1
|
Jolivet MD, Deroubaix AF, Boudsocq M, Abel NB, Rocher M, Robbe T, Wattelet-Boyer V, Huard J, Lefebvre D, Lu YJ, Day B, Saias G, Ahmed J, Cotelle V, Giovinazzo N, Gallois JL, Yamaji Y, German-Retana S, Gronnier J, Ott T, Mongrand S, Germain V. Interdependence of plasma membrane nanoscale dynamics of a kinase and its cognate substrate underlies Arabidopsis response to viral infection. eLife 2025; 12:RP90309. [PMID: 40315285 DOI: 10.7554/elife.90309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2025] Open
Abstract
Plant viruses represent a risk to agricultural production and as only a few treatments exist, it is urgent to identify resistance mechanisms and factors. In plant immunity, plasma membrane (PM)-localized proteins play an essential role in sensing the extracellular threat presented by bacteria, fungi, or herbivores. Viruses are intracellular pathogens and as such the role of the plant PM in detection and resistance against viruses is often overlooked. We investigated the role of the partially PM-bound Calcium-dependent protein kinase 3 (CPK3) in viral infection and we discovered that it displayed a specific ability to hamper viral propagation over CPK isoforms that are involved in immune response to extracellular pathogens. More and more evidence supports that the lateral organization of PM proteins and lipids underlies signal transduction in plants. We showed here that CPK3 diffusion in the PM is reduced upon activation as well as upon viral infection and that such immobilization depended on its substrate, Remorin (REM1.2), a scaffold protein. Furthermore, we discovered that the viral infection induced a CPK3-dependent increase of REM1.2 PM diffusion. Such interdependence was also observable regarding viral propagation. This study unveils a complex relationship between a kinase and its substrate that contrasts with the commonly described co-stabilisation upon activation while it proposes a PM-based mechanism involved in decreased sensitivity to viral infection in plants.
Collapse
Affiliation(s)
| | - Anne Flore Deroubaix
- Univ. Bordeaux, CNRS, Laboratoire de Biogenèse Membranaire (LBM), Villenave d'Ornon, France
| | - Marie Boudsocq
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Université Paris Cité, Institute of Plant Sciences Paris-Saclay (IPS2), Saclay, France
| | - Nikolaj B Abel
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Munich (LMU), Munich, Germany
| | - Marion Rocher
- Univ. Bordeaux, CNRS, Laboratoire de Biogenèse Membranaire (LBM), Villenave d'Ornon, France
| | - Terezinha Robbe
- Univ. Bordeaux, CNRS, Laboratoire de Biogenèse Membranaire (LBM), Villenave d'Ornon, France
| | - Valérie Wattelet-Boyer
- Univ. Bordeaux, CNRS, Laboratoire de Biogenèse Membranaire (LBM), Villenave d'Ornon, France
| | - Jennifer Huard
- Univ. Bordeaux, CNRS, Laboratoire de Biogenèse Membranaire (LBM), Villenave d'Ornon, France
| | - Dorian Lefebvre
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Université Paris Cité, Institute of Plant Sciences Paris-Saclay (IPS2), Saclay, France
| | - Yi-Ju Lu
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, United States
| | - Brad Day
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, United States
| | - Grégoire Saias
- Univ. Bordeaux, CNRS, Laboratoire de Biogenèse Membranaire (LBM), Villenave d'Ornon, France
| | - Jahed Ahmed
- Univ. Bordeaux, CNRS, Laboratoire de Biogenèse Membranaire (LBM), Villenave d'Ornon, France
| | - Valérie Cotelle
- Laboratoire de Recherche en Sciences Végétales (LRSV), Université de Toulouse, CNRS, UPS, Toulouse INP, Toulouse, France
| | | | | | - Yasuyuki Yamaji
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | | | - Julien Gronnier
- Univ. Bordeaux, CNRS, Laboratoire de Biogenèse Membranaire (LBM), Villenave d'Ornon, France
- Center of Plant Molecular Biology (ZMBP), University of Tübingen, Tübingen, Germany
| | - Thomas Ott
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Munich (LMU), Munich, Germany
- CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Sébastien Mongrand
- Univ. Bordeaux, CNRS, Laboratoire de Biogenèse Membranaire (LBM), Villenave d'Ornon, France
| | - Véronique Germain
- Univ. Bordeaux, CNRS, Laboratoire de Biogenèse Membranaire (LBM), Villenave d'Ornon, France
| |
Collapse
|
2
|
Burnett D, Hussein M, Barr ZK, Näther LN, Wright KM, Tilsner J. Live-cell RNA imaging with the inactivated endonuclease Csy4 enables new insights into plant virus transport through plasmodesmata. PLoS Pathog 2025; 21:e1013049. [PMID: 40203052 DOI: 10.1371/journal.ppat.1013049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 03/17/2025] [Indexed: 04/11/2025] Open
Abstract
Plant-infecting viruses spread through their hosts by transporting their infectious genomes through intercellular nano-channels called plasmodesmata. This process is mediated by virus-encoded movement proteins. Whilst the sub-cellular localisations of movement proteins have been intensively studied, live-cell RNA imaging systems have so far not been able to detect viral genomes inside the plasmodesmata. Here, we describe a highly sensitive RNA live-cell reporter based on an enzymatically inactive form of the small bacterial endonuclease Csy4, which binds to its cognate stem-loop with picomolar affinity. This system allows imaging of plant viral RNA genomes inside plasmodesmata and shows that potato virus X RNA remains accessible within the channels and is therefore not fully encapsidated during movement. We also combine Csy4-based RNA-imaging with interspecies movement complementation to show that an unrelated movement protein from tobacco mosaic virus can recruit potato virus X replication complexes adjacent to plasmodesmata. Therefore, recruitment of potato virus X replicase is mediated non-specifically, likely by indirect coupling of movement proteins and viral replicase via the viral RNA or co-compartmentalisation, potentially contributing to transport specificity. Lastly, we show that a 'self-tracking' virus can express the Csy4-based reporter during the progress of infection. However, expression of the RNA-binding protein in cis interferes with viral movement by an unidentified mechanism when cognate stem-loops are present in the viral RNA.
Collapse
Affiliation(s)
- David Burnett
- Biomedical Sciences Research Complex, The University of St Andrews, School of Biology, St Andrews, Fife, United Kingdom
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee, United Kingdom
| | - Mohamed Hussein
- Biomedical Sciences Research Complex, The University of St Andrews, School of Biology, St Andrews, Fife, United Kingdom
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee, United Kingdom
- Cukurova University, Institute of Natural and Applied Sciences, Saricam, Adana, Turkey
| | - Zoe Kathleen Barr
- Biomedical Sciences Research Complex, The University of St Andrews, School of Biology, St Andrews, Fife, United Kingdom
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee, United Kingdom
| | - Laura Newsha Näther
- Biomedical Sciences Research Complex, The University of St Andrews, School of Biology, St Andrews, Fife, United Kingdom
| | - Kathryn M Wright
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee, United Kingdom
| | - Jens Tilsner
- Biomedical Sciences Research Complex, The University of St Andrews, School of Biology, St Andrews, Fife, United Kingdom
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee, United Kingdom
| |
Collapse
|
3
|
Shang K, Wang C, Wang X, Wang Y, Xu K, Zhou S, Liu H, Zhu X, Zhu C. Non-Specific Lipid Transfer Protein StLTP6 Promotes Virus Infection by Inhibiting Jasmonic Acid Signalling Pathway in Response to PVS TGB1. PLANT, CELL & ENVIRONMENT 2025; 48:2343-2356. [PMID: 39601376 DOI: 10.1111/pce.15298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 11/05/2024] [Accepted: 11/09/2024] [Indexed: 11/29/2024]
Abstract
Plant viruses rely on host factors for successful infection. Non-specific lipid transfer proteins (nsLTPs) play critical roles in plant-pathogen interactions; however, their functions and underlying molecular mechanisms in viral infections remain largely unknown. Jasmonic acid (JA) is a crucial regulatory hormone in the process of plant resistance to viral infection. In this study, we screened and verified that StLTP6, a previously identified pro-viral factor, interacts with the silencing suppressor triple gene block1 (TGB1) of potato virus S (PVS). The PVS TGB1 induces the expression of StLTP6, and both co-localize in the cytoplasm. Furthermore, StLTP6 interacts with allene oxide cyclase and inhibits its accumulation, thereby suppressing JA synthesis and attenuating RNA silencing antiviral resistance. In summary, we elucidated the molecular mechanism by which PVS TGB1 interacts with StLTP6 to facilitate PVS infection. These findings broaden our understanding of the biological roles of nsLTPs and provide a new antiviral target for potato research.
Collapse
Affiliation(s)
- Kaijie Shang
- College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, China
- College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, China
| | - Chenchen Wang
- College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, China
| | - Xipan Wang
- College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, China
| | - Yubo Wang
- College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, China
| | - Kaihao Xu
- College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, China
| | - Shumei Zhou
- College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, China
| | - Hongmei Liu
- College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, China
| | - Xiaoping Zhu
- College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, China
| | - Changxiang Zhu
- College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, China
| |
Collapse
|
4
|
Shen M, Wang Y, Chen Y, Peng J, Wu G, Rao S, Wu J, Zheng H, Chen J, Yan F, Lu Y, Wu G. Potato Type I Protease Inhibitor Mediates Host Defence Against Potato Virus X Infection by Interacting With a Viral RNA Silencing Suppressor. MOLECULAR PLANT PATHOLOGY 2025; 26:e70073. [PMID: 40083063 PMCID: PMC11906362 DOI: 10.1111/mpp.70073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/27/2025] [Accepted: 02/27/2025] [Indexed: 03/16/2025]
Abstract
Counteracting plant RNA silencing ensures successful viral infection. The P25 protein encoded by potato virus X (PVX) is a multifunctional protein that acts as a viral RNA silencing suppressor (VSR). In this study, we screened out a potato type I protease inhibitor (PI) in Nicotiana benthamiana (NbPI) that interacts with P25. Silencing of NbPI by tobacco rattle virus (TRV)-mediated virus-induced gene silencing (VIGS) promoted the infection of PVX. Overexpression of NbPI in transgenic plants conferred resistance to PVX infection. Moreover, transient expression of NbPI impaired the VSR activity and cell-to-cell movement complementation ability of P25. Further experiments showed that P25 protein degradation was through the combination of autophagy and the ubiquitin-26S proteasome system (UPS), leading to impairment of P25. Taken together, we have identified NbPI as a new host factor that compromises PVX infection by targeting and degrading the VSR P25.
Collapse
Affiliation(s)
- Minjie Shen
- State Key Laboratory for Quality and Safety of Agro‐Products, Key Laboratory of Biotechnology in Plant Protection of MARA, Zhejiang Key Laboratory of Green Plant Protection, Institute of Plant VirologyNingbo UniversityNingboChina
| | - Yonghao Wang
- State Key Laboratory for Quality and Safety of Agro‐Products, Key Laboratory of Biotechnology in Plant Protection of MARA, Zhejiang Key Laboratory of Green Plant Protection, Institute of Plant VirologyNingbo UniversityNingboChina
| | - Yi Chen
- State Key Laboratory for Quality and Safety of Agro‐Products, Key Laboratory of Biotechnology in Plant Protection of MARA, Zhejiang Key Laboratory of Green Plant Protection, Institute of Plant VirologyNingbo UniversityNingboChina
| | - Jiejun Peng
- State Key Laboratory for Quality and Safety of Agro‐Products, Key Laboratory of Biotechnology in Plant Protection of MARA, Zhejiang Key Laboratory of Green Plant Protection, Institute of Plant VirologyNingbo UniversityNingboChina
| | - Guanwei Wu
- State Key Laboratory for Quality and Safety of Agro‐Products, Key Laboratory of Biotechnology in Plant Protection of MARA, Zhejiang Key Laboratory of Green Plant Protection, Institute of Plant VirologyNingbo UniversityNingboChina
| | - Shaofei Rao
- State Key Laboratory for Quality and Safety of Agro‐Products, Key Laboratory of Biotechnology in Plant Protection of MARA, Zhejiang Key Laboratory of Green Plant Protection, Institute of Plant VirologyNingbo UniversityNingboChina
| | - Jian Wu
- State Key Laboratory for Quality and Safety of Agro‐Products, Key Laboratory of Biotechnology in Plant Protection of MARA, Zhejiang Key Laboratory of Green Plant Protection, Institute of Plant VirologyNingbo UniversityNingboChina
| | - Hongying Zheng
- State Key Laboratory for Quality and Safety of Agro‐Products, Key Laboratory of Biotechnology in Plant Protection of MARA, Zhejiang Key Laboratory of Green Plant Protection, Institute of Plant VirologyNingbo UniversityNingboChina
| | - Jianping Chen
- State Key Laboratory for Quality and Safety of Agro‐Products, Key Laboratory of Biotechnology in Plant Protection of MARA, Zhejiang Key Laboratory of Green Plant Protection, Institute of Plant VirologyNingbo UniversityNingboChina
| | - Fei Yan
- State Key Laboratory for Quality and Safety of Agro‐Products, Key Laboratory of Biotechnology in Plant Protection of MARA, Zhejiang Key Laboratory of Green Plant Protection, Institute of Plant VirologyNingbo UniversityNingboChina
| | - Yuwen Lu
- State Key Laboratory for Quality and Safety of Agro‐Products, Key Laboratory of Biotechnology in Plant Protection of MARA, Zhejiang Key Laboratory of Green Plant Protection, Institute of Plant VirologyNingbo UniversityNingboChina
| | - Gentu Wu
- Chongqing Key Laboratory of Plant Disease Biology, College of Plant ProtectionSouthwest UniversityChongqingChina
| |
Collapse
|
5
|
Adhikari B, Verchot J, Brandizzi F, Ko DK. ER stress and viral defense: Advances and future perspectives on plant unfolded protein response in pathogenesis. J Biol Chem 2025; 301:108354. [PMID: 40015641 PMCID: PMC11982459 DOI: 10.1016/j.jbc.2025.108354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 02/17/2025] [Accepted: 02/19/2025] [Indexed: 03/01/2025] Open
Abstract
Viral infections pose significant threats to crop productivity and agricultural sustainability. The frequency and severity of these infections are increasing, and pathogens are evolving rapidly under the influence of climate change. This underscores the importance of exploring the fundamental mechanisms by which plants defend themselves against dynamic viral threats. One such mechanism is the unfolded protein response (UPR), which is activated when the protein folding demand exceeds the capacity of the endoplasmic reticulum, particularly under adverse environmental conditions. While the key regulators of the UPR in response to viral infections have been identified, our understanding of how they modulate the UPR to suppress plant viral infections at the molecular and genetic levels is still in its infancy. Recent findings have shown that, in response to plant viral infections, the UPR swiftly reprograms transcriptional changes to support cellular, metabolic, and physiological processes associated with cell viability. However, the underlying mechanisms and functional outcomes of these changes remain largely unexplored. Here, we highlight recent advances in plant UPR research and summarize key findings related to viral infection-induced UPR, focusing on the balance between prosurvival and prodeath strategies. We also discuss the potential of systems-level approaches to uncover the full extent of the functional link between the UPR and plant responses to viral infections.
Collapse
Affiliation(s)
- Binita Adhikari
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, Texas, USA
| | - Jeanmarie Verchot
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, Texas, USA.
| | - Federica Brandizzi
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, Michigan, USA; Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, Michigan, USA; Department of Plant Biology, Michigan State University, East Lansing, Michigan, USA
| | - Dae Kwan Ko
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, Michigan, USA; Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, Michigan, USA; Department of Plant Biology, Michigan State University, East Lansing, Michigan, USA.
| |
Collapse
|
6
|
Ren Q, Zhang Z, Zhang Y, Zhang Y, Gao Y, Zhang H, Wang X, Wang G, Hong N. Protein P5 of pear chlorotic leaf spot-associated virus is a pathogenic factor that suppresses RNA silencing and enhances virus movement. MOLECULAR PLANT PATHOLOGY 2024; 25:e70015. [PMID: 39412447 PMCID: PMC11481690 DOI: 10.1111/mpp.70015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/22/2024] [Accepted: 09/23/2024] [Indexed: 10/20/2024]
Abstract
Pear chlorotic leaf spot-associated virus (PCLSaV) is a newly described emaravirus that infects pear trees. The virus genome consists of at least five single-stranded, negative-sense RNAs. The P5 encoded by RNA5 is unique to PCLSaV. In this study, the RNA silencing suppression (RSS) activity of P5 and its subcellular localization were determined in Nicotiana benthamiana plants by Agrobacterium tumefaciens-mediated expression assays and green fluorescent protein RNA silencing induction. Protein P5 partially suppressed local RNA silencing, strongly suppressed systemic RNA silencing and triggered reactive oxygen species accumulation. The P5 self-interacted and showed subcellular locations in plasmodesmata, endoplasmic reticulum and nucleus. Furthermore, P5 rescued the cell-to-cell movement of a movement defective mutant PVXΔP25 of potato virus X (PVX) and enhanced the pathogenicity of PVX. The N-terminal 1-89 amino acids of the P5 were responsible for the self-interaction ability and RSS activity, for which the signal peptide at positions 1-19 was indispensable. This study demonstrated the function of an emaravirus protein as a pathogenic factor suppressing plant RNA silencing to enhance virus infection and as an enhancer of virus movement.
Collapse
Affiliation(s)
- Qiuting Ren
- Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural CropsHuazhong Agricultural UniversityWuhanChina
| | - Zhe Zhang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural CropsHuazhong Agricultural UniversityWuhanChina
| | - Yongle Zhang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural CropsHuazhong Agricultural UniversityWuhanChina
| | - Yue Zhang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural CropsHuazhong Agricultural UniversityWuhanChina
| | - Yujie Gao
- Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural CropsHuazhong Agricultural UniversityWuhanChina
| | - Hongyi Zhang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural CropsHuazhong Agricultural UniversityWuhanChina
| | - Xianhong Wang
- Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural CropsHuazhong Agricultural UniversityWuhanChina
| | - Guoping Wang
- Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural CropsHuazhong Agricultural UniversityWuhanChina
| | - Ni Hong
- Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural CropsHuazhong Agricultural UniversityWuhanChina
| |
Collapse
|
7
|
Li L, Wang G, Zhang Y, Wang W, Zhu Y, Lyu Y, Wang Y, Zhang Y, Hong N. The functions of triple gene block proteins and coat protein of apple stem pitting virus in viral cell-to-cell movement. MOLECULAR PLANT PATHOLOGY 2024; 25:e13392. [PMID: 37837244 PMCID: PMC10782654 DOI: 10.1111/mpp.13392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/14/2023] [Accepted: 09/19/2023] [Indexed: 10/15/2023]
Abstract
Apple stem pitting virus is a species in the genus Foveavirus in the family Betaflexiviridae. Apple stem pitting virus (ASPV) commonly infects apple and pear plants grown worldwide. In this study, by integrating bimolecular fluorescence complementation, split-ubiquitin-based membrane yeast two-hybrid, and Agrobacterium-mediated expression assays, the interaction relationships and the subcellular locations of ASPV proteins TGBp1-3 and CP in Nicotiana benthamiana leaf cells were determined. Proteins CP, TGBp1, TGBp2, and TGBp3 were self-interactable, and TGBp2 played a role in the formation of perinuclear viroplasm and enhanced the colocalization of TGBp3 with CP and TGBp1. We found that the plant microfilament and endoplasmic reticulum structures were involved in the production of TGBp3 and TGBp2 vesicles, and their disruption decreased the virus accumulation level in the systemic leaves. The TGBp3 motile vesicles functioned in delivering the viral ribonucleoprotein complexes to the plasma membrane. Two cysteine residues at sites 35 and 49 of the TGBp3 sorting signal were necessary for the diffusion of TGBp3-marked vesicles. Furthermore, our results revealed that TGBp1, TGBp2, and CP could increase plasmodesmal permeability and move to the adjacent cells. This study demonstrates an interaction network and a subcellular location map of four ASPV proteins and for the first time provides insight into the functions of these proteins in the movement of a foveavirus.
Collapse
Affiliation(s)
- Liu Li
- Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural CropsHuazhong Agricultural UniversityWuhanChina
| | - Guoping Wang
- Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural CropsHuazhong Agricultural UniversityWuhanChina
| | - Yue Zhang
- Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Wenjun Wang
- Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural CropsHuazhong Agricultural UniversityWuhanChina
| | - Yiting Zhu
- Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural CropsHuazhong Agricultural UniversityWuhanChina
| | - Yuzhuo Lyu
- Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural CropsHuazhong Agricultural UniversityWuhanChina
| | - Yanxiang Wang
- Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural CropsHuazhong Agricultural UniversityWuhanChina
| | - Yongle Zhang
- Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural CropsHuazhong Agricultural UniversityWuhanChina
| | - Ni Hong
- Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural CropsHuazhong Agricultural UniversityWuhanChina
| |
Collapse
|
8
|
Wang J, Hsu Y, Lee Y, Lin N. Importin α2 participates in RNA interference against bamboo mosaic virus accumulation in Nicotiana benthamiana via NbAGO10a-mediated small RNA clearance. MOLECULAR PLANT PATHOLOGY 2024; 25:e13422. [PMID: 38279848 PMCID: PMC10799208 DOI: 10.1111/mpp.13422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/29/2024]
Abstract
Karyopherins, the nucleocytoplasmic transporters, participate in multiple RNA silencing stages by transporting associated proteins into the nucleus. Importin α is a member of karyopherins and has been reported to facilitate virus infection via nuclear import of viral proteins. Unlike other RNA viruses, silencing of importin α2 (α2i) by virus-induced gene silencing (VIGS) boosted the titre of bamboo mosaic virus (BaMV) in protoplasts, and inoculated and systemic leaves of Nicotiana benthamiana. The enhanced BaMV accumulation in importin α2i plants was linked to reduced levels of RDR6-dependent secondary virus-derived small-interfering RNAs (vsiRNAs). Small RNA-seq revealed importin α2 silencing did not affect the abundance of siRNAs derived from host mRNAs but significantly reduced the 21 and 22 nucleotide vsiRNAs in BaMV-infected plants. Deletion of BaMV TGBp1, an RNA silencing suppressor, compromised importin α2i-mediated BaMV enhancement. Moreover, silencing of importin α2 upregulated NbAGO10a, a proviral protein recruited by TGBp1 for BaMV vsiRNAs clearance, but hindered the nuclear import of NbAGO10a. Taken together, these results indicate that importin α2 acts as a negative regulator of BaMV invasion by controlling the expression and nucleocytoplasmic shuttling of NbAGO10a, which removes vsiRNAs via the TGBp1-NbAGO10a-SDN1 pathway. Our findings reveal the hidden antiviral mechanism of importin α2 in countering BaMV infection in N. benthamiana.
Collapse
Affiliation(s)
- Jiun‐Da Wang
- Institute of Plant and Microbial BiologyAcademia SinicaTaipeiTaiwan
| | - Yau‐Heiu Hsu
- Graduate Institute of BiotechnologyNational Chung Hsing UniversityTaichungTaiwan
| | - Yun‐Shien Lee
- Department of BiotechnologyMing Chuan UniversityTaipeiTaiwan
| | - Na‐Sheng Lin
- Institute of Plant and Microbial BiologyAcademia SinicaTaipeiTaiwan
| |
Collapse
|
9
|
Atabekova AK, Golyshev SA, Lezzhov AA, Skulachev BI, Moiseenko AV, Yastrebova DM, Andrianova NV, Solovyev ID, Savitsky AP, Morozov SY, Solovyev AG. Fine Structure of Plasmodesmata-Associated Membrane Bodies Formed by Viral Movement Protein. PLANTS (BASEL, SWITZERLAND) 2023; 12:4100. [PMID: 38140427 PMCID: PMC10747570 DOI: 10.3390/plants12244100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023]
Abstract
Cell-to-cell transport of plant viruses through plasmodesmata (PD) requires viral movement proteins (MPs) often associated with cell membranes. The genome of the Hibiscus green spot virus encodes two MPs, BMB1 and BMB2, which enable virus cell-to-cell transport. BMB2 is known to localize to PD-associated membrane bodies (PAMBs), which are derived from the endoplasmic reticulum (ER) structures, and to direct BMB1 to PAMBs. This paper reports the fine structure of PAMBs. Immunogold labeling confirms the previously observed localization of BMB1 and BMB2 to PAMBs. EM tomography data show that the ER-derived structures in PAMBs are mostly cisterns interconnected by numerous intermembrane contacts that likely stabilize PAMBs. These contacts predominantly involve the rims of the cisterns rather than their flat surfaces. Using FRET-FLIM (Förster resonance energy transfer between fluorophores detected by fluorescence-lifetime imaging microscopy) and chemical cross-linking, BMB2 is shown to self-interact and form high-molecular-weight complexes. As BMB2 has been shown to have an affinity for highly curved membranes at cisternal rims, the interaction of BMB2 molecules located at rims of adjacent cisterns is suggested to be involved in the formation of intermembrane contacts in PAMBs.
Collapse
Affiliation(s)
- Anastasia K. Atabekova
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119992 Moscow, Russia; (A.K.A.); (S.A.G.); (A.A.L.); (S.Y.M.)
| | - Sergei A. Golyshev
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119992 Moscow, Russia; (A.K.A.); (S.A.G.); (A.A.L.); (S.Y.M.)
| | - Alexander A. Lezzhov
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119992 Moscow, Russia; (A.K.A.); (S.A.G.); (A.A.L.); (S.Y.M.)
| | - Boris I. Skulachev
- Biological Faculty, Moscow State University, 119234 Moscow, Russia; (B.I.S.); (A.V.M.)
| | - Andrey V. Moiseenko
- Biological Faculty, Moscow State University, 119234 Moscow, Russia; (B.I.S.); (A.V.M.)
| | - Daria M. Yastrebova
- Faculty of Bioengineering and Bioinformatics, Moscow State University, 119234 Moscow, Russia;
| | - Nadezda V. Andrianova
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119992 Moscow, Russia; (A.K.A.); (S.A.G.); (A.A.L.); (S.Y.M.)
| | - Ilya D. Solovyev
- A. N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia (A.P.S.)
| | - Alexander P. Savitsky
- A. N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia (A.P.S.)
| | - Sergey Y. Morozov
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119992 Moscow, Russia; (A.K.A.); (S.A.G.); (A.A.L.); (S.Y.M.)
- Biological Faculty, Moscow State University, 119234 Moscow, Russia; (B.I.S.); (A.V.M.)
| | - Andrey G. Solovyev
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119992 Moscow, Russia; (A.K.A.); (S.A.G.); (A.A.L.); (S.Y.M.)
- Biological Faculty, Moscow State University, 119234 Moscow, Russia; (B.I.S.); (A.V.M.)
- All-Russia Research Institute of Agricultural Biotechnology, 127550 Moscow, Russia
| |
Collapse
|
10
|
Sun Y, Shi M, Wang D, Gong Y, Sha Q, Lv P, Yang J, Chu P, Guo S. Research progress on the roles of actin-depolymerizing factor in plant stress responses. FRONTIERS IN PLANT SCIENCE 2023; 14:1278311. [PMID: 38034575 PMCID: PMC10687421 DOI: 10.3389/fpls.2023.1278311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 11/01/2023] [Indexed: 12/02/2023]
Abstract
Actin-depolymerizing factors (ADFs) are highly conserved small-molecule actin-binding proteins found throughout eukaryotic cells. In land plants, ADFs form a small gene family that displays functional redundancy despite variations among its individual members. ADF can bind to actin monomers or polymerized microfilaments and regulate dynamic changes in the cytoskeletal framework through specialized biochemical activities, such as severing, depolymerizing, and bundling. The involvement of ADFs in modulating the microfilaments' dynamic changes has significant implications for various physiological processes, including plant growth, development, and stress response. The current body of research has greatly advanced our comprehension of the involvement of ADFs in the regulation of plant responses to both biotic and abiotic stresses, particularly with respect to the molecular regulatory mechanisms that govern ADF activity during the transmission of stress signals. Stress has the capacity to directly modify the transcription levels of ADF genes, as well as indirectly regulate their expression through transcription factors such as MYB, C-repeat binding factors, ABF, and 14-3-3 proteins. Furthermore, apart from their role in regulating actin dynamics, ADFs possess the ability to modulate the stress response by influencing downstream genes associated with pathogen resistance and abiotic stress response. This paper provides a comprehensive overview of the current advancements in plant ADF gene research and suggests that the identification of plant ADF family genes across a broader spectrum, thorough analysis of ADF gene regulation in stress resistance of plants, and manipulation of ADF genes through genome-editing techniques to enhance plant stress resistance are crucial avenues for future investigation in this field.
Collapse
|
11
|
Jovanović I, Frantová N, Zouhar J. A sword or a buffet: plant endomembrane system in viral infections. FRONTIERS IN PLANT SCIENCE 2023; 14:1226498. [PMID: 37636115 PMCID: PMC10453817 DOI: 10.3389/fpls.2023.1226498] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 07/25/2023] [Indexed: 08/29/2023]
Abstract
The plant endomembrane system is an elaborate collection of membrane-bound compartments that perform distinct tasks in plant growth and development, and in responses to abiotic and biotic stresses. Most plant viruses are positive-strand RNA viruses that remodel the host endomembrane system to establish intricate replication compartments. Their fundamental role is to create optimal conditions for viral replication, and to protect replication complexes and the cell-to-cell movement machinery from host defenses. In addition to the intracellular antiviral defense, represented mainly by RNA interference and effector-triggered immunity, recent findings indicate that plant antiviral immunity also includes membrane-localized receptor-like kinases that detect viral molecular patterns and trigger immune responses, which are similar to those observed for bacterial and fungal pathogens. Another recently identified part of plant antiviral defenses is executed by selective autophagy that mediates a specific degradation of viral proteins, resulting in an infection arrest. In a perpetual tug-of-war, certain host autophagy components may be exploited by viral proteins to support or protect an effective viral replication. In this review, we present recent advances in the understanding of the molecular interplay between viral components and plant endomembrane-associated pathways.
Collapse
Affiliation(s)
- Ivana Jovanović
- Department of Crop Science, Breeding and Plant Medicine, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
| | - Nicole Frantová
- Department of Crop Science, Breeding and Plant Medicine, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
| | - Jan Zouhar
- Central European Institute of Technology, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
| |
Collapse
|
12
|
Méndez-López E, Donaire L, Gosálvez B, Díaz-Vivancos P, Sánchez-Pina MA, Tilsner J, Aranda MA. Tomato SlGSTU38 interacts with the PepMV coat protein and promotes viral infection. THE NEW PHYTOLOGIST 2023; 238:332-348. [PMID: 36631978 DOI: 10.1111/nph.18728] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
Pepino mosaic virus (PepMV) is pandemic in tomato crops, causing important economic losses world-wide. No PepMV-resistant varieties have been developed yet. Identification of host factors interacting with PepMV proteins is a promising source of genetic targets to develop PepMV-resistant varieties. The interaction between the PepMV coat protein (CP) and the tomato glutathione S-transferase (GST) SlGSTU38 was identified in a yeast two-hybrid (Y2H) screening and validated by directed Y2H and co-immunoprecipitation assays. SlGSTU38-knocked-out Micro-Tom plants (gstu38) generated by the CRISPR/Cas9 technology together with live-cell imaging were used to understand the role of SlGSTU38 during infection. The transcriptomes of healthy and PepMV-infected wild-type (WT) and gstu38 plants were profiled by RNA-seq analysis. SlGSTU38 functions as a PepMV-specific susceptibility factor in a cell-autonomous manner and relocalizes to the virus replication complexes during infection. Besides, knocking out SlGSTU38 triggers reactive oxygen species accumulation in leaves and the deregulation of stress-responsive genes. SlGSTU38 may play a dual role: On the one hand, SlGSTU38 may exert a proviral function depending on its specific interaction with the PepMV CP; and on the other hand, SlGSTU38 may delay PepMV-infection sensing by participating in the redox intracellular homeostasis in a nonspecific manner.
Collapse
Affiliation(s)
- Eduardo Méndez-López
- Department of Stress Biology and Plant Pathology, CEBAS-CSIC, Campus Universitario de Espinardo, 30100, Murcia, Spain
| | - Livia Donaire
- Department of Stress Biology and Plant Pathology, CEBAS-CSIC, Campus Universitario de Espinardo, 30100, Murcia, Spain
| | - Blanca Gosálvez
- Department of Stress Biology and Plant Pathology, CEBAS-CSIC, Campus Universitario de Espinardo, 30100, Murcia, Spain
| | - Pedro Díaz-Vivancos
- Department of Plant Breeding, CEBAS-CSIC, Campus Universitario de Espinardo, 30100, Murcia, Spain
| | - M Amelia Sánchez-Pina
- Department of Stress Biology and Plant Pathology, CEBAS-CSIC, Campus Universitario de Espinardo, 30100, Murcia, Spain
| | - Jens Tilsner
- Biomedical Sciences Research Complex, The University of St. Andrews, St. Andrews, KY16 9ST, UK
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, DD2 5DA, UK
| | - Miguel A Aranda
- Department of Stress Biology and Plant Pathology, CEBAS-CSIC, Campus Universitario de Espinardo, 30100, Murcia, Spain
| |
Collapse
|
13
|
Huang YW, Sun CI, Hu CC, Tsai CH, Meng M, Lin NS, Dinesh-Kumar SP, Hsu YH. A viral movement protein co-opts endoplasmic reticulum luminal-binding protein and calreticulin to promote intracellular movement. PLANT PHYSIOLOGY 2023; 191:904-924. [PMID: 36459587 PMCID: PMC9922411 DOI: 10.1093/plphys/kiac547] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 11/03/2022] [Indexed: 06/17/2023]
Abstract
Intracellular movement is an important step for the initial spread of virus in plants during infection. This process requires virus-encoded movement proteins (MPs) and their interaction with host factors. Despite the large number of known host factors involved in the movement of different viruses, little is known about host proteins that interact with one of the MPs encoded by potexviruses, the triple-gene-block protein 3 (TGBp3). The main obstacle lies in the relatively low expression level of potexviral TGBp3 in hosts and the weak or transient nature of interactions. Here, we used TurboID-based proximity labeling to identify the network of proteins directly or indirectly interacting with the TGBp3 of a potexvirus, Bamboo mosaic virus (BaMV). Endoplasmic reticulum (ER) luminal-binding protein 4 and calreticulin 3 of Nicotiana benthamiana (NbBiP4 and NbCRT3, respectively) associated with the functional TGBp3-containing BaMV movement complexes, but not the movement-defective mutant, TGBp3M. Fluorescent microscopy revealed that TGBp3 colocalizes with NbBiP4 or NbCRT3 and the complexes move together along ER networks to cell periphery in N. benthamiana. Loss- and gain-of-function experiments revealed that NbBiP4 or NbCRT3 is required for the efficient spread and accumulation of BaMV in infected leaves. In addition, overexpression of NbBiP4 or NbCRT3 enhanced the targeting of BaMV TGBp1 to plasmodesmata (PD), indicating that NbBiP4 and NbCRT3 interact with TGBp3 to promote the intracellular transport of virion cargo to PD that facilitates virus cell-to-cell movement. Our findings revealed additional roles for NbBiP4 and NbCRT3 in BaMV intracellular movement through ER networks or ER-derived vesicles to PD, which enhances the spread of BaMV in N. benthamiana.
Collapse
Affiliation(s)
- Ying-Wen Huang
- Graduate Institute of Biotechnology, National Chung Hisng University, Taichung 40227, Taiwan
- Advanced Plant Biotechnology Center, National Chung Hsing University, Taichung 40227, Taiwan
| | - Chu-I Sun
- Graduate Institute of Biotechnology, National Chung Hisng University, Taichung 40227, Taiwan
| | - Chung-Chi Hu
- Graduate Institute of Biotechnology, National Chung Hisng University, Taichung 40227, Taiwan
- Advanced Plant Biotechnology Center, National Chung Hsing University, Taichung 40227, Taiwan
| | - Ching-Hsiu Tsai
- Graduate Institute of Biotechnology, National Chung Hisng University, Taichung 40227, Taiwan
- Advanced Plant Biotechnology Center, National Chung Hsing University, Taichung 40227, Taiwan
| | - Menghsiao Meng
- Graduate Institute of Biotechnology, National Chung Hisng University, Taichung 40227, Taiwan
| | - Na-Sheng Lin
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Savithramma P Dinesh-Kumar
- Department of Plant Biology and The Genome Center, College of Biological Sciences, University of California, Davis, Davis, California 95616, USA
| | - Yau-Heiu Hsu
- Graduate Institute of Biotechnology, National Chung Hisng University, Taichung 40227, Taiwan
- Advanced Plant Biotechnology Center, National Chung Hsing University, Taichung 40227, Taiwan
| |
Collapse
|
14
|
Carvalho SL, Tilsner J, Figueira AR, Carvalho CM. Subcellular localization and interactions among TGB proteins of cowpea mild mottle virus. Arch Virol 2022; 167:2555-2566. [PMID: 36269413 DOI: 10.1007/s00705-022-05576-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 07/13/2022] [Indexed: 12/14/2022]
Abstract
Cowpea mild mottle virus (CPMMV) is a flexuous filamentous virus that belongs to the genus Carlavirus (family Betaflexiviridae). The CPMMV genome contains six open reading frames (ORFs), among which the triple gene block (TGB), encoded by ORFs 2 to 4, has been reported to encode movement proteins for different viruses. The subcellular localization of the TGB proteins of CPMMV isolate CPMMV:BR:MG:09:2 was analysed by transient expression of each protein fused to a fluorophore. Overall, the accumulation pattern and interactions among CPMMV TGB proteins (TGBp) were similar to those of their counterparts from the potex-like group. Considering these similarities, we evaluated the potential interactions between the TGB proteins of CPMMV and of potato virus X, which could complement cell-to-cell movement. The TGBp2 and TGBp3 of PVX had an effect on CPMMV TGBp1, directing it to the plasmodesmata, but the reverse was not true.
Collapse
Affiliation(s)
- S L Carvalho
- Departamento de Fitopatologia, Universidade Federal de Viçosa, Av. P. H. Rolfs, s/ nº Campus Universitário, 36570-000, Viçosa, MG, Brasil
| | - J Tilsner
- Cell and Molecular Sciences, The James Hutton Institute, DD2 5DA, Dundee, Scotland, UK
- Biomedical Sciences Research Complex, University of St Andrews, KY16 9ST, St Andrews, Fife, Scotland, UK
| | - A R Figueira
- Departamento de Fitopatologia, Universidade Federal de Lavras, Campus Universitário, 37200- 900, Lavras, MG, Brazil
| | - C M Carvalho
- Departamento de Fitopatologia, Universidade Federal de Lavras, Campus Universitário, 37200- 900, Lavras, MG, Brazil.
- Departamento de Fitopatologia, Universidade Federal de Viçosa, Av. P. H. Rolfs, s/ nº Campus Universitário, 36570-000, Viçosa, MG, Brasil.
| |
Collapse
|
15
|
Tilsner J, Kriechbaumer V. Reticulons 3 and 6 interact with viral movement proteins. MOLECULAR PLANT PATHOLOGY 2022; 23:1807-1814. [PMID: 35987858 PMCID: PMC9644274 DOI: 10.1111/mpp.13261] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 08/05/2022] [Accepted: 08/05/2022] [Indexed: 05/06/2023]
Abstract
Plant reticulon (RTN) proteins are capable of constricting membranes and are vital for creating and maintaining tubules in the endoplasmic reticulum (ER), making them prime candidates for the formation of the desmotubule in plasmodesmata (PD). RTN3 and RTN6 have previously been detected in an Arabidopsis PD proteome and have been shown to be present in primary PD at cytokinesis. It has been suggested that RTN proteins form protein complexes with proteins in the PD plasma membrane and desmotubule to stabilize the desmotubule constriction and regulate PD aperture. Viral movement proteins (vMPs) enable the transport of viruses through PD and can be ER-integral membrane proteins or interact with the ER. Some vMPs can themselves constrict ER membranes or localize to RTN-containing tubules; RTN proteins and vMPs could be functionally linked or potentially interact. Here we show that different vMPs are capable of interacting with RTN3 and RTN6 in a membrane yeast two-hybrid assay, coimmunoprecipitation, and Förster resonance energy transfer measured by donor excited-state fluorescence lifetime imaging microscopy. Furthermore, coexpression of the vMP CMV-3a and RTN3 results in either the vMP or the RTN changing subcellular localization and reduces the ability of CMV-3a to open PD, further indicating interactions between the two proteins.
Collapse
Affiliation(s)
- Jens Tilsner
- Biomedical Sciences Research ComplexSchool of Biology, Willie Russell LaboratoriesFifeUK
- Cell & Molecular SciencesThe James Hutton InstituteDundeeUK
| | - Verena Kriechbaumer
- Endomembrane Structure and Function Research Group, Department of Biological and Medical SciencesOxford Brookes UniversityOxfordUK
| |
Collapse
|
16
|
Solovyev AG, Atabekova AK, Lezzhov AA, Solovieva AD, Chergintsev DA, Morozov SY. Distinct Mechanisms of Endomembrane Reorganization Determine Dissimilar Transport Pathways in Plant RNA Viruses. PLANTS (BASEL, SWITZERLAND) 2022; 11:2403. [PMID: 36145804 PMCID: PMC9504206 DOI: 10.3390/plants11182403] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/02/2022] [Accepted: 09/13/2022] [Indexed: 11/22/2022]
Abstract
Plant viruses exploit the endomembrane system of infected cells for their replication and cell-to-cell transport. The replication of viral RNA genomes occurs in the cytoplasm in association with reorganized endomembrane compartments induced by virus-encoded proteins and is coupled with the virus intercellular transport via plasmodesmata that connect neighboring cells in plant tissues. The transport of virus genomes to and through plasmodesmata requires virus-encoded movement proteins (MPs). Distantly related plant viruses encode different MP sets, or virus transport systems, which vary in the number of MPs and their properties, suggesting their functional differences. Here, we discuss two distinct virus transport pathways based on either the modification of the endoplasmic reticulum tubules or the formation of motile vesicles detached from the endoplasmic reticulum and targeted to endosomes. The viruses with the movement proteins encoded by the triple gene block exemplify the first, and the potyviral system is the example of the second type. These transport systems use unrelated mechanisms of endomembrane reorganization. We emphasize that the mode of virus interaction with cell endomembranes determines the mechanism of plant virus cell-to-cell transport.
Collapse
Affiliation(s)
- Andrey G. Solovyev
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119992 Moscow, Russia
- Department of Virology, Biological Faculty, Moscow State University, 119234 Moscow, Russia
- All-Russia Research Institute of Agricultural Biotechnology, 127550 Moscow, Russia
| | - Anastasia K. Atabekova
- Department of Virology, Biological Faculty, Moscow State University, 119234 Moscow, Russia
| | - Alexander A. Lezzhov
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119992 Moscow, Russia
| | - Anna D. Solovieva
- Department of Virology, Biological Faculty, Moscow State University, 119234 Moscow, Russia
| | - Denis A. Chergintsev
- Department of Virology, Biological Faculty, Moscow State University, 119234 Moscow, Russia
| | - Sergey Y. Morozov
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119992 Moscow, Russia
- Department of Virology, Biological Faculty, Moscow State University, 119234 Moscow, Russia
| |
Collapse
|
17
|
Zhang K, Xu X, Guo X, Ding S, Gu T, Qin L, He Z. Sugarcane Streak Mosaic Virus P1 Attenuates Plant Antiviral Immunity and Enhances Potato Virus X Infection in Nicotiana benthamiana. Cells 2022; 11:2870. [PMID: 36139443 PMCID: PMC9497147 DOI: 10.3390/cells11182870] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/06/2022] [Accepted: 09/10/2022] [Indexed: 12/05/2022] Open
Abstract
The sugarcane streak mosaic virus (SCSMV) is the most important disease in sugarcane produced in southern China. The SCSMV encoded protein 1 (P1SCSMV) is important in disease development, but little is known about its detailed functions in plant-virus interactions. Here, the differential accumulated proteins (DAPs) were identified in the heterologous expression of P1SCSMV via a potato virus X (PVX)-based expression system, using a newly developed four-dimensional proteomics approach. The data were evaluated for credibility and reliability using qRT-RCR and Western blot analyses. The physiological response caused by host factors that directly interacted with the PVX-encoded proteins was more pronounced for enhancing the PVX accumulation and pathogenesis in Nicotiana benthamiana. P1SCSMV reduced photosynthesis by damaging the photosystem II (PSII). Overall, P1SCSMV promotes changes in the physiological status of its host by up- or downregulating the expression of host factors that directly interact with the viral proteins. This creates optimal conditions for PVX replication and movement, thereby enhancing its accumulation levels and pathogenesis. Our investigation is the first to supply detailed evidence of the pathogenesis-enhancing role of P1SCSMV, which provides a deeper understanding of the mechanisms behind virus-host interactions.
Collapse
Affiliation(s)
- Kun Zhang
- Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Microbiology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Xiaowei Xu
- Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Xiao Guo
- Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Shiwen Ding
- Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Tianxiao Gu
- Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Lang Qin
- Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Zhen He
- Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
18
|
Shang K, Xu Y, Cao W, Xie X, Zhang Y, Zhang J, Liu H, Zhou S, Zhu X, Zhu C. Potato (Solanum tuberosum L.) non-specific lipid transfer protein StLTP6 promotes viral infection by inhibiting virus-induced RNA silencing. PLANTA 2022; 256:54. [PMID: 35927530 DOI: 10.1007/s00425-022-03948-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
For the first time it is reported that members of the nsLTP protein family could promote viral infection by inhibiting virus-induced RNA silencing. Non-specific lipid transfer proteins (nsLTPs) are a class of soluble proteins with low relative molecular weight and widely present in higher plants. The role of nsLTPs in biotic and abiotic stresses has been studied, but no report has shown that nsLTPs play a role in the process of viral infection. We report the function and mechanism of the classical nsLTP protein StLTP6 in viral infection. We found that StLTP6 expression was remarkably upregulated in potato infected with potato virus Y and potato virus S. The infection efficiency and virus content of StLTP6-overexpressed potato and Nicotiana benthamiana were remarkable increased. Further study found that the overexpression of StLTP6 inhibited the expression of multiple genes in the RNA silencing pathway, thereby inhibiting virus-induced RNA silencing. This result indicated that StLTP6 expression was induced during viral infection to inhibit the resistance of virus-induced RNA silencing and promote viral infection. In summary, we reported the role of StLTP6 in viral infection, broadening the biological function range of the nsLTP family and providing valuable information for the study of viral infection mechanism.
Collapse
Affiliation(s)
- Kaijie Shang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, Shandong, China
- College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Yang Xu
- Shandong Peanut Research Institute, Shandong Academy of Agricultural Sciences, Qingdao, 266100, China
| | - Weilin Cao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Xiaoying Xie
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Yanru Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Jingfeng Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Hongmei Liu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Shumei Zhou
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Xiaoping Zhu
- College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, Shandong, China.
| | - Changxiang Zhu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, Shandong, China.
| |
Collapse
|
19
|
Del Toro F, Sun H, Robinson C, Jiménez Á, Covielles E, Higuera T, Aguilar E, Tenllado F, Canto T. In planta vs viral expression of HCPro affects its binding of nonplant 21-22 nucleotide small RNAs, but not its preference for 5'-terminal adenines, or its effects on small RNA methylation. THE NEW PHYTOLOGIST 2022; 233:2266-2281. [PMID: 34942019 DOI: 10.1111/nph.17935] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/06/2021] [Indexed: 06/14/2023]
Abstract
Previous studies have found a correlation between the abilities of PVX vector-expressed HCPro variants to bind small RNAs (sRNAs), and to suppress silencing. Moreover, HCPro preferred to bind viral sRNAs of 21-22 nucleotides (nt) containing 5'-terminal adenines. This would require such viral sRNAs to have either different access to the suppressor than those of plant sequences, or different molecular properties. To investigate this preference further, we have used suppressor-competent or suppressor-deficient HCPro variants, expressed from either T-DNAs or potyvirus constructs. Then, the sRNAs generated in plants and associated with the purified HCPro variants were characterized. Marked differences were observed in the ratios of sRNAs of plant vs nonplant origin that bound to suppressor-competent HCPro, depending on the mode of its expression. Regardless of the means of expression, HCPro retained the same preference among the nonplant sRNAs of 21-22 nt for those with 5'-terminal adenines. Relative methylation levels of individual sRNAs were assessed, and the nonplant sRNAs were found to be significantly less methylated in the presence of the suppressor. Targeted binding of sRNAs based on size, 5'-terminal sequence and origin, together with affecting their methylation, could explain how HCPro counteracts silencing.
Collapse
Affiliation(s)
- Francisco Del Toro
- Department of Microbial and Plant Biotechnology, Margarita Salas Center for Biological Research, CIB-CSIC, Ramiro de Maeztu 9, Madrid, 28040, Spain
| | - Hao Sun
- Department of Microbial and Plant Biotechnology, Margarita Salas Center for Biological Research, CIB-CSIC, Ramiro de Maeztu 9, Madrid, 28040, Spain
| | - Carmen Robinson
- Department of Microbial and Plant Biotechnology, Margarita Salas Center for Biological Research, CIB-CSIC, Ramiro de Maeztu 9, Madrid, 28040, Spain
| | - Álvaro Jiménez
- Department of Microbial and Plant Biotechnology, Margarita Salas Center for Biological Research, CIB-CSIC, Ramiro de Maeztu 9, Madrid, 28040, Spain
| | - Eva Covielles
- Department of Microbial and Plant Biotechnology, Margarita Salas Center for Biological Research, CIB-CSIC, Ramiro de Maeztu 9, Madrid, 28040, Spain
| | - Tomás Higuera
- Department of Microbial and Plant Biotechnology, Margarita Salas Center for Biological Research, CIB-CSIC, Ramiro de Maeztu 9, Madrid, 28040, Spain
| | - Emmanuel Aguilar
- Department of Microbial and Plant Biotechnology, Margarita Salas Center for Biological Research, CIB-CSIC, Ramiro de Maeztu 9, Madrid, 28040, Spain
| | - Francisco Tenllado
- Department of Microbial and Plant Biotechnology, Margarita Salas Center for Biological Research, CIB-CSIC, Ramiro de Maeztu 9, Madrid, 28040, Spain
| | - Tomás Canto
- Department of Microbial and Plant Biotechnology, Margarita Salas Center for Biological Research, CIB-CSIC, Ramiro de Maeztu 9, Madrid, 28040, Spain
| |
Collapse
|
20
|
Lee HC, Huang YP, Huang YW, Hu CC, Lee CW, Chang CH, Lin NS, Hsu YH. Voltage-dependent anion channel proteins associate with dynamic Bamboo mosaic virus-induced complexes. PLANT PHYSIOLOGY 2022; 188:1061-1080. [PMID: 34747475 PMCID: PMC8825239 DOI: 10.1093/plphys/kiab519] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 10/06/2021] [Indexed: 06/13/2023]
Abstract
Infection cycles of viruses are highly dependent on membrane-associated host factors. To uncover the infection cycle of Bamboo mosaic virus (BaMV) in detail, we purified the membrane-associated viral complexes from infected Nicotiana benthamiana plants and analyzed the involved host factors. Four isoforms of voltage-dependent anion channel (VDAC) proteins on the outer membrane of mitochondria were identified due to their upregulated expression in the BaMV complex-enriched membranous fraction. Results from loss- and gain-of-function experiments indicated that NbVDAC2, -3, and -4 are essential for efficient BaMV accumulation. During BaMV infection, all NbVDACs concentrated into larger aggregates, which overlapped and trafficked with BaMV virions to the structure designated as the "dynamic BaMV-induced complex." Besides the endoplasmic reticulum and mitochondria, BaMV replicase and double-stranded RNAs were also found in this complex, suggesting the dynamic BaMV-induced complex is a replication complex. Yeast two-hybrid and pull-down assays confirmed that BaMV triple gene block protein 1 (TGBp1) could interact with NbVDACs. Confocal microscopy revealed that TGBp1 is sufficient to induce NbVDAC aggregates, which suggests that TGBp1 may play a pivotal role in the NbVDAC-virion complex. Collectively, these findings indicate that NbVDACs may associate with the dynamic BaMV-induced complex via TGBp1 and NbVDAC2, -3, or -4 and can promote BaMV accumulation. This study reveals the involvement of mitochondrial proteins in a viral complex and virus infection.
Collapse
Affiliation(s)
- Hsiang-Chi Lee
- PhD Program in Microbial Genomics, National Chung Hsing University and Academia Sinica, Taichung 40227, Taiwan
| | - Ying-Ping Huang
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 40227, Taiwan
| | - Ying-Wen Huang
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 40227, Taiwan
- Advanced Plant Biotechnology Center, National Chung Hsing University, Taichung 40227, Taiwan
| | - Chung-Chi Hu
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 40227, Taiwan
| | - Chin-Wei Lee
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 40227, Taiwan
| | - Chih-Hao Chang
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Na-Sheng Lin
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Yau-Heiu Hsu
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 40227, Taiwan
- Advanced Plant Biotechnology Center, National Chung Hsing University, Taichung 40227, Taiwan
| |
Collapse
|
21
|
Takata S, Mise K, Takano Y, Kaido M. Subcellular dynamics of red clover necrotic mosaic virus double-stranded RNAs in infected plant cells. Virology 2022; 568:126-139. [DOI: 10.1016/j.virol.2022.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 01/23/2022] [Accepted: 01/29/2022] [Indexed: 11/29/2022]
|
22
|
Altabella T, Ramirez-Estrada K, Ferrer A. Phytosterol metabolism in plant positive-strand RNA virus replication. PLANT CELL REPORTS 2022; 41:281-291. [PMID: 34665312 DOI: 10.1007/s00299-021-02799-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 09/25/2021] [Indexed: 06/13/2023]
Abstract
The genome of most plant viruses consists of a single positive-strand of RNA (+ ssRNA). Successful replication of these viruses is fully dependent on the endomembrane system of the infected cells, which experiences a massive proliferation and a profound reshaping that enables assembly of the macromolecular complexes where virus genome replication occurs. Assembly of these viral replicase complexes (VRCs) requires a highly orchestrated interplay of multiple virus and co-opted host cell factors to create an optimal microenvironment for efficient assembly and functioning of the virus genome replication machinery. It is now widely accepted that VRC formation involves the recruitment of high levels of sterols, but the specific role of these essential components of cell membranes and the precise molecular mechanisms underlying sterol enrichment at VRCs are still poorly known. In this review, we intend to summarize the most relevant knowledge on the role of sterols in ( +)ssRNA virus replication and discuss the potential of manipulating the plant sterol pathway to help plants fight these infectious agents.
Collapse
Affiliation(s)
- Teresa Altabella
- Plant Metabolism and Metabolic Engineering Program, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Cerdanyola, 08193, Barcelona, Spain.
- Department of Biology, Healthcare and the Environment, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028, Barcelona, Spain.
| | - Karla Ramirez-Estrada
- Laboratory of Cell Metabolism, Faculty of Chemistry, Autonomous University of Nuevo León, San Nicolás de los Garza, NL, 66451, México
| | - Albert Ferrer
- Plant Metabolism and Metabolic Engineering Program, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Cerdanyola, 08193, Barcelona, Spain.
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028, Barcelona, Spain.
| |
Collapse
|
23
|
Clavel M, Lechner E, Incarbone M, Vincent T, Cognat V, Smirnova E, Lecorbeiller M, Brault V, Ziegler-Graff V, Genschik P. Atypical molecular features of RNA silencing against the phloem-restricted polerovirus TuYV. Nucleic Acids Res 2021; 49:11274-11293. [PMID: 34614168 PMCID: PMC8565345 DOI: 10.1093/nar/gkab802] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/25/2021] [Accepted: 10/04/2021] [Indexed: 11/12/2022] Open
Abstract
In plants and some animal lineages, RNA silencing is an efficient and adaptable defense mechanism against viruses. To counter it, viruses encode suppressor proteins that interfere with RNA silencing. Phloem-restricted viruses are spreading at an alarming rate and cause substantial reduction of crop yield, but how they interact with their hosts at the molecular level is still insufficiently understood. Here, we investigate the antiviral response against phloem-restricted turnip yellows virus (TuYV) in the model plant Arabidopsis thaliana. Using a combination of genetics, deep sequencing, and mechanical vasculature enrichment, we show that the main axis of silencing active against TuYV involves 22-nt vsiRNA production by DCL2, and their preferential loading into AGO1. Moreover, we identify vascular secondary siRNA produced from plant transcripts and initiated by DCL2-processed AGO1-loaded vsiRNA. Unexpectedly, and despite the viral encoded VSR P0 previously shown to mediate degradation of AGO proteins, vascular AGO1 undergoes specific post-translational stabilization during TuYV infection. Collectively, our work uncovers the complexity of antiviral RNA silencing against phloem-restricted TuYV and prompts a re-assessment of the role of its suppressor of silencing P0 during genuine infection.
Collapse
Affiliation(s)
- Marion Clavel
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, Strasbourg, France
| | - Esther Lechner
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, Strasbourg, France
| | - Marco Incarbone
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, Strasbourg, France
| | - Timothée Vincent
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, Strasbourg, France
| | - Valerie Cognat
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, Strasbourg, France
| | - Ekaterina Smirnova
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, Strasbourg, France
| | - Maxime Lecorbeiller
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, Strasbourg, France
| | | | - Véronique Ziegler-Graff
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, Strasbourg, France
| | - Pascal Genschik
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, Strasbourg, France
| |
Collapse
|
24
|
Garriga D, Chichón FJ, Calisto BM, Ferrero DS, Gastaminza P, Pereiro E, Pérez-Berna AJ. Imaging of Virus-Infected Cells with Soft X-ray Tomography. Viruses 2021; 13:2109. [PMID: 34834916 PMCID: PMC8618346 DOI: 10.3390/v13112109] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 02/07/2023] Open
Abstract
Viruses are obligate parasites that depend on a host cell for replication and survival. Consequently, to fully understand the viral processes involved in infection and replication, it is fundamental to study them in the cellular context. Often, viral infections induce significant changes in the subcellular organization of the host cell due to the formation of viral factories, alteration of cell cytoskeleton and/or budding of newly formed particles. Accurate 3D mapping of organelle reorganization in infected cells can thus provide valuable information for both basic virus research and antiviral drug development. Among the available techniques for 3D cell imaging, cryo-soft X-ray tomography stands out for its large depth of view (allowing for 10 µm thick biological samples to be imaged without further thinning), its resolution (about 50 nm for tomographies, sufficient to detect viral particles), the minimal requirements for sample manipulation (can be used on frozen, unfixed and unstained whole cells) and the potential to be combined with other techniques (i.e., correlative fluorescence microscopy). In this review we describe the fundamentals of cryo-soft X-ray tomography, its sample requirements, its advantages and its limitations. To highlight the potential of this technique, examples of virus research performed at BL09-MISTRAL beamline in ALBA synchrotron are also presented.
Collapse
Affiliation(s)
- Damià Garriga
- ALBA Synchrotron Light Source, 08290 Cerdanyola del Vallès, Spain; (D.G.); (B.M.C.); (E.P.)
| | - Francisco Javier Chichón
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain; (F.J.C.); (P.G.)
| | - Bárbara M. Calisto
- ALBA Synchrotron Light Source, 08290 Cerdanyola del Vallès, Spain; (D.G.); (B.M.C.); (E.P.)
| | - Diego S. Ferrero
- Institut de Biologia Molecular de Barcelona, Consejo Superior de Investigaciones Científicas, Parc Científic de Barcelona, 08028 Barcelona, Spain;
| | - Pablo Gastaminza
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain; (F.J.C.); (P.G.)
| | - Eva Pereiro
- ALBA Synchrotron Light Source, 08290 Cerdanyola del Vallès, Spain; (D.G.); (B.M.C.); (E.P.)
| | | |
Collapse
|
25
|
Hinge VR, Chavhan RL, Kale SP, Suprasanna P, Kadam US. Engineering Resistance Against Viruses in Field Crops Using CRISPR- Cas9. Curr Genomics 2021; 22:214-231. [PMID: 34975291 PMCID: PMC8640848 DOI: 10.2174/1389202922666210412102214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 01/29/2021] [Accepted: 02/24/2021] [Indexed: 12/26/2022] Open
Abstract
Food security is threatened by various biotic stresses that affect the growth and production of agricultural crops. Viral diseases have become a serious concern for crop plants as they incur huge yield losses. The enhancement of host resistance against plant viruses is a priority for the effective management of plant viral diseases. However, in the present context of the climate change scenario, plant viruses are rapidly evolving, resulting in the loss of the host resistance mechanism. Advances in genome editing techniques, such as CRISPR-Cas9 [clustered regularly interspaced palindromic repeats-CRISPR-associated 9], have been recognized as promising tools for the development of plant virus resistance. CRISPR-Cas9 genome editing tool is widely preferred due to high target specificity, simplicity, efficiency, and reproducibility. CRISPR-Cas9 based virus resistance in plants has been successfully achieved by gene targeting and cleaving the viral genome or altering the plant genome to enhance plant innate immunity. In this article, we have described the CRISPR-Cas9 system, mechanism of plant immunity against viruses and highlighted the use of the CRISPR-Cas9 system to engineer virus resistance in plants. We also discussed prospects and challenges on the use of CRISPR-Cas9-mediated plant virus resistance in crop improvement.
Collapse
Affiliation(s)
| | | | | | | | - Ulhas S. Kadam
- Address correspondenceto this author at the Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany; E-mail: ,
‡Present Address: Division of Life Sciences, Plant Molecular Biology and Biotechnology Research Center, Gyenongsang National University, Jinju-si, Republic of Korea; E-mail:
| |
Collapse
|
26
|
Komatsu K, Sasaki N, Yoshida T, Suzuki K, Masujima Y, Hashimoto M, Watanabe S, Tochio N, Kigawa T, Yamaji Y, Oshima K, Namba S, Nelson RS, Arie T. Identification of a Proline-Kinked Amphipathic α-Helix Downstream from the Methyltransferase Domain of a Potexvirus Replicase and Its Role in Virus Replication and Perinuclear Complex Formation. J Virol 2021; 95:e0190620. [PMID: 34346768 PMCID: PMC8475525 DOI: 10.1128/jvi.01906-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 07/25/2021] [Indexed: 11/20/2022] Open
Abstract
Characterized positive-strand RNA viruses replicate in association with intracellular membranes. Regarding viruses in the genus Potexvirus, the mechanism by which their RNA-dependent RNA polymerase (replicase) associates with membranes is understudied. Here, by membrane flotation analyses of the replicase of Plantago asiatica mosaic potexvirus (PlAMV), we identified a region in the methyltransferase (MET) domain as a membrane association determinant. An amphipathic α-helix was predicted downstream from the core region of the MET domain, and hydrophobic amino acid residues were conserved in the helical sequences in replicases of other potexviruses. Nuclear magnetic resonance (NMR) analysis confirmed the amphipathic α-helical configuration and unveiled a kink caused by a highly conserved proline residue in the α-helix. Substitution of this proline residue and other hydrophobic and charged residues in the amphipathic α-helix abolished PlAMV replication. Ectopic expression of a green fluorescent protein (GFP) fusion with the entire MET domain resulted in the formation of a large perinuclear complex, where virus replicase and RNA colocated during virus infection. Except for the proline substitution, the amino acid substitutions in the α-helix that abolished virus replication also prevented the formation of the large perinuclear complex by the respective GFP-MET fusion. Small intracellular punctate structures were observed for all GFP-MET fusions, and in vitro high-molecular-weight complexes were formed by both replication-competent and -incompetent viral replicons and thus were not sufficient for replication competence. We discuss the roles of the potexvirus-specific, proline-kinked amphipathic helical structure in virus replication and intracellular large complex and punctate structure formation. IMPORTANCE RNA viruses characteristically associate with intracellular membranes during replication. Although virus replicases are assumed to possess membrane-targeting properties, their membrane association domains generally remain unidentified or poorly characterized. Here, we identified a proline-kinked amphipathic α-helix structure downstream from the methyltransferase core domain of PlAMV replicase as a membrane association determinant. This helical sequence, which includes the proline residue, was conserved among potexviruses and related viruses in the order Tymovirales. Substitution of the proline residue, but not the other residues necessary for replication, allowed formation of a large perinuclear complex within cells resembling those formed by PlAMV replicase and RNA during virus replication. Our results demonstrate the role of the amphipathic α-helix in PlAMV replicase in a perinuclear complex formation and virus replication and that perinuclear complex formation by the replicase alone will not necessarily indicate successful virus replication.
Collapse
Affiliation(s)
- Ken Komatsu
- Laboratory of Plant Pathology, Graduate School of Agriculture, Tokyo University of Agriculture and Technology (TUAT), Fuchu, Japan
- Institute of Global Innovation Research (GIR), Tokyo University of Agriculture and Technology (TUAT), Fuchu, Japan
| | - Nobumitsu Sasaki
- Institute of Global Innovation Research (GIR), Tokyo University of Agriculture and Technology (TUAT), Fuchu, Japan
- Gene Research Center, Tokyo University of Agriculture and Technology (TUAT), Fuchu, Japan
| | - Tetsuya Yoshida
- Laboratory of Plant Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Katsuhiro Suzuki
- Laboratory of Plant Pathology, Graduate School of Agriculture, Tokyo University of Agriculture and Technology (TUAT), Fuchu, Japan
| | - Yuki Masujima
- Laboratory of Plant Pathology, Graduate School of Agriculture, Tokyo University of Agriculture and Technology (TUAT), Fuchu, Japan
| | - Masayoshi Hashimoto
- Laboratory of Plant Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Satoru Watanabe
- Laboratory for Cellular Structural Biology, RIKEN Center for Biosystems Dynamics Research, Yokohama, Japan
| | - Naoya Tochio
- Laboratory for Cellular Structural Biology, RIKEN Center for Biosystems Dynamics Research, Yokohama, Japan
| | - Takanori Kigawa
- Laboratory for Cellular Structural Biology, RIKEN Center for Biosystems Dynamics Research, Yokohama, Japan
| | - Yasuyuki Yamaji
- Laboratory of Plant Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Kenro Oshima
- Faculty of Bioscience, Department of Clinical Plant Science, Hosei University, Koganei, Japan
| | - Shigetou Namba
- Laboratory of Plant Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Richard S. Nelson
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Tsutomu Arie
- Laboratory of Plant Pathology, Graduate School of Agriculture, Tokyo University of Agriculture and Technology (TUAT), Fuchu, Japan
- Institute of Global Innovation Research (GIR), Tokyo University of Agriculture and Technology (TUAT), Fuchu, Japan
| |
Collapse
|
27
|
Jiang J, Kuo YW, Salem N, Erickson A, Falk BW. Carrot mottle virus ORF4 movement protein targets plasmodesmata by interacting with the host cell SUMOylation system. THE NEW PHYTOLOGIST 2021; 231:382-398. [PMID: 33774829 DOI: 10.1111/nph.17370] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Indexed: 06/12/2023]
Abstract
Plant virus movement proteins (MPs) facilitate virus spread in their plant hosts, and some of them are known to target plasmodesmata (PD). However, how the MPs target PD is still largely unknown. Carrot mottle virus (CMoV) encodes the ORF3 and ORF4 proteins, which are involved in CMoV movement. In this study, we used CMoV as a model to study the PD targeting of a plant virus MP. We showed that the CMoV ORF4 protein, but not the ORF3 protein, modified PD and led to the virus movement. We found that the CMoV ORF4 protein interacts with the host cell small ubiquitin-like modifier (SUMO) 1, 2 and the SUMO-conjugating enzyme SCE1, resulting in the ORF4 protein SUMOylation. Downregulation of mRNAs for NbSCE1 and NbSUMO impaired CMoV infection. The SUMO-interacting motifs (SIMs) LVIVF, VIWV, and a lysine residue at position 78 (K78) are required for the ORF4 protein SUMOylation. The mutation of these motifs prevented the protein to efficiently target PD, and further slowed or completely abolished CMoV systemic movement. Finally, we found that some of these motifs are highly conserved among umbraviruses. Our data suggest that the CMoV ORF4 protein targets PD by interacting with the host cell SUMOylation system.
Collapse
Affiliation(s)
- Jun Jiang
- Department of Plant Pathology, University of California, Davis, CA, 95616, USA
| | - Yen-Wen Kuo
- Department of Plant Pathology, University of California, Davis, CA, 95616, USA
| | - Nidà Salem
- Department of Plant Protection, School of Agriculture, The University of Jordan, Amman, 11942, Jordan
| | - Anna Erickson
- Department of Plant Pathology, University of California, Davis, CA, 95616, USA
| | - Bryce W Falk
- Department of Plant Pathology, University of California, Davis, CA, 95616, USA
| |
Collapse
|
28
|
Topical Application of Escherichia coli-Encapsulated dsRNA Induces Resistance in Nicotiana benthamiana to Potato Viruses and Involves RDR6 and Combined Activities of DCL2 and DCL4. PLANTS 2021; 10:plants10040644. [PMID: 33805277 PMCID: PMC8067229 DOI: 10.3390/plants10040644] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 12/18/2022]
Abstract
Exogenous application of double-stranded RNAs (dsRNAs) for inducing virus resistance in plants represents an attractive alternative to transgene-based silencing approaches. However, improvement of dsRNA stability in natural conditions is required in order to provide long-term protection against the targeted virus. Here, we tested the protective effect of topical application of Escherichia coli-encapsulated dsRNA compared to naked dsRNA against single and dual infection by Potato virus X expressing the green fluorescent protein (PVX-GFP) and Potato virus Y (PVY) in Nicotiana benthamiana. We found that, in our conditions, the effectiveness of E. coli-encapsulated dsRNA in providing RNAi-mediated protection did not differ from that of naked dsRNA. dsRNA vaccination was partly effective against a dual infection by PVX-GFP and PVY, manifested by a delay in the expression of the synergistic symptoms at early times after inoculation. Using PVX-GFP as a reporter virus together with a suite of RNAi knockdown transgenic lines, we have also shown that RNA-directed RNA polymerase 6 and the combined activities of DICER-like 2 (DCL2) and DCL4 act to promote efficient resistance to virus infection conferred by topical application of dsRNA in N. benthamiana. Our results provide evidence that exogenous dsRNA molecules are processed by the RNA silencing pathways commonly used by the host in response to virus infection.
Collapse
|
29
|
Sánchez Pina MA, Gómez-Aix C, Méndez-López E, Gosalvez Bernal B, Aranda MA. Imaging Techniques to Study Plant Virus Replication and Vertical Transmission. Viruses 2021; 13:358. [PMID: 33668729 PMCID: PMC7996213 DOI: 10.3390/v13030358] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/17/2021] [Accepted: 02/18/2021] [Indexed: 12/19/2022] Open
Abstract
Plant viruses are obligate parasites that need to usurp plant cell metabolism in order to infect their hosts. Imaging techniques have been used for quite a long time to study plant virus-host interactions, making it possible to have major advances in the knowledge of plant virus infection cycles. The imaging techniques used to study plant-virus interactions have included light microscopy, confocal laser scanning microscopy, and scanning and transmission electron microscopies. Here, we review the use of these techniques in plant virology, illustrating recent advances in the area with examples from plant virus replication and virus plant-to-plant vertical transmission processes.
Collapse
Affiliation(s)
- María Amelia Sánchez Pina
- Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), Departamento de Biología del Estrés y Patología Vegetal, Grupo de Patología Vegetal, 30100 Murcia, Spain; (E.M.-L.); (B.G.B.)
| | - Cristina Gómez-Aix
- Abiopep S.L., R&D Department, Parque Científico de Murcia, Ctra. de Madrid, Km 388, Complejo de Espinardo, Edf. R, 2º, 30100 Murcia, Spain;
| | - Eduardo Méndez-López
- Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), Departamento de Biología del Estrés y Patología Vegetal, Grupo de Patología Vegetal, 30100 Murcia, Spain; (E.M.-L.); (B.G.B.)
| | - Blanca Gosalvez Bernal
- Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), Departamento de Biología del Estrés y Patología Vegetal, Grupo de Patología Vegetal, 30100 Murcia, Spain; (E.M.-L.); (B.G.B.)
| | - Miguel A. Aranda
- Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), Departamento de Biología del Estrés y Patología Vegetal, Grupo de Patología Vegetal, 30100 Murcia, Spain; (E.M.-L.); (B.G.B.)
| |
Collapse
|
30
|
Wu X, Cheng X. Intercellular movement of plant RNA viruses: Targeting replication complexes to the plasmodesma for both accuracy and efficiency. Traffic 2020; 21:725-736. [PMID: 33090653 DOI: 10.1111/tra.12768] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 10/10/2020] [Accepted: 10/10/2020] [Indexed: 02/06/2023]
Abstract
Replication and movement are two critical steps in plant virus infection. Recent advances in the understanding of the architecture and subcellular localization of virus-induced inclusions and the interactions between viral replication complex (VRC) and movement proteins (MPs) allow for the dissection of the intrinsic relationship between replication and movement, which has revealed that recruitment of VRCs to the plasmodesma (PD) via direct or indirect MP-VRC interactions is a common strategy used for cell-to-cell movement by most plant RNA viruses. In this review, we summarize the recent advances in the understanding of virus-induced inclusions and their roles in virus replication and cell-to-cell movement, analyze the advantages of such coreplicational movement from a viral point of view and discuss the possible mechanical force by which MPs drive the movement of virions or viral RNAs through the PD. Finally, we highlight the missing pieces of the puzzle of viral movement that are especially worth investigating in the near future.
Collapse
Affiliation(s)
- Xiaoyun Wu
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region of Chinese Education Ministry, College of Agriculture, Northeast Agricultural University, Harbin, China
| | - Xiaofei Cheng
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region of Chinese Education Ministry, College of Agriculture, Northeast Agricultural University, Harbin, China
| |
Collapse
|
31
|
Yang X, Tian Y, Zhao X, Jiang L, Chen Y, Hu S, MacFarlane S, Chen J, Lu Y, Yan F. NbALY916 is involved in potato virus X P25-triggered cell death in Nicotiana benthamiana. MOLECULAR PLANT PATHOLOGY 2020; 21:1495-1501. [PMID: 32893420 PMCID: PMC7549001 DOI: 10.1111/mpp.12986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 08/04/2020] [Accepted: 08/04/2020] [Indexed: 06/11/2023]
Abstract
Systemic necrosis often occurs during viral infection of plants and is thought mainly to be the result of long-term stress induced by viral infection. Potato virus X (PVX) encodes the P25 pathogenicity factor that triggers a necrotic reaction during PVX-potato virus Ysynergistic coinfection. In this study, we discovered that NbALY916, a multifunctional nuclear protein, could interact with P25. When NbALY916 expression was reduced by tobacco rattle virus (TRV)-based virus-induced gene silencing, the accumulation of P25 was increased, which would be expected to cause more severe necrosis. However, silencing of NbALY916 reduced the extent of cell death caused by P25. Furthermore, we found that overexpression of NbALY916 increased the accumulation of H2 O2 and triggered more extensive cell death when coexpressed with P25, even though accumulation of P25 was itself reduced by the increased expression of NbALY916. Furthermore, transient expression of P25 specifically induced the expression of NbALY916 mRNA, but not the mRNAs of three other ALYs in Nicotiana benthamiana. In addition, we showed that silencing of NbALY916 or transient overexpression of NbALY916 affected the infection of PVX in N. benthamiana. Our results reveal that NbALY916 has an antiviral role that, in the case of PVX, operates by inducing the accumulation of H2 O2 and mediating the degradation of P25.
Collapse
Affiliation(s)
- Xue Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐productsKey Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang ProvinceInstitute of Plant VirologyNingbo UniversityNingboChina
- College of Plant ProtectionHenan Agriculture UniversityZhengzhouChina
| | - Yanzhen Tian
- College of Plant ProtectionFujian Agriculture and Forestry UniversityFuzhouChina
| | - Xing Zhao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐productsKey Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang ProvinceInstitute of Plant VirologyNingbo UniversityNingboChina
| | - Liangliang Jiang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐productsKey Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang ProvinceInstitute of Plant VirologyNingbo UniversityNingboChina
| | - Ying Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐productsKey Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang ProvinceInstitute of Plant VirologyNingbo UniversityNingboChina
| | - Shuzhen Hu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐productsKey Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang ProvinceInstitute of Plant VirologyNingbo UniversityNingboChina
| | - Stuart MacFarlane
- The James Hutton Institute, Cell and Molecular Sciences GroupInvergowrie, DundeeUK
| | - Jianping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐productsKey Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang ProvinceInstitute of Plant VirologyNingbo UniversityNingboChina
| | - Yuwen Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐productsKey Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang ProvinceInstitute of Plant VirologyNingbo UniversityNingboChina
| | - Fei Yan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐productsKey Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang ProvinceInstitute of Plant VirologyNingbo UniversityNingboChina
| |
Collapse
|
32
|
Jiang Z, Zhang K, Li Z, Li Z, Yang M, Jin X, Cao Q, Wang X, Yue N, Li D, Zhang Y. The Barley stripe mosaic virus γb protein promotes viral cell-to-cell movement by enhancing ATPase-mediated assembly of ribonucleoprotein movement complexes. PLoS Pathog 2020; 16:e1008709. [PMID: 32730331 PMCID: PMC7419011 DOI: 10.1371/journal.ppat.1008709] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 08/11/2020] [Accepted: 06/17/2020] [Indexed: 02/07/2023] Open
Abstract
Nine genera of viruses in five different families use triple gene block (TGB) proteins for virus movement. The TGB modules fall into two classes: hordei-like and potex-like. Although TGB-mediated viral movement has been extensively studied, determination of the constituents of the viral ribonucleoprotein (vRNP) movement complexes and the mechanisms underlying their involvement in vRNP-mediated movement are far from complete. In the current study, immunoprecipitation of TGB1 protein complexes formed during Barley stripe mosaic virus (BSMV) infection revealed the presence of the γb protein in the products. Further experiments demonstrated that TGB1 interacts with γb in vitro and in vivo, and that γb-TGB1 localizes at the periphery of chloroplasts and plasmodesmata (PD). Subcellular localization analyses of the γb protein in Nicotiana benthamiana epidermal cells indicated that in addition to chloroplast localization, γb also targets the ER, actin filaments and PD at different stages of viral infection. By tracking γb localization during BSMV infection, we demonstrated that γb is required for efficient cell-to-cell movement. The N-terminus of γb interacts with the TGB1 ATPase/helicase domain and enhances ATPase activity of the domain. Inactivation of the TGB1 ATPase activity also significantly impaired PD targeting. In vitro translation together with co-immunoprecipitation (co-IP) analyses revealed that TGB1-TGB3-TGB2 complex formation is enhanced by ATP hydrolysis. The γb protein positively regulates complex formation in the presence of ATP, suggesting that γb has a novel role in BSMV cell-to-cell movement by directly promoting TGB1 ATPase-mediated vRNP movement complex assembly. We further demonstrated that elimination of ATPase activity abrogates PD and actin targeting of Potato virus X (PVX) and Beet necrotic yellow vein virus (BNYVV) TGB1 proteins. These results expand our understanding of the multifunctional roles of γb and provide new insight into the functions of TGB1 ATPase domains in the movement of TGB-encoding viruses.
Collapse
Affiliation(s)
- Zhihao Jiang
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, P. R. China
| | - Kun Zhang
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, P. R. China
| | - Zhaolei Li
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, P. R. China
| | - Zhenggang Li
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, P. R. China
| | - Meng Yang
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, P. R. China
| | - Xuejiao Jin
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, P. R. China
| | - Qing Cao
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, P. R. China
| | - Xueting Wang
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, P. R. China
| | - Ning Yue
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, P. R. China
| | - Dawei Li
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, P. R. China
| | - Yongliang Zhang
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, P. R. China
| |
Collapse
|
33
|
Brosseau C, Bolaji A, Roussin-Léveillée C, Zhao Z, Biga S, Moffett P. Natural variation in the Arabidopsis AGO2 gene is associated with susceptibility to potato virus X. THE NEW PHYTOLOGIST 2020; 226:866-878. [PMID: 31880814 DOI: 10.1111/nph.16397] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 12/12/2019] [Indexed: 06/10/2023]
Abstract
RNA silencing functions as an anti-viral defence in plants through the action of DICER-like (DCL) and ARGONAUTE (AGO) proteins. Despite the importance of this mechanism, little is known about the functional consequences of variation in genes encoding RNA silencing components. The AGO2 protein has been shown to be important for defense against multiple viruses, and we investigated how naturally occurring differences in AGO2 between and within species affects its antiviral activities. We find that the AGO2 protein from Arabidopsis thaliana, but not Nicotiana benthamiana, effectively limits potato virus X (PVX). Consistent with this, we find that the A. thaliana AGO2 gene shows a high incidence of polymorphisms between accessions, with evidence of selective pressure. Using functional analyses, we identify polymorphisms that specifically affect AGO2 antiviral activity, without interfering with other AGO2-associated functions such as anti-bacterial resistance or DNA methylation. Our results suggest that viruses adapt to overcome RNA silencing in their hosts. Furthermore, they indicate that plant-virus interactions have influenced natural variation in RNA-silencing components and that the latter may be a source of genetically encoded virus resistance.
Collapse
Affiliation(s)
- Chantal Brosseau
- Département de Biologie, Centre SÈVE, Université de Sherbrooke, Sherbrooke, QC, J1K 2R1, Canada
| | - Ayooluwa Bolaji
- Département de Biologie, Centre SÈVE, Université de Sherbrooke, Sherbrooke, QC, J1K 2R1, Canada
| | | | - Zhenxing Zhao
- Département de Biologie, Centre SÈVE, Université de Sherbrooke, Sherbrooke, QC, J1K 2R1, Canada
| | - Sébastien Biga
- Département de Biologie, Centre SÈVE, Université de Sherbrooke, Sherbrooke, QC, J1K 2R1, Canada
| | - Peter Moffett
- Département de Biologie, Centre SÈVE, Université de Sherbrooke, Sherbrooke, QC, J1K 2R1, Canada
| |
Collapse
|
34
|
Yang X, Lu Y, Wang F, Chen Y, Tian Y, Jiang L, Peng J, Zheng H, Lin L, Yan C, Taliansky M, MacFarlane S, Wu Y, Chen J, Yan F. Involvement of the chloroplast gene ferredoxin 1 in multiple responses of Nicotiana benthamiana to Potato virus X infection. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:2142-2156. [PMID: 31872217 PMCID: PMC7094082 DOI: 10.1093/jxb/erz565] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 12/20/2019] [Indexed: 05/14/2023]
Abstract
The chloroplast protein ferredoxin 1 (FD1), with roles in the chloroplast electron transport chain, is known to interact with the coat proteins (CPs) of Tomato mosaic virus and Cucumber mosaic virus. However, our understanding of the roles of FD1 in virus infection remains limited. Here, we report that the Potato virus X (PVX) p25 protein interacts with FD1, whose mRNA and protein levels are reduced by PVX infection or by transient expression of p25. Silencing of FD1 by Tobacco rattle virus-based virus-induced gene silencing (VIGS) promoted the local and systemic infection of plants by PVX. Use of a drop-and-see (DANS) assay and callose staining revealed that the permeability of plasmodesmata (PDs) was increased in FD1-silenced plants together with a consistently reduced level of PD callose deposition. After FD1 silencing, quantitative reverse transcription-real-time PCR (qRT-PCR) analysis and LC-MS revealed these plants to have a low accumulation of the phytohormones abscisic acid (ABA) and salicylic acid (SA), which contributed to the decreased callose deposition at PDs. Overexpression of FD1 in transgenic plants manifested resistance to PVX infection, but the contents of ABA and SA, and the PD callose deposition were not increased in transgenic plants. Overexpression of FD1 interfered with the RNA silencing suppressor function of p25. These results demonstrate that interfering with FD1 function causes abnormal plant hormone-mediated antiviral processes and thus enhances PVX infection.
Collapse
Affiliation(s)
- Xue Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
- Key Laboratory of Biotechnology in Plant Protection of MOA and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- Department of Plant Protection, Shenyang Agriculture University, Shenyang, China
| | - Yuwen Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Fang Wang
- Ningbo Academy of Agricultural Sciences, Ningbo, China
| | - Ying Chen
- Department of Plant Protection, Shenyang Agriculture University, Shenyang, China
| | - Yanzhen Tian
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Liangliang Jiang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
- Key Laboratory of Biotechnology in Plant Protection of MOA and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Jiejun Peng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Hongying Zheng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Lin Lin
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Chengqi Yan
- Ningbo Academy of Agricultural Sciences, Ningbo, China
| | - Michael Taliansky
- The James Hutton Institute, Cell and Molecular Sciences Group, Invergowrie, Dundee, UK
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the RAS, Moscow, Russia
| | - Stuart MacFarlane
- The James Hutton Institute, Cell and Molecular Sciences Group, Invergowrie, Dundee, UK
| | - Yuanhua Wu
- Department of Plant Protection, Shenyang Agriculture University, Shenyang, China
| | - Jianping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
- Key Laboratory of Biotechnology in Plant Protection of MOA and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- Department of Plant Protection, Shenyang Agriculture University, Shenyang, China
| | - Fei Yan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
- Key Laboratory of Biotechnology in Plant Protection of MOA and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
35
|
Cheng G, Yang Z, Zhang H, Zhang J, Xu J. Remorin interacting with PCaP1 impairs Turnip mosaic virus intercellular movement but is antagonised by VPg. THE NEW PHYTOLOGIST 2020; 225:2122-2139. [PMID: 31657467 DOI: 10.1111/nph.16285] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 10/18/2019] [Indexed: 06/10/2023]
Abstract
Group 1 Remorins (REMs) are extensively involved in virus trafficking through plasmodesmata (PD). However, their roles in Potyvirus cell-to-cell movement are not known. The plasma membrane (PM)-associated Ca2+ binding protein 1 (PCaP1) interacts with the P3N-PIPO of Turnip mosaic virus (TuMV) and is required for TuMV cell-to-cell movement, but the underlying mechanism remains elusive. The mutant plants with overexpression or knockout of REM1.2 were used to investigate its role in TuMV cell-to-cell movement. Arabidopsis thaliana complementary mutants of pcap1 were used to investigate the role of PCaP1 in TuMV cell-to-cell movement. Yeast-two-hybrid, bimolecular fluorescence complementation, co-immunoprecipitation and RT-qPCR assays were employed to investigate the underlying molecular mechanism. The results show that TuMV-P3N-PIPO recruits PCaP1 to PD and the actin filament-severing activity of PCaP1 is required for TuMV intercellular movement. REM1.2 negatively regulates the cell-to-cell movement of TuMV via competition with PCaP1 for binding actin filaments. As a counteractive response, TuMV mediates REM1.2 degradation via both 26S ubiquitin-proteasome and autophagy pathways through the interaction of VPg with REM1.2 to establish systemic infection in Arabidopsis. This work unveils the actin cytoskeleton and PM nanodomain-associated molecular events underlying the cell-to-cell movement of potyviruses.
Collapse
Affiliation(s)
- Guangyuan Cheng
- National Engineering Research Center for Sugarcane, Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Jinshan, Fuzhou, 350002, China
| | - Zongtao Yang
- National Engineering Research Center for Sugarcane, Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Jinshan, Fuzhou, 350002, China
| | - Hai Zhang
- National Engineering Research Center for Sugarcane, Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Jinshan, Fuzhou, 350002, China
| | - Jisen Zhang
- National Engineering Research Center for Sugarcane, Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Jinshan, Fuzhou, 350002, China
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology (HIST), Fujian Agriculture and Forestry University, Jinshan, Fuzhou, 350002, China
| | - Jingsheng Xu
- National Engineering Research Center for Sugarcane, Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Jinshan, Fuzhou, 350002, China
| |
Collapse
|
36
|
Robles-Luna G, Furman N, Barbarich MF, Carlotto N, Attorresi A, García ML, Kobayashi K. Interplay between potato virus X and RNA granules in Nicotiana benthamiana. Virus Res 2020; 276:197823. [PMID: 31765690 DOI: 10.1016/j.virusres.2019.197823] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 11/16/2019] [Accepted: 11/20/2019] [Indexed: 01/26/2023]
Abstract
Cytoplasmic RNA granules consist of microscopic agglomerates of mRNAs and proteins and occur when the translation is reversibly and temporally halted (stress granules, SGs) or mRNAs are targeted for decapping (processing bodies, PBs). The induction of RNA granules formation by virus infection is a common feature of mammalian cells. However, plant-virus systems still remain poorly characterized. In this work, the SG marker AtUBP1b was expressed in Nicotiana benthamiana plants to decipher how the virus infection of plant cells affects SG dynamics. We found that the hypoxia-induced SG assembly was substantially inhibited in Potato virus X (PVX)-infected cells. Furthermore, we determined that the expression of PVX movement protein TGBp1 by itself, mimics the inhibitory effect of PVX on SG formation under hypoxia. Importantly, overexpression of AtUBP1b showed inhibition of the PVX spreading, whereas the overexpression of the dominant negative AtUBP1brrm enhanced PVX spreding, indicating that AtUBP1b negatively affects PVX infection. Notably, PVX infection did not inhibit the formation of processing bodies (PBs), indicating PVX has distinct effects depending on the type of RNA granule. Our results suggest that SG inhibition could be part of the virus strategy to infect the plant.
Collapse
Affiliation(s)
- Gabriel Robles-Luna
- Instituto de Biotecnología y Biología Molecular (IBBM)-CONICET-UNLP, Calle 115 y 49 s/n (1900), Universidad Nacional de la Plata, Facultad de Ciencias Exactas, La Plata, Argentina.
| | - Nicolás Furman
- Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA, CONICET-UBA), Laboratorio de Agrobiotecnología, Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología, Biología Molecular y Celular (FBMC), Universidad de Buenos Aires, Buenos Aires, Argentina.
| | - María Florencia Barbarich
- Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA, CONICET-UBA), Laboratorio de Agrobiotecnología, Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología, Biología Molecular y Celular (FBMC), Universidad de Buenos Aires, Buenos Aires, Argentina.
| | - Nicolás Carlotto
- Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA, CONICET-UBA), Laboratorio de Agrobiotecnología, Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología, Biología Molecular y Celular (FBMC), Universidad de Buenos Aires, Buenos Aires, Argentina.
| | - Alejandra Attorresi
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA) -CONICET- Partner Institute of the Max Planck Society, Argentina.
| | - María Laura García
- Instituto de Biotecnología y Biología Molecular (IBBM)-CONICET-UNLP, Calle 115 y 49 s/n (1900), Universidad Nacional de la Plata, Facultad de Ciencias Exactas, La Plata, Argentina.
| | - Ken Kobayashi
- Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA, CONICET-UBA), Laboratorio de Agrobiotecnología, Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología, Biología Molecular y Celular (FBMC), Universidad de Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|
37
|
Levy A, Tilsner J. Creating Contacts Between Replication and Movement at Plasmodesmata - A Role for Membrane Contact Sites in Plant Virus Infections? FRONTIERS IN PLANT SCIENCE 2020; 11:862. [PMID: 32719692 PMCID: PMC7350983 DOI: 10.3389/fpls.2020.00862] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 05/27/2020] [Indexed: 05/23/2023]
Abstract
To infect their hosts and cause disease, plant viruses must replicate within cells and move throughout the plant both locally and systemically. RNA virus replication occurs on the surface of various cellular membranes, whose shape and composition become extensively modified in the process. Membrane contact sites (MCS) can mediate non-vesicular lipid-shuttling between different membranes and viruses co-opt components of these structures to make their membrane environment suitable for replication. Whereas animal viruses exit and enter cells when moving throughout their host, the rigid wall of plant cells obstructs this pathway and plant viruses therefore move between cells symplastically through plasmodesmata (PD). PD are membranous channels connecting nearly all plant cells and are now viewed to constitute a specialized type of endoplasmic reticulum (ER)-plasma membrane (PM) MCS themselves. Thus, both replication and movement of plant viruses rely on MCS. However, recent work also suggests that for some viruses, replication and movement are closely coupled at ER-PM MCS at the entrances of PD. Movement-coupled replication at PD may be distinct from the main bulk of replication and virus accumulation, which produces progeny virions for plant-to-plant transmission. Thus, MCS play a central role in plant virus infections, and may provide a link between two essential steps in the viral life cycle, replication and movement. Here, we provide an overview of plant virus-MCS interactions identified to date, and place these in the context of the connection between viral replication and cell-to-cell movement.
Collapse
Affiliation(s)
- Amit Levy
- Department of Plant Pathology, University of Florida, Gainesville, FL, United States
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL, United States
| | - Jens Tilsner
- Biomedical Sciences Research Complex, The University of St. Andrews, St. Andrews, United Kingdom
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, United Kingdom
| |
Collapse
|
38
|
Reagan BC, Burch-Smith TM. Viruses Reveal the Secrets of Plasmodesmal Cell Biology. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2020; 33:26-39. [PMID: 31715107 DOI: 10.1094/mpmi-07-19-0212-fi] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Plasmodesmata (PD) are essential for intercellular trafficking of molecules required for plant life, from small molecules like sugars and ions to macromolecules including proteins and RNA molecules that act as signals to regulate plant development and defense. As obligate intracellular pathogens, plant viruses have evolved to manipulate this communication system to facilitate the initial cell-to-cell and eventual systemic spread in their plant hosts. There has been considerable interest in how viruses manipulate the PD that connect the protoplasts of neighboring cells, and viruses have yielded invaluable tools for probing the structure and function of PD. With recent advances in biochemistry and imaging, we have gained new insights into the composition and structure of PD in the presence and absence of viruses. Here, we first discuss viral strategies for manipulating PD for their intercellular movement and examine how this has shed light on our understanding of native PD function. We then address the controversial role of the cytoskeleton in trafficking to and through PD. Finally, we address how viruses could alter PD structure and consider possible mechanisms of the phenomenon described as 'gating'. This discussion supports the significance of virus research in elucidating the properties of PD, these persistently enigmatic plant organelles.
Collapse
Affiliation(s)
- Brandon C Reagan
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, U.S.A
| | - Tessa M Burch-Smith
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, U.S.A
| |
Collapse
|
39
|
Shotwell CR, Cleary JD, Berglund JA. The potential of engineered eukaryotic RNA-binding proteins as molecular tools and therapeutics. WILEY INTERDISCIPLINARY REVIEWS-RNA 2019; 11:e1573. [PMID: 31680457 DOI: 10.1002/wrna.1573] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 09/21/2019] [Accepted: 10/08/2019] [Indexed: 02/06/2023]
Abstract
Eukaroytic RNA-binding proteins (RBPs) recognize and process RNAs through recognition of their sequence motifs via RNA-binding domains (RBDs). RBPs usually consist of one or more RBDs and can include additional functional domains that modify or cleave RNA. Engineered RBPs have been used to answer basic biology questions, control gene expression, locate viral RNA in vivo, as well as many other tasks. Given the growing number of diseases associated with RNA and RBPs, engineered RBPs also have the potential to serve as therapeutics. This review provides an in depth description of recent advances in engineered RBPs and discusses opportunities and challenges in the field. This article is categorized under: RNA Interactions with Proteins and Other Molecules > Protein-RNA Recognition RNA Methods > RNA Nanotechnology RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
- Carl R Shotwell
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida
| | - John D Cleary
- RNA Institute, University at Albany, Albany, New York
| | - J Andrew Berglund
- Department of Biological Sciences and RNA Institute, University at Albany, Albany, New York
| |
Collapse
|
40
|
Huang YP, Huang YW, Hsiao YJ, Li SC, Hsu YH, Tsai CH. Autophagy is involved in assisting the replication of Bamboo mosaic virus in Nicotiana benthamiana. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:4657-4670. [PMID: 31552430 PMCID: PMC6760330 DOI: 10.1093/jxb/erz244] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Indexed: 05/20/2023]
Abstract
Autophagy plays a critical role in plants under biotic stress, including the response to pathogen infection. We investigated whether autophagy-related genes (ATGs) are involved in infection with Bamboo mosaic virus (BaMV), a single-stranded positive-sense RNA virus. Initially, we observed that BaMV infection in Nicotiana benthamiana leaves upregulated the expression of ATGs but did not trigger cell death. The induction of ATGs, which possibly triggers autophagy, increased rather than diminished BaMV accumulation in the leaves, as revealed by gene knockdown and transient expression experiments. Furthermore, the inhibitor 3-methyladenine blocked autophagosome formation and the autophagy inducer rapamycin, which negatively and positively affected BaMV accumulation, respectively. Pull-down experiments with an antibody against orange fluorescent protein (OFP)-NbATG8f, an autophagosome marker protein, showed that both plus- and minus-sense BaMV RNAs could associate with NbATG8f. Confocal microscopy revealed that ATG8f-enriched vesicles possibly derived from chloroplasts contained both the BaMV viral RNA and its replicase. Thus, BaMV infection may induce the expression of ATGs possibly via autophagy to selectively engulf a portion of viral RNA-containing chloroplast. Virus-induced vesicles enriched with ATG8f could provide an alternative site for viral RNA replication or a shelter from the host silencing mechanism.
Collapse
Affiliation(s)
- Ying-Ping Huang
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Ying-Wen Huang
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Yung-Jen Hsiao
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Siou-Cen Li
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Yau-Huei Hsu
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
- Advanced Plant Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| | - Ching-Hsiu Tsai
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
- Advanced Plant Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
- Research Center for Sustainable Energy and Nanotechnology, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
41
|
Ruiz-Ramón F, Sempere RN, Méndez-López E, Sánchez-Pina MA, Aranda MA. Second generation of pepino mosaic virus vectors: improved stability in tomato and a wide range of reporter genes. PLANT METHODS 2019; 15:58. [PMID: 31149024 PMCID: PMC6537163 DOI: 10.1186/s13007-019-0446-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 05/23/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Vectors based on plant viruses are important tools for functional genomics, cellular biology, plant genome engineering and molecular farming. We previously reported on the construction of PepGFP2a, a viral vector based on pepino mosaic virus (PepMV) which expressed GFP efficiently and stably in plants of its experimental host Nicotiana benthamiana, but not in its natural host tomato. We have prepared a new set of PepMV-based vectors with improved stability that are able to express a wide range of reporter genes, useful for both N. benthamiana and tomato. RESULTS We first tested PepGFPm1 and PepGFPm2, two variants of PepGFP2a in which we progressively reduced a duplication of nucleotides encoding the N-terminal region of the coat protein. The new vectors had improved GFP expression levels and stability in N. benthamiana but not in tomato plants. Next, we replaced GFP by DsRed or mCherry in the new vectors PepDsRed and PepmCherry, respectively; while PepmCherry behaved similarly to PepGFPm2, PepDsRed expressed the reporter gene efficiently also in tomato plants. We then used PepGFPm2 and PepDsRed to study the PepMV localization in both N. benthamiana and tomato cells. Using confocal laser scanning microscopy (CLSM), we observed characteristic fluorescent bodies in PepMV-infected cells; these bodies had a cytoplasmic localization and appeared in close proximity to the cell nucleus. Already at 3 days post-agroinoculation there were fluorescent bodies in almost every cell of agroinoculated tissues of both hosts, and always one body per cell. When markers for the endoplasmic reticulum or the Golgi apparatus were co-expressed with PepGFPm2 or PepDsRed, a reorganisation of these organelles was observed, with images suggesting that both are intimately related but not the main constituents of the PepMV bodies. Altogether, this set of data suggested that the PepMV bodies are similar to the potato virus X (PVX) "X-bodies", which have been described as the PVX viral replication complexes (VRCs). To complete the set of PepMV-based vectors, we constructed a vector expressing the BAR herbicide resistance gene, useful for massive susceptibility screenings. CONCLUSIONS We have significantly expanded the PepMV tool box by producing a set of new vectors with improved stability and efficiency in both N. benthamiana and tomato plants. By using two of these vectors, we have described characteristic cellular bodies induced by PepMV infection; these bodies are likely the PepMV VRCs.
Collapse
Affiliation(s)
- Fabiola Ruiz-Ramón
- Present Address: R + D+I Department, Abiopep S.L., Murcia, Spain
- Centro de Edafología y Biología Aplicada del Segura (CEBAS), Consejo Superior de Investigaciones Científicas (CSIC), Murcia, Spain
| | | | - Eduardo Méndez-López
- Centro de Edafología y Biología Aplicada del Segura (CEBAS), Consejo Superior de Investigaciones Científicas (CSIC), Murcia, Spain
| | - M. Amelia Sánchez-Pina
- Centro de Edafología y Biología Aplicada del Segura (CEBAS), Consejo Superior de Investigaciones Científicas (CSIC), Murcia, Spain
| | - Miguel A. Aranda
- Centro de Edafología y Biología Aplicada del Segura (CEBAS), Consejo Superior de Investigaciones Científicas (CSIC), Murcia, Spain
| |
Collapse
|
42
|
Wu X, Liu J, Chai M, Wang J, Li D, Wang A, Cheng X. The Potato Virus X TGBp2 Protein Plays Dual Functional Roles in Viral Replication and Movement. J Virol 2019; 93:e01635-18. [PMID: 30541845 PMCID: PMC6384063 DOI: 10.1128/jvi.01635-18] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 12/03/2018] [Indexed: 01/27/2023] Open
Abstract
Plant viruses usually encode one or more movement proteins (MP) to accomplish their intercellular movement. A group of positive-strand RNA plant viruses requires three viral proteins (TGBp1, TGBp2, and TGBp3) that are encoded by an evolutionarily conserved genetic module of three partially overlapping open reading frames (ORFs), termed the triple gene block (TGB). However, how these three viral movement proteins function cooperatively in viral intercellular movement is still elusive. Using a novel in vivo double-stranded RNA (dsRNA) labeling system, we showed that the dsRNAs generated by potato virus X (PVX) RNA-dependent RNA polymerase (RdRp) are colocalized with viral RdRp, which are further tightly covered by "chain mail"-like TGBp2 aggregates and localizes alongside TGBp3 aggregates. We also discovered that TGBp2 interacts with the C-terminal domain of PVX RdRp, and this interaction is required for the localization of TGBp3 and itself to the RdRp/dsRNA bodies. Moreover, we reveal that the central and C-terminal hydrophilic domains of TGBp2 are required to interact with viral RdRp. Finally, we demonstrate that knockout of the entire TGBp2 or the domain involved in interacting with viral RdRp attenuates both PVX replication and movement. Collectively, these findings suggest that TGBp2 plays dual functional roles in PVX replication and intercellular movement.IMPORTANCE Many plant viruses contain three partially overlapping open reading frames (ORFs), termed the triple gene block (TGB), for intercellular movement. However, how the corresponding three proteins coordinate their functions remains obscure. In the present study, we provided multiple lines of evidence supporting the notion that PVX TGBp2 functions as the molecular adaptor bridging the interaction between the RdRp/dsRNA body and TGBp3 by forming "chain mail"-like structures in the RdRp/dsRNA body, which can also enhance viral replication. Taken together, our results provide new insights into the replication and movement of PVX and possibly also other TGB-containing plant viruses.
Collapse
Affiliation(s)
- Xiaoyun Wu
- College of Agriculture, Northeast Agriculture University, Harbin, China
| | - Jiahui Liu
- College of Agriculture, Northeast Agriculture University, Harbin, China
| | - Mengzhu Chai
- College of Agriculture, Northeast Agriculture University, Harbin, China
| | - Jinhui Wang
- College of Agriculture, Northeast Agriculture University, Harbin, China
| | - Dalong Li
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture, Northeast Agricultural University, Harbin, China
| | - Aiming Wang
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, Ontario, Canada
| | - Xiaofei Cheng
- College of Agriculture, Northeast Agriculture University, Harbin, China
| |
Collapse
|
43
|
Röder J, Dickmeis C, Commandeur U. Small, Smaller, Nano: New Applications for Potato Virus X in Nanotechnology. FRONTIERS IN PLANT SCIENCE 2019; 10:158. [PMID: 30838013 PMCID: PMC6390637 DOI: 10.3389/fpls.2019.00158] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 01/29/2019] [Indexed: 05/08/2023]
Abstract
Nanotechnology is an expanding interdisciplinary field concerning the development and application of nanostructured materials derived from inorganic compounds or organic polymers and peptides. Among these latter materials, proteinaceous plant virus nanoparticles have emerged as a key platform for the introduction of tailored functionalities by genetic engineering and conjugation chemistry. Tobacco mosaic virus and Cowpea mosaic virus have already been developed for bioimaging, vaccination and electronics applications, but the flexible and filamentous Potato virus X (PVX) has received comparatively little attention. The filamentous structure of PVX particles allows them to carry large payloads, which are advantageous for applications such as biomedical imaging in which multi-functional scaffolds with a high aspect ratio are required. In this context, PVX achieves superior tumor homing and retention properties compared to spherical nanoparticles. Because PVX is a protein-based nanoparticle, its unique functional properties are combined with enhanced biocompatibility, making it much more suitable for biomedical applications than synthetic nanomaterials. Moreover, PVX nanoparticles have very low toxicity in vivo, and superior pharmacokinetic profiles. This review focuses on the production of PVX nanoparticles engineered using chemical and/or biological techniques, and describes current and future opportunities and challenges for the application of PVX nanoparticles in medicine, diagnostics, materials science, and biocatalysis.
Collapse
Affiliation(s)
| | | | - Ulrich Commandeur
- Institute for Molecular Biotechnology, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
44
|
Aguilar E, del Toro FJ, Brosseau C, Moffett P, Canto T, Tenllado F. Cell death triggered by the P25 protein in Potato virus X-associated synergisms results from endoplasmic reticulum stress in Nicotiana benthamiana. MOLECULAR PLANT PATHOLOGY 2019; 20:194-210. [PMID: 30192053 PMCID: PMC6637867 DOI: 10.1111/mpp.12748] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The synergistic interaction of Potato virus X (PVX) with a number of potyviruses results in systemic necrosis in Nicotiana spp. Previous investigations have indicated that the viral suppressor of RNA silencing (VSR) protein P25 of PVX triggers systemic necrosis in PVX-associated synergisms in a threshold-dependent manner. However, little is still known about the cellular processes that lead to this necrosis, and whether the VSR activity of P25 is involved in its elicitation. Here, we show that transient expression of P25 in the presence of VSRs from different viruses, including the helper component-proteinase (HC-Pro) of potyviruses, induces endoplasmic reticulum (ER) stress and the unfolded protein response (UPR), which ultimately lead to ER collapse. However, the host RNA silencing pathway was dispensable for the elicitation of cell death by P25. Confocal microscopy studies in leaf patches co-expressing P25 and HC-Pro showed dramatic alterations in ER membrane structures, which correlated with the up-regulation of bZIP60 and several ER-resident chaperones, including the ER luminal binding protein (BiP). Overexpression of BiP alleviated the cell death induced by the potexviral P25 protein when expressed together with VSRs derived from different viruses. Conversely, silencing of the UPR master regulator, bZIP60, led to an increase in cell death elicited by the P25/HC-Pro combination as well as by PVX-associated synergism. In addition to its role as a negative regulator of P25-induced cell death, UPR partially restricted PVX infection. Thus, systemic necrosis caused by PVX-associated synergistic infections is probably the effect of an unmitigated ER stress following the overaccumulation of a viral protein, P25, with ER remodelling activity.
Collapse
Affiliation(s)
- Emmanuel Aguilar
- Departamento de Biotecnología Microbiana y de PlantasCentro de Investigaciones Biológicas, CSICMadrid28040Spain
| | - Francisco J. del Toro
- Departamento de Biotecnología Microbiana y de PlantasCentro de Investigaciones Biológicas, CSICMadrid28040Spain
| | - Chantal Brosseau
- Centre SÈVE, Département de BiologieUniversité de SherbrookeSherbrookeQCJ1K 2R1Canada
| | - Peter Moffett
- Centre SÈVE, Département de BiologieUniversité de SherbrookeSherbrookeQCJ1K 2R1Canada
| | - Tomás Canto
- Departamento de Biotecnología Microbiana y de PlantasCentro de Investigaciones Biológicas, CSICMadrid28040Spain
| | - Francisco Tenllado
- Departamento de Biotecnología Microbiana y de PlantasCentro de Investigaciones Biológicas, CSICMadrid28040Spain
| |
Collapse
|
45
|
Röder J, Dickmeis C, Fischer R, Commandeur U. Systemic Infection of Nicotiana benthamiana with Potato virus X Nanoparticles Presenting a Fluorescent iLOV Polypeptide Fused Directly to the Coat Protein. BIOMED RESEARCH INTERNATIONAL 2018; 2018:9328671. [PMID: 29662905 PMCID: PMC5831704 DOI: 10.1155/2018/9328671] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 12/25/2017] [Indexed: 02/01/2023]
Abstract
Plant virus-based nanoparticles can be produced in plants on a large scale and are easily modified to introduce new functions, making them suitable for applications such as vaccination and drug delivery, tissue engineering, and in vivo imaging. The latter is often achieved using green fluorescent protein and its derivatives, but the monovalent fluorescent protein iLOV is smaller and more robust. Here, we fused the iLOV polypeptide to the N-terminus of the Potato virus X (PVX) coat protein, directly or via the Foot-and-mouth disease virus 2A sequence, for expression in Nicotiana benthamiana. Direct fusion of the iLOV polypeptide did not prevent the assembly or systemic spread of the virus and we verified the presence of fusion proteins and iLOV hybrid virus particles in leaf extracts. Compared to wild-type PVX virions, the PVX particles displaying the iLOV peptide showed an atypical, intertwined morphology. Our results confirm that a direct fusion of the iLOV fluorescent protein to filamentous PVX nanoparticles offers a promising tool for imaging applications.
Collapse
Affiliation(s)
- Juliane Röder
- Institute for Molecular Biotechnology, RWTH Aachen University, Worringerweg 1, 52072 Aachen, Germany
| | - Christina Dickmeis
- Institute for Molecular Biotechnology, RWTH Aachen University, Worringerweg 1, 52072 Aachen, Germany
| | - Rainer Fischer
- Institute for Molecular Biotechnology, RWTH Aachen University, Worringerweg 1, 52072 Aachen, Germany
| | - Ulrich Commandeur
- Institute for Molecular Biotechnology, RWTH Aachen University, Worringerweg 1, 52072 Aachen, Germany
| |
Collapse
|
46
|
Monsion B, Incarbone M, Hleibieh K, Poignavent V, Ghannam A, Dunoyer P, Daeffler L, Tilsner J, Ritzenthaler C. Efficient Detection of Long dsRNA in Vitro and in Vivo Using the dsRNA Binding Domain from FHV B2 Protein. FRONTIERS IN PLANT SCIENCE 2018; 9:70. [PMID: 29449856 PMCID: PMC5799278 DOI: 10.3389/fpls.2018.00070] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 01/12/2018] [Indexed: 05/17/2023]
Abstract
Double-stranded RNA (dsRNA) plays essential functions in many biological processes, including the activation of innate immune responses and RNA interference. dsRNA also represents the genetic entity of some viruses and is a hallmark of infections by positive-sense single-stranded RNA viruses. Methods for detecting dsRNA rely essentially on immunological approaches and their use is often limited to in vitro applications, although recent developments have allowed the visualization of dsRNA in vivo. Here, we report the sensitive and rapid detection of long dsRNA both in vitro and in vivo using the dsRNA binding domain of the B2 protein from Flock house virus. In vitro, we adapted the system for the detection of dsRNA either enzymatically by northwestern blotting or by direct fluorescence labeling on fixed samples. In vivo, we produced stable transgenic Nicotiana benthamiana lines allowing the visualization of dsRNA by fluorescence microscopy. Using these techniques, we were able to discriminate healthy and positive-sense single-stranded RNA virus-infected material in plants and insect cells. In N. benthamiana, our system proved to be very potent for the spatio-temporal visualization of replicative RNA intermediates of a broad range of positive-sense RNA viruses, including high- vs. low-copy number viruses.
Collapse
Affiliation(s)
- Baptiste Monsion
- Centre National de la Recherche Scientifique, Institut de Biologie Moléculaire des Plantes, Université de Strasbourg, Strasbourg, France
| | - Marco Incarbone
- Centre National de la Recherche Scientifique, Institut de Biologie Moléculaire des Plantes, Université de Strasbourg, Strasbourg, France
| | - Kamal Hleibieh
- Centre National de la Recherche Scientifique, Institut de Biologie Moléculaire des Plantes, Université de Strasbourg, Strasbourg, France
| | - Vianney Poignavent
- Centre National de la Recherche Scientifique, Institut de Biologie Moléculaire des Plantes, Université de Strasbourg, Strasbourg, France
| | - Ahmed Ghannam
- Centre National de la Recherche Scientifique, Institut de Biologie Moléculaire des Plantes, Université de Strasbourg, Strasbourg, France
| | - Patrice Dunoyer
- Centre National de la Recherche Scientifique, Institut de Biologie Moléculaire des Plantes, Université de Strasbourg, Strasbourg, France
| | - Laurent Daeffler
- Centre National de la Recherche Scientifique, Institut de Biologie Moléculaire et Cellulaire, Université de Strasbourg, Strasbourg, France
| | - Jens Tilsner
- Biomedical Sciences Research Complex, University of St Andrews, St Andrews, United Kingdom
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, United Kingdom
| | - Christophe Ritzenthaler
- Centre National de la Recherche Scientifique, Institut de Biologie Moléculaire des Plantes, Université de Strasbourg, Strasbourg, France
- *Correspondence: Christophe Ritzenthaler
| |
Collapse
|
47
|
Chen IH, Huang YP, Tseng CH, Ni JT, Tsai CH, Hsu YH, Tsai CH. Nicotiana benthamiana Elicitor-Inducible Leucine-Rich Repeat Receptor-Like Protein Assists Bamboo Mosaic Virus Cell-to-Cell Movement. FRONTIERS IN PLANT SCIENCE 2017; 8:1736. [PMID: 29056941 PMCID: PMC5635722 DOI: 10.3389/fpls.2017.01736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 09/22/2017] [Indexed: 06/07/2023]
Abstract
For successful infection, a virus requires various host factors at different stages such as translation, targeting, replication, and spreading. One of the host genes upregulated after Nicotiana benthamiana infection with Bamboo mosaic virus (BaMV), a single-stranded positive-sense RNA potexvirus, assists in viral movement. To understand how this host protein is involved in BaMV movement, we cloned its full-length cDNA by rapid amplification of cDNA ends. The gene has 3199 nt and encodes a 969-amino acid polypeptide. The sequence of the encoded polypeptide is orthologous to that of N. tabacum elicitor-inducible leucine-rich repeat (LRR) receptor-like protein (NtEILP), a plant viral resistance gene, and is designated NbEILP. To reveal how NbEILP is involved in BaMV movement, we fused green fluorescent protein (GFP) to its C-terminus. Unfortunately, the gene's expression in N. benthamiana was beyond our detection limit possibly because of its large size (∼135 kDa). However, NbEILP at such low expression could still enhance BaMV accumulation in inoculated leaves. A short version of NbEILP was constructed to remove the LRR domain, NbEILP/ΔLRR-GFP; the expression of this deletion mutant could still enhance BaMV accumulation to 1.7-fold that of the control. Hence, the LRR domain in NbEILP is not an essential element in BaMV movement. We constructed a few deletion mutants - NbEILP/ΔLRRΔTMD (without the transmembrane domain), NbEILP/ΔLRRΔCD (without the cytoplasmic domain), and NbEILP/ΔLRRΔSP (without the signal peptide) - to examine whether these domains are involved in BaMV movement. For BaMV movement, NbEILP requires the signal peptide to target the endoplasmic reticulum and the transmembrane domain to retain on the membrane.
Collapse
|
48
|
Boissinot S, Pichon E, Sorin C, Piccini C, Scheidecker D, Ziegler-Graff V, Brault V. Systemic Propagation of a Fluorescent Infectious Clone of a Polerovirus Following Inoculation by Agrobacteria and Aphids. Viruses 2017; 9:E166. [PMID: 28661469 PMCID: PMC5537658 DOI: 10.3390/v9070166] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 06/16/2017] [Accepted: 06/22/2017] [Indexed: 11/16/2022] Open
Abstract
A fluorescent viral clone of the polerovirus Turnip yellows virus (TuYV) was engineered by introducing the Enhanced Green Fluorescent Protein (EGFP) sequence into the non-structural domain sequence of the readthrough protein, a minor capsid protein. The resulting recombinant virus, referred to as TuYV-RTGFP, was infectious in several plant species when delivered by agroinoculation and invaded efficiently non-inoculated leaves. As expected for poleroviruses, which infect only phloem cells, the fluorescence emitted by TuYV-RTGFP was restricted to the vasculature of infected plants. In addition, TuYV-RTGFP was aphid transmissible and enabled the observation of the initial sites of infection in the phloem after aphid probing in epidermal cells. The aphid-transmitted virus moved efficiently to leaves distant from the inoculation sites and importantly retained the EGFP sequence in the viral genome. This work reports on the first engineered member in the Luteoviridae family that can be visualized by fluorescence emission in systemic leaves of different plant species after agroinoculation or aphid transmission.
Collapse
Affiliation(s)
- Sylvaine Boissinot
- Université de Strasbourg, Institut National de la Recherche Agronomique, SVQV UMR-A 1131, 68000 Colmar, France.
| | - Elodie Pichon
- Université de Strasbourg, Institut National de la Recherche Agronomique, SVQV UMR-A 1131, 68000 Colmar, France.
- UMR 385 BGPI, Institut National de la Recherche Agronomique-Centre de Coopération Internationale en Recherche Agronomique pour le Développement, SupAgro, CIRAD TA-A54/K, Campus International de Baillarguet, 34398 Montpellier, France.
| | - Céline Sorin
- Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique, UPR 2357, Université de Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg, France.
- Institute of Plant Science Paris Saclay (IPS2), CNRS, INRA, University Paris Diderot, University of Paris-Saclay, 91405 Orsay, France.
| | - Céline Piccini
- Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique, UPR 2357, Université de Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg, France.
| | - Danièle Scheidecker
- Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique, UPR 2357, Université de Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg, France.
| | - Véronique Ziegler-Graff
- Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique, UPR 2357, Université de Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg, France.
| | - Véronique Brault
- Université de Strasbourg, Institut National de la Recherche Agronomique, SVQV UMR-A 1131, 68000 Colmar, France.
| |
Collapse
|
49
|
Barton DA, Roovers EF, Gouil Q, da Fonseca GC, Reis RS, Jackson C, Overall RL, Fusaro AF, Waterhouse PM. Live Cell Imaging Reveals the Relocation of dsRNA Binding Proteins Upon Viral Infection. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2017; 30:435-443. [PMID: 28296575 DOI: 10.1094/mpmi-02-17-0035-r] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Viral infection triggers a range of plant responses such as the activation of the RNA interference (RNAi) pathway. The double-stranded RNA binding (DRB) proteins DRB3 and DRB4 are part of this pathway and aid in defending against DNA and RNA viruses, respectively. Using live cell imaging, we show that DRB2, DRB3, and DRB5 relocate from their uniform cytoplasmic distribution to concentrated accumulation in nascent viral replication complexes (VRC) that develop following cell invasion by viral RNA. Inactivation of the DRB3 gene in Arabidopsis by T-DNA insertion rendered these plants less able to repress RNA viral replication. We propose a model for the early stages of virus defense in which DRB2, DRB3, and DRB5 are invasion sensors that relocate to nascent VRC, where they bind to viral RNA and inhibit virus replication.
Collapse
Affiliation(s)
| | - Elke F Roovers
- 1 University of Sydney, Sydney, NSW, 2006, Australia
- 2 Institute of Molecular Biology, Mainz, Germany
| | - Quentin Gouil
- 1 University of Sydney, Sydney, NSW, 2006, Australia
- 3 Centre for AgriBioscience, Department of Animal, Plant and Soil Sciences, School of Life Sciences, La Trobe University, Victoria 3086
| | - Guilherme C da Fonseca
- 1 University of Sydney, Sydney, NSW, 2006, Australia
- 4 Universidade Federal do Rio Grande do Sul, RS, Brazil; and
| | | | - Craig Jackson
- 1 University of Sydney, Sydney, NSW, 2006, Australia
| | | | | | - Peter M Waterhouse
- 1 University of Sydney, Sydney, NSW, 2006, Australia
- 5 Queensland University of Technology, Brisbane, QLD, Australia
| |
Collapse
|
50
|
Hong JS, Ju HJ. The Plant Cellular Systems for Plant Virus Movement. THE PLANT PATHOLOGY JOURNAL 2017; 33:213-228. [PMID: 28592941 PMCID: PMC5461041 DOI: 10.5423/ppj.rw.09.2016.0198] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Revised: 11/05/2016] [Accepted: 11/13/2016] [Indexed: 05/24/2023]
Abstract
Plasmodesmata (PDs) are specialized intercellular channels that facilitate the exchange of various molecules, including sugars, ribonucleoprotein complexes, transcription factors, and mRNA. Their diameters, estimated to be 2.5 nm in the neck region, are too small to transfer viruses or viral genomes. Tobacco mosaic virus and Potexviruses are the most extensively studied viruses. In viruses, the movement protein (MP) is responsible for the PD gating that allows the intercellular movement of viral genomes. Various host factors interact with MP to regulate complicated mechanisms related to PD gating. Virus replication and assembly occur in viral replication complex (VRC) with membrane association, especially in the endoplasmic reticulum. VRC have a highly organized structure and are highly regulated by interactions among the various host factors, proteins encoded by the viral genome, and the viral genome. Virus trafficking requires host machineries, such as the cytoskeleton and the secretory systems. MP facilitates the virus replication and movement process. Despite the current level of understanding of virus movement, there are still many unknown and complex interactions between virus replication and virus movement. While numerous studies have been conducted to understand plant viruses with regards to cell-to-cell movement and replication, there are still many knowledge gaps. To study these interactions, adequate research tools must be used such as molecular, and biochemical techniques. Without such tools, virologists will not be able to gain an accurate or detailed understanding of the virus infection process.
Collapse
Affiliation(s)
- Jin-Sung Hong
- Department of Applied Biology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 24341, Korea
| | - Ho-Jong Ju
- Department of Agricultural Biology, College of Agricultural Life Science, Chonbuk National University, Jeonju 54896, Korea
- Plant Medicinal Research Center, College of Agricultural Life Science, Chonbuk National University, Jeonju 54896, Korea
| |
Collapse
|