1
|
Adamakis IDS, Sotiriou P, Ntanou N, Nelson JM, Giannoutsou E. Tissue-Specific Differential Distribution of Cell Wall Epitopes in Sphagnum compactum and Marchantia polymorpha. Int J Mol Sci 2025; 26:3602. [PMID: 40332118 DOI: 10.3390/ijms26083602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Revised: 04/06/2025] [Accepted: 04/07/2025] [Indexed: 05/08/2025] Open
Abstract
Bryophytes, or non-vascular plants, provide valuable models for studying plant adaptation to land, as their physiology differs significantly from that of vascular plants. This study examines the cell wall structure of bryophytes, focusing on the tissue-specific distribution of cell wall epitopes in Sphagnum compactum (a peat moss) and Marchantia polymorpha (the model liverwort) using specific stains and immunolabeling techniques. In S. compactum, chlorocysts and hyalocysts exhibit distinct polysaccharide compositions, with methylesterified and demethylesterified homogalacturonans, arabinans, and hemicelluloses contributing to water retention, structural integrity, and photosynthetic efficiency. In contrast, M. polymorpha demonstrates a simpler yet polarized distribution of homogalacturonans, arabinans, mannans, and xyloglucans, with arabinogalactan proteins uniquely localized in rhizoids, improving their flexibility and anchorage to the substrate. Cellulose was uniformly distributed throughout all tissues in both bryophytes, while crystalline cellulose was only faintly observed. These findings highlight how cell wall adaptations contribute to ecological specialization, providing insights into the evolutionary innovations that enable bryophytes to thrive in terrestrial environments.
Collapse
Affiliation(s)
| | - Penelope Sotiriou
- Section of Botany, Department of Biology, National and Kapodistrian University of Athens, 15784 Athens, Greece
| | - Natalia Ntanou
- Section of Botany, Department of Biology, National and Kapodistrian University of Athens, 15784 Athens, Greece
| | | | - Eleni Giannoutsou
- Section of Botany, Department of Biology, National and Kapodistrian University of Athens, 15784 Athens, Greece
| |
Collapse
|
2
|
Tang J, Mehari TG, Qian D, Li R, Chen Z, Zhou Z, Yan Y, Chen H, Wang W, Wang B. Genome-wide identification unravels the role of the arabinogalactan peptide (AGP) gene family in cotton plant architecture. PLANT CELL REPORTS 2025; 44:71. [PMID: 40056176 DOI: 10.1007/s00299-025-03460-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Accepted: 02/21/2025] [Indexed: 03/10/2025]
Abstract
KEY MESSAGE In our study, we identified the gene Gohir.A08G240900 as a potential target for regulating cotton plant height, providing a genetic basis for enhancing cotton morphology. Arabinogalactan peptides are a class of hydroxyproline-rich proteins widely distributed in plants that participate in many life processes, including growth and development, cell division and even plant reproductive development. In this study, we identified 122 members of the AGP gene family via genome-wide identification in six cotton species. Through phylogenetic tree analysis, the AGP family was divided into six different subgroups. A core yet variable region composed of proline, hydroxyproline, serine, threonine, and alanine (PAST) was identified among these members. Furthermore, Ka/Ks analysis revealed that the AGP gene family underwent multiple fragment duplication events. Additionally, we analyzed the 1.5 kb upstream cis-acting elements of all upland cotton family members and identified numerous functional elements associated with growth and development, suggesting a close relationship among the family members. The results of RT‒qPCR analysis revealed that the expression level of Gohir.A08G240900 was significantly different among the four upland cotton varieties, with significant differences in plant height. Virus-induced gene silencing (VIGS) experiments revealed that the height of Gohir.A08G240900 gene-silenced plants significantly decreased. The results revealed that Gohir.A08G240900 may affect plant growth and development and may be a potential functional gene regulating cotton plant height.
Collapse
Affiliation(s)
- Jungfeng Tang
- School of Life Sciences, Nantong University, Nantong, 226019, Jiangsu, China
| | | | - Dongmei Qian
- School of Life Sciences, Nantong University, Nantong, 226019, Jiangsu, China
| | - Ruochen Li
- School of Life Sciences, Nantong University, Nantong, 226019, Jiangsu, China
| | - Zhengyang Chen
- School of Life Sciences, Nantong University, Nantong, 226019, Jiangsu, China
- Nantong Middle School, Nantong, 226001, Jiangsu, China
| | - Zitong Zhou
- School of Life Sciences, Nantong University, Nantong, 226019, Jiangsu, China
| | - Yuchun Yan
- School of Life Sciences, Nantong University, Nantong, 226019, Jiangsu, China
| | - Haodong Chen
- Cotton Sciences Research Institute of Hunan/National Hybrid Cotton Research Promotion Center, Changde, 415101, Hunan, China
| | - Wei Wang
- Jiangsu Coastal Area Institute of Agricultural Sciences/Jiangsu Collaborative Innovation Center for Modern Crop Production, Yancheng, 224002, Jiangsu, China
| | - Baohua Wang
- School of Life Sciences, Nantong University, Nantong, 226019, Jiangsu, China.
| |
Collapse
|
3
|
Hassan AS, O’Donovan LA, Cowley JM, Akomeah B, Phillips RJ, Pettolino F, Schultz CJ, Burton RA. In planta ectopic expression of two subtypes of tomato cellulose synthase-like M genes affects cell wall integrity and supports a role in arabinogalactan and/or rhamnogalacturonan-I biosynthesis. PLANT & CELL PHYSIOLOGY 2025; 66:101-119. [PMID: 39658008 PMCID: PMC11775392 DOI: 10.1093/pcp/pcae145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 12/01/2024] [Accepted: 12/09/2024] [Indexed: 12/12/2024]
Abstract
Diversification of the cellulose synthase superfamily of glycosyltransferases has provided plants with the ability to synthesize varied cell wall polysaccharides such as xyloglucan, mannans, and the mixed-linkage glucans of cereals. Surprisingly, some but not all members of the cellulose synthase-like M (CslM) gene family have recently been shown to be involved in the glycosylation of the aglycone core of a range of triterpenoid saponins. However, no cell wall activity has yet been attributed to any of the CslM gene family members. Here, evolution of the CslM gene family in eudicots is explored to better understand the differences between the two metabolically distinct classes of CslMs (CslM1 and CslM2) and the very closely related CslGs. To achieve this, a robust tBLASTn approach was developed to identify CslM1, CslM2, and CslG sequences using diagnostic peptides, suitable for complex genomes using unannotated and short-read datasets. To ascertain whether both CslM1 and CslM2 proteins have cell wall functions, in addition to the 'saponin' role of CslM2, tomato CslM1 and CslM2 genes were ectopically expressed in Arabidopsis thaliana by stable transformation and in the transient Nicotiana benthamiana system. Transformed plants were analysed with immunofluorescence, immunogold transmission electron microscopy, and cell wall polysaccharides were extracted for monosaccharide linkage analysis. Our results support a role for both CslM1 and CslM2 in the biosynthesis of type II arabinogalactan linkages, generating new insight into how the diverse functions of CslMs can coexist and providing clear targets for future research.
Collapse
Affiliation(s)
- Ali S Hassan
- School of Agriculture, Food and Wine, University of Adelaide, PMB1, Glen Osmond, South Australia 5064, Australia
| | - Lisa A O’Donovan
- School of Agriculture, Food and Wine, University of Adelaide, PMB1, Glen Osmond, South Australia 5064, Australia
| | - James M Cowley
- School of Agriculture, Food and Wine, University of Adelaide, PMB1, Glen Osmond, South Australia 5064, Australia
| | - Belinda Akomeah
- School of Agriculture, Food and Wine, University of Adelaide, PMB1, Glen Osmond, South Australia 5064, Australia
| | - Renee J Phillips
- School of Agriculture, Food and Wine, University of Adelaide, PMB1, Glen Osmond, South Australia 5064, Australia
| | - Filomena Pettolino
- CSIRO Agriculture and Food, GPO Box 1700, Canberra, Australian Capital Territory 2601, Australia
| | - Carolyn J Schultz
- School of Agriculture, Food and Wine, University of Adelaide, PMB1, Glen Osmond, South Australia 5064, Australia
| | - Rachel A Burton
- School of Agriculture, Food and Wine, University of Adelaide, PMB1, Glen Osmond, South Australia 5064, Australia
| |
Collapse
|
4
|
Rempfer C, Hoernstein SN, van Gessel N, Graf AW, Spiegelhalder RP, Bertolini A, Bohlender LL, Parsons J, Decker EL, Reski R. Differential prolyl hydroxylation by six Physcomitrella prolyl-4 hydroxylases. Comput Struct Biotechnol J 2024; 23:2580-2594. [PMID: 39021582 PMCID: PMC11252719 DOI: 10.1016/j.csbj.2024.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 07/20/2024] Open
Abstract
Hydroxylation of prolines to 4-trans-hydroxyproline (Hyp) is mediated by prolyl-4 hydroxylases (P4Hs). In plants, Hyps occur in Hydroxyproline-rich glycoproteins (HRGPs), and are frequently O-glycosylated. While both modifications are important, e.g. for cell wall stability, they are undesired in plant-made pharmaceuticals. Sequence motifs for prolyl-hydroxylation were proposed but did not include data from mosses, such as Physcomitrella. We identified six moss P4Hs by phylogenetic reconstruction. Our analysis of 73 Hyps in 24 secretory proteins from multiple mass spectrometry datasets revealed that prolines near other prolines, alanine, serine, threonine and valine were preferentially hydroxylated. About 95 % of Hyps were predictable with combined established methods. In our data, AOV was the most frequent pattern. A combination of 443 AlphaFold models and MS data with 3000 prolines found Hyps mainly on protein surfaces in disordered regions. Moss-produced human erythropoietin (EPO) exhibited O-glycosylation with arabinose chains on two Hyps. This modification was significantly reduced in a p4h1 knock-out (KO) Physcomitrella mutant. Quantitative proteomics with different p4h mutants revealed specific changes in protein amounts, and a modified prolyl-hydroxylation pattern, suggesting a differential function of the Physcomitrella P4Hs. Quantitative RT-PCR revealed a differential effect of single p4h KOs on the expression of the other five p4h genes, suggesting a partial compensation of the mutation. AlphaFold-Multimer models for Physcomitrella P4H1 and its target EPO peptide superposed with the crystal structure of Chlamydomonas P4H1 suggested significant amino acids in the active centre of the enzyme and revealed differences between P4H1 and the other Physcomitrella P4Hs.
Collapse
Affiliation(s)
- Christine Rempfer
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104 Freiburg, Germany
- Spemann Graduate School of Biology and Medicine SGBM, University of Freiburg, Albertstraße 19A, 79104 Freiburg, Germany
| | - Sebastian N.W. Hoernstein
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104 Freiburg, Germany
| | - Nico van Gessel
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104 Freiburg, Germany
| | - Andreas W. Graf
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104 Freiburg, Germany
| | - Roxane P. Spiegelhalder
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104 Freiburg, Germany
| | - Anne Bertolini
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104 Freiburg, Germany
| | - Lennard L. Bohlender
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104 Freiburg, Germany
| | - Juliana Parsons
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104 Freiburg, Germany
| | - Eva L. Decker
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104 Freiburg, Germany
| | - Ralf Reski
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104 Freiburg, Germany
- Spemann Graduate School of Biology and Medicine SGBM, University of Freiburg, Albertstraße 19A, 79104 Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Schaenzlestr. 18, 79104, Germany
| |
Collapse
|
5
|
Moreira D, Kaur D, Fourbert-Mendes S, Showalter AM, Coimbra S, Pereira AM. Eight hydroxyproline-O-galactosyltransferases play essential roles in female reproductive development. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 348:112231. [PMID: 39154893 DOI: 10.1016/j.plantsci.2024.112231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/13/2024] [Accepted: 08/14/2024] [Indexed: 08/20/2024]
Abstract
In angiosperms, ovules give rise to seeds upon fertilization. Thus, seed formation is dependent on both successful ovule development and tightly controlled communication between female and male gametophytes. During establishment of these interactions, cell walls play a pivotal role, especially arabinogalactan-proteins (AGPs). AGPs are highly glycosylated proteins decorated by arabinogalactan side chains, representing 90 % of the AGP molecule. AGP glycosylation is initiated by a reaction catalysed by hydroxyproline-O-galactosyltransferases (Hyp-GALTs), specifically eight of them (GALT2-9), which add the first galactose to Hyp residues. Five Hyp-GALTs (GALT2, 5, 7, 8 and 9) were previously described as essential for AGP functions in pollen and ovule development, pollen-pistil interactions, and seed morphology. In the present work, a higher order Hyp-GALT mutant (23456789) was studied, with a high degree of under-glycosylated AGPs, to gain deeper insight into the crucial roles of these eight enzymes in female reproductive tissues. Notably, the 23456789 mutant demonstrated a high quantity of unfertilized ovules, displaying abnormal callose accumulation both at the micropylar region and, sometimes, throughout the entire embryo sac. Additionally, this mutant displayed ovules with abnormal embryo sacs, had a disrupted spatiotemporal distribution of AGPs in female reproductive tissues, and showed abnormal seed and embryo development, concomitant with a reduction in AGP-GlcA levels. This study revealed that at least three more enzymes exhibit Hyp-O-GALT activity in Arabidopsis (GALT3, 4 and 6), and reinforces the crucial importance of AGP carbohydrates in carrying out the biological functions of AGPs during plant reproduction.
Collapse
Affiliation(s)
- Diana Moreira
- LAQV Requimte, Sustainable Chemistry, Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Porto 4169-007, Portugal
| | - Dasmeet Kaur
- Department of Environmental & Plant Biology, Ohio University, Athens, OH 45701-2979, USA; Molecular and Cellular Biology Program, Ohio University, Athens, OH 45701-2979, USA
| | - Sara Fourbert-Mendes
- LAQV Requimte, Sustainable Chemistry, Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Porto 4169-007, Portugal
| | - Allan M Showalter
- Department of Environmental & Plant Biology, Ohio University, Athens, OH 45701-2979, USA; Molecular and Cellular Biology Program, Ohio University, Athens, OH 45701-2979, USA
| | - Sílvia Coimbra
- LAQV Requimte, Sustainable Chemistry, Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Porto 4169-007, Portugal
| | - Ana Marta Pereira
- LAQV Requimte, Sustainable Chemistry, Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Porto 4169-007, Portugal.
| |
Collapse
|
6
|
De Coninck T, Desmet T, Van Damme EJM. Carbohydrate-active enzymes involved in rice cell wall metabolism. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:6206-6227. [PMID: 38980746 DOI: 10.1093/jxb/erae295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 07/04/2024] [Indexed: 07/11/2024]
Abstract
Plant cell walls are complex, multifunctional structures, built up of polysaccharides and proteins. The configuration and abundance of cell wall constituents determine cellular elongation and plant growth. The emphasis of this review is on rice, a staple crop with economic importance, serving as model for grasses/cereals. Recent advancements have contributed to a better understanding of the grass/cereal cell wall. This review brings together current knowledge of the organization and metabolism of the rice cell wall, and addresses gaps in the information regarding the cell wall and enzymes involved. Several cell wall fractions, including cellulose, mixed-linkage glucans, and glucuronoarabinoxylans, are well understood in rice and other grasses/grains. Conversely, there are still open questions and missing links in relation to xyloglucans, glucomannans, pectin, lignin, and arabinogalactan proteins. There is still a large and untapped potential to identify carbohydrate-active enzymes (CAZymes), to characterize their activity, and to elucidate their involvement in the metabolism of the mentioned cell wall fractions. This review highlights the involvement of carbohydrate-active enzymes in rice cell wall metabolism, providing an update of current understanding with the aim of demarcating research areas with potential for further investigations.
Collapse
Affiliation(s)
- Tibo De Coninck
- Laboratory for Biochemistry & Glycobiology, Department of Biotechnology, Ghent University, Proeftuinstraat 86, 9000 Ghent, Belgium
- Centre for Synthetic Biology, Department of Biotechnology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Tom Desmet
- Centre for Synthetic Biology, Department of Biotechnology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Els J M Van Damme
- Laboratory for Biochemistry & Glycobiology, Department of Biotechnology, Ghent University, Proeftuinstraat 86, 9000 Ghent, Belgium
| |
Collapse
|
7
|
Figueiredo R, Costa M, Moreira D, Moreira M, Noble J, Pereira LG, Melo P, Palanivelu R, Coimbra S, Pereira AM. JAGGER localization and function are dependent on GPI anchor addition. PLANT REPRODUCTION 2024; 37:341-353. [PMID: 38294499 PMCID: PMC11377618 DOI: 10.1007/s00497-024-00495-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/09/2024] [Indexed: 02/01/2024]
Abstract
KEY MESSAGE GPI anchor addition is important for JAGGER localization and in vivo function. Loss of correct GPI anchor addition in JAGGER, negatively affects its localization and function. In flowering plants, successful double fertilization requires the correct delivery of two sperm cells to the female gametophyte inside the ovule. The delivery of a single pair of sperm cells is achieved by the entrance of a single pollen tube into one female gametophyte. To prevent polyspermy, Arabidopsis ovules avoid the attraction of multiple pollen tubes to one ovule-polytubey block. In Arabidopsis jagger mutants, a significant number of ovules attract more than one pollen tube to an ovule due to an impairment in synergid degeneration. JAGGER encodes a putative arabinogalactan protein which is predicted to be anchored to the plasma membrane by a glycosylphosphatidylinositol (GPI) anchor. Here, we show that JAGGER fused to citrine yellow fluorescent protein (JAGGER-cYFP) is functional and localizes mostly to the periphery of ovule integuments and transmitting tract cells. We further investigated the importance of GPI-anchor addition domains for JAGGER localization and function. Different JAGGER proteins with deletions in predicted ω-site regions and GPI attachment signal domain, expected to compromise the addition of the GPI anchor, led to disruption of JAGGER localization in the cell periphery. All JAGGER proteins with disrupted localization were also not able to rescue the polytubey phenotype, pointing to the importance of GPI-anchor addition to in vivo function of the JAGGER protein.
Collapse
Affiliation(s)
- Raquel Figueiredo
- LAQV/REQUIMTE, Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal
| | - Mónica Costa
- LAQV/REQUIMTE, Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156, Oeiras, Portugal
| | - Diana Moreira
- LAQV/REQUIMTE, Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal
| | - Miguel Moreira
- LAQV/REQUIMTE, Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal
| | - Jennifer Noble
- School of Plant Sciences, University of Arizona, Tucson, AZ, 85721, USA
| | - Luís Gustavo Pereira
- GreenUPorto - Sustainable Agrifood Production Research Centre, Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal
| | - Paula Melo
- GreenUPorto - Sustainable Agrifood Production Research Centre, Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal
| | | | - Sílvia Coimbra
- LAQV/REQUIMTE, Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal
| | - Ana Marta Pereira
- LAQV/REQUIMTE, Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal.
| |
Collapse
|
8
|
Mizukami AG, Kusano S, Matsuura-Tokita K, Hagihara S, Higashiyama T. Cluster effect through the oligomerisation of bioactive disaccharide AMOR on pollen tube capacitation in Torenia fournieri. RSC Chem Biol 2024; 5:745-750. [PMID: 39092441 PMCID: PMC11289873 DOI: 10.1039/d4cb00032c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 05/27/2024] [Indexed: 08/04/2024] Open
Abstract
Arabinogalactan proteins (AGPs) are plant-specific glycoproteins involved in cellular mechanics and signal transduction. There has been major progress in understanding the structure, synthesis, and molecular functions of their carbohydrate chains; however, the mechanisms by which they function as signalling molecules remain unclear. Here, methyl-glucuronosyl arabinogalactan (AMOR; Me-GlcA-β(1,6)-Gal), a disaccharide structure at the end of AGP carbohydrate chains, was oligomerised via chemical synthesis. The biological activity of AMOR oligomers was enhanced via clustering of the carbohydrate chains. Furthermore, AMOR oligomers yielded a pollen tube morphology (i.e., callose plug formation) similar to that when cultured with native AMOR, suggesting it may be functionally similar to native AMOR.
Collapse
Affiliation(s)
- Akane G Mizukami
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo Tokyo 113-0033 Japan
| | - Shuhei Kusano
- RIKEN Center for Sustainable Resource Science Saitama 351-0198 Japan
| | - Kumi Matsuura-Tokita
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo Tokyo 113-0033 Japan
| | - Shinya Hagihara
- RIKEN Center for Sustainable Resource Science Saitama 351-0198 Japan
| | - Tetsuya Higashiyama
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo Tokyo 113-0033 Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University Nagoya 464-8601 Japan
| |
Collapse
|
9
|
Kutyrieva-Nowak N, Leszczuk A, Denic D, Bellaidi S, Blazakis K, Gemeliari P, Lis M, Kalaitzis P, Zdunek A. In vivo and ex vivo study on cell wall components as part of the network in tomato fruit during the ripening process. HORTICULTURE RESEARCH 2024; 11:uhae145. [PMID: 38988613 PMCID: PMC11233857 DOI: 10.1093/hr/uhae145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 05/13/2024] [Indexed: 07/12/2024]
Abstract
Ripening is a process involving various morphological, physiological, and biochemical changes in fruits. This process is affected by modifications in the cell wall structure, particularly in the composition of polysaccharides and proteins. The cell wall assembly is a network of polysaccharides and proteoglycans named the arabinoxylan pectin arabinogalactan protein1 (APAP1). The complex consists of the arabinogalactan protein (AGP) core with the pectin domain including arabinogalactan (AG) type II, homogalacturonan (HG), and rhamnogalacturonan I (RG-I). The present paper aims to determine the impact of a disturbance in the synthesis of one constituent on the integrity of the cell wall. Therefore, in the current work, we have tested the impact of modified expression of the SlP4H3 gene connected with proline hydroxylase (P4H) activity on AGP presence in the fruit matrix. Using an immunolabelling technique (CLSM), an immunogold method (TEM), molecular tools, and calcium mapping (SEM-EDS), we have demonstrated that disturbances in AGP synthesis affect the entire cell wall structure. Changes in the spatio-temporal AGP distribution may be related to the formation of a network between AGPs with other cell wall components. Moreover, the modified structure of the cell wall assembly induces morphological changes visible at the cellular level during the progression of the ripening process. These results support the hypothesis that AGPs and pectins are required for the proper progression of the physiological processes occurring in fruits.
Collapse
Affiliation(s)
| | - Agata Leszczuk
- Institute of Agrophysics, Polish Academy of Sciences, 20-290 Lublin, Poland
| | - Dusan Denic
- Department of Horticultural Genetics and Biotechnology, Mediterranean Agronomic Institute of Chania, Chania 73100, Greece
| | - Samia Bellaidi
- Department of Horticultural Genetics and Biotechnology, Mediterranean Agronomic Institute of Chania, Chania 73100, Greece
| | - Konstantinos Blazakis
- Department of Horticultural Genetics and Biotechnology, Mediterranean Agronomic Institute of Chania, Chania 73100, Greece
| | - Petroula Gemeliari
- Department of Horticultural Genetics and Biotechnology, Mediterranean Agronomic Institute of Chania, Chania 73100, Greece
| | - Magdalena Lis
- Department of Biomedicine and Environmental Research, Institute of Biological Sciences, Faculty of Medicine, John Paul II Catholic University of Lublin, 20-708 Lublin, Poland
| | - Panagiotis Kalaitzis
- Department of Horticultural Genetics and Biotechnology, Mediterranean Agronomic Institute of Chania, Chania 73100, Greece
| | - Artur Zdunek
- Institute of Agrophysics, Polish Academy of Sciences, 20-290 Lublin, Poland
| |
Collapse
|
10
|
Bhandari DD, Brandizzi F. Logistics of defense: The contribution of endomembranes to plant innate immunity. J Cell Biol 2024; 223:e202307066. [PMID: 38551496 PMCID: PMC10982075 DOI: 10.1083/jcb.202307066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 04/02/2024] Open
Abstract
Phytopathogens cause plant diseases that threaten food security. Unlike mammals, plants lack an adaptive immune system and rely on their innate immune system to recognize and respond to pathogens. Plant response to a pathogen attack requires precise coordination of intracellular traffic and signaling. Spatial and/or temporal defects in coordinating signals and cargo can lead to detrimental effects on cell development. The role of intracellular traffic comes into a critical focus when the cell sustains biotic stress. In this review, we discuss the current understanding of the post-immune activation logistics of plant defense. Specifically, we focus on packaging and shipping of defense-related cargo, rerouting of intracellular traffic, the players enabling defense-related traffic, and pathogen-mediated subversion of these pathways. We highlight the roles of the cytoskeleton, cytoskeleton-organelle bridging proteins, and secretory vesicles in maintaining pathways of exocytic defense, acting as sentinels during pathogen attack, and the necessary elements for building the cell wall as a barrier to pathogens. We also identify points of convergence between mammalian and plant trafficking pathways during defense and highlight plant unique responses to illustrate evolutionary adaptations that plants have undergone to resist biotic stress.
Collapse
Affiliation(s)
- Deepak D. Bhandari
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, USA
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, USA
| | - Federica Brandizzi
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, USA
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, USA
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
11
|
Delmer D, Dixon RA, Keegstra K, Mohnen D. The plant cell wall-dynamic, strong, and adaptable-is a natural shapeshifter. THE PLANT CELL 2024; 36:1257-1311. [PMID: 38301734 PMCID: PMC11062476 DOI: 10.1093/plcell/koad325] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 12/19/2023] [Indexed: 02/03/2024]
Abstract
Mythology is replete with good and evil shapeshifters, who, by definition, display great adaptability and assume many different forms-with several even turning themselves into trees. Cell walls certainly fit this definition as they can undergo subtle or dramatic changes in structure, assume many shapes, and perform many functions. In this review, we cover the evolution of knowledge of the structures, biosynthesis, and functions of the 5 major cell wall polymer types that range from deceptively simple to fiendishly complex. Along the way, we recognize some of the colorful historical figures who shaped cell wall research over the past 100 years. The shapeshifter analogy emerges more clearly as we examine the evolving proposals for how cell walls are constructed to allow growth while remaining strong, the complex signaling involved in maintaining cell wall integrity and defense against disease, and the ways cell walls adapt as they progress from birth, through growth to maturation, and in the end, often function long after cell death. We predict the next century of progress will include deciphering cell type-specific wall polymers; regulation at all levels of polymer production, crosslinks, and architecture; and how walls respond to developmental and environmental signals to drive plant success in diverse environments.
Collapse
Affiliation(s)
- Deborah Delmer
- Section of Plant Biology, University of California Davis, Davis, CA 95616, USA
| | - Richard A Dixon
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA
| | - Kenneth Keegstra
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48823, USA
| | - Debra Mohnen
- Complex Carbohydrate Research Center and Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
12
|
Tan L, Cheng J, Zhang L, Backe J, Urbanowicz B, Heiss C, Azadi P. Pectic-AGP is a major form of Arabidopsis AGPs. Carbohydr Polym 2024; 330:121838. [PMID: 38368088 DOI: 10.1016/j.carbpol.2024.121838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 01/16/2024] [Indexed: 02/19/2024]
Abstract
As a key component in cell walls of numerous organisms ranging from green algae to higher plants, AGPs play principal roles in many biological processes such as cell-cell adhesion and regulating Ca2+ signaling pathway as a Ca2+-capacitor. Consistently, AGP structures vary from species to species and from tissue to tissue. To understand the functions of AGPs, it is vital to know their structural differences relative to their location in the plant. Thus, AGPs were purified from different Arabidopsis tissues. Analyses of these AGPs demonstrated that the AGPs comprised covalently linked pectin and AGP, referred to as pectic-AGPs. Importantly, these pectic-AGPs were glycosylated with a remarkable variety of polysaccharides including homogalacturonan, rhamnogalacturonan-I, and type II arabinogalactan at different ratios and lengths. This result not only suggests that pectic-AGP is a major form of Arabidopsis AGPs, but also supports AGPs serve as crosslinkers covalently connecting pectins with structures tailored for tissue-specific functions.
Collapse
Affiliation(s)
- Li Tan
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30602, United States of America; DOE Center for Plant and Microbial Complex Carbohydrates, University of Georgia, 315 Riverbend Road, Athens, GA 30602, United States of America.
| | - Jielun Cheng
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30602, United States of America; DOE Center for Plant and Microbial Complex Carbohydrates, University of Georgia, 315 Riverbend Road, Athens, GA 30602, United States of America
| | - Liang Zhang
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30602, United States of America; DOE Center for Plant and Microbial Complex Carbohydrates, University of Georgia, 315 Riverbend Road, Athens, GA 30602, United States of America; Department of Biochemistry and Molecular Biology, University of Georgia, 315 Riverbend Road, Athens, GA 30602, United States of America
| | - Jason Backe
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30602, United States of America; DOE Center for Plant and Microbial Complex Carbohydrates, University of Georgia, 315 Riverbend Road, Athens, GA 30602, United States of America; Department of Biochemistry and Molecular Biology, University of Georgia, 315 Riverbend Road, Athens, GA 30602, United States of America
| | - Breeanna Urbanowicz
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30602, United States of America; DOE Center for Plant and Microbial Complex Carbohydrates, University of Georgia, 315 Riverbend Road, Athens, GA 30602, United States of America; Department of Biochemistry and Molecular Biology, University of Georgia, 315 Riverbend Road, Athens, GA 30602, United States of America
| | - Christian Heiss
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30602, United States of America; DOE Center for Plant and Microbial Complex Carbohydrates, University of Georgia, 315 Riverbend Road, Athens, GA 30602, United States of America
| | - Parastoo Azadi
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30602, United States of America; DOE Center for Plant and Microbial Complex Carbohydrates, University of Georgia, 315 Riverbend Road, Athens, GA 30602, United States of America
| |
Collapse
|
13
|
Akram F, Fatima T, Ibrar R, Shabbir I, Shah FI, Haq IU. Trends in the development and current perspective of thermostable bacterial hemicellulases with their industrial endeavors: A review. Int J Biol Macromol 2024; 265:130993. [PMID: 38508567 DOI: 10.1016/j.ijbiomac.2024.130993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 03/12/2024] [Accepted: 03/17/2024] [Indexed: 03/22/2024]
Abstract
Hemicellulases are enzymes that hydrolyze hemicelluloses, common polysaccharides in nature. Thermophilic hemicellulases, derived from microbial strains, are extensively studied as natural biofuel sources due to the complex structure of hemicelluloses. Recent research aims to elucidate the catalytic principles, mechanisms and specificity of hemicellulases through investigations into their high-temperature stability and structural features, which have applications in biotechnology and industry. This review article targets to serve as a comprehensive resource, highlighting the significant progress in the field and emphasizing the vital role of thermophilic hemicellulases in eco-friendly catalysis. The primary goal is to improve the reliability of hemicellulase enzymes obtained from thermophilic bacterial strains. Additionally, with their ability to break down lignocellulosic materials, hemicellulases hold immense potential for biofuel production. Despite their potential, the commercial viability is hindered by their high enzyme costs, necessitating the development of efficient bioprocesses involving waste pretreatment with microbial consortia to overcome this challenge.
Collapse
Affiliation(s)
- Fatima Akram
- Institute of Industrial Biotechnology, Government College University, Lahore 54000, Pakistan.
| | - Taseer Fatima
- Institute of Industrial Biotechnology, Government College University, Lahore 54000, Pakistan
| | - Ramesha Ibrar
- Institute of Industrial Biotechnology, Government College University, Lahore 54000, Pakistan
| | - Ifrah Shabbir
- Institute of Industrial Biotechnology, Government College University, Lahore 54000, Pakistan
| | | | - Ikram Ul Haq
- Institute of Industrial Biotechnology, Government College University, Lahore 54000, Pakistan; Pakistan Academy of Sciences, Islamabad, Pakistan
| |
Collapse
|
14
|
Kutyrieva-Nowak N, Leszczuk A, Ezzat L, Kaloudas D, Zając A, Szymańska-Chargot M, Skrzypek T, Krokida A, Mekkaoui K, Lampropoulou E, Kalaitzis P, Zdunek A. The modified activity of prolyl 4 hydroxylases reveals the effect of arabinogalactan proteins on changes in the cell wall during the tomato ripening process. FRONTIERS IN PLANT SCIENCE 2024; 15:1365490. [PMID: 38571716 PMCID: PMC10987753 DOI: 10.3389/fpls.2024.1365490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 03/08/2024] [Indexed: 04/05/2024]
Abstract
Arabinogalactan proteins (AGPs) are proteoglycans with an unusual molecular structure characterised by the presence of a protein part and carbohydrate chains. Their specific properties at different stages of the fruit ripening programme make AGPs unique markers of this process. An important function of AGPs is to co-form an amorphous extracellular matrix in the cell wall-plasma membrane continuum; thus, changes in the structure of these molecules can determine the presence and distribution of other components. The aim of the current work was to characterise the molecular structure and localisation of AGPs during the fruit ripening process in transgenic lines with silencing and overexpression of SlP4H3 genes (prolyl 4 hydroxylase 3). The objective was accomplished through comprehensive and comparative in situ and ex situ analyses of AGPs from the fruit of transgenic lines and wild-type plants at specific stages of ripening. The experiment showed that changes in prolyl 4 hydroxylases (P4H3) activity affected the content of AGPs and the progress in their modifications in the ongoing ripening process. The analysis of the transgenic lines confirmed the presence of AGPs with high molecular weights (120-60 kDa) at all the examined stages, but a changed pattern of the molecular features of AGPs was found in the last ripening stages, compared to WT. In addition to the AGP molecular changes, morphological modifications of fruit tissue and alterations in the spatio-temporal pattern of AGP distribution at the subcellular level were detected in the transgenic lines with the progression of the ripening process. The work highlights the impact of AGPs and their alterations on the fruit cell wall and changes in AGPs associated with the progression of the ripening process.
Collapse
Affiliation(s)
| | - Agata Leszczuk
- Institute of Agrophysics, Polish Academy of Sciences, Lublin, Poland
| | - Lamia Ezzat
- Department of Horticultural Genetics and Biotechnology, Mediterranean Agronomic Institute of Chania, Chania, Greece
| | - Dimitris Kaloudas
- Department of Horticultural Genetics and Biotechnology, Mediterranean Agronomic Institute of Chania, Chania, Greece
| | - Adrian Zając
- Department of Functional Anatomy and Cytobiology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Lublin, Poland
| | | | - Tomasz Skrzypek
- Department of Biomedicine and Environmental Research, Institute of Biological Sciences, Faculty of Medicine, John Paul II Catholic University of Lublin, Lublin, Poland
| | - Afroditi Krokida
- Department of Horticultural Genetics and Biotechnology, Mediterranean Agronomic Institute of Chania, Chania, Greece
| | - Khansa Mekkaoui
- Department of Horticultural Genetics and Biotechnology, Mediterranean Agronomic Institute of Chania, Chania, Greece
| | - Evangelia Lampropoulou
- Department of Horticultural Genetics and Biotechnology, Mediterranean Agronomic Institute of Chania, Chania, Greece
| | - Panagiotis Kalaitzis
- Department of Horticultural Genetics and Biotechnology, Mediterranean Agronomic Institute of Chania, Chania, Greece
| | - Artur Zdunek
- Institute of Agrophysics, Polish Academy of Sciences, Lublin, Poland
| |
Collapse
|
15
|
Gabarayeva NI, Britski DA, Grigorjeva VV. Pollen wall development in Impatiens glandulifera: exine substructure and underlying mechanisms. PROTOPLASMA 2024; 261:111-124. [PMID: 37542569 DOI: 10.1007/s00709-023-01887-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 07/26/2023] [Indexed: 08/07/2023]
Abstract
The aim of this study was to investigate in detail the pollen wall ontogeny in Impatiens glandulifera, with emphasis on the substructure and the underlying mechanisms of development. Sporopollenin-containing pollen wall, the exine, consists of two parts, ectexine and endexine. By determining the sequence of developing substructures with TEM, we have in mind to understand in which way the exine substructure is connected with function. We have shown earlier that physical processes of self-assembly and phase separation are universally involved in ectexine development; currently, we try to clear up whether these processes participate in endexine development. The data received were compared with those on other species. The ectexine ontogeny of I. glandulifera followed the main stages observed in many other species, including the late tetrad stage named "Golden gates". It turned out that the same physico-chemical processes act in endexine development, especially expressed in aperture sites. Another peculiar phenomenon observed in exine development was the recurrency of micellar sequence at near-aperture and aperture sites where the periplasmic space is widened. It should be noted that, in the whole, the developmental substructures observed during the tetrad and early post-tetrad period are similar in species with columellate exines. Evidently, these basic physical processes proceed, reiterating again and again in different species, resulting in an enormous variety of exine structures on the base of a relatively modest number of genes. Granular and alveolar exines emerge on the base of the same basic processes but are arrested at spherical and cylindrical micelle mesophases correspondingly.
Collapse
|
16
|
Cheng SY, Chu PK, Chen YJ, Wu YH, Huang MD. Exploring the extensin gene family: an updated genome-wide survey in plants and algae. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:152-167. [PMID: 37769205 DOI: 10.1093/jxb/erad380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 09/27/2023] [Indexed: 09/30/2023]
Abstract
Extensins (EXTs), a class of hydroxyproline-rich glycoprotein with multiple Ser-Pro3-5 motifs, are known to play roles in cell wall reinforcement and environmental responses. EXTs with repetitive Tyr-X-Tyr (YXY) motifs for crosslinking are referred as crosslinking EXTs. Our comprehensive study spanned 194 algal and plant species, categorizing EXTs into seven subfamilies: classical extensins (EXT I and II), arabinogalactan-protein extensins (AGP-EXTs), proline-rich extensin-like receptor kinases (PERKs), leucine-rich repeat extensins (LRX I and II), formin homology (FH) domain-containing extensins (FH-EXTs), proline-rich, arabinogalactan proteins, conserved cysteines (PAC) domain-containing extensins (PAC I and II), and eight-cysteine motif (8CM)-containing extensins (8CM-EXTs). In the examined dataset, EXTs were detected ubiquitously in plants but infrequently in algae, except for one Coccomyxa and four Chlamydomonadales species. No crosslinking EXTs were found in Poales or certain Zingiberales species. Notably, the previously uncharacterized EXT II, PAC II, and liverwort-specific 8CM-EXTs were found to be crosslinking EXTs. EXT II, featuring repetitive YY motifs instead of the conventional YXY motif, was exclusively identified in Solanaceae. Furthermore, tandem genes encoding distinctive 8CM-EXTs specifically expressed in the germinating spores of Marchantia polymorpha. This updated classification of EXT types allows us to propose a plausible evolutionary history of EXT genes during the course of plant evolution.
Collapse
Affiliation(s)
- Sou-Yu Cheng
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Ping-Kuan Chu
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Yi-Jing Chen
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Yun-Hsuan Wu
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Ming-Der Huang
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| |
Collapse
|
17
|
Encina CL, Hamdi A, Rodríguez-Arcos R, Jiménez-Araujo A, Regalado JJ, Guillén-Bejarano R. Effect of Arabinogalactans on Induction of White-Opaque Somatic Embryos of Avocado ( Persea americana Mill.) cv. Duke-7. PLANTS (BASEL, SWITZERLAND) 2023; 13:37. [PMID: 38202345 PMCID: PMC10780364 DOI: 10.3390/plants13010037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/15/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024]
Abstract
The development of somatic embryogenesis in avocado (Persea americana Mill.) has been hampered by different chronic problems. One such problem is the low level of induction of white-opaque somatic embryos (WOSEs) during the process of obtaining full avocado plants. We detected the induction of multiple WOSEs promoted after the placement of three or four small WOSEs over the embryogenic callus of Duke-7. Among the other possible chemical inductors of the Arabinogalactans (AGPs), we identified a family of extracellular plant proteoglycans implicated in many aspects of the in vitro induction of somatic embryos (SE). We extracted AGPs directly from embryogenic cultures of avocado. When the induction/proliferation medium of embryogenic avocado calli (MS-0.1 mg L-1 Picloram) was supplemented with 1-2 mg L-1 AGP, the induction rate of good-quality WOSEs from the embryogenic callus increased significantly (more than ten times that of the control without AGP) and this effect persisted for at least five subcultures after the initial treatment with AGP. AGP also modified the texture and quality of the callus. The effect of AGP extends to other cultivars and proliferation media. Our objectives were to improve the induction of WOSEs and study the effect of AGP in the somatic embryogenesis of avocado.
Collapse
Affiliation(s)
- C. L. Encina
- Laboratorio de Cultivo de Tejidos y Biotecnología, Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, CSIC-UMA, Algarrobo-Costa, 29750 Málaga, Spain
| | - A. Hamdi
- Grupo de Fitoquímicos y Calidad de Alimentos, Departmento Fitoquímica de Alimentos, Instituto de la Grasa (CSIC), Universidad Pablo de Olavide, Edificio 46 Ctra. de Utrera, km. 1, 41013 Sevilla, Spain; (A.H.); (R.R.-A.); (A.J.-A.); (R.G.-B.)
| | - R. Rodríguez-Arcos
- Grupo de Fitoquímicos y Calidad de Alimentos, Departmento Fitoquímica de Alimentos, Instituto de la Grasa (CSIC), Universidad Pablo de Olavide, Edificio 46 Ctra. de Utrera, km. 1, 41013 Sevilla, Spain; (A.H.); (R.R.-A.); (A.J.-A.); (R.G.-B.)
| | - A. Jiménez-Araujo
- Grupo de Fitoquímicos y Calidad de Alimentos, Departmento Fitoquímica de Alimentos, Instituto de la Grasa (CSIC), Universidad Pablo de Olavide, Edificio 46 Ctra. de Utrera, km. 1, 41013 Sevilla, Spain; (A.H.); (R.R.-A.); (A.J.-A.); (R.G.-B.)
| | - J. J. Regalado
- Department of Biology and Geology, Agri-Food Campus of International Excellence (CeiA3) and Research Center CIAMBITAL, University of Almeria, 04120 Almeria, Spain;
| | - R. Guillén-Bejarano
- Grupo de Fitoquímicos y Calidad de Alimentos, Departmento Fitoquímica de Alimentos, Instituto de la Grasa (CSIC), Universidad Pablo de Olavide, Edificio 46 Ctra. de Utrera, km. 1, 41013 Sevilla, Spain; (A.H.); (R.R.-A.); (A.J.-A.); (R.G.-B.)
| |
Collapse
|
18
|
Frey C, Martínez-Romera N, Encina A, Acebes JL. Immunohistochemical dynamics of cell wall matrix polymers during tomato autograft healing. PLANT MOLECULAR BIOLOGY 2023; 113:353-365. [PMID: 37079121 PMCID: PMC10730687 DOI: 10.1007/s11103-023-01351-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 03/24/2023] [Indexed: 05/03/2023]
Abstract
A large part of the production of tomato plants is grafted. Although it has recently been described that cell walls play an important role in tomato graft healing, the spatiotemporal dynamics of cell wall changes in this critical process remains largely unknown. The aim of this work was to immunolocalize changes in the major cell wall matrix components of autograft union tissues throughout the course of healing, from 1 to 20 days after grafting (DAG). Homogalacturonan was de novo synthetized and deposited in the cut edges, displaying the low methyl-esterified homogalacturonan a stronger labelling. Labelling of galactan side chains of rhamnogalacturonan increased until 8 DAG, although remarkably a set of cells at the graft union did not show labelling for this epitope. Changes in xylan immunolocalization were associated to the xylem vasculature development throughout, while those of xyloglucan revealed early synthesis at the cut edges. Arabinogalactan proteins increased up to 8 DAG and showed scion-rootstock asymmetry, with a higher extent in the scion. The combination of these changes appears to be related with the success of the autograft, specifically facilitating the adhesion phase between scion-rootstock tissues. This knowledge paves the way for improved grafting using methods that facilitate appropriate changes in the time and space dynamics of these cell wall compounds.
Collapse
Affiliation(s)
- Carlos Frey
- Área de Fisiología Vegetal, Departamento de Ingeniería y Ciencias Agrarias, Facultad de Ciencias Biológicas y Ambientales, Universidad de León, Campus Vegazana, 24007, León, Spain
| | - Nerea Martínez-Romera
- Área de Fisiología Vegetal, Departamento de Ingeniería y Ciencias Agrarias, Facultad de Ciencias Biológicas y Ambientales, Universidad de León, Campus Vegazana, 24007, León, Spain
| | - Antonio Encina
- Área de Fisiología Vegetal, Departamento de Ingeniería y Ciencias Agrarias, Facultad de Ciencias Biológicas y Ambientales, Universidad de León, Campus Vegazana, 24007, León, Spain.
| | - José L Acebes
- Área de Fisiología Vegetal, Departamento de Ingeniería y Ciencias Agrarias, Facultad de Ciencias Biológicas y Ambientales, Universidad de León, Campus Vegazana, 24007, León, Spain.
| |
Collapse
|
19
|
Ma Y, Ratcliffe J, Bacic A, Johnson KL. Promoter and domain structures regulate FLA12 function during Arabidopsis secondary wall development. FRONTIERS IN PLANT SCIENCE 2023; 14:1275983. [PMID: 38034570 PMCID: PMC10687482 DOI: 10.3389/fpls.2023.1275983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 10/31/2023] [Indexed: 12/02/2023]
Abstract
Introduction Fasciclin-like arabinogalactan-proteins (FLAs) are a family of multi-domain glycoproteins present at the cell surface and walls of plants. Arabidopsis thaliana FLA12 and homologs in cotton, Populus, and flax have been shown to play important functions regulating secondary cell wall (SCW) development. FLA12 has been shown to have distinct roles from the closely related FLA11 that also functions during SCW development. The promoter and domain features of FLA12 that regulate functional specificity have not been well characterized. Methods In this study, promoter swap experiments of FLA11 and FLA12 were investigated. Mutation of proposed functional regions within FLA12 were used to investigate the role of post-translational modifications on sub-cellular location and trafficking. Domain swap experiments between FLA11 and FLA12 were performed to identify regions of functional specificity. Results Promote swap experiments showed that FLA12 is differentially expressed in both stem and rosette leaves compared to FLA11. Post-translational modifications, in particular addition of the glycosylphosphatidylinositol-anchor (GPI-anchor), were shown to be important for FLA12 location at the plasma membrane (PM)/cell wall interface. Domain swap experiments between FLA11 and FLA12 showed that the C-terminal arabinogalactan (AG) glycan motif acts as a key regulatory region differentiating FLA12 functions from FLA11. Discussion Understanding of FLA12 promoter and functional domains has provided new insights into the regulation of SCW development and functional specificity of FLAs for plant growth and development.
Collapse
Affiliation(s)
- Yingxuan Ma
- La Trobe Institute for Agriculture & Food, Department of Animal, Plant and Soil Science, AgriBio Building, La Trobe University, Bundoora, VIC, Australia
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing, China
| | - Julian Ratcliffe
- La Trobe Institute for Agriculture & Food, Department of Animal, Plant and Soil Science, AgriBio Building, La Trobe University, Bundoora, VIC, Australia
| | - Antony Bacic
- La Trobe Institute for Agriculture & Food, Department of Animal, Plant and Soil Science, AgriBio Building, La Trobe University, Bundoora, VIC, Australia
- Sino-Australia Plant Cell Wall Research Centre, College of Forestry and Biotechnology, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Kim L. Johnson
- La Trobe Institute for Agriculture & Food, Department of Animal, Plant and Soil Science, AgriBio Building, La Trobe University, Bundoora, VIC, Australia
- Sino-Australia Plant Cell Wall Research Centre, College of Forestry and Biotechnology, Zhejiang Agriculture and Forestry University, Hangzhou, China
| |
Collapse
|
20
|
Harnvanichvech Y, Borassi C, Daghma DES, van der Kooij HM, Sprakel J, Weijers D. An elastic proteinaceous envelope encapsulates the early Arabidopsis embryo. Development 2023; 150:dev201943. [PMID: 37869985 PMCID: PMC10651100 DOI: 10.1242/dev.201943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 10/09/2023] [Indexed: 10/24/2023]
Abstract
Plant external surfaces are often covered by barriers that control the exchange of molecules, protect from pathogens and offer mechanical integrity. A key question is when and how such surface barriers are generated. Post-embryonic surfaces have well-studied barriers, including the cuticle, and it has been previously shown that the late Arabidopsis thaliana embryo is protected by an endosperm-derived sheath deposited onto a primordial cuticle. Here, we show that both cuticle and sheath are preceded by another structure during the earliest stages of embryogenesis. This structure, which we named the embryonic envelope, is tightly wrapped around the embryonic surface but can be physically detached by cell wall digestion. We show that this structure is composed primarily of extensin and arabinogalactan O-glycoproteins and lipids, which appear to form a dense and elastic crosslinked embryonic envelope. The envelope forms in cuticle-deficient mutants and in a mutant that lacks endosperm. This embryo-derived envelope is therefore distinct from previously described cuticle and sheath structures. We propose that it acts as an expandable diffusion barrier, as well as a means to mechanically confine the embryo to maintain its tensegrity during early embryogenesis.
Collapse
Affiliation(s)
- Yosapol Harnvanichvech
- Laboratory of Biochemistry, Wageningen University and Research, Wageningen 6708 WE, The Netherlands
- Physical Chemistry and Soft Matter, Wageningen University and Research, Wageningen 6708 WE, The Netherlands
| | - Cecilia Borassi
- Laboratory of Biochemistry, Wageningen University and Research, Wageningen 6708 WE, The Netherlands
| | - Diaa Eldin S. Daghma
- Laboratory of Biochemistry, Wageningen University and Research, Wageningen 6708 WE, The Netherlands
| | - Hanne M. van der Kooij
- Physical Chemistry and Soft Matter, Wageningen University and Research, Wageningen 6708 WE, The Netherlands
| | - Joris Sprakel
- Laboratory of Biochemistry, Wageningen University and Research, Wageningen 6708 WE, The Netherlands
| | - Dolf Weijers
- Laboratory of Biochemistry, Wageningen University and Research, Wageningen 6708 WE, The Netherlands
| |
Collapse
|
21
|
Osman MEH, Abo-Shady AM, Elshobary ME, Abd El-Ghafar MO, Hanelt D, Abomohra A. Exploring the Prospects of Fermenting/Co-Fermenting Marine Biomass for Enhanced Bioethanol Production. FERMENTATION-BASEL 2023; 9:934. [DOI: 10.3390/fermentation9110934] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2024]
Abstract
With the rising demands for renewable fuels, there is growing interest in utilizing abundant and sustainable non-edible biomass as a feedstock for bioethanol production. Macroalgal biomass contains a high content of carbohydrates in the form of special polysaccharides like alginate, agar, and carrageenan that can be converted to fermentable sugars. In addition, using seagrass as a feedstock for bioethanol production can provide a sustainable and renewable energy source while addressing environmental concerns. It is a resource-rich plant that offers several advantages for bioethanol production, including its high cellulose content, rapid growth rates, and abundance in coastal regions. To reduce sugar content and support efficient microbial fermentation, co-fermentation of macroalgae with seagrass (marine biomass) can provide complementary sugars and nutrients to improve process yields and economics. This review comprehensively covers the current status and future potential of fermenting macroalgal biomass and seagrass, as well as possible combinations for maximizing bioethanol production from non-edible energy crops. An overview is provided on the biochemical composition of macroalgae and seagrass, pretreatment methods, hydrolysis, and fermentation processes. Key technical challenges and strategies to achieve balanced co-substrate fermentation are discussed. The feasibility of consolidated bioprocessing to directly convert mixed feedstocks to ethanol is also evaluated. Based on current research, macroalgae-seagrass co-fermentation shows good potential to improve the bioethanol yields, lower the cost, and enable more optimal utilization of diverse marine biomass resources compared to individual substrates.
Collapse
Affiliation(s)
- Mohamed E. H. Osman
- Botany and Microbiology Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Atef M. Abo-Shady
- Botany and Microbiology Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Mostafa E. Elshobary
- Botany and Microbiology Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | | | - Dieter Hanelt
- Aquatic Ecophysiology and Phycology, Institute of Plant Science and Microbiology, University of Hamburg, 22609 Hamburg, Germany
| | - Abdelfatah Abomohra
- Aquatic Ecophysiology and Phycology, Institute of Plant Science and Microbiology, University of Hamburg, 22609 Hamburg, Germany
| |
Collapse
|
22
|
Nweke AB, Nagasato D, Matsuoka K. Secreted arabinogalactan protein from salt-adapted tobacco BY-2 cells appears to be glycosylphosphatidyl inositol-anchored and associated with lipophilic moieties. Biosci Biotechnol Biochem 2023; 87:1274-1284. [PMID: 37573142 DOI: 10.1093/bbb/zbad112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 08/02/2023] [Indexed: 08/14/2023]
Abstract
Arabinogalactan proteins (AGPs) are plant extracellular proteoglycans associated with the plasma membrane by a glycosylphosphatidylinositol (GPI) anchor. This moiety is thought to be cleaved by phospholipase for secretion. Salt-adapted tobacco BY-2 cells were reported to secrete large amounts of AGPs into the medium. To investigate this mechanism, we expressed a fusion protein of tobacco sweet potato sporamin and AGP (SPO-AGP) in BY-2 cells and analyzed its fate after salt-adapting the cells. A two-phase separation analysis using Triton X-114 indicated that a significant proportion of SPO-AGP in the medium was recovered in the detergent phase, suggesting that this protein is GPI-anchored. Differential ultracentrifugation and a gradient density fractionation implicated extracellular vesicles or particles with SPO-AGP in the medium. Endogenous AGP secreted from salt-adapted and nontransgenic BY-2 cells behaved similarly to SPO-AGP. These results suggest that a part of the secreted AGPs from salt-adapted tobacco BY-2 cells are GPI-anchored and associated with particles or vesicles.
Collapse
Affiliation(s)
- Arinze Boniface Nweke
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| | - Daiki Nagasato
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| | - Ken Matsuoka
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| |
Collapse
|
23
|
Tsyganova AV, Seliverstova EV, Tsyganov VE. Comparison of the Formation of Plant-Microbial Interface in Pisum sativum L. and Medicago truncatula Gaertn. Nitrogen-Fixing Nodules. Int J Mol Sci 2023; 24:13850. [PMID: 37762151 PMCID: PMC10531038 DOI: 10.3390/ijms241813850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 08/29/2023] [Accepted: 09/01/2023] [Indexed: 09/29/2023] Open
Abstract
Different components of the symbiotic interface play an important role in providing positional information during rhizobial infection and nodule development: successive changes in cell morphology correspond to subsequent changes in the molecular architecture of the apoplast and the associated surface structures. The localisation and distribution of pectins, xyloglucans, and cell wall proteins in symbiotic nodules of Pisum sativum and Medicago truncatula were studied using immunofluorescence and immunogold analysis in wild-type and ineffective mutant nodules. As a result, the ontogenetic changes in the symbiotic interface in the nodules of both species were described. Some differences in the patterns of distribution of cell wall polysaccharides and proteins between wild-type and mutant nodules can be explained by the activation of defence reaction or premature senescence in mutants. The absence of fucosylated xyloglucan in the cell walls in the P. sativum nodules, as well as its predominant accumulation in the cell walls of uninfected cells in the M. truncatula nodules, and the presence of the rhamnogalacturonan I (unbranched) backbone in meristematic cells in P. sativum can be attributed to the most striking species-specific features of the symbiotic interface.
Collapse
Affiliation(s)
- Anna V. Tsyganova
- Laboratory of Molecular and Cell Biology, All-Russia Research Institute for Agricultural Microbiology, Saint Petersburg 196608, Russia; (E.V.S.); (V.E.T.)
| | - Elena V. Seliverstova
- Laboratory of Molecular and Cell Biology, All-Russia Research Institute for Agricultural Microbiology, Saint Petersburg 196608, Russia; (E.V.S.); (V.E.T.)
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, Saint Petersburg 194223, Russia
| | - Viktor E. Tsyganov
- Laboratory of Molecular and Cell Biology, All-Russia Research Institute for Agricultural Microbiology, Saint Petersburg 196608, Russia; (E.V.S.); (V.E.T.)
| |
Collapse
|
24
|
Fradera-Soler M, Mravec J, Harholt J, Grace OM, Jørgensen B. Cell wall polysaccharide and glycoprotein content tracks growth-form diversity and an aridity gradient in the leaf-succulent genus Crassula. PHYSIOLOGIA PLANTARUM 2023; 175:e14007. [PMID: 37882271 DOI: 10.1111/ppl.14007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 06/22/2023] [Accepted: 08/14/2023] [Indexed: 10/27/2023]
Abstract
Cell wall traits are believed to be a key component of the succulent syndrome, an adaptive syndrome to drought, yet the variability of such traits remains largely unknown. In this study, we surveyed the leaf polysaccharide and glycoprotein composition in a wide sampling of Crassula species that occur naturally along an aridity gradient in southern Africa, and we interpreted its adaptive significance in relation to growth form and arid adaptation. To study the glycomic diversity, we sampled leaf material from 56 Crassula taxa and performed comprehensive microarray polymer profiling to obtain the relative content of cell wall polysaccharides and glycoproteins. This analysis was complemented by the determination of monosaccharide composition and immunolocalization in leaf sections using glycan-targeting antibodies. We found that compact and non-compact Crassula species occupy distinct phenotypic spaces in terms of leaf glycomics, particularly in regard to rhamnogalacturonan I, its arabinan side chains, and arabinogalactan proteins (AGPs). Moreover, these cell wall components also correlated positively with increasing aridity, which suggests that they are likely advantageous in terms of arid adaptation. These differences point to compact Crassula species having more elastic cell walls with plasticizing properties, which can be interpreted as an adaptation toward increased drought resistance. Furthermore, we report an intracellular pool of AGPs associated with oil bodies and calcium oxalate crystals, which could be a peculiarity of Crassula and could be linked to increased drought resistance. Our results indicate that glycomics may be underlying arid adaptation and drought resistance in succulent plants.
Collapse
Affiliation(s)
- Marc Fradera-Soler
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
- Royal Botanic Gardens, London, UK
| | - Jozef Mravec
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
- Plant Science and Biodiversity Center, Institute of Plant Genetics and Biotechnology, Slovak Academy of Sciences, Nitra, Slovakia
| | | | - Olwen M Grace
- Royal Botanic Gardens, London, UK
- Royal Botanic Garden Edinburgh, Edinburgh, UK
| | - Bodil Jørgensen
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
25
|
Ma Y, Shafee T, Mudiyanselage AM, Ratcliffe J, MacMillan CP, Mansfield SD, Bacic A, Johnson KL. Distinct functions of FASCILIN-LIKE ARABINOGALACTAN PROTEINS relate to domain structure. PLANT PHYSIOLOGY 2023; 192:119-132. [PMID: 36797772 PMCID: PMC10152678 DOI: 10.1093/plphys/kiad097] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/24/2023] [Accepted: 01/24/2023] [Indexed: 05/03/2023]
Abstract
The role of glycoproteins as key cell surface molecules during development and stress is well established; yet, the relationship between their structural features and functional mechanisms is poorly defined. FASCICLIN-LIKE ARABINOGALACTAN PROTEINs (FLAs), which impact plant growth and development, are an excellent example of a glycoprotein family with a complex multidomain structure. FLAs combine globular fasciclin-like (FAS1) domains with regions that are intrinsically disordered and contain glycomotifs for directing the addition of O-linked arabinogalactan (AG) glycans. Additional posttranslational modifications on FLAs include N-linked glycans in the FAS1 domains, a cleaved signal peptide at the N terminus, and often a glycosylphosphatidylinositol (GPI) anchor signal sequence at the C terminus. The roles of glycosylation, the GPI anchor, and FAS1 domain functions in the polysaccharide-rich extracellular matrix of plants remain unclear, as do the relationships between them. In this study, we examined sequence-structure-function relationships of Arabidopsis (Arabidopsis thaliana) FLA11, demonstrated to have roles in secondary cell wall (SCW) development, by introducing domain mutations and functional specialization through domain swaps with FLA3 and FLA12. We identified FAS1 domains as essential for FLA function, differentiating FLA11/FLA12, with roles in SCW development, from FLA3, specific to flowers and involved in pollen development. The GPI anchor and AG glycosylation co-regulate the cell surface location and release of FLAs into cell walls. The AG glycomotif sequence closest to the GPI anchor (AG2) is a major feature differentiating FLA11 from FLA12. The results of our study show that the multidomain structure of different FLAs influences their subcellular location and biological functions during plant development.
Collapse
Affiliation(s)
- Yingxuan Ma
- School of BioSciences, University of Melbourne, Parkville, VIC 3052, Australia
- La Trobe Institute for Sustainable Agriculture and Food, Department of Animal, Plant and Soil Science, La Trobe University, Bundoora, VIC 3086, Australia
| | - Thomas Shafee
- La Trobe Institute for Sustainable Agriculture and Food, Department of Animal, Plant and Soil Science, La Trobe University, Bundoora, VIC 3086, Australia
| | - Asha M Mudiyanselage
- La Trobe Institute for Sustainable Agriculture and Food, Department of Animal, Plant and Soil Science, La Trobe University, Bundoora, VIC 3086, Australia
| | - Julian Ratcliffe
- La Trobe Institute for Sustainable Agriculture and Food, Department of Animal, Plant and Soil Science, La Trobe University, Bundoora, VIC 3086, Australia
| | - Colleen P MacMillan
- CSIRO, Agriculture and Food, CSIRO Black Mountain Science and Innovation Park, Canberra, ACT 2601, Australia
| | - Shawn D Mansfield
- Department of Wood Science, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Antony Bacic
- La Trobe Institute for Sustainable Agriculture and Food, Department of Animal, Plant and Soil Science, La Trobe University, Bundoora, VIC 3086, Australia
- Sino-Australia Plant Cell Wall Research Centre, College of Forestry and Biotechnology, Zhejiang Agriculture and Forestry University, Lin'an, Hangzhou 311300, China
| | - Kim L Johnson
- La Trobe Institute for Sustainable Agriculture and Food, Department of Animal, Plant and Soil Science, La Trobe University, Bundoora, VIC 3086, Australia
- Sino-Australia Plant Cell Wall Research Centre, College of Forestry and Biotechnology, Zhejiang Agriculture and Forestry University, Lin'an, Hangzhou 311300, China
| |
Collapse
|
26
|
Mueller KK, Pfeifer L, Schuldt L, Szövényi P, de Vries S, de Vries J, Johnson KL, Classen B. Fern cell walls and the evolution of arabinogalactan proteins in streptophytes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 114:875-894. [PMID: 36891885 DOI: 10.1111/tpj.16178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/22/2023] [Accepted: 03/06/2023] [Indexed: 05/27/2023]
Abstract
Significant changes have occurred in plant cell wall composition during evolution and diversification of tracheophytes. As the sister lineage to seed plants, knowledge on the cell wall of ferns is key to track evolutionary changes across tracheophytes and to understand seed plant-specific evolutionary innovations. Fern cell wall composition is not fully understood, including limited knowledge of glycoproteins such as the fern arabinogalactan proteins (AGPs). Here, we characterize the AGPs from the leptosporangiate fern genera Azolla, Salvinia, and Ceratopteris. The carbohydrate moiety of seed plant AGPs consists of a galactan backbone including mainly 1,3- and 1,3,6-linked pyranosidic galactose, which is conserved across the investigated fern AGPs. Yet, unlike AGPs of angiosperms, those of ferns contained the unusual sugar 3-O-methylrhamnose. Besides terminal furanosidic arabinose, Ara (Araf), the main linkage type of Araf in the ferns was 1,2-linked Araf, whereas in seed plants 1,5-linked Araf is often dominating. Antibodies directed against carbohydrate epitopes of AGPs supported the structural differences between AGPs of ferns and seed plants. Comparison of AGP linkage types across the streptophyte lineage showed that angiosperms have rather conserved monosaccharide linkage types; by contrast bryophytes, ferns, and gymnosperms showed more variability. Phylogenetic analyses of glycosyltransferases involved in AGP biosynthesis and bioinformatic search for AGP protein backbones revealed a versatile genetic toolkit for AGP complexity in ferns. Our data reveal important differences across AGP diversity of which the functional significance is unknown. This diversity sheds light on the evolution of the hallmark feature of tracheophytes: their elaborate cell walls.
Collapse
Affiliation(s)
- Kim-Kristine Mueller
- Pharmaceutical Institute, Department of Pharmaceutical Biology, Christian-Albrechts-University of Kiel, Gutenbergstr. 76, 24118, Kiel, Germany
| | - Lukas Pfeifer
- Pharmaceutical Institute, Department of Pharmaceutical Biology, Christian-Albrechts-University of Kiel, Gutenbergstr. 76, 24118, Kiel, Germany
| | - Lina Schuldt
- Pharmaceutical Institute, Department of Pharmaceutical Biology, Christian-Albrechts-University of Kiel, Gutenbergstr. 76, 24118, Kiel, Germany
| | - Péter Szövényi
- Department of Systematic and Evolutionary Botany, University of Zurich, Zollikerstr. 107, 8008, Zurich, Switzerland
- Zurich-Basel Plant Science Center (PSC), ETH Zürich, Tannenstrasse 1, 8092, Zürich, Switzerland
| | - Sophie de Vries
- Department of Applied Bioinformatics, Institute of Microbiology and Genetics, University of Goettingen, Goldschmidtstr. 1, 37077, Goettingen, Germany
| | - Jan de Vries
- Department of Applied Bioinformatics, Institute of Microbiology and Genetics, University of Goettingen, Goldschmidtstr. 1, 37077, Goettingen, Germany
- Department of Applied Bioinformatics, University of Goettingen, Goettingen Center for Molecular Biosciences (GZMB), Goldschmidtsr. 1, 37077, Goettingen, Germany
- Campus Institute Data Science (CIDAS), University of Goettingen, Goldschmidstr. 1, 37077, Goettingen, Germany
| | - Kim L Johnson
- Department of Animal, Plant and Soil Science, La Trobe Institute for Agriculture & Food, La Trobe University, AgriBio Building, Bundoora, Victoria, 3086, Australia
| | - Birgit Classen
- Pharmaceutical Institute, Department of Pharmaceutical Biology, Christian-Albrechts-University of Kiel, Gutenbergstr. 76, 24118, Kiel, Germany
| |
Collapse
|
27
|
Moreira D, Kaur D, Pereira AM, Held MA, Showalter AM, Coimbra S. Type II arabinogalactans initiated by hydroxyproline-O-galactosyltransferases play important roles in pollen-pistil interactions. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 114:371-389. [PMID: 36775989 DOI: 10.1111/tpj.16141] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 02/01/2023] [Indexed: 05/10/2023]
Abstract
Arabinogalactan-proteins (AGPs) are hydroxyproline-rich glycoproteins containing a high sugar content and are widely distributed in the plant kingdom. AGPs have long been suggested to play important roles in sexual plant reproduction. The synthesis of their complex carbohydrates is initiated by a family of hydroxyproline galactosyltransferase (Hyp-GALT) enzymes which add the first galactose to Hyp residues in the protein backbone. Eight Hyp-GALT enzymes have been identified so far, and in the present work a mutant affecting five of these enzymes (galt2galt5galt7galt8galt9) was analyzed regarding the reproductive process. The galt25789 mutant presented a low seed set, and reciprocal crosses indicated a significant female gametophytic contribution to this mutant phenotype. Mutant ovules revealed abnormal callose accumulation inside the embryo sac and integument defects at the micropylar region culminating in defects in pollen tube reception. In addition, immunolocalization and biochemical analyses allowed the detection of a reduction in the amount of glucuronic acid in mutant ovary AGPs. Dramatically low amounts of high-molecular-weight Hyp-O-glycosides obtained following size exclusion chromatography of base-hydrolyzed mutant AGPs compared to the wild type indicated the presence of underglycosylated AGPs in the galt25789 mutant, while the monosaccharide composition of these Hyp-O-glycosides displayed no significant changes compared to the wild-type Hyp-O-glycosides. The present work demonstrates the functional importance of the carbohydrate moieties of AGPs in ovule development and pollen-pistil interactions.
Collapse
Affiliation(s)
- Diana Moreira
- LAQV/REQUIMTE, Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal
| | - Dasmeet Kaur
- Department of Environmental & Plant Biology, Ohio University, Athens, Ohio, 45701-2979, USA
- Molecular and Cellular Biology Program, Ohio University, Athens, Ohio, 45701, USA
| | - Ana Marta Pereira
- LAQV/REQUIMTE, Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal
| | - Michael A Held
- Molecular and Cellular Biology Program, Ohio University, Athens, Ohio, 45701, USA
- Department of Chemistry and Biochemistry, Ohio University, Athens, Ohio, 45701, USA
| | - Allan M Showalter
- Department of Environmental & Plant Biology, Ohio University, Athens, Ohio, 45701-2979, USA
- Molecular and Cellular Biology Program, Ohio University, Athens, Ohio, 45701, USA
| | - Sílvia Coimbra
- LAQV/REQUIMTE, Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal
| |
Collapse
|
28
|
Mechanical Stimulation Decreases Auxin and Gibberellic Acid Synthesis but Does Not Affect Auxin Transport in Axillary Buds; It Also Stimulates Peroxidase Activity in Petunia × atkinsiana. Molecules 2023; 28:molecules28062714. [PMID: 36985685 PMCID: PMC10053601 DOI: 10.3390/molecules28062714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/24/2023] [Accepted: 03/13/2023] [Indexed: 03/19/2023] Open
Abstract
Thigmomorphogenesis (or mechanical stimulation-MS) is a term created by Jaffe and means plant response to natural stimuli such as the blow of the wind, strong rain, or touch, resulting in a decrease in length and an increase of branching as well as an increase in the activity of axillary buds. MS is very well known in plant morphology, but physiological processes controlling plant growth are not well discovered yet. In the current study, we tried to find an answer to the question if MS truly may affect auxin synthesis or transport in the early stage of plant growth, and which physiological factors may be responsible for growth arrest in petunia. According to the results of current research, we noticed that MS affects plant growth but does not block auxin transport from the apical bud. MS arrests IAA and GA3 synthesis in MS-treated plants over the longer term. The main factor responsible for the thickening of cell walls and the same strengthening of vascular tissues and growth arrestment, in this case, is peroxidase (POX) activity, but special attention should be also paid to AGPs as signaling molecules which also are directly involved in growth regulation as well as in cell wall modifications.
Collapse
|
29
|
Tan L, Xu J, Held M, Lamport DTA, Kieliszewski M. Arabinogalactan Structures of Repetitive Serine-Hydroxyproline Glycomodule Expressed by Arabidopsis Cell Suspension Cultures. PLANTS (BASEL, SWITZERLAND) 2023; 12:1036. [PMID: 36903897 PMCID: PMC10005752 DOI: 10.3390/plants12051036] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 02/17/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Arabinogalactan-proteins (AGPs) are members of the hydroxyproline-rich glycoprotein (HRGP) superfamily. They are heavily glycosylated with arabinogalactans, which are usually composed of a β-1,3-linked galactan backbone with 6-O-linked galactosyl, oligo-1,6-galactosyl, or 1,6-galactan side chains that are further decorated with arabinosyl, glucuronosyl, rhamnosyl, and/or fucosyl residues. Here, our work with Hyp-O-polysaccharides isolated from (Ser-Hyp)32-EGFP (enhanced green fluorescent protein) fusion glycoproteins overexpressed in transgenic Arabidopsis suspension culture is consistent with the common structural features of AGPs isolated from tobacco. In addition, this work confirms the presence of β-1,6-linkage on the galactan backbone identified previously in AGP fusion glycoproteins expressed in tobacco suspension culture. Furthermore, the AGPs expressed in Arabidopsis suspension culture lack terminal-rhamnosyl residues and have a much lower level of glucuronosylation compared with those expressed in tobacco suspension culture. These differences not only suggest the presence of distinct glycosyl transferases for AGP glycosylation in the two systems, but also indicate the existence of minimum AG structures for type II AG functional features.
Collapse
Affiliation(s)
- Li Tan
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
- DOE Center for Plant and Microbial Complex Carbohydrates, University of Georgia, Athens, GA 30602, USA
| | - Jianfeng Xu
- Arkansas Biosciences Institute, Arkansas State University, Jonesboro, AR 72401, USA
| | - Michael Held
- Department of Chemistry and Biochemistry, Ohio University, Athens, OH 45701, USA
| | | | - Marcia Kieliszewski
- Department of Chemistry and Biochemistry, Ohio University, Athens, OH 45701, USA
| |
Collapse
|
30
|
Bolaños L, Abreu I, Bonilla I, Camacho-Cristóbal JJ, Reguera M. What Can Boron Deficiency Symptoms Tell Us about Its Function and Regulation? PLANTS (BASEL, SWITZERLAND) 2023; 12:777. [PMID: 36840125 PMCID: PMC9963425 DOI: 10.3390/plants12040777] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/11/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
On the eve of the 100th anniversary of Dr. Warington's discovery of boron (B) as a nutrient essential for higher plants, "boronists" have struggled to demonstrate a role beyond its structural function in cell walls dimerizing pectin molecules of rhamnogalacturonan II (RGII). In this regard, B deficiency has been associated with a plethora of symptoms in plants that include macroscopic symptoms like growth arrest and cell death and biochemical or molecular symptoms that include changes in cell wall pore size, apoplast acidification, or a steep ROS production that leads to an oxidative burst. Aiming to shed light on B functions in plant biology, we proposed here a unifying model integrating the current knowledge about B function(s) in plants to explain why B deficiency can cause such remarkable effects on plant growth and development, impacting crop productivity. In addition, based on recent experimental evidence that suggests the existence of different B ligands other than RGII in plant cells, namely glycolipids, and glycoproteins, we proposed an experimental pipeline to identify putative missing ligands and to determine how they would integrate into the above-mentioned model.
Collapse
Affiliation(s)
- Luis Bolaños
- Departamento de Biología, Universidad Autónoma de Madrid, c/Darwin 2, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Isidro Abreu
- Departamento de Biología, Universidad Autónoma de Madrid, c/Darwin 2, Campus de Cantoblanco, 28049 Madrid, Spain
- Department of Biology, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| | - Ildefonso Bonilla
- Departamento de Biología, Universidad Autónoma de Madrid, c/Darwin 2, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Juan J. Camacho-Cristóbal
- Departamento de Fisiología, Anatomía y Biología Celular, Facultad de Ciencias Experimentales, Universidad Pablo de Olavide, 41013 Sevilla, Spain
| | - María Reguera
- Departamento de Biología, Universidad Autónoma de Madrid, c/Darwin 2, Campus de Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
31
|
Okawa R, Hayashi Y, Yamashita Y, Matsubayashi Y, Ogawa-Ohnishi M. Arabinogalactan protein polysaccharide chains are required for normal biogenesis of plasmodesmata. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 113:493-503. [PMID: 36511822 DOI: 10.1111/tpj.16061] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 12/05/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
Arabinogalactan proteins (AGPs) are a plant-specific family of extracellular proteoglycans characterized by large and complex galactose-rich polysaccharide chains. Functional elucidation of AGPs, however, has been hindered by the high degree of redundancy of AGP genes. To uncover as yet unexplored roles of AGPs in Arabidopsis, a mutant of Hyp O-galactosyltransferase (HPGT), a critical enzyme that catalyzes the common initial step of Hyp-linked arabinogalactan chain biosynthesis, was used. Here we show, using the hpgt1,2,3 triple mutant, that a reduction in functional AGPs leads to a stomatal patterning defect in which two or more stomata are clustered together. This defect is attributed to increased and dysregulated symplastic transport following changes in plasmodesmata structure, such that highly permeable complex branched plasmodesmata with cavities in branching parts increased in the mutant. We also found that the hpgt1,2,3 mutation causes a reduction of cellulose in the cell wall and accumulation of pectin, which controls cell wall porosity. Our results highlight the importance of AGPs in the correct biogenesis of plasmodesmata, possibly acting through the regulation of cell wall properties surrounding the plasmodesmata.
Collapse
Affiliation(s)
- Ryoya Okawa
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa, Nagoya, 464-8602, Japan
| | - Yoko Hayashi
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa, Nagoya, 464-8602, Japan
| | - Yasuko Yamashita
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa, Nagoya, 464-8602, Japan
| | - Yoshikatsu Matsubayashi
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa, Nagoya, 464-8602, Japan
- Institute for Glyco-core Research (iGCORE), Nagoya University, Chikusa, Nagoya, 464-8601, Japan
| | - Mari Ogawa-Ohnishi
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa, Nagoya, 464-8602, Japan
| |
Collapse
|
32
|
Leszczuk A, Kalaitzis P, Kulik J, Zdunek A. Review: structure and modifications of arabinogalactan proteins (AGPs). BMC PLANT BIOLOGY 2023; 23:45. [PMID: 36670377 PMCID: PMC9854139 DOI: 10.1186/s12870-023-04066-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 01/13/2023] [Indexed: 06/17/2023]
Abstract
The aim of this report is to provide general information on the molecular structure and synthesis of arabinogalactan proteins (AGPs) in association to their physiological significance. Assessment of genetic modifications of the activity of enzymes involved in the AGP biosynthesis is an efficient tool to study AGP functions. Thus, P4H (prolyl 4 hydroxylase) mutants, GLCAT (β-glucuronosyltransferase) mutants, and GH43 (glycoside hydrolase family 43) mutants have been described. We focused on the overview of AGPs modifications observed at the molecular, cellular, and organ levels. Inhibition of the hydroxylation process results in an increase in the intensity of cell divisions and thus, has an impact on root system length and leaf area. In turn, overexpression of P4H genes stimulates the density of root hairs. A mutation in GLCAT genes responsible for the transfer of glucuronic acid to the AGP molecule revealed that the reduction of GlcA in AGP disrupts the substantial assembly of the primary cell wall. Furthermore, silencing of genes encoding GH43, which has the ability to hydrolyze the AGP glycan by removing incorrectly synthesized β-1,3-galactans, induces changes in the abundance of other cell wall constituents, which finally leads to root growth defects. This information provides insight into AGPs as a crucial players in the structural interactions present in the plant extracellular matrix.
Collapse
Affiliation(s)
- Agata Leszczuk
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland
| | - Panagiotis Kalaitzis
- Department of Horticultural Genetics and Biotechnology, Mediterranean Agronomic Institute of Chania, Chania, P.O. Box 85, 73100 Chania, Greece
| | - Joanna Kulik
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland
| | - Artur Zdunek
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland
| |
Collapse
|
33
|
Lu M, Zhou J, Jiang S, Zeng Y, Li C, Tan X. The fasciclin-like arabinogalactan proteins of Camellia oil tree are involved in pollen tube growth. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 326:111518. [PMID: 36309250 DOI: 10.1016/j.plantsci.2022.111518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 10/12/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
Fasciclin-like arabinogalactan proteins (FLAs) are a class of highly glycosylated glycoproteins that perform crucial functions in plant growth and development. This study was carried out to further explore their roles in pollen tube growth. The results showed that seven members (CoFLA1/2/3/4/7/8/17) of the CoFLAs family were identified by sequence characteristics, and they all possessed the fasciclin 1 (FAS1) domain and H1 and H2 conserved domains. They were all located on the plasma membranes of tobacco epidermal cells, and the GPI-anchor sequences of CoFLA1/2/3/4 determined the membrane localization. In flower tissues, CoFLA2 and CoFLA8 were not expressed in the pollen tube but were expressed in the unpollinated style and ovary; the others were all expressed in the pollen tube. In the pollination-compatible style and ovary, they exhibited different expression patterns. Furthermore, all CoFLAs promoted pollen germination in vitro, while only CoFLA7 significantly promoted pollen tube elongation, and the expression of CoFLA1/3/4/7/17 in pollen tubes was regulated by CoFLA proteins. The ABA and ABA synthetic inhibitor (sodium tungstate, ST) both inhibited pollen tube elongation; however, only ST downregulated the expression of CoFLA1/7/17 and upregulated the expression of CoFLA4. Taken together, these results demonstrate that CoFLAs may be significant in pollen tube growth in C. oleifera and that some CoFLAs may participate in the regulation of ABA signaling.
Collapse
Affiliation(s)
- Mengqi Lu
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha, Hunan, China; Academy of Camellia Oil Tree, Central South University of Forestry and Technology, Changsha, Hunan, China.
| | - Junqin Zhou
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha, Hunan, China; Academy of Camellia Oil Tree, Central South University of Forestry and Technology, Changsha, Hunan, China.
| | - Sisi Jiang
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha, Hunan, China; Academy of Camellia Oil Tree, Central South University of Forestry and Technology, Changsha, Hunan, China.
| | - Yanling Zeng
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha, Hunan, China; Academy of Camellia Oil Tree, Central South University of Forestry and Technology, Changsha, Hunan, China.
| | - Chang Li
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha, Hunan, China; Academy of Camellia Oil Tree, Central South University of Forestry and Technology, Changsha, Hunan, China.
| | - Xiaofeng Tan
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha, Hunan, China; Academy of Camellia Oil Tree, Central South University of Forestry and Technology, Changsha, Hunan, China.
| |
Collapse
|
34
|
Teh OK, Singh P, Ren J, Huang LT, Ariyarathne M, Salamon BP, Wang Y, Kotake T, Fujita T. Surface-localized glycoproteins act through class C ARFs to fine-tune gametophore initiation in Physcomitrium patens. Development 2022; 149:282110. [PMID: 36520083 DOI: 10.1242/dev.200370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 10/17/2022] [Indexed: 12/23/2022]
Abstract
Arabinogalactan proteins are functionally diverse cell wall structural glycoproteins that have been implicated in cell wall remodeling, although the mechanistic actions remain elusive. Here, we identify and characterize two AGP glycoproteins, SLEEPING BEAUTY (SB) and SB-like (SBL), that negatively regulate the gametophore bud initiation in Physcomitrium patens by dampening cell wall loosening/softening. Disruption of SB and SBL led to accelerated gametophore formation and altered cell wall compositions. The function of SB is glycosylation dependent and genetically connected with the class C auxin response factor (ARF) transcription factors PpARFC1B and PpARFC2. Transcriptomics profiling showed that SB upregulates PpARFC2, which in turn suppresses a range of cell wall-modifying genes that are required for cell wall loosening/softening. We further show that PpARFC2 binds directly to multiple AuxRE motifs on the cis-regulatory sequences of PECTIN METHYLESTERASE to suppress its expression. Hence, our results demonstrate a mechanism by which the SB modulates the strength of intracellular auxin signaling output, which is necessary to fine-tune the timing of gametophore initials formation.
Collapse
Affiliation(s)
- Ooi Kock Teh
- Institute of Plant and Microbial Biology, Academia Sinica, 128 Sec.2, Academia Rd., Nankang, Taipei 11529, Taiwan.,Department of Biological Sciences, Faculty of Science, Hokkaido University, Kita 10 Nishi 8, Kita-ku, Sapporo 060-0810, Japan
| | - Prerna Singh
- Graduate School of Life Science, Hokkaido University, Kita 10 Nishi 8, Kita-ku, Sapporo 060-0810, Japan
| | - Junling Ren
- Graduate School of Life Science, Hokkaido University, Kita 10 Nishi 8, Kita-ku, Sapporo 060-0810, Japan
| | - Lin Tzu Huang
- Institute of Plant and Microbial Biology, Academia Sinica, 128 Sec.2, Academia Rd., Nankang, Taipei 11529, Taiwan
| | - Menaka Ariyarathne
- Institute of Plant and Microbial Biology, Academia Sinica, 128 Sec.2, Academia Rd., Nankang, Taipei 11529, Taiwan
| | - Benjamin Prethiviraj Salamon
- Institute of Plant and Microbial Biology, Academia Sinica, 128 Sec.2, Academia Rd., Nankang, Taipei 11529, Taiwan
| | - Yu Wang
- Institute of Plant and Microbial Biology, Academia Sinica, 128 Sec.2, Academia Rd., Nankang, Taipei 11529, Taiwan
| | - Toshihisa Kotake
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, 225 Shimo-Okubo, Sakura-ku, Saitama 338-8570, Japan
| | - Tomomichi Fujita
- Department of Biological Sciences, Faculty of Science, Hokkaido University, Kita 10 Nishi 8, Kita-ku, Sapporo 060-0810, Japan
| |
Collapse
|
35
|
Moreira D, Lopes AL, Silva J, Ferreira MJ, Pinto SC, Mendes S, Pereira LG, Coimbra S, Pereira AM. New insights on the expression patterns of specific Arabinogalactan proteins in reproductive tissues of Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2022; 13:1083098. [PMID: 36531351 PMCID: PMC9755587 DOI: 10.3389/fpls.2022.1083098] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 11/17/2022] [Indexed: 05/25/2023]
Abstract
Arabinogalactan proteins (AGPs) are hydroxyproline-rich glycoproteins containing a high proportion of carbohydrates, widely distributed in the plant kingdom and ubiquitously present in land plants. AGPs have long been suggested to play important roles in plant reproduction and there is already evidence that specific glycoproteins are essential for male and female gametophyte development, pollen tube growth and guidance, and successful fertilization. However, the functions of many of these proteins have yet to be uncovered, mainly due to the difficulty to study individual AGPs. In this work, we generated molecular tools to analyze the expression patterns of a subgroup of individual AGPs in different Arabidopsis tissues, focusing on reproductive processes. This study focused on six AGPs: four classical AGPs (AGP7, AGP25, AGP26, AGP27), one AG peptide (AGP24) and one chimeric AGP (AGP31). These AGPs were first selected based on their predicted expression patterns along the reproductive tissues from available RNA-seq data. Promoter analysis using β-glucuronidase fusions and qPCR in different Arabidopsis tissues allowed to confirm these predictions. AGP7 was mainly expressed in female reproductive tissues, more precisely in the style, funiculus, and integuments near the micropyle region. AGP25 was found to be expressed in the style, septum and ovules with higher expression in the chalaza and funiculus tissues. AGP26 was present in the ovules and pistil valves. AGP27 was expressed in the transmitting tissue, septum and funiculus during seed development. AGP24 was expressed in pollen grains, in mature embryo sacs, with highest expression at the chalazal pole and in the micropyle. AGP31 was expressed in the mature embryo sac with highest expression at the chalaza and, occasionally, in the micropyle. For all these AGPs a co-expression analysis was performed providing new hints on its possible functions. This work confirmed the detection in Arabidopsis male and female tissues of six AGPs never studied before regarding the reproductive process. These results provide novel evidence on the possible involvement of specific AGPs in plant reproduction, as strong candidates to participate in pollen-pistil interactions in an active way, which is significant for this field of study.
Collapse
Affiliation(s)
- Diana Moreira
- Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
- Laboratório Associado para a Química Verde (LAQV) Requimte, Sustainable Chemistry, University of Porto, Porto, Portugal
| | - Ana Lúcia Lopes
- Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
- Biosystems and Integrative Sciences Institute – BioISI, Porto, Portugal
| | - Jessy Silva
- Laboratório Associado para a Química Verde (LAQV) Requimte, Sustainable Chemistry, University of Porto, Porto, Portugal
- Department of Biology, University of Minho, Campus de Gualtar, Braga, Portugal
| | - Maria João Ferreira
- Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
- Laboratório Associado para a Química Verde (LAQV) Requimte, Sustainable Chemistry, University of Porto, Porto, Portugal
| | - Sara Cristina Pinto
- Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
- Laboratório Associado para a Química Verde (LAQV) Requimte, Sustainable Chemistry, University of Porto, Porto, Portugal
| | - Sara Mendes
- Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
- Laboratório Associado para a Química Verde (LAQV) Requimte, Sustainable Chemistry, University of Porto, Porto, Portugal
| | - Luís Gustavo Pereira
- Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
- GreenUPorto - Sustainable Agrifood Production Research Centre, Universidade do Porto, Porto, Portugal
| | - Sílvia Coimbra
- Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
- Laboratório Associado para a Química Verde (LAQV) Requimte, Sustainable Chemistry, University of Porto, Porto, Portugal
| | - Ana Marta Pereira
- Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
- Laboratório Associado para a Química Verde (LAQV) Requimte, Sustainable Chemistry, University of Porto, Porto, Portugal
| |
Collapse
|
36
|
Son SU, Kim HW, Shin KS. Structural identification of active moiety in anti-tumor metastatic polysaccharide purified from fermented barley by sequential enzymatic hydrolysis. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
37
|
Most of the rhamnogalacturonan-I from cultured Arabidopsis cell walls is covalently linked to arabinogalactan-protein. Carbohydr Polym 2022; 301:120340. [DOI: 10.1016/j.carbpol.2022.120340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/16/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022]
|
38
|
Paterlini A, Sechet J, Immel F, Grison MS, Pilard S, Pelloux J, Mouille G, Bayer EM, Voxeur A. Enzymatic fingerprinting reveals specific xyloglucan and pectin signatures in the cell wall purified with primary plasmodesmata. FRONTIERS IN PLANT SCIENCE 2022; 13:1020506. [PMID: 36388604 PMCID: PMC9640925 DOI: 10.3389/fpls.2022.1020506] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
Plasmodesmata (PD) pores connect neighbouring plant cells and enable direct transport across the cell wall. Understanding the molecular composition of these structures is essential to address their formation and later dynamic regulation. Here we provide a biochemical characterisation of the cell wall co-purified with primary PD of Arabidopsis thaliana cell cultures. To achieve this result we combined subcellular fractionation, polysaccharide analyses and enzymatic fingerprinting approaches. Relative to the rest of the cell wall, specific patterns were observed in the PD fraction. Most xyloglucans, although possibly not abundant as a group, were fucosylated. Homogalacturonans displayed short methylated stretches while rhamnogalacturonan I species were remarkably abundant. Full rhamnogalacturonan II forms, highly methyl-acetylated, were also present. We additionally showed that these domains, compared to the broad wall, are less affected by wall modifying activities during a time interval of days. Overall, the protocol and the data presented here open new opportunities for the study of wall polysaccharides associated with PD.
Collapse
Affiliation(s)
- A. Paterlini
- Laboratoire de Biogenèse Membranaire, Unité mixte de recherche (UMR5200), Université Bordeaux, Centre national de la recherche scientifique (CNRS), Villenave d’Ornon, France
| | - J. Sechet
- Institut Jean-Pierre Bourgin (IJPB), Université Paris-Saclay, Institut National de Recherche pour l'Agriculture, l'alimentation et l'Environnement (INRAE), AgroParisTech, Versailles, France
| | - F. Immel
- Laboratoire de Biogenèse Membranaire, Unité mixte de recherche (UMR5200), Université Bordeaux, Centre national de la recherche scientifique (CNRS), Villenave d’Ornon, France
| | - M. S. Grison
- Laboratoire de Biogenèse Membranaire, Unité mixte de recherche (UMR5200), Université Bordeaux, Centre national de la recherche scientifique (CNRS), Villenave d’Ornon, France
| | - S. Pilard
- Plateforme Analytique, Université de Picardie, Amiens, France
| | - J. Pelloux
- UMRT (Unité Mixte de Recherche Transfrontaliére) INRAE (Institut National de recherche pour l'Agriculture, l'alimentation et l'Environnement) 1158 BioEcoAgro – BIOPI Biologie des Plantes et Innovation, Université de Picardie, Amiens, France
| | - G. Mouille
- Institut Jean-Pierre Bourgin (IJPB), Université Paris-Saclay, Institut National de Recherche pour l'Agriculture, l'alimentation et l'Environnement (INRAE), AgroParisTech, Versailles, France
| | - E. M. Bayer
- Laboratoire de Biogenèse Membranaire, Unité mixte de recherche (UMR5200), Université Bordeaux, Centre national de la recherche scientifique (CNRS), Villenave d’Ornon, France
| | - A. Voxeur
- Institut Jean-Pierre Bourgin (IJPB), Université Paris-Saclay, Institut National de Recherche pour l'Agriculture, l'alimentation et l'Environnement (INRAE), AgroParisTech, Versailles, France
| |
Collapse
|
39
|
Pankievicz VCS, Delaux PM, Infante V, Hirsch HH, Rajasekar S, Zamora P, Jayaraman D, Calderon CI, Bennett A, Ané JM. Nitrogen fixation and mucilage production on maize aerial roots is controlled by aerial root development and border cell functions. FRONTIERS IN PLANT SCIENCE 2022; 13:977056. [PMID: 36275546 PMCID: PMC9583020 DOI: 10.3389/fpls.2022.977056] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
Exploring natural diversity for biological nitrogen fixation in maize and its progenitors is a promising approach to reducing our dependence on synthetic fertilizer and enhancing the sustainability of our cropping systems. We have shown previously that maize accessions from the Sierra Mixe can support a nitrogen-fixing community in the mucilage produced by their abundant aerial roots and obtain a significant fraction of their nitrogen from the air through these associations. In this study, we demonstrate that mucilage production depends on root cap and border cells sensing water, as observed in underground roots. The diameter of aerial roots correlates with the volume of mucilage produced and the nitrogenase activity supported by each root. Young aerial roots produce more mucilage than older ones, probably due to their root cap's integrity and their ability to produce border cells. Transcriptome analysis on aerial roots at two different growth stages before and after mucilage production confirmed the expression of genes involved in polysaccharide synthesis and degradation. Genes related to nitrogen uptake and assimilation were up-regulated upon water exposure. Altogether, our findings suggest that in addition to the number of nodes with aerial roots reported previously, the diameter of aerial roots and abundance of border cells, polysaccharide synthesis and degradation, and nitrogen uptake are critical factors to ensure efficient nitrogen fixation in maize aerial roots.
Collapse
Affiliation(s)
| | - Pierre-Marc Delaux
- Department of Bacteriology and Agronomy, University of Wisconsin-Madison, Madison, WI, United States
| | - Valentina Infante
- Department of Bacteriology and Agronomy, University of Wisconsin-Madison, Madison, WI, United States
| | - Hayley H. Hirsch
- Department of Bacteriology and Agronomy, University of Wisconsin-Madison, Madison, WI, United States
| | - Shanmugam Rajasekar
- Department of Bacteriology and Agronomy, University of Wisconsin-Madison, Madison, WI, United States
| | - Pablo Zamora
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
| | - Dhileepkumar Jayaraman
- Department of Bacteriology and Agronomy, University of Wisconsin-Madison, Madison, WI, United States
| | | | - Alan Bennett
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
| | - Jean-Michel Ané
- Department of Bacteriology and Agronomy, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
40
|
Zhang N, Hecht C, Sun X, Fei Z, Martin GB. Loss of function of the bHLH transcription factor Nrd1 in tomato enhances resistance to Pseudomonas syringae. PLANT PHYSIOLOGY 2022; 190:1334-1348. [PMID: 35751605 PMCID: PMC9516780 DOI: 10.1093/plphys/kiac312] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 06/10/2022] [Indexed: 05/02/2023]
Abstract
Basic helix-loop-helix (bHLH) transcription factors constitute a superfamily in eukaryotes, but their roles in plant immunity remain largely uncharacterized. We found that the transcript abundance in tomato (Solanum lycopersicum) leaves of one bHLH transcription factor-encoding gene, negative regulator of resistance to DC3000 1 (Nrd1), increased significantly after treatment with the immunity-inducing flgII-28 peptide. Plants carrying a loss-of-function mutation in Nrd1 (Δnrd1) showed enhanced resistance to Pseudomonas syringae pv. tomato (Pst) DC3000 although early pattern-triggered immunity responses, such as generation of reactive oxygen species and activation of mitogen-activated protein kinases after treatment with flagellin-derived flg22 and flgII-28 peptides, were unaltered compared to wild-type plants. RNA-sequencing (RNA-seq) analysis identified a gene, Arabinogalactan protein 1 (Agp1), whose expression is strongly suppressed in an Nrd1-dependent manner. Agp1 encodes an arabinogalactan protein, and overexpression of the Agp1 gene in Nicotiana benthamiana led to ∼10-fold less Pst growth compared to the control. These results suggest that the Nrd1 protein promotes tomato susceptibility to Pst by suppressing the defense gene Agp1. RNA-seq also revealed that the loss of Nrd1 function has no effect on the transcript abundance of immunity-associated genes, including AvrPtoB tomato-interacting 9 (Bti9), Cold-shock protein receptor (Core), Flagellin sensing 2 (Fls2), Flagellin sensing (Fls3), and Wall-associated kinase 1 (Wak1) upon Pst inoculation, suggesting that the enhanced immunity observed in the Δnrd1 mutants is due to the activation of key PRR signaling components as well as the loss of Nrd1-regulated suppression of Agp1.
Collapse
Affiliation(s)
- Ning Zhang
- Boyce Thompson Institute for Plant Research, Ithaca, New York 14853, USA
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, New York 14853, USA
| | - Chloe Hecht
- Boyce Thompson Institute for Plant Research, Ithaca, New York 14853, USA
| | - Xuepeng Sun
- Boyce Thompson Institute for Plant Research, Ithaca, New York 14853, USA
| | - Zhangjun Fei
- Boyce Thompson Institute for Plant Research, Ithaca, New York 14853, USA
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, New York 14853, USA
- USDA-ARS Robert W. Holley Center for Agriculture and Health, Ithaca, New York 14853, USA
| | | |
Collapse
|
41
|
Santos CA, Moro CF, Salgado I, Braga MR, Gaspar M. Noncoding RNAs responsive to nitric oxide and their protein-coding gene targets shed light on root hair formation in Arabidopsis thaliana. Front Genet 2022; 13:958641. [PMID: 36238154 PMCID: PMC9551039 DOI: 10.3389/fgene.2022.958641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/22/2022] [Indexed: 12/02/2022] Open
Abstract
An overview of the total Arabidopsis thaliana transcriptome, described previously by our research group, pointed some noncoding RNA (ncRNA) as participants in the restoration of hair-root phenotype in A. thaliana rhd6 mutants, leading us to a deeper investigation. A transcriptional gene expression profiling of seedling roots was performed aiming to identify ncRNA responsive to nitric oxide (GSNO) and auxin (IAA), and their involvement in root hair formation in the rhd6 null mutant. We identified 3,631 ncRNAs, including new ones, in A. thaliana and differential expression (DE) analysis between the following: 1) GSNO-treated rhd6 vs. untreated rhd6, 2) IAA-treated rhd6 vs. untreated rhd6, 3) GSNO-treated rhd6 vs. IAA-treated rhd6, and 4) WS-2 vs. untreated rhd6 detected the greatest number of DE genes in GSNO-treated rhd6. We detected hundreds of in silico interactions among ncRNA and protein-coding genes (PCGs), highlighting MIR5658 and MIR171 precursors highly upregulated in GSNO-treated rhd6 and wild type, respectively. Those ncRNA interact with many DE PCGs involved in hormone signaling, cell wall development, transcription factors, and root hair formation, becoming candidate genes in cell wall modulation and restoration of root hair phenotype by GSNO treatment. Our data shed light on how GSNO modulates ncRNA and their PCG targets in A. thaliana root hair formation.
Collapse
Affiliation(s)
- Camilla Alves Santos
- Laboratório de Ecofisiologia e Bioquímica de Plantas, Núcleo de Conservação da Biodiversidade, Instituto de Pesquisas Ambientais, São Paulo, SP, Brasil
- *Correspondence: Camilla Alves Santos, ; Marília Gaspar,
| | - Camila Fernandes Moro
- Programa de Pós-Graduação em Biologia Celular e Estrutural, Universidade Estadual de Campinas, Campinas, SP, Brasil
| | - Ione Salgado
- Laboratório de Ecofisiologia e Bioquímica de Plantas, Núcleo de Conservação da Biodiversidade, Instituto de Pesquisas Ambientais, São Paulo, SP, Brasil
| | - Márcia Regina Braga
- Laboratório de Ecofisiologia e Bioquímica de Plantas, Núcleo de Conservação da Biodiversidade, Instituto de Pesquisas Ambientais, São Paulo, SP, Brasil
| | - Marília Gaspar
- Laboratório de Ecofisiologia e Bioquímica de Plantas, Núcleo de Conservação da Biodiversidade, Instituto de Pesquisas Ambientais, São Paulo, SP, Brasil
- *Correspondence: Camilla Alves Santos, ; Marília Gaspar,
| |
Collapse
|
42
|
An Arabidopsis thaliana arabinogalactan-protein (AGP31) and several cationic AGP fragments catalyse the boron bridging of rhamnogalacturonan-II. Biochem J 2022; 479:1967-1984. [PMID: 36062804 PMCID: PMC9555800 DOI: 10.1042/bcj20220340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/02/2022] [Accepted: 09/02/2022] [Indexed: 11/22/2022]
Abstract
Rhamnogalacturonan-II (RG-II) is a complex pectic domain in plant primary cell walls. In vivo, most RG-II domains are covalently dimerised via borate diester bridges, essential for correct cell-wall assembly, but the dimerisation of pure RG-II monomers by boric acid in vitro is extremely slow. Cationic ‘chaperones’ can promote dimerisation, probably by overcoming the mutual repulsion between neighbouring anionic RG-II molecules. Highly effective artificial chaperones include Pb2+ and polyhistidine, but the proposed natural chaperones remained elusive. We have now tested cationic peptide fragments of several Arabidopsis thaliana arabinogalactan-proteins (AGPs) as candidates. Fragments of AGP17, 18, 19 and 31 were effective, typically at ∼25 µg/ml (9–19 µM), promoting the boron bridging of 16–20 µM monomeric RG-II at pH 4.8 in vitro. Native AGP31 glycoprotein was also effective, and hexahistidine was moderately so. All chaperones tested interacted reversibly with RG-II and were not consumed during the reaction; thus they acted catalytically, and may constitute the first reported boron-acting enzyme activity, an RG-II borate diesterase. Many of the peptide chaperones became less effective catalysts at higher concentration, which we interpret as due to the formation of RG-II–peptide complexes with a net positive charge, as mutually repulsive as negatively charged pure RG-II molecules. The four unique AGPs studied here may serve an enzymic role in the living plant cell, acting on RG-II within Golgi cisternae and/or in the apoplast after secretion. In this way, RG-II and specific AGPs may contribute to cell-wall assembly and hence plant cell expansion and development.
Collapse
|
43
|
Ma Y, Stafford L, Ratcliffe J, Bacic A, Johnson KL. WAKL8 Regulates Arabidopsis Stem Secondary Wall Development. PLANTS (BASEL, SWITZERLAND) 2022; 11:2297. [PMID: 36079678 PMCID: PMC9460275 DOI: 10.3390/plants11172297] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/24/2022] [Accepted: 08/30/2022] [Indexed: 06/15/2023]
Abstract
Wall-associated kinases/kinase-likes (WAKs/WAKLs) are plant cell surface sensors. A variety of studies have revealed the important functions of WAKs/WAKLs in regulating cell expansion and defense in cells with primary cell walls. Less is known about their roles during the development of the secondary cell walls (SCWs) that are present in xylem vessel (XV) and interfascicular fiber (IF) cells. In this study, we used RNA-seq data to screen Arabidopsis thaliana WAKs/WAKLs members that may be involved in SCW development and identified WAKL8 as a candidate. We obtained T-DNA insertion mutants wakl8-1 (inserted at the promoter region) and wakl8-2 (inserted at the first exon) and compared the phenotypes to wild-type (WT) plants. Decreased WAKL8 transcript levels in stems were found in the wakl8-2 mutant plants, and the phenotypes observed included reduced stem length and thinner walls in XV and IFs compared with those in the WT plants. Cell wall analysis showed no significant changes in the crystalline cellulose or lignin content in mutant stems compared with those in the WT. We found that WAKL8 had alternative spliced versions predicted to have only extracellular regions, which may interfere with the function of the full-length version of WAKL8. Our results suggest WAKL8 can regulate SCW thickening in Arabidopsis stems.
Collapse
Affiliation(s)
- Yingxuan Ma
- School of BioSciences, University of Melbourne, Parkville, VIC 3052, Australia
- La Trobe Institute for Agriculture & Food, Department of Animal, Plant and Soil Science, AgriBio Building, La Trobe University, Bundoora, VIC 3086, Australia
| | - Luke Stafford
- La Trobe Institute for Agriculture & Food, Department of Animal, Plant and Soil Science, AgriBio Building, La Trobe University, Bundoora, VIC 3086, Australia
| | - Julian Ratcliffe
- La Trobe Institute for Agriculture & Food, Department of Animal, Plant and Soil Science, AgriBio Building, La Trobe University, Bundoora, VIC 3086, Australia
| | - Antony Bacic
- La Trobe Institute for Agriculture & Food, Department of Animal, Plant and Soil Science, AgriBio Building, La Trobe University, Bundoora, VIC 3086, Australia
- Sino-Australia Plant Cell Wall Research Centre, College of Forestry and Biotechnology, Zhejiang Agriculture and Forestry University, Lin’an, Hangzhou 311300, China
| | - Kim L. Johnson
- La Trobe Institute for Agriculture & Food, Department of Animal, Plant and Soil Science, AgriBio Building, La Trobe University, Bundoora, VIC 3086, Australia
- Sino-Australia Plant Cell Wall Research Centre, College of Forestry and Biotechnology, Zhejiang Agriculture and Forestry University, Lin’an, Hangzhou 311300, China
| |
Collapse
|
44
|
Zhou K. The regulation of the cell wall by glycosylphosphatidylinositol-anchored proteins in Arabidopsis. Front Cell Dev Biol 2022; 10:904714. [PMID: 36036018 PMCID: PMC9412048 DOI: 10.3389/fcell.2022.904714] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 07/04/2022] [Indexed: 12/04/2022] Open
Abstract
A polysaccharides-based cell wall covers the plant cell, shaping it and protecting it from the harsh environment. Cellulose microfibrils constitute the cell wall backbone and are embedded in a matrix of pectic and hemicellulosic polysaccharides and glycoproteins. Various environmental and developmental cues can regulate the plant cell wall, and diverse glycosylphosphatidylinositol (GPI)-anchored proteins participate in these regulations. GPI is a common lipid modification on eukaryotic proteins, which covalently tethers the proteins to the membrane lipid bilayer. Catalyzed by a series of enzymic complexes, protein precursors are post-translationally modified at their hydrophobic carboxyl-terminus in the endomembrane system and anchored to the lipid bilayer through an oligosaccharidic GPI modification. Ultimately, mature proteins reach the plasma membrane via the secretory pathway facing toward the apoplast and cell wall in plants. In Arabidopsis, more than three hundred GPI-anchored proteins (GPI-APs) have been predicted, and many are reported to be involved in diverse regulations of the cell wall. In this review, we summarize GPI-APs involved in cell wall regulation. GPI-APs are proposed to act as structural components of the cell wall, organize cellulose microfibrils at the cell surface, and during cell wall integrity signaling transduction. Besides regulating protein trafficking, the GPI modification is potentially governed by a GPI shedding system that cleaves and releases the GPI-anchored proteins from the plasma membrane into the cell wall.
Collapse
|
45
|
Liu J, Meng J, Chen H, Li X, Su Z, Chen C, Ning T, He Z, Dai L, Xu C. Different responses of banana classical AGP genes and cell wall AGP components to low-temperature between chilling sensitive and tolerant cultivars. PLANT CELL REPORTS 2022; 41:1693-1706. [PMID: 35789423 DOI: 10.1007/s00299-022-02885-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 05/20/2022] [Indexed: 06/15/2023]
Abstract
Seventeen classical MaAGPs and 9 MbAGPs were identified and analyzed. MaAGP1/2/6/9/16/17, the antigens of JIM13 and LM2 antibodies are likely to be involved in banana chilling tolerance. Classical arabinogalactan proteins (AGPs) belong to glycosylphosphatidylinositol-anchored proteins, which are proved to be involved in signaling and cell wall metabolism upon stresses. However, rare information is available on the roles of classical AGPs in low temperature (LT) tolerance. Cultivation of banana in tropical and subtropical region is seriously threatened by LT stress. In the present study, 17 classical MaAGPs and nine MbAGPs in banana A and B genome were identified and characterized, respectively. Great diversity was present among different classical MaAGP/MbAGP members while five members (AGP3/6/11/13/14) showed 100% identity between these two gene families. We further investigated different responses of classical AGPs to LT between a chilling sensitive (CS) and tolerant (CT) banana cultivars. In addition, different changes in the temporal and spatial distribution of cell wall AGP components under LTs between these two cultivars were compared using immunofluorescence labeling. Seven classical MbAGPs were upregulated by LT(s) in the CT cultivar. Classical MaAGP4/6 was induced by LT(s) in both cultivars while MaAGP1/2/9/16/17 only in the CT cultivar. Moreover, these genes showed significantly higher transcription abundance in the CT cultivar than the CS one under LT(s) except classical MaAGP4. Similar results were observed with the epitopes of JIM13 and LM2 antibodies. The antigens of these antibodies and classical MaAGP1/2/6/9/16/17 might be related to LT tolerance of banana. These results provide additional information about plant classical AGPs and their involvement in LT tolerance, as well as their potential as candidate genes to be targeted when breeding CT banana.
Collapse
Affiliation(s)
- Jing Liu
- College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Jian Meng
- College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Houbin Chen
- College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Xiaoquan Li
- Institute of Biotechnology, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Zuxiang Su
- Institute of Biotechnology, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Chengjie Chen
- College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Tong Ning
- College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Zhenting He
- College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Longyu Dai
- College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Chunxiang Xu
- College of Horticulture, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
46
|
Arabinogalactan Proteins: Focus on the Role in Cellulose Synthesis and Deposition during Plant Cell Wall Biogenesis. Int J Mol Sci 2022; 23:ijms23126578. [PMID: 35743022 PMCID: PMC9223364 DOI: 10.3390/ijms23126578] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 11/16/2022] Open
Abstract
Arabinogalactan proteins (AGPs) belong to a family of glycoproteins that are widely present in plants. AGPs are mostly composed of a protein backbone decorated with complex carbohydrate side chains and are usually anchored to the plasma membrane or secreted extracellularly. A trickle of compelling biochemical and genetic evidence has demonstrated that AGPs make exciting candidates for a multitude of vital activities related to plant growth and development. However, because of the diversity of AGPs, functional redundancy of AGP family members, and blunt-force research tools, the precise functions of AGPs and their mechanisms of action remain elusive. In this review, we put together the current knowledge about the characteristics, classification, and identification of AGPs and make a summary of the biological functions of AGPs in multiple phases of plant reproduction and developmental processes. In addition, we especially discuss deeply the potential mechanisms for AGP action in different biological processes via their impacts on cellulose synthesis and deposition based on previous studies. Particularly, five hypothetical models that may explain the AGP involvement in cellulose synthesis and deposition during plant cell wall biogenesis are proposed. AGPs open a new avenue for understanding cellulose synthesis and deposition in plants.
Collapse
|
47
|
Lin Z, Xie F, Triviño M, Zhao T, Coppens F, Sterck L, Bosch M, Franklin-Tong VE, Nowack MK. Self-incompatibility requires GPI anchor remodeling by the poppy PGAP1 ortholog HLD1. Curr Biol 2022; 32:1909-1923.e5. [PMID: 35316654 DOI: 10.1016/j.cub.2022.02.072] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 01/25/2022] [Accepted: 02/24/2022] [Indexed: 11/25/2022]
Abstract
Glycosylphosphatidylinositol-anchored proteins (GPI-APs) are tethered to the outer leaflet of the plasma membrane where they function as key regulators of a plethora of biological processes in eukaryotes. Self-incompatibility (SI) plays a pivotal role regulating fertilization in higher plants through recognition and rejection of "self" pollen. Here, we used Arabidopsis thaliana lines that were engineered to be self-incompatible by expression of Papaver rhoeas SI determinants for an SI suppressor screen. We identify HLD1/AtPGAP1, an ortholog of the human GPI-inositol deacylase PGAP1, as a critical component required for the SI response. Besides a delay in flowering time, no developmental defects were observed in HLD1/AtPGAP1 knockout plants, but SI was completely abolished. We demonstrate that HLD1/AtPGAP1 functions as a GPI-inositol deacylase and that this GPI-remodeling activity is essential for SI. Using GFP-SKU5 as a representative GPI-AP, we show that the HLD1/AtPGAP1 mutation does not affect GPI-AP production and targeting but affects their cleavage and release from membranes in vivo. Our data not only implicate GPI-APs in SI, providing new directions to investigate SI mechanisms, but also identify a key functional role for GPI-AP remodeling by inositol deacylation in planta.
Collapse
Affiliation(s)
- Zongcheng Lin
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent 9052, Belgium; Center for Plant Systems Biology, VIB, Ghent 9052, Belgium; Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China.
| | - Fei Xie
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent 9052, Belgium; Center for Plant Systems Biology, VIB, Ghent 9052, Belgium
| | - Marina Triviño
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent 9052, Belgium; Center for Plant Systems Biology, VIB, Ghent 9052, Belgium; Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Gogerddan, Aberystwyth SY23 3EB, UK
| | - Tao Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Frederik Coppens
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent 9052, Belgium; Center for Plant Systems Biology, VIB, Ghent 9052, Belgium
| | - Lieven Sterck
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent 9052, Belgium; Center for Plant Systems Biology, VIB, Ghent 9052, Belgium
| | - Maurice Bosch
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Gogerddan, Aberystwyth SY23 3EB, UK.
| | | | - Moritz K Nowack
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent 9052, Belgium; Center for Plant Systems Biology, VIB, Ghent 9052, Belgium.
| |
Collapse
|
48
|
Mi L, Mo A, Yang J, Liu H, Ren D, Chen W, Long H, Jiang N, Zhang T, Lu P. Arabidopsis Novel Microgametophyte Defective Mutant 1 Is Required for Pollen Viability via Influencing Intine Development in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2022; 13:814870. [PMID: 35498668 PMCID: PMC9039731 DOI: 10.3389/fpls.2022.814870] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 03/03/2022] [Indexed: 05/28/2023]
Abstract
The pollen intine layer is necessary for male fertility in flowering plants. However, the mechanisms behind the developmental regulation of intine formation still remain largely unknown. Here, we identified a positive regulator, Arabidopsis novel microgametophyte defective mutant 1 (AtNMDM1), which influences male fertility by regulating intine formation. The AtNMDM1, encoding a pollen nuclei-localized protein, was highly expressed in the pollens at the late anther stages, 10-12. Both the mutations and the knock-down of AtNMDM1 resulted in pollen defects and significantly lowered the seed-setting rates. Genetic transmission analysis indicated that AtNMDM1 is a microgametophyte lethal gene. Calcofluor white staining revealed that abnormal cellulose distribution was present in the aborted pollen. Ultrastructural analyses showed that the abnormal intine rather than the exine led to pollen abortion. We further found, using transcriptome analysis, that cell wall modification was the most highly enriched gene ontology (GO) term used in the category of biological processes. Notably, two categories of genes, Arabinogalactan proteins (AGPs) and pectin methylesterases (PMEs) were greatly reduced, which were associated with pollen intine formation. In addition, we also identified another regulator, AtNMDM2, which interacted with AtNMDM1 in the pollen nuclei. Taken together, we identified a novel regulator, AtNMDM1 that affected cellulose distribution in the intine by regulating intine-related gene expression; furthermore, these results provide insights into the molecular mechanisms of pollen intine development.
Collapse
Affiliation(s)
- Limin Mi
- School of Life Sciences, Fudan University, Shanghai, China
| | - Aowei Mo
- School of Life Sciences, Fudan University, Shanghai, China
| | - Jiange Yang
- School of Life Sciences, Fudan University, Shanghai, China
| | - Hui Liu
- School of Life Sciences, Fudan University, Shanghai, China
| | - Ding Ren
- School of Life Sciences, Fudan University, Shanghai, China
| | - Wanli Chen
- School of Life Sciences, Fudan University, Shanghai, China
| | - Haifei Long
- School of Life Sciences, Fudan University, Shanghai, China
| | - Ning Jiang
- School of Life Sciences, Fudan University, Shanghai, China
| | - Tian Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Pingli Lu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| |
Collapse
|
49
|
Bernat-Silvestre C, Ma Y, Johnson K, Ferrando A, Aniento F, Marcote MJ. Characterization of Arabidopsis Post-Glycosylphosphatidylinositol Attachment to Proteins Phospholipase 3 Like Genes. FRONTIERS IN PLANT SCIENCE 2022; 13:817915. [PMID: 35222477 PMCID: PMC8874281 DOI: 10.3389/fpls.2022.817915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 01/07/2022] [Indexed: 06/14/2023]
Abstract
Lipid remodeling of Glycosylphosphatidylinositol (GPI) anchors is required for their maturation and may influence the localization and function of GPI-anchored proteins (GPI-APs). Maturation of GPI-anchors is well characterized in animals and fungi but very little is known about this process in plants. In yeast, the GPI-lipid remodeling occurs entirely at the ER and is initiated by the remodeling enzyme Bst1p (Post-Glycosylphosphatidylinositol Attachment to Proteins inositol deacylase 1 -PGAP1- in mammals and Arabidopsis). Next, the remodeling enzyme Per1p (Post-Glycosylphosphatidylinositol Attachment to Proteins phospholipase 3 -PGAP3- in mammals) removes a short, unsaturated fatty acid of phosphatidylinositol (PI) that is replaced with a very long-chain saturated fatty acid or ceramide to complete lipid remodeling. In mammals, lipid remodeling starts at the ER and is completed at the Golgi apparatus. Studies of the Arabidopsis PGAP1 gene showed that the lipid remodeling of the GPI anchor is critical for the final localization of GPI-APs. Here we characterized loss-of-function mutants of Arabidopsis Per1/PGAP3 like genes (AtPGAP3A and AtPGAP3B). Our results suggest that PGAP3A function is required for the efficient transport of GPI-anchored proteins from the ER to the plasma membrane/cell wall. In addition, loss of function of PGAP3A increases susceptibility to salt and osmotic stresses that may be due to the altered localization of GPI-APs in this mutant. Furthermore, PGAP3B complements a yeast strain lacking PER1 gene suggesting that PGAP3B and Per1p are functional orthologs. Finally, subcellular localization studies suggest that PGAP3A and PGAP3B cycle between the ER and the Golgi apparatus.
Collapse
Affiliation(s)
- Cesar Bernat-Silvestre
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Biotecnología y Biomedicina (BIOTECMED), Universitat de València, Valencia, Spain
| | - Yingxuan Ma
- School of BioSciences, The University of Melbourne, Parkville, VIC, Australia
- Department of Animal, Plant and Soil Sciences, La Trobe Institute for Agriculture and Food, La Trobe University, Bundoora, VIC, Australia
| | - Kim Johnson
- School of BioSciences, The University of Melbourne, Parkville, VIC, Australia
- Department of Animal, Plant and Soil Sciences, La Trobe Institute for Agriculture and Food, La Trobe University, Bundoora, VIC, Australia
| | - Alejandro Ferrando
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas, Universitat Politècnica de València, Valencia, Spain
| | - Fernando Aniento
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Biotecnología y Biomedicina (BIOTECMED), Universitat de València, Valencia, Spain
| | - María Jesús Marcote
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Biotecnología y Biomedicina (BIOTECMED), Universitat de València, Valencia, Spain
| |
Collapse
|
50
|
Ma Y, MacMillan CP, de Vries L, Mansfield SD, Hao P, Ratcliffe J, Bacic A, Johnson KL. FLA11 and FLA12 glycoproteins fine-tune stem secondary wall properties in response to mechanical stresses. THE NEW PHYTOLOGIST 2022; 233:1750-1767. [PMID: 34862967 PMCID: PMC9302641 DOI: 10.1111/nph.17898] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 11/20/2021] [Indexed: 05/19/2023]
Abstract
Secondary cell walls (SCWs) in stem xylem vessel and fibre cells enable plants to withstand the enormous compressive forces associated with upright growth. It remains unclear if xylem vessel and fibre cells can directly sense mechanical stimuli and modify their SCW during development. We provide evidence that Arabidopsis SCW-specific Fasciclin-Like Arabinogalactan-proteins 11 (FLA11) and 12 (FLA12) are possible cell surface sensors regulating SCW development in response to mechanical stimuli. Plants overexpressing FLA11 (OE-FLA11) showed earlier SCW development compared to the wild-type (WT) and altered SCW properties that phenocopy WT plants under compression stress. By contrast, OE-FLA12 stems showed higher cellulose content compared to WT plants, similar to plants experiencing tensile stress. fla11, OE-FLA11, fla12, and OE-FLA12 plants showed altered SCW responses to mechanical stress compared to the WT. Quantitative polymerase chain reaction (qPCR) and RNA-seq analysis revealed the up-regulation of genes and pathways involved in stress responses and SCW synthesis and regulation. Analysis of OE-FLA11 nst1 nst3 plants suggests that FLA11 regulation of SCWs is reliant on classical transcriptional networks. Our data support the involvement of FLA11 and FLA12 in SCW sensing complexes to fine-tune both the initiation of SCW development and the balance of lignin and cellulose synthesis/deposition in SCWs during development and in response to mechanical stimuli.
Collapse
Affiliation(s)
- Yingxuan Ma
- School of BioSciencesUniversity of MelbourneParkvilleVic.3052Australia
- Department of Animal, Plant and Soil ScienceLa Trobe Institute for Agriculture & FoodLa Trobe UniversityAgriBio BuildingBundooraVic.3086Australia
| | - Colleen P. MacMillan
- Agriculture and FoodCSIROCSIRO Black Mountain Science and Innovation ParkCanberraACT2601Australia
| | - Lisanne de Vries
- Department of Wood ScienceUniversity of British ColumbiaVancouverBCV6T 1Z4Canada
| | - Shawn D. Mansfield
- Department of Wood ScienceUniversity of British ColumbiaVancouverBCV6T 1Z4Canada
| | - Pengfei Hao
- Department of Animal, Plant and Soil ScienceLa Trobe Institute for Agriculture & FoodLa Trobe UniversityAgriBio BuildingBundooraVic.3086Australia
| | - Julian Ratcliffe
- Department of Animal, Plant and Soil ScienceLa Trobe Institute for Agriculture & FoodLa Trobe UniversityAgriBio BuildingBundooraVic.3086Australia
| | - Antony Bacic
- Department of Animal, Plant and Soil ScienceLa Trobe Institute for Agriculture & FoodLa Trobe UniversityAgriBio BuildingBundooraVic.3086Australia
- College of Forestry and BiotechnologySino‐Australia Plant Cell Wall Research CentreZhejiang Agriculture and Forestry UniversityLin'anHangzhou311300China
| | - Kim L. Johnson
- Department of Animal, Plant and Soil ScienceLa Trobe Institute for Agriculture & FoodLa Trobe UniversityAgriBio BuildingBundooraVic.3086Australia
- College of Forestry and BiotechnologySino‐Australia Plant Cell Wall Research CentreZhejiang Agriculture and Forestry UniversityLin'anHangzhou311300China
| |
Collapse
|