1
|
Lippolis A, Gezan SA, Zuidgeest J, Cafaro V, van Dinter BJ, Elzes G, Paulo MJ, Trindade LM. Targeted genotyping (90K-SPET) facilitates genome-wide association studies and the prediction of yield-related traits in faba bean (Vicia faba L.). BMC PLANT BIOLOGY 2025; 25:558. [PMID: 40301715 PMCID: PMC12042580 DOI: 10.1186/s12870-025-06546-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 04/11/2025] [Indexed: 05/01/2025]
Abstract
BACKGROUND Establishing faba bean (Vicia faba L.) as a major protein crop in Europe requires developing high-yielding varieties. However, the genetic regulation of yield-related traits is currently under-explored. These traits can be improved by exploiting the extensive but largely uncharacterized faba bean germplasm. Our study aimed to identify associations between 38,014 single nucleotide polymorphisms (SNPs) and flowering time (FT), plant height (PH), pod length (PL), seeds per pod (SP), and single seed weight (SSW) in 245 faba bean accessions (CGN panel) via a Genome-Wide Association Study (GWAS). The accessions were grown in 2021 and 2022 in the Netherlands. Additionally, we developed genomic selection (GS) models to predict the genetic merit within large germplasm collections for the mentioned traits, as well as yield (YLD). RESULTS The CGN panel was an optimal panel for performing high-resolution GWAS, showing large phenotypic variation, high narrow-sense heritability for all traits, and minimal genetic relatedness among accessions. Population structure analysis revealed the presence of four genetic groups. GWAS uncovered 33 SNP-trait associations in 2021 and 17 in 2022. We identified one stable QTL for FT and four for SSW over the two years, representing key molecular markers for testing in breeding applications. Short linkage disequilibrium decay (~ 268 Kbp) facilitated the identification of several important candidate genes with interesting homologs in other crops. Ten SNPs in 2021 and five in 2022 were predicted to be intra-genic missense variants, potentially altering protein function. Moreover, modeling the SNP effect simultaneously via Bayesian GS showed promising predictive ability (PA) and prediction accuracy (ACC), supporting their potential application in germplasm-improvement programs. Predictive ability ranged from 0.58 to 0.81 in 2021, and 0.47 to 0.85 in 2022 for different traits. Additionally, across-year predictions showed stable PA. CONCLUSION GWAS revealed promising QTLs for use in molecular breeding and highlighted new candidate genes. Interestingly, the prediction of intra-genic SNPs categorized 15 SNPs as putatively affecting protein function. Moreover, we demonstrated for the first time in faba bean that GS has the potential to unlock untapped diversity in genebank collections and accelerate trait integration into faba bean breeding programs.
Collapse
Affiliation(s)
- Antonio Lippolis
- Plant Breeding, Wageningen University & Research, Wageningen, Netherlands
| | | | - Jorrit Zuidgeest
- Plant Breeding, Wageningen University & Research, Wageningen, Netherlands
| | - Valeria Cafaro
- Agriculture Food and Environment, University of Catania, Catania, Italy
| | | | | | - Maria-João Paulo
- Biometris, Wageningen University & Research, Wageningen, Netherlands
| | - Luisa M Trindade
- Plant Breeding, Wageningen University & Research, Wageningen, Netherlands.
| |
Collapse
|
2
|
Liu J, Zhang Y, Shen Q, Zhou J, Zhang S, Gu J, Zhang Y, Wang F, Qi M, Li T, Liu Y. Identification of the FBN gene family in tomato and functional analysis of SlFBN11 in the electron transport under low night temperature. Int J Biol Macromol 2024; 283:137181. [PMID: 39515686 DOI: 10.1016/j.ijbiomac.2024.137181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/15/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024]
Abstract
FBNs are lipid-associated proteins that play a critical role in plant growth and stress response. However, the mechanisms of how FBNs proteins participate in the low night temperature response in tomato still unclear. Here we conducted a comprehensive genome-wide analysis of the FBN gene family in Solanum lycopersicum. In total, 14 SlFBN genes were identified, and information on their gene structures, protein motifs, phylogenetic relationships, and stress-related cis-regulatory elements (CREs) was provided. Among these, SlFBN11 was selected as a promising candidate for further functional characterization. The silencing of SlFBN11 destroys the redox balance of the PSI reaction center under low night temperature (LNT) stress, which led to increased ROS accumulation. Surprisingly, we found that the silencing of SlFNR2 also displayed an imbalance in electron transport of the PSI under LNT stress. Further experiments showed SlFBN11 can interact with SlFNR2 to positively response electron transport low night temperature. Collectively, the study provides a comprehensive analysis of the FBN genes family in Solanum lycopersicum and provides a theoretical basis for our understanding of the function of FBN genes in adaptation to LNT stresses.
Collapse
Affiliation(s)
- Jinming Liu
- The Modern Facilities Horticultural Engineering Technology Center, Shenyang Agricultural University, Shenyang, Liaoning, China; The Key Laboratory of Protected Horticulture, Ministry of Education, Shenyang, Liaoning, China
| | - Ye Zhang
- The Modern Facilities Horticultural Engineering Technology Center, Shenyang Agricultural University, Shenyang, Liaoning, China; Dalian Art College, Dalian, Liaoning, China
| | - Qi Shen
- The Modern Facilities Horticultural Engineering Technology Center, Shenyang Agricultural University, Shenyang, Liaoning, China; The Key Laboratory of Protected Horticulture, Ministry of Education, Shenyang, Liaoning, China
| | - Jinghan Zhou
- The Modern Facilities Horticultural Engineering Technology Center, Shenyang Agricultural University, Shenyang, Liaoning, China; The Key Laboratory of Protected Horticulture, Ministry of Education, Shenyang, Liaoning, China
| | - Shuxian Zhang
- The Modern Facilities Horticultural Engineering Technology Center, Shenyang Agricultural University, Shenyang, Liaoning, China; The Key Laboratory of Protected Horticulture, Ministry of Education, Shenyang, Liaoning, China
| | - Jiamao Gu
- The Modern Facilities Horticultural Engineering Technology Center, Shenyang Agricultural University, Shenyang, Liaoning, China; The Key Laboratory of Protected Horticulture, Ministry of Education, Shenyang, Liaoning, China
| | - Yueqi Zhang
- The Modern Facilities Horticultural Engineering Technology Center, Shenyang Agricultural University, Shenyang, Liaoning, China; The Key Laboratory of Protected Horticulture, Ministry of Education, Shenyang, Liaoning, China
| | - Feng Wang
- The Modern Facilities Horticultural Engineering Technology Center, Shenyang Agricultural University, Shenyang, Liaoning, China; The Key Laboratory of Protected Horticulture, Ministry of Education, Shenyang, Liaoning, China
| | - Mingfang Qi
- The Modern Facilities Horticultural Engineering Technology Center, Shenyang Agricultural University, Shenyang, Liaoning, China; The Key Laboratory of Protected Horticulture, Ministry of Education, Shenyang, Liaoning, China
| | - Tianlai Li
- The Modern Facilities Horticultural Engineering Technology Center, Shenyang Agricultural University, Shenyang, Liaoning, China; The Key Laboratory of Protected Horticulture, Ministry of Education, Shenyang, Liaoning, China
| | - Yufeng Liu
- The Modern Facilities Horticultural Engineering Technology Center, Shenyang Agricultural University, Shenyang, Liaoning, China; The Key Laboratory of Protected Horticulture, Ministry of Education, Shenyang, Liaoning, China.
| |
Collapse
|
3
|
Cao FY, Zeng Y, Lee AR, Kim B, Lee D, Kim ST, Kwon SW. OsFBN6 Enhances Brown Spot Disease Resistance in Rice. PLANTS (BASEL, SWITZERLAND) 2024; 13:3302. [PMID: 39683095 DOI: 10.3390/plants13233302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/19/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024]
Abstract
Brown spot (BS) is caused by necrotrophs fungi Cochliobolus miyabeanus (C. miyabeanus) which affects rainfed and upland production in rice, resulting in significant losses in yield and grain quality. Here, we explored the meJA treatment that leads to rice resistance to BS. Fibrillins (FBNs) family are constituents of plastoglobules in chloroplast response to biotic and abiotic stress, many research revealed that OsFBN1 and OsFBN5 are not only associated with the rice against disease but also with the JA pathway. The function of FBN6 was only researched in the Arabidopsis. We revealed gene expression levels of OsFBN1, OsFBN5, OsFBN6 and the JA pathway synthesis first specific enzyme OsAOS2 following infection with C. miyabeanus, OsAOS2 gene expression showed great regulation after C. miyabeanus and meJA treatment, indicating JA pathway response to BS resistance in rice. Three FBN gene expressions showed different significantly regulated modes in C. miyabeanus and meJA treatment. The haplotype analysis results showed OsFBN1 and OsFBN5 the diverse Haps significant with BS infection score, and the OsFBN6 showed stronger significance (**** p < 0.0001). Hence, we constructed OsFBN6 overexpression lines, which showed more resistance to BS compared to the wild type, revealing OsFBN6 positively regulated rice resistance to BS. We developed OsFBN6 genetic markers by haplotype analysis from 130 rice varieties according to whole-genome sequencing results, haplotype analysis, and marker development to facilitate the screening of BS-resistant varieties in rice breeding. The Caps marker developed by Chr4_30690229 can be directly applied to the breeding application of screening rice BS-resistant varieties.
Collapse
Affiliation(s)
- Fang-Yuan Cao
- Department of Plant Bioscience, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea
| | - Yuting Zeng
- Department of Plant Bioscience, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea
| | - Ah-Rim Lee
- Department of Plant Bioscience, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea
| | - Backki Kim
- Life and Industry Convergence Research Institute, Pusan National University, Miryang 50463, Republic of Korea
| | - Dongryung Lee
- Life and Industry Convergence Research Institute, Pusan National University, Miryang 50463, Republic of Korea
| | - Sun-Tae Kim
- Department of Plant Bioscience, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea
- Life and Industry Convergence Research Institute, Pusan National University, Miryang 50463, Republic of Korea
| | - Soon-Wook Kwon
- Department of Plant Bioscience, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea
- Life and Industry Convergence Research Institute, Pusan National University, Miryang 50463, Republic of Korea
| |
Collapse
|
4
|
Wang Y, Tian C, Na Q, Zhu C, Cao H, Zhang M, Meng L. The role of SlCHRC in carotenoid biosynthesis and plastid development in tomato fruit. Int J Biol Macromol 2024; 281:136354. [PMID: 39378920 DOI: 10.1016/j.ijbiomac.2024.136354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/17/2024] [Accepted: 10/04/2024] [Indexed: 10/10/2024]
Abstract
Chromoplasts are specialized plastids in plants involved in carotenoid synthesis, accumulation, and stress resistance. In tomatoes (Solanum lycopersicum), the Chromoplast-associated carotenoid binding protein (CHRC) regulates chromoplast development and carotenoid accumulation, although its precise mechanisms are not yet fully understood. To investigate the role of SlCHRC in carotenoid biosynthesis, we generated transgenic tomatoes using overexpression (oe-SlCHRC) and CRISPR/Cas9-mediated gene editing (cr-SlCHRC) techniques. The results demonstrated inhibited fruit ripening and delayed onset of color break in both transgenic lines. The oe-SlCHRC lines exhibited increased carotenoid accumulation, particularly (E/Z)-phytoene, lycopene, and γ-carotene, with abundant plastoglobules and carotenoid crystals observed via TEM. In contrast, cr-SlCHRC mutants showed a greener phenotype, reduced carotenoid content, and fewer plastoglobules at the BK + 10 stage. Transcriptome analysis indicated that SlCHRC influences key genes in carotenoid biosynthesis, such as SlNCED2, as well as genes related to chloroplast development, photosynthesis, and plastoglobule formation. Additionally, SlCHRC enhances heat stress tolerance in tomato fruits by upregulating heat shock proteins (HSPs), antioxidants, and proline accumulation. These findings indicate that SlCHRC plays a crucial role in improving tomato fruit quality under heat stress conditions.
Collapse
Affiliation(s)
- Yu Wang
- School of Food Science and Engineering, Hainan University, Hai Kou 570228, PR China; Sanya Nanfan Research Institute, Hainan University, Sanya 572025, PR China
| | - Cong Tian
- School of Food Science and Engineering, Hainan University, Hai Kou 570228, PR China
| | - Qiting Na
- School of Food Science and Engineering, Hainan University, Hai Kou 570228, PR China
| | - Changsong Zhu
- School of Food Science and Engineering, Hainan University, Hai Kou 570228, PR China
| | - Hui Cao
- School of Food Science and Engineering, Hainan University, Hai Kou 570228, PR China
| | - Mengzhuo Zhang
- School of Food Science and Engineering, Hainan University, Hai Kou 570228, PR China
| | - Lanhuan Meng
- School of Food Science and Engineering, Hainan University, Hai Kou 570228, PR China.
| |
Collapse
|
5
|
El-Sappah AH, Li J, Yan K, Zhu C, Huang Q, Zhu Y, Chen Y, El-Tarabily KA, AbuQamar SF. Fibrillin gene family and its role in plant growth, development, and abiotic stress. FRONTIERS IN PLANT SCIENCE 2024; 15:1453974. [PMID: 39574446 PMCID: PMC11580037 DOI: 10.3389/fpls.2024.1453974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 09/30/2024] [Indexed: 11/24/2024]
Abstract
Fibrillins (FBNs), highly conserved plastid lipid-associated proteins (PAPs), play a crucial role in plant physiology. These proteins, encoded by nuclear genes, are prevalent in the plastoglobules (PGs) of chloroplasts. FBNs are indispensable for maintaining plastid stability, promoting plant growth and development, and enhancing stress responses. The conserved PAP domain of FBNs was found across a wide range of photosynthetic organisms, from plants and cyanobacteria. FBN families are classified into 12 distinct groups/clades, with the 12th group uniquely present in algal-fungal symbiosis. This mini review delves into the structural attributes, phylogenetic classification, genomic features, protein-protein interactions, and functional roles of FBNs in plants, with a special focus on their effectiveness in mitigating abiotic stresses, particularly drought stress.
Collapse
Affiliation(s)
- Ahmed H. El-Sappah
- College of Agriculture, Forestry, and Food Engineering, Yibin University, Yibin, Sichuan, China
- Department of Genetics, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Jia Li
- College of Agriculture, Forestry, and Food Engineering, Yibin University, Yibin, Sichuan, China
| | - Kuan Yan
- College of Agriculture, Forestry, and Food Engineering, Yibin University, Yibin, Sichuan, China
| | - ChaoYang Zhu
- College of Agriculture, Forestry, and Food Engineering, Yibin University, Yibin, Sichuan, China
| | - Qiulan Huang
- College of Agriculture, Forestry, and Food Engineering, Yibin University, Yibin, Sichuan, China
| | - Yumin Zhu
- College of Agriculture, Forestry, and Food Engineering, Yibin University, Yibin, Sichuan, China
| | - Yu Chen
- College of Agriculture, Forestry, and Food Engineering, Yibin University, Yibin, Sichuan, China
| | - Khaled A. El-Tarabily
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Synan F. AbuQamar
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
6
|
Santhosh A, Neuhauser S. Host-Parasite interaction between brown algae and eukaryote biotrophic pathogens. CURRENT RESEARCH IN MICROBIAL SCIENCES 2024; 7:100306. [PMID: 39558936 PMCID: PMC11570863 DOI: 10.1016/j.crmicr.2024.100306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2024] Open
Abstract
Brown algae belong to the class Phaeophyceae which are mainly multicellular, photosynthetic organisms, however they evolved independently from terrestrial plants, green and red algae. In the past years marine aquaculture involving brown algae has gained enormous momentum. In both natural environments and aquaculture, brown algae are susceptible to infection by various prokaryotic and eukaryotic parasites. While our understanding of host-parasite interactions in brown algae is gaining recognition, our understanding of how brown algae react to biotic stress remains incomplete. The objective of this review is to address research gaps in the field by providing a summary of what is already known about the response of brown algae to abiotic and biotic stress. The biology of eukaryotic zoosporic pathogens Maullinia ectocarpii, Eurychasma dicksonii, Anisolpidium ectocarpii is also discussed, as those parasites have been used in laboratory experiments to study diseases of brown algae. These studies often relied on parasites-infecting Ectocarpus siliculosus which has become a brown algal model organism to study host-pathogen interactions. Stress response in brown algae involves processes similar to hypersensitivity response, oxidative stress response, and activation of peroxidases, but also the production of blue fluorescent metabolites and deposition of β-1,3-glucan in the cell wall. Cell wall modification, expression of several defence related proteins, and secondary metabolite production also hold a crucial role in brown algal defence mechanism. Understanding host-pathogen interactions and the associated mechanisms is vital to discover strategies to control pathogens in the growing aquaculture sector.
Collapse
Affiliation(s)
- Anagha Santhosh
- Institute of Microbiology, Universität Innsbruck, Innsbruck, Austria
| | - Sigrid Neuhauser
- Institute of Microbiology, Universität Innsbruck, Innsbruck, Austria
| |
Collapse
|
7
|
Feiz L, Shyu C, Wu S, Ahern KR, Gull I, Rong Y, Artymowicz CJ, Piñeros MA, Fei Z, Brutnell TP, Jander G. COI1 F-box proteins regulate DELLA protein levels, growth, and photosynthetic efficiency in maize. THE PLANT CELL 2024; 36:3237-3259. [PMID: 38801745 PMCID: PMC11371192 DOI: 10.1093/plcell/koae161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/18/2024] [Accepted: 04/23/2024] [Indexed: 05/29/2024]
Abstract
The F-box protein Coronatine Insensitive (COI) is a receptor for the jasmonic acid signaling pathway in plants. To investigate the functions of the 6 maize (Zea mays) COI proteins (COI1a, COI1b, COI1c, COI1d, COI2a, and COI2b), we generated single, double, and quadruple loss-of-function mutants. The pollen of the coi2a coi2b double mutant was inviable. The coi1 quadruple mutant (coi1-4x) exhibited shorter internodes, decreased photosynthesis, leaf discoloration, microelement deficiencies, and accumulation of DWARF8 and/or DWARF9, 2 DELLA family proteins that repress the gibberellic acid (GA) signaling pathway. Coexpression of COI and DELLA in Nicotiana benthamiana showed that the COI proteins trigger proteasome-dependent DELLA degradation. Many genes that are downregulated in the coi1-4x mutant are GA-inducible. In addition, most of the proteins encoded by the downregulated genes are predicted to be bundle sheath- or mesophyll-enriched, including those encoding C4-specific photosynthetic enzymes. Heterologous expression of maize Coi genes in N. benthamiana showed that COI2a is nucleus-localized and interacts with maize jasmonate zinc-finger inflorescence meristem domain (JAZ) proteins, the canonical COI repressor partners. However, maize COI1a and COI1c showed only partial nuclear localization and reduced binding efficiency to the tested JAZ proteins. Together, these results show the divergent functions of the 6 COI proteins in regulating maize growth and defense pathways.
Collapse
Affiliation(s)
- Leila Feiz
- Boyce Thompson Institute, Ithaca, NY 14853, USA
| | - Christine Shyu
- Crop Genome Editing, Regulatory Science, Bayer Crop Science, Chesterfield, MO 63017, USA
| | - Shan Wu
- Boyce Thompson Institute, Ithaca, NY 14853, USA
| | - Kevin R Ahern
- Boyce Thompson Institute, Ithaca, NY 14853, USA
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Iram Gull
- Boyce Thompson Institute, Ithaca, NY 14853, USA
| | - Ying Rong
- KWS Gateway Research Center, St. Louis, MO 63132, USA
| | | | - Miguel A Piñeros
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Ithaca, NY 14853, USA
| | - Zhangjun Fei
- Boyce Thompson Institute, Ithaca, NY 14853, USA
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Ithaca, NY 14853, USA
| | | | | |
Collapse
|
8
|
Hamilton M, Ferrer‐González FX, Moran MA. Heterotrophic bacteria trigger transcriptome remodelling in the photosynthetic picoeukaryote Micromonas commoda. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e13285. [PMID: 38778545 PMCID: PMC11112143 DOI: 10.1111/1758-2229.13285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 04/30/2024] [Indexed: 05/25/2024]
Abstract
Marine biogeochemical cycles are built on interactions between surface ocean microbes, particularly those connecting phytoplankton primary producers to heterotrophic bacteria. Details of these associations are not well understood, especially in the case of direct influences of bacteria on phytoplankton physiology. Here we catalogue how the presence of three marine bacteria (Ruegeria pomeroyi DSS-3, Stenotrophomonas sp. SKA14 and Polaribacter dokdonensis MED152) individually and uniquely impact gene expression of the picoeukaryotic alga Micromonas commoda RCC 299. We find a dramatic transcriptomic remodelling by M. commoda after 8 h in co-culture, followed by an increase in cell numbers by 56 h compared with the axenic cultures. Some aspects of the algal transcriptomic response are conserved across all three bacterial co-cultures, including an unexpected reduction in relative expression of photosynthesis and carbon fixation pathways. Expression differences restricted to a single bacterium are also observed, with the Flavobacteriia P. dokdonensis uniquely eliciting changes in relative expression of algal genes involved in biotin biosynthesis and the acquisition and assimilation of nitrogen. This study reveals that M. commoda has rapid and extensive responses to heterotrophic bacteria in ways that are generalizable, as well as in a taxon specific manner, with implications for the diversity of phytoplankton-bacteria interactions ongoing in the surface ocean.
Collapse
Affiliation(s)
- Maria Hamilton
- Department of Marine SciencesUniversity of GeorgiaAthensGeorgiaUSA
| | | | - Mary Ann Moran
- Department of Marine SciencesUniversity of GeorgiaAthensGeorgiaUSA
| |
Collapse
|
9
|
Hu F, Zhang Y, Guo J. Effects of drought stress on photosynthetic physiological characteristics, leaf microstructure, and related gene expression of yellow horn. PLANT SIGNALING & BEHAVIOR 2023; 18:2215025. [PMID: 37243677 DOI: 10.1080/15592324.2023.2215025] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/28/2023] [Accepted: 05/01/2023] [Indexed: 05/29/2023]
Abstract
Yellow horn grows in northern China and has a high tolerance to drought and poor soil. Improving photosynthetic efficiency and increasing plant growth and yield under drought conditions have become important research content for researchers worldwide. Our study goal is to provide comprehensive information on photosynthesis and some candidate genes breeding of yellow horn under drought stress. In this study, seedlings' stomatal conductance, chlorophyll content, and fluorescence parameters decreased under drought stress, but non-photochemical quenching increased. The leaf microstructure showed that stomata underwent a process from opening to closing, guard cells from complete to dry, and surrounding leaf cells from smooth to severe shrinkage. The chloroplast ultrastructure showed that the changes of starch granules were different under different drought stress, while plastoglobules increased and expanded continuously. In addition, we found some differentially expressed genes related to photosystem, electron transport component, oxidative phosphate ATPase, stomatal closure, and chloroplast ultrastructure. These results laid a foundation for further genetic improvement and deficit resistance breeding of yellow horn under drought stress.
Collapse
Affiliation(s)
- Fang Hu
- College of Forestry, Shanxi Agricultural University, Jinzhong, Shanxi, China
| | - Yunxiang Zhang
- College of Forestry, Shanxi Agricultural University, Jinzhong, Shanxi, China
| | - Jinping Guo
- College of Forestry, Shanxi Agricultural University, Jinzhong, Shanxi, China
| |
Collapse
|
10
|
Marzorati F, Rossi R, Bernardo L, Mauri P, Silvestre DD, Lauber E, Noël LD, Murgia I, Morandini P. Arabidopsis thaliana Early Foliar Proteome Response to Root Exposure to the Rhizobacterium Pseudomonas simiae WCS417. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2023; 36:737-748. [PMID: 37470457 DOI: 10.1094/mpmi-05-23-0071-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
Pseudomonas simiae WCS417 is a plant growth-promoting rhizobacterium that improves plant health and development. In this study, we investigate the early leaf responses of Arabidopsis thaliana to WCS417 exposure and the possible involvement of formate dehydrogenase (FDH) in such responses. In vitro-grown A. thaliana seedlings expressing an FDH::GUS reporter show a significant increase in FDH promoter activity in their roots and shoots after 7 days of indirect exposure (without contact) to WCS417. After root exposure to WCS417, the leaves of FDH::GUS plants grown in the soil also show an increased FDH promoter activity in hydathodes. To elucidate early foliar responses to WCS417 as well as FDH involvement, the roots of A. thaliana wild-type Col and atfdh1-5 knock-out mutant plants grown in soil were exposed to WCS417, and proteins from rosette leaves were subjected to proteomic analysis. The results reveal that chloroplasts, in particular several components of the photosystems PSI and PSII, as well as members of the glutathione S-transferase family, are among the early targets of the metabolic changes induced by WCS417. Taken together, the alterations in the foliar proteome, as observed in the atfdh1-5 mutant, especially after exposure to WCS417 and involving stress-responsive genes, suggest that FDH is a node in the early events triggered by the interactions between A. thaliana and the rhizobacterium WCS417. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Francesca Marzorati
- Department of Environmental Science and Policy, University of Milan, Milan, Italy
| | - Rossana Rossi
- Proteomic and Metabolomic Laboratory, Institute for Biomedical Technologies-National Research Council (ITB-CNR), Segrate, Italy
| | - Letizia Bernardo
- Proteomic and Metabolomic Laboratory, Institute for Biomedical Technologies-National Research Council (ITB-CNR), Segrate, Italy
| | - Pierluigi Mauri
- Proteomic and Metabolomic Laboratory, Institute for Biomedical Technologies-National Research Council (ITB-CNR), Segrate, Italy
| | - Dario Di Silvestre
- Proteomic and Metabolomic Laboratory, Institute for Biomedical Technologies-National Research Council (ITB-CNR), Segrate, Italy
| | - Emmanuelle Lauber
- Laboratoire des interactions plantes-microbes-environnement CNRS-INRAE, University of Toulouse, Castanet-Tolosan, France
| | - Laurent D Noël
- Laboratoire des interactions plantes-microbes-environnement CNRS-INRAE, University of Toulouse, Castanet-Tolosan, France
| | - Irene Murgia
- Department of Environmental Science and Policy, University of Milan, Milan, Italy
| | - Piero Morandini
- Department of Environmental Science and Policy, University of Milan, Milan, Italy
| |
Collapse
|
11
|
Zhang L, Zhang N, Wang S, Tian H, Liu L, Pei D, Yu X, Zhao L, Chen F. A TaSnRK1α Modulates TaPAP6L-Mediated Wheat Cold Tolerance through Regulating Endogenous Jasmonic Acid. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303478. [PMID: 37740426 PMCID: PMC10625090 DOI: 10.1002/advs.202303478] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/22/2023] [Indexed: 09/24/2023]
Abstract
Here, a sucrose non-fermenting-1-related protein kinase alpha subunit (TaSnRK1α-1A) is identified as associated with cold stress through integration of genome-wide association study, bulked segregant RNA sequencing, and virus-induced gene silencing. It is confirmed that TaSnRK1α positively regulates cold tolerance by transgenes and ethyl methanesulfonate (EMS) mutants. A plastid-lipid-associated protein 6, chloroplastic-like (TaPAP6L-2B) strongly interacting with TaSnRK1α-1A is screened. Molecular chaperone DJ-1 family protein (TaDJ-1-7B) possibly bridged the interaction of TaSnRK1α-1A and TaPAP6L-2B. It is further revealed that TaSnRK1α-1A phosphorylated TaPAP6L-2B. Subsequently, a superior haplotype TaPAP6L-2B30S /38S is identified and confirmed that both R30S and G38S are important phosphorylation sites that influence TaPAP6L-2B in cold tolerance. Overexpression (OE) and EMS-mutant lines verified TaPAP6L positively modulating cold tolerance. Furthermore, transcriptome sequencing revealed that TaPAP6L-2B-OE lines significantly increased jasmonic acid (JA) content, possibly by improving precursor α-linolenic acid contributing to JA synthesis and by repressing JAR1 degrading JA. Exogenous JA significantly improved the cold tolerance of wheat plants. In summary, TaSnRK1α profoundly regulated cold stress, possibly through phosphorylating TaPAP6L to increase endogenous JA content of wheat plants.
Collapse
Affiliation(s)
- Lingran Zhang
- National Key Laboratory of Wheat and Maize Crop Science / CIMMYT‐China Wheat and Maize Joint Research Center /Agronomy CollegeHenan Agricultural UniversityZhengzhou450046China
| | - Ning Zhang
- National Key Laboratory of Wheat and Maize Crop Science / CIMMYT‐China Wheat and Maize Joint Research Center /Agronomy CollegeHenan Agricultural UniversityZhengzhou450046China
| | - Sisheng Wang
- National Key Laboratory of Wheat and Maize Crop Science / CIMMYT‐China Wheat and Maize Joint Research Center /Agronomy CollegeHenan Agricultural UniversityZhengzhou450046China
| | - Hongyan Tian
- National Key Laboratory of Wheat and Maize Crop Science / CIMMYT‐China Wheat and Maize Joint Research Center /Agronomy CollegeHenan Agricultural UniversityZhengzhou450046China
| | - Lu Liu
- National Key Laboratory of Wheat and Maize Crop Science / CIMMYT‐China Wheat and Maize Joint Research Center /Agronomy CollegeHenan Agricultural UniversityZhengzhou450046China
| | - Dan Pei
- National Key Laboratory of Wheat and Maize Crop Science / CIMMYT‐China Wheat and Maize Joint Research Center /Agronomy CollegeHenan Agricultural UniversityZhengzhou450046China
| | - Xiaodong Yu
- National Key Laboratory of Wheat and Maize Crop Science / CIMMYT‐China Wheat and Maize Joint Research Center /Agronomy CollegeHenan Agricultural UniversityZhengzhou450046China
| | - Lei Zhao
- National Key Laboratory of Wheat and Maize Crop Science / CIMMYT‐China Wheat and Maize Joint Research Center /Agronomy CollegeHenan Agricultural UniversityZhengzhou450046China
| | - Feng Chen
- National Key Laboratory of Wheat and Maize Crop Science / CIMMYT‐China Wheat and Maize Joint Research Center /Agronomy CollegeHenan Agricultural UniversityZhengzhou450046China
| |
Collapse
|
12
|
Li J, Kong D, Song T, Hu Z, Li Q, Xiao B, Kessler F, Zhang Z, Xie G. OsFBN7-OsKAS I module promotes formation of plastoglobules clusters in rice chloroplasts. THE NEW PHYTOLOGIST 2023. [PMID: 37366020 DOI: 10.1111/nph.19081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 05/29/2023] [Indexed: 06/28/2023]
Abstract
Plastoglobules (PGs) contiguous with the outer leaflets of thylakoid membranes regulate lipid metabolism, plastid developmental transitions, and responses to environmental stimuli. However, the function of OsFBN7, a PG-core fibrillin gene in rice, has not been elucidated. Using molecular genetics and physiobiochemical approaches, we observed that OsFBN7 overexpression promoted PG clustering in rice chloroplasts. OsFBN7 interacted with two KAS I enzymes, namely OsKAS Ia and OsKAS Ib, in rice chloroplasts. Lipidomic analysis of chloroplast subcompartments, including PGs in the OsFBN7 overexpression lines, confirmed that levels of diacylglycerol (DAG), a chloroplast lipid precursor and monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol (DGDG), the main chloroplast membrane lipids, were increased in PGs and chloroplasts. Furthermore, OsFBN7 enhanced the abundances of OsKAS Ia/Ib in planta and their stability under oxidative and heat stresses. In addition, RNA sequencing and real-time quantitative reverse-transcription polymerase chain reaction (qRT-PCR) analyses showed that the expression of the DAG synthetase gene PAP1 and MGDG synthase gene MDG2 was upregulated by OsFBN7. In conclusion, this study proposes a new model in which OsFBN7 binds to OsKAS Ia/Ib in chloroplast and enhances their abundance and stability, thereby regulating the chloroplast and PG membrane lipids involved in the formation of PG clusters.
Collapse
Affiliation(s)
- Jiajia Li
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Dongyan Kong
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ting Song
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhenzhu Hu
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qiang Li
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Benze Xiao
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Felix Kessler
- Laboratory of Plant Physiology, University of Neuchatel, Neuchatel, 2000, Switzerland
| | - Zhengfeng Zhang
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, 430079, China
| | - Guosheng Xie
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
13
|
Niaz M, Zhang L, Lv G, Hu H, Yang X, Cheng Y, Zheng Y, Zhang B, Yan X, Htun A, Zhao L, Sun C, Zhang N, Ren Y, Chen F. Identification of TaGL1-B1 gene controlling grain length through regulation of jasmonic acid in common wheat. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:979-989. [PMID: 36650924 PMCID: PMC10106860 DOI: 10.1111/pbi.14009] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 12/15/2022] [Accepted: 01/06/2023] [Indexed: 05/04/2023]
Abstract
Grain length is one of the most important factors in determining wheat yield. Here, a stable QTL for grain length was mapped on chromosome 1B in a F10 recombinant inbred lines (RIL) population, and the gene TaGL1-B1 encoding carotenoid isomerase was identified in a secondary large population through multiple strategies. The genome-wide association study (GWAS) in 243 wheat accessions revealed that the marker for TaGL1-B1 was the most significant among all chromosomes. EMS mutants of TaGL1 possessed significantly reduced grain length, whereas TaGL1-B1-overexpressed lines possessed significantly increased grain length. Moreover, TaGL1-B1 strongly interacted with TaPAP6. TaPAP6-overexpressed lines had significantly increased grain length. Transcriptome analysis suggested that TaPAP6 was possibly involved in the accumulation of JA (jasmonic acid). Consistently, JA content was significantly increased in the TaGL1-B1 and TaPAP6 overexpression lines. Additionally, the role of TaGL1-B1 in regulating carotenoids was verified through QTL mapping, GWAS, EMS mutants and overexpression lines. Notably, overexpression of TaGL1-B1 significantly increased wheat yield in multiple locations. Taken together, overexpression of TaGL1-B1 enhanced grain length, probably through interaction with TaPAP6 to cause the accumulation of JA that improved carotenoid content and photosynthesis, thereby resulted in increased wheat yield. This study provided valuable genes controlling grain length to improve yield and a potential insight into the molecular mechanism of modulating JA-mediated grain size in wheat.
Collapse
Affiliation(s)
- Mohsin Niaz
- National Key Laboratory of Wheat and Maize Crop Science, CIMMYT‐China Wheat and Maize Joint Research Center, Agronomy CollegeHenan Agricultural UniversityZhengzhouChina
| | - Lingran Zhang
- National Key Laboratory of Wheat and Maize Crop Science, CIMMYT‐China Wheat and Maize Joint Research Center, Agronomy CollegeHenan Agricultural UniversityZhengzhouChina
| | - Guoguo Lv
- National Key Laboratory of Wheat and Maize Crop Science, CIMMYT‐China Wheat and Maize Joint Research Center, Agronomy CollegeHenan Agricultural UniversityZhengzhouChina
| | - Huiting Hu
- National Key Laboratory of Wheat and Maize Crop Science, CIMMYT‐China Wheat and Maize Joint Research Center, Agronomy CollegeHenan Agricultural UniversityZhengzhouChina
| | - Xi Yang
- National Key Laboratory of Wheat and Maize Crop Science, CIMMYT‐China Wheat and Maize Joint Research Center, Agronomy CollegeHenan Agricultural UniversityZhengzhouChina
| | - Yongzhen Cheng
- National Key Laboratory of Wheat and Maize Crop Science, CIMMYT‐China Wheat and Maize Joint Research Center, Agronomy CollegeHenan Agricultural UniversityZhengzhouChina
| | - Yueting Zheng
- National Key Laboratory of Wheat and Maize Crop Science, CIMMYT‐China Wheat and Maize Joint Research Center, Agronomy CollegeHenan Agricultural UniversityZhengzhouChina
| | - Bingyang Zhang
- National Key Laboratory of Wheat and Maize Crop Science, CIMMYT‐China Wheat and Maize Joint Research Center, Agronomy CollegeHenan Agricultural UniversityZhengzhouChina
| | - Xiangning Yan
- National Key Laboratory of Wheat and Maize Crop Science, CIMMYT‐China Wheat and Maize Joint Research Center, Agronomy CollegeHenan Agricultural UniversityZhengzhouChina
| | - Aye Htun
- National Key Laboratory of Wheat and Maize Crop Science, CIMMYT‐China Wheat and Maize Joint Research Center, Agronomy CollegeHenan Agricultural UniversityZhengzhouChina
| | - Lei Zhao
- National Key Laboratory of Wheat and Maize Crop Science, CIMMYT‐China Wheat and Maize Joint Research Center, Agronomy CollegeHenan Agricultural UniversityZhengzhouChina
| | - Congwei Sun
- National Key Laboratory of Wheat and Maize Crop Science, CIMMYT‐China Wheat and Maize Joint Research Center, Agronomy CollegeHenan Agricultural UniversityZhengzhouChina
| | - Ning Zhang
- National Key Laboratory of Wheat and Maize Crop Science, CIMMYT‐China Wheat and Maize Joint Research Center, Agronomy CollegeHenan Agricultural UniversityZhengzhouChina
| | - Yan Ren
- National Key Laboratory of Wheat and Maize Crop Science, CIMMYT‐China Wheat and Maize Joint Research Center, Agronomy CollegeHenan Agricultural UniversityZhengzhouChina
| | - Feng Chen
- National Key Laboratory of Wheat and Maize Crop Science, CIMMYT‐China Wheat and Maize Joint Research Center, Agronomy CollegeHenan Agricultural UniversityZhengzhouChina
| |
Collapse
|
14
|
Pandey A, Sharma P, Mishra D, Dey S, Malviya R, Gayen D. Genome-wide identification of the fibrillin gene family in chickpea (Cicer arietinum L.) and its response to drought stress. Int J Biol Macromol 2023; 234:123757. [PMID: 36805507 DOI: 10.1016/j.ijbiomac.2023.123757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/27/2023] [Accepted: 02/11/2023] [Indexed: 02/21/2023]
Abstract
Fibrillin family members play multiple roles in growth, development, and protection against abiotic stress. In this study, we identified 12 potential CaFBNs that are ranging from 25 kDa-42.92 kDa and are mostly basic. These proteins were hydrophilic in nature and generally resided in the chloroplast. The CaFBN genes were located on different chromosomes like 1, 4, 5, and 7. All FBNs shared conserved motifs and possessed a higher number of stress-responsive elements. For evolutionary analysis, a phylogenetic tree of CaFBNs with other plants' FBNs was constructed and clustered into 11 FBN subgroups. For expression analysis, 21 day old chickpea seedling was exposed to dehydration stress by withholding water. We also performed various physiological and biochemical analyses to check that plant changes at the physiological and cellular levels while undergoing stress conditions. The transcript expression of CaFBNs was higher in aerial parts, especially in stems and leaves. Dehydration-specific transcriptome and qPCR analysis showed that FBN-1, FBN-2, and FBN-6 were highly expressed. In addition, our study provides a comprehensive overview of the FBN protein family and their importance during the dehydration stress condition in Cicer arietinum.
Collapse
Affiliation(s)
- Anuradha Pandey
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, NH-8 Bandarsindri, Tehsil- Kishangarh, Dist- Ajmer, 305 817, India
| | - Punam Sharma
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, NH-8 Bandarsindri, Tehsil- Kishangarh, Dist- Ajmer, 305 817, India
| | - Divya Mishra
- Department of Plant Pathology, Kansas State University, USA
| | - Sharmistha Dey
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, NH-8 Bandarsindri, Tehsil- Kishangarh, Dist- Ajmer, 305 817, India
| | - Rinku Malviya
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, NH-8 Bandarsindri, Tehsil- Kishangarh, Dist- Ajmer, 305 817, India
| | - Dipak Gayen
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, NH-8 Bandarsindri, Tehsil- Kishangarh, Dist- Ajmer, 305 817, India.
| |
Collapse
|
15
|
Lundquist PK. Chromoplast differentiation: a central role for plastoglobule lipid droplets comes into focus. THE NEW PHYTOLOGIST 2023; 237:1483-1485. [PMID: 36649485 DOI: 10.1111/nph.18700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Affiliation(s)
- Peter K Lundquist
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
- Plant Resilience Institute, Michigan State University, East Lansing, MI, 48824, USA
| |
Collapse
|
16
|
Jiang EY, Fan Y, Phung NV, Xia WY, Hu GR, Li FL. Overexpression of plastid lipid-associated protein in marine diatom enhances the xanthophyll synthesis and storage. Front Microbiol 2023; 14:1143017. [PMID: 37152729 PMCID: PMC10160619 DOI: 10.3389/fmicb.2023.1143017] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 04/04/2023] [Indexed: 05/09/2023] Open
Abstract
Plastoglobules, which are lipoprotein structures surrounded by a single hydrophobic phospholipid membrane, are subcellular organelles in plant chromoplasts and chloroplasts. They contain neutral lipids, tocopherols, quinones, chlorophyll metabolites, carotenoids and their derivatives. Proteomic studies indicated that plastoglobules are involved in carotenoid metabolism and storage. In this study, one of the plastid lipid-associated proteins (PAP), the major protein in plastoglobules, was selected and overexpressed in Phaeodactylum tricornutum. The diameter of the plastoglobules in mutants was decreased by a mean of 19.2% versus the wild-type, while the fucoxanthin level was increased by a mean of 51.2%. All mutants exhibited morphological differences from the wild-type, including a prominent increase in the transverse diameter. Moreover, the unsaturated fatty acid levels were increased in different mutants, including an 18.9-59.3% increase in eicosapentaenoic acid content. Transcriptomic analysis revealed that PAP expression and the morphological changes altered xanthophyll synthesis and storage, which affected the assembly of the fucoxanthin chlorophyll a/c-binding protein and expression of antenna proteins as well as reduced the non-photochemical quenching activity of diatom cells. Therefore, metabolic regulation at the suborganelle level can be achieved by modulating PAP expression. These findings provide a subcellular structural site and target for synthetic biology to modify pigment and lipid metabolism in microalgae chassis cells.
Collapse
Affiliation(s)
- Er-Ying Jiang
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao C1 Refinery Engineering Research Center, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yong Fan
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao C1 Refinery Engineering Research Center, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- *Correspondence: Yong Fan,
| | - Nghi-Van Phung
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao C1 Refinery Engineering Research Center, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Wan-Yue Xia
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao C1 Refinery Engineering Research Center, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Guang-Rong Hu
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao C1 Refinery Engineering Research Center, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Fu-Li Li
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao C1 Refinery Engineering Research Center, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- Shandong Energy Institute, Qingdao, China
- Qingdao New Energy Shandong Laboratory, Qingdao, China
- Fu-Li Li,
| |
Collapse
|
17
|
Zita W, Bressoud S, Glauser G, Kessler F, Shanmugabalaji V. Chromoplast plastoglobules recruit the carotenoid biosynthetic pathway and contribute to carotenoid accumulation during tomato fruit maturation. PLoS One 2022; 17:e0277774. [PMID: 36472971 PMCID: PMC9725166 DOI: 10.1371/journal.pone.0277774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 11/02/2022] [Indexed: 12/12/2022] Open
Abstract
Tomato (Solanum lycopersicum) fruit maturation is associated with a developmental transition from chloroplasts (in mature green fruit) to chromoplasts (in red fruit). The hallmark red color of ripe tomatoes is due to carotenogenesis and accumulation of the red carotenoid lycopene inside chromoplasts. Plastoglobules (PG) are lipid droplets in plastids that are involved in diverse lipid metabolic pathways. In tomato, information on the possible role of PG in carotogenesis and the PG proteome is largely lacking. Here, we outline the role of PG in carotenogenesis giving particular attention to tomato fruit PG proteomes and metabolomes. The proteome analysis revealed the presence of PG-typical FBNs, ABC1K-like kinases, and metabolic enzymes, and those were decreased in the PG of tomato chromoplasts compared to chloroplasts. Notably, the complete β-carotene biosynthesis pathway was recruited to chromoplast PG, and the enzymes PHYTOENE SYNTHASE 1 (PSY-1), PHYTOENE DESATURASE (PDS), ZETA-CAROTENE DESATURASE (ZDS), and CAROTENOID ISOMERASE (CRTISO) were enriched up to twelvefold compared to chloroplast PG. We profiled the carotenoid and prenyl lipid changes in PG during the chloroplast to chromoplast transition and demonstrated large increases of lycopene and β-carotene in chromoplast PG. The PG proteome and metabolome are subject to extensive remodeling resulting in high accumulation of lycopene during the chloroplast-to-chromoplast transition. Overall, the results indicate that PGs contribute to carotenoid accumulation during tomato fruit maturation and suggest that they do so by functioning as a biosynthetic platform for carotenogenesis.
Collapse
Affiliation(s)
- Wayne Zita
- Plant Physiology Laboratory, University of Neuchâtel, Neuchâtel, Switzerland
| | - Ségolène Bressoud
- Plant Physiology Laboratory, University of Neuchâtel, Neuchâtel, Switzerland
| | - Gaetan Glauser
- Neuchâtel Platform of Analytical Chemistry, University of Neuchâtel, Neuchâtel, Switzerland
| | - Felix Kessler
- Plant Physiology Laboratory, University of Neuchâtel, Neuchâtel, Switzerland
| | | |
Collapse
|
18
|
Janotík A, Dadáková K, Lochman J, Zapletalová M. L-Aspartate and L-Glutamine Inhibit Beta-Aminobutyric Acid-Induced Resistance in Tomatoes. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11212908. [PMID: 36365361 PMCID: PMC9655027 DOI: 10.3390/plants11212908] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/09/2022] [Accepted: 10/27/2022] [Indexed: 05/31/2023]
Abstract
Plant diseases caused by pathogens lead to economic and agricultural losses, while plant resistance is defined by robustness and timing of defence response. Exposure to microbial-associated molecular patterns or specific chemical compounds can promote plants into a primed state with more robust defence responses. β-aminobutyric acid (BABA) is an endogenous stress metabolite that induces resistance, thereby protecting various plants' diverse stresses by induction of non-canonical activity after binding into aspartyl-tRNA synthetase (AspRS). In this study, by integrating BABA-induced changes in selected metabolites and transcript data, we describe the molecular processes involved in BABA-induced resistance (BABA-IR) in tomatoes. BABA significantly restricted the growth of the pathogens P. syringae pv. tomato DC3000 and was related to the accumulation of transcripts for pathogenesis-related proteins and jasmonic acid signalling but not salicylic acid signalling in Arabidopsis. The resistance was considerably reduced by applying amino acids L-Asp and L-Gln when L-Gln prevents general amino acid inhibition in plants. Analysis of amino acid changes suggests that BABA-IR inhibition by L-Asp is due to its rapid metabolisation to L-Gln and not its competition with BABA for the aspartyl-tRNA synthetase (AspRS) binding site. Our results showed differences between the effect of BABA on tomatoes and other model plants. They highlighted the importance of comparative studies between plants of agronomic interest subjected to treatment with BABA.
Collapse
|
19
|
Alp K, Terzi H, Yildiz M. Proteomic and physiological analyses to elucidate nitric oxide-mediated adaptive responses of barley under cadmium stress. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2022; 28:1467-1476. [PMID: 36051236 PMCID: PMC9424405 DOI: 10.1007/s12298-022-01214-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 06/24/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
UNLABELLED Nitric oxide (NO) is known to induce plant resistance for several environmental stresses. The protective roles of NO in cadmium (Cd) toxicity have been well documented for various plant species; nevertheless, little information is available about its molecular regulation in improving Cd tolerance of barley plants. Therefore, we combined a comparative proteomics with physiological analyses to evaluate the potential roles of NO in alleviating Cd stress (50 μM) in barley (Hordeum vulgare L.) seedlings. Exogenous application of NO donor sodium nitroprusside (SNP, 100 μM) decreased the Cd-mediated seedling growth inhibition. This observation was supported by the reduction of lipid peroxidation as well as the improvement of chlorophyll content and inhibition of hydrogen peroxide accumulation. Activities of the superoxide dismutase and guaiacol peroxidase were reduced following the application of SNP, while ascorbate peroxidase activity was enhanced. In this study, a total of 34 proteins were significantly regulated by NO in the leaves under Cd stress using a gel-based proteomic approach. The proteomic analysis showed that several pathways were noticeably influenced by NO including photosynthesis and carbohydrate metabolism, protein metabolism, energy metabolism, stress defense, and signal transduction. These results provide new evidence that NO induce photosynthesis and energy metabolism which may enhance Cd tolerance in barley seedlings. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12298-022-01214-3.
Collapse
Affiliation(s)
- Kübra Alp
- Department of Molecular Biology and Genetics, Faculty of Science and Literature, Afyon Kocatepe University, Afyonkarahisar, Turkey
| | - Hakan Terzi
- Department of Molecular Biology and Genetics, Faculty of Science and Literature, Afyon Kocatepe University, Afyonkarahisar, Turkey
| | - Mustafa Yildiz
- Department of Molecular Biology and Genetics, Faculty of Science and Literature, Afyon Kocatepe University, Afyonkarahisar, Turkey
| |
Collapse
|
20
|
Kim I, Kim EH, Choi YR, Kim HU. Fibrillin2 in chloroplast plastoglobules participates in photoprotection and jasmonate-induced senescence. PLANT PHYSIOLOGY 2022; 189:1363-1379. [PMID: 35404409 PMCID: PMC9237730 DOI: 10.1093/plphys/kiac166] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 03/16/2022] [Indexed: 06/14/2023]
Abstract
Fibrillins (FBNs) are the major structural proteins of plastoglobules (PGs) in chloroplasts. PGs are associated with defense against abiotic and biotic stresses, as well as lipid storage. Although FBN2 is abundant in PGs, its independent function under abiotic stress has not yet been identified. In this study, the targeting of FBN2 to PGs was clearly demonstrated using an FBN2-YFP fusion protein. FBN2 showed higher expression in green photosynthetic tissues and was upregulated at the transcriptional level under high-light stress. The photosynthetic capacity of fbn2 knockout mutants generated using CRISPR/Cas9 technology decreased rapidly compared with that of wild-type (WT) plants under high-light stress. In addition to the photoprotective function of FBN2, fbn2 mutants had lower levels of plastoquinone-9 and plastochromanol-8. The fbn2 mutants were highly sensitive to methyl jasmonate (MeJA) and exhibited root growth inhibition and a pale-green phenotype due to reduced chlorophyll content. Consistently, upon MeJA treatment, the fbn2 mutants showed faster leaf senescence and more rapid chlorophyll degradation with decreased photosynthetic ability compared with the WT plants. The results of this study suggest that FBN2 is involved in protection against high-light stress and acts as an inhibitor of jasmonate-induced senescence in Arabidopsis (Arabidopsis thaliana).
Collapse
Affiliation(s)
- Inyoung Kim
- Department of Molecular Biology, Sejong University, Seoul 05006, South Korea
| | - Eun-Ha Kim
- Department of Agricultural Biotechnology, National Institute of Agricultural Science, Rural Development Administration, Jeonju 54874, South Korea
| | - Yu-ri Choi
- Department of Molecular Biology, Sejong University, Seoul 05006, South Korea
| | | |
Collapse
|
21
|
Kim I, Kim HU. The mysterious role of fibrillin in plastid metabolism: current advances in understanding. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:2751-2764. [PMID: 35560204 DOI: 10.1093/jxb/erac087] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Fibrillins (FBNs) are a family of genes in cyanobacteria, algae, and plants. The proteins they encode possess a lipid-binding motif, exist in various types of plastids, and are associated with lipid bodies called plastoglobules, implicating them in lipid metabolism. FBNs present in the thylakoid and stroma are involved in the storage, transport, and synthesis of lipid molecules for photoprotective functions against high-light stress. In this review, the diversity of subplastid locations in the evolution of FBNs, regulation of FBNs expression by various stresses, and the role of FBNs in plastid lipid metabolism are comprehensively summarized and directions for future research are discussed.
Collapse
Affiliation(s)
- Inyoung Kim
- Department of Molecular Biology, Sejong University, Seoul, South Korea
| | - Hyun Uk Kim
- Department of Molecular Biology, Sejong University, Seoul, South Korea
- Department of Bioindustry and Bioresource Engineering, Plant Engineering Research Institute, Sejong University, Seoul, South Korea
| |
Collapse
|
22
|
Sun H, Ren M, Zhang J. Genome-wide identification and expression analysis of fibrillin ( FBN) gene family in tomato ( Solanum lycopersicum L.). PeerJ 2022; 10:e13414. [PMID: 35573169 PMCID: PMC9097668 DOI: 10.7717/peerj.13414] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 04/19/2022] [Indexed: 01/14/2023] Open
Abstract
Background Fibrillin (FBN) proteins are widely distributed in the photosynthetic organs. The members of FBN gene family play important roles in plant growth and development, and response to hormone and stresses. Tomato is a vegetable crop with significantly economic value and model plant commonly used in research. However, the FBN family has not been systematical studied in tomato. Methods In this study, 14 FBN genes were identified in tomato genome by Pfam and Hmmer 3.0 software. ExPASy, MEGA 6.0, MEME, GSDS, TBtools, PlantCARE and so on were used for physical and chemical properties analysis, phylogenetic analysis, gene structure and conserved motifs analysis, collinearity analysis and cis-acting element analysis of FBN family genes in tomato. Expression characteristics of SlFBNs in different tissues, fruit shape near isogenic lines (NILs), Pst DC3000 and ABA treatments were analyzed based on transcriptome data and quantitative Real-time qPCR (qRT-PCR) analysis. Results The SlFBN family was divided into 11 subgroups. There were 8 FBN homologous gene pairs between tomato and Arabidopsis. All the members of SlFBN family contained PAP conserved domain, but their gene structure and conserved motifs showed apparent differences. The cis-acting elements of light and hormone (especially ethylene, methyl jasmonate (MeJA) and abscisic acid (ABA)) were widely distributed in the SlFBN promoter regions. The expression analysis found that most of SlFBNs were predominantly expressed in leaves of Heinz and S. pimpinellifolium LA1589, and showed higher expressions in mature or senescent leaves than in young leaves. Expression analysis of different tissues and fruit shape NILs indicated SlFBN1, SlFBN2b and SlFBN7a might play important roles during tomato fruit differentiation. All of the SlFBNs responded to Pst DC3000 and ABA treatments. The results of this study contribute to exploring the functions and molecular mechanisms of SlFBNs in leaf development, fruit differentiation, stress and hormone responses.
Collapse
Affiliation(s)
- Huiru Sun
- College of Life Sciences, Yan’an University, Yan’an, Shaanxi Province, China
- Shaanxi Key Laboratory of Chinese Jujube, Yan’an University, Yan’an, Shaanxi Province, China
| | - Min Ren
- College of Life Sciences, Yan’an University, Yan’an, Shaanxi Province, China
| | - Jianing Zhang
- College of Life Sciences, Yan’an University, Yan’an, Shaanxi Province, China
| |
Collapse
|
23
|
Krupinska K, Desel C, Frank S, Hensel G. WHIRLIES Are Multifunctional DNA-Binding Proteins With Impact on Plant Development and Stress Resistance. FRONTIERS IN PLANT SCIENCE 2022; 13:880423. [PMID: 35528945 PMCID: PMC9070903 DOI: 10.3389/fpls.2022.880423] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 03/24/2022] [Indexed: 06/01/2023]
Abstract
WHIRLIES are plant-specific proteins binding to DNA in plastids, mitochondria, and nucleus. They have been identified as significant components of nucleoids in the organelles where they regulate the structure of the nucleoids and diverse DNA-associated processes. WHIRLIES also fulfil roles in the nucleus by interacting with telomers and various transcription factors, among them members of the WRKY family. While most plants have two WHIRLY proteins, additional WHIRLY proteins evolved by gene duplication in some dicot families. All WHIRLY proteins share a conserved WHIRLY domain responsible for ssDNA binding. Structural analyses revealed that WHIRLY proteins form tetramers and higher-order complexes upon binding to DNA. An outstanding feature is the parallel localization of WHIRLY proteins in two or three cell compartments. Because they translocate from organelles to the nucleus, WHIRLY proteins are excellent candidates for transducing signals between organelles and nucleus to allow for coordinated activities of the different genomes. Developmental cues and environmental factors control the expression of WHIRLY genes. Mutants and plants with a reduced abundance of WHIRLY proteins gave insight into their multiple functionalities. In chloroplasts, a reduction of the WHIRLY level leads to changes in replication, transcription, RNA processing, and DNA repair. Furthermore, chloroplast development, ribosome formation, and photosynthesis are impaired in monocots. In mitochondria, a low level of WHIRLIES coincides with a reduced number of cristae and a low rate of respiration. The WHIRLY proteins are involved in the plants' resistance toward abiotic and biotic stress. Plants with low levels of WHIRLIES show reduced responsiveness toward diverse environmental factors, such as light and drought. Consequently, because such plants are impaired in acclimation, they accumulate reactive oxygen species under stress conditions. In contrast, several plant species overexpressing WHIRLIES were shown to have a higher resistance toward stress and pathogen attacks. By their multiple interactions with organelle proteins and nuclear transcription factors maybe a comma can be inserted here? and their participation in organelle-nucleus communication, WHIRLY proteins are proposed to serve plant development and stress resistance by coordinating processes at different levels. It is proposed that the multifunctionality of WHIRLY proteins is linked to the plasticity of land plants that develop and function in a continuously changing environment.
Collapse
Affiliation(s)
- Karin Krupinska
- Institute of Botany, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Christine Desel
- Institute of Botany, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Susann Frank
- Institute of Botany, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Götz Hensel
- Centre for Plant Genome Engineering, Institute of Plant Biochemistry, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- Centre of Region Haná for Biotechnological and Agricultural Research, Czech Advanced Technology and Research Institute, Palacký University Olomouc, Olomouc, Czechia
| |
Collapse
|
24
|
Simkin AJ, Kapoor L, Doss CGP, Hofmann TA, Lawson T, Ramamoorthy S. The role of photosynthesis related pigments in light harvesting, photoprotection and enhancement of photosynthetic yield in planta. PHOTOSYNTHESIS RESEARCH 2022; 152:23-42. [PMID: 35064531 DOI: 10.1007/s11120-021-00892-6] [Citation(s) in RCA: 110] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 12/13/2021] [Indexed: 05/06/2023]
Abstract
Photosynthetic pigments are an integral and vital part of all photosynthetic machinery and are present in different types and abundances throughout the photosynthetic apparatus. Chlorophyll, carotenoids and phycobilins are the prime photosynthetic pigments which facilitate efficient light absorption in plants, algae, and cyanobacteria. The chlorophyll family plays a vital role in light harvesting by absorbing light at different wavelengths and allowing photosynthetic organisms to adapt to different environments, either in the long-term or during transient changes in light. Carotenoids play diverse roles in photosynthesis, including light capture and as crucial antioxidants to reduce photodamage and photoinhibition. In the marine habitat, phycobilins capture a wide spectrum of light and have allowed cyanobacteria and red algae to colonise deep waters where other frequencies of light are attenuated by the water column. In this review, we discuss the potential strategies that photosynthetic pigments provide, coupled with development of molecular biological techniques, to improve crop yields through enhanced light harvesting, increased photoprotection and improved photosynthetic efficiency.
Collapse
Affiliation(s)
- Andrew J Simkin
- School of Biosciences, University of Kent, Canterbury, CT2 7NJ, United Kingdom
| | - Leepica Kapoor
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| | - C George Priya Doss
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| | - Tanja A Hofmann
- OSFC, Scrivener Drive, Pinewood, Ipswich, IP8 3SU, United Kingdom
| | - Tracy Lawson
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, United Kingdom
| | - Siva Ramamoorthy
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India.
| |
Collapse
|
25
|
Arzac MI, Fernández-Marín B, García-Plazaola JI. More than just lipid balls: quantitative analysis of plastoglobule attributes and their stress-related responses. PLANTA 2022; 255:62. [PMID: 35141783 PMCID: PMC8828631 DOI: 10.1007/s00425-022-03848-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 01/28/2022] [Indexed: 05/15/2023]
Abstract
Plastoglobules are ubiquitous under non-stress conditions and their morphology, closely related to their composition, changes differently depending on the specific stress that the plant undergoes. Plastoglobules are lipoprotein structures attached to thylakoid membranes, which participate in chloroplast metabolism and stress responses. Their structure contains a coating lipid monolayer and a hydrophobic core that differ in composition. Their function in chloroplasts has been studied focussing on their composition. However, we currently lack a comprehensive study that quantitatively evaluates the occurrence and morphology of plastoglobules. Following a literature search strategy, we quantified the main morphological attributes of plastoglobules from photosynthetic chloroplasts of more than 1000 TEM images published over the last 53 years, covering more than 100 taxa and 15 stress types. The analysis shows that plastoglobules under non-stress conditions are spherical, with an average diameter of 100-200 nm and cover less than 3% of the chloroplast cross-section area. This percentage rises under almost every type of stress, particularly in senescence. Interestingly, an apparent trade-off between increasing either the number or the diameter of plastoglobules governs this response. Our results show that plastoglobules are ubiquitous in chloroplasts of higher plants under non-stress conditions. Besides, provided the specific molecular composition of the core and coat of plastoglobules, we conclude that specific stress-related variation in plastoglobules attributes may allow inferring precise responses of the chloroplast metabolism.
Collapse
Affiliation(s)
- Miren I. Arzac
- Department Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Leioa, Spain
| | - Beatriz Fernández-Marín
- Department Botany, Ecology and Plant Physiology, University of La Laguna (ULL), 38200 Tenerife, Spain
| | - José I. García-Plazaola
- Department Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Leioa, Spain
| |
Collapse
|
26
|
Zhang H, Wang Z, Li X, Gao X, Dai Z, Cui Y, Zhi Y, Liu Q, Zhai H, Gao S, Zhao N, He S. The IbBBX24-IbTOE3-IbPRX17 module enhances abiotic stress tolerance by scavenging reactive oxygen species in sweet potato. THE NEW PHYTOLOGIST 2022; 233:1133-1152. [PMID: 34773641 DOI: 10.1111/nph.17860] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 11/04/2021] [Indexed: 05/15/2023]
Abstract
Soil salinity and drought limit sweet potato yield. Scavenging of reactive oxygen species (ROS) by peroxidases (PRXs) is essential during plant stress responses, but how PRX expression is regulated under abiotic stress is not well understood. Here, we report that the B-box (BBX) family transcription factor IbBBX24 activates the expression of the class III peroxidase gene IbPRX17 by binding to its promoter. Overexpression of IbBBX24 and IbPRX17 significantly improved the tolerance of sweet potato to salt and drought stresses, whereas reducing IbBBX24 expression increased their susceptibility. Under abiotic stress, IbBBX24- and IbPRX17-overexpression lines showed higher peroxidase activity and lower H2 O2 accumulation compared with the wild-type. RNA sequencing analysis revealed that IbBBX24 modulates the expression of genes encoding ROS scavenging enzymes, including PRXs. Moreover, interaction between IbBBX24 and the APETALA2 (AP2) protein IbTOE3 enhances the ability of IbBBX24 to activate IbPRX17 transcription. Overexpression of IbTOE3 improved the tolerance of tobacco plants to salt and drought stresses by scavenging ROS. Together, our findings elucidate the mechanism underlying the IbBBX24-IbTOE3-IbPRX17 module in response to abiotic stress in sweet potato and identify candidate genes for developing elite crop varieties with enhanced abiotic stress tolerance.
Collapse
Affiliation(s)
- Huan Zhang
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, College of Agronomy & Biotechnology, Ministry of Education, China Agricultural University, Beijing, 100193, China
| | - Zhen Wang
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, College of Agronomy & Biotechnology, Ministry of Education, China Agricultural University, Beijing, 100193, China
| | - Xu Li
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, College of Agronomy & Biotechnology, Ministry of Education, China Agricultural University, Beijing, 100193, China
| | - Xiaoru Gao
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, College of Agronomy & Biotechnology, Ministry of Education, China Agricultural University, Beijing, 100193, China
| | - Zhuoru Dai
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, College of Agronomy & Biotechnology, Ministry of Education, China Agricultural University, Beijing, 100193, China
| | - Yufei Cui
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, College of Agronomy & Biotechnology, Ministry of Education, China Agricultural University, Beijing, 100193, China
| | - Yuhai Zhi
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, College of Agronomy & Biotechnology, Ministry of Education, China Agricultural University, Beijing, 100193, China
| | - Qingchang Liu
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, College of Agronomy & Biotechnology, Ministry of Education, China Agricultural University, Beijing, 100193, China
| | - Hong Zhai
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, College of Agronomy & Biotechnology, Ministry of Education, China Agricultural University, Beijing, 100193, China
| | - Shaopei Gao
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, College of Agronomy & Biotechnology, Ministry of Education, China Agricultural University, Beijing, 100193, China
| | - Ning Zhao
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, College of Agronomy & Biotechnology, Ministry of Education, China Agricultural University, Beijing, 100193, China
| | - Shaozhen He
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, College of Agronomy & Biotechnology, Ministry of Education, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
27
|
Mitogen-Activated Protein Kinase 4-Regulated Metabolic Networks. Int J Mol Sci 2022; 23:ijms23020880. [PMID: 35055063 PMCID: PMC8779387 DOI: 10.3390/ijms23020880] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/07/2022] [Accepted: 01/11/2022] [Indexed: 01/21/2023] Open
Abstract
Mitogen-activated protein kinase 4 (MPK4) was first identified as a negative regulator of systemic acquired resistance. It is also an important kinase involved in many other biological processes in plants, including cytokinesis, reproduction, and photosynthesis. Arabidopsis thaliana mpk4 mutant is dwarf and sterile. Previous omics studies including genomics, transcriptomics, and proteomics have revealed new functions of MPK4 in different biological processes. However, due to challenges in metabolomics, no study has touched upon the metabolomic profiles of the mpk4 mutant. What metabolites and metabolic pathways are potentially regulated by MPK4 are not known. Metabolites are crucial components of plants, and they play important roles in plant growth and development, signaling, and defense. Here we used targeted and untargeted metabolomics to profile metabolites in the wild type and the mpk4 mutant. We found that in addition to the jasmonic acid and salicylic acid pathways, MPK4 is involved in polyamine synthesis and photosynthesis. In addition, we also conducted label-free proteomics of the two genotypes. The integration of metabolomics and proteomics data allows for an insight into the metabolomic networks that are potentially regulated by MPK4.
Collapse
|
28
|
Cerny M, Berka M, Dvořák M, Milenković I, Saiz-Fernández I, Brzobohatý B, Ďurkovič J. Defense mechanisms promoting tolerance to aggressive Phytophthora species in hybrid poplar. FRONTIERS IN PLANT SCIENCE 2022; 13:1018272. [PMID: 36325556 PMCID: PMC9621118 DOI: 10.3389/fpls.2022.1018272] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 09/30/2022] [Indexed: 05/04/2023]
Abstract
Poplars are among the fastest-growing trees and significant resources in agriculture and forestry. However, rapid growth requires a large water consumption, and irrigation water provides a natural means for pathogen spread. That includes members of Phytophthora spp. that have proven to be a global enemy to forests. With the known adaptability to new hosts, it is only a matter of time for more aggressive Phytophthora species to become a threat to poplar forests and plantations. Here, the effects of artificial inoculation with two different representatives of aggressive species (P. cactorum and P. plurivora) were analyzed in the proteome of the Phytophthora-tolerant hybrid poplar clone T-14 [Populus tremula L. 70 × (Populus × canescens (Ait.) Sm. 23)]. Wood microcore samples were collected at the active necrosis borders to provide insight into the molecular processes underlying the observed tolerance to Phytophthora. The analysis revealed the impact of Phytophthora on poplar primary and secondary metabolism, including carbohydrate-active enzymes, amino acid biosynthesis, phenolic metabolism, and lipid metabolism, all of which were confirmed by consecutive metabolome and lipidome profiling. Modulations of enzymes indicating systemic response were confirmed by the analysis of leaf proteome, and sampling of wood microcores in distal locations revealed proteins with abundance correlating with proximity to the infection, including germin-like proteins, components of proteosynthesis, glutamate carboxypeptidase, and an enzyme that likely promotes anthocyanin stability. Finally, the identified Phytophthora-responsive proteins were compared to those previously found in trees with compromised defense against Phytophthora, namely, Quercus spp. and Castanea sativa. That provided a subset of candidate markers of Phytophthora tolerance, including certain ribosomal proteins, auxin metabolism enzymes, dioxygenases, polyphenol oxidases, trehalose-phosphate synthase, mannose-1-phosphate guanylyltransferase, and rhamnose biosynthetic enzymes. In summary, this analysis provided the first insight into the molecular mechanisms of hybrid poplar defense against Phytophthora and identified prospective targets for improving Phytophthora tolerance in trees.
Collapse
Affiliation(s)
- Martin Cerny
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Phytophthora Research Centre, Mendel University in Brno, Brno, Czechia
- *Correspondence: Martin Cerny,
| | - Miroslav Berka
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Phytophthora Research Centre, Mendel University in Brno, Brno, Czechia
| | - Miloň Dvořák
- Department of Forest Protection and Wildlife Management, Faculty of Forestry and Wood Technology, Phytophthora Research Centre, Mendel University in Brno, Brno, Czechia
| | - Ivan Milenković
- Department of Forest Protection and Wildlife Management, Faculty of Forestry and Wood Technology, Phytophthora Research Centre, Mendel University in Brno, Brno, Czechia
- Department of Forestry, University of Belgrade-Faculty of Forestry, Belgrade, Serbia
| | - Iñigo Saiz-Fernández
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Phytophthora Research Centre, Mendel University in Brno, Brno, Czechia
| | - Břetislav Brzobohatý
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Phytophthora Research Centre, Mendel University in Brno, Brno, Czechia
| | - Jaroslav Ďurkovič
- Department of Phytology, Technical University in Zvolen, Zvolen, Slovakia
| |
Collapse
|
29
|
Jin P, Chao K, Li J, Wang Z, Cheng P, Li Q, Wang B. Functional Verification of Two Genes Related to Stripe Rust Resistance in the Wheat- Leymus mollis Introgression Line M8664-3. FRONTIERS IN PLANT SCIENCE 2021; 12:754823. [PMID: 34759947 PMCID: PMC8574815 DOI: 10.3389/fpls.2021.754823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 09/24/2021] [Indexed: 06/13/2023]
Abstract
Stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), is one of the most widespread and destructive fungal diseases of wheat worldwide. The cultivation and growth of resistant wheat varieties are the most economical, effective, and environmental friendly methods to control stripe rust. Therefore, it is necessary to use new resistance genes to breed resistant wheat varieties. A single dominant gene temporarily designated as YrM8664-3, from a wheat-Leymus mollis introgression line M8664-3 highly resistant to Chinese predominant Pst races, is a potentially valuable source of stripe rust resistance for breeding. Herein, based on previous YrM8664-3 chromosome location results (bin 4AL13-0.59-0.66 close to 4AL12-0.43-0.59) and expression change information of candidate genes and bioinformatics analysis, several candidate genes with significantly different expression changes were then selected and verified by virus-induced gene silencing (VIGS). Two of the candidate genes temporarily designated as TaFBN [containing plastid lipid-associated proteins (PAP)_fibrillin domain in its protein] and Ta_Pes_BRCT [containing Pescadillo and breast cancer tumour suppressor protein C-terminus (BRCT) domain in its protein], produced the most significant resistance changes in the wheat-Pst interaction system after silencing. These two genes were further verified by Agrobacterium-mediated wheat genetic transformation technology. According to the identification of disease resistance, the resistance function of the candidate gene TaFBN was further verified. Then, the expression of TaFBN under hormone treatment indicated that TaFBN may be related to the salicylic acid (SA) and abscisic acid (ABA) signaling pathways. Combined with the expression of TaFBN in response to environmental stress stimulation, it can be reasonably speculated that TaFBN plays an important role in the resistance of wheat to Pst and is involved in abiotic stress pathways.
Collapse
Affiliation(s)
- Pengfei Jin
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Kaixiang Chao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China
- College of Chemistry, Biology and Environment, Yuxi Normal University, Yuxi, China
| | - Juan Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China
- Dingxi Plant Protection and Quarantine Station, Dingxi, China
| | - Zihao Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Peng Cheng
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Qiang Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Baotong Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China
| |
Collapse
|
30
|
Peil A, Emeriewen OF, Khan A, Kostick S, Malnoy M. Status of fire blight resistance breeding in Malus. JOURNAL OF PLANT PATHOLOGY 2021; 103:3-12. [PMID: 0 DOI: 10.1007/s42161-020-00581-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 05/21/2020] [Indexed: 05/20/2023]
|
31
|
Yu L, Zhou C, Fan J, Shanklin J, Xu C. Mechanisms and functions of membrane lipid remodeling in plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:37-53. [PMID: 33853198 DOI: 10.1111/tpj.15273] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/05/2021] [Accepted: 04/08/2021] [Indexed: 05/20/2023]
Abstract
Lipid remodeling, defined herein as post-synthetic structural modifications of membrane lipids, play crucial roles in regulating the physicochemical properties of cellular membranes and hence their many functions. Processes affected by lipid remodeling include lipid metabolism, membrane repair, cellular homeostasis, fatty acid trafficking, cellular signaling and stress tolerance. Glycerolipids are the major structural components of cellular membranes and their composition can be adjusted by modifying their head groups, their acyl chain lengths and the number and position of double bonds. This review summarizes recent advances in our understanding of mechanisms of membrane lipid remodeling with emphasis on the lipases and acyltransferases involved in the modification of phosphatidylcholine and monogalactosyldiacylglycerol, the major membrane lipids of extraplastidic and photosynthetic membranes, respectively. We also discuss the role of triacylglycerol metabolism in membrane acyl chain remodeling. Finally, we discuss emerging data concerning the functional roles of glycerolipid remodeling in plant stress responses. Illustrating the molecular basis of lipid remodeling may lead to novel strategies for crop improvement and other biotechnological applications such as bioenergy production.
Collapse
Affiliation(s)
- Linhui Yu
- Biology Department, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Chao Zhou
- Biology Department, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Jilian Fan
- Biology Department, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - John Shanklin
- Biology Department, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Changcheng Xu
- Biology Department, Brookhaven National Laboratory, Upton, NY, 11973, USA
| |
Collapse
|
32
|
Espinoza-Corral R, Schwenkert S, Lundquist PK. Molecular changes of Arabidopsis thaliana plastoglobules facilitate thylakoid membrane remodeling under high light stress. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:1571-1587. [PMID: 33783866 DOI: 10.1111/tpj.15253] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 03/14/2021] [Accepted: 03/18/2021] [Indexed: 05/21/2023]
Abstract
Plants require rapid responses to adapt to environmental stresses. This includes dramatic changes in the size and number of plastoglobule lipid droplets within chloroplasts. Although the morphological changes of plastoglobules are well documented, little is known about the corresponding molecular changes. To address this gap, we have compared the quantitative proteome, oligomeric state, prenyl-lipid content and kinase activities of Arabidopsis thaliana plastoglobules under unstressed and 5-day light-stressed conditions. Our results show a specific recruitment of proteins related to leaf senescence and jasmonic acid biosynthesis under light stress, and identify nearly half of the plastoglobule proteins in high native molecular weight masses. Additionally, a specific increase in plastoglobule carotenoid abundance under the light stress was consistent with enhanced thylakoid disassembly and leaf senescence, supporting a specific role for plastoglobules in senescence and thylakoid remodeling as an intermediate storage site for photosynthetic pigments. In vitro kinase assays of isolated plastoglobules demonstrated kinase activity towards multiple target proteins, which was more pronounced in the plastoglobules of unstressed than light-stressed leaf tissue, and which was diminished in plastoglobules of the abc1k1/abc1k3 double-mutant. These results strongly suggest that plastoglobule-localized ABC1 kinases hold endogenous kinase activity, as these were the only known or putative kinases identified in the isolated plastoglobules by deep bottom-up proteomics. Collectively, our study reveals targeted changes to the protein and prenyl-lipid composition of plastoglobules under light stress that present strategies by which plastoglobules appear to facilitate stress adaptation within chloroplasts.
Collapse
Affiliation(s)
- Roberto Espinoza-Corral
- Department of Biochemistry and Molecular Biology, Plant Resilience Institute, Michigan State University, East Lansing, MI, USA
| | - Serena Schwenkert
- Department I, Plant Biochemistry, Ludwig Maximilians University Munich, Großhadernerstr. 2-4, Planegg-Martinsried, 82152, Germany
| | - Peter K Lundquist
- Department of Biochemistry and Molecular Biology, Plant Resilience Institute, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
33
|
Chloroplast Localized FIBRILLIN11 Is Involved in the Osmotic Stress Response during Arabidopsis Seed Germination. BIOLOGY 2021; 10:biology10050368. [PMID: 33922967 PMCID: PMC8145590 DOI: 10.3390/biology10050368] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 01/04/2023]
Abstract
Simple Summary The FIBRILLIN11 (FBN11) of Arabidopsis has a lipid-binding FBN domain and a kinase domain. FBN11 is present in chloroplasts and is involved in salt and osmotic stress responses during seed germination. In mannitol, the seed germination rate of the fbn11 mutants significantly reduced compared to that of the wild type. The ABA-dependent and -independent stress response regulating genes were differentially expressed in fbn11 mutants and wild-type when grown in mannitol supplemented medium. These results suggest that chloroplast localized FBN11 is involved in mediating osmotic stress tolerance through the signaling pathway that regulates the stress response in the nucleus. Abstract Plants live in ever-changing environments, facing adverse environmental conditions including pathogen infection, herbivore attack, drought, high temperature, low temperature, nutrient deficiency, toxic metal soil contamination, high salt, and osmotic imbalance that inhibit overall plant growth and development. Plants have evolved mechanisms to cope with these stresses. In this study, we found that the FIBRILLIN11 (FBN11) gene in Arabidopsis, which has a lipid-binding FBN domain and a kinase domain, is involved in the plant’s response to abiotic stressors, including salt and osmotic stresses. FBN11 protein localizes to the chloroplast. FBN11 gene expression significantly changed when plants were exposed to the abiotic stress response mediators such as abscisic acid (ABA), sodium chloride (NaCl), and mannitol. The seed germination rates of fbn11 homozygous mutants in different concentrations of mannitol and NaCl were significantly reduced compared to wild type. ABA-dependent and -independent stress response regulatory genes were differentially expressed in the fbn11 mutant compared with wild type when grown in mannitol medium. These results suggest a clear role for chloroplast-localized FBN11 in mediating osmotic stress tolerance via the stress response regulatory signaling pathway in the nucleus.
Collapse
|
34
|
Zhu D, Luo F, Zou R, Liu J, Yan Y. Integrated physiological and chloroplast proteome analysis of wheat seedling leaves under salt and osmotic stresses. J Proteomics 2021; 234:104097. [PMID: 33401000 DOI: 10.1016/j.jprot.2020.104097] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 11/10/2020] [Accepted: 12/21/2020] [Indexed: 01/20/2023]
Abstract
In this study, we performed an integrated physiological and chloroplast proteome analysis of wheat seedling leaves under salt and osmotic stresses by label-free based quantitative proteomic approach. Both salt and osmotic stresses significantly increased the levels of abscisic acid and methyl jasmonate and led to damages of chloroplast ultrastructure. Main parameters of chlorophyll fluorescence and gas exchange showed a significant decline under both stresses. Quantitative proteomic analysis identified 194 and 169 chloroplast-localized differentially accumulated proteins (DAPs) responsive to salt and osmotic stresses, respectively. The abundance of main DAPs involved in light-dependent reaction were increased under salt stress, but decreased in response to osmotic stress. On the contrary, salt stress induced a significant upregulation of the DAPs associated with Calvin cycle, transcription and translation, amino acid metabolism, carbon and nitrogen metabolism, and some of them exhibited a downregulation under osmotic stress. In particular, both treatments significantly upregulated the DAPs involved in plastoglobule development, protein folding and proteolysis, hormone and vitamin synthesis. Finally, we proposed a putative synergistic responsive network of wheat chloroplast proteome under salt and osmotic stresses, aiming to provide new insights into the underlying response and defense mechanisms of wheat chloroplast proteome in response to abiotic stresses. SIGNIFICANCE: Salt and osmotic stresses are the two most common abiotic stresses that severely affect crop growth and productivity. As the main site of photosynthesis of plant cells, the chloroplast also plays important role in plant tolerance to abiotic stress. However, the response of chloroplast proteome to salt and osmotic is still poorly understood by using the traditional two-dimensional electrophoresis (2-DE) method due to a poor resolution of chloroplast protein separation and low throughput identification of differentially accumulated proteins (DAPs). In this study, we employed label-free based quantitative proteomic approach to perform an integrated physiological and large-scale chloroplast proteome analysis of wheat seedling leaves under salt and osmotic stresses, which laid a solid foundation for future studies into the response and defense mechanisms of wheat chloroplast in response to abiotic stresses.
Collapse
Affiliation(s)
- Dong Zhu
- College of Life Science, Capital Normal University, Beijing, 100048, China
| | - Fei Luo
- College of Life Science, Capital Normal University, Beijing, 100048, China
| | - Rong Zou
- College of Life Science, Capital Normal University, Beijing, 100048, China
| | - Junxian Liu
- College of Life Science, Capital Normal University, Beijing, 100048, China
| | - Yueming Yan
- College of Life Science, Capital Normal University, Beijing, 100048, China.
| |
Collapse
|
35
|
Xu C, Fan J, Shanklin J. Metabolic and functional connections between cytoplasmic and chloroplast triacylglycerol storage. Prog Lipid Res 2020; 80:101069. [DOI: 10.1016/j.plipres.2020.101069] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 10/23/2020] [Accepted: 10/24/2020] [Indexed: 12/14/2022]
|
36
|
Oliveira TDR, Aragão VPM, Moharana KC, Fedosejevs E, do Amaral FP, Sousa KR, Thelen JJ, Venâncio TM, Silveira V, Santa-Catarina C. Light spectra affect the in vitro shoot development of Cedrela fissilis Vell. (Meliaceae) by changing the protein profile and polyamine contents. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1868:140529. [PMID: 32853775 DOI: 10.1016/j.bbapap.2020.140529] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/28/2020] [Accepted: 07/31/2020] [Indexed: 12/12/2022]
Abstract
The light spectrum quality is an important signal for plant growth and development. We evaluated the effects of different light spectra on the in vitro shoot development of Cedrela fissilis and its proteomic and polyamine (PA) profiles. Cotyledonary and apical nodal segments were grown under different light emitting diodes (LED) and fluorescent lamps. Shoots from cotyledonary nodal segments cultured with 6-benzyladenine (BA) that were grown under WmBdR LED showed increased length and higher fresh and dry matter compared to shoots grown under fluorescent lamps. A nonredundant protein databank generated by transcriptome sequencing and the de novo assembly of C. fissilis improved, and almost doubled, the protein identification compared to a Citrus sinensis databank. A total of 616 proteins were identified, with 23 up- and 103 down-accumulated in the shoots under WmBdR LEDs compared to fluorescent lamps. Most differentially accumulated proteins in shoots grown under the WmBdR LED lamp treatment compared to the fluorescent lamp treatment are involved in responding to metabolic processes, stress, biosynthetic and cellular protein modifications, and light stimulus processes. Among the proteins, the up-accumulation of argininosuccinate synthase was associated with an increase in the free putrescine content and, consequently, with higher shoot elongation under WmBdR LED. The down-accumulation of calreticulin, heat shock proteins, plastid-lipid-associated protein, ubiquitin-conjugating enzymes, and ultraviolet-B receptor UVR8 isoform X1 could be related to the longer shoot length noted under LED treatment. This study provides important data related to the effects of the light spectrum quality on in vitro morphogenesis through the modulation of specific proteins and free putrescine biosynthesis in C. fissilis, an endangered wood species from the Brazilian Atlantic Forest of economic and ecological relevance. The nonredundant protein databank of C. fissilis is available via ProteomeXchange under identifier PXD018020.
Collapse
Affiliation(s)
- Tadeu Dos Reis Oliveira
- Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Centro de Biociências e Biotecnologia (CBB), Laboratório de Biologia Celular e Tecidual (LBCT), Av. Alberto Lamego 2000, 28013-602, Campos Dos Goytacazes, RJ, Brazil
| | - Victor Paulo Mesquita Aragão
- Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Centro de Biociências e Biotecnologia (CBB), Laboratório de Biologia Celular e Tecidual (LBCT), Av. Alberto Lamego 2000, 28013-602, Campos Dos Goytacazes, RJ, Brazil
| | - Kanhu Charan Moharana
- UENF, CBB, Laboratório de Química e Função de Proteínas e Peptídeos, Campos dos Goytacazes, RJ, Brazil
| | - Eric Fedosejevs
- University of Missouri, Department of Biochemistry, Christopher S. Bond Life Sciences Center, 65211, Columbia, MO, USA
| | - Fernanda Plucani do Amaral
- University of Missouri, Department of Biochemistry, Christopher S. Bond Life Sciences Center, 65211, Columbia, MO, USA
| | - Kariane Rodrigues Sousa
- Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Centro de Biociências e Biotecnologia (CBB), Laboratório de Biologia Celular e Tecidual (LBCT), Av. Alberto Lamego 2000, 28013-602, Campos Dos Goytacazes, RJ, Brazil
| | - Jay J Thelen
- University of Missouri, Department of Biochemistry, Christopher S. Bond Life Sciences Center, 65211, Columbia, MO, USA
| | - Thiago Motta Venâncio
- UENF, CBB, Laboratório de Química e Função de Proteínas e Peptídeos, Campos dos Goytacazes, RJ, Brazil
| | - Vanildo Silveira
- UENF, CBB, Laboratório de Biotecnologia (LBT), Campos dos Goytacazes, RJ, Brazil; UENF, Unidade de Biologia Integrativa, Setor de Genômica e Proteômica, Campos dos Goytacazes, RJ, Brazil
| | - Claudete Santa-Catarina
- Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Centro de Biociências e Biotecnologia (CBB), Laboratório de Biologia Celular e Tecidual (LBCT), Av. Alberto Lamego 2000, 28013-602, Campos Dos Goytacazes, RJ, Brazil.
| |
Collapse
|
37
|
Jiang Y, Hu H, Ma Y, Zhou J. Genome-wide identification and characterization of the fibrillin gene family in Triticum aestivum. PeerJ 2020; 8:e9225. [PMID: 32518731 PMCID: PMC7258936 DOI: 10.7717/peerj.9225] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 04/30/2020] [Indexed: 12/03/2022] Open
Abstract
Background The fibrillin (FBN) gene family is highly conserved and widely distributed in the photosynthetic organs of plants. Members of this gene family are involved in the growth and development of plants and their response to biotic and abiotic stresses. Wheat (Triticum aestivum), an important food crop, has a complex genetic background and little progress has occurred in the understanding of its molecular mechanisms. Methods In this study, we identified 26 FBN genes in the whole genome of T. aestivum through bioinformatic tools and biotechnological means. These genes were divided into 11 subgroups and were distributed on 11 chromosomes of T. aestivum. Interestingly, most of the TaFBN genes were located on the chromosomes 2A, 2B and 2D. The gene structure of each subgroup of gene family members and the position and number of motifs were highly similar. Results The evolutionary analysis results indicated that the affinities of FBNs in monocots were closer together. The tissue-specific analysis revealed that TaFBN genes were expressed in different tissues and developmental stages. In addition, some TaFBNs were involved in one or more biotic and abiotic stress responses. These results provide a basis for further study of the biological function of FBNs.
Collapse
Affiliation(s)
- Yaoyao Jiang
- School of Forestry and Biotechnology, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Haichao Hu
- College of Agriculture and Food Science, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Yuhua Ma
- Guizhou Institute of Pomological Sciences, Guizhou Academy of Agricultural Sciences, Guiyan, China
| | - Junliang Zhou
- Guizhou Institute of Pomological Sciences, Guizhou Academy of Agricultural Sciences, Guiyan, China
| |
Collapse
|
38
|
Wu Q, Cao Y, Chen C, Gao Z, Yu F, Guy RD. Transcriptome analysis of metabolic pathways associated with oil accumulation in developing seed kernels of Styrax tonkinensis, a woody biodiesel species. BMC PLANT BIOLOGY 2020; 20:121. [PMID: 32183691 PMCID: PMC7079523 DOI: 10.1186/s12870-020-2327-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 03/02/2020] [Indexed: 05/04/2023]
Abstract
BACKGROUND Styrax tonkinensis (Pierre) Craib ex Hartwich has great potential as a woody biodiesel species having seed kernels with high oil content, excellent fatty acid composition and good fuel properties. However, no transcriptome information is available on the molecular regulatory mechanism of oil accumulation in developing S. tonkinensis kernels. RESULTS The dynamic patterns of oil content and fatty acid composition at 11 time points from 50 to 150 days after flowering (DAF) were analyzed. The percent oil content showed an up-down-up pattern, with yield and degree of unsaturation peaking on or after 140 DAF. Four time points (50, 70, 100, and 130 DAF) were selected for Illumina transcriptome sequencing. Approximately 73 million high quality clean reads were generated, and then assembled into 168,207 unigenes with a mean length of 854 bp. There were 5916 genes that were differentially expressed between different time points. These differentially expressed genes were grouped into 9 clusters based on their expression patterns. Expression patterns of a subset of 12 unigenes were confirmed by qRT-PCR. Based on their functional annotation through the Basic Local Alignment Search Tool and publicly available protein databases, specific unigenes encoding key enzymes, transmembrane transporters, and transcription factors associated with oil accumulation were determined. Three main patterns of expression were evident. Most unigenes peaked at 70 DAF, coincident with a rapid increase in oil content during kernel development. Unigenes with high expression at 50 DAF were associated with plastid formation and earlier stages of oil synthesis, including pyruvate and acetyl-CoA formation. Unigenes associated with triacylglycerol biosynthesis and oil body development peaked at 100 or 130 DAF. CONCLUSIONS Transcriptome changes during oil accumulation show a distinct temporal trend with few abrupt transitions. Expression profiles suggest that acetyl-CoA formation for oil biosynthesis is both directly from pyruvate and indirectly via acetaldehyde, and indicate that the main carbon source for fatty acid biosynthesis is triosephosphate originating from phosphohexose outside the plastid. Different sn-glycerol-3-phosphate acyltransferases are implicated in diacylglycerol biosynthesis at early versus late stages of oil accumulation. Triacylglycerol biosynthesis may be accomplished by both diacylglycerol and by phospholipid:diacylglycerol acyltransferases.
Collapse
Affiliation(s)
- Qikui Wu
- Collaborative Innovation Centre of Sustainable Forestry in Southern China, College of Forest Science, Nanjing Forestry University, 159 Longpan Road, Nanjing, 210037 Jiangsu China
- Department of Forest and Conservation Sciences, Faculty of Forestry, University of British Columbia, 2424 Main Mall, Vancouver, BC V6T 1Z4 Canada
| | - Yuanyuan Cao
- Collaborative Innovation Centre of Sustainable Forestry in Southern China, College of Forest Science, Nanjing Forestry University, 159 Longpan Road, Nanjing, 210037 Jiangsu China
| | - Chen Chen
- Collaborative Innovation Centre of Sustainable Forestry in Southern China, College of Forest Science, Nanjing Forestry University, 159 Longpan Road, Nanjing, 210037 Jiangsu China
| | - Zhenzhou Gao
- Collaborative Innovation Centre of Sustainable Forestry in Southern China, College of Forest Science, Nanjing Forestry University, 159 Longpan Road, Nanjing, 210037 Jiangsu China
| | - Fangyuan Yu
- Collaborative Innovation Centre of Sustainable Forestry in Southern China, College of Forest Science, Nanjing Forestry University, 159 Longpan Road, Nanjing, 210037 Jiangsu China
| | - Robert D. Guy
- Department of Forest and Conservation Sciences, Faculty of Forestry, University of British Columbia, 2424 Main Mall, Vancouver, BC V6T 1Z4 Canada
| |
Collapse
|
39
|
Lee K, Lehmann M, Paul MV, Wang L, Luckner M, Wanner G, Geigenberger P, Leister D, Kleine T. Lack of FIBRILLIN6 in Arabidopsis thaliana affects light acclimation and sulfate metabolism. THE NEW PHYTOLOGIST 2020; 225:1715-1731. [PMID: 31596965 DOI: 10.1111/nph.16246] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 10/02/2019] [Indexed: 06/10/2023]
Abstract
Arabidopsis thaliana contains 13 fibrillins (FBNs), which are all localized to chloroplasts. FBN1 and FBN2 are involved in photoprotection of photosystem II, and FBN4 and FBN5 are thought to be involved in plastoquinone transport and biosynthesis, respectively. The functions of the other FBNs remain largely unknown. To gain insight into the function of FBN6, we performed coexpression and Western analyses, conducted fluorescence and transmission electron microscopy, stained reactive oxygen species (ROS), measured photosynthetic parameters and glutathione levels, and applied transcriptomics and metabolomics. Using coexpression analyses, FBN6 was identified as a photosynthesis-associated gene. FBN6 is localized to thylakoid and envelope membranes, and its knockout results in stunted plants. The delayed-growth phenotype cannot be attributed to altered basic photosynthesis parameters or a reduced CO2 assimilation rate. Under moderate light stress, primary leaves of fbn6 plants begin to bleach and contain enlarged plastoglobules. RNA sequencing and metabolomics analyses point to an alteration in sulfate reduction in fbn6. Indeed, glutathione content is higher in fbn6, which in turn confers cadmium tolerance of fbn6 seedlings. We conclude that loss of FBN6 leads to perturbation of ROS homeostasis. FBN6 enables plants to cope with moderate light stress and affects cadmium tolerance.
Collapse
Affiliation(s)
- Kwanuk Lee
- Plant Molecular Biology (Botany), Department Biology I, Ludwig-Maximilians-University München, 82152, Martinsried, Germany
| | - Martin Lehmann
- Plant Molecular Biology (Botany), Department Biology I, Ludwig-Maximilians-University München, 82152, Martinsried, Germany
| | - Melanie V Paul
- Plant Metabolism, Department Biology I, Ludwig-Maximilians-University München, 82152, Martinsried, Germany
| | - Liangsheng Wang
- Plant Molecular Biology (Botany), Department Biology I, Ludwig-Maximilians-University München, 82152, Martinsried, Germany
| | - Manja Luckner
- Ultrastrukturforschung, Department Biology I, Ludwig-Maximilians-University München, 81252, Planegg-Martinsried, Germany
| | - Gerhard Wanner
- Ultrastrukturforschung, Department Biology I, Ludwig-Maximilians-University München, 81252, Planegg-Martinsried, Germany
| | - Peter Geigenberger
- Plant Metabolism, Department Biology I, Ludwig-Maximilians-University München, 82152, Martinsried, Germany
| | - Dario Leister
- Plant Molecular Biology (Botany), Department Biology I, Ludwig-Maximilians-University München, 82152, Martinsried, Germany
| | - Tatjana Kleine
- Plant Molecular Biology (Botany), Department Biology I, Ludwig-Maximilians-University München, 82152, Martinsried, Germany
| |
Collapse
|
40
|
Zhang T, Liu P, Zhong K, Zhang F, Xu M, He L, Jin P, Chen J, Yang J. Wheat Yellow Mosaic Virus NIb Interacting with Host Light Induced Protein (LIP) Facilitates Its Infection through Perturbing the Abscisic Acid Pathway in Wheat. BIOLOGY 2019; 8:biology8040080. [PMID: 31652738 PMCID: PMC6955802 DOI: 10.3390/biology8040080] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 10/10/2019] [Accepted: 10/22/2019] [Indexed: 11/17/2022]
Abstract
Positive-sense RNA viruses have a small genome with very limited coding capacity and are highly reliant on host factors to fulfill their infection. However, few host factors have been identified to participate in wheat yellow mosaic virus (WYMV) infection. Here, we demonstrate that wheat (Triticum aestivum) light-induced protein (TaLIP) interacts with the WYMV nuclear inclusion b protein (NIb). A bimolecular fluorescence complementation (BIFC) assay displayed that the subcellular distribution patterns of TaLIP were altered by NIb in Nicotiana benthamiana. Transcription of TaLIP was significantly decreased by WYMV infection and TaLIP-silencing wheat plants displayed more susceptibility to WYMV in comparison with the control plants, suggesting that knockdown of TaLIP impaired host resistance. Moreover, the transcription level of TaLIP was induced by exogenous abscisic acid (ABA) stimuli in wheat, while knockdown of TaLIP significantly repressed the expression of ABA-related genes such as wheat abscisic acid insensitive 5 (TaABI5), abscisic acid insensitive 8 (TaABI8), pyrabatin resistance 1-Llike (TaPYL1), and pyrabatin resistance 3-Llike (TaPYL3). Collectively, our results suggest that the interaction of NIb with TaLIP facilitated the virus infection possibly by disturbing the ABA signaling pathway in wheat.
Collapse
Affiliation(s)
- Tianye Zhang
- School of Forestry and Biotechnology, Zhejiang Agriculture and Forestry University, Hangzhou 310021, China.
- State Key Laboratory for Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo 315211, China.
| | - Peng Liu
- State Key Laboratory for Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo 315211, China.
| | - Kaili Zhong
- State Key Laboratory for Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo 315211, China.
| | - Fan Zhang
- State Key Laboratory for Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo 315211, China.
| | - Miaoze Xu
- State Key Laboratory for Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo 315211, China.
| | - Long He
- State Key Laboratory for Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo 315211, China.
| | - Peng Jin
- State Key Laboratory for Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo 315211, China.
| | - Jianping Chen
- School of Forestry and Biotechnology, Zhejiang Agriculture and Forestry University, Hangzhou 310021, China.
- State Key Laboratory for Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo 315211, China.
| | - Jian Yang
- State Key Laboratory for Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
41
|
Zhang H, Gao X, Zhi Y, Li X, Zhang Q, Niu J, Wang J, Zhai H, Zhao N, Li J, Liu Q, He S. A non-tandem CCCH-type zinc-finger protein, IbC3H18, functions as a nuclear transcriptional activator and enhances abiotic stress tolerance in sweet potato. THE NEW PHYTOLOGIST 2019; 223:1918-1936. [PMID: 31091337 DOI: 10.1111/nph.15925] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Accepted: 05/08/2019] [Indexed: 05/21/2023]
Abstract
CCCH-type zinc-finger proteins play essential roles in regulating plant development and stress responses. However, the molecular and functional properties of non-tandem CCCH-type zinc-finger (non-TZF) proteins have been rarely characterized in plants. Here, we report the biological and molecular characterization of a sweet potato non-TZF gene, IbC3H18. We show that IbC3H18 exhibits tissue- and abiotic stress-specific expression, and could be effectively induced by abiotic stresses, including NaCl, polyethylene glycol (PEG) 6000, H2 O2 and abscisic acid (ABA) in sweet potato. Accordingly, overexpression of IbC3H18 led to increased, whereas knock-down of IbC3H18 resulted in decreased tolerance of sweet potato to salt, drought and oxidation stresses. In addition, IbC3H18 functions as a nuclear transcriptional activator and regulates the expression of a range of abiotic stress-responsive genes involved in reactive oxygen species (ROS) scavenging, ABA signaling, photosynthesis and ion transport pathways. Moreover, our data demonstrate that IbC3H18 physically interacts with IbPR5, and that overexpression of IbPR5 enhances salt and drought tolerance in transgenic tobacco plants. Collectively, our data indicate that IbC3H18 functions in enhancing abiotic stress tolerance in sweet potato, which may serve as a candidate gene for use in improving abiotic stress resistance in crops.
Collapse
Affiliation(s)
- Huan Zhang
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing, 100193, China
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Xiaoru Gao
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Yuhai Zhi
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Xu Li
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Qian Zhang
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Jinbiao Niu
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Jun Wang
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Hong Zhai
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Ning Zhao
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Jigang Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Qingchang Liu
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Shaozhen He
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
42
|
Morkūnaitė-Haimi Š, Vinskiene J, Stanienė G, Haimi P. Differential Chloroplast Proteomics of Temperature Adaptation in Apple (Malus x domestica Borkh.) Microshoots. Proteomics 2019; 19:e1800142. [PMID: 31430045 DOI: 10.1002/pmic.201800142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 08/15/2019] [Indexed: 11/10/2022]
Abstract
Temperature stress is one of the most common external factors that plants have to adapt to. Accordingly, plants have developed several adaptation mechanisms to deal with temperature stress. Chloroplasts are one of the organelles that are responsible for the sensing of the temperature signal and triggering a response. Here, chloroplasts are purified from low temperature (4° C), control (22° C) and high temperature (30° C) grown Malus x domestica microshoots. The purity of the chloroplast fractions is evaluated by marker proteins, as well as by using in silico subcellular localization predictions. The proteins are digested using filter-aided sample processing and analyzed using nano-LC MS/MS. 733 proteins are observed corresponding to published Malus x domestica gene models and 16 chloroplast genome -encoded proteins in the chloroplast preparates. In ANOVA, 56 proteins are found to be significantly differentially abundant (p < 0.01) between chloroplasts isolated from plants grown in different conditions. The differentially abundant proteins are involved in protein digestion, cytoskeleton structure, cellular redox state and photosynthesis, or have protective functions. Additionally, a putative chloroplastic aquaporin is observed. Data are available via ProteomeXchange with identifier PXD014212.
Collapse
Affiliation(s)
- Šarūnė Morkūnaitė-Haimi
- Institute of Horticulture, Lithuanian Research Centre for Agriculture and Forestry, st. 30, Babtai LT-54333, Kaunas, Lithuania
| | - Jurgita Vinskiene
- Institute of Horticulture, Lithuanian Research Centre for Agriculture and Forestry, st. 30, Babtai LT-54333, Kaunas, Lithuania
| | - Gražina Stanienė
- Institute of Horticulture, Lithuanian Research Centre for Agriculture and Forestry, st. 30, Babtai LT-54333, Kaunas, Lithuania
| | - Perttu Haimi
- Institute of Horticulture, Lithuanian Research Centre for Agriculture and Forestry, st. 30, Babtai LT-54333, Kaunas, Lithuania
| |
Collapse
|
43
|
Espinoza-Corral R, Heinz S, Klingl A, Jahns P, Lehmann M, Meurer J, Nickelsen J, Soll J, Schwenkert S. Plastoglobular protein 18 is involved in chloroplast function and thylakoid formation. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:3981-3993. [PMID: 30976809 PMCID: PMC6685665 DOI: 10.1093/jxb/erz177] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 04/02/2019] [Indexed: 05/05/2023]
Abstract
Plastoglobules are lipoprotein particles that are found in different types of plastids. They contain a very specific and specialized set of lipids and proteins. Plastoglobules are highly dynamic in size and shape, and are therefore thought to participate in adaptation processes during either abiotic or biotic stresses or transitions between developmental stages. They are suggested to function in thylakoid biogenesis, isoprenoid metabolism, and chlorophyll degradation. While several plastoglobular proteins contain identifiable domains, others provide no structural clues to their function. In this study, we investigate the role of plastoglobular protein 18 (PG18), which is conserved from cyanobacteria to higher plants. Analysis of a PG18 loss-of-function mutant in Arabidopsis thaliana demonstrated that PG18 plays an important role in thylakoid formation; the loss of PG18 results in impaired accumulation, assembly, and function of thylakoid membrane complexes. Interestingly, the mutant accumulated less chlorophyll and carotenoids, whereas xanthophyll cycle pigments were increased. Accumulation of photosynthetic complexes is similarly affected in both a Synechocystis and an Arabidopsis PG18 mutant. However, the ultrastructure of cyanobacterial thylakoids is not compromised by the lack of PG18, probably due to its less complex architecture.
Collapse
Affiliation(s)
- Roberto Espinoza-Corral
- Department Biologie I, Botanik, Ludwig-Maximilians-Universität, Planegg-Martinsried, Germany
| | - Steffen Heinz
- Department Biologie I, Botanik, Ludwig-Maximilians-Universität, Planegg-Martinsried, Germany
| | - Andreas Klingl
- Department Biologie I, Botanik, Ludwig-Maximilians-Universität, Planegg-Martinsried, Germany
| | - Peter Jahns
- Plant Biochemistry, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Martin Lehmann
- Department Biologie I, Botanik, Ludwig-Maximilians-Universität, Planegg-Martinsried, Germany
| | - Jörg Meurer
- Department Biologie I, Botanik, Ludwig-Maximilians-Universität, Planegg-Martinsried, Germany
| | - Jörg Nickelsen
- Department Biologie I, Botanik, Ludwig-Maximilians-Universität, Planegg-Martinsried, Germany
| | - Jürgen Soll
- Department Biologie I, Botanik, Ludwig-Maximilians-Universität, Planegg-Martinsried, Germany
- Munich Center for Integrated Protein Science CiPSM, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Serena Schwenkert
- Department Biologie I, Botanik, Ludwig-Maximilians-Universität, Planegg-Martinsried, Germany
- Correspondence:
| |
Collapse
|
44
|
Deforges J, Reis RS, Jacquet P, Vuarambon DJ, Poirier Y. Prediction of regulatory long intergenic non-coding RNAs acting in trans through base-pairing interactions. BMC Genomics 2019; 20:601. [PMID: 31331261 PMCID: PMC6647327 DOI: 10.1186/s12864-019-5946-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 06/30/2019] [Indexed: 12/13/2022] Open
Abstract
Background Long intergenic non-coding RNAs (lincRNAs) can act as regulators of expression of protein-coding genes. Trans-natural antisense transcripts (trans-NATs) are a type of lincRNAs that contain sequence complementary to mRNA from other loci. The regulatory potential of trans-NATs has been poorly studied in eukaryotes and no example of trans-NATs regulating gene expression in plants are reported. The goal of this study was to identify lincRNAs, and particularly trans-NATs, in Arabidopsis thaliana that have a potential to regulate expression of target genes in trans at the transcriptional or translational level. Results We identified 1001 lincRNAs using an RNAseq dataset from total polyA+ and polysome-associated RNA of seedlings grown under high and low phosphate, or shoots and roots treated with different phytohormones, of which 550 were differentially regulated. Approximately 30% of lincRNAs showed conservation amongst Brassicaceae and 25% harbored transposon element (TE) sequences. Gene co-expression network analysis highlighted a group of lincRNAs associated with the response of roots to low phosphate. A total of 129 trans-NATs were predicted, of which 88 were significantly differentially expressed under at least one pairwise comparison. Five trans-NATs showed a positive correlation between their expression and target mRNA steady-state levels, and three showed a negative correlation. Expression of four trans-NATs positively correlated with a change in target mRNA polysome association. The regulatory potential of these trans-NATs did not implicate miRNA mimics nor siRNAs. We also looked for lincRNAs that could regulate gene expression in trans by Watson-Crick DNA:RNA base pairing with target protein-encoding loci. We identified 100 and 81 with a positive or negative correlation, respectively, with steady-state level of their predicted target. The regulatory potential of one such candidate lincRNA harboring a SINE TE sequence was validated in a protoplast assay on three distinct genes containing homologous TE sequence in their promoters. Construction of networks highlighted other putative lincRNAs with multiple predicted target loci for which expression was positively correlated with target gene expression. Conclusions This study identified lincRNAs in Arabidopsis with potential in regulating target gene expression in trans by both RNA:RNA and RNA:DNA base pairing and highlights lincRNAs harboring TE sequences in such activity. Electronic supplementary material The online version of this article (10.1186/s12864-019-5946-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jules Deforges
- Department of Plant Molecular Biology, University of Lausanne, Biophore Building, CH-1015, Lausanne, Switzerland
| | - Rodrigo S Reis
- Department of Plant Molecular Biology, University of Lausanne, Biophore Building, CH-1015, Lausanne, Switzerland
| | - Philippe Jacquet
- Department of Plant Molecular Biology, University of Lausanne, Biophore Building, CH-1015, Lausanne, Switzerland
| | - Dominique Jacques Vuarambon
- Department of Plant Molecular Biology, University of Lausanne, Biophore Building, CH-1015, Lausanne, Switzerland
| | - Yves Poirier
- Department of Plant Molecular Biology, University of Lausanne, Biophore Building, CH-1015, Lausanne, Switzerland.
| |
Collapse
|
45
|
Dobránszki J, Hidvégi N, Gulyás A, Teixeira da Silva JA. mRNA transcription profile of potato (Solanum tuberosum L.) exposed to ultrasound during different stages of in vitro plantlet development. PLANT MOLECULAR BIOLOGY 2019; 100:511-525. [PMID: 31037600 PMCID: PMC6586710 DOI: 10.1007/s11103-019-00876-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 04/19/2019] [Indexed: 06/02/2023]
Abstract
KEY MESSAGE In response to an ultrasound pulse, several hundred DEGs, including in response to stress, were up- or down-regulated in in vitro potato plantlets. Despite this abiotic stress, plantlets survived. Ultrasound (US) can influence plant growth and development. To better understand the genetic mechanism underlying the physiological response of potato to US, single-node segments of four-week-old in vitro plantlets were subjected to US at 35 kHz for 20 min. Following mRNA purification, 10 cDNA libraries were assessed by RNA-seq. Significantly differentially expressed genes (DEGs) were categorized by gene ontology or Kyoto Encyclopedia of Genes and Genomes identifiers. The expression intensity of 40,430 genes was studied. Several hundred DEGs associated with biosynthesis, carbohydrate metabolism and catabolism, cellular protein modification, and response to stress, and which were expressed mainly in the extracellular region, nucleus, and plasma membrane, were either up- or down-regulated in response to US. RT-qPCR was used to validate RNA-seq data of 10 highly up- or down-regulated DEGs, and both Spearman and Pearson correlations between SeqMonk LFC and RT-qPCR LFC were highly positive (0.97). This study examines how some processes evolved over time (0 h, 24 h, 48 h, 1 week and 4 weeks) after an abiotic stress (US) was imposed on in vitro potato explants, and provides clues to the temporal dynamics in DEG-based enzyme functions in response to this stress. Despite this abiotic stress, plantlets survived.
Collapse
Affiliation(s)
- Judit Dobránszki
- Research Institute of Nyíregyháza, IAREF, University of Debrecen, P.O. Box 12, Nyíregyháza, 4400, Hungary.
| | - Norbert Hidvégi
- Research Institute of Nyíregyháza, IAREF, University of Debrecen, P.O. Box 12, Nyíregyháza, 4400, Hungary
| | - Andrea Gulyás
- Research Institute of Nyíregyháza, IAREF, University of Debrecen, P.O. Box 12, Nyíregyháza, 4400, Hungary
| | - Jaime A Teixeira da Silva
- Research Institute of Nyíregyháza, IAREF, University of Debrecen, P.O. Box 12, Nyíregyháza, 4400, Hungary.
| |
Collapse
|
46
|
Lu P, Wang S, Grierson D, Xu C. Transcriptomic changes triggered by carotenoid biosynthesis inhibitors and role of Citrus sinensis phosphate transporter 4;2 (CsPHT4;2) in enhancing carotenoid accumulation. PLANTA 2019; 249:257-270. [PMID: 30083809 DOI: 10.1007/s00425-018-2970-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 08/01/2018] [Indexed: 06/08/2023]
Abstract
Carotenoid accumulation and chromoplast development in orange were perturbed by carotenoid inhibitors, and candidate genes were identified via transcriptomic analysis. The role of CsPHT4;2 in enhancing carotenoid accumulation was revealed. Carotenoids are important plant pigments and their accumulation can be affected by biosynthesis inhibitors, but the genes involved were largely unknown. Here, application of norflurazon (NFZ), 2-(4-chlorophenylthio)-triethylamine hydrochloride (CPTA) and clomazone for 30 days to in vitro cultured sweet orange juice vesicles caused over-accumulation of phytoene (over 1000-fold), lycopene (2.92 μg g-1 FW, none in control), and deficiency in total carotenoids (reduced to 22%), respectively. Increased carotenoids were associated with bigger chromoplasts with enlarged plastoglobules or a differently crystalline structure in NFZ, and CPTA-treated juice vesicles, respectively. Global transcriptomic changes following inhibitor treatments were profiled. Induced expression of 1-deoxy-D-xylulose 5-phosphate synthase 1 by CPTA, hydroxymethylbutenyl 4-diphosphate reductase by both NFZ and CPTA, and reduced expression of chromoplast-specific lycopene β-cyclase by CPTA, as well as several downstream genes by at least one of the three inhibitors were observed. Expression of fibrillin 11 (CsFBN11) was induced following both NFZ and CPTA treatments. Using weighted correlation network analysis, a plastid-type phosphate transporter 4;2 (CsPHT4;2) was identified as closely correlated with high-lycopene accumulation induced by CPTA. Transient over-expression of CsPHT4;2 significantly enhanced carotenoid accumulation over tenfold in 'Cara Cara' sweet orange juice vesicle-derived callus. The study provides a valuable overview of the underlying mechanisms for altered carotenoid accumulation and chromoplast development following carotenoid inhibitor treatments and sheds light on the relationship between carotenoid accumulation and chromoplast development.
Collapse
Affiliation(s)
- Pengjun Lu
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| | - Shasha Wang
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| | - Don Grierson
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Sutton Bonington, LE12 5RD, UK
| | - Changjie Xu
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China.
| |
Collapse
|
47
|
Peng C, Chang L, Yang Q, Tong Z, Wang D, Tan Y, Sun Y, Yi X, Ding G, Xiao J, Zhang Y, Wang X. Comparative physiological and proteomic analyses of the chloroplasts in halophyte Sesuvium portulacastrum under differential salt conditions. JOURNAL OF PLANT PHYSIOLOGY 2019; 232:141-150. [PMID: 30537601 DOI: 10.1016/j.jplph.2018.10.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 10/31/2018] [Accepted: 10/31/2018] [Indexed: 06/09/2023]
Abstract
Sesuvium portulacastrum, an important mangrove-associated true halophyte belongs to the family Aizoaceae, has excellent salt tolerance. Chloroplasts are the most sensitive organelles involved in the response to salinity. However, the regulation mechanism of chloroplasts of S. portulacastrum under salinity stress has not been reported. In this study, morphological and physiological analyses of leaves and comparative proteomics of chloroplasts isolated from the leaves of S. portulacastrum under different NaCl treatments were performed. Our results showed that the thickness of the palisade tissue, the leaf area, the maximum photochemical efficiency of photosystem II, and the electron transport rate increased remarkably after the plants were subjected to differential saline environments, indicating that salinity can increase photosynthetic efficiency and improve the growth of S. portulacastrum. Subsequently, 55 differentially expressed protein species (DEPs) from the chloroplasts of S. portulacastrum under differential salt conditions were positively identified by mass spectrometry. These DEPs were involved in multiple metabolic pathways, such as photosynthesis, carbon metabolism, ATP synthesis and the cell structure. Among these DEPs, the abundance of most proteins was induced by salt stress. Based on a combination of the morphological and physiological data, as well as the chloroplast proteome results, we speculated that S. portulacastrum can maintain photosynthetic efficiency and growth by maintaining the stability of the photosystem II complex, promoting the photochemical reaction rate, enhancing carbon fixation, developing plastoglobules, and preserving the biomembrane system of chloroplasts under salt stress.
Collapse
Affiliation(s)
- Cunzhi Peng
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou Hainan 571101, China; College of Life Sciences, Key Laboratory for Ecology of Tropical Islands, Ministry of Education, Hainan Normal University, Haikou, Hainan 571158, China
| | - Lili Chang
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou Hainan 571101, China; College of Life Sciences, Key Laboratory for Ecology of Tropical Islands, Ministry of Education, Hainan Normal University, Haikou, Hainan 571158, China
| | - Qian Yang
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou Hainan 571101, China
| | - Zheng Tong
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou Hainan 571101, China
| | - Dan Wang
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou Hainan 571101, China
| | - Yanhua Tan
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou Hainan 571101, China
| | - Yong Sun
- Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou Hainan 571737, China
| | - Xiaoping Yi
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou Hainan 571101, China
| | - Guohua Ding
- College of Life Sciences, Key Laboratory for Ecology of Tropical Islands, Ministry of Education, Hainan Normal University, Haikou, Hainan 571158, China
| | - Junhan Xiao
- College of Life Sciences, Key Laboratory for Ecology of Tropical Islands, Ministry of Education, Hainan Normal University, Haikou, Hainan 571158, China
| | - Ying Zhang
- College of Life Sciences, Key Laboratory for Ecology of Tropical Islands, Ministry of Education, Hainan Normal University, Haikou, Hainan 571158, China
| | - Xuchu Wang
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou Hainan 571101, China; College of Life Sciences, Key Laboratory for Ecology of Tropical Islands, Ministry of Education, Hainan Normal University, Haikou, Hainan 571158, China.
| |
Collapse
|
48
|
Zhang RF, Zhou LJ, Li YY, You CX, Sha GL, Hao YJ. Apple SUMO E3 ligase MdSIZ1 is involved in the response to phosphate deficiency. JOURNAL OF PLANT PHYSIOLOGY 2019; 232:216-225. [PMID: 30537609 DOI: 10.1016/j.jplph.2018.11.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 11/13/2018] [Accepted: 11/13/2018] [Indexed: 05/26/2023]
Abstract
In plants, SIZ1 regulates abiotic and biotic stress responses by promoting the SUMOylation of proteins. The apple MdSIZ1 protein has conserved domains similar to those of Arabidopsis AtSIZ1. Real-time fluorescent quantitative analysis showed that MdSIZ1 gene expression was induced by phosphate-deficient conditions. In addition, the level of SUMOylation was also significantly increased under these conditions. The MYB transcription factor MdPHR1 might be a target for the SUMO protein, which is a phosphorus starvation-dependent protein. Subsequently, an MdSIZ1 expression vector was constructed and transformed in Arabidopsis mutant siz1-2 and apple callus. The MdSIZ1 transgenic Arabidopsis partially complemented the defect phenotype of siz1-2 under phosphate-deficient conditions. The survival rate, length of primary root, and number or density of lateral roots were similar between the transgenic lines and wild type (WT). Under phosphate-deficient conditions, the SUMO conjugate and fresh weight of the MdSIZ1 transgenic apple callus were improved compared with WT. The MdSIZ1 transgenic apple callus grew under phosphate-deficient conditions, whereas the MdSIZ1 sense apple callus did not. Therefore, MdSIZ1 is involved in the regulation of the phosphate-deficiency response in apple.
Collapse
Affiliation(s)
- Rui-Fen Zhang
- Qingdao Academy of Agricultrual science, Qing-Dao, Shandong, China; State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai-An, Shandong, China; MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, Shandong Agricultural University, Tai-An, Shandong, China; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China
| | - Li-Jie Zhou
- MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, Shandong Agricultural University, Tai-An, Shandong, China; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China; State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai-An, Shandong, China
| | - Yuan-Yuan Li
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai-An, Shandong, China; MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, Shandong Agricultural University, Tai-An, Shandong, China; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China
| | - Chun-Xiang You
- MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, Shandong Agricultural University, Tai-An, Shandong, China; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China; State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai-An, Shandong, China
| | - Guang-Li Sha
- Qingdao Academy of Agricultrual science, Qing-Dao, Shandong, China
| | - Yu-Jin Hao
- MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, Shandong Agricultural University, Tai-An, Shandong, China; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China; State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai-An, Shandong, China.
| |
Collapse
|
49
|
Otsubo M, Ikoma C, Ueda M, Ishii Y, Tamura N. Functional Role of Fibrillin5 in Acclimation to Photooxidative Stress. PLANT & CELL PHYSIOLOGY 2018; 59:1670-1682. [PMID: 29741733 DOI: 10.1093/pcp/pcy093] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 05/02/2018] [Indexed: 05/13/2023]
Abstract
The functional role of a lipid-associated soluble protein, fibrillin5 (FBN5), was determined with the Arabidopsis thaliana homozygous fbn5-knockout mutant line (SALK_064597) that carries a T-DNA insertion within the FBN5 gene. The fbn5 mutant remained alive, displaying a slow growth and a severe dwarf phenotype. The mutant grown even under growth light conditions at 80 µmol m-2 s-1 showed a drastic decrease in electron transfer activities around PSII, with little change in electron transfer activities around PSI, a phenomenon which was exaggerated under high light stress. The accumulation of plastoquinone-9 (PQ-9) was suppressed in the mutant, and >90% of the PQ-9 pool was reduced under growth light conditions. Non-photochemical quenching (NPQ) in the mutant functioned less efficiently, resulting from little contribution by energy-dependent quenching (qE). The ultrastructure of thylakoids in the mutant revealed that their grana were unstacked and transformed into loose and disordered structures. Light-harvesting complex (LHC)-containing large photosystem complexes and photosystem core complexes in the mutant were less abundant than those in wild-type plants. These results suggest that the lack of FBN5 causes a decrease in PQ-9 and imbalance of the redox state of PQ-9, resulting in misconducting both short-term and long-term control of the input of light energy to photosynthetic reaction centers. Furthermore, in the fbn5 mutant, the expression of genes involved in jasmonic acid biosynthesis was suppressed to ≤10% of that in the wild type under both growth-light and high-light conditions, suggesting that FBN5 functions as a transmitter of 1O2 in the stroma.
Collapse
Affiliation(s)
- Mayuko Otsubo
- Department of Environmental Science, Fukuoka Women's University, Kasumigaoka 1-1-1, Higashi-ku, Fukuoka, Japan
| | - Chikako Ikoma
- Department of Environmental Science, Fukuoka Women's University, Kasumigaoka 1-1-1, Higashi-ku, Fukuoka, Japan
| | - Mariko Ueda
- Department of Environmental Science, Fukuoka Women's University, Kasumigaoka 1-1-1, Higashi-ku, Fukuoka, Japan
| | - Yumi Ishii
- Department of Environmental Science, Fukuoka Women's University, Kasumigaoka 1-1-1, Higashi-ku, Fukuoka, Japan
| | - Noriaki Tamura
- Department of Environmental Science, Fukuoka Women's University, Kasumigaoka 1-1-1, Higashi-ku, Fukuoka, Japan
| |
Collapse
|
50
|
Genome-Wide Identification and Expression Analyses of the Fibrillin Family Genes Suggest Their Involvement in Photoprotection in Cucumber. PLANTS 2018; 7:plants7030050. [PMID: 29954122 PMCID: PMC6161074 DOI: 10.3390/plants7030050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 06/15/2018] [Accepted: 06/23/2018] [Indexed: 11/17/2022]
Abstract
Fibrillin (FBN) is a plastid lipid-associated protein found in photosynthetic organisms from cyanobacteria to plants. In this study, 10 CsaFBN genes were identified in genomic DNA sequences of cucumber (Chinese long and Gy14) through database searches using the conserved domain of FBN and the 14 FBN genes of Arabidopsis. Phylogenetic analysis of CsaFBN protein sequences showed that there was no counterpart of Arabidopsis and rice FBN5 in the cucumber genome. FBN5 is essential for growth in Arabidopsis and rice; its absence in cucumber may be because of incomplete genome sequences or that another FBN carries out its functions. Among the 10 CsaFBN genes, CsaFBN1 and CsaFBN9 were the most divergent in terms of nucleotide sequences. Most of the CsaFBN genes were expressed in the leaf, stem and fruit. CsaFBN4 showed the highest mRNA expression levels in various tissues, followed by CsaFBN6, CsaFBN1 and CsaFBN9. High-light stress combined with low temperature decreased photosynthetic efficiency and highly induced transcript levels of CsaFBN1, CsaFBN6 and CsaFBN11, which decreased after 24 h treatment. Transcript levels of the other seven genes were changed only slightly. This result suggests that CsaFBN1, CsaFBN6 and CsaFBN11 may be involved in photoprotection under high-light conditions at low temperature.
Collapse
|