1
|
Bezvoda R, Landeo‐Ríos YM, Kubátová Z, Kollárová E, Kulich I, Busch W, Žárský V, Cvrčková F. A Genome-Wide Association Screen for Genes Affecting Leaf Trichome Development and Epidermal Metal Accumulation in Arabidopsis. PLANT, CELL & ENVIRONMENT 2025; 48:3708-3734. [PMID: 39812181 PMCID: PMC11963502 DOI: 10.1111/pce.15357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 12/12/2024] [Accepted: 12/17/2024] [Indexed: 01/16/2025]
Abstract
To identify novel genes engaged in plant epidermal development, we characterized the phenotypic variability of rosette leaf epidermis of 310 sequenced Arabidopsis thaliana accessions, focusing on trichome shape and distribution, compositional characteristics of the trichome cell wall, and histologically detectable metal ion distribution. Some of these traits correlated with cLimate parameters of our accession's locations of origin, suggesting environmental selection. A novel metal deposition pattern in stomatal guard cells was observed in some accessions. Subsequent GWAS analysis identified 1546 loci with protein sequence-altering SNPs associated with one or more traits, including 5 genes with previously reported relevant mutant phenotypes and 80 additional genes with known or predicted roles in relevant developmental and cellular processes. Some candidates, including GFS9/TT9, exhibited environmentally correlated allele distribution. Several large gene famiLies, namely DUF674, DUF784, DUF1262, DUF1985, DUF3741, cytochrome P450, receptor-Like kinases, Cys/His-rich C1 domain proteins and formins were overrepresented among the candidates for various traits, suggesting epidermal development-related functions. A possible participation of formins in guard cell metal deposition was supported by observations in available loss of function mutants. Screening of candidate gene lists against the STRING interactome database uncovered several predominantly nuclear protein interaction networks with possible novel roles in epidermal development.
Collapse
Affiliation(s)
- Radek Bezvoda
- Department of Experimental Plant Biology, Faculty of SciencesCharles UniversityPragueCzechia
| | | | - Zdeňka Kubátová
- Department of Experimental Plant Biology, Faculty of SciencesCharles UniversityPragueCzechia
| | - Eva Kollárová
- Department of Experimental Plant Biology, Faculty of SciencesCharles UniversityPragueCzechia
| | - Ivan Kulich
- Department of Experimental Plant Biology, Faculty of SciencesCharles UniversityPragueCzechia
| | - Wolfgang Busch
- Plant Molecular and Cellular Biology Laboratory, and Integrative Biology LaboratorySalk Institute for Biological StudiesLa JollaCaliforniaUSA
- Gregor Mendel Institute (GMI), Austrian Academy of SciencesVienna Biocenter (VBC)ViennaAustria
| | - Viktor Žárský
- Department of Experimental Plant Biology, Faculty of SciencesCharles UniversityPragueCzechia
- Institute of Experimental BotanyCzech Academy of SciencesPragueCzechia
| | - Fatima Cvrčková
- Department of Experimental Plant Biology, Faculty of SciencesCharles UniversityPragueCzechia
| |
Collapse
|
2
|
Brus-Szkalej M, Dotson B, Andersen CB, Vetukuri RR, Grenville-Briggs LJ. A Family of Transglutaminases Is Essential for the Development of Appressorium-Like Structures and Phytophthora infestans Virulence in Potato. PHYTOPATHOLOGY 2025; 115:374-386. [PMID: 39745383 DOI: 10.1094/phyto-03-24-0107-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2025]
Abstract
Transglutaminases (TGases) are enzymes highly conserved among prokaryotic and eukaryotic organisms, where their role is to catalyze protein cross-linking. One of the putative TGases of Phytophthora infestans has previously been shown to be localized to the cell wall. Based on sequence similarity, we were able to identify six more genes annotated as putative TGases and show that these seven genes group together in phylogenetic analysis. These seven proteins are predicted to contain both a TGase domain and a MANSC domain, the latter of which was previously shown to play a role in protein stability. Chemical inhibition of TGase activity and silencing of the entire family of the putative cell wall TGases are both lethal to P. infestans, indicating the importance of these proteins in cell wall formation and stability. The intermediate phenotype obtained with lower drug concentrations and less efficient silencing displays a number of deformations to germ tubes and appressoria. Both chemically treated and silenced lines show lower pathogenicity than the wild type in leaf infection assays. Finally, we show that appressoria of P. infestans possess the ability to build up turgor pressure and that this ability is decreased by chemical inhibition of TGases. [Formula: see text] Copyright © 2025 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.
Collapse
Affiliation(s)
- Maja Brus-Szkalej
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Box 190, 234 22 Lomma, Sweden
| | - Bradley Dotson
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Box 190, 234 22 Lomma, Sweden
| | - Christian B Andersen
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Box 190, 234 22 Lomma, Sweden
| | - Ramesh R Vetukuri
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Box 190, 234 22 Lomma, Sweden
| | - Laura J Grenville-Briggs
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Box 190, 234 22 Lomma, Sweden
| |
Collapse
|
3
|
Rieseberg TP, Dadras A, Darienko T, Post S, Herrfurth C, Fürst-Jansen JMR, Hohnhorst N, Petroll R, Rensing SA, Pröschold T, de Vries S, Irisarri I, Feussner I, de Vries J. Time-resolved oxidative signal convergence across the algae-embryophyte divide. Nat Commun 2025; 16:1780. [PMID: 39971942 PMCID: PMC11840003 DOI: 10.1038/s41467-025-56939-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 02/06/2025] [Indexed: 02/21/2025] Open
Abstract
The earliest land plants faced a significant challenge in adapting to environmental stressors. Stress on land is unique in its dynamics, entailing swift and drastic changes in light and temperature. While we know that land plants share with their closest streptophyte algal relatives key components of the genetic makeup for dynamic stress responses, their concerted action is little understood. Here, we combine time-course stress profiling using photophysiology, transcriptomics on 2.7 Tbp of data, and metabolite profiling analyses on 270 distinct samples, to study stress kinetics across three 600-million-year-divergent streptophytes. Through co-expression analysis and Granger causal inference we predict a gene regulatory network that retraces a web of ancient signal convergences at ethylene signaling components, osmosensors, and chains of major kinases. These kinase hubs already integrated diverse environmental inputs since before the dawn of plants on land.
Collapse
Affiliation(s)
- Tim P Rieseberg
- University of Göttingen, Institute of Microbiology and Genetics, Department of Applied Bioinformatics, Goldschmidtstr. 1, 37077, Göttingen, Germany.
| | - Armin Dadras
- University of Göttingen, Institute of Microbiology and Genetics, Department of Applied Bioinformatics, Goldschmidtstr. 1, 37077, Göttingen, Germany
| | - Tatyana Darienko
- University of Göttingen, Institute of Microbiology and Genetics, Department of Applied Bioinformatics, Goldschmidtstr. 1, 37077, Göttingen, Germany
- University of Göttingen, Albrecht Haller Institute of Plant Science, Experimental Phycology and Culture Collection of Algae at Göttingen University (EPSAG), Nikolausberger Weg 18, 37073, Göttingen, Germany
| | - Sina Post
- University of Göttingen, Albrecht Haller Institute of Plant Science, Department of Plant Biochemistry, Justus-von-Liebig-Weg, 37077, Göttingen, Germany
| | - Cornelia Herrfurth
- University of Göttingen, Albrecht Haller Institute of Plant Science, Department of Plant Biochemistry, Justus-von-Liebig-Weg, 37077, Göttingen, Germany
- University of Göttingen, Goettingen Center for Molecular Biosciences (GZMB), Service Unit for Goettingen Metabolomics and Lipidomics, Justus-von-Liebig Weg 11, 37077, Göttingen, Germany
| | - Janine M R Fürst-Jansen
- University of Göttingen, Institute of Microbiology and Genetics, Department of Applied Bioinformatics, Goldschmidtstr. 1, 37077, Göttingen, Germany
| | - Nils Hohnhorst
- University of Göttingen, Institute of Microbiology and Genetics, Department of Applied Bioinformatics, Goldschmidtstr. 1, 37077, Göttingen, Germany
| | - Romy Petroll
- Department of Algal Development and Evolution, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Stefan A Rensing
- University of Freiburg, Centre for Biological Signalling Studies (BIOSS), Freiburg, Germany
| | - Thomas Pröschold
- University of Göttingen, Institute of Microbiology and Genetics, Department of Applied Bioinformatics, Goldschmidtstr. 1, 37077, Göttingen, Germany
- University of Innsbruck, Research Department for Limnology, 5310, Mondsee, Austria
| | - Sophie de Vries
- University of Göttingen, Institute of Microbiology and Genetics, Department of Applied Bioinformatics, Goldschmidtstr. 1, 37077, Göttingen, Germany
- University of Göttingen, Göttingen Center for Molecular Biosciences (GZMB), Department of Applied Bioinformatics, Goldschmidtstr. 1, 37077, Göttingen, Germany
| | - Iker Irisarri
- University of Göttingen, Institute of Microbiology and Genetics, Department of Applied Bioinformatics, Goldschmidtstr. 1, 37077, Göttingen, Germany
- University of Göttingen, Campus Institute Data Science (CIDAS), Goldschmidtstr. 1, 37077, Göttingen, Germany
- Section Phylogenomics, Centre for Molecular Biodiversity Research, Leibniz Institute for the Analysis of Biodiversity Change (LIB), Museum of Nature, Hamburg, Martin-Luther-King Platz 3, 20146, Hamburg, Germany
- Museo Nacional de Ciencias Naturales (MNCN-CSIC), Department of Biodiversity and Evolutionary Biology, José Gutiérrez Abascal 2, 28006, Madrid, Spain
| | - Ivo Feussner
- University of Göttingen, Albrecht Haller Institute of Plant Science, Department of Plant Biochemistry, Justus-von-Liebig-Weg, 37077, Göttingen, Germany
- University of Göttingen, Goettingen Center for Molecular Biosciences (GZMB), Service Unit for Goettingen Metabolomics and Lipidomics, Justus-von-Liebig Weg 11, 37077, Göttingen, Germany
- University of Göttingen, Göttingen Center for Molecular Biosciences (GZMB), Department of Plant Biochemistry, Justus- von-Liebig Weg 11, 37077, Göttingen, Germany
| | - Jan de Vries
- University of Göttingen, Institute of Microbiology and Genetics, Department of Applied Bioinformatics, Goldschmidtstr. 1, 37077, Göttingen, Germany.
- University of Göttingen, Campus Institute Data Science (CIDAS), Goldschmidtstr. 1, 37077, Göttingen, Germany.
- University of Göttingen, Göttingen Center for Molecular Biosciences (GZMB), Department of Applied Bioinformatics, Goldschmidtstr. 1, 37077, Göttingen, Germany.
| |
Collapse
|
4
|
Ban Q, Zhang J, Zhao Z, Yu X. Comprehensive analysis of the PbrTBL gene family and functional analysis of PbrTBL43 under Botryosphaeria dothidea infection in Pyrus bretschneideri. Int J Biol Macromol 2025; 287:138212. [PMID: 39617229 DOI: 10.1016/j.ijbiomac.2024.138212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 11/28/2024] [Indexed: 12/14/2024]
Abstract
The TBL (Trichome Birefringence-Like) gene family, which participates in the initiation of trichomes and the acetylation of xylan in a variety of plant species, plays a significant role in plant biology. However, there is little information regarding TBL family members in pear (Pyrus bretschneideri Rehd). Here, 65 PbrTBL genes were identified in Pyrus bretschneideri genome. Phylogenetic, gene structure, expression pattern and cis-element of promoter analysis were performed and compared. Expression profiling across different tissues and in response to Botryosphaeria dothidea (B. dothidea) infection highlighted the dynamic and coordinated response of PbrTBL genes, with PbrTBL43 showing significant upregulation. Subcellular localization of PbrTBL43 to the plasma membrane and the enhanced susceptibility to B. dothidea infection upon PbrTBL43 silencing further support its role in pathogen resistance. This study enhances our understanding of the PbrTBL gene family's multifaceted involvement in pear biology and provides a foundation for future research aimed at improving pear resistance to diseases and environmental challenges.
Collapse
Affiliation(s)
- Qiuyan Ban
- College of Horticulture, Jinling Institute of Technology, Nanjing 210038, China.
| | - Jiangdongchen Zhang
- College of Horticulture, Jinling Institute of Technology, Nanjing 210038, China
| | - Zaixian Zhao
- College of Horticulture, Jinling Institute of Technology, Nanjing 210038, China
| | - Xingyue Yu
- College of Horticulture, Jinling Institute of Technology, Nanjing 210038, China
| |
Collapse
|
5
|
Wang Y, Zou D, Cheng CH, Zhang J, Zhang JB, Zheng Y, Li Y, Li XB. GhTBL3 is required for fiber secondary cell wall (SCW) formation via maintaining acetylation of xylan in cotton. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e17167. [PMID: 39585209 DOI: 10.1111/tpj.17167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 11/05/2024] [Accepted: 11/13/2024] [Indexed: 11/26/2024]
Abstract
TBL family proteins containing the domain of unknown function mainly act as xylan O-acetyltransferases, but the specific molecular mechanism of their functions remains unclear in plants (especially in cotton) so far. In this study, we characterized the TBL family proteins containing the conserved GDS and DxxH motifs in cotton (Gossypium hirsutum). Among them, GhTBL3 is highly expressed in fibers at the stage of secondary cell wall (SCW) formation and mainly functions as O-acetyltransferase to maintain acetylation of xylan in fiber SCW development. Overexpression of GhTBL3 in cotton promoted fiber SCW formation, resulting in increased fiber cell wall thickness. In contrast, suppression of GhTBL3 expression in cotton impaired fiber SCW synthesis, leading to the decreased fiber cell wall thickness, compared with wild type (WT). Furthermore, two fiber SCW-related transcription factors GhMYBL1 and GhKNL1 were found to directly bind to the promoter of GhTBL3 in cotton. GhMYBL1 enhanced the transcription activity of GhTBL3, whereas GhKNL1 inhibited the expression of GhTBL3 in fibers. The acetylation level of xylan was remarkably decreased in fibers of GhMYBL1 RNAi transgenic cotton, but the acetylation level of xylan was significantly increased in fibers of GhKNL1 RNAi cotton, relative to WT. Given together, the above results suggested that GhTBL3 may be under the dual control of GhMYBL1 and GhKNL1 to maintain the suitable acetylation level of xylan required for fiber SCW formation in cotton. Thus, our data provide an effective clue for potentially improving fiber quality by genetic manipulation of GhTBL3 in cotton breeding.
Collapse
Affiliation(s)
- Yao Wang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
- Maize Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Dan Zou
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Chang-Hao Cheng
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Jie Zhang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Jing-Bo Zhang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Yong Zheng
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Yang Li
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Xue-Bao Li
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| |
Collapse
|
6
|
Wen Z, Xu Z, Zhang L, Xue Y, Wang H, Jian L, Ma J, Liu Z, Yang H, Huang S, Kang X, Zhou Y, Zhang B. XYLAN O-ACETYLTRANSFERASE 6 promotes xylan synthesis by forming a complex with IRX10 and governs wall formation in rice. THE PLANT CELL 2024; 37:koae322. [PMID: 39663842 DOI: 10.1093/plcell/koae322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/30/2024] [Accepted: 12/03/2024] [Indexed: 12/13/2024]
Abstract
Xylan, a pivotal polymer with diversified structures, is indispensable for cell wall integrity and contributes to plant growth and biomass recalcitrance. Xylan is synthesized by multienzyme complexes named xylan synthase complexes (XSCs). However, the biochemical mechanism of XSCs and the functions of core components within XSC remain unclear. Here, we report that rice (Oryza sativa) XYLAN O-ACETYLTRANSFERASE 6 (XOAT6) and the xylan synthase IRREGULAR XYLEM10 (IRX10) represent core components of the XSC, acting together to biosynthesize acetyl-xylans. Co-fractionation mass spectrometry and protein-protein interaction analyses revealed that IRX10 and XOAT6 physically interact within XSC, corroborated by similar xylan defects in xoat6 and irx10 mutants. Biochemical assays showed that XOAT6 is an O-acetyltransferase of the xylan backbone and facilitates chain polymerization catalyzed by IRX10. Fluorescence correlation spectroscopy further visualized the xylooligomer polymerization process at a single-molecule level. Solid-state NMR analysis, electron microscopy observations, and nanoindentation examinations identified the altered xylan conformation, disorganized cellulosic structure, and increased wall rigidity and cellulose accessibility in the mutants, leading to brittleness and improved saccharification efficiency. Our findings provide insights into the assembly of XSCs and xylan biosynthesis and offer a framework for tailoring xylans to improve crop traits and biomass.
Collapse
Affiliation(s)
- Zhao Wen
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- College of Advanced Agricultural Sciences, College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zuopeng Xu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of the Ministry of Education for Plant Functional Genomics, College of Agriculture, Yangzhou University, Yangzhou, 225009, China
| | - Lanjun Zhang
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yi Xue
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Hang Wang
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Lin Jian
- College of Advanced Agricultural Sciences, College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Jianing Ma
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- College of Advanced Agricultural Sciences, College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhuolin Liu
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- College of Advanced Agricultural Sciences, College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hanlei Yang
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shaohui Huang
- College of Advanced Agricultural Sciences, College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xue Kang
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Yihua Zhou
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- College of Advanced Agricultural Sciences, College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Baocai Zhang
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- College of Advanced Agricultural Sciences, College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
7
|
Zhang J, Huang WL, Chen WS, Rao RY, Lai NW, Huang ZR, Yang LT, Chen LS. Mechanisms by Which Increased pH Ameliorates Copper Excess in Citrus sinensis Roots: Insight from a Combined Analysis of Physiology, Transcriptome, and Metabolome. PLANTS (BASEL, SWITZERLAND) 2024; 13:3054. [PMID: 39519972 PMCID: PMC11548300 DOI: 10.3390/plants13213054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 10/27/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024]
Abstract
Limited data are available on copper (Cu)-pH interaction-responsive genes and/or metabolites in plant roots. Citrus sinensis seedlings were treated with 300 μM (Cu toxicity) or 0.5 μM (control) CuCl2 at pH 3.0 or 4.8 for 17 weeks. Thereafter, gene expression and metabolite profiles were obtained using RNA-Seq and widely targeted metabolome, respectively. Additionally, several related physiological parameters were measured in roots. The results indicated that elevating the pH decreased the toxic effects of Cu on the abundances of secondary metabolites and primary metabolites in roots. This difference was related to the following several factors: (a) elevating the pH increased the capacity of Cu-toxic roots to maintain Cu homeostasis by reducing Cu uptake and Cu translocation to young leaves; (b) elevating the pH alleviated Cu toxicity-triggered oxidative damage by decreasing reactive oxygen species (ROS) formation and free fatty acid abundances and increasing the ability to detoxify ROS and maintain cell redox homeostasis in roots; and (c) increasing the pH prevented root senescence and cell wall (CW) metabolism impairments caused by Cu toxicity by lowering Cu levels in roots and root CWs, thus improving root growth. There were some differences and similarities in Cu-pH interaction-responsive genes and metabolites between leaves and roots.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Li-Song Chen
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.Z.); (W.-L.H.); (W.-S.C.); (R.-Y.R.); (N.-W.L.); (Z.-R.H.); (L.-T.Y.)
| |
Collapse
|
8
|
Zhong R, Zhou D, Chen L, Rose JP, Wang BC, Ye ZH. Plant Cell Wall Polysaccharide O-Acetyltransferases. PLANTS (BASEL, SWITZERLAND) 2024; 13:2304. [PMID: 39204739 PMCID: PMC11360243 DOI: 10.3390/plants13162304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 08/14/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024]
Abstract
Plant cell walls are largely composed of polysaccharide polymers, including cellulose, hemicelluloses (xyloglucan, xylan, mannan, and mixed-linkage β-1,3/1,4-glucan), and pectins. Among these cell wall polysaccharides, xyloglucan, xylan, mannan, and pectins are often O-acetylated, and polysaccharide O-acetylation plays important roles in cell wall assembly and disease resistance. Genetic and biochemical analyses have implicated the involvement of three groups of proteins in plant cell wall polysaccharide O-acetylation: trichome birefringence-like (TBL)/domain of unknown function 231 (DUF231), reduced wall acetylation (RWA), and altered xyloglucan 9 (AXY9). Although the exact roles of RWAs and AXY9 are yet to be identified, members of the TBL/DUF231 family have been found to be O-acetyltransferases responsible for the O-acetylation of xyloglucan, xylan, mannan, and pectins. Here, we provide a comprehensive overview of the occurrence of O-acetylated cell wall polysaccharides, the biochemical properties, structural features, and evolution of cell wall polysaccharide O-acetyltransferases, and the potential biotechnological applications of manipulations of cell wall polysaccharide acetylation. Further in-depth studies of the biochemical mechanisms of cell wall polysaccharide O-acetylation will not only enrich our understanding of cell wall biology, but also have important implications in engineering plants with increased disease resistance and reduced recalcitrance for biofuel production.
Collapse
Affiliation(s)
- Ruiqin Zhong
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
| | - Dayong Zhou
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Lirong Chen
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - John P. Rose
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Bi-Cheng Wang
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Zheng-Hua Ye
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
9
|
Tang J, Ling T, Li H, Fan C. Genome-wide analysis and identification of the TBL gene family in Eucalyptus grandis. FRONTIERS IN PLANT SCIENCE 2024; 15:1401298. [PMID: 39170793 PMCID: PMC11337025 DOI: 10.3389/fpls.2024.1401298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 06/17/2024] [Indexed: 08/23/2024]
Abstract
The TRICHOME BIREFRINGENCE-LIKE (TBL) gene encodes a class of proteins related to xylan acetylation, which has been shown to play an important role in plant response to environmental stresses. This gene family has been meticulously investigated in Arabidopsis thaliana, whereas there have been no related reports in Eucalyptus grandis. In this study, we identified 49 TBL genes in E. grandis. A conserved amino acid motif was identified, which plays an important role in the execution of the function of TBL gene family members. The expression of TBL genes was generally upregulated in jasmonic acid-treated experiments, whereas it has been found that jasmonic acid activates the expression of genes involved in the defense functions of the plant body, suggesting that TBL genes play an important function in the response of the plant to stress. The principle of the action of TBL genes is supported by the finding that the xylan acetylation process increases the rigidity of the cell wall of the plant body and thus improves the plant's resistance to stress. The results of this study provide new information about the TBL gene family in E. grandis and will help in the study of the evolution, inheritance, and function of TBL genes in E. grandis, while confirming their functions.
Collapse
Affiliation(s)
- Jiye Tang
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architectures, South China Agricultural University, Guangzhou, China
| | - Tenghong Ling
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architectures, South China Agricultural University, Guangzhou, China
| | - Huiling Li
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architectures, South China Agricultural University, Guangzhou, China
| | - Chunjie Fan
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of State Forestry and Grassland Administration on Tropical Forestry, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, China
| |
Collapse
|
10
|
Imran M, Junaid M, Shafiq S, Liu S, Chen X, Wang J, Tang X. Multiomics analysis reveals a substantial decrease in nanoplastics uptake and associated impacts by nano zinc oxide in fragrant rice (Oryza sativa L.). JOURNAL OF HAZARDOUS MATERIALS 2024; 474:134640. [PMID: 38810581 DOI: 10.1016/j.jhazmat.2024.134640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 04/28/2024] [Accepted: 05/16/2024] [Indexed: 05/31/2024]
Abstract
Nanoplastics (NPs) have emerged as global environmental pollutants with concerning implications for sustainable agriculture. Understanding the underlying mechanisms of NPs toxicity and devising strategies to mitigate their impact is crucial for crop growth and development. Here, we investigated the nanoparticles of zinc oxide (nZnO) to mitigate the adverse effects of 80 nm NPs on fragrant rice. Our results showed that optimized nZnO (25 mg L-1) concentration rescued root length and structural deficits by improving oxidative stress response, antioxidant defense mechanism and balanced nutrient levels, compared to seedlings subjected only to NPs stress (50 mg L-1). Consequently, microscopy observations, Zeta potential and Fourier transform infrared (FTIR) results revealed that NPs were mainly accumulated on the initiation joints of secondary roots and between cortical cells that blocks the nutrients uptake, while the supplementation of nZnO led to the formation of aggregates with NPs, which effectively impedes the uptake of NPs by the roots of fragrant rice. Transcriptomic analysis identified a total of 3973, 3513 and 3380 differentially expressed genes (DEGs) in response to NPs, nZnO and NPs+nZnO, respectively, compared to the control. Moreover, DEGs were significantly enriched in multiple pathways including biosynthesis of secondary metabolite, phenylpropanoid biosynthesis, amino sugar and nucleotide sugar metabolism, carotenoid biosynthesis, plant-pathogen interactions, MAPK signaling pathway, starch and sucrose metabolism, and plant hormone signal transduction. These pathways could play a significant role in alleviating NPs toxicity and restoring fragrant rice roots. Furthermore, metabolomic analysis demonstrated that nZnO application restored 2-acetyl-1-pyrroline (2-AP) pathways genes expression, enzymatic activities, and the content of essential precursors related to 2-AP biosynthesis under NPs toxicity, which ultimately led to the restoration of 2-AP content in the leaves. In conclusion, this study shows that optimized nZnO application effectively alleviates NPs toxic effects and restores both root structure and aroma production in fragrant rice leaves. This research offers a sustainable and practical strategy to enhance crop production under NPs toxicity while emphasizing the pivotal role of essential micronutrient nanomaterials in agriculture.
Collapse
Affiliation(s)
- Muhammad Imran
- Department of Crop Science and Technology, College of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| | - Muhammad Junaid
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Sarfraz Shafiq
- Department of Crop Science and Technology, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Shulin Liu
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Xiaoyuan Chen
- Department of Crop Science and Technology, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Jun Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Xiangru Tang
- Department of Crop Science and Technology, College of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
11
|
Zhong K, Zhang P, Wei X, Platre MP, He W, Zhang L, Małolepszy A, Cao M, Hu S, Tang S, Li B, Hu P, Busch W. Natural variation of TBR confers plant zinc toxicity tolerance through root cell wall pectin methylesterification. Nat Commun 2024; 15:5823. [PMID: 38992052 PMCID: PMC11239920 DOI: 10.1038/s41467-024-50106-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 06/28/2024] [Indexed: 07/13/2024] Open
Abstract
Zinc (Zn) is an essential micronutrient but can be cytotoxic when present in excess. Plants have evolved mechanisms to tolerate Zn toxicity. To identify genetic loci responsible for natural variation of plant tolerance to Zn toxicity, we conduct genome-wide association studies for root growth responses to high Zn and identify 21 significant associated loci. Among these loci, we identify Trichome Birefringence (TBR) allelic variation determining root growth variation in high Zn conditions. Natural alleles of TBR determine TBR transcript and protein levels which affect pectin methylesterification in root cell walls. Together with previously published data showing that pectin methylesterification increase goes along with decreased Zn binding to cell walls in TBR mutants, our findings lead to a model in which TBR allelic variation enables Zn tolerance through modulating root cell wall pectin methylesterification. The role of TBR in Zn tolerance is conserved across dicot and monocot plant species.
Collapse
Affiliation(s)
- Kaizhen Zhong
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, Zhejiang, China
- Plant Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
- School of Agricultural Sciences, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Peng Zhang
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, Zhejiang, China
| | - Xiangjin Wei
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, Zhejiang, China
| | - Matthieu Pierre Platre
- Plant Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Wenrong He
- Plant Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Ling Zhang
- Plant Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Anna Małolepszy
- Plant Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Min Cao
- Plant Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Shikai Hu
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, Zhejiang, China
| | - Shaoqing Tang
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, Zhejiang, China
| | - Baohai Li
- Plant Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA.
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Peisong Hu
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, Zhejiang, China.
- School of Agricultural Sciences, Jiangxi Agricultural University, Nanchang, Jiangxi, China.
| | - Wolfgang Busch
- Plant Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA.
| |
Collapse
|
12
|
Zhu X, Ma X, Hu W, Xing Y, Huang S, Chen Z, Fang L. Genome-wide identification of TBL gene family and functional analysis of GhTBL84 under cold stress in cotton. FRONTIERS IN PLANT SCIENCE 2024; 15:1431835. [PMID: 38957598 PMCID: PMC11217346 DOI: 10.3389/fpls.2024.1431835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 06/03/2024] [Indexed: 07/04/2024]
Abstract
Cotton fiber, the mainstay of the world's textile industry, is formed by the differentiation of epidermal cells on the outer peridium of the ovule. The TBL gene family is involved in the regulation of epidermal hair development as well as response to abiotic stress. However, the function of TBL genes in cotton has not been systematically studied yet. Here, we identified 131 and 130 TBL genes in TM-1 (Gossypium hirsutum) and Hai7124 (Gossypium barbadense), respectively. Phylogenetic, gene structure, expression pattern and cis-element of promoter analysis were performed and compared. Single gene association analysis indicated that more TBL genes related to fiber quality traits were found in G. barbadense, whereas more genes associated with yield traits were found in G. hirsutum. One gene, GhTBL84 (GH_D04G0930), was induced by treatment at 4°C for 12 and 24 h in G. hirsutum and silencing of the GhTBL84 gene by VIGS technology in TM-1 can significantly improve the resistance of cotton seedlings to low temperature stress. In sum, our study conducted a genome-wide identification and comparative analysis of TBL family genes in G. hirsutum and G. barbadense and demonstrated a group of TBL genes significantly associated with fiber quality and excavated cold stress responsive gene, such as GhTBL84, providing a theoretical basis for further improving cotton agronomic traits.
Collapse
Affiliation(s)
- Xiaoqing Zhu
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Xiaowei Ma
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Wanying Hu
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Yulin Xing
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Shengcai Huang
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Zequan Chen
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Hainan Institute of Zhejiang University, Sanya, China
| | - Lei Fang
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Hainan Institute of Zhejiang University, Sanya, China
| |
Collapse
|
13
|
Dauphin BG, Ropartz D, Ranocha P, Rouffle M, Carton C, Le Ru A, Martinez Y, Fourquaux I, Ollivier S, Mac-Bear J, Trezel P, Geairon A, Jamet E, Dunand C, Pelloux J, Ralet MC, Burlat V. TBL38 atypical homogalacturonan-acetylesterase activity and cell wall microdomain localization in Arabidopsis seed mucilage secretory cells. iScience 2024; 27:109666. [PMID: 38665206 PMCID: PMC11043868 DOI: 10.1016/j.isci.2024.109666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/16/2024] [Accepted: 04/02/2024] [Indexed: 04/28/2024] Open
Abstract
Plant cell walls constitute complex polysaccharidic/proteinaceous networks whose biosynthesis and dynamics implicate several cell compartments. The synthesis and remodeling of homogalacturonan pectins involve Golgi-localized methylation/acetylation and subsequent cell wall-localized demethylation/deacetylation. So far, TRICHOME BIREFRINGENCE-LIKE (TBL) family members have been described as Golgi-localized acetyltransferases targeting diverse hemicelluloses or pectins. Using seed mucilage secretory cells (MSCs) from Arabidopsis thaliana, we demonstrate the atypical localization of TBL38 restricted to a cell wall microdomain. A tbl38 mutant displays an intriguing homogalacturonan immunological phenotype in this cell wall microdomain and in an MSC surface-enriched abrasion powder. Mass spectrometry oligosaccharide profiling of this fraction reveals an increased homogalacturonan acetylation phenotype. Finally, TBL38 displays pectin acetylesterase activity in vitro. These results indicate that TBL38 is an atypical cell wall-localized TBL that displays a homogalacturonan acetylesterase activity rather than a Golgi-localized acetyltransferase activity as observed in previously studied TBLs. TBL38 function during seed development is discussed.
Collapse
Affiliation(s)
- Bastien G. Dauphin
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, UT3-CNRS- INPT, Auzeville-Tolosane, France
| | - David Ropartz
- INRAE, UR BIA, F-44316 Nantes, France
- INRAE, BIBS Facility, PROBE Research Infrastructure, Nantes, France
| | - Philippe Ranocha
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, UT3-CNRS- INPT, Auzeville-Tolosane, France
| | - Maxime Rouffle
- UMR INRAE 1158 BioEcoAgro Biologie des Plantes et Innovation, Université de Picardie Jules Verne, Amiens, France
| | - Camille Carton
- UMR INRAE 1158 BioEcoAgro Biologie des Plantes et Innovation, Université de Picardie Jules Verne, Amiens, France
| | - Aurélie Le Ru
- Plateforme Imagerie-Microscopie, CNRS, Université de Toulouse, UT3-CNRS, Fédération de Recherche FR3450 - Agrobiosciences, Interactions et Biodiversité, Auzeville-Tolosane, France
| | - Yves Martinez
- Plateforme Imagerie-Microscopie, CNRS, Université de Toulouse, UT3-CNRS, Fédération de Recherche FR3450 - Agrobiosciences, Interactions et Biodiversité, Auzeville-Tolosane, France
| | - Isabelle Fourquaux
- Centre de Microscopie Electronique Appliquée la Biologie (CMEAB), Faculté de Médecine Rangueil, UT3, Toulouse, France
| | - Simon Ollivier
- INRAE, UR BIA, F-44316 Nantes, France
- INRAE, BIBS Facility, PROBE Research Infrastructure, Nantes, France
| | - Jessica Mac-Bear
- INRAE, UR BIA, F-44316 Nantes, France
- INRAE, BIBS Facility, PROBE Research Infrastructure, Nantes, France
| | - Pauline Trezel
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, UT3-CNRS- INPT, Auzeville-Tolosane, France
- UMR INRAE 1158 BioEcoAgro Biologie des Plantes et Innovation, Université de Picardie Jules Verne, Amiens, France
| | | | - Elisabeth Jamet
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, UT3-CNRS- INPT, Auzeville-Tolosane, France
| | - Christophe Dunand
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, UT3-CNRS- INPT, Auzeville-Tolosane, France
| | - Jérôme Pelloux
- UMR INRAE 1158 BioEcoAgro Biologie des Plantes et Innovation, Université de Picardie Jules Verne, Amiens, France
| | | | - Vincent Burlat
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, UT3-CNRS- INPT, Auzeville-Tolosane, France
| |
Collapse
|
14
|
De-la-Cruz IM, Oyama K, Núñez-Farfán J. The chromosome-scale genome and the genetic resistance machinery against insect herbivores of the Mexican toloache, Datura stramonium. G3 (BETHESDA, MD.) 2024; 14:jkad288. [PMID: 38113048 PMCID: PMC10849327 DOI: 10.1093/g3journal/jkad288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 09/21/2023] [Accepted: 12/11/2023] [Indexed: 12/21/2023]
Abstract
Plant resistance refers to the heritable ability of plants to reduce damage caused by natural enemies, such as herbivores and pathogens, either through constitutive or induced traits like chemical compounds or trichomes. However, the genetic architecture-the number and genome location of genes that affect plant defense and the magnitude of their effects-of plant resistance to arthropod herbivores in natural populations remains poorly understood. In this study, we aimed to unveil the genetic architecture of plant resistance to insect herbivores in the annual herb Datura stramonium (Solanaceae) through quantitative trait loci mapping. We achieved this by assembling the species' genome and constructing a linkage map using an F2 progeny transplanted into natural habitats. Furthermore, we conducted differential gene expression analysis between undamaged and damaged plants caused by the primary folivore, Lema daturaphila larvae. Our genome assembly resulted in 6,109 scaffolds distributed across 12 haploid chromosomes. A single quantitative trait loci region on chromosome 3 was associated with plant resistance, spanning 0 to 5.17 cM. The explained variance by the quantitative trait loci was 8.44%. Our findings imply that the resistance mechanisms of D. stramonium are shaped by the complex interplay of multiple genes with minor effects. Protein-protein interaction networks involving genes within the quantitative trait loci region and overexpressed genes uncovered the key role of receptor-like cytoplasmic kinases in signaling and regulating tropane alkaloids and terpenoids, which serve as powerful chemical defenses against D. stramonium herbivores. The data generated in our study constitute important resources for delving into the evolution and ecology of secondary compounds mediating plant-insect interactions.
Collapse
Affiliation(s)
- Ivan M De-la-Cruz
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Lomma, Alnarp 230 53, Sweden
| | - Ken Oyama
- Escuela Nacional de Estudios Superiores (ENES), Universidad Nacional Autónoma de México (UNAM), Campus Morelia, Morelia, Michoacán 8701, Mexico
| | - Juan Núñez-Farfán
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| |
Collapse
|
15
|
Zhong R, Cui D, Richardson EA, Ye ZH. Acetylation of homogalacturonan and rhamnogalacturonan-I is catalyzed by a suite of trichome birefringence-like proteins. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:1084-1098. [PMID: 37934816 DOI: 10.1111/tpj.16540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/20/2023] [Accepted: 10/29/2023] [Indexed: 11/09/2023]
Abstract
Plant cell wall polysaccharides, including xylan, mannan, xyloglucan, and pectins, are often acetylated and members of the domain of unknown function 231 (DUF231)/trichome birefringence-like (TBL) family have been shown to be O-acetyltransferases mediating the acetylation of xylan, mannan, and xyloglucan. However, little is known about the O-acetyltransferases responsible for pectin acetylation. In this report, we biochemically characterized a suite of Arabidopsis DUF231/TBL proteins for their roles in pectin acetylation. We generated 24 TBL recombinant proteins in mammalian cells and demonstrated that 10 of them were able to transfer acetyl groups from acetyl-CoA onto the pectins homogalacturonan (HG) or rhamnogalacturonan-I (RG-I), and thus were named pectin O-acetyltransferase 1 to 10 (POAT1 to 10). It was found that POAT2,4,9,10 specifically acetylated HG and POAT5,6 acetylated RG-I, whereas POAT1,3,7,8 could act on both HG and RG-I. The acetylation of HG and RG-I by POATs was further corroborated by hydrolysis with pectin acetylesterases and by nuclear magnetic resonance spectroscopy. In addition, mutations of the conserved GDS and DXXH motifs in POAT3 and POAT8 were shown to lead to a loss of their ability to acetylate HG and RG-I. Furthermore, simultaneous RNA interference downregulation of POAT1,3,6,7,8 resulted in reduced cell expansion, impaired plant growth, and decreased pectin acetylation. Together, our findings indicate that these POATs are pectin O-acetyltransferases involved in acetylation of the pectin polysaccharides HG and RG-I.
Collapse
Affiliation(s)
- Ruiqin Zhong
- Department of Plant Biology, University of Georgia, Athens, Georgia, 30602, USA
| | - Dongtao Cui
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts, 02138, USA
| | | | - Zheng-Hua Ye
- Department of Plant Biology, University of Georgia, Athens, Georgia, 30602, USA
| |
Collapse
|
16
|
Wang X, Choi YM, Jeon YA, Yi J, Shin MJ, Desta KT, Yoon H. Analysis of Genetic Diversity in Adzuki Beans ( Vigna angularis): Insights into Environmental Adaptation and Early Breeding Strategies for Yield Improvement. PLANTS (BASEL, SWITZERLAND) 2023; 12:4154. [PMID: 38140482 PMCID: PMC10747723 DOI: 10.3390/plants12244154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/10/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023]
Abstract
Adzuki beans are widely cultivated in East Asia and are one of the earliest domesticated crops. In order to gain a deeper understanding of the genetic diversity and domestication history of adzuki beans, we conducted Genotyping by Sequencing (GBS) analysis on 366 landraces originating from Korea, China, and Japan, resulting in 6586 single-nucleotide polymorphisms (SNPs). Population structure analysis divided these 366 landraces into three subpopulations. These three subpopulations exhibited distinctive distributions, suggesting that they underwent extended domestication processes in their respective regions of origin. Phenotypic variance analysis of the three subpopulations indicated that the Korean-domesticated subpopulation exhibited significantly higher 100-seed weights, the Japanese-domesticated subpopulation showed significantly higher numbers of grains per pod, and the Chinese-domesticated subpopulation displayed significantly higher numbers of pods per plant. We speculate that these differences in yield-related traits may be attributed to varying emphases placed by early breeders in these regions on the selection of traits related to yield. A large number of genes related to biotic/abiotic stress resistance and defense were found in most quantitative trait locus (QTL) for yield-related traits using genome-wide association studies (GWAS). Genomic sliding window analysis of Tajima's D and a genetic differentiation coefficient (Fst) revealed distinct domestication selection signatures and genotype variations on these QTLs within each subpopulation. These findings indicate that each subpopulation would have been subjected to varied biotic/abiotic stress events in different origins, of which these stress events have caused balancing selection differences in the QTL of each subpopulation. In these balancing selections, plants tend to select genotypes with strong resistance under biotic/abiotic stress, but reduce the frequency of high-yield genotypes to varying degrees. These biotic/abiotic stressors impact crop yield and may even lead to selection purging, resulting in the loss of several high-yielding genotypes among landraces. However, this also fuels the flow of crop germplasms. Overall, balancing selection appears to have a more significant impact on the three yield-related traits compared to breeder-driven domestication selection. These findings are crucial for understanding the impact of domestication selection history on landraces and yield-related traits, aiding in the improvement of adzuki bean varieties.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Hyemyeong Yoon
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Republic of Korea; (X.W.); (Y.-M.C.); (Y.-a.J.); (J.Y.); (M.-J.S.)
| |
Collapse
|
17
|
Boczkowska M, Puchta-Jasińska M, Bolc P, Moskal K, Puła S, Motor A, Bączek K, Groszyk J, Podyma W. Characterization of the Moroccan Barley Germplasm Preserved in the Polish Genebank as a First Step towards Selecting Forms with Increased Drought Tolerance. Int J Mol Sci 2023; 24:16350. [PMID: 38003539 PMCID: PMC10671370 DOI: 10.3390/ijms242216350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/10/2023] [Accepted: 11/12/2023] [Indexed: 11/26/2023] Open
Abstract
In marginal, arid, and semi-arid areas of Morocco, crops are often exposed to multiple abiotic and biotic stresses that have a major impact on yield. Farmer-maintained Moroccan landraces have been shaped by the impact of very strong selection pressures, gradually adapting to the local ecosystem and obsolete low-input agricultural practices without improvement towards high yield and quality. Considering the increasing threat of drought in Poland, it is necessary to introduce germplasm with tolerance to water deficit into barley breeding programs. The aim of this research was a DArTseq-based genetic characterization of a collection of germplasm of Moroccan origin, conserved in the Polish genebank. The results showed that all conserved landraces have a high level of heterogeneity and their gene pool is different from the material developed by Polish breeders. Based on the analysis of eco-geographical data, locations with extremely different intensities of drought stress were selected. A total of 129 SNPs unique to accessions from these locations were identified. In the neighborhood of the clusters of unique SNPs on chromosomes 5H and 6H, genes that may be associated with plant response to drought stress were identified. The results obtained may provide a roadmap for further research to support Polish barley breeding for increased drought tolerance.
Collapse
Affiliation(s)
- Maja Boczkowska
- Plant Breeding and Acclimatization Institute-National Research Institute, Radzików, 05-870 Błonie, Poland
| | - Marta Puchta-Jasińska
- Plant Breeding and Acclimatization Institute-National Research Institute, Radzików, 05-870 Błonie, Poland
| | - Paulina Bolc
- Plant Breeding and Acclimatization Institute-National Research Institute, Radzików, 05-870 Błonie, Poland
| | - Kinga Moskal
- Plant Breeding and Acclimatization Institute-National Research Institute, Radzików, 05-870 Błonie, Poland
| | - Szymon Puła
- Plant Breeding and Acclimatization Institute-National Research Institute, Radzików, 05-870 Błonie, Poland
| | - Adrian Motor
- Plant Breeding and Acclimatization Institute-National Research Institute, Radzików, 05-870 Błonie, Poland
| | - Katarzyna Bączek
- Department of Vegetable and Medicinal Plants, Institute of Horticultural Sciences, Warsaw University of Life Sciences SGGW, 159 Nowoursynowska Str., 02-776 Warsaw, Poland
| | - Jolanta Groszyk
- Plant Breeding and Acclimatization Institute-National Research Institute, Radzików, 05-870 Błonie, Poland
| | - Wiesław Podyma
- Plant Breeding and Acclimatization Institute-National Research Institute, Radzików, 05-870 Błonie, Poland
| |
Collapse
|
18
|
Fujii S, Yamamoto E, Ito S, Tangpranomkorn S, Kimura Y, Miura H, Yamaguchi N, Kato Y, Niidome M, Yoshida A, Shimosato-Asano H, Wada Y, Ito T, Takayama S. SHI family transcription factors regulate an interspecific barrier. NATURE PLANTS 2023; 9:1862-1873. [PMID: 37798337 DOI: 10.1038/s41477-023-01535-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 09/05/2023] [Indexed: 10/07/2023]
Abstract
Pre-zygotic interspecies incompatibility in angiosperms is an important mechanism to prevent unfavourable hybrids between species. Here we report our identification of STIGMATIC PRIVACY 2 (SPRI2), a transcription factor that has a zinc-finger domain and regulates interspecies barriers in Arabidopsis thaliana, via genome-wide association study. Knockout analysis of SPRI2/SRS7 and its paralogue SPRI2-like/SRS5 demonstrated their necessity in rejecting male pollen from other species within female pistils. Additionally, they govern mRNA transcription of xylan O-acetyltransferases (TBL45 and TBL40) related to cell wall modification, alongside SPRI1, a pivotal transmembrane protein for interspecific pollen rejection. SPRI2/SRS7 is localized as condensed structures in the nucleus formed via liquid-liquid phase separation (LLPS), and a prion-like sequence in its amino-terminal region was found to be responsible for the formation of the condensates. The LLPS-regulated SPRI2/SRS7 discovered in this study may contribute to the establishment of interspecific reproductive barriers through the transcriptional regulation of cell wall modification genes and SPRI1.
Collapse
Affiliation(s)
- Sota Fujii
- Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan.
- Suntory Rising Stars Encouragement Program in Life Sciences Fellow, Tokyo, Japan.
| | - Eri Yamamoto
- Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan
| | - Seitaro Ito
- Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan
| | - Surachat Tangpranomkorn
- Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan
- GRA&GREEN Inc., Nagoya, Japan
| | - Yuka Kimura
- Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan
| | - Hiroki Miura
- Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan
| | - Nobutoshi Yamaguchi
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Nara, Japan
| | - Yoshinobu Kato
- Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan
- Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, Saitama, Japan
| | - Maki Niidome
- Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan
| | - Aya Yoshida
- Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan
| | - Hiroko Shimosato-Asano
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Nara, Japan
| | - Yuko Wada
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Nara, Japan
| | - Toshiro Ito
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Nara, Japan
| | - Seiji Takayama
- Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan.
| |
Collapse
|
19
|
Li Y, Wang W, Hu C, Yang S, Ma C, Wu J, Wang Y, Xu Z, Li L, Huang Z, Zhu J, Jia X, Ye X, Yang Z, Sun Y, Liu H, Chen R. Ectopic Expression of a Maize Gene ZmDUF1645 in Rice Increases Grain Length and Yield, but Reduces Drought Stress Tolerance. Int J Mol Sci 2023; 24:9794. [PMID: 37372942 DOI: 10.3390/ijms24129794] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 05/27/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
As the human population grows rapidly, food shortages will become an even greater problem; therefore, increasing crop yield has become a focus of rice breeding programs. The maize gene, ZmDUF1645, encoding a putative member of the DUF1645 protein family with an unknown function, was transformed into rice. Phenotypic analysis showed that enhanced ZmDUF1645 expression significantly altered various traits in transgenic rice plants, including increased grain length, width, weight, and number per panicle, resulting in a significant increase in yield, but a decrease in rice tolerance to drought stress. qRT-PCR results showed that the expression of the related genes regulating meristem activity, such as MPKA, CDKA, a novel crop grain filling gene (GIF1), and GS3, was significantly changed in the ZmDUF1645-overexpression lines. Subcellular colocalization showed that ZmDUF1645 was primarily localized on cell membrane systems. Based on these findings, we speculate that ZmDUF1645, like the OsSGL gene in the same protein family, may regulate grain size and affect yield through the cytokinin signaling pathway. This research provides further knowledge and understanding of the unknown functions of the DUF1645 protein family and may serve as a reference for biological breeding engineering to increase maize crop yield.
Collapse
Affiliation(s)
- Yaqi Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute of Sichuan Agricultural University, Chengdu 611130, China
| | - Wei Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute of Sichuan Agricultural University, Chengdu 611130, China
| | - Changqiong Hu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute of Sichuan Agricultural University, Chengdu 611130, China
| | - Songjin Yang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute of Sichuan Agricultural University, Chengdu 611130, China
| | - Chuan Ma
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute of Sichuan Agricultural University, Chengdu 611130, China
| | - Jiacheng Wu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute of Sichuan Agricultural University, Chengdu 611130, China
| | - Yuwei Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute of Sichuan Agricultural University, Chengdu 611130, China
| | - Zhengjun Xu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute of Sichuan Agricultural University, Chengdu 611130, China
| | - Lihua Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute of Sichuan Agricultural University, Chengdu 611130, China
| | - Zhengjian Huang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute of Sichuan Agricultural University, Chengdu 611130, China
| | - Jianqing Zhu
- Demonstration Base for International Science & Technology Cooperation of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiaomei Jia
- Demonstration Base for International Science & Technology Cooperation of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiaoying Ye
- Demonstration Base for International Science & Technology Cooperation of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhiyuang Yang
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Rice Research Institute of Sichuan Agricultural University, Chengdu 611130, China
| | - Yongjian Sun
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Rice Research Institute of Sichuan Agricultural University, Chengdu 611130, China
| | - Huainian Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute of Sichuan Agricultural University, Chengdu 611130, China
| | - Rongjun Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute of Sichuan Agricultural University, Chengdu 611130, China
- Demonstration Base for International Science & Technology Cooperation of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Rice Research Institute of Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
20
|
Kabir N, Wang X, Lu L, Qanmber G, Liu L, Si A, Zhang L, Cao W, Yang Z, Yu Y, Liu Z. Functional characterization of TBL genes revealed the role of GhTBL7 and GhTBL58 in cotton fiber elongation. Int J Biol Macromol 2023; 241:124571. [PMID: 37100328 DOI: 10.1016/j.ijbiomac.2023.124571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 04/01/2023] [Accepted: 04/14/2023] [Indexed: 04/28/2023]
Abstract
TBL (Trichome Birefringence Like) gene family members are involved in trichome initiation and xylan acetylation in several plant species. In our research, we identified 102 TBLs from G. hirsutum. The phylogenetic tree classified TBL genes into five groups. Collinearity analysis of TBL genes indicated 136 paralogous gene pairs in G. hirsutum. Gene duplication indicated that WGD or segmental duplication contributed to the GhTBL gene family expansion. Promoter cis-elements of GhTBLs were related to growth and development, seed-specific regulation, light, and stress responses. GhTBL genes (GhTBL7, GhTBL15, GhTBL21, GhTBL25, GhTBL45, GhTBL54, GhTBL67, GhTBL72, and GhTBL77) exhibited upregulated response under exposure to cold, heat, NaCl, and PEG. GhTBL genes exhibited high expression during fiber development stages. Two GhTBL genes (GhTBL7 and GhTBL58) showed differential expression at 10 DPA fiber, as 10 DPA is a fast fiber elongation stage and fiber elongation is a very important stage of cotton fiber development. Subcellular localization of GhTBL7 and GhTBL58 revealed that these genes reside inside the cell membrane. Promoter GUS activity of GhTBL7 and GhTBL58 exhibited deep staining in roots. To further validate the role of these genes in cotton fiber elongation, we silenced these genes and observed a significant reduction in the fiber length at 10 DPA. In conclusion, the functional study of cell membrane-associated genes (GhTBL7 and GhTBL58) showed deep staining in root tissues and potential function during cotton fiber elongation at 10 DPA fiber.
Collapse
Affiliation(s)
- Nosheen Kabir
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China; State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China
| | - Xuwen Wang
- Key Laboratory of China Northwestern Inland Region, Ministry of Agriculture and Rural Affairs, Cotton Research Institute, Xinjiang Academy Agricultural and Reclamation Science, Shihezi 832003, China
| | - Lili Lu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China
| | - Ghulam Qanmber
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China; State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China
| | - Le Liu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China
| | - Aijun Si
- Key Laboratory of China Northwestern Inland Region, Ministry of Agriculture and Rural Affairs, Cotton Research Institute, Xinjiang Academy Agricultural and Reclamation Science, Shihezi 832003, China
| | - Lian Zhang
- Key Laboratory of China Northwestern Inland Region, Ministry of Agriculture and Rural Affairs, Cotton Research Institute, Xinjiang Academy Agricultural and Reclamation Science, Shihezi 832003, China
| | - Wei Cao
- Key Laboratory of China Northwestern Inland Region, Ministry of Agriculture and Rural Affairs, Cotton Research Institute, Xinjiang Academy Agricultural and Reclamation Science, Shihezi 832003, China
| | - Zuoren Yang
- Key Laboratory of China Northwestern Inland Region, Ministry of Agriculture and Rural Affairs, Cotton Research Institute, Xinjiang Academy Agricultural and Reclamation Science, Shihezi 832003, China; Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, China
| | - Yu Yu
- Key Laboratory of China Northwestern Inland Region, Ministry of Agriculture and Rural Affairs, Cotton Research Institute, Xinjiang Academy Agricultural and Reclamation Science, Shihezi 832003, China.
| | - Zhao Liu
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China.
| |
Collapse
|
21
|
Li Z, Shi Y, Xiao X, Song J, Li P, Gong J, Zhang H, Gong W, Liu A, Peng R, Shang H, Ge Q, Li J, Pan J, Chen Q, Lu Q, Yuan Y. Genome-wide characterization of trichome birefringence-like genes provides insights into fiber yield improvement. FRONTIERS IN PLANT SCIENCE 2023; 14:1127760. [PMID: 37008510 PMCID: PMC10050746 DOI: 10.3389/fpls.2023.1127760] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 02/16/2023] [Indexed: 06/19/2023]
Abstract
Cotton is an important fiber crop. The cotton fiber is an extremely long trichome that develops from the epidermis of an ovule. The trichome is a general and multi-function plant organ, and trichome birefringence-like (TBL) genes are related to trichome development. At the genome-wide scale, we identified TBLs in four cotton species, comprising two cultivated tetraploids (Gossypium hirsutum and G. barbadense) and two ancestral diploids (G. arboreum and G. raimondii). Phylogenetic analysis showed that the TBL genes clustered into six groups. We focused on GH_D02G1759 in group IV because it was located in a lint percentage-related quantitative trait locus. In addition, we used transcriptome profiling to characterize the role of TBLs in group IV in fiber development. The overexpression of GH_D02G1759 in Arabidopsis thaliana resulted in more trichomes on the stems, thereby confirming its function in fiber development. Moreover, the potential interaction network was constructed based on the co-expression network, and it was found that GH_D02G1759 may interact with several genes to regulate fiber development. These findings expand our knowledge of TBL family members and provide new insights for cotton molecular breeding.
Collapse
Affiliation(s)
- Ziyin Li
- Engineering Research Centre of Cotton, Ministry of Education, College of Agriculture, Xinjiang Agricultural University, Urumqi, China
- School of Biotechnology and Food Engineering, Anyang Institute of Technology, Anyang, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Yuzhen Shi
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Xianghui Xiao
- Engineering Research Centre of Cotton, Ministry of Education, College of Agriculture, Xinjiang Agricultural University, Urumqi, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Jikun Song
- Engineering Research Centre of Cotton, Ministry of Education, College of Agriculture, Xinjiang Agricultural University, Urumqi, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Pengtao Li
- School of Biotechnology and Food Engineering, Anyang Institute of Technology, Anyang, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Juwu Gong
- Engineering Research Centre of Cotton, Ministry of Education, College of Agriculture, Xinjiang Agricultural University, Urumqi, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Haibo Zhang
- School of Biotechnology and Food Engineering, Anyang Institute of Technology, Anyang, China
| | - Wankui Gong
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Aiying Liu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Renhai Peng
- School of Biotechnology and Food Engineering, Anyang Institute of Technology, Anyang, China
| | - Haihong Shang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Qun Ge
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Junwen Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Jingtao Pan
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Quanjia Chen
- Engineering Research Centre of Cotton, Ministry of Education, College of Agriculture, Xinjiang Agricultural University, Urumqi, China
| | - Quanwei Lu
- School of Biotechnology and Food Engineering, Anyang Institute of Technology, Anyang, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Youlu Yuan
- Engineering Research Centre of Cotton, Ministry of Education, College of Agriculture, Xinjiang Agricultural University, Urumqi, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| |
Collapse
|
22
|
Wang W, Guo W, Le L, Yu J, Wu Y, Li D, Wang Y, Wang H, Lu X, Qiao H, Gu X, Tian J, Zhang C, Pu L. Integration of high-throughput phenotyping, GWAS, and predictive models reveals the genetic architecture of plant height in maize. MOLECULAR PLANT 2023; 16:354-373. [PMID: 36447436 PMCID: PMC11801313 DOI: 10.1016/j.molp.2022.11.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 09/05/2022] [Accepted: 11/27/2022] [Indexed: 06/16/2023]
Abstract
Plant height (PH) is an essential trait in maize (Zea mays) that is tightly associated with planting density, biomass, lodging resistance, and grain yield in the field. Dissecting the dynamics of maize plant architecture will be beneficial for ideotype-based maize breeding and prediction, as the genetic basis controlling PH in maize remains largely unknown. In this study, we developed an automated high-throughput phenotyping platform (HTP) to systematically and noninvasively quantify 77 image-based traits (i-traits) and 20 field traits (f-traits) for 228 maize inbred lines across all developmental stages. Time-resolved i-traits with novel digital phenotypes and complex correlations with agronomic traits were characterized to reveal the dynamics of maize growth. An i-trait-based genome-wide association study identified 4945 trait-associated SNPs, 2603 genetic loci, and 1974 corresponding candidate genes. We found that rapid growth of maize plants occurs mainly at two developmental stages, stage 2 (S2) to S3 and S5 to S6, accounting for the final PH indicators. By integrating the PH-association network with the transcriptome profiles of specific internodes, we revealed 13 hub genes that may play vital roles during rapid growth. The candidate genes and novel i-traits identified at multiple growth stages may be used as potential indicators for final PH in maize. One candidate gene, ZmVATE, was functionally validated and shown to regulate PH-related traits in maize using genetic mutation. Furthermore, machine learning was used to build predictive models for final PH based on i-traits, and their performance was assessed across developmental stages. Moderate, strong, and very strong correlations between predictions and experimental datasets were achieved from the early S4 (tenth-leaf) stage. Colletively, our study provides a valuable tool for dissecting the spatiotemporal formation of specific internodes and the genetic architecture of PH, as well as resources and predictive models that are useful for molecular design breeding and predicting maize varieties with ideal plant architectures.
Collapse
Affiliation(s)
- Weixuan Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572024, China
| | - Weijun Guo
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Liang Le
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jia Yu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yue Wu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Dongwei Li
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yifan Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Huan Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiaoduo Lu
- Institute of Molecular Breeding for Maize, Qilu Normal University, Jinan 250200, China
| | - Hong Qiao
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712, USA; Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Xiaofeng Gu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jian Tian
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Chunyi Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Sanya Institute, Hainan Academy of Agricultural Sciences, Sanya 572000, China.
| | - Li Pu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572024, China.
| |
Collapse
|
23
|
Shahin L, Zhang L, Mohnen D, Urbanowicz BR. Insights into pectin O-acetylation in the plant cell wall: structure, synthesis, and modification. CELL SURFACE (AMSTERDAM, NETHERLANDS) 2023; 9:100099. [PMID: 36793376 PMCID: PMC9922974 DOI: 10.1016/j.tcsw.2023.100099] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/19/2023] [Accepted: 01/23/2023] [Indexed: 01/26/2023]
Abstract
O-Acetyl esterification is an important structural and functional feature of pectins present in the cell walls of all land plants. The amount and positions of pectin acetyl substituents varies across plant tissues and stages of development. Plant growth and response to biotic and abiotic stress are known to be significantly influenced by pectin O-acetylation. Gel formation is a key characteristic of pectins, and many studies have shown that gel formation is dependent upon the degree of acetylation. Previous studies have indicated that members of the TRICHOME BIREFRINGENCE-LIKE (TBL) family may play a role in the O-acetylation of pectin, however, biochemical evidence for acceptor specific pectin acetyltransferase activity remains to be confirmed and the exact mechanism(s) for catalysis must be determined. Pectin acetylesterases (PAEs) affect pectin acetylation as they hydrolyze acetylester bonds and have a role in the amount and distribution of O-acetylation. Several mutant studies suggest the critical role of pectin O-acetylation; however, additional research is required to fully understand this. This review aims to discuss the importance, role, and putative mechanism of pectin O-acetylation.
Collapse
Key Words
- AXY9, ALTERED XYLOGLUCAN 9
- DA, degree of acetyl-esterification
- DE, degree of esterification
- DM, degree of methyl-esterification
- GalA, galacturonic acid
- HG, homogalacturonan
- NMR, nuclear magnetic resonance
- O-acetylation
- O-acetyltransferase
- PAEs, pectin acetylesterases
- Pectin
- Pectin acetylesterase
- Plant cell wall
- RG-I, rhamnogalacturonan-I
- RWA, REDUCED WALL O-ACETYLATION
- TBL, TRICHOME BIREFRINGENCE-LIKE
- XGA, xylogalacturonan
Collapse
Affiliation(s)
- Lubana Shahin
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30602, USA
- Department of Biochemistry and Molecular Biology, University of Georgia, 315 Riverbend Road, Athens, GA 30602, USA
| | - Liang Zhang
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30602, USA
- Department of Biochemistry and Molecular Biology, University of Georgia, 315 Riverbend Road, Athens, GA 30602, USA
| | - Debra Mohnen
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30602, USA
- Department of Plant Biology, University of Georgia, 315 Riverbend Road, Athens, GA 30602, USA
- Department of Biochemistry and Molecular Biology, University of Georgia, 315 Riverbend Road, Athens, GA 30602, USA
| | - Breeanna R. Urbanowicz
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30602, USA
- Department of Biochemistry and Molecular Biology, University of Georgia, 315 Riverbend Road, Athens, GA 30602, USA
- Corresponding author at: Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30602, USA.
| |
Collapse
|
24
|
Jayaraman K, Sevanthi AM, Raman KV, Jiwani G, Solanke AU, Mandal PK, Mohapatra T. Overexpression of a DUF740 family gene ( LOC_Os04g59420) imparts enhanced climate resilience through multiple stress tolerance in rice. FRONTIERS IN PLANT SCIENCE 2023; 13:947312. [PMID: 36743581 PMCID: PMC9893790 DOI: 10.3389/fpls.2022.947312] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 12/23/2022] [Indexed: 06/18/2023]
Abstract
Functional characterization of stress-responsive genes through the analysis of transgenic plants is a standard approach to comprehend their role in climate resilience and subsequently exploit them for sustainable crop improvement. In this study, we investigated the function of LOC_Os04g59420, a gene of DUF740 family (OsSRDP-Oryza sativa Stress Responsive DUF740 Protein) from rice, which showed upregulation in response to abiotic stress in the available global expression data, but is yet to be functionally characterized. Transgenic plants of the rice OsSRDP gene, driven by a stress-inducible promoter AtRd29A, were developed in the background of cv. Pusa Sugandh 2 (PS2) and their transgene integration and copy number were confirmed by molecular analysis. The three independent homozygous transgenic plants (AtRd29A::OsSRDP rice transformants) showed better resilience to drought, salinity, and cold stresses, but not heat stress, as compared to the non-transformed PS2, which corresponded with their respective relative transcript abundance for OsSRDP. Transgenic plants maintained higher RWC, photosynthetic pigments, and proline accumulation under drought and salinity stresses. Furthermore, they exhibited less accumulation of reactive oxygen species (ROS) than PS2 under drought stress, as seen from the transcript abundance studies of the ROS genes. Under cold stress, OsSRDP transgenic lines illustrated minimal cell membrane injury compared to PS2. Additionally, the transgenic plants showed resistance to a virulent strain of rice blast fungus, Magnaporthe oryzae (M. oryzae). The promoter analysis of the gene in N22 and PS2 revealed the presence of multiple abiotic and biotic stress-specific motif elements supporting our observation on multiple stress tolerance. Based on bioinformatics studies, we identified four potential candidate interaction partners for LOC_Os04g59420, of which two genes (LOC_Os05g09640 and LOC_Os06g50370) showed co-expression under biotic and drought stress along with OsSRDP. Altogether, our findings established that stress-inducible expression of OsSRDP can significantly enhance tolerance to multiple abiotic stresses and a biotic stress.
Collapse
Affiliation(s)
- Karikalan Jayaraman
- Indian Council of Agricultural Research (ICAR) - National Institute for Plant Biotechnology, New Delhi, India
- Department of Botany, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | - Amitha Mithra Sevanthi
- Indian Council of Agricultural Research (ICAR) - National Institute for Plant Biotechnology, New Delhi, India
| | - Kalappan Venkat Raman
- Indian Council of Agricultural Research (ICAR) - National Institute for Plant Biotechnology, New Delhi, India
| | - Gitanjali Jiwani
- Indian Council of Agricultural Research (ICAR) - National Institute for Plant Biotechnology, New Delhi, India
| | - Amolkumar U. Solanke
- Indian Council of Agricultural Research (ICAR) - National Institute for Plant Biotechnology, New Delhi, India
| | - Pranab Kumar Mandal
- Indian Council of Agricultural Research (ICAR) - National Institute for Plant Biotechnology, New Delhi, India
| | - Trilochan Mohapatra
- Indian Council of Agricultural Research (ICAR), Krishi Bhawan, New Delhi, India
| |
Collapse
|
25
|
Ban Y, Tan J, Xiong Y, Mo X, Jiang Y, Xu Z. Transcriptome analysis reveals the molecular mechanisms of Phragmites australis tolerance to CuO-nanoparticles and/or flood stress induced by arbuscular mycorrhizal fungi. JOURNAL OF HAZARDOUS MATERIALS 2023; 442:130118. [PMID: 36303351 DOI: 10.1016/j.jhazmat.2022.130118] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 09/24/2022] [Accepted: 10/01/2022] [Indexed: 06/16/2023]
Abstract
The molecular mechanism of arbuscular mycorrhizal fungi (AMF) in vertical flow constructed wetlands (VFCWs) for the purification of copper oxide nanoparticles (CuO-NPs) contaminated wastewater remains unclear. In this study, transcriptome analysis was used to explore the effect of AMF inoculation on the gene expression profile of Phragmites australis roots under different concentrations of CuO-NPs and/or flood stress. 551, 429 and 2281 differentially expressed genes (DEGs) were specially regulated by AMF under combined stresses of CuO-NPs and flood, single CuO-NPs stress and single flood stress, respectively. Based on the results of DEG function annotation and enrichment analyses, AMF inoculation under CuO-NPs and/or flood stress up-regulated the expression of a number of genes involved in antioxidant defense systems, cell wall biosynthesis and transporter protein, which may contribute to plant tolerance. The expression of 30 transcription factors (TFs) was up-regulated by AMF inoculation under combined stresses of CuO-NPs and flood, and 44 and 44 TFs were up-regulated under single CuO-NPs or flood condition, respectively, which may contribute to the alleviating effect of symbiosis on CuO-NPs and/or flood stress. These results provided a theoretical basis for enhancing the ecological restoration function of wetland plants for metallic nanoparticles (MNPs) by mycorrhizal technology in the future.
Collapse
Affiliation(s)
- Yihui Ban
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, Hubei, China
| | - Jiayuan Tan
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, Hubei, China
| | - Yang Xiong
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, Hubei, China
| | - Xiantong Mo
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, Hubei, China
| | - Yinghe Jiang
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, Hubei, China
| | - Zhouying Xu
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, Hubei, China.
| |
Collapse
|
26
|
Srivastava R, Kobayashi Y, Koyama H, Sahoo L. Cowpea NAC1/NAC2 transcription factors improve growth and tolerance to drought and heat in transgenic cowpea through combined activation of photosynthetic and antioxidant mechanisms. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:25-44. [PMID: 36107155 DOI: 10.1111/jipb.13365] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 09/13/2022] [Indexed: 06/15/2023]
Abstract
NAC (NAM/ATAF1/2/CUC2) transcription factors are central switches of growth and stress responses in plants. However, unpredictable interspecies conservation of function and regulatory targets makes the well-studied NAC orthologs inapt for pulse engineering. The knowledge of suitable NAC candidates in hardy pulses like cowpea (Vigna unguiculata (L.) Walp.) is still in infancy, hence warrants immediate biotechnological intervention. Here, we showed that overexpression of two native NAC genes (VuNAC1 and VuNAC2) promoted germinative, vegetative, and reproductive growth and conferred multiple abiotic stress tolerance in a commercial cowpea variety. The transgenic lines displayed increased leaf area, thicker stem, nodule-rich denser root system, early flowering, higher pod production (∼3.2-fold and ∼2.1-fold), and greater seed weight (10.3% and 6.0%). In contrast, transient suppression of VuNAC1/2 caused severe growth retardation and flower inhibition. The overexpressor lines showed remarkable tolerance to major yield-declining terminal stresses, such as drought, salinity, heat, and cold, and recovered growth and seed production by boosting photosynthetic activity, water use efficiency, membrane integrity, Na+ /K+ homeostasis, and antioxidant activity. The comparative transcriptome study indicated consolidated activation of genes involved in chloroplast development, photosynthetic complexes, cell division and expansion, cell wall biogenesis, nutrient uptake and metabolism, stress response, abscisic acid, and auxin signaling. Unlike their orthologs, VuNAC1/2 direct synergistic transcriptional tuning of stress and developmental signaling to avoid unwanted trade-offs. Their overexpression governs the favorable interplay of photosynthesis and reactive oxygen species regulation to improve stress recovery, nutritional sufficiency, biomass, and production. This unconventional balance of strong stress tolerance and agronomic quality is useful for translational crop research and molecular breeding of pulses.
Collapse
Affiliation(s)
- Richa Srivastava
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Yuriko Kobayashi
- Faculty of Applied Biological Sciences, Gifu University, 1-1, Yanagido, Gifu, 501-1193,, Japan
| | - Hiroyuki Koyama
- Faculty of Applied Biological Sciences, Gifu University, 1-1, Yanagido, Gifu, 501-1193,, Japan
| | - Lingaraj Sahoo
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| |
Collapse
|
27
|
Kanapin A, Rozhmina T, Bankin M, Surkova S, Duk M, Osyagina E, Samsonova M. Genetic Determinants of Fiber-Associated Traits in Flax Identified by Omics Data Integration. Int J Mol Sci 2022; 23:14536. [PMID: 36498863 PMCID: PMC9738745 DOI: 10.3390/ijms232314536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/10/2022] [Accepted: 11/15/2022] [Indexed: 11/23/2022] Open
Abstract
In this paper, we explore potential genetic factors in control of flax phenotypes associated with fiber by mining a collection of 306 flax accessions from the Federal Research Centre of the Bast Fiber Crops, Torzhok, Russia. In total, 11 traits were assessed in the course of 3 successive years. A genome-wide association study was performed for each phenotype independently using six different single-locus models implemented in the GAPIT3 R package. Moreover, we applied a multivariate linear mixed model implemented in the GEMMA package to account for trait correlations and potential pleiotropic effects of polymorphisms. The analyses revealed a number of genomic variants associated with different fiber traits, implying the complex and polygenic control. All stable variants demonstrate a statistically significant allelic effect across all 3 years of the experiment. We tested the validity of the predicted variants using gene expression data available for the flax fiber studies. The results shed new light on the processes and pathways associated with the complex fiber traits, while the pinpointed candidate genes may be further used for marker-assisted selection.
Collapse
Affiliation(s)
- Alexander Kanapin
- Centre for Computational Biology, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia
| | - Tatyana Rozhmina
- Laboratory of Breeding Technologies, Federal Research Center for Bast Fiber Crops, 172002 Torzhok, Russia
| | - Mikhail Bankin
- Mathematical Biology & Bioinformatics Laboratory, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia
| | - Svetlana Surkova
- Mathematical Biology & Bioinformatics Laboratory, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia
| | - Maria Duk
- Mathematical Biology & Bioinformatics Laboratory, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia
- Theoretical Department, Ioffe Institute, 194021 St. Petersburg, Russia
| | - Ekaterina Osyagina
- Mathematical Biology & Bioinformatics Laboratory, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia
| | - Maria Samsonova
- Mathematical Biology & Bioinformatics Laboratory, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia
| |
Collapse
|
28
|
Automatic pseudo-coloring approaches to improve visual perception and contrast in polarimetric images of biological tissues. Sci Rep 2022; 12:18479. [PMID: 36323771 PMCID: PMC9630374 DOI: 10.1038/s41598-022-23330-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 10/29/2022] [Indexed: 11/06/2022] Open
Abstract
Imaging polarimetry methods have proved their suitability to enhance the image contrast between tissues and structures in organic samples, or even to reveal structures hidden in regular intensity images. These methods are nowadays used in a wide range of biological applications, as for the early diagnosis of different pathologies. To include the discriminatory potential of different polarimetric observables in a single image, a suitable strategy reported in literature consists in associating different observables to different color channels, giving rise to pseudo-colored images helping the visualization of different tissues in samples. However, previous reported polarimetric based pseudo-colored images of tissues are mostly based on simple linear combinations of polarimetric observables whose weights are set ad-hoc, and thus, far from optimal approaches. In this framework, we propose the implementation of two pseudo-colored methods. One is based on the Euclidean distances of actual values of pixels and an average value taken over a given region of interest in the considered image. The second method is based on the likelihood for each pixel to belong to a given class. Such classes being defined on the basis of a statistical model that describes the statistical distribution of values of the pixels in the considered image. The methods are experimentally validated on four different biological samples, two of animal origin and two of vegetal origin. Results provide the potential of the methods to be applied in biomedical and botanical applications.
Collapse
|
29
|
Chen L, Tian N, Hu M, Sandhu D, Jin Q, Gu M, Zhang X, Peng Y, Zhang J, Chen Z, Liu G, Huang M, Huang J, Liu Z, Liu S. Comparative transcriptome analysis reveals key pathways and genes involved in trichome development in tea plant ( Camellia sinensis). FRONTIERS IN PLANT SCIENCE 2022; 13:997778. [PMID: 36212317 PMCID: PMC9546587 DOI: 10.3389/fpls.2022.997778] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 08/19/2022] [Indexed: 06/16/2023]
Abstract
Trichomes, which develop from epidermal cells, are considered one of the important characteristics of the tea plant [Camellia sinensis (L.) O. Kuntze]. Many nutritional and metabolomic studies have indicated the important contributions of trichomes to tea products quality. However, understanding the regulation of trichome formation at the molecular level remains elusive in tea plants. Herein, we present a genome-wide comparative transcriptome analysis between the hairless Chuyeqi (CYQ) with fewer trichomes and the hairy Budiaomao (BDM) with more trichomes tea plant genotypes, toward the identification of biological processes and functional gene activities that occur during trichome development. In the present study, trichomes in both cultivars CYQ and BDM were unicellular, unbranched, straight, and soft-structured. The density of trichomes was the highest in the bud and tender leaf periods. Further, using the high-throughput sequencing method, we identified 48,856 unigenes, of which 31,574 were differentially expressed. In an analysis of 208 differentially expressed genes (DEGs) encoding transcription factors (TFs), five may involve in trichome development. In addition, on the basis of the Gene Ontology (GO) annotation and the weighted gene co-expression network analysis (WGCNA) results, we screened several DEGs that may contribute to trichome growth, including 66 DEGs related to plant resistance genes (PRGs), 172 DEGs related to cell wall biosynthesis pathway, 29 DEGs related to cell cycle pathway, and 45 DEGs related to cytoskeleton biosynthesis. Collectively, this study provided high-quality RNA-seq information to improve our understanding of the molecular regulatory mechanism of trichome development and lay a foundation for additional trichome studies in tea plants.
Collapse
Affiliation(s)
- Lan Chen
- Department of Tea Science, College of Horticulture, Hunan Agricultural University, Changsha, China
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China
| | - Na Tian
- Department of Tea Science, College of Horticulture, Hunan Agricultural University, Changsha, China
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China
| | - Mengqing Hu
- Xiangxi Academy of Agricultural Sciences, Jishou, China
| | - Devinder Sandhu
- United States Salinity Laboratory, United States Department of Agriculture, Agricultural Research Service, Riverside, CA, United States
| | - Qifang Jin
- Department of Tea Science, College of Horticulture, Hunan Agricultural University, Changsha, China
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China
| | - Meiyi Gu
- Department of Tea Science, College of Horticulture, Hunan Agricultural University, Changsha, China
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China
| | - Xiangqin Zhang
- Department of Tea Science, College of Horticulture, Hunan Agricultural University, Changsha, China
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China
| | - Ying Peng
- Department of Tea Science, College of Horticulture, Hunan Agricultural University, Changsha, China
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China
| | - Jiali Zhang
- Department of Tea Science, College of Horticulture, Hunan Agricultural University, Changsha, China
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China
| | - Zhenyan Chen
- Department of Tea Science, College of Horticulture, Hunan Agricultural University, Changsha, China
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China
| | - Guizhi Liu
- Department of Tea Science, College of Horticulture, Hunan Agricultural University, Changsha, China
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China
| | - Mengdi Huang
- Department of Tea Science, College of Horticulture, Hunan Agricultural University, Changsha, China
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China
| | - Jianan Huang
- Department of Tea Science, College of Horticulture, Hunan Agricultural University, Changsha, China
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China
| | - Zhonghua Liu
- Department of Tea Science, College of Horticulture, Hunan Agricultural University, Changsha, China
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China
| | - Shuoqian Liu
- Department of Tea Science, College of Horticulture, Hunan Agricultural University, Changsha, China
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China
| |
Collapse
|
30
|
Rodríguez C, Garcia-Caurel E, Garnatje T, Serra I Ribas M, Luque J, Campos J, Lizana A. Polarimetric observables for the enhanced visualization of plant diseases. Sci Rep 2022; 12:14743. [PMID: 36042370 PMCID: PMC9428171 DOI: 10.1038/s41598-022-19088-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 08/24/2022] [Indexed: 11/09/2022] Open
Abstract
This paper highlights the potential of using polarimetric methods for the inspection of plant diseased tissues. We show how depolarizing observables are a suitable tool for the accurate discrimination between healthy and diseased tissues due to the pathogen infection of plant samples. The analysis is conducted on a set of different plant specimens showing various disease symptoms and infection stages. By means of a complete image Mueller polarimeter, we measure the experimental Mueller matrices of the samples, from which we calculate a set of metrics analyzing the depolarization content of the inspected leaves. From calculated metrics, we demonstrate, in a qualitative and quantitative way, how depolarizing information of vegetal tissues leads to the enhancement of image contrast between healthy and diseased tissues, as well as to the revelation of wounded regions which cannot be detected by means of regular visual inspections. Moreover, we also propose a pseudo-colored image method, based on the depolarizing metrics, capable to further enhance the visual image contrast between healthy and diseased regions in plants. The ability of proposed methods to characterize plant diseases (even at early stages of infection) may be of interest for preventing yield losses due to different plant pathogens.
Collapse
Affiliation(s)
- Carla Rodríguez
- Optics Group, Physics Department, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain.
| | - Enrique Garcia-Caurel
- LPICM, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, 91120, Palaiseau, France
| | - Teresa Garnatje
- Botanical Institute of Barcelona (IBB, CSIC-Ajuntament de Barcelona), 08038, Barcelona, Spain
| | - Mireia Serra I Ribas
- Optics Group, Physics Department, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Jordi Luque
- Institute of Agrifood Research and Technology (IRTA), 08348, Cabrils, Spain
| | - Juan Campos
- Optics Group, Physics Department, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Angel Lizana
- Optics Group, Physics Department, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| |
Collapse
|
31
|
Transcriptome-Guided Identification of Pectin Methyl-Esterase-Related Enzymes and Novel Molecular Processes Effectuating the Hard-to-Cook Defect in Common Bean ( Phaseolus vulgaris L.). Foods 2022; 11:foods11121692. [PMID: 35741889 PMCID: PMC9222787 DOI: 10.3390/foods11121692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/03/2022] [Accepted: 06/06/2022] [Indexed: 01/27/2023] Open
Abstract
The hard-to-cook defect in common beans is dictated by the ability to achieve cell separation during cooking. Hydrolysis of pectin methyl-esters by the pectin methyl-esterase (PME) enzyme influences cell separation. However, the contributions of the PME enzyme and the cell wall to the hard-to-cook defect have not been studied using molecular tools. We compared relevant molecular processes in fast- and slow-cooking bean varieties to understand the mechanisms underpinning the hard-to-cook defect. A PME spectrophotometric assay showed minor differences in enzyme activity between varieties. Meanwhile, a PME HMMER search in the P. vulgaris genome unveiled 113 genes encoding PMEs and PME inhibitors (PMEIs). Through RNA sequencing, we compared the gene expression of the PME-related genes in both varieties during seed development. A PME (Phvul010g080300) and PMEI gene (Phvul005g007600) showed the highest expression in the fast- and slow-cooking beans, respectively. We further identified 2132 differentially expressed genes (DEGs). Genes encoding cell-wall-related enzymes, mainly glycosylphosphatidylinositol mannosyltransferase, xyloglucan O-acetyltransferase, pectinesterase, and callose synthase, ranked among the top DEGs, indicating novel relations to the hard-to-cook defect. Gene ontology mapping revealed hydrolase activity and protein phosphorylation as functional categories with the most abundant upregulated DEGs in the slow-cooking bean. Additionally, the cell periphery contained 8% of the DEGs upregulated in the slow-cooking bean. This study provides new insights into the role of pectin methyl-esterase-related genes and novel cell wall processes in the occurrence of the hard-to-cook defect.
Collapse
|
32
|
Si C, He C, Teixeira da Silva JA, Yu Z, Duan J. Metabolic accumulation and related synthetic genes of O-acetyl groups in mannan polysaccharides of Dendrobium officinale. PROTOPLASMA 2022; 259:641-657. [PMID: 34251532 DOI: 10.1007/s00709-021-01672-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 05/20/2021] [Indexed: 06/13/2023]
Abstract
Mannan polysaccharides (MPs), which contain substituted O-acetyl groups in their backbone, are abundant in the medicinal plant Dendrobium officinale. Acetyl groups can influence the physiological and biochemical properties of polysaccharides, which mainly accumulate in the stems of D. officinale at four developmental stages (S1-S4), showing an increasing trend and a link with water-soluble polysaccharides (WSPs) and mannose. The genes coding for enzymes that catalyze O-acetyl groups to MPs are unknown in D. officinale. The TRICHOME BIREFRINGENCE-LIKE (TBL) gene family contains TBL and DUF231 domains that can transfer O-acetyl groups to various polysaccharides. Based on an established D. officinale genome database, 37 DoTBL genes were identified. Analysis of cis-elements in the promoter region showed that DoTBL genes might respond to different hormones and abiotic stresses. Most of the genes with MeJA-responsive elements were upregulated or downregulated after treatment with MeJA. qRT-PCR results demonstrated that DoTBL genes had significantly higher expression levels in stems and leaves than in roots. Eight DoTBL genes showed relatively higher expression at S2-S4 stages, which showed a link with the content of WSPs and O-acetyl groups. DoTBL35 and its homologous gene DoTBL34 displayed the higher mRNA level in different organs and developmental stages, which might participate in the acetylation of MPs in D. officinale. The subcellular localization of DoTBL34 and DoTBL35 reveals that the endoplasmic reticulum may play an important role in the acetylation of MPs.
Collapse
Affiliation(s)
- Can Si
- Key Laboratory of South China Agricultural Plant Molecular Analysis of Gene Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chunmei He
- Key Laboratory of South China Agricultural Plant Molecular Analysis of Gene Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Jaime A Teixeira da Silva
- Independent Researcher, P. O. Box 7, Miki-cho post office, Ikenobe 3011-2, Miki-cho, Kita-gun, Kagawa-ken, 761-0799, Japan
| | - Zhenming Yu
- Key Laboratory of South China Agricultural Plant Molecular Analysis of Gene Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Jun Duan
- Key Laboratory of South China Agricultural Plant Molecular Analysis of Gene Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China.
| |
Collapse
|
33
|
Liang C, Wei C, Wang L, Guan Z, Shi T, Huang J, Li B, Lu Y, Liu H, Wang Y. Characterization of a Novel Creeping Tartary Buckwheat ( Fagopyrum tataricum) Mutant lazy1. FRONTIERS IN PLANT SCIENCE 2022; 13:815131. [PMID: 35574111 PMCID: PMC9094088 DOI: 10.3389/fpls.2022.815131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 03/02/2022] [Indexed: 06/15/2023]
Abstract
Gravity is known as an important environmental factor involved in the regulation of plant architecture. To identify genes related to the gravitropism of Tartary buckwheat, a creeping line was obtained and designated as lazy1 from the mutant bank by 60Co-γ ray radiation. Genetic analysis indicated that the creeping phenotype of lazy1 was attributed to a single recessive locus. As revealed by the horizontal and inverted suspension tests, lazy1 was completely lacking in shoot negative gravitropism. The creeping growth of lazy1 occurred at the early seedling stage, which could not be recovered by exogenous heteroauxin, hormodin, α-rhodofix, or gibberellin. Different from the well-organized and equivalent cell elongation of wild type (WT), lazy1 exhibited dilated, distorted, and abnormally arranged cells in the bending stem. However, no statistical difference of indole-3-acetic acid (IAA) levels was found between the far- and near-ground bending sides in lazy1, which suggests that the asymmetric cell elongation of lazy1 was not induced by auxin gradient. Whereas, lazy1 showed up-expressed gibberellin-regulated genes by quantitative real-time PCR (qRT-PCR) as well as significantly higher levels of gibberellin, suggesting that gibberellin might be partly involved in the regulation of creeping growth in lazy1. RNA sequencing (RNA-seq) identified a number of differentially expressed genes (DEGs) related to gravitropism at stages I (before bending), II (bending), and III (after bending) between WT and lazy1. Venn diagram indicated that only Pectate lyase 5 was down-expressed at stages I [Log2 fold change (Log2FC): -3.20], II (Log2FC: -4.97), and III (Log2FC: -1.23) in lazy1, compared with WT. Gene sequencing revealed that a fragment deletion occurred in the coding region of Pectate lyase 5, which induced the destruction of a pbH domain in Pectate lyase 5 of lazy1. qRT-PCR indicated that Pectate lyase 5 was extremely down-expressed in lazy1 at stage II (0.02-fold of WT). Meanwhile, lazy1 showed the affected expression of lignin- and cellulose-related genes and cumulatively abnormal levels of pectin, lignin, and cellulose. These results demonstrate the possibility that Pectate lyase 5 functions as the key gene that could mediate primary cell wall metabolism and get involved in the asymmetric cell elongation regulation of lazy1.
Collapse
Affiliation(s)
- Chenggang Liang
- Research Center of Buckwheat Industry Technology, School of Life Sciences, Guizhou Normal University, Guiyang, China
| | - Chunyu Wei
- Research Center of Buckwheat Industry Technology, School of Life Sciences, Guizhou Normal University, Guiyang, China
| | - Li Wang
- Research Center of Buckwheat Industry Technology, School of Life Sciences, Guizhou Normal University, Guiyang, China
| | - Zhixiu Guan
- Research Center of Buckwheat Industry Technology, School of Life Sciences, Guizhou Normal University, Guiyang, China
| | - Taoxiong Shi
- Research Center of Buckwheat Industry Technology, School of Life Sciences, Guizhou Normal University, Guiyang, China
| | - Juan Huang
- Research Center of Buckwheat Industry Technology, School of Life Sciences, Guizhou Normal University, Guiyang, China
| | - Bin Li
- Research Center of Buckwheat Industry Technology, School of Life Sciences, Guizhou Normal University, Guiyang, China
| | - Yang Lu
- Guizhou Biotechnology Institute, Guizhou Academy of Agricultural Sciences, Guiyang, China
- Guizhou Key Laboratory of Agricultural Biotechnology, Guiyang, China
| | - Hui Liu
- Guizhou Biotechnology Institute, Guizhou Academy of Agricultural Sciences, Guiyang, China
- Guizhou Key Laboratory of Agricultural Biotechnology, Guiyang, China
| | - Yan Wang
- Research Center of Buckwheat Industry Technology, School of Life Sciences, Guizhou Normal University, Guiyang, China
| |
Collapse
|
34
|
Liu Y, Yu W, Wu B, Li J. Patterns of genomic divergence in sympatric and allopatric speciation of three Mihoutao ( Actinidia) species. HORTICULTURE RESEARCH 2022; 9:uhac054. [PMID: 35591930 PMCID: PMC9113235 DOI: 10.1093/hr/uhac054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 02/19/2022] [Indexed: 06/15/2023]
Abstract
Isolation by geographic distance is involved in the formation of potential genomic islands and the divergence of genomes, which often result in speciation. The mechanisms of sympatric and allopatric speciation associated with geographic distance remain a topic of interest to evolutionary biologists. Here, we examined genomic divergence in three Actinidia species from large-scale sympatric and allopatric regions. Genome sequence data revealed that hexaploid Actinidia deliciosa originated from Actinidia chinensis and supported the speciation-with-gene-flow model in sympatric regions. The common ancestor of Actinidia setosa and A. deliciosa migrated from the mainland to the Taiwan Island ~2.91 Mya and formed A. setosa ~0.92 Mya, and the speciation of A. setosa is consistent with the divergence-after-speciation model with selective sweeps. Geographic isolation resulted in population contraction and accelerated the process of lineage sorting and speciation due to natural selection. Genomic islands contained genes associated with organ development, local adaptation, and stress resistance, indicating selective sweeps on a specific set of traits. Our results highlight the patterns of genomic divergence in sympatric and allopatric speciation, with the mediation of geographic isolation in the formation of genomic islands during Actinidia speciation.
Collapse
Affiliation(s)
| | - Wenhao Yu
- State Key Laboratory of Environmental Criteria and Risk Assessment,
Chinese Research Academy of Environmental Sciences, 8 Dayangfang, Beijing 100012, China
| | - Baofeng Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment,
Chinese Research Academy of Environmental Sciences, 8 Dayangfang, Beijing 100012, China
| | - Junsheng Li
- State Key Laboratory of Environmental Criteria and Risk Assessment,
Chinese Research Academy of Environmental Sciences, 8 Dayangfang, Beijing 100012, China
| |
Collapse
|
35
|
Huebbers JW, Büttgen K, Leissing F, Mantz M, Pauly M, Huesgen PF, Panstruga R. An advanced method for the release, enrichment and purification of high-quality Arabidopsis thaliana rosette leaf trichomes enables profound insights into the trichome proteome. PLANT METHODS 2022; 18:12. [PMID: 35086542 PMCID: PMC8796501 DOI: 10.1186/s13007-021-00836-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/29/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Rosette leaf trichomes of Arabidopsis thaliana have been broadly used to study cell development, cell differentiation and, more recently, cell wall biogenesis. However, trichome-specific biochemical or -omics analyses require a proper separation of trichomes from residual plant tissue. Thus, different strategies were proposed in the past for trichome isolation, which mostly rely on harsh conditions and suffer from low yield, thereby limiting the spectrum of downstream analyses. RESULTS To take trichome-leaf separation to the next level, we revised a previously proposed method for isolating A. thaliana trichomes by optimizing the mechanical and biochemical specifications for trichome release. We additionally introduced a density gradient centrifugation step to remove residual plant debris. We found that prolonged, yet mild seedling agitation increases the overall trichome yield by more than 60% compared to the original protocol. We noticed that subsequent density gradient centrifugation further visually enhances trichome purity, which may be advantageous for downstream analyses. Gene expression analysis by quantitative reverse transcriptase-polymerase chain reaction validated a substantial enrichment upon purification of trichomes by density gradient centrifugation. Histochemical and biochemical investigation of trichome cell wall composition indicated that unlike the original protocol gentle agitation during trichome release largely preserves trichome integrity. We used enriched and density gradient-purified trichomes for proteomic analysis in comparison to trichome-depleted leaf samples and present a comprehensive reference data set of trichome-resident and -enriched proteins. Collectively we identified 223 proteins that are highly enriched in trichomes as compared to trichome-depleted leaves. We further demonstrate that the procedure can be applied to retrieve diverse glandular and non-glandular trichome types from other plant species. CONCLUSIONS We provide an advanced method for the isolation of A. thaliana leaf trichomes that outcompetes previous procedures regarding yield and purity. Due to the large amount of high-quality trichomes our method enabled profound insights into the so far largely unexplored A. thaliana trichome proteome. We anticipate that our protocol will be of use for a variety of downstream analyses, which are expected to shed further light on the biology of leaf trichomes in A. thaliana and possibly other plant species.
Collapse
Affiliation(s)
- Jan W Huebbers
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, Worringerweg 1, 52056, Aachen, Germany
| | - Kim Büttgen
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, Worringerweg 1, 52056, Aachen, Germany
| | - Franz Leissing
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, Worringerweg 1, 52056, Aachen, Germany
| | - Melissa Mantz
- Central Institute for Engineering, Electronics and Analytics, ZEA-3, Forschungszentrum Jülich, Jülich, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) Medical Faculty and University Hospital, University of Cologne, Cologne, Germany
| | - Markus Pauly
- Institute for Plant Cell Biology and Biotechnology, Heinrich-Heine-University Düsseldorf, Universitätsstr. 1, 40225, Düsseldorf, Germany
| | - Pitter F Huesgen
- Central Institute for Engineering, Electronics and Analytics, ZEA-3, Forschungszentrum Jülich, Jülich, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) Medical Faculty and University Hospital, University of Cologne, Cologne, Germany
- Institute of Biochemistry, Department for Chemistry, University of Cologne, Cologne, Germany
| | - Ralph Panstruga
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, Worringerweg 1, 52056, Aachen, Germany.
| |
Collapse
|
36
|
Ying S. Genome-Wide Identification and Transcriptional Analysis of Arabidopsis DUF506 Gene Family. Int J Mol Sci 2021; 22:11442. [PMID: 34768874 PMCID: PMC8583954 DOI: 10.3390/ijms222111442] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/14/2021] [Accepted: 10/21/2021] [Indexed: 11/16/2022] Open
Abstract
The Domain of unknown function 506 (DUF506) family, which belongs to the PD-(D/E)XK nuclease superfamily, has not been functionally characterized. In this study, 266 DUF506 domain-containing genes were identified from algae, mosses, and land plants showing their wide occurrence in photosynthetic organisms. Bioinformatics analysis identified 211 high-confidence DUF506 genes across 17 representative land plant species. Phylogenetic modeling classified three groups of plant DUF506 genes that suggested functional preservation among the groups based on conserved gene structure and motifs. Gene duplication and Ka/Ks evolutionary rates revealed that DUF506 genes are under purifying positive selection pressure. Subcellular protein localization analysis revealed that DUF506 proteins were present in different organelles. Transcript analyses showed that 13 of the Arabidopsis DUF506 genes are ubiquitously expressed in various tissues and respond to different abiotic stresses and ABA treatment. Protein-protein interaction network analysis using the STRING-DB, AtPIN (Arabidopsis thaliana Protein Interaction Network), and AI-1 (Arabidopsis Interactome-1) tools indicated that AtDUF506s potentially interact with iron-deficiency response proteins, salt-inducible transcription factors, or calcium sensors (calmodulins), implying that DUF506 genes have distinct biological functions including responses to environmental stimuli, nutrient-deficiencies, and participate in Ca(2+) signaling. Current results provide insightful information regarding the molecular features of the DUF506 family in plants, to support further functional characterizations.
Collapse
Affiliation(s)
- Sheng Ying
- Noble Research Institute LLC, Ardmore, OK 73401, USA
| |
Collapse
|
37
|
Tian Y, Zhang S, Liu X, Zhang Z. Global Investigation of TBL Gene Family in Rose ( Rosa chinensis) Unveils RcTBL16 Is a Susceptibility Gene in Gray Mold Resistance. FRONTIERS IN PLANT SCIENCE 2021; 12:738880. [PMID: 34759939 PMCID: PMC8575163 DOI: 10.3389/fpls.2021.738880] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 08/24/2021] [Indexed: 06/13/2023]
Abstract
The TRICHOME BIREFRINGENCE-LIKE (TBL) family is an important gene family engaged in the O-acetylation of cell wall polysaccharides. There have been a few reports showing that TBL participated in the resistance against phytopathogens in Arabidopsis and rice. However, no relevant studies in rose (Rosa sp.) have been published. In this study, a genome-wide analysis of the TBL gene family in rose was presented, including their phylogenetic relationships, gene structure, chromosomal positioning, and collinearity analysis. The phylogenetic analysis revealed a total of 50 RcTBL genes in the rose genome, and they are unevenly distributed across all seven chromosomes. The occurrence of gene duplication events suggests that both the whole genome duplication and partial duplication may play a role in gene duplication of RcTBLs. The analysis of Ka/Ks showed that the replicated RcTBL genes underwent mainly purifying selection with limited functional differentiation. Gene expression analysis indicated that 12 RcTBLs were down-regulated upon the infection of Botrytis cinerea, the causal agent of the gray mold disease of rose. These RcTBLs may be a sort of candidate genes for regulating the response of rose to B. cinerea. Through virus-induced gene silencing, RcTBL16 was shown to be associated with susceptibility to gray mold in rose. Through this study, meaningful information for further studies on the function of the TBL protein family in rose is provided.
Collapse
Affiliation(s)
| | | | | | - Zhao Zhang
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, China
| |
Collapse
|
38
|
Ren G, Zhang X, Li Y, Ridout K, Serrano-Serrano ML, Yang Y, Liu A, Ravikanth G, Nawaz MA, Mumtaz AS, Salamin N, Fumagalli L. Large-scale whole-genome resequencing unravels the domestication history of Cannabis sativa. SCIENCE ADVANCES 2021; 7:7/29/eabg2286. [PMID: 34272249 PMCID: PMC8284894 DOI: 10.1126/sciadv.abg2286] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 06/03/2021] [Indexed: 05/07/2023]
Abstract
Cannabis sativa has long been an important source of fiber extracted from hemp and both medicinal and recreational drugs based on cannabinoid compounds. Here, we investigated its poorly known domestication history using whole-genome resequencing of 110 accessions from worldwide origins. We show that C. sativa was first domesticated in early Neolithic times in East Asia and that all current hemp and drug cultivars diverged from an ancestral gene pool currently represented by feral plants and landraces in China. We identified candidate genes associated with traits differentiating hemp and drug cultivars, including branching pattern and cellulose/lignin biosynthesis. We also found evidence for loss of function of genes involved in the synthesis of the two major biochemically competing cannabinoids during selection for increased fiber production or psychoactive properties. Our results provide a unique global view of the domestication of C. sativa and offer valuable genomic resources for ongoing functional and molecular breeding research.
Collapse
Affiliation(s)
- Guangpeng Ren
- Laboratory for Conservation Biology, Department of Ecology and Evolution, Biophore, University of Lausanne, 1015 Lausanne, Switzerland.
- State Key Laboratory of Grassland Agro-Ecosystems, School of Life Science and Institute of Innovation Ecology, Lanzhou University, Lanzhou 730000, Gansu, China
| | - Xu Zhang
- State Key Laboratory of Grassland Agro-Ecosystems, School of Life Science and Institute of Innovation Ecology, Lanzhou University, Lanzhou 730000, Gansu, China
| | - Ying Li
- State Key Laboratory of Grassland Agro-Ecosystems, School of Life Science and Institute of Innovation Ecology, Lanzhou University, Lanzhou 730000, Gansu, China
| | - Kate Ridout
- Laboratory for Conservation Biology, Department of Ecology and Evolution, Biophore, University of Lausanne, 1015 Lausanne, Switzerland
- Oxford Molecular Diagnostics Centre, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Martha L Serrano-Serrano
- Laboratory for Conservation Biology, Department of Ecology and Evolution, Biophore, University of Lausanne, 1015 Lausanne, Switzerland
| | - Yongzhi Yang
- State Key Laboratory of Grassland Agro-Ecosystems, School of Life Science and Institute of Innovation Ecology, Lanzhou University, Lanzhou 730000, Gansu, China
| | - Ai Liu
- State Key Laboratory of Grassland Agro-Ecosystems, School of Life Science and Institute of Innovation Ecology, Lanzhou University, Lanzhou 730000, Gansu, China
| | - Gudasalamani Ravikanth
- Suri Sehgal Center for Biodiversity and Conservation, Ashoka Trust for Research in Ecology and the Environment, Royal Enclave Srirampura, Jakkur Post, Bangalore 560 064, India
| | - Muhammad Ali Nawaz
- Department of Biological and Environmental Sciences, Qatar University, Doha, Qatar
- Department of Zoology, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Abdul Samad Mumtaz
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Nicolas Salamin
- Department of Computational Biology, Génopode, University of Lausanne, 1015 Lausanne, Switzerland
| | - Luca Fumagalli
- Laboratory for Conservation Biology, Department of Ecology and Evolution, Biophore, University of Lausanne, 1015 Lausanne, Switzerland.
- Centre Universitaire Romand de Médecine Légale, Centre Hospitalier Universitaire Vaudois et Université de Lausanne, Chemin de la Vulliette 4, 1000 Lausanne 25, Switzerland
| |
Collapse
|
39
|
Zhang L, Hou D, Li C, Li X, Fan J, Dong Y, Zhu J, Huang Z, Xu Z, Li L. Molecular characterization and function analysis of the rice OsDUF1664 family. BIOTECHNOL BIOTEC EQ 2021. [DOI: 10.1080/13102818.2020.1853606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Affiliation(s)
- Lin Zhang
- Rice Institute of Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - Dejia Hou
- Department of Physics, College of Science, Huazhong Agricultural University, Wuhan, Hubei, PR China
| | - Chunliu Li
- Rice Institute of Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - Xiaohong Li
- Rice Institute of Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - Jiangbo Fan
- Rice Institute of Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - Yilun Dong
- Rice Institute of Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - Jianqing Zhu
- Rice Institute of Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - Zhengjian Huang
- Rice Institute of Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - Zhengjun Xu
- Rice Institute of Sichuan Agricultural University, Chengdu, Sichuan, PR China
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Chengdu, Sichuan, PR China
| | - Lihua Li
- Rice Institute of Sichuan Agricultural University, Chengdu, Sichuan, PR China
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Chengdu, Sichuan, PR China
| |
Collapse
|
40
|
Kopec PM, Mikolajczyk K, Jajor E, Perek A, Nowakowska J, Obermeier C, Chawla HS, Korbas M, Bartkowiak-Broda I, Karlowski WM. Local Duplication of TIR-NBS-LRR Gene Marks Clubroot Resistance in Brassica napus cv. Tosca. FRONTIERS IN PLANT SCIENCE 2021; 12:639631. [PMID: 33936130 PMCID: PMC8082685 DOI: 10.3389/fpls.2021.639631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 03/09/2021] [Indexed: 06/12/2023]
Abstract
Clubroot, caused by Plasmodiophora brassicae infection, is a disease of growing importance in cruciferous crops, including oilseed rape (Brassica napus). The affected plants exhibit prominent galling of the roots that impairs their capacity for water and nutrient uptake, which leads to growth retardation, wilting, premature ripening, or death. Due to the scarcity of effective means of protection against the pathogen, breeding of resistant varieties remains a crucial component of disease control measures. The key aspect of the breeding process is the identification of genetic factors associated with variable response to the pathogen exposure. Although numerous clubroot resistance loci have been described in Brassica crops, continuous updates on the sources of resistance are necessary. Many of the resistance genes are pathotype-specific, moreover, resistance breakdowns have been reported. In this study, we characterize the clubroot resistance locus in the winter oilseed rape cultivar "Tosca." In a series of greenhouse experiments, we evaluate the disease severity of P. brassicae-challenged "Tosca"-derived population of doubled haploids, which we genotype with Brassica 60 K array and a selection of SSR/SCAR markers. We then construct a genetic map and narrow down the resistance locus to the 0.4 cM fragment on the A03 chromosome, corresponding to the region previously described as Crr3. Using Oxford Nanopore long-read genome resequencing and RNA-seq we review the composition of the locus and describe a duplication of TIR-NBS-LRR gene. Further, we explore the transcriptomic differences of the local genes between the clubroot resistant and susceptible, inoculated and control DH lines. We conclude that the duplicated TNL gene is a promising candidate for the resistance factor. This study provides valuable resources for clubroot resistance breeding programs and lays a foundation for further functional studies on clubroot resistance.
Collapse
Affiliation(s)
- Piotr M. Kopec
- Department of Computational Biology, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University Poznan, Poznan, Poland
| | - Katarzyna Mikolajczyk
- Department of Genetics and Breeding of Oilseed Crops, Plant Breeding and Acclimatization Institute-National Research Institute, Poznan, Poland
| | - Ewa Jajor
- Institute of Plant Protection - National Research Institute, Poznan, Poland
| | - Agnieszka Perek
- Institute of Plant Protection - National Research Institute, Poznan, Poland
| | - Joanna Nowakowska
- Department of Genetics and Breeding of Oilseed Crops, Plant Breeding and Acclimatization Institute-National Research Institute, Poznan, Poland
| | - Christian Obermeier
- Department of Plant Breeding, Justus-Liebig-Universitaet Giessen, Giessen, Germany
| | - Harmeet Singh Chawla
- Department of Plant Breeding, Justus-Liebig-Universitaet Giessen, Giessen, Germany
- Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Marek Korbas
- Institute of Plant Protection - National Research Institute, Poznan, Poland
| | - Iwona Bartkowiak-Broda
- Department of Genetics and Breeding of Oilseed Crops, Plant Breeding and Acclimatization Institute-National Research Institute, Poznan, Poland
| | - Wojciech M. Karlowski
- Department of Computational Biology, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University Poznan, Poznan, Poland
| |
Collapse
|
41
|
Van Eeckhout A, Garcia-Caurel E, Garnatje T, Escalera JC, Durfort M, Vidal J, Gil JJ, Campos J, Lizana A. Polarimetric imaging microscopy for advanced inspection of vegetal tissues. Sci Rep 2021; 11:3913. [PMID: 33594126 PMCID: PMC7887219 DOI: 10.1038/s41598-021-83421-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 02/03/2021] [Indexed: 01/30/2023] Open
Abstract
Optical microscopy techniques for plant inspection benefit from the fact that at least one of the multiple properties of light (intensity, phase, wavelength, polarization) may be modified by vegetal tissues. Paradoxically, polarimetric microscopy although being a mature technique in biophotonics, is not so commonly used in botany. Importantly, only specific polarimetric observables, as birefringence or dichroism, have some presence in botany studies, and other relevant metrics, as those based on depolarization, are underused. We present a versatile method, based on a representative selection of polarimetric observables, to obtain and to analyse images of plants which bring significant information about their structure and/or the spatial organization of their constituents (cells, organelles, among other structures). We provide a thorough analysis of polarimetric microscopy images of sections of plant leaves which are compared with those obtained by other commonly used microscopy techniques in plant biology. Our results show the interest of polarimetric microscopy for plant inspection, as it is non-destructive technique, highly competitive in economical and time consumption, and providing advantages compared to standard non-polarizing techniques.
Collapse
Affiliation(s)
- Albert Van Eeckhout
- Grup D'Òptica, Physics Department, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain.
| | - Enrique Garcia-Caurel
- LPICM, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, 91120, Palaiseau, France
| | - Teresa Garnatje
- Botanical Institute of Barcelona (IBB, CSIC-ICUB), 08038, Barcelona, Spain
| | - Juan Carlos Escalera
- Grup D'Òptica, Physics Department, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Mercè Durfort
- Departament de Biologia Cellular, Fisiologia & Immunologia. Facultat de Biologia, Universitat de Barcelona, 08028, Barcelona, Spain
| | - Josep Vidal
- Grup D'Òptica, Physics Department, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - José J Gil
- Department of Applied Physics, University of Zaragoza, Pedro Cerbuna 12, 50009, Zaragoza, Spain
| | - Juan Campos
- Grup D'Òptica, Physics Department, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Angel Lizana
- Grup D'Òptica, Physics Department, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| |
Collapse
|
42
|
Meyer RC, Weigelt-Fischer K, Knoch D, Heuermann M, Zhao Y, Altmann T. Temporal dynamics of QTL effects on vegetative growth in Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:476-490. [PMID: 33080013 DOI: 10.1093/jxb/eraa490] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 10/19/2020] [Indexed: 06/11/2023]
Abstract
We assessed early vegetative growth in a population of 382 accessions of Arabidopsis thaliana using automated non-invasive high-throughput phenotyping. All accessions were imaged daily from 7 d to 18 d after sowing in three independent experiments and genotyped using the Affymetrix 250k SNP array. Projected leaf area (PLA) was derived from image analysis and used to calculate relative growth rates (RGRs). In addition, initial seed size was determined. The generated datasets were used jointly for a genome-wide association study that identified 238 marker-trait associations (MTAs) individually explaining up to 8% of the total phenotypic variation. Co-localization of MTAs occurred at 33 genomic positions. At 21 of these positions, sequential co-localization of MTAs for 2-9 consecutive days was observed. The detected MTAs for PLA and RGR could be grouped according to their temporal expression patterns, emphasizing that temporal variation of MTA action can be observed even during the vegetative growth phase, a period of continuous formation and enlargement of seemingly similar rosette leaves. This indicates that causal genes may be differentially expressed in successive periods. Analyses of the temporal dynamics of biological processes are needed to gain important insight into the molecular mechanisms of growth-controlling processes in plants.
Collapse
Affiliation(s)
- Rhonda C Meyer
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Department of Molecular Genetics, Research Group Heterosis, OT Gatersleben, Corrensstraße, Seeland, Germany
| | - Kathleen Weigelt-Fischer
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Department of Molecular Genetics, Research Group Heterosis, OT Gatersleben, Corrensstraße, Seeland, Germany
| | - Dominic Knoch
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Department of Molecular Genetics, Research Group Heterosis, OT Gatersleben, Corrensstraße, Seeland, Germany
| | - Marc Heuermann
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Department of Molecular Genetics, Research Group Heterosis, OT Gatersleben, Corrensstraße, Seeland, Germany
| | - Yusheng Zhao
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Department of Breeding Research, Research Group Quantitative Genetics, OT Gatersleben, Corrensstraße, Seeland, Germany
| | - Thomas Altmann
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Department of Molecular Genetics, Research Group Heterosis, OT Gatersleben, Corrensstraße, Seeland, Germany
| |
Collapse
|
43
|
Wang X, Shen C, Meng P, Tan G, Lv L. Analysis and review of trichomes in plants. BMC PLANT BIOLOGY 2021; 21:70. [PMID: 33526015 PMCID: PMC7852143 DOI: 10.1186/s12870-021-02840-x] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 01/11/2021] [Indexed: 05/03/2023]
Abstract
BACKGROUND Trichomes play a key role in the development of plants and exist in a wide variety of species. RESULTS In this paper, it was reviewed that the structure and morphology characteristics of trichomes, alongside the biological functions and classical regulatory mechanisms of trichome development in plants. The environment factors, hormones, transcription factor, non-coding RNA, etc., play important roles in regulating the initialization, branching, growth, and development of trichomes. In addition, it was further investigated the atypical regulation mechanism in a non-model plant, found that regulating the growth and development of tea (Camellia sinensis) trichome is mainly affected by hormones and the novel regulation factors. CONCLUSIONS This review further displayed the complex and differential regulatory networks in trichome initiation and development, provided a reference for basic and applied research on trichomes in plants.
Collapse
Affiliation(s)
- Xiaojing Wang
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang, Guizhou, People's Republic of China
| | - Chao Shen
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang, Guizhou, People's Republic of China
| | - Pinghong Meng
- Institute of Horticulture, Guizhou Province Academy of Agricultural Sciences, Guiyang, Guizhou, People's Republic of China
| | - Guofei Tan
- Institute of Horticulture, Guizhou Province Academy of Agricultural Sciences, Guiyang, Guizhou, People's Republic of China.
| | - Litang Lv
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang, Guizhou, People's Republic of China.
| |
Collapse
|
44
|
De-la-Cruz IM, Hallab A, Olivares-Pinto U, Tapia-López R, Velázquez-Márquez S, Piñero D, Oyama K, Usadel B, Núñez-Farfán J. Genomic signatures of the evolution of defence against its natural enemies in the poisonous and medicinal plant Datura stramonium (Solanaceae). Sci Rep 2021; 11:882. [PMID: 33441607 PMCID: PMC7806989 DOI: 10.1038/s41598-020-79194-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 12/03/2020] [Indexed: 01/22/2023] Open
Abstract
Tropane alkaloids and terpenoids are widely used in the medicine and pharmaceutic industry and evolved as chemical defenses against herbivores and pathogens in the annual herb Datura stramonium (Solanaceae). Here, we present the first draft genomes of two plants from contrasting environments of D. stramonium. Using these de novo assemblies, along with other previously published genomes from 11 Solanaceae species, we carried out comparative genomic analyses to provide insights on the genome evolution of D. stramonium within the Solanaceae family, and to elucidate adaptive genomic signatures to biotic and abiotic stresses in this plant. We also studied, in detail, the evolution of four genes of D. stramonium-Putrescine N-methyltransferase, Tropinone reductase I, Tropinone reductase II and Hyoscyamine-6S-dioxygenase-involved in the tropane alkaloid biosynthesis. Our analyses revealed that the genomes of D. stramonium show signatures of expansion, physicochemical divergence and/or positive selection on proteins related to the production of tropane alkaloids, terpenoids, and glycoalkaloids as well as on R defensive genes and other important proteins related with biotic and abiotic pressures such as defense against natural enemies and drought.
Collapse
Affiliation(s)
- I M De-la-Cruz
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - A Hallab
- IBG-4 Bioinformatics, CEPLAS, Forschungszentrum Jülich, Julich, Germany
| | - U Olivares-Pinto
- Escuela Nacional de Estudios Superiores, Universidad Nacional Autónoma de México (UNAM), Campus Juriquilla, Querétaro, Mexico
| | - R Tapia-López
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - S Velázquez-Márquez
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - D Piñero
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - K Oyama
- Escuela Nacional de Estudios Superiores and Laboratorio Nacional de Análisis y Síntesis Ecológica (LANASE), Universidad Nacional Autónoma de México (UNAM), Campus Morelia, Morelia, Michoacán, Mexico
| | - B Usadel
- IBG-4 Bioinformatics, CEPLAS, Forschungszentrum Jülich, Julich, Germany
- Institute for Biology I, RWTH Aachen University, Aachen, Germany
| | - J Núñez-Farfán
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico.
| |
Collapse
|
45
|
Li C, Hou D, Zhang L, Li X, Fan J, Dong Y, Zhu J, Huang Z, Xu Z, Li L. Molecular characterization and function analysis of the rice OsDUF617 family. BIOTECHNOL BIOTEC EQ 2021. [DOI: 10.1080/13102818.2021.1934541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Affiliation(s)
- Chunliu Li
- Rice Institute of Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - Dejia Hou
- Department of Physics, College of Science, Huazhong Agricultural University, Wuhan, Hubei, PR China
| | - Lin Zhang
- Rice Institute of Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - Xiaohong Li
- Rice Institute of Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - Jiangbo Fan
- Rice Institute of Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - Yilun Dong
- Rice Institute of Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - Jianqing Zhu
- Rice Institute of Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - Zhengjian Huang
- Rice Institute of Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - Zhengjun Xu
- Rice Institute of Sichuan Agricultural University, Chengdu, Sichuan, PR China
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Chengdu, Sichuan, PR China
| | - Lihua Li
- Rice Institute of Sichuan Agricultural University, Chengdu, Sichuan, PR China
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Chengdu, Sichuan, PR China
| |
Collapse
|
46
|
Pizarro A, Díaz-Sala C. Expression Levels of Genes Encoding Proteins Involved in the Cell Wall-Plasma Membrane-Cytoskeleton Continuum Are Associated With the Maturation-Related Adventitious Rooting Competence of Pine Stem Cuttings. FRONTIERS IN PLANT SCIENCE 2021; 12:783783. [PMID: 35126413 PMCID: PMC8810826 DOI: 10.3389/fpls.2021.783783] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 12/17/2021] [Indexed: 05/04/2023]
Abstract
Stem cutting recalcitrance to adventitious root formation is a major limitation for the clonal propagation or micropropagation of elite genotypes of many forest tree species, especially at the adult stage of development. The interaction between the cell wall-plasma membrane and cytoskeleton may be involved in the maturation-related decline of adventitious root formation. Here, pine homologs of several genes encoding proteins involved in the cell wall-plasma membrane-cytoskeleton continuum were identified, and the expression levels of 70 selected genes belonging to the aforementioned group and four genes encoding auxin carrier proteins were analyzed during adventitious root formation in rooting-competent and non-competent cuttings of Pinus radiata. Variations in the expression levels of specific genes encoding cell wall components and cytoskeleton-related proteins were detected in rooting-competent and non-competent cuttings in response to wounding and auxin treatments. However, the major correlation of gene expression with competence for adventitious root formation was detected in a family of genes encoding proteins involved in sensing the cell wall and membrane disturbances, such as specific receptor-like kinases (RLKs) belonging to the lectin-type RLKs, wall-associated kinases, Catharanthus roseus RLK1-like kinases and leucine-rich repeat RLKs, as well as downstream regulators of the small guanosine triphosphate (GTP)-binding protein family. The expression of these genes was more affected by organ and age than by auxin and time of induction.
Collapse
|
47
|
Qaseem MF, Wu AM. Balanced Xylan Acetylation is the Key Regulator of Plant Growth and Development, and Cell Wall Structure and for Industrial Utilization. Int J Mol Sci 2020; 21:ijms21217875. [PMID: 33114198 PMCID: PMC7660596 DOI: 10.3390/ijms21217875] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/21/2020] [Accepted: 10/21/2020] [Indexed: 12/27/2022] Open
Abstract
Xylan is the most abundant hemicellulose, constitutes about 25–35% of the dry biomass of woody and lignified tissues, and occurs up to 50% in some cereal grains. The accurate degree and position of xylan acetylation is necessary for xylan function and for plant growth and development. The post synthetic acetylation of cell wall xylan, mainly regulated by Reduced Wall Acetylation (RWA), Trichome Birefringence-Like (TBL), and Altered Xyloglucan 9 (AXY9) genes, is essential for effective bonding of xylan with cellulose. Recent studies have proven that not only xylan acetylation but also its deacetylation is vital for various plant functions. Thus, the present review focuses on the latest advances in understanding xylan acetylation and deacetylation and explores their effects on plant growth and development. Baseline knowledge about precise regulation of xylan acetylation and deacetylation is pivotal to developing plant biomass better suited for second-generation liquid biofuel production.
Collapse
Affiliation(s)
- Mirza Faisal Qaseem
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China;
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architectures, South China Agricultural University, Guangzhou 510642, China
| | - Ai-Min Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China;
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architectures, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangzhou 510642, China
- Correspondence:
| |
Collapse
|
48
|
Karaca N, Ates D, Nemli S, Ozkuru E, Yilmaz H, Yagmur B, Kartal C, Tosun M, Ozdestan O, Otles S, Kahriman A, Chang P, Tanyolac MB. Identification of SNP Markers Associated with Iron and Zinc Concentrations in Cicer Seeds. Curr Genomics 2020; 21:212-223. [PMID: 33071615 PMCID: PMC7521033 DOI: 10.2174/1389202921666200413150951] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 03/18/2020] [Accepted: 03/27/2020] [Indexed: 12/30/2022] Open
Abstract
Background Cicer reticulatum L. is the wild progenitor of chickpea Cicer arietinum L., the fourth most important pulse crop in the world. Iron (Fe) and zinc (Zn) are vital micronutrients that play crucial roles in sustaining life by acting as co-factors for various proteins. Aims and Objectives
In order to improve micronutrient-dense chickpea lines, this study aimed to investigate variability and detect DNA markers associated with Fe and Zn concentrations in the seeds of 73 cultivated (C. arietinum L.) and 107 C. reticulatum genotypes. Methods
A set of 180 accessions was genotyped using 20,868 single nucleotide polymorphism (SNP) markers obtained from genotyping by sequencing analysis. Results
The results revealed substantial variation in the seed Fe and Zn concentration of the surveyed population. Using STRUCTURE software, the population structure was divided into two groups according to the principal component analysis and neighbor-joining tree analysis. A total of 23 and 16 associated SNP markers related to Fe and Zn concentrations, respectively were identified in TASSEL software by the mixed linear model method. Significant SNP markers found in more than two environments were accepted as more reliable than those that only existed in a single environment. Conclusion
The identified markers can be used in marker-assisted selection in chickpea breeding programs for the improvement of seed Fe and Zn concentrations in the chickpea.
Collapse
Affiliation(s)
- Nur Karaca
- 1Ege University, Department of Bioengineering, Bornova, Izmir35100, Turkey; 2Ege University, Faculty of Fisheries, Bornova, Izmir35100, Turkey; 3Ege University, Department of Soil Science and Plant Nutrition, Bornova, Izmir35100, Turkey; 4Ege University, Department of Food Engineering, Bornova, Izmir35100, Turkey; 5Department of Field Crops, Ege University, Bornova, Izmir35100, Turkey; 6Harran University, Department of Field Crops, 63000 Sanliurfa, Turkey; 7University of Southern California, Los Angeles, CA90007, USA
| | - Duygu Ates
- 1Ege University, Department of Bioengineering, Bornova, Izmir35100, Turkey; 2Ege University, Faculty of Fisheries, Bornova, Izmir35100, Turkey; 3Ege University, Department of Soil Science and Plant Nutrition, Bornova, Izmir35100, Turkey; 4Ege University, Department of Food Engineering, Bornova, Izmir35100, Turkey; 5Department of Field Crops, Ege University, Bornova, Izmir35100, Turkey; 6Harran University, Department of Field Crops, 63000 Sanliurfa, Turkey; 7University of Southern California, Los Angeles, CA90007, USA
| | - Seda Nemli
- 1Ege University, Department of Bioengineering, Bornova, Izmir35100, Turkey; 2Ege University, Faculty of Fisheries, Bornova, Izmir35100, Turkey; 3Ege University, Department of Soil Science and Plant Nutrition, Bornova, Izmir35100, Turkey; 4Ege University, Department of Food Engineering, Bornova, Izmir35100, Turkey; 5Department of Field Crops, Ege University, Bornova, Izmir35100, Turkey; 6Harran University, Department of Field Crops, 63000 Sanliurfa, Turkey; 7University of Southern California, Los Angeles, CA90007, USA
| | - Esin Ozkuru
- 1Ege University, Department of Bioengineering, Bornova, Izmir35100, Turkey; 2Ege University, Faculty of Fisheries, Bornova, Izmir35100, Turkey; 3Ege University, Department of Soil Science and Plant Nutrition, Bornova, Izmir35100, Turkey; 4Ege University, Department of Food Engineering, Bornova, Izmir35100, Turkey; 5Department of Field Crops, Ege University, Bornova, Izmir35100, Turkey; 6Harran University, Department of Field Crops, 63000 Sanliurfa, Turkey; 7University of Southern California, Los Angeles, CA90007, USA
| | - Hasan Yilmaz
- 1Ege University, Department of Bioengineering, Bornova, Izmir35100, Turkey; 2Ege University, Faculty of Fisheries, Bornova, Izmir35100, Turkey; 3Ege University, Department of Soil Science and Plant Nutrition, Bornova, Izmir35100, Turkey; 4Ege University, Department of Food Engineering, Bornova, Izmir35100, Turkey; 5Department of Field Crops, Ege University, Bornova, Izmir35100, Turkey; 6Harran University, Department of Field Crops, 63000 Sanliurfa, Turkey; 7University of Southern California, Los Angeles, CA90007, USA
| | - Bulent Yagmur
- 1Ege University, Department of Bioengineering, Bornova, Izmir35100, Turkey; 2Ege University, Faculty of Fisheries, Bornova, Izmir35100, Turkey; 3Ege University, Department of Soil Science and Plant Nutrition, Bornova, Izmir35100, Turkey; 4Ege University, Department of Food Engineering, Bornova, Izmir35100, Turkey; 5Department of Field Crops, Ege University, Bornova, Izmir35100, Turkey; 6Harran University, Department of Field Crops, 63000 Sanliurfa, Turkey; 7University of Southern California, Los Angeles, CA90007, USA
| | - Canan Kartal
- 1Ege University, Department of Bioengineering, Bornova, Izmir35100, Turkey; 2Ege University, Faculty of Fisheries, Bornova, Izmir35100, Turkey; 3Ege University, Department of Soil Science and Plant Nutrition, Bornova, Izmir35100, Turkey; 4Ege University, Department of Food Engineering, Bornova, Izmir35100, Turkey; 5Department of Field Crops, Ege University, Bornova, Izmir35100, Turkey; 6Harran University, Department of Field Crops, 63000 Sanliurfa, Turkey; 7University of Southern California, Los Angeles, CA90007, USA
| | - Muzaffer Tosun
- 1Ege University, Department of Bioengineering, Bornova, Izmir35100, Turkey; 2Ege University, Faculty of Fisheries, Bornova, Izmir35100, Turkey; 3Ege University, Department of Soil Science and Plant Nutrition, Bornova, Izmir35100, Turkey; 4Ege University, Department of Food Engineering, Bornova, Izmir35100, Turkey; 5Department of Field Crops, Ege University, Bornova, Izmir35100, Turkey; 6Harran University, Department of Field Crops, 63000 Sanliurfa, Turkey; 7University of Southern California, Los Angeles, CA90007, USA
| | - Ozgul Ozdestan
- 1Ege University, Department of Bioengineering, Bornova, Izmir35100, Turkey; 2Ege University, Faculty of Fisheries, Bornova, Izmir35100, Turkey; 3Ege University, Department of Soil Science and Plant Nutrition, Bornova, Izmir35100, Turkey; 4Ege University, Department of Food Engineering, Bornova, Izmir35100, Turkey; 5Department of Field Crops, Ege University, Bornova, Izmir35100, Turkey; 6Harran University, Department of Field Crops, 63000 Sanliurfa, Turkey; 7University of Southern California, Los Angeles, CA90007, USA
| | - Semih Otles
- 1Ege University, Department of Bioengineering, Bornova, Izmir35100, Turkey; 2Ege University, Faculty of Fisheries, Bornova, Izmir35100, Turkey; 3Ege University, Department of Soil Science and Plant Nutrition, Bornova, Izmir35100, Turkey; 4Ege University, Department of Food Engineering, Bornova, Izmir35100, Turkey; 5Department of Field Crops, Ege University, Bornova, Izmir35100, Turkey; 6Harran University, Department of Field Crops, 63000 Sanliurfa, Turkey; 7University of Southern California, Los Angeles, CA90007, USA
| | - Abdullah Kahriman
- 1Ege University, Department of Bioengineering, Bornova, Izmir35100, Turkey; 2Ege University, Faculty of Fisheries, Bornova, Izmir35100, Turkey; 3Ege University, Department of Soil Science and Plant Nutrition, Bornova, Izmir35100, Turkey; 4Ege University, Department of Food Engineering, Bornova, Izmir35100, Turkey; 5Department of Field Crops, Ege University, Bornova, Izmir35100, Turkey; 6Harran University, Department of Field Crops, 63000 Sanliurfa, Turkey; 7University of Southern California, Los Angeles, CA90007, USA
| | - Peter Chang
- 1Ege University, Department of Bioengineering, Bornova, Izmir35100, Turkey; 2Ege University, Faculty of Fisheries, Bornova, Izmir35100, Turkey; 3Ege University, Department of Soil Science and Plant Nutrition, Bornova, Izmir35100, Turkey; 4Ege University, Department of Food Engineering, Bornova, Izmir35100, Turkey; 5Department of Field Crops, Ege University, Bornova, Izmir35100, Turkey; 6Harran University, Department of Field Crops, 63000 Sanliurfa, Turkey; 7University of Southern California, Los Angeles, CA90007, USA
| | - Muhammed Bahattin Tanyolac
- 1Ege University, Department of Bioengineering, Bornova, Izmir35100, Turkey; 2Ege University, Faculty of Fisheries, Bornova, Izmir35100, Turkey; 3Ege University, Department of Soil Science and Plant Nutrition, Bornova, Izmir35100, Turkey; 4Ege University, Department of Food Engineering, Bornova, Izmir35100, Turkey; 5Department of Field Crops, Ege University, Bornova, Izmir35100, Turkey; 6Harran University, Department of Field Crops, 63000 Sanliurfa, Turkey; 7University of Southern California, Los Angeles, CA90007, USA
| |
Collapse
|
49
|
Sun A, Yu B, Zhang Q, Peng Y, Yang J, Sun Y, Qin P, Jia T, Smeekens S, Teng S. MYC2-Activated TRICHOME BIREFRINGENCE-LIKE37 Acetylates Cell Walls and Enhances Herbivore Resistance. PLANT PHYSIOLOGY 2020; 184:1083-1096. [PMID: 32732351 PMCID: PMC7536677 DOI: 10.1104/pp.20.00683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 07/20/2020] [Indexed: 05/08/2023]
Abstract
O-Acetylation of polysaccharides predominantly modifies plant cell walls by changing the physicochemical properties and, consequently, the structure and function of the cell wall. Expression regulation and specific function of cell wall-acetylating enzymes remain to be fully understood. In this report, we cloned a previously identified stunted growth mutant named sucrose uncoupled1 (sun1) in Arabidopsis (Arabidopsis thaliana). SUN1 encodes a member of the TRICHOME BIREFRINGEN-LIKE family, AtTBL37 AtTBL37 is highly expressed in fast-growing plant tissues and encodes a Golgi apparatus-localized protein that regulates secondary cell wall thickening and acetylation. In sun1, jasmonate signaling and expression of downstream chemical defense genes, including VEGETATIVE STORAGE PROTEIN1 and BRANCHED-CHAIN AMINOTRANSFERASE4, are increased but, unexpectedly, sun1 is more susceptible to insect feeding. The central transcription factor in jasmonate signaling, MYC2, binds to and induces AtTBL37 expression. MYC2 also promotes the expression of many other TBLs Moreover, MYC activity enhances cell wall acetylation. Overexpression of AtTBL37 in the myc2-2 background reduces herbivore feeding. Our study highlights the role of O-acetylation in controlling plant cell wall properties, plant development, and herbivore defense.
Collapse
Affiliation(s)
- Aiqing Sun
- Laboratory of Photosynthesis and Environmental Biology, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bo Yu
- Laboratory of Photosynthesis and Environmental Biology, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Qian Zhang
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Peng
- Laboratory of Photosynthesis and Environmental Biology, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Jing Yang
- Laboratory of Photosynthesis and Environmental Biology, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yonghua Sun
- Laboratory of Photosynthesis and Environmental Biology, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Ping Qin
- Laboratory of Photosynthesis and Environmental Biology, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Tao Jia
- Laboratory of Photosynthesis and Environmental Biology, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Sjef Smeekens
- Molecular Plant Physiology, Institute of Environmental Biology, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Sheng Teng
- Laboratory of Photosynthesis and Environmental Biology, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
50
|
Yang J, Xu P, Yu D. Genome-Wide Identification and Characterization of the SHI-Related Sequence Gene Family in Rice. Evol Bioinform Online 2020; 16:1176934320941495. [PMID: 32963469 PMCID: PMC7488920 DOI: 10.1177/1176934320941495] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 06/15/2020] [Indexed: 12/23/2022] Open
Abstract
Rice (Oryza sativa) yield is correlated to various factors. Transcription regulators are important factors, such as the typical SHORT INTERNODES-related sequences (SRSs), which encode proteins with single zinc finger motifs. Nevertheless, knowledge regarding the evolutionary and functional characteristics of the SRS gene family members in rice is insufficient. Therefore, we performed a genome-wide screening and characterization of the OsSRS gene family in Oryza sativa japonica rice. We also examined the SRS proteins from 11 rice sub-species, consisting of 3 cultivars, 6 wild varieties, and 2 other genome types. SRS members from maize, sorghum, Brachypodium distachyon, and Arabidopsis were also investigated. All these SRS proteins exhibited species-specific characteristics, as well as monocot- and dicot-specific characteristics, as assessed by phylogenetic analysis, which was further validated by gene structure and motif analyses. Genome comparisons revealed that segmental duplications may have played significant roles in the recombination of the OsSRS gene family and their expression levels. The family was mainly subjected to purifying selective pressure. In addition, the expression data demonstrated the distinct responses of OsSRS genes to various abiotic stresses and hormonal treatments, indicating their functional divergence. Our study provides a good reference for elucidating the functions of SRS genes in rice.
Collapse
Affiliation(s)
- Jun Yang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Peng Xu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, China.,Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Mengla, China
| | - Diqiu Yu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, China.,CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Kunming, China.,Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, Yunnan, China
| |
Collapse
|