1
|
Thanthrige N, Bhowmik SD, Williams B. 'Friend versus foe'-does autophagy help regulate symbiotic plant-microbe interactions and can it be manipulated to improve legume cultivation? FEBS Lett 2025; 599:645-655. [PMID: 39582243 DOI: 10.1002/1873-3468.15062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/18/2024] [Accepted: 10/20/2024] [Indexed: 11/26/2024]
Abstract
Autophagy is a genetically regulated, eukaryotic catabolic pathway that responds to internal and external cellular signals. In plants, it plays crucial roles in development, and responses to abiotic and biotic stresses. Due to its role in limiting the hypersensitive response, research on the molecular mechanisms of autophagic signalling pathways in plant-microbe interactions has primarily focused on plant-pathogen responses. Although there is substantially less information on the role of autophagy signalling in symbiotic plant-microbe interactions, there is accumulating evidence that it is also a key regulator of mutualistic plant-microbe interactions. Here, we review recent progress on the roles of autophagy in symbiotic plant interactions and discuss potential future research directions. Once understood, the central role that autophagy plays within pathogenic and symbiotic plant-microbe interactions has significant potential application for crop improvement. Manipulating autophagy in legume crops could help support crop growth with reduced levels of fertiliser application while maintaining yields with increased protein content in the harvest.
Collapse
Affiliation(s)
- Nipuni Thanthrige
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Sudipta Das Bhowmik
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology, Brisbane, Australia
| | - Brett Williams
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
- School of Biology and Environmental Science, Queensland University of Technology, Brisbane, Australia
| |
Collapse
|
2
|
Ali F, Zhao Y, Ali A, Waseem M, Arif MAR, Shah OU, Liao L, Wang Z. Omics-Driven Strategies for Developing Saline-Smart Lentils: A Comprehensive Review. Int J Mol Sci 2024; 25:11360. [PMID: 39518913 PMCID: PMC11546581 DOI: 10.3390/ijms252111360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/18/2024] [Accepted: 10/20/2024] [Indexed: 11/16/2024] Open
Abstract
A number of consequences of climate change, notably salinity, put global food security at risk by impacting the development and production of lentils. Salinity-induced stress alters lentil genetics, resulting in severe developmental issues and eventual phenotypic damage. Lentils have evolved sophisticated signaling networks to combat salinity stress. Lentil genomics and transcriptomics have discovered key genes and pathways that play an important role in mitigating salinity stress. The development of saline-smart cultivars can be further revolutionized by implementing proteomics, metabolomics, miRNAomics, epigenomics, phenomics, ionomics, machine learning, and speed breeding approaches. All these cutting-edge approaches represent a viable path toward creating saline-tolerant lentil cultivars that can withstand climate change and meet the growing demand for high-quality food worldwide. The review emphasizes the gaps that must be filled for future food security in a changing climate while also highlighting the significant discoveries and insights made possible by omics and other state-of-the-art biotechnological techniques.
Collapse
Affiliation(s)
- Fawad Ali
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), School of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China; (F.A.); (Y.Z.); (M.W.); (O.U.S.)
| | - Yiren Zhao
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), School of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China; (F.A.); (Y.Z.); (M.W.); (O.U.S.)
| | - Arif Ali
- Department of Plant Sciences, Quaid-I-Azam University, Islamabad 45320, Pakistan;
| | - Muhammad Waseem
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), School of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China; (F.A.); (Y.Z.); (M.W.); (O.U.S.)
| | - Mian A. R. Arif
- Nuclear Institute for Agriculture and Biology College, Pakistan Institute of Engineering and Applied Sciences (NIAB-C, PIEAS), Jhang Road, Faisalabad 38000, Pakistan;
| | - Obaid Ullah Shah
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), School of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China; (F.A.); (Y.Z.); (M.W.); (O.U.S.)
| | - Li Liao
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), School of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China; (F.A.); (Y.Z.); (M.W.); (O.U.S.)
| | - Zhiyong Wang
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), School of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China; (F.A.); (Y.Z.); (M.W.); (O.U.S.)
| |
Collapse
|
3
|
de Carvalho-Niebel F, Fournier J, Becker A, Marín Arancibia M. Cellular insights into legume root infection by rhizobia. CURRENT OPINION IN PLANT BIOLOGY 2024; 81:102597. [PMID: 39067084 DOI: 10.1016/j.pbi.2024.102597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/08/2024] [Accepted: 06/11/2024] [Indexed: 07/30/2024]
Abstract
Legume plants establish an endosymbiosis with nitrogen-fixing rhizobia bacteria, which are taken up from the environment anew by each host generation. This requires a dedicated genetic program on the host side to control microbe invasion, involving coordinated reprogramming of host cells to create infection structures that facilitate inward movement of the symbiont. Infection initiates in the epidermis, with different legumes utilizing distinct strategies for crossing this cell layer, either between cells (intercellular infection) or transcellularly (infection thread infection). Recent discoveries on the plant side using fluorescent-based imaging approaches have illuminated the spatiotemporal dynamics of infection, underscoring the importance of investigating this process at the dynamic single-cell level. Extending fluorescence-based live-dynamic approaches to the bacterial partner opens the exciting prospect of learning how individual rhizobia reprogram from rhizospheric to a host-confined state during early root infection.
Collapse
Affiliation(s)
| | - Joëlle Fournier
- LIPME, INRAE, CNRS, Université de Toulouse, 31326, Castanet-Tolosan, France
| | - Anke Becker
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-Universität Marburg, D-35032, Marburg, Germany; Department of Biology, Philipps-Universität Marburg, D-35032, Marburg, Germany
| | | |
Collapse
|
4
|
Wu J, Wu Z, Yu T, Zhang J, Zhang Z, Wang H, Zheng Y, Yang J, Wu Y. Polyvinyl chloride and polybutylene adipate microplastics affect peanut and rhizobium symbiosis by interfering with multiple metabolic pathways. JOURNAL OF HAZARDOUS MATERIALS 2024; 475:134897. [PMID: 38876018 DOI: 10.1016/j.jhazmat.2024.134897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/03/2024] [Accepted: 06/11/2024] [Indexed: 06/16/2024]
Abstract
Microplastics (MPs), widely presented in cultivated soil, have caused serious stresses on crop growth. However, the mechanism by which MPs affect legumes and rhizobia symbiosis is still unclear. Here, peanut seedlings were inoculated with Bradyrhizobium zhanjiangense CCBAU 51778 and were grown in vermiculite with 3 %/5 % (w/w) addition of PVC (polyvinyl chloride)-MPs/PBAT (polybutylene adipate)-MPs. PVC-MPs and PBAT-MPs separately decreased nodule number by 33-100 % and 2.62-80.91 %. Transcriptome analysis showed that PVC-MPs affected more DEGs (differentially expressed genes) than PBAT-MPs, indicating PVC-MPs were more devastating for the symbiosis than PBAT-MPs. Functional annotation revealed that PVC-MPs and PBAT-MPs enriched DEGs related to biosynthesis pathways such as flavonoid, isoflavonoid, and phenylpropanoid, in peanut. And when the dose increased from 3 % to 5 %, PVC-MPs mainly enriched the pathways of starch and sucrose metabolism, alanine, aspartate and glutamate metabolism, diterpenoid biosynthesis, etc.; PBAT-MPs enriched cysteine and methionine metabolism, photosynthesis, MAPK signaling, and other pathways. These significantly enriched pathways functioned in reducing nodule number and promoting peanut tolerance to MPs stresses. This study reveals the effect of PVC-MPs and PBAT-MPs on peanut and rhizobium symbiosis, and provides new perspectives for legume production and environmental safety.
Collapse
Affiliation(s)
- Juxiang Wu
- Shandong Peanut Research Institute, Qingdao 266100, China
| | - Zhengfeng Wu
- Shandong Peanut Research Institute, Qingdao 266100, China
| | - Tianyi Yu
- Shandong Peanut Research Institute, Qingdao 266100, China
| | | | - Zhimeng Zhang
- Shandong Peanut Research Institute, Qingdao 266100, China
| | - Hongfeng Wang
- Shandong Peanut Research Institute, Qingdao 266100, China
| | - Yongmei Zheng
- Shandong Peanut Research Institute, Qingdao 266100, China
| | - Jishun Yang
- Shandong Peanut Research Institute, Qingdao 266100, China
| | - Yue Wu
- Shandong Peanut Research Institute, Qingdao 266100, China.
| |
Collapse
|
5
|
Etesami H, Glick BR. Bacterial indole-3-acetic acid: A key regulator for plant growth, plant-microbe interactions, and agricultural adaptive resilience. Microbiol Res 2024; 281:127602. [PMID: 38228017 DOI: 10.1016/j.micres.2024.127602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/02/2024] [Accepted: 01/03/2024] [Indexed: 01/18/2024]
Abstract
Indole-3-acetic acid (IAA), a fundamental phytohormone categorized under auxins, not only influences plant growth and development but also plays a critical role in plant-microbe interactions. This study reviews the role of IAA in bacteria-plant communication, with a focus on its biosynthesis, regulation, and the subsequent effects on host plants. Bacteria synthesize IAA through multiple pathways, which include the indole-3-acetamide (IAM), indole-3-pyruvic acid (IPyA), and several other routes, whose full mechanisms remain to be fully elucidated. The production of bacterial IAA affects root architecture, nutrient uptake, and resistance to various abiotic stresses such as drought, salinity, and heavy metal toxicity, enhancing plant resilience and thus offering promising routes to sustainable agriculture. Bacterial IAA synthesis is regulated through complex gene networks responsive to environmental cues, impacting plant hormonal balances and symbiotic relationships. Pathogenic bacteria have adapted mechanisms to manipulate the host's IAA dynamics, influencing disease outcomes. On the other hand, beneficial bacteria utilize IAA to promote plant growth and mitigate abiotic stresses, thereby enhancing nutrient use efficiency and reducing dependency on chemical fertilizers. Advancements in analytical methods, such as liquid chromatography-tandem mass spectrometry, have improved the quantification of bacterial IAA, enabling accurate measurement and analysis. Future research focusing on molecular interactions between IAA-producing bacteria and host plants could facilitate the development of biotechnological applications that integrate beneficial bacteria to improve crop performance, which is essential for addressing the challenges posed by climate change and ensuring global food security. This integration of bacterial IAA producers into agricultural practice promises to revolutionize crop management strategies by enhancing growth, fostering resilience, and reducing environmental impact.
Collapse
Affiliation(s)
- Hassan Etesami
- Soil Science Department, University of Tehran, Tehran, Iran.
| | - Bernard R Glick
- Department of Biology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
6
|
Qiu X, Wang W, Yang J, Li D, Jiao J, Wang E, Yuan H. Fulvic Acid Promotes Legume-Rhizobium Symbiosis by Stimulating Endogenous Flavonoids Synthesis and Secretion. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:6133-6142. [PMID: 38489511 DOI: 10.1021/acs.jafc.3c08837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/17/2024]
Abstract
Fulvic acid (FA) promotes symbiosis between legumes and rhizobia. To elucidate from the aspect of symbiosis, the effects of root irrigation of water-soluble humic materials (WSHM) or foliar spraying of its highly active component, FA, on soybean root exudates and on rhizosphere microorganisms were investigated. As a result, WSHM/FA treatments significantly altered root exudate metabolite composition, and isoflavonoids were identified as key contributors in both treatments compared to the control. Increased expression of genes related to the isoflavonoid biosynthesis were validated by RT-qPCR in both treatments, which notably elevated the synthesis of symbiotic signals genistein, daidzin, coumestrol, and biochanin A. Moreover, the WSHM/FA treatments induced a change in rhizosphere microbial community, coupled with an increase in the relative abundance of rhizobia. Our findings showed that WSHM/FA promotes symbiosis by stimulating the endogenous flavonoid synthesis and leads to rhizobia accumulation in the rhizosphere. This study provides new insights into mechanisms underlying the FA-mediated promotion of symbiosis.
Collapse
Affiliation(s)
- Xiaoqian Qiu
- State Key Laboratory of Animal Biotech Breeding and Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Wenqian Wang
- State Key Laboratory of Animal Biotech Breeding and Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jinshui Yang
- State Key Laboratory of Animal Biotech Breeding and Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Dongmei Li
- State Key Laboratory of Animal Biotech Breeding and Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jian Jiao
- State Key Laboratory of Animal Biotech Breeding and Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Entao Wang
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 07738, Mexico
| | - Hongli Yuan
- State Key Laboratory of Animal Biotech Breeding and Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| |
Collapse
|
7
|
Sulieman S, Sheteiwy MS, Abdelrahman M, Tran LSP. γ-Aminobutyric acid (GABA) in N 2-fixing-legume symbiosis: Metabolic flux and carbon/nitrogen homeostasis in responses to abiotic constraints. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 207:108362. [PMID: 38266561 DOI: 10.1016/j.plaphy.2024.108362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 12/07/2023] [Accepted: 01/10/2024] [Indexed: 01/26/2024]
Abstract
Nodule symbiosis is an energetic process that demands a tremendous carbon (C) cost, which massively increases in responses to environmental stresses. Notably, most common respiratory pathways (e.g., glycolysis and Krebs cycle) that sustain nitrogenase activity and subsequent nitrogen (N) assimilation (amino acid formation) display a noncyclic mode of C flux. In such circumstances, the nodule's energy charge could markedly decrease, leading to a lower symbiotic activity under stresses. The host plant then attempts to induce alternative robust metabolic pathways to minimize the C expenditure and compensate for the loss in respiratory substrates. GABA (γ-aminobutyric acid) shunt appears to be among the highly conserved metabolic bypass induced in responses to stresses. Thus, it can be suggested that GABA, via its primary biosynthetic pathway (GABA shunt), is simultaneously induced to circumvent stress-susceptible decarboxylating portion of the Krebs cycle and to replenish symbiosome with energy and C skeletons for enhancing nitrogenase activity and N assimilation besides the additional C costs expended in the metabolic stress acclimations (e.g., biosynthesis of secondary metabolites and excretion of anions). The GABA-mediated C/N balance is strongly associated with interrelated processes, including pH regulation, oxygen (O2) protection, osmoregulation, cellular redox control, and N storage. Furthermore, it has been anticipated that GABA could be implicated in other functions beyond its metabolic role (i.e., signaling and transport). GABA helps plants possess remarkable metabolic plasticity, which might thus assist nodules in attenuating stressful events.
Collapse
Affiliation(s)
- Saad Sulieman
- Department of Agronomy, Faculty of Agriculture, University of Khartoum, 13314, Shambat, Khartoum North, Sudan.
| | - Mohamed S Sheteiwy
- Department of Integrative Agriculture, College of Agriculture and Veterinary Medicine, United Arab Emirates University, P.O. Box 15551, Al Ain, Abu Dhabi, United Arab Emirates; Department of Agronomy, Faculty of Agriculture, Mansoura University, Mansoura, 35516, Egypt
| | - Mostafa Abdelrahman
- Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, TX, 79409, USA
| | - Lam-Son Phan Tran
- Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, TX, 79409, USA.
| |
Collapse
|
8
|
Rathod V, Rathod K, Tomar RS, Tatamiya R, Hamid R, Jacob F, Munshi NS. Metabolic profiles of peanut (Arachis hypogaea L.) in response to Puccinia arachidis fungal infection. BMC Genomics 2023; 24:630. [PMID: 37872498 PMCID: PMC10591357 DOI: 10.1186/s12864-023-09725-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 10/09/2023] [Indexed: 10/25/2023] Open
Abstract
Background Puccinia arachidis fungus causes rust disease in the peanut plants (Arachis hypogaea L.), which leads to high yield loss. Metabolomic profiling of Arachis hypogaea was performed to identify the pathogen-induced production of metabolites involved in the defense mechanism of peanut plants. In this study, two peanut genotypes, one susceptible (JL-24) and one resistant (GPBD-4) were inoculated with Puccinia arachidis fungal pathogen. The metabolic response was assessed at the control stage (0 day without inoculation), 2 DAI (Day after inoculation), 4 DAI and 6 DAI by Gas Chromatography-Mass Spectrometry (GC-MS). Results About 61 metabolites were identified by NIST library, comprising sugars, phenols, fatty acids, carboxylic acids and sugar alcohols. Sugars and fatty acids were predominant in leaf extracts compared to other metabolites. Concentration of different metabolites such as salicylic acid, mannitol, flavonoid, 9,12-octadecadienoic acid, linolenic acid and glucopyranoside were higher in resistant genotype than in susceptible genotype during infection. Systemic acquired resistance (SAR) and hypersensitive reaction (HR) components such as oxalic acid was elevated in resistant genotype during pathogen infection. Partial least square-discriminant analysis (PLS-DA) was applied to GC-MS data for revealing metabolites profile between resistant and susceptible genotype during infection. Conclusion The phenol content and oxidative enzyme activity i.e. catalase, peroxidase and polyphenol oxidase were found to be very high at 4 DAI in resistant genotype (p-value < 0.01). This metabolic approach provides information about bioactive plant metabolites and their application in crop protection and marker-assisted plant breeding.
Collapse
Affiliation(s)
- Visha Rathod
- Institute of Science, Nirma University, Ahmedabad, Gujarat, India
| | - Khyati Rathod
- Department of Biotechnology and Biochemistry, Junagadh Agricultural University, Junagadh, Gujarat, India
| | - Rukam S Tomar
- Department of Biotechnology and Biochemistry, Junagadh Agricultural University, Junagadh, Gujarat, India
| | | | - Rasmieh Hamid
- Department of Plant Breeding, Cotton Research Institute of Iran (CRII), Agricultural Research, Education and Extension Organization (AREEO), Gorgan, Iran
| | - Feba Jacob
- Centre for Plant Biotechnology and Molecular Biology, Kerala Agricultural University, Thrissur, India
| | | |
Collapse
|
9
|
Du H, Fang C, Li Y, Kong F, Liu B. Understandings and future challenges in soybean functional genomics and molecular breeding. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:468-495. [PMID: 36511121 DOI: 10.1111/jipb.13433] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 12/11/2022] [Indexed: 06/17/2023]
Abstract
Soybean (Glycine max) is a major source of plant protein and oil. Soybean breeding has benefited from advances in functional genomics. In particular, the release of soybean reference genomes has advanced our understanding of soybean adaptation to soil nutrient deficiencies, the molecular mechanism of symbiotic nitrogen (N) fixation, biotic and abiotic stress tolerance, and the roles of flowering time in regional adaptation, plant architecture, and seed yield and quality. Nevertheless, many challenges remain for soybean functional genomics and molecular breeding, mainly related to improving grain yield through high-density planting, maize-soybean intercropping, taking advantage of wild resources, utilization of heterosis, genomic prediction and selection breeding, and precise breeding through genome editing. This review summarizes the current progress in soybean functional genomics and directs future challenges for molecular breeding of soybean.
Collapse
Affiliation(s)
- Haiping Du
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Chao Fang
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Yaru Li
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Fanjiang Kong
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Baohui Liu
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| |
Collapse
|
10
|
Antoszewski M, Mierek-Adamska A, Dąbrowska GB. The Importance of Microorganisms for Sustainable Agriculture-A Review. Metabolites 2022; 12:1100. [PMID: 36422239 PMCID: PMC9694901 DOI: 10.3390/metabo12111100] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/04/2022] [Accepted: 11/08/2022] [Indexed: 08/27/2023] Open
Abstract
In the face of climate change, progressive degradation of the environment, including agricultural land negatively affecting plant growth and development, endangers plant productivity. Seeking efficient and sustainable agricultural techniques to replace agricultural chemicals is one of the most important challenges nowadays. The use of plant growth-promoting microorganisms is among the most promising approaches; however, molecular mechanisms underneath plant-microbe interactions are still poorly understood. In this review, we summarized the knowledge on plant-microbe interactions, highlighting the role of microbial and plant proteins and metabolites in the formation of symbiotic relationships. This review covers rhizosphere and phyllosphere microbiomes, the role of root exudates in plant-microorganism interactions, the functioning of the plant's immune system during the plant-microorganism interactions. We also emphasized the possible role of the stringent response and the evolutionarily conserved mechanism during the established interaction between plants and microorganisms. As a case study, we discussed fungi belonging to the genus Trichoderma. Our review aims to summarize the existing knowledge about plant-microorganism interactions and to highlight molecular pathways that need further investigation.
Collapse
Affiliation(s)
| | - Agnieszka Mierek-Adamska
- Department of Genetics, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Lwowska 1, 87-100 Toruń, Poland
| | | |
Collapse
|
11
|
Wang Y, Liu L, Hu Y, Zhang J, Jia R, Huang Q, Gao H, Awasthi MK, Li H, Zhao Z. The spatio-temporal change in soil P and P-solubilizing bacteria under clover mulching in apple orchards of Loess Plateau. CHEMOSPHERE 2022; 304:135334. [PMID: 35709835 DOI: 10.1016/j.chemosphere.2022.135334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/03/2022] [Accepted: 06/10/2022] [Indexed: 06/15/2023]
Abstract
Cover crop is an effective practice for improving soil quality and increase soil nutrients. However, the spatio-temporal change of soil phosphorus (P) components and P-solubilizing microorganisms in the process of grass succession is not evident. Here, we studied the variation of soil P components and P-solubilizing bacteria at 0-60 cm soil layer under clean tillage (CT) and white clover (WC, Trifolium repens L.) grown for 5, 9, and 14 years in an apple test station on the Loess Plateau, China. This study suggested that clover cover could effectively increase the total P, available P (AP), microbial P, organic P (Po), and inorganic P (Al-P, Ca2-P, Ca8-P and Fe-P) in topsoil (0-20 cm) and AP, Po and inorganic P at 20-40 cm soil layer to improve the soil P bioavailability. The effects of WC living mulch on the soil P forms were more significant with the increase in grass growing years, but this effect was difficult to extend to deep soil. In addition, the WC treatments were beneficial to the growth of P-solubilizing microorganisms in surface soil and improved the alkaline phosphatase activity at 0-40 cm soil layer, mainly including Bacillus, Bradyrhizobium, Nocardioides, Sphingomonas and Streptomyces. This study provided a perspective on the dynamic changes of soil P forms and P-solubilizing microorganisms and under long-term cover crop.
Collapse
Affiliation(s)
- Yuanji Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A & F University, Yangling, 712100, Shaanxi, China
| | - Li Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A & F University, Yangling, 712100, Shaanxi, China
| | - Yu Hu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A & F University, Yangling, 712100, Shaanxi, China
| | - Jiatao Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Rongjian Jia
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A & F University, Yangling, 712100, Shaanxi, China
| | - Qianqian Huang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Hua Gao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A & F University, Yangling, 712100, Shaanxi, China.
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Huike Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Zhengyang Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A & F University, Yangling, 712100, Shaanxi, China
| |
Collapse
|
12
|
Frémont A, Sas E, Sarrazin M, Gonzalez E, Brisson J, Pitre FE, Brereton NJB. Phytochelatin and coumarin enrichment in root exudates of arsenic-treated white lupin. PLANT, CELL & ENVIRONMENT 2022; 45:936-954. [PMID: 34392550 DOI: 10.1111/pce.14163] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/30/2021] [Accepted: 08/02/2021] [Indexed: 06/13/2023]
Abstract
Soil contamination with toxic metalloids, such as arsenic, can represent a substantial human health and environmental risk. Some plants are thought to tolerate soil toxicity using root exudation, however, the nature of this response to arsenic remains largely unknown. Here, white lupin plants were exposed to arsenic in a semi-hydroponic system and their exudates were profiled using untargeted liquid chromatography-tandem mass spectrometry. Arsenic concentrations up to 1 ppm were tolerated and led to the accumulation of 12.9 μg As g-1 dry weight (DW) and 411 μg As g-1 DW in above-ground and belowground tissues, respectively. From 193 exuded metabolites, 34 were significantly differentially abundant due to 1 ppm arsenic, including depletion of glutathione disulphide and enrichment of phytochelatins and coumarins. Significant enrichment of phytochelatins in exudates of arsenic-treated plants was further confirmed using exudate sampling with strict root exclusion. The chemical tolerance toolkit in white lupin included nutrient acquisition metabolites as well as phytochelatins, the major intracellular metal-binding detoxification oligopeptides which have not been previously reported as having an extracellular role. These findings highlight the value of untargeted metabolite profiling approaches to reveal the unexpected and inform strategies to mitigate anthropogenic pollution in soils around the world.
Collapse
Affiliation(s)
- Adrien Frémont
- University of Montreal-Institut de Recherche en Biologie Végétale (IRBV), Montreal, Quebec, Canada
| | - Eszter Sas
- University of Montreal-Institut de Recherche en Biologie Végétale (IRBV), Montreal, Quebec, Canada
| | | | - Emmanuel Gonzalez
- Canadian Centre for Computational Genomics (C3G)-Department of Human Genetics, McGill University, Montreal, Quebec, Canada
- Microbiome Research Platform-McGill Interdisciplinary Initiative in Infection and Immunity (MI4), Genome Centre, McGill University, Montreal, Quebec, Canada
| | - Jacques Brisson
- University of Montreal-Institut de Recherche en Biologie Végétale (IRBV), Montreal, Quebec, Canada
| | - Frédéric Emmanuel Pitre
- University of Montreal-Institut de Recherche en Biologie Végétale (IRBV), Montreal, Quebec, Canada
- Montreal Botanical Garden, Montreal, Quebec, Canada
| | | |
Collapse
|
13
|
Bragagnolo FS, Funari CS, Ibáñez E, Cifuentes A. Metabolomics as a Tool to Study Underused Soy Parts: In Search of Bioactive Compounds. Foods 2021; 10:foods10061308. [PMID: 34200265 PMCID: PMC8230045 DOI: 10.3390/foods10061308] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/01/2021] [Accepted: 06/03/2021] [Indexed: 12/19/2022] Open
Abstract
The valorization of agri-food by-products is essential from both economic and sustainability perspectives. The large quantity of such materials causes problems for the environment; however, they can also generate new valuable ingredients and products which promote beneficial effects on human health. It is estimated that soybean production, the major oilseed crop worldwide, will leave about 597 million metric tons of branches, leaves, pods, and roots on the ground post-harvesting in 2020/21. An alternative for the use of soy-related by-products arises from the several bioactive compounds found in this plant. Metabolomics studies have already identified isoflavonoids, saponins, and organic and fatty acids, among other metabolites, in all soy organs. The present review aims to show the application of metabolomics for identifying high-added-value compounds in underused parts of the soy plant, listing the main bioactive metabolites identified up to now, as well as the factors affecting their production.
Collapse
Affiliation(s)
- Felipe Sanchez Bragagnolo
- School of Agricultural Sciences, São Paulo State University (UNESP), Botucatu 18610-034, SP, Brazil; (F.S.B.); (C.S.F.)
- Laboratory of Foodomics, Institute of Food Science Research (CIAL-CSIC), 28049 Madrid, Spain;
| | - Cristiano Soleo Funari
- School of Agricultural Sciences, São Paulo State University (UNESP), Botucatu 18610-034, SP, Brazil; (F.S.B.); (C.S.F.)
| | - Elena Ibáñez
- Laboratory of Foodomics, Institute of Food Science Research (CIAL-CSIC), 28049 Madrid, Spain;
| | - Alejandro Cifuentes
- Laboratory of Foodomics, Institute of Food Science Research (CIAL-CSIC), 28049 Madrid, Spain;
- Correspondence:
| |
Collapse
|
14
|
Liu R, Bao ZX, Zhao PJ, Li GH. Advances in the Study of Metabolomics and Metabolites in Some Species Interactions. Molecules 2021; 26:3311. [PMID: 34072976 PMCID: PMC8197931 DOI: 10.3390/molecules26113311] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/24/2021] [Accepted: 05/28/2021] [Indexed: 12/15/2022] Open
Abstract
In the natural environment, interactions between species are a common natural phenomena. The mechanisms of interaction between different species are mainly studied using genomic, transcriptomic, proteomic, and metabolomic techniques. Metabolomics is a crucial part of system biology and is based on precision instrument analysis. In the last decade, the emerging field of metabolomics has received extensive attention. Metabolomics not only provides a qualitative and quantitative method for studying the mechanisms of interactions between different species, but also helps clarify the mechanisms of defense between the host and pathogen, and to explore new metabolites with various biological activities. This review focuses on the methods and progress of interspecies metabolomics. Additionally, the prospects and challenges of interspecies metabolomics are discussed.
Collapse
Affiliation(s)
| | | | | | - Guo-Hong Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, and Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming 650091, China; (R.L.); (Z.-X.B.); (P.-J.Z.)
| |
Collapse
|
15
|
Pérez-Giménez J, Iturralde ET, Torres Tejerizo G, Quelas JI, Krol E, Borassi C, Becker A, Estevez JM, Lodeiro AR. A Stringent-Response-Defective Bradyrhizobium diazoefficiens Strain Does Not Activate the Type 3 Secretion System, Elicits an Early Plant Defense Response, and Circumvents NH 4NO 3-Induced Inhibition of Nodulation. Appl Environ Microbiol 2021; 87:e02989-20. [PMID: 33608284 PMCID: PMC8091029 DOI: 10.1128/aem.02989-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 02/08/2021] [Indexed: 12/30/2022] Open
Abstract
When subjected to nutritional stress, bacteria modify their amino acid metabolism and cell division activities by means of the stringent response, which is controlled by the Rsh protein in alphaproteobacteria. An important group of alphaproteobacteria are the rhizobia, which fix atmospheric N2 in symbiosis with legume plants. Although nutritional stress is common for rhizobia while infecting legume roots, the stringent response has scarcely been studied in this group of soil bacteria. In this report, we obtained a mutant with a kanamycin resistance insertion in the rsh gene of Bradyrhizobium diazoefficiens, the N2-fixing symbiont of soybean. This mutant was defective for type 3 secretion system induction, plant defense suppression at early root infection, and nodulation competition. Furthermore, the mutant produced smaller nodules, although with normal morphology, which led to lower plant biomass production. Soybean (Glycine max) genes GmRIC1 and GmRIC2, involved in autoregulation of nodulation, were upregulated in plants inoculated with the mutant under the N-free condition. In addition, when plants were inoculated in the presence of 10 mM NH4NO3, the mutant produced nodules containing bacteroids, and GmRIC1 and GmRIC2 were downregulated. The rsh mutant released more auxin to the culture supernatant than the wild type, which might in part explain its symbiotic behavior in the presence of combined N. These results indicate that the B. diazoefficiens stringent response integrates into the plant defense suppression and regulation of nodulation circuits in soybean, perhaps mediated by the type 3 secretion system.IMPORTANCE The symbiotic N2 fixation carried out between prokaryotic rhizobia and legume plants performs a substantial contribution to the N cycle in the biosphere. This symbiotic association is initiated when rhizobia infect and penetrate the root hairs, which is followed by the growth and development of root nodules, within which the infective rhizobia are established and protected. Thus, the nodule environment allows the expression and function of the enzyme complex that catalyzes N2 fixation. However, during early infection, the rhizobia find a harsh environment while penetrating the root hairs. To cope with this nuisance, the rhizobia mount a stress response known as the stringent response. In turn, the plant regulates nodulation in response to the presence of alternative sources of combined N in the surrounding medium. Control of these processes is crucial for a successful symbiosis, and here we show how the rhizobial stringent response may modulate plant defense suppression and the networks of regulation of nodulation.
Collapse
Affiliation(s)
- Julieta Pérez-Giménez
- IBBM, Facultad de Ciencias Exactas, CCT-La Plata CONICET, Universidad Nacional de La Plata, La Plata, Argentina
| | - Esteban T Iturralde
- IBBM, Facultad de Ciencias Exactas, CCT-La Plata CONICET, Universidad Nacional de La Plata, La Plata, Argentina
| | - Gonzalo Torres Tejerizo
- IBBM, Facultad de Ciencias Exactas, CCT-La Plata CONICET, Universidad Nacional de La Plata, La Plata, Argentina
| | - Juan Ignacio Quelas
- IBBM, Facultad de Ciencias Exactas, CCT-La Plata CONICET, Universidad Nacional de La Plata, La Plata, Argentina
| | - Elizaveta Krol
- Center for Synthetic Microbiology (SYNMIKRO), Department of Biology, Philipps-Universität Marburg, Marburg, Germany
| | - Cecilia Borassi
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires-CONICET, Buenos Aires, Argentina
| | - Anke Becker
- Center for Synthetic Microbiology (SYNMIKRO), Department of Biology, Philipps-Universität Marburg, Marburg, Germany
| | - José M Estevez
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires-CONICET, Buenos Aires, Argentina
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
- Millennium Institute for Integrative Biology (iBio), Santiago, Chile
| | - Aníbal R Lodeiro
- IBBM, Facultad de Ciencias Exactas, CCT-La Plata CONICET, Universidad Nacional de La Plata, La Plata, Argentina
- Laboratorio de Genética, Facultad de Ciencias Agrarias y Forestales, Universidad Nacional de La Plata, La Plata, Argentina
| |
Collapse
|
16
|
Ledermann R, Emmenegger B, Couzigou JM, Zamboni N, Kiefer P, Vorholt JA, Fischer HM. Bradyrhizobium diazoefficiens Requires Chemical Chaperones To Cope with Osmotic Stress during Soybean Infection. mBio 2021; 12:e00390-21. [PMID: 33785618 PMCID: PMC8092242 DOI: 10.1128/mbio.00390-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 02/25/2021] [Indexed: 01/24/2023] Open
Abstract
When engaging in symbiosis with legume hosts, rhizobia are confronted with environmental changes, including nutrient availability and stress exposure. Genetic circuits allow responding to these environmental stimuli to optimize physiological adaptations during the switch from the free-living to the symbiotic life style. A pivotal regulatory system of the nitrogen-fixing soybean endosymbiont Bradyrhizobium diazoefficiens for efficient symbiosis is the general stress response (GSR), which relies on the alternative sigma factor σEcfG However, the GSR-controlled process required for symbiosis has not been identified. Here, we demonstrate that biosynthesis of trehalose is under GSR control, and mutants lacking the respective biosynthetic genes otsA and/or otsB phenocopy GSR-deficient mutants under symbiotic and selected free-living stress conditions. The role of trehalose as a cytoplasmic chemical chaperone and stress protectant can be functionally replaced in an otsA or otsB mutant by introducing heterologous genetic pathways for biosynthesis of the chemically unrelated compatible solutes glycine betaine and (hydroxy)ectoine. Alternatively, uptake of exogenously provided trehalose also restores efficient symbiosis and tolerance to hyperosmotic and hyperionic stress of otsA mutants. Hence, elevated cytoplasmic trehalose levels resulting from GSR-controlled biosynthesis are crucial for B. diazoefficiens cells to overcome adverse conditions during early stages of host infection and ensure synchronization with root nodule development.IMPORTANCE The Bradyrhizobium-soybean symbiosis is of great agricultural significance and serves as a model system for fundamental research in bacterium-plant interactions. While detailed molecular insight is available about mutual recognition and early nodule organogenesis, our understanding of the host-imposed conditions and the physiology of infecting rhizobia during the transition from a free-living state in the rhizosphere to endosymbiotic bacteroids is currently limited. In this study, we show that the requirement of the rhizobial general stress response (GSR) during host infection is attributable to GSR-controlled biosynthesis of trehalose. Specifically, trehalose is crucial for an efficient symbiosis by acting as a chemical chaperone to protect rhizobia from osmostress during host infection.
Collapse
Affiliation(s)
| | | | | | - Nicola Zamboni
- ETH Zurich, Institute of Molecular Systems Biology, Zurich, Switzerland
| | - Patrick Kiefer
- ETH Zurich, Institute of Microbiology, Zurich, Switzerland
| | | | | |
Collapse
|
17
|
Thanthrige N, Bhowmik SD, Ferguson BJ, Kabbage M, Mundree SG, Williams B. Potential Biotechnological Applications of Autophagy for Agriculture. FRONTIERS IN PLANT SCIENCE 2021; 12:760407. [PMID: 34777441 PMCID: PMC8579036 DOI: 10.3389/fpls.2021.760407] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 09/29/2021] [Indexed: 05/02/2023]
Abstract
Autophagy is a genetically regulated, eukaryotic cellular degradation system that sequestrates cytoplasmic materials in specialised vesicles, termed autophagosomes, for delivery and breakdown in the lysosome or vacuole. In plants, autophagy plays essential roles in development (e.g., senescence) and responses to abiotic (e.g., nutrient starvation, drought and oxidative stress) and biotic stresses (e.g., hypersensitive response). Initially, autophagy was considered a non-selective bulk degradation mechanism that provides energy and building blocks for homeostatic balance during stress. Recent studies, however, reveal that autophagy may be more subtle and selectively target ubiquitylated protein aggregates, protein complexes and even organelles for degradation to regulate vital cellular processes even during favourable conditions. The selective nature of autophagy lends itself to potential manipulation and exploitation as part of designer protein turnover machinery for the development of stress-tolerant and disease-resistant crops, crops with increased yield potential and agricultural efficiency and reduced post-harvest losses. Here, we discuss our current understanding of autophagy and speculate its potential manipulation for improved agricultural performance.
Collapse
Affiliation(s)
- Nipuni Thanthrige
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology, Brisbane, QLD, Australia
| | - Sudipta Das Bhowmik
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology, Brisbane, QLD, Australia
| | - Brett J. Ferguson
- School of Agriculture and Food Sciences, University of Queensland, Brisbane, QLD, Australia
| | - Mehdi Kabbage
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI, United States
| | - Sagadevan G. Mundree
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology, Brisbane, QLD, Australia
| | - Brett Williams
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology, Brisbane, QLD, Australia
- *Correspondence: Brett Williams,
| |
Collapse
|
18
|
Liu A, Ku YS, Contador CA, Lam HM. The Impacts of Domestication and Agricultural Practices on Legume Nutrient Acquisition Through Symbiosis With Rhizobia and Arbuscular Mycorrhizal Fungi. Front Genet 2020; 11:583954. [PMID: 33193716 PMCID: PMC7554533 DOI: 10.3389/fgene.2020.583954] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 09/08/2020] [Indexed: 12/03/2022] Open
Abstract
Legumes are unique among plants as they can obtain nitrogen through symbiosis with nitrogen-fixing rhizobia that form root nodules in the host plants. Therefore they are valuable crops for sustainable agriculture. Increasing nitrogen fixation efficiency is not only important for achieving better plant growth and yield, but it is also crucial for reducing the use of nitrogen fertilizer. Arbuscular mycorrhizal fungi (AMF) are another group of important beneficial microorganisms that form symbiotic relationships with legumes. AMF can promote host plant growth by providing mineral nutrients and improving the soil ecosystem. The trilateral legume-rhizobia-AMF symbiotic relationships also enhance plant development and tolerance against biotic and abiotic stresses. It is known that domestication and agricultural activities have led to the reduced genetic diversity of cultivated germplasms and higher sensitivity to nutrient deficiencies in crop plants, but how domestication has impacted the capability of legumes to establish beneficial associations with rhizospheric microbes (including rhizobia and fungi) is not well-studied. In this review, we will discuss the impacts of domestication and agricultural practices on the interactions between legumes and soil microbes, focusing on the effects on AMF and rhizobial symbioses and hence nutrient acquisition by host legumes. In addition, we will summarize the genes involved in legume-microbe interactions and studies that have contributed to a better understanding of legume symbiotic associations using metabolic modeling.
Collapse
Affiliation(s)
| | | | | | - Hon-Ming Lam
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
19
|
Sharma MP, Grover M, Chourasiya D, Bharti A, Agnihotri R, Maheshwari HS, Pareek A, Buyer JS, Sharma SK, Schütz L, Mathimaran N, Singla-Pareek SL, Grossman JM, Bagyaraj DJ. Deciphering the Role of Trehalose in Tripartite Symbiosis Among Rhizobia, Arbuscular Mycorrhizal Fungi, and Legumes for Enhancing Abiotic Stress Tolerance in Crop Plants. Front Microbiol 2020; 11:509919. [PMID: 33042042 PMCID: PMC7527417 DOI: 10.3389/fmicb.2020.509919] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 08/20/2020] [Indexed: 01/31/2023] Open
Abstract
Drought is a critical factor limiting the productivity of legumes worldwide. Legumes can enter into a unique tripartite symbiotic relationship with root-nodulating bacteria of genera Rhizobium, Bradyrhizobium, or Sinorhizobium and colonization by arbuscular mycorrhizal fungi (AMF). Rhizobial symbiosis provides nitrogen necessary for growth. AMF symbiosis enhances uptake of diffusion-limited nutrients such as P, Zn, Cu, etc., and also water from the soil via plant-associated fungal hyphae. Rhizobial and AMF symbioses can act synergistically in promoting plant growth and fitness, resulting in overall yield benefits under drought stress. One of the approaches that rhizobia use to survive under stress is the accumulation of compatible solutes, or osmolytes, such as trehalose. Trehalose is a non-reducing disaccharide and an osmolyte reported to accumulate in a range of organisms. High accumulation of trehalose in bacteroids during nodulation protects cells and proteins from osmotic shock, desiccation, and heat under drought stress. Manipulation of trehalose cell concentrations has been directly correlated with stress response in plants and other organisms, including AMF. However, the role of this compound in the tripartite symbiotic relationship is not fully explored. This review describes the biological importance and the role of trehalose in the tripartite symbiosis between plants, rhizobia, and AMF. In particular, we review the physiological functions and the molecular investigations of trehalose carried out using omics-based approaches. This review will pave the way for future studies investigating possible metabolic engineering of this biomolecule for enhancing abiotic stress tolerance in plants.
Collapse
Affiliation(s)
- Mahaveer P. Sharma
- Microbiology Section, ICAR-Indian Institute of Soybean Research, Indore, India
| | - Minakshi Grover
- Division of Microbiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Dipanti Chourasiya
- Microbiology Section, ICAR-Indian Institute of Soybean Research, Indore, India
| | - Abhishek Bharti
- Microbiology Section, ICAR-Indian Institute of Soybean Research, Indore, India
| | - Richa Agnihotri
- Microbiology Section, ICAR-Indian Institute of Soybean Research, Indore, India
| | | | - Ashwani Pareek
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Jeffrey S. Buyer
- Sustainable Agricultural Systems Laboratory, United States Department of Agriculture, Agricultural Research Service, Beltsville Agricultural Research Center, Beltsville, MD, United States
| | - Sushil K. Sharma
- ICAR-National Institute of Biotic Stress Management, Raipur, India
| | - Lukas Schütz
- Department of Environmental Sciences-Botany, University of Basel, Basel, Switzerland
| | - Natarajan Mathimaran
- Department of Environmental Sciences-Botany, University of Basel, Basel, Switzerland
- M S Swaminathan Research Foundation, Chennai, India
| | - Sneh L. Singla-Pareek
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Julie M. Grossman
- Department of Horticultural Science, College of Food, Agricultural and Natural Resource Sciences, University of Minnesota, St. Paul, MN, United States
| | - Davis J. Bagyaraj
- Center for Natural Biological Resources and Community Development, Bengaluru, India
| |
Collapse
|
20
|
Zhang G, Ahmad MZ, Chen B, Manan S, Zhang Y, Jin H, Wang X, Zhao J. Lipidomic and transcriptomic profiling of developing nodules reveals the essential roles of active glycolysis and fatty acid and membrane lipid biosynthesis in soybean nodulation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:1351-1371. [PMID: 32412123 DOI: 10.1111/tpj.14805] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 04/16/2020] [Accepted: 04/28/2020] [Indexed: 05/11/2023]
Abstract
Symbiotic rhizobia-legume interactions are energy-demanding processes, and the carbon supply from host cells that is critically required for nodulation and nitrogen fixation is not fully understood. Investigation of the lipidomic and carbohydrate profiles with the transcriptome of developing nodules revealed highly activated glycolysis, fatty acid (FA), 2-monoacylglycerol (2-MAG), and membrane lipid biosynthesis and transport during nodule development. RNA-sequence profiling of metabolic genes in roots and developing nodules highlighted the enhanced expression of genes involved in the biosynthesis and transport of FAs, membrane lipids, and 2-MAG in rhizobia-soybean symbioses via the RAML-WRI-FatM-GPAT-STRL pathway, which is similar to that in legume-arbuscular mycorrhizal fungi symbiosis. The essential roles of the metabolic pathway during soybean nodulation were further supported by analysis of transgenic hairy roots overexpressing soybean GmWRI1b-OE and GmLEC2a-OE. GmLEC2a-OE hairy roots produced fewer nodules, in contrast to GmWRI1b-OE hairy roots. GmLEC2a-OE hairy roots displayed different or even opposite expression patterns of the genes involved in glycolysis and the synthesis of FAs, 2-MAG, TAG, and membrane lipids compared to GmWRI1b-OE hairy roots. Glycolysis, FA and membrane lipid biosynthesis were repressed in GmLEC2a-OE but increased in GmWRI1b-OE hairy roots, which may account for the reduced nodulation in GmLEC2a-OE hairy roots but increased nodulation in GmWRI1b-OE hairy roots. These data show that active FA, 2-MAG and membrane lipid biosynthesis are essential for nodulation and rhizobia-soybean symbioses. These data shed light on essential and complex lipid metabolism for soybean nodulation and nodule development, laying the foundation for the future detailed investigation of soybean nodulation.
Collapse
Affiliation(s)
- Gaoyang Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, College of Tea and Food Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Muhammad Z Ahmad
- State Key Laboratory of Tea Plant Biology and Utilization, College of Tea and Food Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Beibei Chen
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Sehrish Manan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yuliang Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Huanan Jin
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xuemin Wang
- Department of Biology, University of Missouri, St Louis, MO, 63121, USA
- Donald Danforth Plant Science Center, St Louis, MO, 63132, USA
| | - Jian Zhao
- State Key Laboratory of Tea Plant Biology and Utilization, College of Tea and Food Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| |
Collapse
|
21
|
Agtuca BJ, Stopka SA, Evans S, Samarah L, Liu Y, Xu D, Stacey MG, Koppenaal DW, Paša-Tolić L, Anderton CR, Vertes A, Stacey G. Metabolomic profiling of wild-type and mutant soybean root nodules using laser-ablation electrospray ionization mass spectrometry reveals altered metabolism. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:1937-1958. [PMID: 32410239 DOI: 10.1111/tpj.14815] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 04/05/2020] [Accepted: 04/17/2020] [Indexed: 05/18/2023]
Abstract
The establishment of the nitrogen-fixing symbiosis between soybean and Bradyrhizobium japonicum is a complex process. To document the changes in plant metabolism as a result of symbiosis, we utilized laser ablation electrospray ionization-mass spectrometry (LAESI-MS) for in situ metabolic profiling of wild-type nodules, nodules infected with a B. japonicum nifH mutant unable to fix nitrogen, nodules doubly infected by both strains, and nodules formed on plants mutated in the stearoyl-acyl carrier protein desaturase (sacpd-c) gene, which were previously shown to have an altered nodule ultrastructure. The results showed that the relative abundance of fatty acids, purines, and lipids was significantly changed in response to the symbiosis. The nifH mutant nodules had elevated levels of jasmonic acid, correlating with signs of nitrogen deprivation. Nodules resulting from the mixed inoculant displayed similar, overlapping metabolic distributions within the sectors of effective (fix+ ) and ineffective (nifH mutant, fix- ) endosymbionts. These data are inconsistent with the notion that plant sanctioning is cell autonomous. Nodules lacking sacpd-c displayed an elevation of soyasaponins and organic acids in the central necrotic regions. The present study demonstrates the utility of LAESI-MS for high-throughput screening of plant phenotypes. Overall, nodules disrupted in the symbiosis were elevated in metabolites related to plant defense.
Collapse
Affiliation(s)
- Beverly J Agtuca
- Divisions of Plant Sciences and Biochemistry, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
| | - Sylwia A Stopka
- Department of Chemistry, The George Washington University, Washington, DC, 20052, USA
| | - Sterling Evans
- Divisions of Plant Sciences and Biochemistry, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
| | - Laith Samarah
- Department of Chemistry, The George Washington University, Washington, DC, 20052, USA
| | - Yang Liu
- Department of Electrical Engineering and Computer Science, Informatics Institute and Christopher S. Bond Life Sciences Center, University of Missouri-Columbia, Columbia, MO, 65211, USA
| | - Dong Xu
- Department of Electrical Engineering and Computer Science, Informatics Institute and Christopher S. Bond Life Sciences Center, University of Missouri-Columbia, Columbia, MO, 65211, USA
| | - Minviluz G Stacey
- Divisions of Plant Sciences and Biochemistry, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
| | - David W Koppenaal
- Environmental Molecular Sciences Laboratory, Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, WA, 99354, USA
| | - Ljiljana Paša-Tolić
- Environmental Molecular Sciences Laboratory, Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, WA, 99354, USA
| | - Christopher R Anderton
- Environmental Molecular Sciences Laboratory, Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, WA, 99354, USA
| | - Akos Vertes
- Department of Chemistry, The George Washington University, Washington, DC, 20052, USA
| | - Gary Stacey
- Divisions of Plant Sciences and Biochemistry, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
| |
Collapse
|
22
|
Alemneh AA, Zhou Y, Ryder MH, Denton MD. Mechanisms in plant growth-promoting rhizobacteria that enhance legume-rhizobial symbioses. J Appl Microbiol 2020; 129:1133-1156. [PMID: 32592603 DOI: 10.1111/jam.14754] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/07/2020] [Accepted: 06/20/2020] [Indexed: 12/21/2022]
Abstract
Nitrogen fixation is an important biological process in terrestrial ecosystems and for global crop production. Legume nodulation and N2 fixation have been improved using nodule-enhancing rhizobacteria (NER) under both regular and stressed conditions. The positive effect of NER on legume-rhizobia symbiosis can be facilitated by plant growth-promoting (PGP) mechanisms, some of which remain to be identified. NER that produce aminocyclopropane-1-carboxylic acid deaminase and indole acetic acid enhance the legume-rhizobia symbiosis through (i) enhancing the nodule induction, (ii) improving the competitiveness of rhizobia for nodulation, (iii) prolonging functional nodules by suppressing nodule senescence and (iv) upregulating genes associated with legume-rhizobia symbiosis. The means by which these processes enhance the legume-rhizobia symbiosis is the focus of this review. A better understanding of the mechanisms by which PGP rhizobacteria operate, and how they can be altered, will provide opportunities to enhance legume-rhizobial interactions, to provide new advances in plant growth promotion and N2 fixation.
Collapse
Affiliation(s)
- A A Alemneh
- School of Agriculture, Food and Wine, The University of Adelaide, Glen Osmond, SA, Australia.,China-Australia Joint Laboratory for Soil Ecological Health and Remediation, The University of Adelaide, Glen Osmond, SA, Australia
| | - Y Zhou
- School of Agriculture, Food and Wine, The University of Adelaide, Glen Osmond, SA, Australia.,China-Australia Joint Laboratory for Soil Ecological Health and Remediation, The University of Adelaide, Glen Osmond, SA, Australia
| | - M H Ryder
- School of Agriculture, Food and Wine, The University of Adelaide, Glen Osmond, SA, Australia.,China-Australia Joint Laboratory for Soil Ecological Health and Remediation, The University of Adelaide, Glen Osmond, SA, Australia
| | - M D Denton
- School of Agriculture, Food and Wine, The University of Adelaide, Glen Osmond, SA, Australia.,China-Australia Joint Laboratory for Soil Ecological Health and Remediation, The University of Adelaide, Glen Osmond, SA, Australia
| |
Collapse
|
23
|
Agtuca BJ, Stopka SA, Tuleski TR, do Amaral FP, Evans S, Liu Y, Xu D, Monteiro RA, Koppenaal DW, Paša-Tolić L, Anderton CR, Vertes A, Stacey G. In-Situ Metabolomic Analysis of Setaria viridis Roots Colonized by Beneficial Endophytic Bacteria. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2020; 33:272-283. [PMID: 31544655 DOI: 10.1094/mpmi-06-19-0174-r] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Over the past decades, crop yields have risen in parallel with increasing use of fossil fuel-derived nitrogen (N) fertilizers but with concomitant negative impacts on climate and water resources. There is a need for more sustainable agricultural practices, and biological nitrogen fixation (BNF) could be part of the solution. A variety of nitrogen-fixing, epiphytic, and endophytic plant growth-promoting bacteria (PGPB) are known to stimulate plant growth. However, compared with the rhizobium-legume symbiosis, little mechanistic information is available as to how PGPB affect plant metabolism. Therefore, we investigated the metabolic changes in roots of the model grass species Setaria viridis upon endophytic colonization by Herbaspirillum seropedicae SmR1 (fix+) or a fix- mutant strain (SmR54) compared with uninoculated roots. Endophytic colonization of the root is highly localized and, hence, analysis of whole-root segments dilutes the metabolic signature of those few cells impacted by the bacteria. Therefore, we utilized in-situ laser ablation electrospray ionization mass spectrometry to sample only those root segments at or adjacent to the sites of bacterial colonization. Metabolites involved in purine, zeatin, and riboflavin pathways were significantly more abundant in inoculated plants, while metabolites indicative of nitrogen, starch, and sucrose metabolism were reduced in roots inoculated with the fix- strain or uninoculated, presumably due to N limitation. Interestingly, compounds, involved in indole-alkaloid biosynthesis were more abundant in the roots colonized by the fix- strain, perhaps reflecting a plant defense response.
Collapse
Affiliation(s)
- Beverly J Agtuca
- Divisions of Plant Sciences and Biochemistry, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, U.S.A
| | - Sylwia A Stopka
- Department of Chemistry, The George Washington University, Washington, DC 20052, U.S.A
| | - Thalita R Tuleski
- Divisions of Plant Sciences and Biochemistry, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, U.S.A
- Department of Biochemistry and Molecular Biology, Federal University of Paraná, CP 19046, 81.531-990 Curitiba, PR, Brazil
| | - Fernanda P do Amaral
- Divisions of Plant Sciences and Biochemistry, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, U.S.A
| | - Sterling Evans
- Divisions of Plant Sciences and Biochemistry, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, U.S.A
| | - Yang Liu
- Department of Electrical Engineering and Computer Science, Informatics Institute and Christopher S. Bond Life Sciences Center, University of Missouri Columbia
| | - Dong Xu
- Department of Electrical Engineering and Computer Science, Informatics Institute and Christopher S. Bond Life Sciences Center, University of Missouri Columbia
| | - Rose Adele Monteiro
- Department of Biochemistry and Molecular Biology, Federal University of Paraná, CP 19046, 81.531-990 Curitiba, PR, Brazil
| | - David W Koppenaal
- Environmental Molecular Sciences Laboratory, Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, WA 99354, U.S.A
| | - Ljiljana Paša-Tolić
- Environmental Molecular Sciences Laboratory, Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, WA 99354, U.S.A
| | - Christopher R Anderton
- Environmental Molecular Sciences Laboratory, Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, WA 99354, U.S.A
| | - Akos Vertes
- Department of Chemistry, The George Washington University, Washington, DC 20052, U.S.A
| | - Gary Stacey
- Divisions of Plant Sciences and Biochemistry, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, U.S.A
| |
Collapse
|
24
|
Chen B, Zhang G, Li P, Yang J, Guo L, Benning C, Wang X, Zhao J. Multiple GmWRI1s are redundantly involved in seed filling and nodulation by regulating plastidic glycolysis, lipid biosynthesis and hormone signalling in soybean (Glycine max). PLANT BIOTECHNOLOGY JOURNAL 2020; 18:155-171. [PMID: 31161718 PMCID: PMC6920143 DOI: 10.1111/pbi.13183] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 05/04/2019] [Accepted: 05/21/2019] [Indexed: 05/09/2023]
Abstract
It has been reported that lipid biosynthesis in plant host root cells plays critical roles in legume-fungal or -rhizobial symbioses, but little is known about its regulatory mechanism in legume-rhizobia interaction. Soybean WRINKLED1 (WRI1) a and b, with their alternative splicing (AS) products a' and b', are highly expressed in developing seeds and nodules, but their functions in soybean nodulation are not known. GmWRI1a and b differently promoted triacylglycerol (TAG) accumulation in both Arabidopsis wild-type and wri1 mutant seeds and when they ectopically expressed in the soybean hairy roots. Transcriptome analysis revealed that 15 genes containing AW boxes in their promoters were targeted by GmWRI1s, including genes involved in glycolysis, fatty acid (FA) and TAG biosynthesis. GmWRI1a, GmWRI1b and b' differentially transactivated most targeted genes. Overexpression of GmWRI1s affected phospholipid and galactolipid synthesis, soluble sugar and starch contents and led to increased nodule numbers, whereas GmWRI1 knockdown hairy roots interfered root glycolysis and lipid biosynthesis and resulted in fewer nodules. These phenomena in GmWRI1 mutants coincided with the altered expression of nodulation genes. Thus, GmWRI1-regulated starch degradation, glycolysis and lipid biosynthesis were critical for nodulation. GmWRI1 mutants also altered auxin and other hormone-related biosynthesis and hormone-related genes, by which GmWRI1s may affect nodule development. The study expands the views for pleiotropic effects of WRI1s in regulating soybean seed filling and root nodulation.
Collapse
Affiliation(s)
- Beibei Chen
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Gaoyang Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, College of Tea and Food Science and TechnologyAnhui Agricultural UniversityHefeiChina
| | - Penghui Li
- State Key Laboratory of Tea Plant Biology and Utilization, College of Tea and Food Science and TechnologyAnhui Agricultural UniversityHefeiChina
| | - Jihong Yang
- State Key Laboratory of Tea Plant Biology and Utilization, College of Tea and Food Science and TechnologyAnhui Agricultural UniversityHefeiChina
| | - Liang Guo
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Christoph Benning
- MSU‐DOE Plant Research LaboratoryMichigan State UniversityEast LansingMIUSA
| | - Xuemin Wang
- Department of BiologyUniversity of MissouriSt. LouisMOUSA
- Donald Danforth Plant Science CenterSt. LouisMOUSA
| | - Jian Zhao
- State Key Laboratory of Tea Plant Biology and Utilization, College of Tea and Food Science and TechnologyAnhui Agricultural UniversityHefeiChina
| |
Collapse
|
25
|
Sulieman S, Kusano M, Ha CV, Watanabe Y, Abdalla MA, Abdelrahman M, Kobayashi M, Saito K, Mühling KH, Tran LSP. Divergent metabolic adjustments in nodules are indispensable for efficient N 2 fixation of soybean under phosphate stress. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 289:110249. [PMID: 31623782 DOI: 10.1016/j.plantsci.2019.110249] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 07/18/2019] [Accepted: 08/30/2019] [Indexed: 06/10/2023]
Abstract
The main objective of the present study was to characterize the symbiotic N2 fixation (SNF) capacity and to elucidate the underlying mechanisms for low-Pi acclimation in soybean plants grown in association with two Bradyrhizobium diazoefficiens strains which differ in SNF capacity (USDA110 vs. CB1809). In comparison with the USDA110-soybean, the CB1809-soybean association revealed a greater SNF capacity in response to Pi starvation, as evidenced by relative higher plant growth and higher expression levels of the nifHDK genes. This enhanced Pi acclimation was partially related to the efficient utilization to the overall carbon (C) budget of symbiosis in the CB1809-induced nodules compared with that of the USDA110-induced nodules under low-Pi provision. In contrast, the USDA110-induced nodules favored other metabolic acclimation mechanisms that expend substantial C cost, and consequently cause negative implications on nodule C expenditure during low-Pi conditions. Fatty acids, phytosterols and secondary metabolites are characterized among the metabolic pathways involved in nodule acclimation under Pi starvation. While USDA110-soybean association performed better under Pi sufficiency, it is very likely that the CB1809-soybean association is better acclimatized to cope with Pi deficiency owing to the more effective functional plasticity and lower C cost associated with these nodular metabolic arrangements.
Collapse
Affiliation(s)
- Saad Sulieman
- Stress Adaptation Research Unit, RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama 230-0045, Japan; Institute of Plant Nutrition and Soil Science, Kiel University, Hermann-Rodewald-Straße 2, 24118 Kiel, Germany; Department of Agronomy, Faculty of Agriculture, University of Khartoum, 13314 Shambat, Khartoum North, Sudan
| | - Miyako Kusano
- Metabolomics Research Group, RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama 230-0045, Japan; Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| | - Chien Van Ha
- Stress Adaptation Research Unit, RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama 230-0045, Japan
| | - Yasuko Watanabe
- Stress Adaptation Research Unit, RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama 230-0045, Japan
| | - Muna Ali Abdalla
- Institute of Plant Nutrition and Soil Science, Kiel University, Hermann-Rodewald-Straße 2, 24118 Kiel, Germany; Department of Food Science and Technology, Faculty of Agriculture, University of Khartoum, 13314 Shambat, Khartoum North, Sudan
| | - Mostafa Abdelrahman
- Arid Land Research Center, Tottori University, Tottori 680-0001, Japan; Botany Department, Faculty of Science, Aswan University, Aswan 81528, Egypt
| | - Makoto Kobayashi
- Metabolomics Research Group, RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama 230-0045, Japan
| | - Kazuki Saito
- Metabolomics Research Group, RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama 230-0045, Japan; Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan
| | - Karl H Mühling
- Institute of Plant Nutrition and Soil Science, Kiel University, Hermann-Rodewald-Straße 2, 24118 Kiel, Germany
| | - Lam-Son Phan Tran
- Institute of Research and Development, Duy Tan University, 03 Quang Trung, Da Nang, Viet Nam; Stress Adaptation Research Unit, RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama 230-0045, Japan.
| |
Collapse
|
26
|
Alexander A, Singh VK, Mishra A, Jha B. Plant growth promoting rhizobacterium Stenotrophomonas maltophilia BJ01 augments endurance against N2 starvation by modulating physiology and biochemical activities of Arachis hypogea. PLoS One 2019; 14:e0222405. [PMID: 31513643 PMCID: PMC6742461 DOI: 10.1371/journal.pone.0222405] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 08/28/2019] [Indexed: 12/21/2022] Open
Abstract
Arachis hypogea (Peanut) is one of the most important crops, and it is harvested and used for food and oil production. Being a legume crop, the fixation of atmospheric nitrogen is achieved through symbiotic association. Nitrogen deficiency is one of the major constrains for loss of crop productivity. The bacterium Stenotrophomonas maltophilia is known for interactions with plants. In this study, characteristics that promote plant growth were explored for their ability to enhance the growth of peanut plants under N2 deficit condition. In the presence of S. maltophilia, it was observed that fatty acid composition of peanut plants was influenced and increased contents of omega-7 monounsaturated fatty acid and omega-6 fatty acid (γ-Linolenic acid) were detected. Plant growth was increased in plants co-cultivated with PGPR (Plant Growth Promoting Rhizobacteria) under normal and stress (nitrogen deficient) condition. Electrolyte leakage, lipid peroxidation, and H2O2 content reduced in plants, co-cultivated with PGPR under normal (grown in a media supplemented with N2 source; C+) or stress (nitrogen deficient N+) conditions compared to the corresponding control plants (i.e. not co-cultivated with PGPR; C-or N-). The growth hormone auxin, osmoprotectants (proline, total soluble sugars and total amino acids), total phenolic-compounds and total flavonoid content were enhanced in plants co-cultivated with PGPR. Additionally, antioxidant and free radical scavenging (DPPH, hydroxyl and H2O2) activities were increased in plants that were treated with PGPR under both normal and N2 deficit condition. Overall, these results indicate that plants co-cultivated with PGPR, S. maltophilia, increase plant growth, antioxidant levels, scavenging, and stress tolerance under N2 deficit condition. The beneficial use of bacterium S. maltophilia could be explored further as an efficient PGPR for growing agricultural crops under N2 deficit conditions. However, a detail agronomic study would be prerequisite to confirm its commercial role.
Collapse
Affiliation(s)
- Ankita Alexander
- Biotechnology and Phycology Division, CSIR- Central Salt and Marine Chemicals Research Institute, G. B. Marg, Bhavnagar, Gujarat, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR, Ghaziabad, India
| | - Vijay Kumar Singh
- Biotechnology and Phycology Division, CSIR- Central Salt and Marine Chemicals Research Institute, G. B. Marg, Bhavnagar, Gujarat, India
| | - Avinash Mishra
- Biotechnology and Phycology Division, CSIR- Central Salt and Marine Chemicals Research Institute, G. B. Marg, Bhavnagar, Gujarat, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR, Ghaziabad, India
| | - Bhavanath Jha
- Biotechnology and Phycology Division, CSIR- Central Salt and Marine Chemicals Research Institute, G. B. Marg, Bhavnagar, Gujarat, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR, Ghaziabad, India
| |
Collapse
|
27
|
Cesari A, Paulucci N, López-Gómez M, Hidalgo-Castellanos J, Plá CL, Dardanelli MS. Restrictive water condition modifies the root exudates composition during peanut-PGPR interaction and conditions early events, reversing the negative effects on plant growth. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 142:519-527. [PMID: 31450055 DOI: 10.1016/j.plaphy.2019.08.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 08/19/2019] [Indexed: 05/17/2023]
Abstract
Water deficit is one of the most serious environmental factors that affect the productivity of crops in the world. Arachis hypogaea is a legume with a high nutritional value and 70% is cultivated in semi-arid regions. This research aimed to study the effect of water deficit on peanut root exudates composition, analyzing the importance of exudates on peanut-PGPR interaction under restrictive water condition. Peanut seedlings were subjected to six treatments: 0 and 15 mM PEG, in combination with non-inoculated, Bradyrhizobium sp. and Bradyrhizobium-Azospirillum brasilense inoculated treatments. We analyzed the 7-day peanut root exudate in response to a water restrictive condition and the presence of bacterial inocula. Molecular analysis was performed by HPLC, UPLC and GC. Bacteria motility, chemotaxis, bacterial adhesion to peanut roots and peanut growth parameters were analyzed. Restrictive water condition modified the pattern of molecules exuded by roots, increasing the exudation of Naringenin, oleic FA, citric and lactic acid, and stimulation the release of terpenes of known antioxidant and antimicrobial activity. The presence of microorganisms modified the composition of root exudates. Water deficit affected the first events of peanut-PGPR interaction and the root exudates favored bacterial mobility, the chemotaxis and attachment of bacteria to peanut roots. Changes in the profile of molecules exuded by roots allowed A. hypogaea-Bradyrhizobium and A.hypogaea-Bradyrhizobium-Azospirillum interaction thus reversing the negative effects of restrictive water condition on peanut growth. These findings have a future potential application to improve plant-PGPR interactions under water deficit by formulating inoculants containing key molecules exuded during stress.
Collapse
Affiliation(s)
- Adriana Cesari
- Instituto de Biotecnología Ambiental y Salud (INBIAS- CONICET), Departamento de Biología Molecular, Universidad Nacional de Río Cuarto, Córdoba, Argentina.
| | - Natalia Paulucci
- Instituto de Biotecnología Ambiental y Salud (INBIAS- CONICET), Departamento de Biología Molecular, Universidad Nacional de Río Cuarto, Córdoba, Argentina
| | - Miguel López-Gómez
- Departamento de Fisiología Vegetal, Universidad de Granada, Campus de Fuentenueva, Granada, Spain
| | | | - Carmen Lluch Plá
- Departamento de Fisiología Vegetal, Universidad de Granada, Campus de Fuentenueva, Granada, Spain
| | - Marta Susana Dardanelli
- Instituto de Biotecnología Ambiental y Salud (INBIAS- CONICET), Departamento de Biología Molecular, Universidad Nacional de Río Cuarto, Córdoba, Argentina.
| |
Collapse
|
28
|
Nadeem M, Pham TH, Nieuwenhuis A, Ali W, Zaeem M, Ashiq W, Gillani SSM, Manful C, Adigun OA, Galagedara L, Cheema M, Thomas R. Adaptation strategies of forage soybeans cultivated on acidic soils under cool climate to produce high quality forage. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 283:278-289. [PMID: 31128698 DOI: 10.1016/j.plantsci.2019.03.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 03/15/2019] [Accepted: 03/16/2019] [Indexed: 06/09/2023]
Abstract
Boreal soils tend to be podzols characterized by acidic pH, which can further limit forage crop growth and production. It is unclear, how forage soybeans adopt to produce forage with high nutritional quality when cultivated on podzols in boreal climate. To answer this question, we cultivated forage soybeans on agricultural podzols at 3 farm sites with varied soil pH (6.8, 6.0 or 5.1), and assessed the root membrane lipidome remodeling response to such climatic conditions. Contrary to our expectations, significantly lower biomass was observed at pH 6.8 compared to 6.0 and 5.1. However, surprisingly the plants produced similar forage quality at 6.8 and 5.1 pH. Three major lipid classes including phospholipids, glycolipids and phytosterols were observed in roots irrespective of soil pH. Phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidic acid (PA), and acylated glucosyl betasitosterol ester (AGlcSiE) accounted for 95% of the root lipidome, and expressed significant changes in response to cultivation across the three soil pH levels. These lipids were also observed to have strong correlations with forage production, and forage quality. Therefore, soybean genotypes with higher abilities to remodel PC, PE, PA, and AGlcSiE could be better suited for producing higher quality forage in acid podzolic soils characteristics of boreal ecosystems.
Collapse
Affiliation(s)
- Muhammad Nadeem
- School of Science and the Environment, Grenfell Campus, Memorial University of Newfoundland, Corner Brook, A2H 5G4, Canada; Department of Environmental Sciences, COMSATS University of Islamabad, Vehari 61100, Pakistan.
| | - Thu Huong Pham
- School of Science and the Environment, Grenfell Campus, Memorial University of Newfoundland, Corner Brook, A2H 5G4, Canada
| | - Ashley Nieuwenhuis
- Agriculture Production and Research, Department of Fisheries and Land Resources, Pasadena, Newfoundland, Canada
| | - Waqas Ali
- School of Science and the Environment, Grenfell Campus, Memorial University of Newfoundland, Corner Brook, A2H 5G4, Canada
| | - Muhammad Zaeem
- School of Science and the Environment, Grenfell Campus, Memorial University of Newfoundland, Corner Brook, A2H 5G4, Canada
| | - Waqar Ashiq
- School of Science and the Environment, Grenfell Campus, Memorial University of Newfoundland, Corner Brook, A2H 5G4, Canada
| | - Syed Shah Mohioudin Gillani
- School of Science and the Environment, Grenfell Campus, Memorial University of Newfoundland, Corner Brook, A2H 5G4, Canada
| | - Charles Manful
- School of Science and the Environment, Grenfell Campus, Memorial University of Newfoundland, Corner Brook, A2H 5G4, Canada
| | - Oludoyin Adeseun Adigun
- School of Science and the Environment, Grenfell Campus, Memorial University of Newfoundland, Corner Brook, A2H 5G4, Canada
| | - Lakshman Galagedara
- School of Science and the Environment, Grenfell Campus, Memorial University of Newfoundland, Corner Brook, A2H 5G4, Canada
| | - Mumtaz Cheema
- School of Science and the Environment, Grenfell Campus, Memorial University of Newfoundland, Corner Brook, A2H 5G4, Canada.
| | - Raymond Thomas
- School of Science and the Environment, Grenfell Campus, Memorial University of Newfoundland, Corner Brook, A2H 5G4, Canada.
| |
Collapse
|
29
|
Perez de Souza L, Scossa F, Proost S, Bitocchi E, Papa R, Tohge T, Fernie AR. Multi-tissue integration of transcriptomic and specialized metabolite profiling provides tools for assessing the common bean (Phaseolus vulgaris) metabolome. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 97:1132-1153. [PMID: 30480348 PMCID: PMC6850281 DOI: 10.1111/tpj.14178] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 11/15/2018] [Accepted: 11/23/2018] [Indexed: 05/02/2023]
Abstract
Common bean (Phaseolus vulgaris L.) is an important legume species with a rich natural diversity of landraces that originated from the wild forms following multiple independent domestication events. After the publication of its genome, several resources for this relevant crop have been made available. A comprehensive characterization of specialized metabolism in P. vulgaris, however, is still lacking. In this study, we used a metabolomics approach based on liquid chromatography-mass spectrometry to dissect the chemical composition at a tissue-specific level in several accessions of common bean belonging to different gene pools. Using a combination of literature search, mass spectral interpretation, 13 C-labeling, and correlation analyses, we were able to assign chemical classes and/or putative structures for approximately 39% of all measured metabolites. Additionally, we integrated this information with transcriptomics data and phylogenetic inference from multiple legume species to reconstruct the possible metabolic pathways and identify sets of candidate genes involved in the biosynthesis of specialized metabolites. A particular focus was given to flavonoids, triterpenoid saponins and hydroxycinnamates, as they represent metabolites involved in important ecological interactions and they are also associated with several health-promoting benefits when integrated into the human diet. The data are presented here in the form of an accessible resource that we hope will set grounds for further studies on specialized metabolism in legumes.
Collapse
Affiliation(s)
| | - Federico Scossa
- Max‐Planck‐Institute of Molecular Plant PhysiologyAm Müehlenberg 1Potsdam‐Golm14476Germany
- Consiglio per la ricerca in agricoltura e l′analisi dell′economia agrariaCREA‐OFAVia di Fioranello 5200134RomeItaly
| | - Sebastian Proost
- Max‐Planck‐Institute of Molecular Plant PhysiologyAm Müehlenberg 1Potsdam‐Golm14476Germany
| | - Elena Bitocchi
- Department of Agricultural, Food, and Environmental SciencesUniversità Politecnica delle Marche60131AnconaItaly
| | - Roberto Papa
- Department of Agricultural, Food, and Environmental SciencesUniversità Politecnica delle Marche60131AnconaItaly
| | - Takayuki Tohge
- Max‐Planck‐Institute of Molecular Plant PhysiologyAm Müehlenberg 1Potsdam‐Golm14476Germany
- Graduate School of Biological SciencesNara Institute of Science and TechnologyIkoma, Nara630‐0192Japan
| | - Alisdair R. Fernie
- Max‐Planck‐Institute of Molecular Plant PhysiologyAm Müehlenberg 1Potsdam‐Golm14476Germany
| |
Collapse
|
30
|
Mayo-Prieto S, Marra R, Vinale F, Rodríguez-González Á, Woo SL, Lorito M, Gutiérrez S, Casquero PA. Effect of Trichoderma velutinum and Rhizoctonia solani on the Metabolome of Bean Plants ( Phaseolus vulgaris L.). Int J Mol Sci 2019; 20:E549. [PMID: 30696057 PMCID: PMC6387467 DOI: 10.3390/ijms20030549] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 01/23/2019] [Accepted: 01/24/2019] [Indexed: 11/24/2022] Open
Abstract
The common bean (Phaseolus vulgaris L.) is one of the most important food legume crops worldwide that is affected by phytopathogenic fungi such as Rhizoctonia solani. Biological control represents an effective alternative method for the use of conventional synthetic chemical pesticides for crop protection. Trichoderma spp. have been successfully used in agriculture both to control fungal diseases and to promote plant growth. The response of the plant to the invasion of fungi activates defensive resistance responses by inducing the expression of genes and producing secondary metabolites. The purpose of this work was to analyze the changes in the bean metabolome that occur during its interaction with pathogenic (R. solani) and antagonistic (T. velutinum) fungi. In this work, 216 compounds were characterized by liquid chromatography mass spectrometry (LC-MS) analysis but only 36 were noted as significantly different in the interaction in comparison to control plants and they were tentatively characterized. These compounds were classified as: two amino acids, three peptides, one carbohydrate, one glycoside, one fatty acid, two lipids, 17 flavonoids, four phenols and four terpenes. This work is the first attempt to determine how the presence of T. velutinum and/or R. solani affect the defense response of bean plants using untargeted metabolomics analysis.
Collapse
Affiliation(s)
- Sara Mayo-Prieto
- Grupo Universitario de Investigación en Ingeniería y Agricultura Sostenible (GUIIAS), Instituto de Medio Ambiente, Recursos Naturales y Biodiversidad, Universidad de León, Avenida Portugal 41, 24071 León, Spain.
| | - Roberta Marra
- Dipartimento di Agraria, Università degli Studi di Napoli Federico II, Via Università 100, 80055 Portici (NA), Italy.
| | - Francesco Vinale
- Istituto per la Protezione Sostenibile delle Piante, Consiglio Nazionale delle Ricerche, Via Università 133, 80055 Portici (NA), Italy.
| | - Álvaro Rodríguez-González
- Grupo Universitario de Investigación en Ingeniería y Agricultura Sostenible (GUIIAS), Instituto de Medio Ambiente, Recursos Naturales y Biodiversidad, Universidad de León, Avenida Portugal 41, 24071 León, Spain.
| | - Sheridan Lewis Woo
- Istituto per la Protezione Sostenibile delle Piante, Consiglio Nazionale delle Ricerche, Via Università 133, 80055 Portici (NA), Italy.
- Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, Via Domenico Montesano, 49, 80131 Napoli, Italy.
| | - Matteo Lorito
- Dipartimento di Agraria, Università degli Studi di Napoli Federico II, Via Università 100, 80055 Portici (NA), Italy.
- Istituto per la Protezione Sostenibile delle Piante, Consiglio Nazionale delle Ricerche, Via Università 133, 80055 Portici (NA), Italy.
| | - Santiago Gutiérrez
- Grupo Universitario de Investigación en Ingeniería y Agricultura Sostenible (GUIIAS), Área de Microbiología, Escuela de Ingeniería Agraria y Forestal, Universidad de León, Campus de Ponferrada, Avenida Astorga s/n, 24401 Ponferrada, Spain.
| | - Pedro A Casquero
- Grupo Universitario de Investigación en Ingeniería y Agricultura Sostenible (GUIIAS), Instituto de Medio Ambiente, Recursos Naturales y Biodiversidad, Universidad de León, Avenida Portugal 41, 24071 León, Spain.
| |
Collapse
|
31
|
diCenzo GC, Zamani M, Checcucci A, Fondi M, Griffitts JS, Finan TM, Mengoni A. Multidisciplinary approaches for studying rhizobium–legume symbioses. Can J Microbiol 2019; 65:1-33. [DOI: 10.1139/cjm-2018-0377] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The rhizobium–legume symbiosis is a major source of fixed nitrogen (ammonia) in the biosphere. The potential for this process to increase agricultural yield while reducing the reliance on nitrogen-based fertilizers has generated interest in understanding and manipulating this process. For decades, rhizobium research has benefited from the use of leading techniques from a very broad set of fields, including population genetics, molecular genetics, genomics, and systems biology. In this review, we summarize many of the research strategies that have been employed in the study of rhizobia and the unique knowledge gained from these diverse tools, with a focus on genome- and systems-level approaches. We then describe ongoing synthetic biology approaches aimed at improving existing symbioses or engineering completely new symbiotic interactions. The review concludes with our perspective of the future directions and challenges of the field, with an emphasis on how the application of a multidisciplinary approach and the development of new methods will be necessary to ensure successful biotechnological manipulation of the symbiosis.
Collapse
Affiliation(s)
- George C. diCenzo
- Department of Biology, University of Florence, Sesto Fiorentino, FI 50019, Italy
| | - Maryam Zamani
- Department of Biology, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Alice Checcucci
- Department of Biology, University of Florence, Sesto Fiorentino, FI 50019, Italy
| | - Marco Fondi
- Department of Biology, University of Florence, Sesto Fiorentino, FI 50019, Italy
| | - Joel S. Griffitts
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602, USA
| | - Turlough M. Finan
- Department of Biology, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Alessio Mengoni
- Department of Biology, University of Florence, Sesto Fiorentino, FI 50019, Italy
| |
Collapse
|
32
|
Tang J, Bassham DC. Autophagy in crop plants: what's new beyond Arabidopsis? Open Biol 2018; 8:180162. [PMID: 30518637 PMCID: PMC6303781 DOI: 10.1098/rsob.180162] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 11/08/2018] [Indexed: 12/19/2022] Open
Abstract
Autophagy is a major degradation and recycling pathway in plants. It functions to maintain cellular homeostasis and is induced by environmental cues and developmental stimuli. Over the past decade, the study of autophagy has expanded from model plants to crop species. Many features of the core machinery and physiological functions of autophagy are conserved among diverse organisms. However, several novel functions and regulators of autophagy have been characterized in individual plant species. In light of its critical role in development and stress responses, a better understanding of autophagy in crop plants may eventually lead to beneficial agricultural applications. Here, we review recent progress on understanding autophagy in crops and discuss potential future research directions.
Collapse
Affiliation(s)
- Jie Tang
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA
| | - Diane C Bassham
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
33
|
Libault M. Transcriptional Reprogramming of Legume Genomes: Perspective and Challenges Associated With Single-Cell and Single Cell-Type Approaches During Nodule Development. FRONTIERS IN PLANT SCIENCE 2018; 9:1600. [PMID: 30467509 PMCID: PMC6237103 DOI: 10.3389/fpls.2018.01600] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 10/17/2018] [Indexed: 05/11/2023]
Abstract
Transcriptomic approaches revealed thousands of genes differentially or specifically expressed during nodulation, a biological process resulting from the symbiosis between leguminous plant roots and rhizobia, atmospheric nitrogen-fixing symbiotic bacteria. Ultimately, nodulation will lead to the development of a new root organ, the nodule. Through functional genomic studies, plant transcriptomes have been used by scientists to reveal plant genes potentially controlling nodulation. However, it is important to acknowledge that the physiology, transcriptomic programs, and biochemical properties of the plant cells involved in nodulation are continuously regulated. They also differ between the different cell-types composing the nodules. To generate a more accurate picture of the transcriptome, epigenome, proteome, and metabolome of the cells infected by rhizobia and cells composing the nodule, there is a need to implement plant single-cell and single cell-types strategies and methods. Accessing such information would allow a better understanding of the infection of plant cells by rhizobia and will help understanding the complex interactions existing between rhizobia and the plant cells. In this mini-review, we are reporting the current knowledge on legume nodulation gained by plant scientists at the level of single cell-types, and provide perspectives on single cell/single cell-type approaches when applied to legume nodulation.
Collapse
Affiliation(s)
- Marc Libault
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, United States
- Centre for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, United States
- Center for Root and Rhizobiome Innovation, University of Nebraska-Lincoln, Lincoln, NE, United States
| |
Collapse
|
34
|
Pingault L, Zogli P, Brooks J, Libault M. Enhancing Phenotyping and Molecular Analysis of Plant Root System Using Ultrasound Aeroponic Technology. ACTA ACUST UNITED AC 2018; 3:e20078. [PMID: 30379413 DOI: 10.1002/cppb.20078] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Several plant growth systems are available to enhance the observation of the root system (e.g., hydroponic and aeroponic plant growth systems, use of transparent soils, etc.). This article describes the use of the ultrasound aeroponic system (USAS) to treat and to enhance access to the root systems of various model plant and crop species (e.g., Arabidopsis thaliana, Medicago truncatula, soybean, etc.). This system is also compatible with short-term (hr) and long-term (days/weeks) biotic and abiotic treatments of plants. Upon treatment, the ease of access to the plant root system facilitates phenotyping (e.g., analysis of root architecture, establishment of root light spectrum using remote sensing technology), microscopic, molecular, and biochemical experiments. In addition, to facilitate functional genomic studies, we combined the use of the USAS with the hairy root transformation system to grow and observe transgenic roots on composite legume plants. © 2018 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Lise Pingault
- Center for Plant Science Innovation, Department of Agronomy and Horticulture, Beadle Center, University of Nebraska-Lincoln, Lincoln, Nebraska
| | - Prince Zogli
- Center for Plant Science Innovation, Department of Agronomy and Horticulture, Beadle Center, University of Nebraska-Lincoln, Lincoln, Nebraska
| | - Jennifer Brooks
- Department of Microbiology and Plant Biology, George Lynn Cross Hall, University of Oklahoma, Norman, Oklahoma
| | - Marc Libault
- Center for Plant Science Innovation, Department of Agronomy and Horticulture, Beadle Center, University of Nebraska-Lincoln, Lincoln, Nebraska
| |
Collapse
|
35
|
Cagide C, Riviezzi B, Minteguiaga M, Morel MA, Castro-Sowinski S. Identification of Plant Compounds Involved in the Microbe-Plant Communication During the Coinoculation of Soybean with Bradyrhizobium elkanii and Delftia sp. strain JD2. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2018; 31:1192-1199. [PMID: 29845886 DOI: 10.1094/mpmi-04-18-0080-cr] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Delftia sp. strain JD2 is a betaproteobacterium characterized as a plant growth-promoting bacterium with a 'helper' function, enhancing the performance of rhizobial inoculant strains during the coinoculation of alfalfa and clover. In this work we analyzed i) the effect of the coinoculation with Bradyrhizobium elkanii and Delftia sp. strain JD2 strains on the performance of soybean plants and ii) the production of a few secondary plant metabolites that would explain the positive effect of coinoculation on the growth and development of soybean plants. The results showed a beneficial effect of coinoculation on soybean growth, nodulation rate, and pulse yield, with the concomitant benefit for the agricultural economy. In addition, based on a metabolomics approach, we demonstrated that a different pattern of plant metabolites is being produced at different stages of plant growth. The new information suggests that the coinoculation of soybean changes the primary and secondary metabolism of the plant, including changes in the metabolic status of main and secondary nodules within the plant. The relevance of producing a different pattern of photosynthetic and photoprotective pigments, flavonoids, organic acids, and carbohydrates are discussed. Finally, we propose that JD2 could be used together with bradyrhizobia to manipulate the chemical composition of plant tissues, promoting the nutritional benefits and health of soybean.
Collapse
Affiliation(s)
- Célica Cagide
- 1 Molecular Microbiology, Institute Clemente Estable, Av. Italia 3318, 11600 Montevideo, Uruguay; and
| | - Braulio Riviezzi
- 1 Molecular Microbiology, Institute Clemente Estable, Av. Italia 3318, 11600 Montevideo, Uruguay; and
| | - Manuel Minteguiaga
- 1 Molecular Microbiology, Institute Clemente Estable, Av. Italia 3318, 11600 Montevideo, Uruguay; and
| | - María A Morel
- 1 Molecular Microbiology, Institute Clemente Estable, Av. Italia 3318, 11600 Montevideo, Uruguay; and
| | - Susana Castro-Sowinski
- 1 Molecular Microbiology, Institute Clemente Estable, Av. Italia 3318, 11600 Montevideo, Uruguay; and
- 2 Biochemistry and Molecular Biology, Faculty of Sciences, Universidad de la República, Igua 4225, 11400 Montevideo, Uruguay
| |
Collapse
|
36
|
Pavlyshche A, Kyrychenko O, Kots S. Metabolic changes in the content of organic acids in roots of Glycine max (Fabaceae) at the early stages of symbiosis formation under the influence of fungicides. UKRAINIAN BOTANICAL JOURNAL 2018. [DOI: 10.15407/ukrbotj75.05.480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
37
|
Moon S, Chandran AKN, An G, Lee C, Jung KH. Genome-wide analysis of root hair-preferential genes in rice. RICE (NEW YORK, N.Y.) 2018; 11:48. [PMID: 30159808 PMCID: PMC6115326 DOI: 10.1186/s12284-018-0241-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Accepted: 08/10/2018] [Indexed: 05/28/2023]
Abstract
BACKGROUND Root hairs are valuable in taking up nutrients and water from the rhizosphere and serving as sites of interactions with soil microorganisms. By increasing the external surface area of the roots or interacting with rhizobacteria, root hairs directly and indirectly promote plant growth and yield. Transcriptome data can be used to understand root-hair development in rice. RESULT We performed Agilent 44 K microarray experiments with enriched root-hair samples and identified 409 root hair-preferential genes in rice. The expression patterns of six genes were confirmed using a GUS reporter system and quantitative RT-PCR analysis. Gene Ontology (GO) analysis demonstrated that 13 GO terms, including oxygen transport and cell wall generation, were highly over-represented in those genes. Although comparative analysis between rice and Arabidopsis revealed a large proportion of orthologous pairs, their spatial expression patterns were not conserved. To investigate the molecular network associated with root hair-preferential genes in rice, we analyzed the PPI network as well as coexpression data. Subsequently, we developed a refined network consisting of 24 interactions between 10 genes and 18 of their interactors. CONCLUSION Identification of root hair-preferential genes and in depth analysis of those genes will be a useful reference to accelerate the understanding of root-hair development in rice.
Collapse
Affiliation(s)
- Sunok Moon
- Department of Genetic Engineering and Crop Biotech Institute, Kyung Hee University, Yongin, 17104, Korea
| | - Anil Kumar Nalini Chandran
- Department of Genetic Engineering and Crop Biotech Institute, Kyung Hee University, Yongin, 17104, Korea
| | - Gynheung An
- Department of Genetic Engineering and Crop Biotech Institute, Kyung Hee University, Yongin, 17104, Korea
| | - Chanhui Lee
- Department of Plant and Environmental New Resources, Kyung Hee University, Yongin, 17104, Korea.
| | - Ki-Hong Jung
- Department of Genetic Engineering and Crop Biotech Institute, Kyung Hee University, Yongin, 17104, Korea.
| |
Collapse
|
38
|
Functional Genomics Approaches to Studying Symbioses between Legumes and Nitrogen-Fixing Rhizobia. High Throughput 2018; 7:ht7020015. [PMID: 29783718 PMCID: PMC6023288 DOI: 10.3390/ht7020015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 05/13/2018] [Accepted: 05/16/2018] [Indexed: 01/24/2023] Open
Abstract
Biological nitrogen fixation gives legumes a pronounced growth advantage in nitrogen-deprived soils and is of considerable ecological and economic interest. In exchange for reduced atmospheric nitrogen, typically given to the plant in the form of amides or ureides, the legume provides nitrogen-fixing rhizobia with nutrients and highly specialised root structures called nodules. To elucidate the molecular basis underlying physiological adaptations on a genome-wide scale, functional genomics approaches, such as transcriptomics, proteomics, and metabolomics, have been used. This review presents an overview of the different functional genomics approaches that have been performed on rhizobial symbiosis, with a focus on studies investigating the molecular mechanisms used by the bacterial partner to interact with the legume. While rhizobia belonging to the alpha-proteobacterial group (alpha-rhizobia) have been well studied, few studies to date have investigated this process in beta-proteobacteria (beta-rhizobia).
Collapse
|
39
|
Ceapă CD, Vázquez-Hernández M, Rodríguez-Luna SD, Cruz Vázquez AP, Jiménez Suárez V, Rodríguez-Sanoja R, Alvarez-Buylla ER, Sánchez S. Genome mining of Streptomyces scabrisporus NF3 reveals symbiotic features including genes related to plant interactions. PLoS One 2018; 13:e0192618. [PMID: 29447216 PMCID: PMC5813959 DOI: 10.1371/journal.pone.0192618] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 01/27/2018] [Indexed: 12/17/2022] Open
Abstract
Endophytic bacteria are wide-spread and associated with plant physiological benefits, yet their genomes and secondary metabolites remain largely unidentified. In this study, we explored the genome of the endophyte Streptomyces scabrisporus NF3 for discovery of potential novel molecules as well as genes and metabolites involved in host interactions. The complete genomes of seven Streptomyces and three other more distantly related bacteria were used to define the functional landscape of this unique microbe. The S. scabrisporus NF3 genome is larger than the average Streptomyces genome and not structured for an obligate endosymbiotic lifestyle; this and the fact that can grow in R2YE media implies that it could include a soil-living stage. The genome displays an enrichment of genes associated with amino acid production, protein secretion, secondary metabolite and antioxidants production and xenobiotic degradation, indicating that S. scabrisporus NF3 could contribute to the metabolic enrichment of soil microbial communities and of its hosts. Importantly, besides its metabolic advantages, the genome showed evidence for differential functional specificity and diversification of plant interaction molecules, including genes for the production of plant hormones, stress resistance molecules, chitinases, antibiotics and siderophores. Given the diversity of S. scabrisporus mechanisms for host upkeep, we propose that these strategies were necessary for its adaptation to plant hosts and to face changes in environmental conditions.
Collapse
Affiliation(s)
- Corina Diana Ceapă
- Departmento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, México
| | - Melissa Vázquez-Hernández
- Departmento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, México
| | - Stefany Daniela Rodríguez-Luna
- Departmento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, México
| | - Angélica Patricia Cruz Vázquez
- Departmento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, México
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de Plantas, Instituto de Ecología, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, México
- Instituto Tecnológico de Tuxtla Gutiérrez,Tuxtla, Gutiérrez, Chiapas, México
| | - Verónica Jiménez Suárez
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de Plantas, Instituto de Ecología, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, México
| | - Romina Rodríguez-Sanoja
- Departmento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, México
| | - Elena R. Alvarez-Buylla
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de Plantas, Instituto de Ecología, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, México
| | - Sergio Sánchez
- Departmento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, México
| |
Collapse
|
40
|
Keller J, Imperial J, Ruiz-Argüeso T, Privet K, Lima O, Michon-Coudouel S, Biget M, Salmon A, Aïnouche A, Cabello-Hurtado F. RNA sequencing and analysis of three Lupinus nodulomes provide new insights into specific host-symbiont relationships with compatible and incompatible Bradyrhizobium strains. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 266:102-116. [PMID: 29241560 DOI: 10.1016/j.plantsci.2017.10.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 10/11/2017] [Accepted: 10/27/2017] [Indexed: 06/07/2023]
Abstract
Nitrogen fixation in the legume root-nodule symbiosis has a critical importance in natural and agricultural ecosystems and depends on the proper choice of the symbiotic partners. However, the genetic determinism of symbiotic specificity remains unclear. To study this process, we inoculated three Lupinus species (L. albus, L. luteus, L. mariae-josephae), belonging to the under-investigated tribe of Genistoids, with two Bradyrhizobium strains (B. japonicum, B. valentinum) presenting contrasted degrees of symbiotic specificity depending on the host. We produced the first transcriptomes (RNA-Seq) from lupine nodules in a context of symbiotic specificity. For each lupine species, we compared gene expression between functional and non-functional interactions and determined differentially expressed (DE) genes. This revealed that L. luteus and L. mariae-josephae (nodulated by only one of the Bradyrhizobium strains) specific nodulomes were richest in DE genes than L. albus (nodulation with both microsymbionts, but non-functional with B. valentinum) and share a higher number of these genes between them than with L. albus. In addition, a functional analysis of DE genes highlighted the central role of the genetic pathways controlling infection and nodule organogenesis, hormones, secondary, carbon and nitrogen metabolisms, as well as the implication of plant defence in response to compatible or incompatible Bradyrhizobium strains.
Collapse
Affiliation(s)
- J Keller
- UMR CNRS 6553 Ecobio, OSUR (Observatoire des Sciences de l'Univers de Rennes), Université de Rennes 1, 35042 Rennes, France
| | - J Imperial
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), 28223 Pozuelo de Alarcón, Madrid, Spain; Instituto de Ciencias Agrarias, Consejo Superior de Investigaciones Científicas (CSIC), 28006 Madrid, Spain
| | - T Ruiz-Argüeso
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), 28223 Pozuelo de Alarcón, Madrid, Spain
| | - K Privet
- UMR CNRS 6553 Ecobio, OSUR (Observatoire des Sciences de l'Univers de Rennes), Université de Rennes 1, 35042 Rennes, France
| | - O Lima
- UMR CNRS 6553 Ecobio, OSUR (Observatoire des Sciences de l'Univers de Rennes), Université de Rennes 1, 35042 Rennes, France
| | - S Michon-Coudouel
- Environmental and Human Genomics Platform, OSUR (Observatoire des Sciences de l'Univers de Rennes), Université de Rennes 1, 35042 Rennes, France
| | - M Biget
- Environmental and Human Genomics Platform, OSUR (Observatoire des Sciences de l'Univers de Rennes), Université de Rennes 1, 35042 Rennes, France
| | - A Salmon
- UMR CNRS 6553 Ecobio, OSUR (Observatoire des Sciences de l'Univers de Rennes), Université de Rennes 1, 35042 Rennes, France
| | - A Aïnouche
- UMR CNRS 6553 Ecobio, OSUR (Observatoire des Sciences de l'Univers de Rennes), Université de Rennes 1, 35042 Rennes, France
| | - F Cabello-Hurtado
- UMR CNRS 6553 Ecobio, OSUR (Observatoire des Sciences de l'Univers de Rennes), Université de Rennes 1, 35042 Rennes, France.
| |
Collapse
|
41
|
Metabolic Signatures in Response to Abscisic Acid (ABA) Treatment in Brassica napus Guard Cells Revealed by Metabolomics. Sci Rep 2017; 7:12875. [PMID: 28993661 PMCID: PMC5634414 DOI: 10.1038/s41598-017-13166-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 09/19/2017] [Indexed: 11/08/2022] Open
Abstract
Drought can severely damage crops, resulting in major yield losses. During drought, vascular land plants conserve water via stomatal closure. Each stomate is bordered by a pair of guard cells that shrink in response to drought and the associated hormone abscisic acid (ABA). The activation of complex intracellular signaling networks underlies these responses. Therefore, analysis of guard cell metabolites is fundamental for elucidation of guard cell signaling pathways. Brassica napus is an important oilseed crop for human consumption and biodiesel production. Here, non-targeted metabolomics utilizing gas chromatography mass spectrometry (GC-MS/MS) and liquid chromatography mass spectrometry (LC-MS/MS) were employed for the first time to identify metabolic signatures in response to ABA in B. napus guard cell protoplasts. Metabolome profiling identified 390 distinct metabolites in B. napus guard cells, falling into diverse classes. Of these, 77 metabolites, comprising both primary and secondary metabolites were found to be significantly ABA responsive, including carbohydrates, fatty acids, glucosinolates, and flavonoids. Selected secondary metabolites, sinigrin, quercetin, campesterol, and sitosterol, were confirmed to regulate stomatal closure in Arabidopsis thaliana, B. napus or both species. Information derived from metabolite datasets can provide a blueprint for improvement of water use efficiency and drought tolerance in crops.
Collapse
|
42
|
Lakhssassi N, Colantonio V, Flowers ND, Zhou Z, Henry J, Liu S, Meksem K. Stearoyl-Acyl Carrier Protein Desaturase Mutations Uncover an Impact of Stearic Acid in Leaf and Nodule Structure. PLANT PHYSIOLOGY 2017; 174:1531-1543. [PMID: 28461402 PMCID: PMC5490888 DOI: 10.1104/pp.16.01929] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 04/26/2017] [Indexed: 05/20/2023]
Abstract
Stearoyl-acyl carrier protein desaturase (SACPD-C) has been reported to control the accumulation of seed stearic acid; however, no study has previously reported its involvement in leaf stearic acid content and impact on leaf structure and morphology. A subset of an ethyl methanesulfonate mutagenized population of soybean (Glycine max) 'Forrest' was screened to identify mutants within the GmSACPD-C gene. Using a forward genetics approach, one nonsense and four missense Gmsacpd-c mutants were identified to have high levels of seed, nodule, and leaf stearic acid content. Homology modeling and in silico analysis of the GmSACPD-C enzyme revealed that most of these mutations were localized near or at conserved residues essential for diiron ion coordination. Soybeans carrying Gmsacpd-c mutations at conserved residues showed the highest stearic acid content, and these mutations were found to have deleterious effects on nodule development and function. Interestingly, mutations at nonconserved residues show an increase in stearic acid content yet retain healthy nodules. Thus, random mutagenesis and mutational analysis allows for the achievement of high seed stearic acid content with no associated negative agronomic characteristics. Additionally, expression analysis demonstrates that nodule leghemoglobin transcripts were significantly more abundant in soybeans with deleterious mutations at conserved residues of GmSACPD-C. Finally, we report that Gmsacpd-c mutations cause an increase in leaf stearic acid content and an alteration of leaf structure and morphology in addition to differences in nitrogen-fixing nodule structure.
Collapse
Affiliation(s)
- Naoufal Lakhssassi
- Department of Plant, Soil, and Agricultural Systems, Southern Illinois University, Carbondale, Illinois 62901
| | - Vincent Colantonio
- Department of Plant, Soil, and Agricultural Systems, Southern Illinois University, Carbondale, Illinois 62901
- Department of Microbiology, Southern Illinois University, Carbondale, Illinois 62901
| | - Nicholas D Flowers
- Department of Plant Biology, Southern Illinois University, Carbondale, Illinois 62901
| | - Zhou Zhou
- Department of Plant, Soil, and Agricultural Systems, Southern Illinois University, Carbondale, Illinois 62901
| | - Jason Henry
- Department of Plant Biology, Southern Illinois University, Carbondale, Illinois 62901
| | - Shiming Liu
- Department of Plant, Soil, and Agricultural Systems, Southern Illinois University, Carbondale, Illinois 62901
| | - Khalid Meksem
- Department of Plant, Soil, and Agricultural Systems, Southern Illinois University, Carbondale, Illinois 62901
| |
Collapse
|
43
|
Jayaraman D, Richards AL, Westphall MS, Coon JJ, Ané JM. Identification of the phosphorylation targets of symbiotic receptor-like kinases using a high-throughput multiplexed assay for kinase specificity. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 90:1196-1207. [PMID: 28267253 PMCID: PMC5461195 DOI: 10.1111/tpj.13529] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 02/17/2017] [Accepted: 03/01/2017] [Indexed: 05/29/2023]
Abstract
Detecting the phosphorylation substrates of multiple kinases in a single experiment is a challenge, and new techniques are being developed to overcome this challenge. Here, we used a multiplexed assay for kinase specificity (MAKS) to identify the substrates directly and to map the phosphorylation site(s) of plant symbiotic receptor-like kinases. The symbiotic receptor-like kinases nodulation receptor-like kinase (NORK) and lysin motif domain-containing receptor-like kinase 3 (LYK3) are indispensable for the establishment of root nodule symbiosis. Although some interacting proteins have been identified for these symbiotic receptor-like kinases, very little is known about their phosphorylation substrates. Using this high-throughput approach, we identified several other potential phosphorylation targets for both these symbiotic receptor-like kinases. In particular, we also discovered the phosphorylation of LYK3 by NORK itself, which was also confirmed by pairwise kinase assays. Motif analysis of potential targets for these kinases revealed that the acidic motif xxxsDxxx was common to both of them. In summary, this high-throughput technique catalogs the potential phosphorylation substrates of multiple kinases in a single efficient experiment, the biological characterization of which should provide a better understanding of phosphorylation signaling cascade in symbiosis.
Collapse
Affiliation(s)
- Dhileepkumar Jayaraman
- Department of Agronomy, 1575 Linden Drive, University of Wisconsin–Madison, WI 53706, USA
| | - Alicia L. Richards
- Department of Chemistry, 1101 University Avenue, University of Wisconsin–Madison, WI 53706, USA
- Genome Center of Wisconsin, University of Wisconsin–Madison, 425 Henry Mall, WI 53706, USA
| | - Michael S. Westphall
- Department of Chemistry, 1101 University Avenue, University of Wisconsin–Madison, WI 53706, USA
- Genome Center of Wisconsin, University of Wisconsin–Madison, 425 Henry Mall, WI 53706, USA
- Department of Biomolecular Chemistry, University of Wisconsin–Madison, 420 Henry Mall, WI 53706, USA
| | - Joshua J. Coon
- Department of Chemistry, 1101 University Avenue, University of Wisconsin–Madison, WI 53706, USA
- Genome Center of Wisconsin, University of Wisconsin–Madison, 425 Henry Mall, WI 53706, USA
- Department of Biomolecular Chemistry, University of Wisconsin–Madison, 420 Henry Mall, WI 53706, USA
| | - Jean-Michel Ané
- Department of Agronomy, 1575 Linden Drive, University of Wisconsin–Madison, WI 53706, USA
- Department of Bacteriology, 1550 Linden Drive, University of Wisconsin–Madison, WI 53706, USA
| |
Collapse
|
44
|
Wang H, Lan P, Shen RF. Integration of transcriptomic and proteomic analysis towards understanding the systems biology of root hairs. Proteomics 2016; 16:877-93. [PMID: 26749523 DOI: 10.1002/pmic.201500265] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 12/28/2015] [Accepted: 01/05/2016] [Indexed: 11/11/2022]
Abstract
Plants and other multicellular organisms consist of many types of specialized cells. Systems-wide exploration of large-scale information from singe cell level is essential to understand how cell works. Root hairs, tubular-shaped outgrowths from root epidermal cells, play important roles in the acquisition of nutrients and water, in the interaction with microbe, and in plant anchorage, and represent an ideal model to study the biology of a single cell type. Single cell sampling combined with omics approaches has been applied to study plant root hairs. This review emphasizes the integration of omics approaches towards understanding the systems biology of root hairs, unraveling the common and plant species-specific properties of root hairs, as well as the concordance of protein and transcript abundance. Understanding plant root hair biology by mining the integrated omics data will provide a way to know how a single cell differentiates, elongates, and functions, which might help molecularly modify crops for developing sustainable agriculture practices.
Collapse
Affiliation(s)
- Han Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, P. R. China
| | - Ping Lan
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, P. R. China
| | - Ren Fang Shen
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, P. R. China
| |
Collapse
|
45
|
Wei F, Fanella B, Guo L, Wang X. Membrane glycerolipidome of soybean root hairs and its response to nitrogen and phosphate availability. Sci Rep 2016; 6:36172. [PMID: 27812010 PMCID: PMC5095881 DOI: 10.1038/srep36172] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 10/07/2016] [Indexed: 11/10/2022] Open
Abstract
Root hairs are tubular extensions of specific root epidermal cells important in plant nutrition and water absorption. To determine membrane glycerolipids in root hairs and roots may differ, as well as their respective response to nutrient availability, this study analyzed the membrane glycerolipid species in soybean root hairs and in roots stripped of root hairs, and their response to nitrogen (N) and phosphate (Pi) supplementation. The ratio of phospholipids to galactolipids was 1.5 fold higher in root hairs than in stripped roots. Under Pi deficiency, the ratio of phospholipids to galactolipids in stripped roots decreased with the greatest decrease found in the level of phosphatidylethanolamine (PE) in root hairs and stripped roots, and root hairs had an increased level of phosphatidic acid (PA). When seedlings were not supplied with N, the level of the N-containing lipids PE and phosphatidylserine in root hairs decreased whereas the level of non-N-containing lipids galactolipids and PA increased compared to N-supplied conditions. In stripped roots, the level of major membrane lipids was not different between N-sufficient and -deficient conditions. The results indicate that the membrane glycerolipidomes in root hairs are more responsive to nutrient availability than are the rest of roots.
Collapse
Affiliation(s)
- Fang Wei
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops of Ministry of Agriculture, Wuhan, Hubei, 430062, China
| | - Brian Fanella
- Department of Biology, University of Missouri, St. Louis, MO 63121, USA
| | - Liang Guo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Xuemin Wang
- Department of Biology, University of Missouri, St. Louis, MO 63121, USA
- Donald Danforth Plant Science Center, St. Louis, MO 63132, USA
| |
Collapse
|
46
|
Krishnan HB, Alaswad AA, Oehrle NW, Gillman JD. Deletion of the SACPD-C Locus Alters the Symbiotic Relationship Between Bradyrhizobium japonicum USDA110 and Soybean, Resulting in Elicitation of Plant Defense Response and Nodulation Defects. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2016; 29:862-877. [PMID: 27749147 DOI: 10.1094/mpmi-08-16-0173-r] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Legumes form symbiotic associations with soil-dwelling bacteria collectively called rhizobia. This association results in the formation of nodules, unique plant-derived organs, within which the rhizobia are housed. Rhizobia-encoded nitrogenase facilitates the conversion of atmospheric nitrogen into ammonia, which is utilized by the plants for its growth and development. Fatty acids have been shown to play an important role in root nodule symbiosis. In this study, we have investigated the role of stearoyl-acyl carrier protein desaturase isoform C (SACPD-C), a soybean enzyme that catalyzes the conversion of stearic acid into oleic acid, which is expressed in developing seeds and in nitrogen-fixing nodules. In-depth cytological investigation of nodule development in sacpd-c mutant lines M25 and MM106 revealed gross anatomical alteration in the sacpd-c mutants. Transmission electron microscopy observations revealed ultrastructural alterations in the sacpd-c mutants that are typically associated with plant defense response to pathogens. In nodules of two sacpd-c mutants, the combined jasmonic acid (JA) species (JA and the isoleucine conjugate of JA) were found to be reduced and 12-oxophytodienoic acid (OPDA) levels were significantly higher relative to wild-type lines. Salicylic acid levels were not significantly different between genotypes, which is divergent from previous studies of sacpd mutant studies on vegetative tissues. Soybean nodule phytohormone profiles were very divergent from those of roots, and root profiles were found to be almost identical between mutant and wild-type genotypes. The activities of antioxidant enzymes, ascorbate peroxidase, and superoxide dismutase were also found to be higher in nodules of sacpd-c mutants. PR-1 gene expression was extremely elevated in M25 and MM106, while the expression of nitrogenase was significantly reduced in these sacpd-c mutants, compared with the parent 'Bay'. Two-dimensional gel electrophoresis and matrix-assisted laser desorption-ionization time of flight mass spectrometry analyses confirmed sacpd-c mutants also accumulated higher amounts of pathogenesis-related proteins in the nodules. Our study establishes a major role for SACPD-C activity as essential for proper maintenance of soybean nodule morphology and physiology and indicates that OPDA signaling is likely to be involved in attenuation of nodule biotic defense responses.
Collapse
Affiliation(s)
- Hari B Krishnan
- 1 Plant Genetics Research Unit, USDA-Agricultural Research Service, Columbia, MO 65211, U.S.A
- 2 Plant Science Division, University of Missouri, Columbia, MO 65211, U.S.A.; and
| | - Alaa A Alaswad
- 2 Plant Science Division, University of Missouri, Columbia, MO 65211, U.S.A.; and
- 3 King Abdul Aziz University, Jeddah, Saudi Arabia
| | - Nathan W Oehrle
- 1 Plant Genetics Research Unit, USDA-Agricultural Research Service, Columbia, MO 65211, U.S.A
| | - Jason D Gillman
- 1 Plant Genetics Research Unit, USDA-Agricultural Research Service, Columbia, MO 65211, U.S.A
- 2 Plant Science Division, University of Missouri, Columbia, MO 65211, U.S.A.; and
| |
Collapse
|
47
|
Liu CW, Murray JD. The Role of Flavonoids in Nodulation Host-Range Specificity: An Update. PLANTS (BASEL, SWITZERLAND) 2016; 5:E33. [PMID: 27529286 PMCID: PMC5039741 DOI: 10.3390/plants5030033] [Citation(s) in RCA: 156] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 07/28/2016] [Accepted: 08/02/2016] [Indexed: 12/28/2022]
Abstract
Flavonoids are crucial signaling molecules in the symbiosis between legumes and their nitrogen-fixing symbionts, the rhizobia. The primary function of flavonoids in the interaction is to induce transcription of the genes for biosynthesis of the rhizobial signaling molecules called Nod factors, which are perceived by the plant to allow symbiotic infection of the root. Many legumes produce specific flavonoids that only induce Nod factor production in homologous rhizobia, and therefore act as important determinants of host range. Despite a wealth of evidence on legume flavonoids, relatively few have proven roles in rhizobial infection. Recent studies suggest that production of key "infection" flavonoids is highly localized at infection sites. Furthermore, some of the flavonoids being produced at infection sites are phytoalexins and may have a role in the selection of compatible symbionts during infection. The molecular details of how flavonoid production in plants is regulated during nodulation have not yet been clarified, but nitrogen availability has been shown to play a role.
Collapse
Affiliation(s)
- Cheng-Wu Liu
- Department of Cell & Developmental Biology, John Innes Centre, Norwich, Norfolk NR4 7UH, UK.
| | - Jeremy D Murray
- Department of Cell & Developmental Biology, John Innes Centre, Norwich, Norfolk NR4 7UH, UK.
| |
Collapse
|
48
|
Regulation of Small RNAs and Corresponding Targets in Nod Factor-Induced Phaseolus vulgaris Root Hair Cells. Int J Mol Sci 2016; 17:ijms17060887. [PMID: 27271618 PMCID: PMC4926421 DOI: 10.3390/ijms17060887] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 05/26/2016] [Accepted: 05/27/2016] [Indexed: 02/07/2023] Open
Abstract
A genome-wide analysis identified the set of small RNAs (sRNAs) from the agronomical important legume Phaseolus vulgaris (common bean), including novel P. vulgaris-specific microRNAs (miRNAs) potentially important for the regulation of the rhizobia-symbiotic process. Generally, novel miRNAs are difficult to identify and study because they are very lowly expressed in a tissue- or cell-specific manner. In this work, we aimed to analyze sRNAs from common bean root hairs (RH), a single-cell model, induced with pure Rhizobium etli nodulation factors (NF), a unique type of signal molecule. The sequence analysis of samples from NF-induced and control libraries led to the identity of 132 mature miRNAs, including 63 novel miRNAs and 1984 phasiRNAs. From these, six miRNAs were significantly differentially expressed during NF induction, including one novel miRNA: miR-RH82. A parallel degradome analysis of the same samples revealed 29 targets potentially cleaved by novel miRNAs specifically in NF-induced RH samples; however, these novel miRNAs were not differentially accumulated in this tissue. This study reveals Phaseolus vulgaris-specific novel miRNA candidates and their corresponding targets that meet all criteria to be involved in the regulation of the early nodulation events, thus setting the basis for exploring miRNA-mediated improvement of the common bean–rhizobia symbiosis.
Collapse
|
49
|
Lardi M, Murset V, Fischer HM, Mesa S, Ahrens CH, Zamboni N, Pessi G. Metabolomic Profiling of Bradyrhizobium diazoefficiens-Induced Root Nodules Reveals Both Host Plant-Specific and Developmental Signatures. Int J Mol Sci 2016; 17:E815. [PMID: 27240350 PMCID: PMC4926349 DOI: 10.3390/ijms17060815] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 05/13/2016] [Accepted: 05/19/2016] [Indexed: 01/17/2023] Open
Abstract
Bradyrhizobium diazoefficiens is a nitrogen-fixing endosymbiont, which can grow inside root-nodule cells of the agriculturally important soybean and other host plants. Our previous studies described B. diazoefficiens host-specific global expression changes occurring during legume infection at the transcript and protein level. In order to further characterize nodule metabolism, we here determine by flow injection-time-of-flight mass spectrometry analysis the metabolome of (i) nodules and roots from four different B. diazoefficiens host plants; (ii) soybean nodules harvested at different time points during nodule development; and (iii) soybean nodules infected by two strains mutated in key genes for nitrogen fixation, respectively. Ribose (soybean), tartaric acid (mungbean), hydroxybutanoyloxybutanoate (siratro) and catechol (cowpea) were among the metabolites found to be specifically elevated in one of the respective host plants. While the level of C4-dicarboxylic acids decreased during soybean nodule development, we observed an accumulation of trehalose-phosphate at 21 days post infection (dpi). Moreover, nodules from non-nitrogen-fixing bacteroids (nifA and nifH mutants) showed specific metabolic alterations; these were also supported by independent transcriptomics data. The alterations included signs of nitrogen limitation in both mutants, and an increased level of a phytoalexin in nodules induced by the nifA mutant, suggesting that the tissue of these nodules exhibits defense and stress reactions.
Collapse
Affiliation(s)
- Martina Lardi
- Department of Plant and Microbial Biology, University of Zürich, CH-8057 Zürich, Switzerland.
| | - Valérie Murset
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zürich, CH-8093 Zürich, Switzerland.
| | - Hans-Martin Fischer
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zürich, CH-8093 Zürich, Switzerland.
| | - Socorro Mesa
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), E-18080 Granada, Spain.
| | - Christian H Ahrens
- Agroscope, Institute for Plant Production Sciences, Research Group Molecular Diagnostics, Genomics and Bioinformatics & Swiss Institute of Bioinformatics (SIB), CH-8820 Wädenswil, Switzerland.
| | - Nicola Zamboni
- Institute of Molecular Systems Biology, ETH Zürich, CH-8093 Zürich, Switzerland.
| | - Gabriella Pessi
- Department of Plant and Microbial Biology, University of Zürich, CH-8057 Zürich, Switzerland.
| |
Collapse
|
50
|
Decipher the Molecular Response of Plant Single Cell Types to Environmental Stresses. BIOMED RESEARCH INTERNATIONAL 2016; 2016:4182071. [PMID: 27088086 PMCID: PMC4818802 DOI: 10.1155/2016/4182071] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 02/18/2016] [Accepted: 02/28/2016] [Indexed: 11/17/2022]
Abstract
The analysis of the molecular response of entire plants or organs to environmental stresses suffers from the cellular complexity of the samples used. Specifically, this cellular complexity masks cell-specific responses to environmental stresses and logically leads to the dilution of the molecular changes occurring in each cell type composing the tissue/organ/plant in response to the stress. Therefore, to generate a more accurate picture of these responses, scientists are focusing on plant single cell type approaches. Several cell types are now considered as models such as the pollen, the trichomes, the cotton fiber, various root cell types including the root hair cell, and the guard cell of stomata. Among them, several have been used to characterize plant response to abiotic and biotic stresses. In this review, we are describing the various -omic studies performed on these different plant single cell type models to better understand plant cell response to biotic and abiotic stresses.
Collapse
|