1
|
Karki U, Perez Sanchez P, Chakraborty S, Dickey B, Vargas Ulloa J, Zhang N, Xu J. Intracellular trafficking and glycosylation of hydroxyproline-O-glycosylation module in tobacco BY-2 cells is dependent on medium composition and transcriptome analysis. Sci Rep 2023; 13:13506. [PMID: 37598266 PMCID: PMC10439957 DOI: 10.1038/s41598-023-40723-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 08/16/2023] [Indexed: 08/21/2023] Open
Abstract
Expression of recombinant proteins in plant cells with a "designer" hydroxyproline (Hyp)-O-glycosylated peptide (HypGP), such as tandem repeats of a "Ser-Pro" motif, has been shown to boost the secreted protein yields. However, dramatic secretion and Hyp-O-glycosylation of HypGP-tagged proteins can only be achieved when the plant cells were grown in nitrogen-deficient SH medium. Only trace amounts of secreted fusion protein were detected in MS medium. This study aims to gain a deeper understanding of the possible mechanism underlying these results by examining the intracellular trafficking and Hyp-O-glycosylation of enhanced green fluorescent protein (EGFP) fused with a (SP)32 tag, consisting of 32 repeats of a "Ser-Pro" motif, in tobacco BY-2 cells. When cells were grown in MS medium, the (SP)32-EGFP formed protein body-like aggregate and was retained in the ER, without undergoing Hyp-O-glycosylation. In contrast, the fusion protein becomes fully Hyp-O-glycosylated, and then secreted in SH medium. Transcriptome analysis of the BY-2 cells grown in SH medium vs. MS medium revealed over 16,000 DEGs, with many upregulated DEGs associated with the microtubule-based movement, movement of subcellular component, and microtubule binding. These DEGs are presumably responsible for the enhanced ER-Golgi transport of HypGP-tagged proteins, enabling their glycosylation and secretion in SH medium.
Collapse
Affiliation(s)
- Uddhab Karki
- Arkansas Biosciences Institute, Arkansas State University, Jonesboro, AR, 72401, USA
- Molecular BioSciences Program, Arkansas State University, Jonesboro, AR, 72401, USA
| | - Paula Perez Sanchez
- Department of Biological Sciences, Arkansas State University, Jonesboro, AR, 72401, USA
| | - Sankalpa Chakraborty
- Arkansas Biosciences Institute, Arkansas State University, Jonesboro, AR, 72401, USA
- Molecular BioSciences Program, Arkansas State University, Jonesboro, AR, 72401, USA
| | - Berry Dickey
- Department of Biological Sciences, Arkansas State University, Jonesboro, AR, 72401, USA
| | | | - Ningning Zhang
- Arkansas Biosciences Institute, Arkansas State University, Jonesboro, AR, 72401, USA
- Molecular BioSciences Program, Arkansas State University, Jonesboro, AR, 72401, USA
| | - Jianfeng Xu
- Arkansas Biosciences Institute, Arkansas State University, Jonesboro, AR, 72401, USA.
- Molecular BioSciences Program, Arkansas State University, Jonesboro, AR, 72401, USA.
- College of Agriculture, Arkansas State University, Jonesboro, AR, 72401, USA.
| |
Collapse
|
2
|
Tsivileva O, Pozdnyakov A, Ivanova A. Polymer Nanocomposites of Selenium Biofabricated Using Fungi. Molecules 2021; 26:3657. [PMID: 34203966 PMCID: PMC8232642 DOI: 10.3390/molecules26123657] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/10/2021] [Accepted: 06/12/2021] [Indexed: 12/13/2022] Open
Abstract
Nanoparticle-reinforced polymer-based materials effectively combine the functional properties of polymers and unique characteristic features of NPs. Biopolymers have attained great attention, with perspective multifunctional and high-performance nanocomposites exhibiting a low environmental impact with unique properties, being abundantly available, renewable, and eco-friendly. Nanocomposites of biopolymers are termed green biocomposites. Different biocomposites are reported with numerous inorganic nanofillers, which include selenium. Selenium is a micronutrient that can potentially be used in the prevention and treatment of diseases and has been extensively studied for its biological activity. SeNPs have attracted increasing attention due to their high bioavailability, low toxicity, and novel therapeutic properties. One of the best routes to take advantage of SeNPs' properties is by mixing these NPs with polymers to obtain nanocomposites with functionalities associated with the NPs together with the main characteristics of the polymer matrix. These nanocomposite materials have markedly improved properties achieved at low SeNP concentrations. Composites based on polysaccharides, including fungal beta-glucans, are bioactive, biocompatible, biodegradable, and have exhibited an innovative potential. Mushrooms meet certain obvious requirements for the green entity applied to the SeNP manufacturing. Fungal-matrixed selenium nanoparticles are a new promising biocomposite material. This review aims to give a summary of what is known by now about the mycosynthesized selenium polymeric nanocomposites with the impact on fungal-assisted manufactured ones, the mechanisms of the involved processes at the chemical reaction level, and problems and challenges posed in this area.
Collapse
Affiliation(s)
- Olga Tsivileva
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, 13 Prospekt Entuziastov, 410049 Saratov, Russia
| | - Alexander Pozdnyakov
- A.E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, 1 Favorsky St., 664033 Irkutsk, Russia; (A.P.); (A.I.)
| | - Anastasiya Ivanova
- A.E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, 1 Favorsky St., 664033 Irkutsk, Russia; (A.P.); (A.I.)
| |
Collapse
|
3
|
Liang R, You L, Dong F, Zhao X, Zhao J. Identification of Hydroxyproline-Containing Proteins and Hydroxylation of Proline Residues in Rice. FRONTIERS IN PLANT SCIENCE 2020; 11:1207. [PMID: 32849749 PMCID: PMC7427127 DOI: 10.3389/fpls.2020.01207] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 07/24/2020] [Indexed: 06/11/2023]
Abstract
The hydroxyproline-containing proteins (HCPs) among secretory and vacuolar proteins play important roles in growth and development of higher plants. Many hydroxyproline-rich glycoproteins (HRGPs), including Arabinogalactan proteins (AGPs), extensins (EXTs), and proline-rich proteins (PRPs), are identified as HCPs by bioinformatics approaches. The experimental evidence for validation of novel proline hydroxylation sites is vital for understanding their functional roles. In this study, the 62 HCPs containing 114 hydroxyproline (O, Hyp) residues were identified, and it was found that hydroxylation of proline residues in the HCPs could either constitute attachment sites for glycans or have other biological function in rice. The glycomodules of AO, OA, OG, VO, LO, and OE were abundant in the 62 HCPs. Further analysis showed that the 22 of 62 HCPs contained both signal peptides and transmembrane domains, and the 19 HCPs only contained transmembrane domains, while 21 HCPs contained neither. This study indicated the feasibility of mass spectrometry-based proteomics combined with bioinformatics approaches for the large-scale characterization of Hyp sites from complex protein digest mixtures. Furthermore, the expression of AGPs in rice was detected by using β-GlcY reagent and JIM13 antibody. The results displayed that the AGPs were widely distributed in different tissues and organs of rice, especially expressed highly in lateral root, pollen and embryo. In conclusion, our study revealed that the HCPs and Hyp residues in rice were ubiquitous and that these Hyps could be candidates for linking to glycans, which laid the foundation for further studying the functions of HCPs and hydroxylation of proline residues in rice.
Collapse
|
4
|
Zhang Y, Held MA, Showalter AM. Elucidating the roles of three β-glucuronosyltransferases (GLCATs) acting on arabinogalactan-proteins using a CRISPR-Cas9 multiplexing approach in Arabidopsis. BMC PLANT BIOLOGY 2020; 20:221. [PMID: 32423474 PMCID: PMC7236193 DOI: 10.1186/s12870-020-02420-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 04/29/2020] [Indexed: 05/20/2023]
Abstract
BACKGROUND Arabinogalactan-proteins (AGPs) are one of the most complex protein families in the plant kingdom and are present in the cell walls of all land plants. AGPs are implicated in diverse biological processes such as plant growth, development, reproduction, and stress responses. AGPs are extensively glycosylated by the addition of type II arabinogalactan (AG) polysaccharides to hydroxyproline residues in their protein cores. Glucuronic acid (GlcA) is the only negatively charged sugar added to AGPs and the functions of GlcA residues on AGPs remain to be elucidated. RESULTS Three members of the CAZy GT14 family (GLCAT14A-At5g39990, GLCAT14B-At5g15050, and GLCAT14C-At2g37585), which are responsible for transferring glucuronic acid (GlcA) to AGPs, were functionally characterized using a CRISPR/Cas9 gene editing approach in Arabidopsis. RNA seq and qRT-PCR data showed all three GLCAT genes were broadly expressed in different plant tissues, with GLCAT14A and GLCAT14B showing particularly high expression in the micropylar endosperm. Biochemical analysis of the AGPs from knock-out mutants of various glcat single, double, and triple mutants revealed that double and triple mutants generally had small increases of Ara and Gal and concomitant reductions of GlcA, particularly in the glcat14a glcat14b and glcat14a glcat14b glcat14c mutants. Moreover, AGPs isolated from all the glcat mutants displayed significant reductions in calcium binding compared to WT. Further phenotypic analyses found that the glcat14a glcat14b and glcat14a glcat14b glcat14c mutants exhibited significant delays in seed germination, reductions in root hair length, reductions in trichome branching, and accumulation of defective pollen grains. Additionally, both glcat14b glcat14c and glcat14a glcat14b glcat14c displayed significantly shorter siliques and reduced seed set. Finally, all higher-order mutants exhibited significant reductions in adherent seed coat mucilage. CONCLUSIONS This research provides genetic evidence that GLCAT14A-C function in the transfer of GlcA to AGPs, which in turn play a role in a variety of biochemical and physiological phenotypes including calcium binding by AGPs, seed germination, root hair growth, trichome branching, pollen development, silique development, seed set, and adherent seed coat mucilage accumulation.
Collapse
Affiliation(s)
- Yuan Zhang
- Molecular and Cellular Biology Program, Ohio University, Athens, OH 45701–2979 USA
- Department of Environmental & Plant Biology, Ohio University, Athens, OH 45701–2979 USA
| | - Michael A. Held
- Molecular and Cellular Biology Program, Ohio University, Athens, OH 45701–2979 USA
- Department of Chemistry & Biochemistry, Ohio University, Athens, OH 45701–2979 USA
| | - Allan M. Showalter
- Molecular and Cellular Biology Program, Ohio University, Athens, OH 45701–2979 USA
- Department of Environmental & Plant Biology, Ohio University, Athens, OH 45701–2979 USA
| |
Collapse
|
5
|
Zhang N, Wright T, Wang X, Karki U, Savary BJ, Xu J. Engineering 'designer' glycomodules for boosting recombinant protein secretion in tobacco hairy root culture and studying hydroxyproline-O-glycosylation process in plants. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:1130-1141. [PMID: 30467956 PMCID: PMC6523594 DOI: 10.1111/pbi.13043] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 09/18/2018] [Accepted: 11/09/2018] [Indexed: 05/21/2023]
Abstract
The key technical bottleneck for exploiting plant hairy root cultures as a robust bioproduction platform for therapeutic proteins has been low protein productivity, particularly low secreted protein yields. To address this, we engineered novel hydroxyproline (Hyp)-O-glycosylated peptides (HypGPs) into tobacco hairy roots to boost the extracellular secretion of fused proteins and to elucidate Hyp-O-glycosylation process of plant cell wall Hyp-rich glycoproteins. HypGPs representing two major types of cell wall glycoproteins were examined: an extensin module consisting of 18 tandem repeats of 'Ser-Hyp-Hyp-Hyp-Hyp' motif or (SP4)18 and an arabinogalactan protein module consisting of 32 tandem repeats of 'Ser-Hyp' motif or (SP)32 . Each module was expressed in tobacco hairy roots as a fusion to the enhanced green fluorescence protein (EGFP). Hairy root cultures engineered with a HypGP module secreted up to 56-fold greater levels of EGFP, compared with an EGFP control lacking any HypGP module, supporting the function of HypGP modules as a molecular carrier in promoting efficient transport of fused proteins into the culture media. The engineered (SP4)18 and (SP)32 modules underwent Hyp-O-glycosylation with arabino-oligosaccharides and arabinogalactan polysaccharides, respectively, which were essential in facilitating secretion of the fused EGFP protein. Distinct non-Hyp-O-glycosylated (SP4)18 -EGFP and (SP)32 -EGFP intermediates were consistently accumulated within the root tissues, indicating a rate-limiting trafficking and/or glycosylation of the engineered HypGP modules. An updated model depicting the intracellular trafficking, Hyp-O-glycosylation and extracellular secretion of extensin-styled (SP4)18 module and AGP-styled (SP)32 module is proposed.
Collapse
Affiliation(s)
- Ningning Zhang
- Arkansas Biosciences InstituteArkansas State UniversityJonesboroARUSA
| | - Tristen Wright
- Arkansas Biosciences InstituteArkansas State UniversityJonesboroARUSA
| | - Xiaoting Wang
- Arkansas Biosciences InstituteArkansas State UniversityJonesboroARUSA
| | - Uddhab Karki
- Arkansas Biosciences InstituteArkansas State UniversityJonesboroARUSA
| | - Brett J. Savary
- Arkansas Biosciences InstituteArkansas State UniversityJonesboroARUSA
- College of Agriculture and TechnologyArkansas State UniversityJonesboroARUSA
| | - Jianfeng Xu
- Arkansas Biosciences InstituteArkansas State UniversityJonesboroARUSA
- College of Agriculture and TechnologyArkansas State UniversityJonesboroARUSA
| |
Collapse
|
6
|
Basu D, Tian L, Wang W, Bobbs S, Herock H, Travers A, Showalter AM. A small multigene hydroxyproline-O-galactosyltransferase family functions in arabinogalactan-protein glycosylation, growth and development in Arabidopsis. BMC PLANT BIOLOGY 2015; 15:295. [PMID: 26690932 PMCID: PMC4687291 DOI: 10.1186/s12870-015-0670-7] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 11/26/2015] [Indexed: 05/17/2023]
Abstract
BACKGROUND Arabinogalactan-proteins (AGPs) are ubiquitous components of cell walls throughout the plant kingdom and are extensively post translationally modified by conversion of proline to hydroxyproline (Hyp) and by addition of arabinogalactan polysaccharides (AG) to Hyp residues. AGPs are implicated to function in various aspects of plant growth and development, but the functional contributions of AGP glycans remain to be elucidated. Hyp glycosylation is initiated by the action of a set of Hyp-O-galactosyltransferase (Hyp-O-GALT) enzymes that remain to be fully characterized. RESULTS Three members of the GT31 family (GALT3-At3g06440, GALT4-At1g27120, and GALT6-At5g62620) were identified as Hyp-O-GALT genes by heterologous expression in tobacco leaf epidermal cells and examined along with two previously characterized Hyp-O-GALT genes, GALT2 and GALT5. Transcript profiling by real-time PCR of these five Hyp-O-GALTs revealed overlapping but distinct expression patterns. Transiently expressed GALT3, GALT4 and GALT6 fluorescent protein fusions were localized within Golgi vesicles. Biochemical analysis of knock-out mutants for the five Hyp-O-GALT genes revealed significant reductions in both AGP-specific Hyp-O-GALT activity and β-Gal-Yariv precipitable AGPs. Further phenotypic analysis of these mutants demonstrated reduced root hair growth, reduced seed coat mucilage, reduced seed set, and accelerated leaf senescence. The mutants also displayed several conditional phenotypes, including impaired root growth, and defective anisotropic growth of root tips under salt stress, as well as less sensitivity to the growth inhibitory effects of β-Gal-Yariv reagent in roots and pollen tubes. CONCLUSIONS This study provides evidence that all five Hyp-O-GALT genes encode enzymes that catalyze the initial steps of AGP galactosylation and that AGP glycans play essential roles in both vegetative and reproductive plant growth.
Collapse
Affiliation(s)
- Debarati Basu
- Molecular and Cellular Biology Program, Department of Environmental and Plant Biology, Ohio University, Athens, OH, 45701-2979, USA.
| | - Lu Tian
- Molecular and Cellular Biology Program, Department of Environmental and Plant Biology, Ohio University, Athens, OH, 45701-2979, USA.
| | - Wuda Wang
- Molecular and Cellular Biology Program, Department of Environmental and Plant Biology, Ohio University, Athens, OH, 45701-2979, USA.
| | - Shauni Bobbs
- Molecular and Cellular Biology Program, Department of Environmental and Plant Biology, Ohio University, Athens, OH, 45701-2979, USA.
| | - Hayley Herock
- Molecular and Cellular Biology Program, Department of Environmental and Plant Biology, Ohio University, Athens, OH, 45701-2979, USA.
| | - Andrew Travers
- Molecular and Cellular Biology Program, Department of Environmental and Plant Biology, Ohio University, Athens, OH, 45701-2979, USA.
| | - Allan M Showalter
- Molecular and Cellular Biology Program, Department of Environmental and Plant Biology, Ohio University, Athens, OH, 45701-2979, USA.
| |
Collapse
|
7
|
Basu D, Wang W, Ma S, DeBrosse T, Poirier E, Emch K, Soukup E, Tian L, Showalter AM. Two Hydroxyproline Galactosyltransferases, GALT5 and GALT2, Function in Arabinogalactan-Protein Glycosylation, Growth and Development in Arabidopsis. PLoS One 2015; 10:e0125624. [PMID: 25974423 PMCID: PMC4431829 DOI: 10.1371/journal.pone.0125624] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 03/24/2015] [Indexed: 12/19/2022] Open
Abstract
Hydroxyproline-O-galactosyltransferase (GALT) initiates O-glycosylation of arabinogalactan-proteins (AGPs). We previously characterized GALT2 (At4g21060), and now report on functional characterization of GALT5 (At1g74800). GALT5 was identified using heterologous expression in Pichia and an in vitro GALT assay. Product characterization showed GALT5 specifically adds galactose to hydroxyproline in AGP protein backbones. Functions of GALT2 and GALT5 were elucidated by phenotypic analysis of single and double mutant plants. Allelic galt5 and galt2 mutants, and particularly galt2 galt5 double mutants, demonstrated lower GALT activities and reductions in β-Yariv-precipitated AGPs compared to wild type. Mutant plants showed pleiotropic growth and development phenotypes (defects in root hair growth, root elongation, pollen tube growth, flowering time, leaf development, silique length, and inflorescence growth), which were most severe in the double mutants. Conditional mutant phenotypes were also observed, including salt-hypersensitive root growth and root tip swelling as well as reduced inhibition of pollen tube growth and root growth in response to β-Yariv reagent. These mutants also phenocopy mutants for an AGP, SOS5, and two cell wall receptor-like kinases, FEI1 and FEI2, which exist in a genetic signaling pathway. In summary, GALT5 and GALT2 function as redundant GALTs that control AGP O-glycosylation, which is essential for normal growth and development.
Collapse
Affiliation(s)
- Debarati Basu
- Molecular and Cellular Biology Program, Department of Environmental and Plant Biology, Ohio University, Athens, Ohio, United States of America
| | - Wuda Wang
- Molecular and Cellular Biology Program, Department of Environmental and Plant Biology, Ohio University, Athens, Ohio, United States of America
| | - Siyi Ma
- Molecular and Cellular Biology Program, Department of Environmental and Plant Biology, Ohio University, Athens, Ohio, United States of America
| | - Taylor DeBrosse
- Molecular and Cellular Biology Program, Department of Environmental and Plant Biology, Ohio University, Athens, Ohio, United States of America
| | - Emily Poirier
- Molecular and Cellular Biology Program, Department of Environmental and Plant Biology, Ohio University, Athens, Ohio, United States of America
| | - Kirk Emch
- Molecular and Cellular Biology Program, Department of Environmental and Plant Biology, Ohio University, Athens, Ohio, United States of America
| | - Eric Soukup
- Molecular and Cellular Biology Program, Department of Environmental and Plant Biology, Ohio University, Athens, Ohio, United States of America
| | - Lu Tian
- Molecular and Cellular Biology Program, Department of Environmental and Plant Biology, Ohio University, Athens, Ohio, United States of America
| | - Allan M. Showalter
- Molecular and Cellular Biology Program, Department of Environmental and Plant Biology, Ohio University, Athens, Ohio, United States of America
- * E-mail:
| |
Collapse
|
8
|
Ogawa-Ohnishi M, Matsubayashi Y. Identification of three potent hydroxyproline O-galactosyltransferases in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 81:736-46. [PMID: 25600942 DOI: 10.1111/tpj.12764] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 12/31/2014] [Accepted: 01/07/2015] [Indexed: 05/18/2023]
Abstract
Arabinogalactan proteins (AGPs) are plant-specific extracellular glycoproteins implicated in a variety of processes during growth and development. AGP biosynthesis involves O-galactosylation of hydroxyproline (Hyp) residues followed by a stepwise elongation of the complex sugar chains. However, functionally dominant Hyp O-galactosyltransferases, such that their disruption produces phenocopies of AGP-deficient mutants, remain to be identified. Here, we purified and identified three potent Hyp O-galactosyltransferases, HPGT1, HPGT2 and HPGT3, from Arabidopsis microsomal fractions. Loss-of-function analysis indicated that approximately 90% of the endogenous Hyp O-galactosylation activity is attributable to these three enzymes. AGP14 expressed in the triple mutant migrated much faster on SDS-PAGE than when expressed in wild-type, confirming a considerable decrease in levels of glycosylation of AGPs in the mutant. Loss-of-function mutant plants exhibited a pleiotropic phenotype of longer lateral roots, longer root hairs, radial expansion of the cells in the root tip, small leaves, shorter inflorescence stems, reduced fertility and shorter siliques. Our findings provide genetic evidence that Hyp-linked arabinogalactan polysaccharide chains are critical for AGP function and clues to how arabinogalactan moieties of AGPs contribute to cell-to-cell communication during plant growth and development.
Collapse
Affiliation(s)
- Mari Ogawa-Ohnishi
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa, Nagoya, 464-8602, Japan
| | | |
Collapse
|
9
|
Nguema-Ona E, Vicré-Gibouin M, Gotté M, Plancot B, Lerouge P, Bardor M, Driouich A. Cell wall O-glycoproteins and N-glycoproteins: aspects of biosynthesis and function. FRONTIERS IN PLANT SCIENCE 2014; 5:499. [PMID: 25324850 PMCID: PMC4183102 DOI: 10.3389/fpls.2014.00499] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 09/08/2014] [Indexed: 05/18/2023]
Abstract
Cell wall O-glycoproteins and N-glycoproteins are two types of glycomolecules whose glycans are structurally complex. They are both assembled and modified within the endomembrane system, i.e., the endoplasmic reticulum (ER) and the Golgi apparatus, before their transport to their final locations within or outside the cell. In contrast to extensins (EXTs), the O-glycan chains of arabinogalactan proteins (AGPs) are highly heterogeneous consisting mostly of (i) a short oligo-arabinoside chain of three to four residues, and (ii) a larger β-1,3-linked galactan backbone with β-1,6-linked side chains containing galactose, arabinose and, often, fucose, rhamnose, or glucuronic acid. The fine structure of arabinogalactan chains varies between, and within plant species, and is important for the functional activities of the glycoproteins. With regards to N-glycans, ER-synthesizing events are highly conserved in all eukaryotes studied so far since they are essential for efficient protein folding. In contrast, evolutionary adaptation of N-glycan processing in the Golgi apparatus has given rise to a variety of organism-specific complex structures. Therefore, plant complex-type N-glycans contain specific glyco-epitopes such as core β,2-xylose, core α1,3-fucose residues, and Lewis(a) substitutions on the terminal position of the antenna. Like O-glycans, N-glycans of proteins are essential for their stability and function. Mutants affected in the glycan metabolic pathways have provided valuable information on the role of N-/O-glycoproteins in the control of growth, morphogenesis and adaptation to biotic and abiotic stresses. With regards to O-glycoproteins, only EXTs and AGPs are considered herein. The biosynthesis of these glycoproteins and functional aspects are presented and discussed in this review.
Collapse
Affiliation(s)
- Eric Nguema-Ona
- Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale, UPRES EA 4358, Institut de Recherche et d’Innovation Biomédicale, Grand Réseau de Recherche-Végétal, Agronomie, Sol, Innovation, UFR des Sciences et Techniques, Normandie Université – Université de RouenMont-Saint-Aignan, France
| | - Maïté Vicré-Gibouin
- Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale, UPRES EA 4358, Institut de Recherche et d’Innovation Biomédicale, Grand Réseau de Recherche-Végétal, Agronomie, Sol, Innovation, UFR des Sciences et Techniques, Normandie Université – Université de RouenMont-Saint-Aignan, France
| | - Maxime Gotté
- Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale, UPRES EA 4358, Institut de Recherche et d’Innovation Biomédicale, Grand Réseau de Recherche-Végétal, Agronomie, Sol, Innovation, UFR des Sciences et Techniques, Normandie Université – Université de RouenMont-Saint-Aignan, France
| | - Barbara Plancot
- Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale, UPRES EA 4358, Institut de Recherche et d’Innovation Biomédicale, Grand Réseau de Recherche-Végétal, Agronomie, Sol, Innovation, UFR des Sciences et Techniques, Normandie Université – Université de RouenMont-Saint-Aignan, France
| | - Patrice Lerouge
- Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale, UPRES EA 4358, Institut de Recherche et d’Innovation Biomédicale, Grand Réseau de Recherche-Végétal, Agronomie, Sol, Innovation, UFR des Sciences et Techniques, Normandie Université – Université de RouenMont-Saint-Aignan, France
| | - Muriel Bardor
- Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale, UPRES EA 4358, Institut de Recherche et d’Innovation Biomédicale, Grand Réseau de Recherche-Végétal, Agronomie, Sol, Innovation, UFR des Sciences et Techniques, Normandie Université – Université de RouenMont-Saint-Aignan, France
- Institut Universitaire de FranceParis, France
| | - Azeddine Driouich
- Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale, UPRES EA 4358, Institut de Recherche et d’Innovation Biomédicale, Grand Réseau de Recherche-Végétal, Agronomie, Sol, Innovation, UFR des Sciences et Techniques, Normandie Université – Université de RouenMont-Saint-Aignan, France
- Plate-Forme de Recherche en Imagerie Cellulaire de Haute-Normandie, Institut de Recherche et d’Innovation Biomédicale, Faculté des Sciences et Techniques, Normandie UniversitéMont-Saint-Aignan, France
| |
Collapse
|
10
|
Saito F, Suyama A, Oka T, Yoko-O T, Matsuoka K, Jigami Y, Shimma YI. Identification of Novel Peptidyl Serine α-Galactosyltransferase Gene Family in Plants. J Biol Chem 2014; 289:20405-20420. [PMID: 24914209 DOI: 10.1074/jbc.m114.553933] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
In plants, serine residues in extensin, a cell wall protein, are glycosylated with O-linked galactose. However, the enzyme that is involved in the galactosylation of serine had not yet been identified. To identify the peptidyl serine O-α-galactosyltransferase (SGT), we chose Chlamydomonas reinhardtii as a model. We established an assay system for SGT activity using C. reinhardtii and Arabidopsis thaliana cell extracts. SGT protein was partially purified from cell extracts of C. reinhardtii and analyzed by tandem mass spectrometry to determine its amino acid sequence. The sequence matched the open reading frame XP_001696927 in the C. reinhardtii proteome database, and a corresponding DNA fragment encoding 748 amino acids (BAL63043) was cloned from a C. reinhardtii cDNA library. The 748-amino acid protein (CrSGT1) was produced using a yeast expression system, and the SGT activity was examined. Hydroxylation of proline residues adjacent to a serine in acceptor peptides was required for SGT activity. Genes for proteins containing conserved domains were found in various plant genomes, including A. thaliana and Nicotiana tabacum. The AtSGT1 and NtSGT1 proteins also showed SGT activity when expressed in yeast. In addition, knock-out lines of AtSGT1 and knockdown lines of NtSGT1 showed no or reduced SGT activity. The SGT1 sequence, which contains a conserved DXD motif and a C-terminal membrane spanning region, is the first example of a glycosyltransferase with type I membrane protein topology, and it showed no homology with known glycosyltransferases, indicating that SGT1 belongs to a novel glycosyltransferase gene family existing only in the plant kingdom.
Collapse
Affiliation(s)
- Fumie Saito
- From the Research Center for Medical Glycoscience and Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566
| | - Akiko Suyama
- the Laboratory of Plant Nutrition, Faculty of Agriculture, Kyushu University, Higashi-ku, Fukuoka 812-8581
| | - Takuji Oka
- the Department of Applied Microbial Technology, Faculty of Biotechnology and Life Science, Sojo University, 4-22-1 Ikeda, Kumamoto 860-0082, and
| | - Takehiko Yoko-O
- From the Research Center for Medical Glycoscience and Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566
| | - Ken Matsuoka
- the Laboratory of Plant Nutrition, Faculty of Agriculture, Kyushu University, Higashi-ku, Fukuoka 812-8581, the Biotron Application Center and Organelle Homeostasis Research Center, Kyushu University, Higashi-ku, Fukuoka 812-8581, Japan
| | | | | |
Collapse
|
11
|
Dolan MC, Wu D, Cramer CL, Xu J. Hydroxyproline-O-glycosylated peptide tags enhance recombinant protein yields in tobacco transient expression. Process Biochem 2014. [DOI: 10.1016/j.procbio.2013.12.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
12
|
Liang Y, Basu D, Pattathil S, Xu WL, Venetos A, Martin SL, Faik A, Hahn MG, Showalter AM. Biochemical and physiological characterization of fut4 and fut6 mutants defective in arabinogalactan-protein fucosylation in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:5537-51. [PMID: 24127514 PMCID: PMC3871811 DOI: 10.1093/jxb/ert321] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Arabinogalactan-proteins (AGPs) are highly glycosylated hydroxyproline-rich glycoproteins present in plant cell walls. AGPs are characterized by arabinose-/galactose-rich side chains, which define their interactive molecular surface. Fucose residues are found in some dicotyledon AGPs, and AGP fucosylation is developmentally regulated. We previously identified Arabidopsis thaliana FUT4 and FUT6 genes as AGP-specific fucosyltransferases (FUTs) based on their enzymatic activities when heterologously expressed in tobacco (Nicotiana tabacum) BY2 suspension-cultured cells. Here, the functions of FUT4 and FUT6 and the physiological roles of fucosylated AGPs were further investigated using Arabidopsis fut4, fut6, and fut4/fut6 mutant plants. All mutant plants showed no phenotypic differences compared to wild-type plants under physiological conditions, but showed reduced root growth in the presence of elevated NaCl. However, roots of wild-type and fut4 mutant plants contained terminal fucose epitopes, which were absent in fut6 and fut4/fut6 mutant plants as indicated by eel lectin staining. Monosaccharide analysis showed fucose was present in wild-type leaf and root AGPs, but absent in fut4 leaf AGPs and in fut4/fut6 double mutant leaf and root AGPs, indicating that FUT4 was required for fucosylation of leaf AGPs while both FUT4 and FUT6 contributed to fucosylation of root AGPs. Glycome profiling of cell wall fractions from mutant roots and leaves showed distinct glycome profiles compared to wild-type plants, indicating that fucosyl residues on AGPs may regulate intermolecular interactions between AGPs and other wall components. The current work exemplifies the possibilities of refinement of cell wall structures by manipulation of a single or a few cell wall biosynthetic genes.
Collapse
Affiliation(s)
- Yan Liang
- Department of Environmental and Plant Biology, Ohio University, Athens, OH 45701, USA
- Molecular and Cellular Biology Program, Ohio University, Athens, OH 45701, USA
- Present address: Joint BioEnergy Institute, 1 Cyclotron Rd. MS: 978-4121, Berkeley, CA 94720, USA
| | - Debarati Basu
- Department of Environmental and Plant Biology, Ohio University, Athens, OH 45701, USA
- Molecular and Cellular Biology Program, Ohio University, Athens, OH 45701, USA
| | - Sivakumar Pattathil
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Wen-liang Xu
- Department of Environmental and Plant Biology, Ohio University, Athens, OH 45701, USA
- Present address: Hua Zhong Normal University, Wuhan, Hubei 430079, China
| | - Alexandra Venetos
- Department of Environmental and Plant Biology, Ohio University, Athens, OH 45701, USA
| | | | - Ahmed Faik
- Department of Environmental and Plant Biology, Ohio University, Athens, OH 45701, USA
- Molecular and Cellular Biology Program, Ohio University, Athens, OH 45701, USA
| | - Michael G. Hahn
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
| | - Allan M. Showalter
- Department of Environmental and Plant Biology, Ohio University, Athens, OH 45701, USA
- Molecular and Cellular Biology Program, Ohio University, Athens, OH 45701, USA
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
13
|
A gene responsible for prolyl-hydroxylation of moss-produced recombinant human erythropoietin. Sci Rep 2013; 3:3019. [PMID: 24145658 PMCID: PMC3804855 DOI: 10.1038/srep03019] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 10/04/2013] [Indexed: 01/15/2023] Open
Abstract
Recombinant production of pharmaceutical proteins is crucial, not only for personalized medicine. While most biopharmaceuticals are currently produced in mammalian cell culture, plant-made pharmaceuticals gain momentum. Post-translational modifications in plants are similar to those in humans, however, existing differences may affect quality, safety and efficacy of the products. A frequent modification in higher eukaryotes is prolyl-4-hydroxylase (P4H)-catalysed prolyl-hydroxylation. P4H sequence recognition sites on target proteins differ between humans and plants leading to non-human posttranslational modifications of recombinant human proteins produced in plants. The resulting hydroxyprolines display the anchor for plant-specific O-glycosylation, which bears immunogenic potential for patients. Here we describe the identification of a plant gene responsible for non-human prolyl-hydroxylation of human erythropoietin (hEPO) recombinantly produced in plant (moss) bioreactors. Targeted ablation of this gene abolished undesired prolyl-hydroxylation of hEPO and thus paves the way for plant-made pharmaceuticals humanized via glyco-engineering in moss bioreactors.
Collapse
|
14
|
Qin LX, Rao Y, Li L, Huang JF, Xu WL, Li XB. Cotton GalT1 encoding a putative glycosyltransferase is involved in regulation of cell wall pectin biosynthesis during plant development. PLoS One 2013; 8:e59115. [PMID: 23527103 PMCID: PMC3601089 DOI: 10.1371/journal.pone.0059115] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Accepted: 02/11/2013] [Indexed: 12/12/2022] Open
Abstract
Arabinogalactan proteins (AGPs), are a group of highly glycosylated proteins that are found throughout the plant kingdom. To date, glycosyltransferases that glycosylate AGP backbone have remained largely unknown. In this study, a gene (GhGalT1) encoding a putative β-1,3-galactosyltransferase (GalT) was identified in cotton. GhGalT1, belonging to CAZy GT31 family, is the type II membrane protein that contains an N-terminal transmembrane domain and a C-terminal galactosyltransferase functional domain. A subcellular localization assay demonstrated that GhGalT1 was localized in the Golgi apparatus. RT-PCR analysis revealed that GhGalT1 was expressed at relatively high levels in hypocotyls, roots, fibers and ovules. Overexpression of GhGalT1 in Arabidopsis promoted plant growth and metabolism. The transgenic seedlings had much longer primary roots, higher chlorophyll content, higher photosynthetic efficiency, the increased biomass, and the enhanced tolerance to exogenous D-arabinose and D-galactose. In addition, gas chromatography (GC) analysis of monosaccharide composition of cell wall fractions showed that pectin was changed in the transgenic plants, compared with that of wild type. Three genes (GAUT8, GAUT9 and xgd1) involved in pectin biosynthesis were dramatically up-regulated in the transgenic lines. These data suggested that GhGalT1 may be involved in regulation of pectin biosynthesis required for plant development.
Collapse
Affiliation(s)
- Li-Xia Qin
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Sciences, Central China Normal University, Wuhan, China
| | - Yue Rao
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Sciences, Central China Normal University, Wuhan, China
| | - Long Li
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Sciences, Central China Normal University, Wuhan, China
| | - Jun-Feng Huang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Sciences, Central China Normal University, Wuhan, China
| | - Wen-Liang Xu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Sciences, Central China Normal University, Wuhan, China
| | - Xue-Bao Li
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Sciences, Central China Normal University, Wuhan, China
| |
Collapse
|
15
|
Basu D, Liang Y, Liu X, Himmeldirk K, Faik A, Kieliszewski M, Held M, Showalter AM. Functional identification of a hydroxyproline-o-galactosyltransferase specific for arabinogalactan protein biosynthesis in Arabidopsis. J Biol Chem 2013; 288:10132-10143. [PMID: 23430255 DOI: 10.1074/jbc.m112.432609] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Although plants contain substantial amounts of arabinogalactan proteins (AGPs), the enzymes responsible for AGP glycosylation are largely unknown. Bioinformatics indicated that AGP galactosyltransferases (GALTs) are members of the carbohydrate-active enzyme glycosyltransferase (GT) 31 family (CAZy GT31) involved in N- and O-glycosylation. Six Arabidopsis GT31 members were expressed in Pichia pastoris and tested for enzyme activity. The At4g21060 gene (named AtGALT2) was found to encode activity for adding galactose (Gal) to hydroxyproline (Hyp) in AGP protein backbones. AtGALT2 specifically catalyzed incorporation of [(14)C]Gal from UDP-[(14)C]Gal to Hyp of model substrate acceptors having AGP peptide sequences, consisting of non-contiguous Hyp residues, such as (Ala-Hyp) repetitive units exemplified by chemically synthesized (AO)7 and anhydrous hydrogen fluoride-deglycosylated d(AO)51. Microsomal preparations from Pichia cells expressing AtGALT2 incorporated [(14)C]Gal to (AO)7, and the resulting product co-eluted with (AO)7 by reverse-phase HPLC. Acid hydrolysis of the [(14)C]Gal-(AO)7 product released (14)C-radiolabel as Gal only. Base hydrolysis of the [(14)C]Gal-(AO)7 product released a (14)C-radiolabeled fragment that co-eluted with a Hyp-Gal standard after high performance anion-exchange chromatography fractionation. AtGALT2 is specific for AGPs because substrates lacking AGP peptide sequences did not act as acceptors. Moreover, AtGALT2 uses only UDP-Gal as the substrate donor and requires Mg(2+) or Mn(2+) for high activity. Additional support that AtGALT2 encodes an AGP GALT was provided by two allelic AtGALT2 knock-out mutants, which demonstrated lower GALT activities and reductions in β-Yariv-precipitated AGPs compared with wild type plants. Confocal microscopic analysis of fluorescently tagged AtGALT2 in tobacco epidermal cells indicated that AtGALT2 is probably localized in the endomembrane system consistent with its function.
Collapse
Affiliation(s)
- Debarati Basu
- Department of Environmental and Plant Biology, Molecular and Cellular Biology Program, Ohio University, Athens, Ohio 45701-2979
| | - Yan Liang
- Department of Environmental and Plant Biology, Molecular and Cellular Biology Program, Ohio University, Athens, Ohio 45701-2979
| | - Xiao Liu
- Department of Environmental and Plant Biology, Molecular and Cellular Biology Program, Ohio University, Athens, Ohio 45701-2979
| | - Klaus Himmeldirk
- Department of Chemistry and Biochemistry, Molecular and Cellular Biology Program, Ohio University, Athens, Ohio 45701-2979
| | - Ahmed Faik
- Department of Environmental and Plant Biology, Molecular and Cellular Biology Program, Ohio University, Athens, Ohio 45701-2979
| | - Marcia Kieliszewski
- Department of Chemistry and Biochemistry, Molecular and Cellular Biology Program, Ohio University, Athens, Ohio 45701-2979
| | - Michael Held
- Department of Chemistry and Biochemistry, Molecular and Cellular Biology Program, Ohio University, Athens, Ohio 45701-2979
| | - Allan M Showalter
- Department of Environmental and Plant Biology, Molecular and Cellular Biology Program, Ohio University, Athens, Ohio 45701-2979.
| |
Collapse
|
16
|
Yang Z, Bennett EP, Jørgensen B, Drew DP, Arigi E, Mandel U, Ulvskov P, Levery SB, Clausen H, Petersen BL. Toward stable genetic engineering of human O-glycosylation in plants. PLANT PHYSIOLOGY 2012; 160:450-63. [PMID: 22791304 PMCID: PMC3440218 DOI: 10.1104/pp.112.198200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2012] [Accepted: 07/11/2012] [Indexed: 05/18/2023]
Abstract
Glycosylation is the most abundant and complex posttranslational modification to be considered for recombinant production of therapeutic proteins. Mucin-type (N-acetylgalactosamine [GalNAc]-type) O-glycosylation is found in eumetazoan cells but absent in plants and yeast, making these cell types an obvious choice for de novo engineering of this O-glycosylation pathway. We previously showed that transient implementation of O-glycosylation capacity in plants requires introduction of the synthesis of the donor substrate UDP-GalNAc and one or more polypeptide GalNAc-transferases for incorporating GalNAc residues into proteins. Here, we have stably engineered O-glycosylation capacity in two plant cell systems, soil-grown Arabidopsis (Arabidopsis thaliana) and tobacco (Nicotiana tabacum) Bright Yellow-2 suspension culture cells. Efficient GalNAc O-glycosylation of two stably coexpressed substrate O-glycoproteins was obtained, but a high degree of proline hydroxylation and hydroxyproline-linked arabinosides, on a mucin (MUC1)-derived substrate, was also observed. Addition of the prolyl 4-hydroxylase inhibitor 2,2-dipyridyl, however, effectively suppressed proline hydroxylation and arabinosylation of MUC1 in Bright Yellow-2 cells. In summary, stably engineered mammalian type O-glycosylation was established in transgenic plants, demonstrating that plants may serve as host cells for the production of recombinant O-glycoproteins. However, the present stable implementation further strengthens the notion that elimination of endogenous posttranslational modifications may be needed for the production of protein therapeutics.
Collapse
Affiliation(s)
- Zhang Yang
- Department of Molecular Biology and Genetics, Faculty of Science and Technology, Aarhus University, Flakkebjerg, 4200 Slagelse, Denmark (Z.Y.); Department of Plant Biology and Biotechnology, Faculty of Science, University of Copenhagen, 1871 Frederiksberg C, Denmark (D.P.D., P.U., B.L.P.); Department of Agriculture and Ecology, Faculty of Science, University of Copenhagen, 1871 Frederiksberg C, Denmark (B.J.); and Center for Glycomics, Departments of Cellular and Molecular Medicine and School of Dentistry, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark (Z.Y., E.P.B., E.A., U.M., S.B.L., H.C.)
| | - Eric P. Bennett
- Department of Molecular Biology and Genetics, Faculty of Science and Technology, Aarhus University, Flakkebjerg, 4200 Slagelse, Denmark (Z.Y.); Department of Plant Biology and Biotechnology, Faculty of Science, University of Copenhagen, 1871 Frederiksberg C, Denmark (D.P.D., P.U., B.L.P.); Department of Agriculture and Ecology, Faculty of Science, University of Copenhagen, 1871 Frederiksberg C, Denmark (B.J.); and Center for Glycomics, Departments of Cellular and Molecular Medicine and School of Dentistry, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark (Z.Y., E.P.B., E.A., U.M., S.B.L., H.C.)
| | - Bodil Jørgensen
- Department of Molecular Biology and Genetics, Faculty of Science and Technology, Aarhus University, Flakkebjerg, 4200 Slagelse, Denmark (Z.Y.); Department of Plant Biology and Biotechnology, Faculty of Science, University of Copenhagen, 1871 Frederiksberg C, Denmark (D.P.D., P.U., B.L.P.); Department of Agriculture and Ecology, Faculty of Science, University of Copenhagen, 1871 Frederiksberg C, Denmark (B.J.); and Center for Glycomics, Departments of Cellular and Molecular Medicine and School of Dentistry, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark (Z.Y., E.P.B., E.A., U.M., S.B.L., H.C.)
| | | | - Emma Arigi
- Department of Molecular Biology and Genetics, Faculty of Science and Technology, Aarhus University, Flakkebjerg, 4200 Slagelse, Denmark (Z.Y.); Department of Plant Biology and Biotechnology, Faculty of Science, University of Copenhagen, 1871 Frederiksberg C, Denmark (D.P.D., P.U., B.L.P.); Department of Agriculture and Ecology, Faculty of Science, University of Copenhagen, 1871 Frederiksberg C, Denmark (B.J.); and Center for Glycomics, Departments of Cellular and Molecular Medicine and School of Dentistry, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark (Z.Y., E.P.B., E.A., U.M., S.B.L., H.C.)
| | - Ulla Mandel
- Department of Molecular Biology and Genetics, Faculty of Science and Technology, Aarhus University, Flakkebjerg, 4200 Slagelse, Denmark (Z.Y.); Department of Plant Biology and Biotechnology, Faculty of Science, University of Copenhagen, 1871 Frederiksberg C, Denmark (D.P.D., P.U., B.L.P.); Department of Agriculture and Ecology, Faculty of Science, University of Copenhagen, 1871 Frederiksberg C, Denmark (B.J.); and Center for Glycomics, Departments of Cellular and Molecular Medicine and School of Dentistry, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark (Z.Y., E.P.B., E.A., U.M., S.B.L., H.C.)
| | - Peter Ulvskov
- Department of Molecular Biology and Genetics, Faculty of Science and Technology, Aarhus University, Flakkebjerg, 4200 Slagelse, Denmark (Z.Y.); Department of Plant Biology and Biotechnology, Faculty of Science, University of Copenhagen, 1871 Frederiksberg C, Denmark (D.P.D., P.U., B.L.P.); Department of Agriculture and Ecology, Faculty of Science, University of Copenhagen, 1871 Frederiksberg C, Denmark (B.J.); and Center for Glycomics, Departments of Cellular and Molecular Medicine and School of Dentistry, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark (Z.Y., E.P.B., E.A., U.M., S.B.L., H.C.)
| | - Steven B. Levery
- Department of Molecular Biology and Genetics, Faculty of Science and Technology, Aarhus University, Flakkebjerg, 4200 Slagelse, Denmark (Z.Y.); Department of Plant Biology and Biotechnology, Faculty of Science, University of Copenhagen, 1871 Frederiksberg C, Denmark (D.P.D., P.U., B.L.P.); Department of Agriculture and Ecology, Faculty of Science, University of Copenhagen, 1871 Frederiksberg C, Denmark (B.J.); and Center for Glycomics, Departments of Cellular and Molecular Medicine and School of Dentistry, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark (Z.Y., E.P.B., E.A., U.M., S.B.L., H.C.)
| | - Henrik Clausen
- Department of Molecular Biology and Genetics, Faculty of Science and Technology, Aarhus University, Flakkebjerg, 4200 Slagelse, Denmark (Z.Y.); Department of Plant Biology and Biotechnology, Faculty of Science, University of Copenhagen, 1871 Frederiksberg C, Denmark (D.P.D., P.U., B.L.P.); Department of Agriculture and Ecology, Faculty of Science, University of Copenhagen, 1871 Frederiksberg C, Denmark (B.J.); and Center for Glycomics, Departments of Cellular and Molecular Medicine and School of Dentistry, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark (Z.Y., E.P.B., E.A., U.M., S.B.L., H.C.)
| | - Bent L. Petersen
- Department of Molecular Biology and Genetics, Faculty of Science and Technology, Aarhus University, Flakkebjerg, 4200 Slagelse, Denmark (Z.Y.); Department of Plant Biology and Biotechnology, Faculty of Science, University of Copenhagen, 1871 Frederiksberg C, Denmark (D.P.D., P.U., B.L.P.); Department of Agriculture and Ecology, Faculty of Science, University of Copenhagen, 1871 Frederiksberg C, Denmark (B.J.); and Center for Glycomics, Departments of Cellular and Molecular Medicine and School of Dentistry, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark (Z.Y., E.P.B., E.A., U.M., S.B.L., H.C.)
| |
Collapse
|
17
|
Yang Z, Drew DP, Jørgensen B, Mandel U, Bach SS, Ulvskov P, Levery SB, Bennett EP, Clausen H, Petersen BL. Engineering mammalian mucin-type O-glycosylation in plants. J Biol Chem 2012; 287:11911-23. [PMID: 22334671 PMCID: PMC3320939 DOI: 10.1074/jbc.m111.312918] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Revised: 01/16/2012] [Indexed: 11/06/2022] Open
Abstract
Mucin-type O-glycosylation is an important post-translational modification that confers a variety of biological properties and functions to proteins. This post-translational modification has a particularly complex and differentially regulated biosynthesis rendering prediction and control of where O-glycans are attached to proteins, and which structures are formed, difficult. Because plants are devoid of GalNAc-type O-glycosylation, we have assessed requirements for establishing human GalNAc O-glycosylation de novo in plants with the aim of developing cell systems with custom-designed O-glycosylation capacity. Transient expression of a Pseudomonas aeruginosa Glc(NAc) C4-epimerase and a human polypeptide GalNAc-transferase in leaves of Nicotiana benthamiana resulted in GalNAc O-glycosylation of co-expressed human O-glycoprotein substrates. A chimeric YFP construct containing a 3.5 tandem repeat sequence of MUC1 was glycosylated with up to three and five GalNAc residues when co-expressed with GalNAc-T2 and a combination of GalNAc-T2 and GalNAc-T4, respectively, as determined by mass spectrometry. O-Glycosylation was furthermore demonstrated on a tandem repeat of MUC16 and interferon α2b. In plants, prolines in certain classes of proteins are hydroxylated and further substituted with plant-specific O-glycosylation; unsubstituted hydroxyprolines were identified in our MUC1 construct. In summary, this study demonstrates that mammalian type O-glycosylation can be established in plants and that plants may serve as a host cell for production of recombinant O-glycoproteins with custom-designed O-glycosylation. The observed hydroxyproline modifications, however, call for additional future engineering efforts.
Collapse
Affiliation(s)
- Zhang Yang
- From the Department of Genetics and Biotechnology, Faculty of Agricultural Sciences, Aarhus University, Flakkebjerg, 4200 Slagelse, Denmark
| | | | - Bodil Jørgensen
- Department of Agriculture and Ecology, Faculty of Life Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark, and
| | - Ulla Mandel
- the Center for Glycomics, Departments of Cellular and Molecular Medicine, and School of Dentistry, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen N, Denmark
| | - Søren S. Bach
- the Department of Plant Biology and Biotechnology and
| | - Peter Ulvskov
- the Department of Plant Biology and Biotechnology and
| | - Steven B. Levery
- the Center for Glycomics, Departments of Cellular and Molecular Medicine, and School of Dentistry, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen N, Denmark
| | - Eric P. Bennett
- the Center for Glycomics, Departments of Cellular and Molecular Medicine, and School of Dentistry, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen N, Denmark
| | - Henrik Clausen
- the Center for Glycomics, Departments of Cellular and Molecular Medicine, and School of Dentistry, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen N, Denmark
| | | |
Collapse
|
18
|
Hijazi M, Durand J, Pichereaux C, Pont F, Jamet E, Albenne C. Characterization of the arabinogalactan protein 31 (AGP31) of Arabidopsis thaliana: new advances on the Hyp-O-glycosylation of the Pro-rich domain. J Biol Chem 2012; 287:9623-32. [PMID: 22270363 DOI: 10.1074/jbc.m111.247874] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Proteins are important actors in plant cell walls because they contribute to their architecture and their dynamics. Among them, hydroxyproline (Hyp)-rich glycoproteins constitute a complex family of O-glycoproteins with various structures and functions. In this study, we characterized an atypical Hyp-rich glycoprotein, AGP31 (arabinogalactan protein 31), which displays a multidomain organization unique in Arabidopsis thaliana, consisting of a short arabinogalactan protein (AGP) motif, a His stretch, a Pro-rich domain, and a C-terminal PAC (PRP-AGP containing Cys) domain. The use of various mass spectrometry strategies was innovative and powerful: it permitted us to locate Hyp residues, to demonstrate the presence of carbohydrates, and to refine their distribution over the Pro-rich domain. Most Hyp were isolated within repeated motifs such as KAOV, KSOV, K(PO/OP)T, K(PO/OP)V, T(PO/OP)V, and Y(PO/OP)T. A few extensin-like motifs with contiguous Hyp (SOOA and SOOT) were also found. The Pro-rich domain was shown to carry Gal residues on isolated Hyp but also Ara residues. The existence of new type Hyp-O-Gal/Ara-rich motifs not recognized by the β-glucosyl Yariv reagent but interacting with the peanut agglutinin lectin was proposed. In addition, the N-terminal short AGP motif was assumed to be substituted by arabinogalactans. Altogether, AGP31 was found to be highly heterogeneous in cell walls because arabinogalactans could be absent, Hyp-O-Gal/Ara-rich motifs of different sizes were observed, and truncated forms missing the C-terminal PAC domain were found, suggesting degradation in muro and/or partial glycosylation prior to secretion.
Collapse
Affiliation(s)
- May Hijazi
- Université de Toulouse, UPS, UMR 5546, Laboratoire de Recherche en Sciences Végétales, BP 42617, Castanet-Tolosan, France
| | | | | | | | | | | |
Collapse
|
19
|
Tan L, Showalter AM, Egelund J, Hernandez-Sanchez A, Doblin MS, Bacic A. Arabinogalactan-proteins and the research challenges for these enigmatic plant cell surface proteoglycans. FRONTIERS IN PLANT SCIENCE 2012; 3:140. [PMID: 22754559 PMCID: PMC3384089 DOI: 10.3389/fpls.2012.00140] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Accepted: 06/10/2012] [Indexed: 05/18/2023]
Abstract
Arabinogalactan-proteins (AGPs) are complex glycoconjugates that are commonly found at the cell surface and in secretions of plants. Their location and diversity of structures have made them attractive targets as modulators of plant development but definitive proof of their direct role(s) in biological processes remains elusive. Here we overview the current state of knowledge on AGPs, identify key challenges impeding progress in the field and propose approaches using modern bioinformatic, (bio)chemical, cell biological, molecular and genetic techniques that could be applied to redress these gaps in our knowledge.
Collapse
Affiliation(s)
- Li Tan
- Complex Carbohydrate Research Centre, The University of Georgia,Athens, GA, USA
| | - Allan M. Showalter
- Molecular and Cellular Biology Program, Department of Environmental and Plant Biology, Ohio University,Athens, OH, USA
| | - Jack Egelund
- Department of Plant Biology and Biotechnology, Faculty of Life Sciences, University of Copenhagen,Frederiksberg, Denmark
| | - Arianna Hernandez-Sanchez
- ARC Centre of Excellence in Plant Cell Walls, School of Botany, University of Melbourne,Melbourne, VIC, Australia
| | - Monika S. Doblin
- ARC Centre of Excellence in Plant Cell Walls, School of Botany, University of Melbourne,Melbourne, VIC, Australia
| | - Antony Bacic
- ARC Centre of Excellence in Plant Cell Walls, School of Botany, University of Melbourne,Melbourne, VIC, Australia
- *Correspondence: Antony Bacic, ARC Centre of Excellence in Plant Cell Walls, School of Botany, University of Melbourne, Melbourne, VIC 3010, Australia. e-mail:
| |
Collapse
|