but required the proper function of an ESCRT subunit known as FYVE domain protein required for endosomal sorting 1 (FREE1). Induced silencing of FREE1 disrupted the vacuolar transport of PIN7 and reduced sensitivity to alkaline stress, further highlighting the importance of this cellular process. In conclusion, our work reveals a new role of PIN7 in regulating root morphology under alkaline stress.
Collapse
Affiliation(s)
- Yu Liu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
- Sino-German Joint Research Center on Agricultural Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, China
| | - Chenglin Mu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, China
- Sino-German Joint Research Center on Agricultural Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, China
| | - Dongdong Du
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, China
- Sino-German Joint Research Center on Agricultural Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, China
| | - Yi Yang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, China
- Sino-German Joint Research Center on Agricultural Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, China
| | - Lixin Li
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, China
| | - Wei Xuan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and MOA Key Laboratory of Plant Nutrition and Fertilization in Lower‐Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing, China
| | - Stefan Kircher
- Institute of Biology II/Molecular Plant Physiology, Faculty of Biology, Albert-Ludwigs-University of Freiburg, Schänzlestr. 1, Freiburg, Germany
| | - Klaus Palme
- Sino-German Joint Research Center on Agricultural Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, China
- Institute of Biology II/Molecular Plant Physiology, Faculty of Biology, Albert-Ludwigs-University of Freiburg, Schänzlestr. 1, Freiburg, Germany
| | - Xugang Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, China
- Sino-German Joint Research Center on Agricultural Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, China
- Institute of Biology II/Molecular Plant Physiology, Faculty of Biology, Albert-Ludwigs-University of Freiburg, Schänzlestr. 1, Freiburg, Germany
| | - Ruixi Li
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
15
|
Liu T, Salguero P, Petek M, Martinez-Mira C, Balzano-Nogueira L, Ramšak Ž, McIntyre L, Gruden K, Tarazona S, Conesa A. PaintOmics 4: new tools for the integrative analysis of multi-omics datasets supported by multiple pathway databases. Nucleic Acids Res 2022; 50:W551-W559. [PMID: 35609982 PMCID: PMC9252773 DOI: 10.1093/nar/gkac352] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 04/22/2022] [Accepted: 04/25/2022] [Indexed: 01/02/2023] Open
Abstract
PaintOmics is a web server for the integrative analysis and visualisation of multi-omics datasets using biological pathway maps. PaintOmics 4 has several notable updates that improve and extend analyses. Three pathway databases are now supported: KEGG, Reactome and MapMan, providing more comprehensive pathway knowledge for animals and plants. New metabolite analysis methods fill gaps in traditional pathway-based enrichment methods. The metabolite hub analysis selects compounds with a high number of significant genes in their neighbouring network, suggesting regulation by gene expression changes. The metabolite class activity analysis tests the hypothesis that a metabolic class has a higher-than-expected proportion of significant elements, indicating that these compounds are regulated in the experiment. Finally, PaintOmics 4 includes a regulatory omics module to analyse the contribution of trans-regulatory layers (microRNA and transcription factors, RNA-binding proteins) to regulate pathways. We show the performance of PaintOmics 4 on both mouse and plant data to highlight how these new analysis features provide novel insights into regulatory biology. PaintOmics 4 is available at https://paintomics.org/.
Collapse
Affiliation(s)
- Tianyuan Liu
- Department of Mechanical Engineering, School of Engineering, Cardiff University, Cardiff, UK
| | - Pedro Salguero
- Department of Applied Statistics, Operations Research and Quality, Universitat Politècnica de València, Valencia, Spain
| | - Marko Petek
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| | | | | | - Živa Ramšak
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Lauren McIntyre
- Department of Molecular Genetics and Microbiology, Genetics Institute, University of Florida, Gainesville, USA
| | - Kristina Gruden
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Sonia Tarazona
- Department of Applied Statistics, Operations Research and Quality, Universitat Politècnica de València, Valencia, Spain
| | - Ana Conesa
- Institute for Integrative Systems Biology, Spanish National Research Council (CSIC), Paterna, Spain
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, USA
| |
Collapse
|
16
|
Sharma M, Sharma M, Jamsheer K M, Laxmi A. Jasmonic acid coordinates with light, glucose and auxin signalling in regulating branching angle of Arabidopsis lateral roots. PLANT, CELL & ENVIRONMENT 2022; 45:1554-1572. [PMID: 35147228 DOI: 10.1111/pce.14290] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 09/27/2021] [Accepted: 09/27/2021] [Indexed: 06/14/2023]
Abstract
The role of jasmonates (JAs) in primary root growth and development and in plant response to external stimuli is already known. However, its role in lateral root (LR) development remains to be explored. Our work identified methyl jasmonate (MeJA) as a key phytohormone in determining the branching angle of Arabidopsis LRs. MeJA inclines the LRs to a more vertical orientation, which was dependent on the canonical JAR1-COI1-MYC2,3,4 signalling. Our work also highlights the dual roles of light in governing LR angle. Light signalling enhances JA biosynthesis, leading to erect root architecture; whereas, glucose (Glc) induces wider branching angles. Combining physiological and molecular assays, we revealed that Glc antagonises the MeJA response via TARGET OF RAPAMYCIN (TOR) signalling. Moreover, physiological assays using auxin mutants, MYC2-mediated transcriptional activation of LAZY2, LAZY4 and auxin biosynthetic gene CYP79B2, and asymmetric distribution of DR5::GFP and PIN2::GFP pinpointed the role of an intact auxin machinery required by MeJA for vertical growth of LRs. We also demonstrated that light perception and signalling are indispensable for inducing vertical angles by MeJA. Thus, our investigation highlights antagonism between light and Glc signalling and how they interact with JA-auxin signals to optimise the branching angle of LRs.
Collapse
Affiliation(s)
- Manvi Sharma
- National Institute of Plant Genome Research, New Delhi, India
| | - Mohan Sharma
- National Institute of Plant Genome Research, New Delhi, India
| | | | - Ashverya Laxmi
- National Institute of Plant Genome Research, New Delhi, India
| |
Collapse
|
17
|
An Arabidopsis mutant deficient in phosphatidylinositol-4-phosphate kinases ß1 and ß2 displays altered auxin-related responses in roots. Sci Rep 2022; 12:6947. [PMID: 35484296 PMCID: PMC9051118 DOI: 10.1038/s41598-022-10458-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 04/04/2022] [Indexed: 11/11/2022] Open
Abstract
Phosphatidylinositol 4-kinases (PI4Ks) are the first enzymes that commit phosphatidylinositol into the phosphoinositide pathway. Here, we show that Arabidopsis thaliana seedlings deficient in PI4Kβ1 and β2 have several developmental defects including shorter roots and unfinished cytokinesis. The pi4kβ1β2 double mutant was insensitive to exogenous auxin concerning inhibition of root length and cell elongation; it also responded more slowly to gravistimulation. The pi4kß1ß2 root transcriptome displayed some similarities to a wild type plant response to auxin. Yet, not all the genes displayed such a constitutive auxin-like response. Besides, most assessed genes did not respond to exogenous auxin. This is consistent with data with the transcriptional reporter DR5-GUS. The content of bioactive auxin in the pi4kß1ß2 roots was similar to that in wild-type ones. Yet, an enhanced auxin-conjugating activity was detected and the auxin level reporter DII-VENUS did not respond to exogenous auxin in pi4kß1ß2 mutant. The mutant exhibited altered subcellular trafficking behavior including the trapping of PIN-FORMED 2 protein in rapidly moving vesicles. Bigger and less fragmented vacuoles were observed in pi4kß1ß2 roots when compared to the wild type. Furthermore, the actin filament web of the pi4kß1ß2 double mutant was less dense than in wild-type seedling roots, and less prone to rebuilding after treatment with latrunculin B. A mechanistic model is proposed in which an altered PI4K activity leads to actin filament disorganization, changes in vesicle trafficking, and altered auxin homeostasis and response resulting in a pleiotropic root phenotypes.
Collapse
|
18
|
Sathasivam M, Swamy BK, Krishnan K, Sharma R, Nayak SN, Uppar DS, Hosamani R. Insights into the molecular basis of hypergravity-induced root growth phenotype in bread wheat (Triticum aestivum L.). Genomics 2022; 114:110307. [PMID: 35143884 DOI: 10.1016/j.ygeno.2022.110307] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 01/23/2022] [Accepted: 02/01/2022] [Indexed: 01/20/2023]
Abstract
Hypergravity is a condition where the force of gravity exceeds that on the surface of the Earth and can be simulated by centrifugation. Previously, a significant increase in root growth phenotype was observed when wheat seeds were exposed to hypergravity (10 g for 12 h). In the present study, we investigated the molecular basis of this change through root transcriptome. The data revealed a total of 3765 up-regulated and 2102 down-regulated transcripts in response to hypergravity. GO enrichment analysis revealed hormonal responses, cell division, and cell-wall-related terms were significantly enriched in hypergravity. The increased isoform level expression of transcripts involved in auxin biosynthesis, transport, and signaling was observed. Further, enhanced expression of cell division transcripts and down-regulation of cell number regulator genes suggests rapid cell division. Overexpression of cellulose and hemicellulose biosynthesis transcripts suggests demand for cell-wall constituents. Collectively, this study identified candidate genes associated with hypergravity-induced enhanced root growth.
Collapse
Affiliation(s)
- Malarvizhi Sathasivam
- Institute of Agricultural Biotechnology (IABT), University of Agricultural Sciences, Dharwad, Karnataka 580005, India
| | - Basavalingayya K Swamy
- Institute of Agricultural Biotechnology (IABT), University of Agricultural Sciences, Dharwad, Karnataka 580005, India
| | - Kushagra Krishnan
- School of Computational & Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Rita Sharma
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani Campus, Rajasthan 333031, India
| | - Spurthi N Nayak
- Institute of Agricultural Biotechnology (IABT), University of Agricultural Sciences, Dharwad, Karnataka 580005, India
| | - D S Uppar
- Department of Seed Science and Technology, University of Agricultural Sciences, Dharwad, Karnataka 580005, India
| | - Ravikumar Hosamani
- Institute of Agricultural Biotechnology (IABT), University of Agricultural Sciences, Dharwad, Karnataka 580005, India.
| |
Collapse
|
19
|
Lu S, Wang P, Nai G, Li Y, Su Y, Liang G, Chen B, Mao J. Insight into VvGH3 genes evolutional relationship from monocotyledons and dicotyledons reveals that VvGH3-9 negatively regulates the drought tolerance in transgenic Arabidopsis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 172:70-86. [PMID: 35033858 DOI: 10.1016/j.plaphy.2022.01.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 06/14/2023]
Abstract
The Gretchen Hagen3 (GH3) gene family is necessary for growth and development in plants and is regulated by osmotic stress and various hormones. Although it has been reported in many plants, the evolutionary relationship of GH3 in grape has not been systematically analyzed from the perspective of monocotyledonous and dicotyledonous. This study identified and analyzed 188 GH3 genes, which were distinctly divided into 9 subgroups, and found these subgroups have obviously been clustered between monocotyledonous and dicotyledonous. VvGH3-x genes had higher synteny with apple and Arabidopsis than that of rice, and the average Ka/Ks value in monocotyledons was higher than that of dicotyledons. The codon usage index showed that monocotyledons preferred to use G3s, C3s, and GC3s, while dicotyledons preferred to use A3s and T3s. The GH3 genes of grape exhibited different expression patterns in various tissues, different abiotic stresses, and hormonal treatments. The subcellular localization showed that VvGH3-9 was expressed in the nucleus and cytoplasm. Additionally, under 20% PEG treatment, the IAA and ABA contents, relative expression levels of VvGH3-9, relative electrical conductivity (REC), as well as MDA were obviously increased in VvGH3-9 overexpression lines at 72 h. In contrast, compared to WT, the contents of proline and H2O2, the activities of POD, SOD, and CAT, and the relative expression levels of drought responsive genes were significantly decreased in overexpressing lines. Collectively, this study provided helpful insight for the evolution of GH3 genes and presented some possibilities to study the functions of GH3 genes in monocotyledons and dicotyledons.
Collapse
Affiliation(s)
- Shixiong Lu
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - Ping Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - Guojie Nai
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - Yanmei Li
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - Yanli Su
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - Guoping Liang
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - Baihong Chen
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - Juan Mao
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China.
| |
Collapse
|
20
|
Li M, Yu G, Cao C, Liu P. Metabolism, signaling, and transport of jasmonates. PLANT COMMUNICATIONS 2021; 2:100231. [PMID: 34746762 PMCID: PMC8555440 DOI: 10.1016/j.xplc.2021.100231] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/22/2021] [Accepted: 08/09/2021] [Indexed: 05/16/2023]
Abstract
Biosynthesis/metabolism, perception/signaling, and transport are three essential aspects of the actions of phytohormones. Jasmonates (JAs), including jasmonic acid (JA) and related oxylipins, are implicated in the regulation of a range of ecological interactions, as well as developmental programs to integrate these interactions. Jasmonoyl-isoleucine (JA-Ile) is the most bioactive JAs, and perception of JA-Ile by its coreceptor, the Skp1-Cullin1-F-box-type (SCF) protein ubiquitin ligase complex SCFCOI1-JAZ, in the nucleus derepresses the transcriptional repression of target genes. The biosynthesis and metabolism of JAs occur in the plastid, peroxisome, cytosol, endoplasmic reticulum, and vacuole, whereas sensing of JA-Ile levels occurs in the nucleus. It is increasingly apparent that a number of transporters, particularly members of the jasmonates transporter (JAT) family, located at endomembranes as well as the plasma membrane, constitute a network for modulating and coordinating the metabolic flux and signaling of JAs. In this review, we discuss recent advances in the metabolism, signaling, and especially the transport of JAs, focusing on intracellular compartmentation of these processes. The roles of transporter-mediated cell-cell transport in driving long-distance transport and signaling of JAs are also discussed.
Collapse
Affiliation(s)
- Mengya Li
- Department of Ecology, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, P. R. China
| | - Guanghui Yu
- Department of Ecology, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, P. R. China
| | - Congli Cao
- Department of Ecology, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, P. R. China
| | - Pei Liu
- Department of Ecology, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, P. R. China
- Corresponding author
| |
Collapse
|
21
|
Godoy F, Kühn N, Muñoz M, Marchandon G, Gouthu S, Deluc L, Delrot S, Lauvergeat V, Arce-Johnson P. The role of auxin during early berry development in grapevine as revealed by transcript profiling from pollination to fruit set. HORTICULTURE RESEARCH 2021; 8:140. [PMID: 34127649 PMCID: PMC8203632 DOI: 10.1038/s41438-021-00568-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 04/06/2021] [Accepted: 04/12/2021] [Indexed: 05/07/2023]
Abstract
Auxin is a key phytohormone that modulates fruit formation in many fleshy fruits through the regulation of cell division and expansion. Auxin content rapidly increases after pollination and the manipulation in its levels may lead to the parthenocarpic development. ln Vitis vinifera L., little is known about the early fruit development that encompasses from pollination to fruit set. Pollination/fertilization events trigger fruit formation, and auxin treatment mimics their effect in grape berry set. However, the role of auxin in this process at the molecular level is not well understood. To elucidate the participation of auxin in grapevine fruit formation, morphological, reproductive, and molecular events from anthesis to fruit set were described in sequential days after pollination. Exploratory RNA-seq analysis at four time points from anthesis to fruit set revealed that the highest percentage of genes induced/repressed within the hormone-related gene category were auxin-related genes. Transcript profiling showed significant transcript variations in auxin signaling and homeostasis-related genes during the early fruit development. Indole acetic acid and several auxin metabolites were present during this period. Finally, application of an inhibitor of auxin action reduced cell number and the mesocarp diameter, similarly to unpollinated berries, further confirming the key role of auxin during early berry development. This work sheds light into the molecular features of the initial fruit development and highlights the auxin participation during this stage in grapevine.
Collapse
Affiliation(s)
- Francisca Godoy
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda 340, Santiago, Chile
| | - Nathalie Kühn
- Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, 2340025, Valparaíso, Chile
| | - Mindy Muñoz
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda 340, Santiago, Chile
| | - Germán Marchandon
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda 340, Santiago, Chile
| | | | - Laurent Deluc
- Department of Horticulture, Oregon State University, Corvallis, OR, 97331, USA
| | - Serge Delrot
- UMR Ecophysiologie et Génomique Fonctionnelle de la Vigne, ISVV, Université de Bordeaux, Villenave d´Ornon, France
| | - Virginie Lauvergeat
- UMR Ecophysiologie et Génomique Fonctionnelle de la Vigne, ISVV, Université de Bordeaux, Villenave d´Ornon, France
| | - Patricio Arce-Johnson
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda 340, Santiago, Chile.
| |
Collapse
|
22
|
Oosterbeek M, Lozano-Torres JL, Bakker J, Goverse A. Sedentary Plant-Parasitic Nematodes Alter Auxin Homeostasis via Multiple Strategies. FRONTIERS IN PLANT SCIENCE 2021; 12:668548. [PMID: 34122488 PMCID: PMC8193132 DOI: 10.3389/fpls.2021.668548] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 05/03/2021] [Indexed: 06/12/2023]
Abstract
Sedentary endoparasites such as cyst and root-knot nematodes infect many important food crops and are major agro-economical pests worldwide. These plant-parasitic nematodes exploit endogenous molecular and physiological pathways in the roots of their host to establish unique feeding structures. These structures function as highly active transfer cells and metabolic sinks and are essential for the parasites' growth and reproduction. Plant hormones like indole-3-acetic acid (IAA) are a fundamental component in the formation of these feeding complexes. However, their underlying molecular and biochemical mechanisms are still elusive despite recent advances in the field. This review presents a comprehensive overview of known functions of various auxins in plant-parasitic nematode infection sites, based on a systematic analysis of current literature. We evaluate multiple aspects involved in auxin homeostasis in plants, including anabolism, catabolism, transport, and signalling. From these analyses, a picture emerges that plant-parasitic nematodes have evolved multiple strategies to manipulate auxin homeostasis to establish a successful parasitic relationship with their host. Additionally, there appears to be a potential role for auxins other than IAA in plant-parasitic nematode infections that might be of interest to be further elucidated.
Collapse
|
23
|
Sharma M, Singh D, Saksena HB, Sharma M, Tiwari A, Awasthi P, Botta HK, Shukla BN, Laxmi A. Understanding the Intricate Web of Phytohormone Signalling in Modulating Root System Architecture. Int J Mol Sci 2021; 22:ijms22115508. [PMID: 34073675 PMCID: PMC8197090 DOI: 10.3390/ijms22115508] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/11/2021] [Accepted: 05/13/2021] [Indexed: 12/12/2022] Open
Abstract
Root system architecture (RSA) is an important developmental and agronomic trait that is regulated by various physical factors such as nutrients, water, microbes, gravity, and soil compaction as well as hormone-mediated pathways. Phytohormones act as internal mediators between soil and RSA to influence various events of root development, starting from organogenesis to the formation of higher order lateral roots (LRs) through diverse mechanisms. Apart from interaction with the external cues, root development also relies on the complex web of interaction among phytohormones to exhibit synergistic or antagonistic effects to improve crop performance. However, there are considerable gaps in understanding the interaction of these hormonal networks during various aspects of root development. In this review, we elucidate the role of different hormones to modulate a common phenotypic output, such as RSA in Arabidopsis and crop plants, and discuss future perspectives to channel vast information on root development to modulate RSA components.
Collapse
|
24
|
Hao S, Su W, Li QQ. Adaptive roots of mangrove Avicennia marina: Structure and gene expressions analyses of pneumatophores. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 757:143994. [PMID: 33316524 DOI: 10.1016/j.scitotenv.2020.143994] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 11/15/2020] [Accepted: 11/15/2020] [Indexed: 06/12/2023]
Abstract
The Avicennia marina is a mangrove species widely distributed throughout the tropical and subtropical intertidal wetlands. To adapt to adverse tidal waves and hypoxia environments, A. marina has evolved a sophisticated root system to better secure itself on the muddy soil with downward-grown anchor roots and upward-grown aerial roots, called pneumatophores. However, the process behind the development of a negative-gravitropic pneumatophore is not understood. Paraffin sections reveal anatomical differences among the shoots, anchor roots, and gas exchanging pneumatophores, clearly reflecting their functional diversions. The pneumatophore, in particular, contains abundant aerenchyma tissues and a thin cap structure at the tip. Transcriptomic analyses of both anchor roots and pneumatophores were performed to elucidate gene expression dynamics during the formation of pneumatophores. The results show that the plant hormone auxin regulates multiple different root initiations. The auxin related gene IAA19 plays a key role in pneumatophore development while the interaction of ethylene and abscisic acid is important for aerenchyma formation. Moreover, the molecular mechanisms behind pneumatophore anti-gravitropic growth may be regulated by the reduced strength of the statolith formation signaling pathway. These results shed light on the mechanistic understanding of pneumatophore formation in mangrove plants.
Collapse
Affiliation(s)
- Saiqi Hao
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, China
| | - Wenyue Su
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, China; Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Qingshun Q Li
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, China; Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA 91766, USA.
| |
Collapse
|
25
|
Devi J, Kumar R, Singh K, Gehlot A, Bhushan S, Kumar S. In vitro adventitious roots: a non-disruptive technology for the production of phytoconstituents on the industrial scale. Crit Rev Biotechnol 2021; 41:564-579. [PMID: 33586555 DOI: 10.1080/07388551.2020.1869690] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The current trends of consumer-driven demands for natural therapeutics and the availability of evidence-based phytopharmaceuticals from traditional knowledge has once again brought the medicinal plants into forefront of health. In 2019, World Health Organization global report on traditional and complementary medicine has also substantiated the revival of herbal medicine including its convergence with conventional medicine for the management and prevention of diseases. It means these industries need plenty of plant materials to meet the unprecedented demands of herbal formulations. However, it is pertinent to mention here that around 70-80% medicinal plants are sourced from the wild and most of such highly acclaimed plants are listed under Rare, Endangered and Threatened species by IUCN. Additionally, over 30% traditional health formulations are based on underground plant parts, which lead to the uprooting of plants. Overharvesting from limited plant populations, meager conventional cultivation and a rising fondness for natural products exerting enormous pressure on natural habitats. Therefore, the nondestructive means of phytochemical production employing biotechnological tools could be used for sustainable production and consumption patterns. In recent years, a number of reports described the use of adventitious roots induced under in vitro conditions for the extraction of phytochemicals on a sustainable basis. In this article, efforts are made to review recent developments in this area as well as understand the induction mechanisms of adventitious roots, their in vitro cultivation, probable factors that affect the growth and metabolite production, and assess the possibility of industrial scale production to meet the rising demands of natural herbs.
Collapse
Affiliation(s)
- Jyoti Devi
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Roushan Kumar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Khem Singh
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, India
| | - Ashok Gehlot
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, India
| | - Shashi Bhushan
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.,Dietetics and Nutrition Technology, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, India
| | - Sanjay Kumar
- CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, India
| |
Collapse
|
26
|
Li SW. Molecular Bases for the Regulation of Adventitious Root Generation in Plants. FRONTIERS IN PLANT SCIENCE 2021; 12:614072. [PMID: 33584771 PMCID: PMC7876083 DOI: 10.3389/fpls.2021.614072] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 01/08/2021] [Indexed: 05/08/2023]
Abstract
The formation of adventitious roots (ARs) is an ecologically and economically important developmental process in plants. The evolution of AR systems is an important way for plants to cope with various environmental stresses. This review focuses on identified genes that have known to regulate the induction and initiation of ARs and offers an analysis of this process at the molecular level. The critical genes involved in adventitious rooting are the auxin signaling-responsive genes, including the AUXIN RESPONSE FACTOR (ARF) and the LATERAL ORGAN BOUNDARIES-DOMAIN (LOB) gene families, and genes associated with auxin transport and homeostasis, the quiescent center (QC) maintenance, and the root apical meristem (RAM) initiation. Several genes involved in cell wall modulation are also known to be involved in the regulation of adventitious rooting. Furthermore, the molecular processes that play roles in the ethylene, cytokinin, and jasmonic acid signaling pathways and their crosstalk modulate the generation of ARs. The crosstalk and interaction among many molecular processes generates complex networks that regulate AR generation.
Collapse
|
27
|
Liu W, Park SW. 12- oxo-Phytodienoic Acid: A Fuse and/or Switch of Plant Growth and Defense Responses? FRONTIERS IN PLANT SCIENCE 2021; 12:724079. [PMID: 34490022 PMCID: PMC8418078 DOI: 10.3389/fpls.2021.724079] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 07/19/2021] [Indexed: 05/13/2023]
Abstract
12-oxo-Phytodienoic acid (OPDA) is a primary precursor of (-)-jasmonic acid (JA), able to trigger autonomous signaling pathways that regulate a unique subset of jasmonate-responsive genes, activating and fine-tuning defense responses, as well as growth processes in plants. Recently, a number of studies have illuminated the physiol-molecular activities of OPDA signaling in plants, which interconnect the regulatory loop of photosynthesis, cellular redox homeostasis, and transcriptional regulatory networks, together shedding new light on (i) the underlying modes of cellular interfaces between growth and defense responses (e.g., fitness trade-offs or balances) and (ii) vital information in genetic engineering or molecular breeding approaches to upgrade own survival capacities of plants. However, our current knowledge regarding its mode of actions is still far from complete. This review will briefly revisit recent progresses on the roles and mechanisms of OPDA and information gaps within, which help in understanding the phenotypic and environmental plasticity of plants.
Collapse
|
28
|
Tarelkina TV, Novitskaya LL, Galibina NA, Moshchenskaya YL, Nikerova KM, Nikolaeva NN, Sofronova IN, Ivanova DS, Semenova LI. Expression Analysis of Key Auxin Biosynthesis, Transport, and Metabolism Genes of Betula pendula with Special Emphasis on Figured Wood Formation in Karelian Birch. PLANTS 2020; 9:plants9111406. [PMID: 33105649 PMCID: PMC7690449 DOI: 10.3390/plants9111406] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/19/2020] [Accepted: 10/20/2020] [Indexed: 12/31/2022]
Abstract
Auxin status in woody plants is believed to be a critical factor for the quantity and quality of the wood formed. It has been previously demonstrated that figured wood formation in Karelian birch (Betula pendula Roth var. carelica (Merckl.) Hämet-Ahti) is associated with a reduced auxin level and elevated sugar content in the differentiating xylem, but the molecular mechanisms of the abnormal xylogenesis remained largely unclear. We have identified genes involved in auxin biosynthesis (Yucca), polar auxin transport (PIN) and the conjugation of auxin with amino acids (GH3) and UDP-glucose (UGT84B1) in the B. pendula genome, and analysed their expression in trunk tissues of trees differing in wood structure. Almost all the investigated genes were overexpressed in Karelian birch trunks. Although Yucca genes were overexpressed, trunk tissues in areas developing figured grain had traits of an auxin-deficient phenotype. Overexpression of GH3s and UGT84B1 appears to have a greater effect on figured wood formation. Analysis of promoters of the differentially expressed genes revealed a large number of binding sites with various transcription factors associated with auxin and sugar signalling. These data agree with the hypothesis that anomalous figured wood formation in Karelian birch may be associated with the sugar induction of auxin conjugation.
Collapse
|
29
|
Shukla V, Lombardi L, Pencik A, Novak O, Weits DA, Loreti E, Perata P, Giuntoli B, Licausi F. Jasmonate Signalling Contributes to Primary Root Inhibition Upon Oxygen Deficiency in Arabidopsis thaliana. PLANTS 2020; 9:plants9081046. [PMID: 32824502 PMCID: PMC7464498 DOI: 10.3390/plants9081046] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/10/2020] [Accepted: 08/11/2020] [Indexed: 12/01/2022]
Abstract
Plants, including most crops, are intolerant to waterlogging, a stressful condition that limits the oxygen available for roots, thereby inhibiting their growth and functionality. Whether root growth inhibition represents a preventive measure to save energy or is rather a consequence of reduced metabolic rates has yet to be elucidated. In the present study, we gathered evidence for hypoxic repression of root meristem regulators that leads to root growth inhibition. We also explored the contribution of the hormone jasmonic acid (JA) to this process in Arabidopsis thaliana. Analysis of transcriptomic profiles, visualisation of fluorescent reporters and direct hormone quantification confirmed the activation of JA signalling under hypoxia in the roots. Further, root growth assessment in JA-related mutants in aerobic and anaerobic conditions indicated that JA signalling components contribute to active root inhibition under hypoxia. Finally, we show that the oxygen-sensing transcription factor (TF) RAP2.12 can directly induce Jasmonate Zinc-finger proteins (JAZs), repressors of JA signalling, to establish feedback inhibition. In summary, our study sheds new light on active root growth restriction under hypoxic conditions and on the involvement of the JA hormone in this process and its cross talk with the oxygen sensing machinery of higher plants.
Collapse
Affiliation(s)
- Vinay Shukla
- Plantlab, Institute of Life Sciences, Scuola Superiore Sant’Anna, 56127 Pisa, Italy; (V.S.); (D.A.W.); (P.P.); (B.G.)
| | - Lara Lombardi
- Department of Biology, University of Pisa, 56126 Pisa, Italy;
| | - Ales Pencik
- Laboratory of Growth Regulators, Faculty of Science, Palacký University & Institute of Experimental Botany, The Czech Academy of Sciences, CZ-783 71 Olomouc, Czech Republic; (A.P.); (O.N.)
| | - Ondrej Novak
- Laboratory of Growth Regulators, Faculty of Science, Palacký University & Institute of Experimental Botany, The Czech Academy of Sciences, CZ-783 71 Olomouc, Czech Republic; (A.P.); (O.N.)
| | - Daan A. Weits
- Plantlab, Institute of Life Sciences, Scuola Superiore Sant’Anna, 56127 Pisa, Italy; (V.S.); (D.A.W.); (P.P.); (B.G.)
| | - Elena Loreti
- The Institute of Agricultural Biology and Biotechnology, National Research Council, 20133 Milan, Italy;
| | - Pierdomenico Perata
- Plantlab, Institute of Life Sciences, Scuola Superiore Sant’Anna, 56127 Pisa, Italy; (V.S.); (D.A.W.); (P.P.); (B.G.)
| | - Beatrice Giuntoli
- Plantlab, Institute of Life Sciences, Scuola Superiore Sant’Anna, 56127 Pisa, Italy; (V.S.); (D.A.W.); (P.P.); (B.G.)
- Department of Biology, University of Pisa, 56126 Pisa, Italy;
| | - Francesco Licausi
- Department of Biology, University of Pisa, 56126 Pisa, Italy;
- Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, UK
- Correspondence:
| |
Collapse
|
30
|
Bheemanahalli R, Impa SM, Krassovskaya I, Vennapusa AR, Gill KS, Obata T, Jagadish SVK. Enhanced N-metabolites, ABA and IAA-conjugate in anthers instigate heat sensitivity in spring wheat. PHYSIOLOGIA PLANTARUM 2020; 169:501-514. [PMID: 32314362 DOI: 10.1111/ppl.13109] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 03/24/2020] [Accepted: 04/13/2020] [Indexed: 06/11/2023]
Abstract
Unraveling the metabolic and phytohormonal changes in anthers exposed to heat stress would help identify mechanisms regulating heat stress tolerance during the sensitive reproductive stage. Two spring wheat genotypes contrasting for heat tolerance were exposed to heat stress during heading in controlled environment chambers. Anthers were collected from main and primary spikes for metabolic and phytohormonal profiling. A significant reduction in seed set (38%), grain number (54%) and grain weight (52%) per plant was recorded in the sensitive (KSG1177) but not in the tolerant (KSG1214) genotype under heat stress compared to control. Anther metabolite accumulation did not vary quantitatively between main and primary spikes. Hierarchical clustering of the genotypes and treatments using metabolites and phytohormones revealed a distinct cluster for KSG1177 under heat stress from that of control and KSG1214. A significant increase in N-based amino acids, ABA, IAA-conjugate and a decrease in polyamines and organic acids were observed in wheat anthers exposed to heat stress. Unlike KSG1214, a significantly higher accumulation of amino acids, ABA and IAA-conjugate in anthers of the sensitive KSG1177 was recorded under heat stress. These findings provide the rationale and direction towards developing molecular markers for enhancing heat stress tolerance in wheat.
Collapse
Affiliation(s)
- Raju Bheemanahalli
- Department of Agronomy, Kansas State University, Manhattan, KS, 66506, USA
| | - Somayanda M Impa
- Department of Agronomy, Kansas State University, Manhattan, KS, 66506, USA
| | - Inga Krassovskaya
- Department of Biochemistry and Center for Plant Science Innovation, University of Nebraska, Lincoln, NE, USA
| | | | - Kulvinder S Gill
- Department of Crop and Soil Sciences, Washington State University, WA, USA
| | - Toshihiro Obata
- Department of Biochemistry and Center for Plant Science Innovation, University of Nebraska, Lincoln, NE, USA
| | | |
Collapse
|
31
|
Major IT, Guo Q, Zhai J, Kapali G, Kramer DM, Howe GA. A Phytochrome B-Independent Pathway Restricts Growth at High Levels of Jasmonate Defense. PLANT PHYSIOLOGY 2020; 183:733-749. [PMID: 32245790 PMCID: PMC7271779 DOI: 10.1104/pp.19.01335] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 03/25/2020] [Indexed: 05/20/2023]
Abstract
The plant hormone jasmonate (JA) promotes resistance to biotic stress by stimulating the degradation of JASMONATE ZIM-DOMAIN (JAZ) proteins, which relieves repression on MYC transcription factors that execute defense programs. JA-triggered depletion of JAZ proteins in Arabidopsis (Arabidopsis thaliana) is also associated with reduced growth and seed production, but the mechanisms underlying these pleiotropic growth effects remain unclear. Here, we investigated this question using an Arabidopsis JAZ-deficient mutant (jazD; jaz1-jaz7, jaz9, jaz10, and jaz 13) that exhibits high levels of defense and strong growth inhibition. Genetic suppressor screens for mutations that uncouple growth-defense tradeoffs in the jazD mutant identified nine independent causal mutations in the red-light receptor phytochrome B (phyB). Unlike the ability of the phyB mutations to completely uncouple the mild growth-defense phenotypes in a jaz mutant (jazQ) defective in JAZ1, JAZ3, JAZ4, JAZ9, and JAZ10, phyB null alleles only weakly alleviated the growth and reproductive defects in the jazD mutant. phyB-independent growth restriction of the jazD mutant was tightly correlated with upregulation of the Trp biosynthetic pathway but not with changes in central carbon metabolism. Interestingly, jazD and jazD phyB plants were insensitive to a chemical inhibitor of Trp biosynthesis, which is a phenotype previously observed in plants expressing hyperactive MYC transcription factors that cannot bind JAZ repressors. These data provide evidence that the mechanisms underlying JA-mediated growth-defense balance depend on the level of defense, and they further establish an association between growth inhibition at high levels of defense and dysregulation of Trp biosynthesis.
Collapse
Affiliation(s)
- Ian T Major
- Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824
| | - Qiang Guo
- Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824
| | - Jinling Zhai
- Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824
| | - George Kapali
- Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824
- Plant Resilience Institute, Michigan State University, East Lansing, Michigan 42284
| | - David M Kramer
- Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824
| | - Gregg A Howe
- Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824
- Plant Resilience Institute, Michigan State University, East Lansing, Michigan 42284
| |
Collapse
|
32
|
Abstract
This review focuses on the evolution of plant hormone signaling pathways. Like the chemical nature of the hormones themselves, the signaling pathways are diverse. Therefore, we focus on a group of hormones whose primary perception mechanism involves an Skp1/Cullin/F-box-type ubiquitin ligase: auxin, jasmonic acid, gibberellic acid, and strigolactone. We begin with a comparison of the core signaling pathways of these four hormones, which have been established through studies conducted in model organisms in the Angiosperms. With the advent of next-generation sequencing and advanced tools for genetic manipulation, the door to understanding the origins of hormone signaling mechanisms in plants beyond these few model systems has opened. For example, in-depth phylogenetic analyses of hormone signaling components are now being complemented by genetic studies in early diverging land plants. Here we discuss recent investigations of how basal land plants make and sense hormones. Finally, we propose connections between the emergence of hormone signaling complexity and major developmental transitions in plant evolution.
Collapse
Affiliation(s)
- Miguel A Blázquez
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, 46022 Valencia, Spain;
| | - David C Nelson
- Department of Botany and Plant Sciences, University of California, Riverside, California 92521, USA;
| | - Dolf Weijers
- Laboratory of Biochemistry, Wageningen University, 6708WE Wageningen, The Netherlands;
| |
Collapse
|
33
|
Walter A, Caputi L, O’Connor S, van Pée KH, Ludwig-Müller J. Chlorinated Auxins-How Does Arabidopsis Thaliana Deal with Them? Int J Mol Sci 2020; 21:E2567. [PMID: 32272759 PMCID: PMC7177246 DOI: 10.3390/ijms21072567] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 04/03/2020] [Indexed: 12/30/2022] Open
Abstract
Plant hormones have various functions in plants and play crucial roles in all developmental and differentiation stages. Auxins constitute one of the most important groups with the major representative indole-3-acetic acid (IAA). A halogenated derivate of IAA, 4-chloro-indole-3-acetic acid (4-Cl-IAA), has previously been identified in Pisum sativum and other legumes. While the enzymes responsible for the halogenation of compounds in bacteria and fungi are well studied, the metabolic pathways leading to the production of 4-Cl-IAA in plants, especially the halogenating reaction, are still unknown. Therefore, bacterial flavin-dependent tryptophan-halogenase genes were transformed into the model organism Arabidopsis thaliana. The type of chlorinated indole derivatives that could be expected was determined by incubating wild type A. thaliana with different Cl-tryptophan derivatives. We showed that, in addition to chlorinated IAA, chlorinated IAA conjugates were synthesized. Concomitantly, we found that an auxin conjugate synthetase (GH3.3 protein) from A. thaliana was able to convert chlorinated IAAs to amino acid conjugates in vitro. In addition, we showed that the production of halogenated tryptophan (Trp), indole-3-acetonitrile (IAN) and IAA is possible in transgenic A. thaliana in planta with the help of the bacterial halogenating enzymes. Furthermore, it was investigated if there is an effect (i) of exogenously applied Cl-IAA and Cl-Trp and (ii) of endogenously chlorinated substances on the growth phenotype of the plants.
Collapse
Affiliation(s)
- Antje Walter
- Institute of Botany, Technische Universität Dresden, 01062 Dresden, Germany;
| | - Lorenzo Caputi
- Department of Natural Product Synthesis, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany; (L.C.); (S.O.)
| | - Sarah O’Connor
- Department of Natural Product Synthesis, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany; (L.C.); (S.O.)
| | - Karl-Heinz van Pée
- Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062 Dresden, Germany;
| | - Jutta Ludwig-Müller
- Institute of Botany, Technische Universität Dresden, 01062 Dresden, Germany;
| |
Collapse
|
34
|
Ortigosa A, Fonseca S, Franco-Zorrilla JM, Fernández-Calvo P, Zander M, Lewsey MG, García-Casado G, Fernández-Barbero G, Ecker JR, Solano R. The JA-pathway MYC transcription factors regulate photomorphogenic responses by targeting HY5 gene expression. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 102:138-152. [PMID: 31755159 DOI: 10.1111/tpj.14618] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 10/28/2019] [Accepted: 11/05/2019] [Indexed: 05/18/2023]
Abstract
Jasmonates are key regulators of the balance between defence and growth in plants. However, the molecular mechanisms by which activation of defence reduces growth are not yet fully understood. Here, we analyze the role of MYC transcription factors (TFs) and jasmonic acid (JA) in photomorphogenic growth. We found that multiple myc mutants share light-associated phenotypes with mutants of the phytochrome B photoreceptor, such as delayed seed germination in the dark and long hypocotyl growth. Overexpression of MYC2 in a phyB background partially suppressed its long hypocotyl phenotype. Transcriptomic analysis of multiple myc mutants confirmed that MYCs are required for full expression of red (R) light-regulated genes, including the master regulator HY5. ChIP-seq analyses revealed that MYC2 and MYC3 bind directly to the promoter of HY5 and that HY5 gene expression and protein levels are compromised in multiple myc mutants. Altogether, our results pinpoint MYCs as photomorphogenic TFs that control phytochrome responses by activating HY5 expression. This has important implications in understanding the trade-off between growth and defence as the same TFs that activate defence responses are photomorphogenic growth regulators.
Collapse
Affiliation(s)
- Andrés Ortigosa
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), 28049, Madrid, Spain
| | - Sandra Fonseca
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), 28049, Madrid, Spain
| | - José M Franco-Zorrilla
- Genomics Unit, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), 28049, Madrid, Spain
| | - Patricia Fernández-Calvo
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), 28049, Madrid, Spain
| | - Mark Zander
- Plant Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
- Howard Hughes Medical Institute, The Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Mathew G Lewsey
- Department of Animal, Plant and Soil Science, La Trobe University, AgriBio Building, Bundoora, VIC, 3086, Australia
- Australian Research Council Research Hub for Medicinal Agriculture, Centre for AgriBioscience, La Trobe University, AgriBio Building, Bundoora, VIC, 3086, Australia
| | - Gloria García-Casado
- Genomics Unit, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), 28049, Madrid, Spain
| | - Gemma Fernández-Barbero
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), 28049, Madrid, Spain
| | - Joseph R Ecker
- Plant Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
- Howard Hughes Medical Institute, The Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Roberto Solano
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), 28049, Madrid, Spain
| |
Collapse
|
35
|
Fukushima A, Kuroha T, Nagai K, Hattori Y, Kobayashi M, Nishizawa T, Kojima M, Utsumi Y, Oikawa A, Seki M, Sakakibara H, Saito K, Ashikari M, Kusano M. Metabolite and Phytohormone Profiling Illustrates Metabolic Reprogramming as an Escape Strategy of Deepwater Rice during Partially Submerged Stress. Metabolites 2020; 10:metabo10020068. [PMID: 32075002 PMCID: PMC7074043 DOI: 10.3390/metabo10020068] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 02/03/2020] [Accepted: 02/11/2020] [Indexed: 02/02/2023] Open
Abstract
Rice varieties that can survive under submergence conditions respond to flooding either by enhancing internode elongation or by quiescence of shoot elongation. Despite extensive efforts to identify key metabolites triggered by complete submergence of rice possessing SUBMERGENCE 1 (SUB1) locus, metabolic responses of internode elongation of deepwater rice governed by the SNORKEL 1 and 2 genes remain elusive. This study investigated specific metabolomic responses under partial submergence (PS) to deepwater- (C9285) and non-deepwater rice cultivars (Taichung 65 (T65)). In addition, we examined the response in a near-isogenic line (NIL-12) that has a C9285 genomic fragment on chromosome 12 introgressed into the genetic background of T65. Under short-term submergence (0-24 h), metabolite profiles of C9285, NIL-12, and T65 were compared to extract significantly changed metabolites in deepwater rice under PS conditions. Comprehensive metabolite and phytohormone profiling revealed increases in metabolite levels in the glycolysis pathway in NIL-12 plants. Under long-term submergence (0-288 h), we found decreased amino acid levels. These metabolomic changes were opposite when compared to those in flood-tolerant rice with SUB1 locus. Auxin conjugate levels related to stress response decreased in NIL-12 lines relative to T65. Our analysis helped clarify the complex metabolic reprogramming in deepwater rice as an escape strategy.
Collapse
Affiliation(s)
- Atsushi Fukushima
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan; (A.F.); (M.K.); (T.N.); (M.K.); (Y.U.); (A.O.); (M.S.); (H.S.); (K.S.)
| | - Takeshi Kuroha
- Bioscience and Biotechnology Center, Nagoya University, Nagoya, Aichi 464-8601, Japan; (T.K.); (K.N.); (Y.H.); (M.A.)
| | - Keisuke Nagai
- Bioscience and Biotechnology Center, Nagoya University, Nagoya, Aichi 464-8601, Japan; (T.K.); (K.N.); (Y.H.); (M.A.)
| | - Yoko Hattori
- Bioscience and Biotechnology Center, Nagoya University, Nagoya, Aichi 464-8601, Japan; (T.K.); (K.N.); (Y.H.); (M.A.)
| | - Makoto Kobayashi
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan; (A.F.); (M.K.); (T.N.); (M.K.); (Y.U.); (A.O.); (M.S.); (H.S.); (K.S.)
| | - Tomoko Nishizawa
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan; (A.F.); (M.K.); (T.N.); (M.K.); (Y.U.); (A.O.); (M.S.); (H.S.); (K.S.)
| | - Mikiko Kojima
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan; (A.F.); (M.K.); (T.N.); (M.K.); (Y.U.); (A.O.); (M.S.); (H.S.); (K.S.)
| | - Yoshinori Utsumi
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan; (A.F.); (M.K.); (T.N.); (M.K.); (Y.U.); (A.O.); (M.S.); (H.S.); (K.S.)
| | - Akira Oikawa
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan; (A.F.); (M.K.); (T.N.); (M.K.); (Y.U.); (A.O.); (M.S.); (H.S.); (K.S.)
- Faculty of Agriculture, Yamagata University, Tsuruoka, Yamagata 997-8555, Japan
| | - Motoaki Seki
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan; (A.F.); (M.K.); (T.N.); (M.K.); (Y.U.); (A.O.); (M.S.); (H.S.); (K.S.)
| | - Hitoshi Sakakibara
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan; (A.F.); (M.K.); (T.N.); (M.K.); (Y.U.); (A.O.); (M.S.); (H.S.); (K.S.)
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Kazuki Saito
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan; (A.F.); (M.K.); (T.N.); (M.K.); (Y.U.); (A.O.); (M.S.); (H.S.); (K.S.)
- Graduate School of Pharmaceutical Sciences, Chiba University, Chuo-ku, Chiba 263-8522, Japan
| | - Motoyuki Ashikari
- Bioscience and Biotechnology Center, Nagoya University, Nagoya, Aichi 464-8601, Japan; (T.K.); (K.N.); (Y.H.); (M.A.)
| | - Miyako Kusano
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan; (A.F.); (M.K.); (T.N.); (M.K.); (Y.U.); (A.O.); (M.S.); (H.S.); (K.S.)
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
- Tsukuba Plant Innovation Research Center, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
- Correspondence:
| |
Collapse
|
36
|
Recent Advances in Plant Chemical Biology of Jasmonates. Int J Mol Sci 2020; 21:ijms21031124. [PMID: 32046227 PMCID: PMC7036767 DOI: 10.3390/ijms21031124] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/04/2020] [Accepted: 02/06/2020] [Indexed: 11/29/2022] Open
Abstract
Lipid-derived plant hormone jasmonates are implicated in plant growth, reproductive performance, senescence, secondary metabolite productions, and defense against both necrotrophic pathogens and feeding insects. A major jasmonate is (+)-7-iso-jasmonoyl-l-isoleucine (JA-Ile), which is perceived by the unique COI1-JAZ coreceptor system. Recent advances in plant chemical biology have greatly informed the bioscience of jasmonate, including the development of chemical tools such as the antagonist COR-MO; the agonist NOPh; and newly developed jasmonates, including JA-Ile-macrolactone and 12-OH-JA-Ile. This review article summarizes the current status of plant chemical biology as it pertains to jasmonates, and offers some perspectives for the future.
Collapse
|
37
|
Lakehal A, Ranjan A, Bellini C. Multiple Roles of Jasmonates in Shaping Rhizotaxis: Emerging Integrators. Methods Mol Biol 2020; 2085:3-22. [PMID: 31734913 DOI: 10.1007/978-1-0716-0142-6_1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The root system and its architecture enormously contribute to plant survival and adaptation to the environment. Depending on the intrinsic genetic information and the surrounding rhizosphere, plants develop a highly plastic root system, which is a critical determinant for survival. Plant root system, which includes primary root (PR), lateral roots (LR) and adventitious roots (AR), is shaped by tightly controlled developmental programs. Phytohormones are the main signaling components that orchestrate and coordinate the genetic information and the external stimuli to shape the root system patterning or rhizotaxis. Besides their role in plant stress responses and defense against herbivory and pathogen attacks, jasmonic acid and its derivatives, including the receptor-active conjugate jasmonoyl-L-isoleucine (JA-Ile), emerge as potential regulators of rhizotaxis. In this chapter, we summarize and discuss the recent progress achieved during the recent years to understand the JA-mediated genetic and molecular networks guiding PR, LR, and AR initiation. We highlight the role of JAs as critical integrators in shaping rhizotaxis.
Collapse
Affiliation(s)
- Abdellah Lakehal
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå, Sweden.
| | - Alok Ranjan
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå, Sweden
| | - Catherine Bellini
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå, Sweden. .,Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, France.
| |
Collapse
|
38
|
Gan Z, Fei L, Shan N, Fu Y, Chen J. Identification and Expression Analysis of Gretchen Hagen 3 (GH3) in Kiwifruit ( Actinidia chinensis) During Postharvest Process. PLANTS 2019; 8:plants8110473. [PMID: 31698719 PMCID: PMC6918289 DOI: 10.3390/plants8110473] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 10/26/2019] [Accepted: 11/05/2019] [Indexed: 11/16/2022]
Abstract
In plants, the Gretchen GH3 (GH3) protein is involved in free auxin (IAA) and amino acid conjugation, thus controlling auxin homeostasis. To date, many GH3 gene families have been identified from different plant species. However, the GH3 gene family in kiwifruit (Actinidia chinensis) has not been reported. In this study, 12 AcGH3 genes were identified, phylogenetic analysis of AtGH3 (Arabidopsis), SlGH3 (Solanum lycopersicum), and AcGH3 provided insights into various orthologous relationships among these proteins, which were categorized into three groups. Expression analysis of AcGH3 genes at different postharvest stages suggested limited or no role for most of the AcGH3 genes at the initiation of fruit ripening. AcGH3.1 was the only gene exhibiting ripening-associated expression. Further study showed that the expression of AcGH3.1 gene was induced by NAA (1-naphthylacetic acid, auxin analogue) and inhibited by 1-MCP (1-methylcyclopropene, ethylene receptor inhibitor), respectively. AcGH3.1 gene silencing inhibited gene expression and delayed fruit softening in kiwifruit. The results indicate that AcGH3.1 may play an important role in the softening process of fruits. Analysis of the AcGH3.1 promoter revealed the presence of many cis-elements related to hormones, light, and drought. The determination of GUS (β-Galactosidase) enzyme activity revealed that promoter activity increased strikingly upon abscisic acid (ABA), ethylene, or NAA treatment, and significantly decreased with salicylic acid (SA) treatment. The present study could help in the identification of GH3 genes and revelation of AcGH3.1 gene function during postharvest stages, which pave the way for further functional verification of the AcGH3.1 gene.
Collapse
Affiliation(s)
- Zengyu Gan
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits & Vegetables, Collaborative Innovation Center of Postharvest Key Technology and Quality Safety of Fruits and Vegetables, Jiangxi Agricultural University, Nanchang 330045, China; (Z.G.); (L.F.); (Y.F.)
- College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China;
| | - Liuying Fei
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits & Vegetables, Collaborative Innovation Center of Postharvest Key Technology and Quality Safety of Fruits and Vegetables, Jiangxi Agricultural University, Nanchang 330045, China; (Z.G.); (L.F.); (Y.F.)
- College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China;
| | - Nan Shan
- College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China;
| | - Yongqi Fu
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits & Vegetables, Collaborative Innovation Center of Postharvest Key Technology and Quality Safety of Fruits and Vegetables, Jiangxi Agricultural University, Nanchang 330045, China; (Z.G.); (L.F.); (Y.F.)
- College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China;
| | - Jinyin Chen
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits & Vegetables, Collaborative Innovation Center of Postharvest Key Technology and Quality Safety of Fruits and Vegetables, Jiangxi Agricultural University, Nanchang 330045, China; (Z.G.); (L.F.); (Y.F.)
- College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China;
- Pingxiang University, Pingxiang 337055, China
- Correspondence: ; Fax: +86-0791-83813185
| |
Collapse
|
39
|
Poudel AN, Holtsclaw RE, Kimberlin A, Sen S, Zeng S, Joshi T, Lei Z, Sumner LW, Singh K, Matsuura H, Koo AJ. 12-Hydroxy-Jasmonoyl-l-Isoleucine Is an Active Jasmonate That Signals through CORONATINE INSENSITIVE 1 and Contributes to the Wound Response in Arabidopsis. PLANT & CELL PHYSIOLOGY 2019; 60:2152-2166. [PMID: 31150089 DOI: 10.1093/pcp/pcz109] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 05/21/2019] [Indexed: 06/09/2023]
Abstract
12-hydroxy-jasmonoyl-isoleucine (12OH-JA-Ile) is a metabolite in the catabolic pathway of the plant hormone jasmonate, and is synthesized by the cytochrome P450 subclade 94 enzymes. Contrary to the well-established function of jasmonoyl-isoleucine (JA-Ile) as the endogenous bioactive form of jasmonate, the function of 12OH-JA-Ile is unclear. Here, the potential role of 12OH-JA-Ile in jasmonate signaling and wound response was investigated. Exogenous application of 12OH-JA-Ile mimicked several JA-Ile effects including marker gene expression, anthocyanin accumulation and trichome induction in Arabidopsis thaliana. Genome-wide transcriptomics and untargeted metabolite analyses showed large overlaps between those affected by 12OH-JA-Ile and JA-Ile. 12OH-JA-Ile signaling was blocked by mutation in CORONATINE INSENSITIVE 1. Increased anthocyanin accumulation by 12OH-JA-Ile was additionally observed in tomato and sorghum, and was disrupted by the COI1 defect in tomato jai1 mutant. In silico ligand docking predicted that 12OH-JA-Ile can maintain many of the key interactions with COI1-JAZ1 residues identified earlier by crystal structure studies using JA-Ile as ligand. Genetic alternation of jasmonate metabolic pathways in Arabidopsis to deplete both JA-Ile and 12OH-JA-Ile displayed enhanced jasmonate deficient wound phenotypes and was more susceptible to insect herbivory than that depleted in only JA-Ile. Conversely, mutants overaccumulating 12OH-JA-Ile showed intensified wound responses compared with wild type with similar JA-Ile content. These data are indicative of 12OH-JA-Ile functioning as an active jasmonate signal and contributing to wound and defense response in higher plants.
Collapse
Affiliation(s)
- Arati N Poudel
- Department of Biochemistry, University of Missouri, Columbia, MO, USA
- Interdisciplinary Plant Group, University of Missouri, Columbia, MO, USA
- Christopher S. Bond Life Science Center, University of Missouri, Columbia, MO, USA
- Department of Plant Sciences, University of Missouri, Columbia, MO, USA
| | - Rebekah E Holtsclaw
- Department of Biochemistry, University of Missouri, Columbia, MO, USA
- Interdisciplinary Plant Group, University of Missouri, Columbia, MO, USA
| | - Athen Kimberlin
- Department of Biochemistry, University of Missouri, Columbia, MO, USA
- Interdisciplinary Plant Group, University of Missouri, Columbia, MO, USA
| | - Sidharth Sen
- Informatics Institute, University of Missouri, Columbia, MO, USA
| | - Shuai Zeng
- Christopher S. Bond Life Science Center, University of Missouri, Columbia, MO, USA
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO, USA
| | - Trupti Joshi
- Christopher S. Bond Life Science Center, University of Missouri, Columbia, MO, USA
- Informatics Institute, University of Missouri, Columbia, MO, USA
- Health Management and Informatics, University of Missouri, Columbia, MO, USA
| | - Zhentian Lei
- Department of Biochemistry, University of Missouri, Columbia, MO, USA
- Interdisciplinary Plant Group, University of Missouri, Columbia, MO, USA
- Christopher S. Bond Life Science Center, University of Missouri, Columbia, MO, USA
- MU Metabolomics Core, University of Missouri, Columbia, MO, MO, USA
| | - Lloyd W Sumner
- Department of Biochemistry, University of Missouri, Columbia, MO, USA
- Interdisciplinary Plant Group, University of Missouri, Columbia, MO, USA
- Christopher S. Bond Life Science Center, University of Missouri, Columbia, MO, USA
- MU Metabolomics Core, University of Missouri, Columbia, MO, MO, USA
| | - Kamlendra Singh
- Christopher S. Bond Life Science Center, University of Missouri, Columbia, MO, USA
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO, USA
| | - Hideyuki Matsuura
- Division of Fundamental Agriscience Research, Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Abraham J Koo
- Department of Biochemistry, University of Missouri, Columbia, MO, USA
- Interdisciplinary Plant Group, University of Missouri, Columbia, MO, USA
| |
Collapse
|
40
|
Chiu LW, Heckert MJ, You Y, Albanese N, Fenwick T, Siehl DL, Castle LA, Tao Y. Members of the GH3 Family of Proteins Conjugate 2,4-D and Dicamba with Aspartate and Glutamate. PLANT & CELL PHYSIOLOGY 2018; 59:2366-2380. [PMID: 30101323 DOI: 10.1093/pcp/pcy160] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 08/01/2018] [Indexed: 06/08/2023]
Abstract
Auxin homeostasis is a highly regulated process that must be maintained to allow auxin to exert critical growth and developmental controls. Auxin conjugase and hydrolase family proteins play important roles in auxin homeostasis through means of storage, activation, inactivation, response inhibition and degradation of auxins in plants. We systematically evaluated 60 GRETCHEN HAGEN3 (GH3) proteins from diverse plant species for amino acid conjugation activity with the known substrates jasmonic acid (JA), IAA and 4-hydroxybenzoate (4-HBA). While our results largely confirm that Group II conjugases prefer IAA, we observed no clear substrate preference among Group III proteins, and only three of 11 Group I proteins showed the expected preference for JA, indicating that sequence similarity does not always predict substrate specificity. Such a sequence-substrate relationship held true when sequence similarity at the acyl acid-binding site was used for grouping. Several GH3 proteins could catalyze formation of the potentially degradation-destined aspartate (Asp) and glutamate (Glu) conjugates of IAA and the synthetic auxins 2,4-D and dicamba. We found that 2,4-D-Asp/Glu conjugates, but not dicamba and IAA conjugates, were hydrolyzed in Arabidopsis and soybean by AtILL5- and AtIAR3-like amidohydrolases, releasing free 2,4-D in plant cells when conjugates were exogenously applied to seedlings. Dicamba-Asp or dicamba-Glu conjugates were not hydrolyzed in vivo in infiltrated plants nor in vitro with recombinant amidohydrolases. These findings could open the door for exploration of a dicamba herbicide tolerance strategy through conjugation.
Collapse
Affiliation(s)
- Li-Wei Chiu
- Trait Discovery & Technology, DuPont Pioneer, 4010 Point Eden Way, Hayward, CA, USA
| | - Matthew J Heckert
- Trait Discovery & Technology, DuPont Pioneer, 4010 Point Eden Way, Hayward, CA, USA
| | - You You
- Trait Discovery & Technology, DuPont Pioneer, 4010 Point Eden Way, Hayward, CA, USA
| | - Nicholas Albanese
- Trait Discovery & Technology, DuPont Pioneer, 4010 Point Eden Way, Hayward, CA, USA
| | - Tamara Fenwick
- Trait Discovery & Technology, DuPont Pioneer, 4010 Point Eden Way, Hayward, CA, USA
| | - Daniel L Siehl
- Trait Discovery & Technology, DuPont Pioneer, 4010 Point Eden Way, Hayward, CA, USA
| | - Linda A Castle
- Trait Discovery & Technology, DuPont Pioneer, 4010 Point Eden Way, Hayward, CA, USA
| | - Yumin Tao
- Trait Discovery & Technology, DuPont Pioneer, 4010 Point Eden Way, Hayward, CA, USA
| |
Collapse
|
41
|
Li W, Li H, Xu P, Xie Z, Ye Y, Li L, Li D, Zhang Y, Li L, Zhao Y. Identification of Auxin Activity Like 1, a chemical with weak functions in auxin signaling pathway. PLANT MOLECULAR BIOLOGY 2018; 98:275-287. [PMID: 30311174 DOI: 10.1007/s11103-018-0779-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 09/17/2018] [Indexed: 05/05/2023]
Abstract
A new synthetic auxin AAL1 with new structure was identified. Different from known auxins, it has weak effects. By AAL1, we found specific amino acids could restore the effects of auxin with similar structure. Auxin, one of the most important phytohormones, plays crucial roles in plant growth, development and environmental response. Although many critical regulators have been identified in auxin signaling pathway, some factors, especially those with weak fine-tuning roles, are still yet to be discovered. Through chemical genetic screenings, we identified a small molecule, Auxin Activity Like 1 (AAL1), which can effectively inhibit dark-grown Arabidopsis thaliana seedlings. Genetic screening identified AAL1 resistant mutants are also hyposensitive to indole-3-acetic acid (IAA) and 2,4-dichlorophenoxyacetic acid (2,4-D). AAL1 resistant mutants such as shy2-3c and ecr1-2 are well characterized as mutants in auxin signaling pathway. Genetic studies showed that AAL1 functions through auxin receptor Transport Inhibitor Response1 (TIR1) and its functions depend on auxin influx and efflux carriers. Compared with known auxins, AAL1 exhibits relatively weak effects on plant growth, with 20 µM and 50 µM IC50 (half growth inhibition chemical concentration) in root and hypocotyl growth respectively. Interestingly, we found the inhibitory effects of AAL1 and IAA could be partially restored by tyrosine and tryptophan respectively, suggesting some amino acids can also affect auxin signaling pathway in a moderate manner. Taken together, our results demonstrate that AAL1 acts through auxin signaling pathway, and AAL1, as a weak auxin activity analog, provides us a tool to study weak genetic interactions in auxin pathway.
Collapse
Affiliation(s)
- Wenbo Li
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- University of Chinese Academy of Sciences, Shanghai, 200032, China
| | - Haimin Li
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- University of Chinese Academy of Sciences, Shanghai, 200032, China
| | - Peng Xu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- University of Chinese Academy of Sciences, Shanghai, 200032, China
| | - Zhi Xie
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- University of Chinese Academy of Sciences, Shanghai, 200032, China
| | - Yajin Ye
- University of Chinese Academy of Sciences, Shanghai, 200032, China
- Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Lingting Li
- University of Chinese Academy of Sciences, Shanghai, 200032, China
- Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Deqiang Li
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- University of Chinese Academy of Sciences, Shanghai, 200032, China
| | - Yijing Zhang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Laigeng Li
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China.
| | - Yang Zhao
- Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China.
- Faculty of Life Science and Technology, Kunming University of Science and Technology, 68 Wenchang Road, Yunnan, 650000, China.
| |
Collapse
|
42
|
Paprocka M, Gliszczyńska A, Dancewicz K, Gabryś B. Novel Hydroxy- and Epoxy- cis-Jasmone and Dihydrojasmone Derivatives Affect the Foraging Activity of the Peach Potato Aphid Myzus persicae (Sulzer) (Homoptera: Aphididae). Molecules 2018; 23:E2362. [PMID: 30223586 PMCID: PMC6225294 DOI: 10.3390/molecules23092362] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 08/29/2018] [Accepted: 09/11/2018] [Indexed: 12/13/2022] Open
Abstract
Jasmonates show great potential in sustainable agriculture due to their various roles in natural mechanisms of plant defense, and because they are non-toxic, non-mutagenic, and easily metabolized. The aim of the study was to explore structure⁻activity relationships of dihydrojasmone, cis-jasmone, and their derivatives at the plant⁻aphid interface. We focused on the behavioral responses of aphids, following the exogenous application of natural jasmonates and their derivatives to the host plants. Aphid probing behavior was examined using an electrical penetration graph technique (EPG). The chemoenzymatic transformation of cis-jasmone and the activity of two new derivatives are described. The application of cis-jasmone, dihydrojasmone, the hydroxyderivatives, epoxyderivatives, and alkyl-substituted δ-lactones hindered the foraging activity of Myzus persicae (Sulz.) (Hemiptera: Aphididae) during early stages of probing at the level of non-phloem tissues. The application of saturated bicyclic epoxy-δ-lactone enhanced plant acceptance by M. persicae. Jasmonate derivatives containing a hydroxy group, especially in correlation with a lactone ring, were more active than natural compounds and other derivatives studied. Jasmonates of the present study are worth considering as elements of sustainable aphid control as components of the "push⁻pull" strategy.
Collapse
Affiliation(s)
- Marlena Paprocka
- Department of Botany and Ecology, University of Zielona Góra, Szafrana 1, 65-516 Zielona Góra, Poland.
| | - Anna Gliszczyńska
- Department of Chemistry, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland.
| | - Katarzyna Dancewicz
- Department of Botany and Ecology, University of Zielona Góra, Szafrana 1, 65-516 Zielona Góra, Poland.
| | - Beata Gabryś
- Department of Botany and Ecology, University of Zielona Góra, Szafrana 1, 65-516 Zielona Góra, Poland.
| |
Collapse
|
43
|
Ishimaru Y, Hayashi K, Suzuki T, Fukaki H, Prusinska J, Meester C, Quareshy M, Egoshi S, Matsuura H, Takahashi K, Kato N, Kombrink E, Napier RM, Hayashi KI, Ueda M. Jasmonic Acid Inhibits Auxin-Induced Lateral Rooting Independently of the CORONATINE INSENSITIVE1 Receptor. PLANT PHYSIOLOGY 2018; 177:1704-1716. [PMID: 29934297 PMCID: PMC6084677 DOI: 10.1104/pp.18.00357] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 06/13/2018] [Indexed: 05/23/2023]
Abstract
Plant root systems are indispensable for water uptake, nutrient acquisition, and anchoring plants in the soil. Previous studies using auxin inhibitors definitively established that auxin plays a central role regulating root growth and development. Most auxin inhibitors affect all auxin signaling at the same time, which obscures an understanding of individual events. Here, we report that jasmonic acid (JA) functions as a lateral root (LR)-preferential auxin inhibitor in Arabidopsis (Arabidopsis thaliana) in a manner that is independent of the JA receptor, CORONATINE INSENSITIVE1 (COI1). Treatment of wild-type Arabidopsis with either (-)-JA or (+)-JA reduced primary root length and LR number; the reduction of LR number was also observed in coi1 mutants. Treatment of seedlings with (-)-JA or (+)-JA suppressed auxin-inducible genes related to LR formation, diminished accumulation of the auxin reporter DR5::GUS, and inhibited auxin-dependent DII-VENUS degradation. A structural mimic of (-)-JA and (+)-coronafacic acid also inhibited LR formation and stabilized DII-VENUS protein. COI1-independent activity was retained in the double mutant of transport inhibitor response1 and auxin signaling f-box protein2 (tir1 afb2) but reduced in the afb5 single mutant. These results reveal JAs and (+)-coronafacic acid to be selective counter-auxins, a finding that could lead to new approaches for studying the mechanisms of LR formation.
Collapse
Affiliation(s)
- Yasuhiro Ishimaru
- Department of Chemistry, Tohoku University, Aoba-ku, Sendai 980-8578, Japan
| | - Kengo Hayashi
- Department of Chemistry, Tohoku University, Aoba-ku, Sendai 980-8578, Japan
| | - Takeshi Suzuki
- Department of Chemistry, Tohoku University, Aoba-ku, Sendai 980-8578, Japan
| | - Hidehiro Fukaki
- Department of Biology, Kobe University, Kobe 657-8501, Japan
| | - Justyna Prusinska
- School of Life Sciences, University of Warwick, Warwickshire CV4 7AS, United Kingdom
| | - Christian Meester
- Chemical Biology Laboratory, Max Planck Institute for Plant Breeding Research, D-50829 Cologne, Germany
| | - Mussa Quareshy
- School of Life Sciences, University of Warwick, Warwickshire CV4 7AS, United Kingdom
| | - Syusuke Egoshi
- Department of Chemistry, Tohoku University, Aoba-ku, Sendai 980-8578, Japan
| | - Hideyuki Matsuura
- Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | - Kosaku Takahashi
- Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | - Nobuki Kato
- Department of Chemistry, Tohoku University, Aoba-ku, Sendai 980-8578, Japan
| | - Erich Kombrink
- Chemical Biology Laboratory, Max Planck Institute for Plant Breeding Research, D-50829 Cologne, Germany
| | - Richard M Napier
- School of Life Sciences, University of Warwick, Warwickshire CV4 7AS, United Kingdom
| | - Ken-Ichiro Hayashi
- Department of Biochemistry, Okayama University of Science, Okayama 700-0005, Japan
| | - Minoru Ueda
- Department of Chemistry, Tohoku University, Aoba-ku, Sendai 980-8578, Japan
| |
Collapse
|
44
|
Ng JLP, Mathesius U. Acropetal Auxin Transport Inhibition Is Involved in Indeterminate But Not Determinate Nodule Formation. FRONTIERS IN PLANT SCIENCE 2018; 9:169. [PMID: 29497432 PMCID: PMC5818462 DOI: 10.3389/fpls.2018.00169] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 01/30/2018] [Indexed: 05/23/2023]
Abstract
Legumes enter into a symbiotic relationship with nitrogen-fixing rhizobia, leading to nodule development. Two main types of nodules have been widely studied, indeterminate and determinate, which differ in the location of the first cell division in the root cortex, and persistency of the nodule meristem. Here, we compared the control of auxin transport, content, and response during the early stages of indeterminate and determinate nodule development in the model legumes Medicago truncatula and Lotus japonicus, respectively, to investigate whether differences in auxin transport control could explain the differences in the location of cortical cell divisions. While auxin responses were activated in dividing cortical cells during nodulation of both nodule types, auxin (indole-3-acetic acid) content at the nodule initiation site was transiently increased in M. truncatula, but transiently reduced in L. japonicus. Root acropetal auxin transport was reduced in M. truncatula at the very start of nodule initiation, in contrast to a prolonged increase in acropetal auxin transport in L. japonicus. The auxin transport inhibitors 2,3,5-triiodobenzoic acid and 1-N-naphthylphthalamic acid (NPA) only induced pseudonodules in legume species forming indeterminate nodules, but failed to elicit such structures in a range of species forming determinate nodules. The development of these pseudonodules in M. truncatula exhibited increased auxin responses in a small primordium formed from the pericycle, endodermis, and inner cortex, similar to rhizobia-induced nodule primordia. In contrast, a diffuse cortical auxin response and no associated cortical cell divisions were found in L. japonicus. Collectively, we hypothesize that a step of acropetal auxin transport inhibition is unique to the process of indeterminate nodule development, leading to auxin responses in pericycle, endodermis, and inner cortex cells, while increased auxin responses in outer cortex cells likely require a different mechanism during the formation of determinate nodules.
Collapse
Affiliation(s)
- Jason L. P. Ng
- Division of Plant Sciences, Research School of Biology, Australian National University, Canberra, ACT, Australia
| | | |
Collapse
|
45
|
Colla G, Hoagland L, Ruzzi M, Cardarelli M, Bonini P, Canaguier R, Rouphael Y. Biostimulant Action of Protein Hydrolysates: Unraveling Their Effects on Plant Physiology and Microbiome. FRONTIERS IN PLANT SCIENCE 2017; 8:2202. [PMID: 29312427 PMCID: PMC5744479 DOI: 10.3389/fpls.2017.02202] [Citation(s) in RCA: 144] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 12/14/2017] [Indexed: 05/18/2023]
Abstract
Plant-derived protein hydrolysates (PHs) have gained prominence as plant biostimulants because of their potential to increase the germination, productivity and quality of a wide range of horticultural and agronomic crops. Application of PHs can also alleviate the negative effects of abiotic plant stress due to salinity, drought and heavy metals. Recent studies aimed at uncovering the mechanisms regulating these beneficial effects indicate that PHs could be directly affecting plants by stimulating carbon and nitrogen metabolism, and interfering with hormonal activity. Indirect effects could also play a role as PHs could enhance nutrient availability in plant growth substrates, and increase nutrient uptake and nutrient-use efficiency in plants. Moreover, the beneficial effects of PHs also could be due to the stimulation of plant microbiomes. Plants are colonized by an abundant and diverse assortment of microbial taxa that can help plants acquire nutrients and water and withstand biotic and abiotic stress. The substrates provided by PHs, such as amino acids, could provide an ideal food source for these plant-associated microbes. Indeed, recent studies have provided evidence that plant microbiomes are modified by the application of PHs, supporting the hypothesis that PHs might be acting, at least in part, via changes in the composition and activity of these microbial communities. Application of PHs has great potential to meet the twin challenges of a feeding a growing population while minimizing agriculture's impact on human health and the environment. However, to fully realize the potential of PHs, further studies are required to shed light on the mechanisms conferring the beneficial effects of these products, as well as identify product formulations and application methods that optimize benefits under a range of agro-ecological conditions.
Collapse
Affiliation(s)
- Giuseppe Colla
- Department of Agricultural and Forestry Sciences, University of Tuscia, Viterbo, Italy
| | - Lori Hoagland
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, United States
| | - Maurizio Ruzzi
- Department for Innovation in Biological, Agrofood and Forest Systems, University of Tuscia, Viterbo, Italy
| | - Mariateresa Cardarelli
- Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria, Centro di Ricerca Orticoltura e Florovivaismo, Pontecagnano, Italy
| | | | | | - Youssef Rouphael
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| |
Collapse
|
46
|
Du H, Shi Y, Li D, Fan W, Wang G, Wang C. Screening and identification of key genes regulating fall dormancy in alfalfa leaves. PLoS One 2017; 12:e0188964. [PMID: 29211806 PMCID: PMC5718555 DOI: 10.1371/journal.pone.0188964] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 11/16/2017] [Indexed: 12/22/2022] Open
Abstract
Fall dormancy (FD) determines the adaptation of an alfalfa variety and affects alfalfa production and quality. However, the molecular mechanism underlying FD remains poorly understood. Here, 44 genes regulating FD were identified by comparison of the transcriptomes from leaves of Maverick (fall-dormant alfalfa) and CUF101(non-fall-dormant), during FD and non-FD and were classified them depending on their function. The transcription of IAA-amino acid hydrolase ILR1-like 1, abscisic acid receptor PYL8, and monogalactosyldiacylglycerol synthase-3 in Maverick leaves was regulated by daylength and temperature, and the transcription of the abscisic acid receptor PYL8 was mainly affected by daylength. The changes in the expression of these genes and the abundance of their messenger RNA (mRNA) in Maverick leaves differed from those in CUF101 leaves, as evidenced by the correlation analysis of their mRNA abundance profiles obtained from April to October. The present findings suggested that these genes are involved in regulating FD in alfalfa.
Collapse
Affiliation(s)
- Hongqi Du
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou, Henan, China
| | - Yinghua Shi
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou, Henan, China
| | - Defeng Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou, Henan, China
| | - Wenna Fan
- School of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, China
| | - Guoqiang Wang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou, Henan, China
| | - Chengzhang Wang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou, Henan, China
| |
Collapse
|
47
|
Singh M, Gupta A, Laxmi A. Striking the Right Chord: Signaling Enigma during Root Gravitropism. FRONTIERS IN PLANT SCIENCE 2017; 8:1304. [PMID: 28798760 PMCID: PMC5529344 DOI: 10.3389/fpls.2017.01304] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 07/11/2017] [Indexed: 05/29/2023]
Abstract
Plants being sessile can often be judged as passive acceptors of their environment. However, plants are actually even more active in responding to the factors from their surroundings. Plants do not have eyes, ears or vestibular system like animals, still they "know" which way is up and which way is down? This is facilitated by receptor molecules within plant which perceive changes in internal and external conditions such as light, touch, obstacles; and initiate signaling pathways that enable the plant to react. Plant responses that involve a definite and specific movement are called "tropic" responses. Perhaps the best known and studied tropisms are phototropism, i.e., response to light, and geotropism, i.e., response to gravity. A robust root system is vital for plant growth as it can provide physical anchorage to soil as well as absorb water, nutrients and essential minerals from soil efficiently. Gravitropic responses of both primary as well as lateral root thus become critical for plant growth and development. The molecular mechanisms of root gravitropism has been delved intensively, however, the mechanism behind how the potential energy of gravity stimulus converts into a biochemical signal in vascular plants is still unknown, due to which gravity sensing in plants still remains one of the most fascinating questions in molecular biology. Communications within plants occur through phytohormones and other chemical substances produced in plants which have a developmental or physiological effect on growth. Here, we review current knowledge of various intrinsic signaling mechanisms that modulate root gravitropism in order to point out the questions and emerging developments in plant directional growth responses. We are also discussing the roles of sugar signals and their interaction with phytohormone machinery, specifically in context of root directional responses.
Collapse
Affiliation(s)
- Manjul Singh
- National Institute of Plant Genome ResearchNew Delhi, India
- Interdisciplinary Centre for Plant Genomics, University of Delhi South CampusNew Delhi, India
| | - Aditi Gupta
- National Institute of Plant Genome ResearchNew Delhi, India
- Interdisciplinary Centre for Plant Genomics, University of Delhi South CampusNew Delhi, India
| | - Ashverya Laxmi
- National Institute of Plant Genome ResearchNew Delhi, India
| |
Collapse
|
48
|
Dhandapani S, Jin J, Sridhar V, Sarojam R, Chua NH, Jang IC. Integrated metabolome and transcriptome analysis of Magnolia champaca identifies biosynthetic pathways for floral volatile organic compounds. BMC Genomics 2017; 18:463. [PMID: 28615048 PMCID: PMC5471912 DOI: 10.1186/s12864-017-3846-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 06/06/2017] [Indexed: 12/02/2022] Open
Abstract
Background Magnolia champaca, commonly known as champak is a well-known tree due to its highly fragrant flowers. Champak floral scent is attributed to a complex mix of volatile organic compounds (VOCs). These aromatic flowers are widely used in flavors and fragrances industry. Despite its commercial importance, the VOC biosynthesis pathways in these flowers are largely unknown. Here, we combine metabolite and RNA sequencing (RNA-seq) analyses of fully opened champak flowers to discover the active VOC biosynthesis pathways as well as floral scent-related genes. Results Volatile collection by headspace method and analysis by gas chromatography-mass spectrometry (GC-MS) identified a total of 43 VOCs from fully opened champak flowers, of which 46.9% were terpenoids, 38.9% were volatile esters and 5.2% belonged to phenylpropanoids/benzenoids. Sequencing and de novo assembly of champak flower transcriptome yielded 47,688 non-redundant unigenes. Transcriptome assembly was validated using standard polymerase chain reaction (PCR) based approach for randomly selected unigenes. The detailed profiles of VOCs led to the discovery of pathways and genes involved in floral scent biosynthesis from RNA-seq data. Analysis of expression levels of many floral-scent biosynthesis-related unigenes in flowers and leaves showed that most of them were expressed higher in flowers than in leaf tissues. Moreover, our metabolite-guided transcriptomics, in vitro and in vivo enzyme assays and transgenic studies identified (R)-linalool synthase that is essential for the production of major VOCs of champak flowers, (R)-linalool and linalool oxides. Conclusion As our study is the first report on transcriptome analysis of Magnolia champaca, this transcriptome dataset that serves as an important public information for functional genomics will not only facilitate better understanding of ecological functions of champak floral VOCs, but also provide biotechnological targets for sustainable production of champak floral scent. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3846-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Savitha Dhandapani
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore.,Department of Biological Sciences, National University of Singapore, Singapore, 117543, Singapore
| | - Jingjing Jin
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore
| | - Vishweshwaran Sridhar
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore
| | - Rajani Sarojam
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore
| | - Nam-Hai Chua
- Laboratory of Plant Molecular Biology, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | - In-Cheol Jang
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore. .,Department of Biological Sciences, National University of Singapore, Singapore, 117543, Singapore.
| |
Collapse
|
49
|
Staswick P, Rowe M, Spalding EP, Splitt BL. Jasmonoyl-L-Tryptophan Disrupts IAA Activity through the AUX1 Auxin Permease. FRONTIERS IN PLANT SCIENCE 2017; 8:736. [PMID: 28533791 PMCID: PMC5420569 DOI: 10.3389/fpls.2017.00736] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Accepted: 04/20/2017] [Indexed: 05/29/2023]
Abstract
Amide-linked conjugates between tryptophan (Trp) and jasmonic (JA) or indole-3-acetic (IAA) acids interfered with gravitropism and other auxin-dependent activities in Arabidopsis, but the mechanism was unclear. To identify structural features necessary for activity several additional Trp conjugates were synthesized. The phenylacetic acid (PAA) conjugate was active, while several others were not. Common features of active conjugates is that they have ring structures that are linked to Trp through an acetic acid side chain, while longer or shorter linkages are inactive or less active. A dominant mutant, called tryptophan conjugate response1-D that is insensitive to JA-Trp, but still sensitive to other active conjugates, was identified and the defect was found to be a substitution of Asn for Asp456 in the C-terminal domain of the IAA cellular permease AUX1. Mutant seedling primary root growth in the absence of added conjugate was 15% less than WT, but otherwise plant phenotype appeared normal. These results suggest that JA-Trp disrupts AUX1 activity, but that endogenous JA-Trp has only a minor role in regulating plant growth. In contrast with IAA- and JA-Trp, which are present at <2 pmole g-1 FW, PAA-Trp was found at about 30 pmole g-1 FW. The latter, or other undiscovered Trp conjugates, may still have important endogenous roles, possibly helping to coordinate other pathways with auxin response.
Collapse
Affiliation(s)
- Paul Staswick
- Department of Agronomy and Horticulture, University of Nebraska–Lincoln, LincolnNE, USA
| | - Martha Rowe
- Department of Agronomy and Horticulture, University of Nebraska–Lincoln, LincolnNE, USA
| | - Edgar P. Spalding
- Department of Botany, University of Wisconsin–Madison, MadisonWI, USA
| | - Bessie L. Splitt
- Department of Botany, University of Wisconsin–Madison, MadisonWI, USA
| |
Collapse
|
50
|
Hu Y, Vandenbussche F, Van Der Straeten D. Regulation of seedling growth by ethylene and the ethylene-auxin crosstalk. PLANTA 2017; 245:467-489. [PMID: 28188422 DOI: 10.1007/s00425-017-2651-6] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 01/08/2017] [Indexed: 05/06/2023]
Abstract
This review highlights that the auxin gradient, established by local auxin biosynthesis and transport, can be controlled by ethylene, and steers seedling growth. A better understanding of the mechanisms in Arabidopsis will increase potential applications in crop species. In dark-grown Arabidopsis seedlings, exogenous ethylene treatment triggers an exaggeration of the apical hook, the inhibition of both hypocotyl and root elongation, and radial swelling of the hypocotyl. These features are predominantly based on the differential cell elongation in different cells/tissues mediated by an auxin gradient. Interestingly, the physiological responses regulated by ethylene and auxin crosstalk can be either additive or synergistic, as in primary root and root hair elongation, or antagonistic, as in hypocotyl elongation. This review focuses on the crosstalk of these two hormones at the seedling stage. Before illustrating the crosstalk, ethylene and auxin biosynthesis, metabolism, transport and signaling are briefly discussed.
Collapse
Affiliation(s)
- Yuming Hu
- Laboratory of Functional Plant Biology, Department of Biology, Ghent University, K.L. Ledeganckstraat 35, 9000, Ghent, Belgium
| | - Filip Vandenbussche
- Laboratory of Functional Plant Biology, Department of Biology, Ghent University, K.L. Ledeganckstraat 35, 9000, Ghent, Belgium
| | - Dominique Van Der Straeten
- Laboratory of Functional Plant Biology, Department of Biology, Ghent University, K.L. Ledeganckstraat 35, 9000, Ghent, Belgium.
| |
Collapse
|