1
|
Baek SC, Jeon SY, Byun BH, Kim DH, Yu GR, Kim H, Lim DW. CsCBDAS2-Driven Enhancement of Cannabinoid Biosynthetic Genes Using a High-Efficiency Transient Transformation System in Cannabis sativa 'Cheungsam'. PLANTS (BASEL, SWITZERLAND) 2025; 14:1460. [PMID: 40431025 PMCID: PMC12114937 DOI: 10.3390/plants14101460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2025] [Revised: 05/08/2025] [Accepted: 05/11/2025] [Indexed: 05/29/2025]
Abstract
Cannabis sativa produces pharmacologically valuable cannabinoids. In this study, we developed and optimized a transient transformation system using Cannabis sativa 'Cheungsam' to facilitate gene functional analysis. Various experimental conditions, including plant developmental stages, light conditions, Agrobacterium strains, tissue types, and physical treatments such as sonication and vacuum infiltration, were systematically evaluated using GUS histochemical staining and qPCR analysis. Among these, 7-day-old seedlings cultured under dark conditions and transformed with the GV3101 strain exhibited high transformation efficiency. Leaf tissue showed a higher GUS staining proportion and GUS staining area compared to hypocotyl and cotyledon tissues. The application of a combination of sonication and vacuum infiltration techniques resulted in the most intense GUS expression. Using the optimized protocol, we introduced a recombinant vector carrying CsCBDAS2, a key gene in cannabidiol (CBD) biosynthesis. qPCR analysis revealed that CsCBDAS2 overexpression led to significant upregulation of multiple upstream CBD biosynthetic genes (CsOAC, CsGOT, CsPT1, CsPT4, CsCBDAS1, and CsCBDAS2) and the transcription factor (TF) CsWRKY20, suggesting coordinated co-expression and potential involvement of a transcriptional feedback loop. These results demonstrate the effectiveness of our transient transformation system and provide insights into the regulatory mechanisms of cannabinoid biosynthesis in cannabis.
Collapse
Affiliation(s)
- Sang-Cheol Baek
- TOPO Lab., Co., Ltd., Goyang 10326, Republic of Korea; (S.-C.B.); (S.-Y.J.); (B.-H.B.); (D.-H.K.); (G.-R.Y.); (H.K.)
| | - Sang-Yoon Jeon
- TOPO Lab., Co., Ltd., Goyang 10326, Republic of Korea; (S.-C.B.); (S.-Y.J.); (B.-H.B.); (D.-H.K.); (G.-R.Y.); (H.K.)
- Department of Life Science, Dongguk University, Goyang 10326, Republic of Korea
| | - Bo-Hyun Byun
- TOPO Lab., Co., Ltd., Goyang 10326, Republic of Korea; (S.-C.B.); (S.-Y.J.); (B.-H.B.); (D.-H.K.); (G.-R.Y.); (H.K.)
| | - Da-Hoon Kim
- TOPO Lab., Co., Ltd., Goyang 10326, Republic of Korea; (S.-C.B.); (S.-Y.J.); (B.-H.B.); (D.-H.K.); (G.-R.Y.); (H.K.)
| | - Ga-Ram Yu
- TOPO Lab., Co., Ltd., Goyang 10326, Republic of Korea; (S.-C.B.); (S.-Y.J.); (B.-H.B.); (D.-H.K.); (G.-R.Y.); (H.K.)
- Department of Diagnostics, College of Korean Medicine, Dongguk University, Goyang 10326, Republic of Korea
- Institute of Korean Medicine, Dongguk University, Goyang 10326, Republic of Korea
| | - Hyuck Kim
- TOPO Lab., Co., Ltd., Goyang 10326, Republic of Korea; (S.-C.B.); (S.-Y.J.); (B.-H.B.); (D.-H.K.); (G.-R.Y.); (H.K.)
- Department of Diagnostics, College of Korean Medicine, Dongguk University, Goyang 10326, Republic of Korea
- Institute of Korean Medicine, Dongguk University, Goyang 10326, Republic of Korea
| | - Dong-Woo Lim
- TOPO Lab., Co., Ltd., Goyang 10326, Republic of Korea; (S.-C.B.); (S.-Y.J.); (B.-H.B.); (D.-H.K.); (G.-R.Y.); (H.K.)
- Department of Diagnostics, College of Korean Medicine, Dongguk University, Goyang 10326, Republic of Korea
- Institute of Korean Medicine, Dongguk University, Goyang 10326, Republic of Korea
| |
Collapse
|
2
|
Gondalia N, Quiroz LF, Lai L, Singh AK, Khan M, Brychkova G, McKeown PC, Chatterjee M, Spillane C. Harnessing promoter elements to enhance gene editing in plants: perspectives and advances. PLANT BIOTECHNOLOGY JOURNAL 2025; 23:1375-1395. [PMID: 40013512 PMCID: PMC12018835 DOI: 10.1111/pbi.14533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/20/2024] [Accepted: 11/16/2024] [Indexed: 02/28/2025]
Abstract
Genome-edited plants, endowed with climate-smart traits, have been promoted as tools for strengthening resilience against climate change. Successful plant gene editing (GE) requires precise regulation of the GE machinery, a process controlled by the promoters, which drives its transcription through interactions with transcription factors (TFs) and RNA polymerase. While constitutive promoters are extensively used in GE constructs, their limitations highlight the need for alternative approaches. This review emphasizes the promise of tissue/organ specific as well as inducible promoters, which enable targeted GE in a spatiotemporal manner with no effects on other tissues. Advances in synthetic biology have paved the way for the creation of synthetic promoters, offering refined control over gene expression and augmenting the potential of plant GE. The integration of these novel promoters with synthetic systems presents significant opportunities for precise and conditional genome editing. Moreover, the advent of bioinformatic tools and artificial intelligence is revolutionizing the characterization of regulatory elements, enhancing our understanding of their roles in plants. Thus, this review provides novel insights into the strategic use of promoters and promoter editing to enhance the precision, efficiency and specificity of plant GE, setting the stage for innovative crop improvement strategies.
Collapse
Affiliation(s)
- Nikita Gondalia
- Agriculture, Food Systems and Bioeconomy Research Centre, Ryan InstituteUniversity of GalwayGalwayIreland
| | - Luis Felipe Quiroz
- Agriculture, Food Systems and Bioeconomy Research Centre, Ryan InstituteUniversity of GalwayGalwayIreland
| | - Linyi Lai
- Agriculture, Food Systems and Bioeconomy Research Centre, Ryan InstituteUniversity of GalwayGalwayIreland
| | - Avinash Kumar Singh
- Agriculture, Food Systems and Bioeconomy Research Centre, Ryan InstituteUniversity of GalwayGalwayIreland
| | - Moman Khan
- Agriculture, Food Systems and Bioeconomy Research Centre, Ryan InstituteUniversity of GalwayGalwayIreland
| | - Galina Brychkova
- Agriculture, Food Systems and Bioeconomy Research Centre, Ryan InstituteUniversity of GalwayGalwayIreland
| | - Peter C. McKeown
- Agriculture, Food Systems and Bioeconomy Research Centre, Ryan InstituteUniversity of GalwayGalwayIreland
| | - Manash Chatterjee
- Agriculture, Food Systems and Bioeconomy Research Centre, Ryan InstituteUniversity of GalwayGalwayIreland
- Viridian Seeds Ltd.CambridgeUK
| | - Charles Spillane
- Agriculture, Food Systems and Bioeconomy Research Centre, Ryan InstituteUniversity of GalwayGalwayIreland
| |
Collapse
|
3
|
Sithole C, Sinthumule RR, Gaorongwe JL, Ruzvidzo O, Dikobe TB. Unraveling the complexities: morpho-physiological and proteomic responses of pearl millet ( Pennisetum glaucum) to dual drought and salt stress. FRONTIERS IN PLANT SCIENCE 2025; 16:1495562. [PMID: 40313725 PMCID: PMC12044532 DOI: 10.3389/fpls.2025.1495562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 03/31/2025] [Indexed: 05/03/2025]
Abstract
Agriculture is crucial for sustaining the world's growing population, however various abiotic and biotic stressors, such as drought and salt, significantly impact crop yields. Pearl millet, a nutrient-rich and drought-tolerant crop, is essential as a food source in arid regions. Understanding its response mechanisms to drought and salt stress is important for devising strategies for improved crop performance under water deficit and saline environments. This study investigated the pearl millet's morphological, physiological, and molecular responses subjected to individual and combined drought and salt stresses for 25 days. Significant reductions in morphological traits, such as plant height, shoot and root fresh weights and lengths, and leaf numbers were observed. Furthermore, key physiological parameters, including chlorophyll content, stomatal conductance, photosynthesis, and transpiration rates notably declined, indicating a complex interaction between stress factors and water regulation mechanisms. Protein expression analysis showed differential upregulation and downregulation patterns between the control and stressed pearl millet plants. Gene ontology mapping identified key biological processes, molecular functions, and cellular components of differentially expressed proteins associated with individual and combined stresses. Notably, a high number of unclassified proteins were identified, indicating the presence of potentially novel proteins involved in stress adaptation. Catalytic and binding activities were the predominant molecular functions detected across treatments suggesting their central role in stress response. These highlighted potential mechanisms of tolerance and adaptation in pearl millet. Overall, this study provides a comprehensive understanding of the detrimental effects of drought and salinity on pearl millet at the morphological, physiological, and proteomic levels, uncovering previously unexplored proteomic responses. These insights offer valuable molecular marker targets for breeding programs aimed at enhancing stress tolerance in pearl millet and related crops.
Collapse
Affiliation(s)
| | | | | | | | - Tshegofatso Bridget Dikobe
- Unit for Environmental Sciences and Management, Department of Botany, North-West University, Mmabatho, South Africa
| |
Collapse
|
4
|
Mohanta R, Maiti P, Sharangi AB, Roy S, Hazra S, Chakraborty S, Ghorai S. Directed mutagenesis in fruit crops. 3 Biotech 2025; 15:104. [PMID: 40177007 PMCID: PMC11958931 DOI: 10.1007/s13205-025-04268-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Accepted: 03/07/2025] [Indexed: 04/05/2025] Open
Abstract
Fruit crops are rich source of important vitamins, minerals, and dietary fibres. They are essential for global agriculture with respect to nutritional security. Globally, there is a rapid decline in the genetic base of fruit crops warranting breeding strategies to overcome the challenge. Applied mutagenesis has emerged as a viable approach for the focused enhancement of fruit crops utilizing precise genetic alterations to increase a variety of desirable characteristics. However, traditional mutagenesis using physical and chemical mutagens are majorly random in nature. Directed mutagenesis with advancements in genetic engineering and molecular technology allows precise manipulation of genes, which facilitates the efficient and precise knockout of target genes and the targeted insertion or modification of specific DNA sequences within the genome via homologous recombination (HR)-mediated gene replacement. This review presents an in-depth exploration of several directed mutagenesis techniques including CRISPR-Cas9, TILLING, TALEN, MutMap, and MutMap + emphasizing their transformative applications in fruit crops. It also discusses about space mutagenesis. These advanced techniques empower researchers to precisely introduce specific mutations into the genome, skilfully altering gene expression and reshaping protein function with remarkable precision. This review highlights successful examples of directed mutagenesis in a variety of fruit crops such as apples, grapes, citrus, and strawberries and elucidates the impact of directed mutagenesis on traits such as fruit size, colour, flavour, shelf-life, and resistance to diseases and environmental stresses.
Collapse
Affiliation(s)
- Rajdeep Mohanta
- Department of Agriculture, Brainware University, Barasat, Kolkata, 700125 West Bengal India
| | - Payal Maiti
- Department of Post-Harvest Management, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, 741252 West Bengal India
| | - Amit Baran Sharangi
- Department of Plantation Spices Medicinal & Aromatic Crops, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, 741252 West Bengal India
| | - Sourav Roy
- Department of Agriculture, Brainware University, Barasat, Kolkata, 700125 West Bengal India
| | - Soham Hazra
- Department of Agriculture, Brainware University, Barasat, Kolkata, 700125 West Bengal India
| | - Souvik Chakraborty
- Department of Post-Harvest Management, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, 741252 West Bengal India
| | - Subhadwip Ghorai
- Department of Agriculture, Brainware University, Barasat, Kolkata, 700125 West Bengal India
| |
Collapse
|
5
|
Bhupenchandra I, Chongtham SK, Gangarani Devi A, Dutta P, Lamalakshmi E, Mohanty S, Choudhary AK, Das A, Sarika K, Kumar S, Yumnam S, Sagolsem D, Rupert Anand Y, Bhutia DD, Victoria M, Vinodh S, Tania C, Dhanachandra Sharma A, Deb L, Sahoo MR, Seth CS, Swapnil P, Meena M. Harnessing weedy rice as functional food and source of novel traits for crop improvement. PLANT, CELL & ENVIRONMENT 2025; 48:2498-2521. [PMID: 38436101 DOI: 10.1111/pce.14868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/12/2024] [Accepted: 02/15/2024] [Indexed: 03/05/2024]
Abstract
A relative of cultivated rice (Oryza sativa L.), weedy or red rice (Oryza spp.) is currently recognized as the dominant weed, leading to a drastic loss of yield of cultivated rice due to its highly competitive abilities like producing more tillers, panicles, and biomass with better nutrient uptake. Due to its high nutritional value, antioxidant properties (anthocyanin and proanthocyanin), and nutrient absorption ability, weedy rice is gaining immense research attentions to understand its genetic constitution to augment future breeding strategies and to develop nutrition-rich functional foods. Consequently, this review focuses on the unique gene source of weedy rice to enhance the cultivated rice for its crucial features like water use efficiency, abiotic and biotic stress tolerance, early flowering, and the red pericarp of the seed. It explores the debating issues on the origin and evolution of weedy rice, including its high diversity, signalling aspects, quantitative trait loci (QTL) mapping under stress conditions, the intricacy of the mechanism in the expression of the gene flow, and ecological challenges of nutrient removal by weedy rice. This review may create a foundation for future researchers to understand the gene flow between cultivated crops and weedy traits and support an improved approach for the applicability of several models in predicting multiomics variables.
Collapse
Affiliation(s)
- Ingudam Bhupenchandra
- ICAR-Farm Science Centre Tamenglong, ICAR Research Complex for NEH Region, Manipur Centre, Imphal, Manipur, India
| | - Sunil Kumar Chongtham
- Multi Technology Testing Centre and Vocational Training Centre, College of Horticulture, Central Agricultural University, Bermiok, Sikkim, India
| | - Ayam Gangarani Devi
- ICAR Research Complex for North Eastern Hill Region, Tripura Centre Lembucherra, Tripura, India
| | - Pranab Dutta
- School of Crop Protection, College of Post Graduate Studies in Agricultural Sciences, Central Agricultural University (Imphal), Umiam, Meghalaya, India
| | - Elangbam Lamalakshmi
- ICAR Research Complex for North Eastern Hill Region, Sikkim Centre, Tadong, Sikkim, India
| | - Sansuta Mohanty
- Molecular Biology and Biotechnology Department, Faculty of Agricultural Sciences, Siksha O Anusandhan University, Bhubaneswar, Odisha, India
| | - Anil K Choudhary
- Division of Crop Production, ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, India
| | - Anup Das
- ICAR Research Complex for North Eastern Hill Region, Lembucherra, Tripura, India
| | - Konsam Sarika
- ICAR Research Complex for North Eastern Hill Region, Manipur Centre, Imphal, Manipur, India
| | - Sumit Kumar
- Department of Mycology and Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
- Department of Plant Pathology, B.M. College of Agriculture, Khandwa, Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya, Gwalior, Madhya Pradesh, India
| | - Sonika Yumnam
- All India Coordinated Research Project on Chickpea, Central Agricultural University, Imphal, Manipur, India
| | - Diana Sagolsem
- Multi Technology Testing Centre and Vocational Training Centre, College of Horticulture, Central Agricultural University, Bermiok, Sikkim, India
| | - Y Rupert Anand
- Multi Technology Testing Centre and Vocational Training Centre, College of Horticulture, Central Agricultural University, Bermiok, Sikkim, India
| | - Dawa Dolma Bhutia
- Multi Technology Testing Centre and Vocational Training Centre, College of Horticulture, Central Agricultural University, Bermiok, Sikkim, India
| | - M Victoria
- Multi Technology Testing Centre and Vocational Training Centre, College of Horticulture, Central Agricultural University, Bermiok, Sikkim, India
| | - S Vinodh
- Multi Technology Testing Centre and Vocational Training Centre, College of Horticulture, Central Agricultural University, Bermiok, Sikkim, India
| | - Chongtham Tania
- ICAR Research Complex for North Eastern Hill Region, Manipur Centre, Imphal, Manipur, India
| | | | - Lipa Deb
- School of Crop Protection, College of Post Graduate Studies in Agricultural Sciences, Central Agricultural University (Imphal), Umiam, Meghalaya, India
| | - Manas Ranjan Sahoo
- ICAR Research Complex for North Eastern Hill Region, Manipur Centre, Imphal, Manipur, India
| | | | - Prashant Swapnil
- Department of Botany, School of Basic Science, Central University of Punjab, Bhatinda, Punjab, India
| | - Mukesh Meena
- Laboratory of Phytopathology and Microbial Biotechnology, Department of Botany, Mohanlal Sukhadia University, Udaipur, Rajasthan, India
| |
Collapse
|
6
|
Vollen K, Alonso JM, Stepanova AN. Beyond a few bases: methods for large DNA insertion and gene targeting in plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e70099. [PMID: 40121601 PMCID: PMC11930290 DOI: 10.1111/tpj.70099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 02/25/2025] [Accepted: 03/03/2025] [Indexed: 03/25/2025]
Abstract
Genome editing technologies like CRISPR/Cas have greatly accelerated the pace of both fundamental research and translational applications in agriculture. However, many plant biologists are functionally limited to creating small, targeted DNA changes or large, random DNA insertions. The ability to efficiently generate large, yet precise, DNA changes will massively accelerate crop breeding cycles, enabling researchers to more efficiently engineer crops amidst a rapidly changing agricultural landscape. This review provides an overview of existing technologies that allow plant biologists to integrate large DNA sequences within a plant host and some associated technical bottlenecks. Additionally, this review explores a selection of emerging techniques in other host systems to inspire tool development in plants.
Collapse
Affiliation(s)
- Katie Vollen
- Department of Plant BiologyNorth Carolina State UniversityRaleighNorth Carolina27695USA
| | - Jose M. Alonso
- Department of Plant BiologyNorth Carolina State UniversityRaleighNorth Carolina27695USA
| | - Anna N. Stepanova
- Department of Plant BiologyNorth Carolina State UniversityRaleighNorth Carolina27695USA
| |
Collapse
|
7
|
Ahmadikhah A, Zarabizadeh H, Nayeri S, Abbasi MS. Advancements in genome editing tools for genetic studies and crop improvement. FRONTIERS IN PLANT SCIENCE 2025; 15:1370675. [PMID: 39963359 PMCID: PMC11830681 DOI: 10.3389/fpls.2024.1370675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 12/31/2024] [Indexed: 02/20/2025]
Abstract
The rapid increase in global population poses a significant challenge to food security, compounded by the adverse effects of climate change, which limit crop productivity through both biotic and abiotic stressors. Despite decades of progress in plant breeding and genetic engineering, the development of new crop varieties with desirable agronomic traits remains a time-consuming process. Traditional breeding methods often fall short of addressing the urgent need for improved crop varieties. Genome editing technologies, which enable precise modifications at specific genomic loci, have emerged as powerful tools for enhancing crop traits. These technologies, including RNA interference, Meganucleases, ZFNs, TALENs, and CRISPR/Cas systems, allow for the targeted insertion, deletion, or alteration of DNA fragments, facilitating improvements in traits such as herbicide and insect resistance, nutritional quality, and stress tolerance. Among these, CRISPR/Cas9 stands out for its simplicity, efficiency, and ability to reduce off-target effects, making it a valuable tool in both agricultural biotechnology and plant functional genomics. This review examines the functional mechanisms and applications of various genome editing technologies for crop improvement, highlighting their advantages and limitations. It also explores the ethical considerations associated with genome editing in agriculture and discusses the potential of these technologies to contribute to sustainable food production in the face of growing global challenges.
Collapse
Affiliation(s)
- Asadollah Ahmadikhah
- Department of Cellular and Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | | | | | | |
Collapse
|
8
|
Arshad S, Qadir ML, Hussain N, Ali Q, Han S, Ali D. Advances in CRISPR/Cas9 technology: shaping the future of photosynthetic microorganisms for biofuel production. FUNCTIONAL PLANT BIOLOGY : FPB 2025; 52:FP24255. [PMID: 39932844 DOI: 10.1071/fp24255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 01/15/2025] [Indexed: 02/13/2025]
Abstract
Use of fossil fuels causes environmental issues due to its inefficiency and and imminent depletion. This has led to interest in identifying alternative and renewable energy sources such as biofuel generation from photosynthetic organisms. A wide variety of prokaryotic and eukaryotic microorganisms, known as microalgae, have the potential to be economical and ecologically sustainable in the manufacture of biofuels such as bio-hydrogen, biodiesel, bio-oils, and bio-syngas. By using contemporary bioengineering techniques, the innate potential of algae to produce biomass of superior quality may be enhanced. In algal biotechnology, directed genome modification via RNA-guided endonucleases is a new approach. CRISPR/Cas systems have recently been frequently used to modify the genetic makeup of several aquatic and freshwater microalgae. The majority of research has used the Cas9-driven Type II system, one of two classes and six unique kinds of CRISPR systems, to specifically target desired genes in algae, and knock them out and down, or both. Using CRISPR technology to modify its genetic makeup, microalgae has produced more biomass and increased in lipid content. This review highlights the attempts made so far to target microalgae genome modification, discusses the prospects for developing the CRISPR platform for large-scale genome modification of microalgae, and identifies the opportunities and challenges in the development and distribution of CRISPR/Cas9 components.
Collapse
Affiliation(s)
- Samreen Arshad
- Center for Applied Molecular Biology (CAMB), University of the Punjab, Lahore, Pakistan
| | - Muhammad Luqman Qadir
- Center for Applied Molecular Biology (CAMB), University of the Punjab, Lahore, Pakistan
| | - Nazim Hussain
- Center for Applied Molecular Biology (CAMB), University of the Punjab, Lahore, Pakistan
| | - Qurban Ali
- Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | - Shiming Han
- School of Biological Sciences and Technology, Liupanshui Normal University, Liupanshui 553004, China
| | - Daoud Ali
- Department of Zoology, College of Science, King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia
| |
Collapse
|
9
|
Bilal M, Geng J, Chen L, García-Caparros P, Hu T. Genome editing for grass improvement and future agriculture. HORTICULTURE RESEARCH 2025; 12:uhae293. [PMID: 39906167 PMCID: PMC11789526 DOI: 10.1093/hr/uhae293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 10/06/2024] [Indexed: 02/06/2025]
Abstract
Grasses, including turf and forage, cover most of the earth's surface; predominantly important for land, water, livestock feed, soil, and water conservation, as well as carbon sequestration. Improved production and quality of grasses by modern molecular breeding is gaining more research attention. Recent advances in genome-editing technologies are helping to revolutionize plant breeding and also offering smart and efficient acceleration on grass improvement. Here, we reviewed all recent researches using (CRISPR)/CRISPR-associated protein (Cas)-mediated genome editing tools to enhance the growth and quality of forage and turf grasses. Furthermore, we highlighted emerging approaches aimed at advancing grass breeding program. We assessed the CRISPR-Cas effectiveness, discussed the challenges associated with its application, and explored future perspectives primarily focusing on turf and forage grasses. Despite the promising potential of genome editing in grasses, its current efficiency remains limited due to several bottlenecks, such as the absence of comprehensive reference genomes, the lack of efficient gene delivery tools, unavailability of suitable vector and delivery for grass species, high polyploidization, and multiple homoeoalleles, etc. Despite these challenges, the CRISPR-Cas system holds great potential to fully harness its benefits in grass breeding and genetics, aiming to improve and sustain the quantity and quality of turf and forage grasses.
Collapse
Affiliation(s)
- Muhammad Bilal
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Jie Geng
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Lin Chen
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Pedro García-Caparros
- Agronomy Department of Superior School Engineering, University of Almería, Almeria, Spain
| | - Tao Hu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| |
Collapse
|
10
|
Ghane A, Malhotra PK, Sanghera GS, Verma SK, Jamwal NS, Kashyap L, Wani SH. CRISPR/Cas technology: fueling the future of Biofuel production with sugarcane. Funct Integr Genomics 2024; 24:205. [PMID: 39495322 DOI: 10.1007/s10142-024-01487-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/22/2024] [Accepted: 10/23/2024] [Indexed: 11/05/2024]
Abstract
The objective of present review is to provide a scientific overview of sugarcane as a potential feedstock for biofuel and use of genome editing approach for improvement of industrial and agronomical traits in sugarcane. Sugarcane, a perennial tropical grass with a high biomass index, is a promising feedstock for bioethanol production, and its bagasse, rich in lignocellulosic material, serves as an ideal feedstock for producing second-generation bioethanol. To improve the conversion of sugarcane biomass into biofuels, developing varieties with improved biomass degradability and high biomass and sucrose content is essential. The complex genome architecture and earlier lack of sequence data hindered biotechnological advancements in sugarcane, but recent genome sequence updates offer new opportunities for sugarcane improvement. The first genetically modified sugarcane was developed in 1992 by Bower and Birch using microprojectile bombardment of embryogenic callus. Since then, transgenic techniques have rapidly evolved, leading to the advancement of genome editing technologies. Application of genome editing tools particularly CRISPR/Cas system has been successfully used in sugarcane for editing. Recently, multiple alleles of the magnesium chelatase and acetolactate synthase genes in sugarcane have been successfully edited through multiplexing. Additionally, CRISPR-edited sugarcane varieties with modified cell wall components and increased sucrose content for enhanced bioethanol production have been developed. At the end, the future of CRISPR-edited crops will depend on how well regulatory frameworks adapt to the rapidly evolving technology.
Collapse
Affiliation(s)
- A Ghane
- School of Agricultural Biotechnology, PAU, Ludhiana, India
| | - P K Malhotra
- School of Agricultural Biotechnology, PAU, Ludhiana, India.
| | - G S Sanghera
- Regional., Research Station, Punjab Agricultural University, Kapurthala, India
| | - S K Verma
- Institute of Biological Science, SAGE University, Indore, India
| | - N S Jamwal
- Regional., Research Station, Punjab Agricultural University, Kapurthala, India
| | - L Kashyap
- Department of Plant Breeding and Genetics, PAU, Ludhiana, India
| | - S H Wani
- Mountain Research Center for Field Crop, SKUAST Srinagar, Jammu and Kashmir, Khudwani, India
| |
Collapse
|
11
|
Kumari R, Saha T, Kumar P, Singh AK. CRISPR/Cas9-mediated genome editing technique to control fall armyworm ( Spodoptera frugiperda) in crop plants with special reference to maize. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2024; 30:1161-1173. [PMID: 39100879 PMCID: PMC11291824 DOI: 10.1007/s12298-024-01486-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/29/2024] [Accepted: 07/04/2024] [Indexed: 08/06/2024]
Abstract
Fall Armyworm imposes a major risk to agricultural losses. Insecticides have historically been used to manage its infestations, but it eventually becomes resistant to them. To combat the pest, a more recent strategy based on the use of transgenic maize that expresses Bt proteins such as Cry1F from the bacteria has been used. Nonetheless, there have been numerous reports of Cry1F maize resistance in FAW populations. Nowadays, the more effective and less time-consuming genome editing method known as CRISPR/Cas9 technology has gradually supplanted these various breeding techniques. This method successfully edits the genomes of various insects, including Spodoptera frugiperda. On the other hand, this new technique can change an insect's DNA to overcome its tolerance to specific insecticides or to generate a gene drive. The production of plant cultivars resistant to fall armyworms holds great potential for the sustainable management of this pest, given the swift advancement of CRISPR/Cas9 technology and its varied uses. Thus, this review article discussed and critically assessed the use of CRISPR/Cas9 genome-editing technology in long-term fall armyworm pest management. However, this review study focuses primarily on the mechanism of the CRISPR-Cas9 system in both crop plants and insects for FAW management.
Collapse
Affiliation(s)
- Rima Kumari
- Division of Plant Biotechnology, College of Agricultural Biotechnology, Bihar Agricultural University, Sabour, Bihar 813210 India
| | - Tamoghna Saha
- Department of Entomology, Bihar Agricultural University, Sabour, Bihar 813210 India
| | - Pankaj Kumar
- Department of Molecular Biology and Genetic Engineering, Bihar Agricultural University, Sabour, Bihar 813210 India
| | - A. K. Singh
- Bihar Agricultural University, Sabour, 813210 Bihar India
| |
Collapse
|
12
|
Azizi-Dargahlou S, Pouresmaeil M. Agrobacterium tumefaciens-Mediated Plant Transformation: A Review. Mol Biotechnol 2024; 66:1563-1580. [PMID: 37340198 DOI: 10.1007/s12033-023-00788-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 06/07/2023] [Indexed: 06/22/2023]
Abstract
Agrobacterium tumefaciens-mediated plant transformation is the most dominant technique for the transformation of plants. It is used to transform monocotyledonous and dicotyledonous plants. A. tumefaciens apply for stable and transient transformation, random and targeted integration of foreign genes, as well as genome editing of plants. The Advantages of this method include cheapness, uncomplicated operation, high reproducibility, a low copy number of integrated transgenes, and the possibility of transferring larger DNA fragments. Engineered endonucleases such as CRISPR/Cas9 systems, TALENs, and ZFNs can be delivered with this method. Nowadays, Agrobacterium-mediated transformation is used for the Knock in, Knock down, and Knock out of genes. The transformation effectiveness of this method is not always desirable. Researchers applied various strategies to improve the effectiveness of this method. Here, a general overview of the characteristics and mechanism of gene transfer with Agrobacterium is presented. Advantages, updated data on the factors involved in optimizing this method, and other useful materials that lead to maximum exploitation as well as overcoming obstacles of this method are discussed. Moreover, the application of this method in the generation of genetically edited plants is stated. This review can help researchers to establish a rapid and highly effective Agrobacterium-mediated transformation protocol for any plant species.
Collapse
Affiliation(s)
| | - Mahin Pouresmaeil
- Department of Biotechnology, Azarbaijan Shahid Madani University, Tabriz, Iran
| |
Collapse
|
13
|
Fan T, Cheng Y, Wu Y, Liu S, Tang X, He Y, Liao S, Zheng X, Zhang T, Qi Y, Zhang Y. High performance TadA-8e derived cytosine and dual base editors with undetectable off-target effects in plants. Nat Commun 2024; 15:5103. [PMID: 38877035 PMCID: PMC11178825 DOI: 10.1038/s41467-024-49473-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 06/06/2024] [Indexed: 06/16/2024] Open
Abstract
Cytosine base editors (CBEs) and adenine base editors (ABEs) enable precise C-to-T and A-to-G edits. Recently, ABE8e, derived from TadA-8e, enhances A-to-G edits in mammalian cells and plants. Interestingly, TadA-8e can also be evolved to confer C-to-T editing. This study compares engineered CBEs derived from TadA-8e in rice and tomato cells, identifying TadCBEa, TadCBEd, and TadCBEd_V106W as efficient CBEs with high purity and a narrow editing window. A dual base editor, TadDE, promotes simultaneous C-to-T and A-to-G editing. Multiplexed base editing with TadCBEa and TadDE is demonstrated in transgenic rice, with no off-target effects detected by whole genome and transcriptome sequencing, indicating high specificity. Finally, two crop engineering applications using TadDE are shown: introducing herbicide resistance alleles in OsALS and creating synonymous mutations in OsSPL14 to resist OsMIR156-mediated degradation. Together, this study presents TadA-8e derived CBEs and a dual base editor as valuable additions to the plant editing toolbox.
Collapse
Affiliation(s)
- Tingting Fan
- Department of Biotechnology, School of Life Sciences and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, 610054, China
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Yanhao Cheng
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, ML, 20742, USA
| | - Yuechao Wu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou, 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou, 225009, China
| | - Shishi Liu
- Department of Biotechnology, School of Life Sciences and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Xu Tang
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Yao He
- Department of Biotechnology, School of Life Sciences and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Shanyue Liao
- Department of Biotechnology, School of Life Sciences and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Xuelian Zheng
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Tao Zhang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou, 225009, China.
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou, 225009, China.
| | - Yiping Qi
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, ML, 20742, USA.
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, ML, 20850, USA.
| | - Yong Zhang
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
14
|
Tang X, Ren Q, Yan X, Zhang R, Liu L, Han Q, Zheng X, Qi Y, Song H, Zhang Y. Boosting genome editing in plants with single transcript unit surrogate reporter systems. PLANT COMMUNICATIONS 2024; 5:100921. [PMID: 38616491 PMCID: PMC11211634 DOI: 10.1016/j.xplc.2024.100921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/20/2024] [Accepted: 04/11/2024] [Indexed: 04/16/2024]
Abstract
CRISPR-Cas-based genome editing holds immense promise for advancing plant genomics and crop enhancement. However, the challenge of low editing activity complicates the identification of editing events. In this study, we introduce multiple single transcript unit surrogate reporter (STU-SR) systems to enhance the selection of genome-edited plants. These systems use the same single guide RNAs designed for endogenous genes to edit reporter genes, establishing a direct link between reporter gene editing activity and that of endogenous genes. Various strategies are used to restore functional reporter genes after genome editing, including efficient single-strand annealing (SSA) for homologous recombination in STU-SR-SSA systems. STU-SR-base editor systems leverage base editing to reinstate the start codon, enriching C-to-T and A-to-G base editing events. Our results showcase the effectiveness of these STU-SR systems in enhancing genome editing events in the monocot rice, encompassing Cas9 nuclease-based targeted mutagenesis, cytosine base editing, and adenine base editing. The systems exhibit compatibility with Cas9 variants, such as the PAM-less SpRY, and are shown to boost genome editing in Brassica oleracea, a dicot vegetable crop. In summary, we have developed highly efficient and versatile STU-SR systems for enrichment of genome-edited plants.
Collapse
Affiliation(s)
- Xu Tang
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing 400715, China; Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Ministry of Education, Chongqing 400715, China; College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China; Department of Biotechnology, School of Life Sciences and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Qiurong Ren
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China; School of Synbiology, School of Life Science, Shanxi University, Taiyuan 030006, China
| | - Xiaodan Yan
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Ministry of Education, Chongqing 400715, China; College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China
| | - Rui Zhang
- Department of Biotechnology, School of Life Sciences and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Li Liu
- Department of Biotechnology, School of Life Sciences and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Qinqin Han
- Department of Biotechnology, School of Life Sciences and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Xuelian Zheng
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing 400715, China; Department of Biotechnology, School of Life Sciences and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Yiping Qi
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD 20742, USA; Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850, USA.
| | - Hongyuan Song
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Ministry of Education, Chongqing 400715, China; College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China.
| | - Yong Zhang
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing 400715, China; Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Ministry of Education, Chongqing 400715, China; College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China; Department of Biotechnology, School of Life Sciences and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China.
| |
Collapse
|
15
|
Puchta H. Regulation of gene-edited plants in Europe: from the valley of tears into the shining sun? ABIOTECH 2024; 5:231-238. [PMID: 38974871 PMCID: PMC11224193 DOI: 10.1007/s42994-023-00130-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 12/04/2023] [Indexed: 07/09/2024]
Abstract
Some 20 years ago, the EU introduced complex regulatory rules for the growth of transgenic crops, which resulted in a de facto ban to grow these plants in fields within most European countries. With the rise of novel genome editing technologies, it has become possible to improve crops genetically in a directed way without the need for incorporation of foreign genes. Unfortunately, in 2018, the European Court of Justice ruled that such gene-edited plants are to be regulated like transgenic plants. Since then, European scientists and breeders have challenged this decision and requested a revision of this outdated law. Finally, after 5 years, the European Commission has now published a proposal on how, in the future, to regulate crops produced by new breeding technologies. The proposal tries to find a balance between the different interest groups in Europe. On one side, genetically modified plants, which cannot be discerned from their natural counterparts, will exclusively be used for food and feed and are-besides a registration step-not to be regulated at all. On the other side, plants expressing herbicide resistance are to be excluded from this regulation, a concession to the strong environmental associations and NGOs in Europe. Moreover, edited crops are to be excluded from organic farming to protect the business interests of the strong organic sector in Europe. Nevertheless, if this law passes European parliament and council, unchanged, it will present a big step forward toward establishing a more sustainable European agricultural system. Thus, it might soon be possible to develop and grow crops that are more adapted to global warming and whose cultivation will require lower amounts of pesticides. However, there is still a long way to go until the law is passed. Too often, the storm of arguments raised by the opponents, based on irrational fears of mutations and a naive understanding of nature, has fallen on fruitful ground in Europe.
Collapse
Affiliation(s)
- Holger Puchta
- Department of Molecular Biology, Joseph Gottlieb Kölreuter Institute for Plant Sciences, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 4, 76131 Karlsruhe, Germany
| |
Collapse
|
16
|
Tanveer M, Abidin ZU, Alawadi HFN, Shahzad AN, Mahmood A, Khan BA, Qari S, Oraby HF. Recent advances in genome editing strategies for balancing growth and defence in sugarcane ( Saccharum officinarum). FUNCTIONAL PLANT BIOLOGY : FPB 2024; 51:FP24036. [PMID: 38696670 DOI: 10.1071/fp24036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 04/14/2024] [Indexed: 05/04/2024]
Abstract
Sugarcane (Saccharum officinarum ) has gained more attention worldwide in recent decades because of its importance as a bioenergy resource and in producing table sugar. However, the production capabilities of conventional varieties are being challenged by the changing climates, which struggle to meet the escalating demands of the growing global population. Genome editing has emerged as a pivotal field that offers groundbreaking solutions in agriculture and beyond. It includes inserting, removing or replacing DNA in an organism's genome. Various approaches are employed to enhance crop yields and resilience in harsh climates. These techniques include zinc finger nuclease (ZFN), transcription activator-like effector nuclease (TALEN) and clustered regularly interspaced short palindromic repeats/associated protein (CRISPR/Cas). Among these, CRISPR/Cas is one of the most promising and rapidly advancing fields. With the help of these techniques, several crops like rice (Oryza sativa ), tomato (Solanum lycopersicum ), maize (Zea mays ), barley (Hordeum vulgare ) and sugarcane have been improved to be resistant to viral diseases. This review describes recent advances in genome editing with a particular focus on sugarcane and focuses on the advantages and limitations of these approaches while also considering the regulatory and ethical implications across different countries. It also offers insights into future prospects and the application of these approaches in agriculture.
Collapse
Affiliation(s)
- Maira Tanveer
- Department of Botany, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan
| | - Zain Ul Abidin
- Department of Botany, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan
| | | | - Ahmad Naeem Shahzad
- Department of Agronomy, Bahauddin Zakarriya University, Multan 60650, Pakistan
| | - Athar Mahmood
- Department of Agronomy, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan
| | - Bilal Ahmad Khan
- Department of Agronomy, College of Agriculture, University of Sargodha, Sargodha, Pakistan
| | - Sameer Qari
- Department of Biology, Al-Jumum University College, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Hesham Farouk Oraby
- Deanship of Scientific Research, Umm Al-Qura University, Makkah 21955, Saudi Arabia; and Department of Crop Science, Faculty of Agriculture, Zagazig University, Zagazig 44519, Egypt
| |
Collapse
|
17
|
Su C, Lin D, Huang X, Feng J, Jin A, Wang F, Lv Q, Lei L, Pan W. Developing hydrogels for gene therapy and tissue engineering. J Nanobiotechnology 2024; 22:182. [PMID: 38622684 PMCID: PMC11017488 DOI: 10.1186/s12951-024-02462-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 04/04/2024] [Indexed: 04/17/2024] Open
Abstract
Hydrogels are a class of highly absorbent and easily modified polymer materials suitable for use as slow-release carriers for drugs. Gene therapy is highly specific and can overcome the limitations of traditional tissue engineering techniques and has significant advantages in tissue repair. However, therapeutic genes are often affected by cellular barriers and enzyme sensitivity, and carrier loading of therapeutic genes is essential. Therapeutic gene hydrogels can well overcome these difficulties. Moreover, gene-therapeutic hydrogels have made considerable progress. This review summarizes the recent research on carrier gene hydrogels for the treatment of tissue damage through a summary of the most current research frontiers. We initially introduce the classification of hydrogels and their cross-linking methods, followed by a detailed overview of the types and modifications of therapeutic genes, a detailed discussion on the loading of therapeutic genes in hydrogels and their characterization features, a summary of the design of hydrogels for therapeutic gene release, and an overview of their applications in tissue engineering. Finally, we provide comments and look forward to the shortcomings and future directions of hydrogels for gene therapy. We hope that this article will provide researchers in related fields with more comprehensive and systematic strategies for tissue engineering repair and further promote the development of the field of hydrogels for gene therapy.
Collapse
Affiliation(s)
- Chunyu Su
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, 310015, China
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325200, China
- College of Biology & Pharmacy, Yulin Normal University, Yulin, 537000, China
| | - Dini Lin
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325200, China
| | - Xinyu Huang
- College of Biology & Pharmacy, Yulin Normal University, Yulin, 537000, China
| | - Jiayin Feng
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, 310015, China
| | - Anqi Jin
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, 310015, China
| | - Fangyan Wang
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, 310015, China
| | - Qizhuang Lv
- College of Biology & Pharmacy, Yulin Normal University, Yulin, 537000, China.
| | - Lanjie Lei
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, 310015, China.
| | - Wenjie Pan
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325200, China.
| |
Collapse
|
18
|
Das S, Kwon M, Kim JY. Enhancement of specialized metabolites using CRISPR/Cas gene editing technology in medicinal plants. FRONTIERS IN PLANT SCIENCE 2024; 15:1279738. [PMID: 38450402 PMCID: PMC10915232 DOI: 10.3389/fpls.2024.1279738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 02/02/2024] [Indexed: 03/08/2024]
Abstract
Plants are the richest source of specialized metabolites. The specialized metabolites offer a variety of physiological benefits and many adaptive evolutionary advantages and frequently linked to plant defense mechanisms. Medicinal plants are a vital source of nutrition and active pharmaceutical agents. The production of valuable specialized metabolites and bioactive compounds has increased with the improvement of transgenic techniques like gene silencing and gene overexpression. These techniques are beneficial for decreasing production costs and increasing nutritional value. Utilizing biotechnological applications to enhance specialized metabolites in medicinal plants needs characterization and identification of genes within an elucidated pathway. The breakthrough and advancement of CRISPR/Cas-based gene editing in improving the production of specific metabolites in medicinal plants have gained significant importance in contemporary times. This article imparts a comprehensive recapitulation of the latest advancements made in the implementation of CRISPR-gene editing techniques for the purpose of augmenting specific metabolites in medicinal plants. We also provide further insights and perspectives for improving metabolic engineering scenarios in medicinal plants.
Collapse
Affiliation(s)
- Swati Das
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University, Jinju, Republic of Korea
| | - Moonhyuk Kwon
- Division of Life Science, Anti-aging Bio Cell Factory Regional Leading Research Center (ABC-RLRC), Research Institute of Molecular Alchemy (RIMA), Gyeongsang National University, Jinju, Republic of Korea
| | - Jae-Yean Kim
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University, Jinju, Republic of Korea
- Nulla Bio R&D Center, Nulla Bio Inc., Jinju, Republic of Korea
| |
Collapse
|
19
|
Lin JY, Liu YC, Tseng YH, Chan MT, Chang CC. TALE-based organellar genome editing and gene expression in plants. PLANT CELL REPORTS 2024; 43:61. [PMID: 38336900 DOI: 10.1007/s00299-024-03150-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 01/04/2024] [Indexed: 02/12/2024]
Abstract
KEY MESSAGE TALE-based editors provide an alternative way to engineer the organellar genomes in plants. We update and discuss the most recent developments of TALE-based organellar genome editing in plants. Gene editing tools have been widely used to modify the nuclear genomes of plants for various basic research and biotechnological applications. The clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 editing platform is the most commonly used technique because of its ease of use, fast speed, and low cost; however, it encounters difficulty when being delivered to plant organelles for gene editing. In contrast, protein-based editing technologies, such as transcription activator-like effector (TALE)-based tools, could be easily delivered, expressed, and targeted to organelles in plants via Agrobacteria-mediated nuclear transformation. Therefore, TALE-based editors provide an alternative way to engineer the organellar genomes in plants since the conventional chloroplast transformation method encounters technical challenges and is limited to certain species, and the direct transformation of mitochondria in higher plants is not yet possible. In this review, we update and discuss the most recent developments of TALE-based organellar genome editing in plants.
Collapse
Affiliation(s)
- Jer-Young Lin
- Agricultural Biotechnology Research Center, Academia Sinica, Tainan, 71150, Taiwan
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Yu-Chang Liu
- Agricultural Biotechnology Research Center, Academia Sinica, Tainan, 71150, Taiwan
| | - Yan-Hao Tseng
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Ming-Tsair Chan
- Agricultural Biotechnology Research Center, Academia Sinica, Tainan, 71150, Taiwan.
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, 70101, Taiwan.
| | - Ching-Chun Chang
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, 70101, Taiwan.
| |
Collapse
|
20
|
Mohammadian Farsani A, Mokhtari N, Nooraei S, Bahrulolum H, Akbari A, Farsani ZM, Khatami S, Ebadi MS, Ahmadian G. Lipid nanoparticles: The game-changer in CRISPR-Cas9 genome editing. Heliyon 2024; 10:e24606. [PMID: 38288017 PMCID: PMC10823087 DOI: 10.1016/j.heliyon.2024.e24606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/10/2024] [Accepted: 01/10/2024] [Indexed: 01/31/2024] Open
Abstract
The steady progress in genome editing, especially genome editing based on the use of clustered regularly interspaced short palindromic repeats (CRISPR) and programmable nucleases to make precise modifications to genetic material, has provided enormous opportunities to advance biomedical research and promote human health. However, limited transfection efficiency of CRISPR-Cas9 poses a substantial challenge, hindering its wide adoption for genetic modification. Recent advancements in nanoparticle technology, specifically lipid nanoparticles (LNPs), offer promising opportunities for targeted drug delivery. LNPs are becoming popular as a means of delivering therapeutics, including those based on nucleic acids and mRNA. Notably, certain LNPs, such as Polyethylene glycol-phospholipid-modified cationic lipid nanoparticles and solid lipid nanoparticles, exhibit remarkable potential for efficient CRISPR-Cas9 delivery as a gene editing instrument. This review will introduce the molecular mechanisms and diverse applications of the CRISPR/Cas9 gene editing system, current strategies for delivering CRISPR/Cas9-based tools, the advantage of LNPs for CRISPR-Cas9 delivery, an overview of strategies for overcoming off-target genome editing, and approaches for improving genome targeting and tissue targeting. We will also highlight current developments and recent clinical trials for the delivery of CRISPR/Cas9. Finally, future directions for overcoming the limitations and adaptation of this technology for clinical trials will be discussed.
Collapse
Affiliation(s)
- Arezoo Mohammadian Farsani
- Department of Industrial and Environmental Biotechnology, National Institute for Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Negin Mokhtari
- Department of Industrial and Environmental Biotechnology, National Institute for Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Kharazmi Univesity, Tehran, Iran
| | - Saghi Nooraei
- Department of Industrial and Environmental Biotechnology, National Institute for Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Howra Bahrulolum
- Department of Industrial and Environmental Biotechnology, National Institute for Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Ali Akbari
- Department of Industrial and Environmental Biotechnology, National Institute for Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Zoheir Mohammadian Farsani
- Department of Industrial and Environmental Biotechnology, National Institute for Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Seyedmoein Khatami
- Department of Industrial and Environmental Biotechnology, National Institute for Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Mozhdeh sadat Ebadi
- Department of Industrial and Environmental Biotechnology, National Institute for Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Gholamreza Ahmadian
- Department of Industrial and Environmental Biotechnology, National Institute for Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| |
Collapse
|
21
|
Sahu A, Verma R, Gupta U, Kashyap S, Sanyal I. An Overview of Targeted Genome Editing Strategies for Reducing the Biosynthesis of Phytic Acid: an Anti-nutrient in Crop Plants. Mol Biotechnol 2024; 66:11-25. [PMID: 37061991 DOI: 10.1007/s12033-023-00722-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 03/11/2023] [Indexed: 04/17/2023]
Abstract
Anti-nutrients are substances either found naturally or are of synthetic origin, which leads to the inactivation of nutrients and limits their utilization in metabolic processes. Phytic acid is classified as an anti-nutrient, as it has a strong binding affinity with most minerals like Fe, Zn, Mg, Ca, Mn, and Cd and impairs their proper metabolism. Removing anti-nutrients from cereal grains may enable the bioavailability of both macro- and micronutrients which is the desired goal of genetic engineering tools for the betterment of agronomic traits. Several strategies have been adopted to minimize phytic acid content in plants. Pursuing the molecular strategies, there are several studies, which result in the decrement of the total phytic acid content in grains of major as well as minor crops. Biosynthesis of phytic acid mainly takes place in the seed comprising lipid-dependent and lipid-independent pathways, involving various enzymes. Furthermore, some studies show that interruption of these enzymes may involve the pleiotropic effect. However, using modern biotechnological approaches, undesirable agronomic traits can be removed. This review presents an overview of different genes encoding the various enzymes involved in the biosynthetic pathway of phytic acid which is being targeted for its reduction. It also, highlights and enumerates the variety of potential applications of genome editing tools such as TALEN, ZFN, and CRISPR/Cas9 to knock out the desired genes, and RNAi for their silencing.
Collapse
Affiliation(s)
- Anshu Sahu
- Plant Transgenic Laboratory, Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, U.P, 226001, India
| | - Rita Verma
- Plant Transgenic Laboratory, Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, U.P, 226001, India
| | - Uma Gupta
- Plant Transgenic Laboratory, Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, U.P, 226001, India
| | - Shashi Kashyap
- Plant Transgenic Laboratory, Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, U.P, 226001, India
| | - Indraneel Sanyal
- Plant Transgenic Laboratory, Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, U.P, 226001, India.
| |
Collapse
|
22
|
Bull T, Khakhar A. Design principles for synthetic control systems to engineer plants. PLANT CELL REPORTS 2023; 42:1875-1889. [PMID: 37789180 DOI: 10.1007/s00299-023-03072-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 09/10/2023] [Indexed: 10/05/2023]
Abstract
KEY MESSAGE Synthetic control systems have led to significant advancement in the study and engineering of unicellular organisms, but it has been challenging to apply these tools to multicellular organisms like plants. The ability to predictably engineer plants will enable the development of novel traits capable of alleviating global problems, such as climate change and food insecurity. Engineering predictable multicellular phenotypes will require the development of synthetic control systems that can precisely regulate how the information encoded in genomes is translated into phenotypes. Many efficient control systems have been developed for unicellular organisms. However, it remains challenging to use such tools to study or engineer multicellular organisms. Plants are a good chassis within which to develop strategies to overcome these challenges, thanks to their capacity to withstand large-scale reprogramming without lethality. Additionally, engineered plants have great potential for solving major societal problems. Here we briefly review the progress of control system development in unicellular organisms, and how that information can be leveraged to characterize control systems in plants. Further, we discuss strategies for developing control systems designed to regulate the expression of transgenes or endogenous loci and generate dosage-dependent or discrete traits. Finally, we discuss the utility that mathematical models of biological processes have for control system deployment.
Collapse
Affiliation(s)
- Tawni Bull
- Department of Biology, Colorado State University, Fort Collins, CO, USA
| | - Arjun Khakhar
- Department of Biology, Colorado State University, Fort Collins, CO, USA.
| |
Collapse
|
23
|
Dhokane D, Shaikh A, Yadav A, Giri N, Bandyopadhyay A, Dasgupta S, Bhadra B. CRISPR-based bioengineering in microalgae for production of industrially important biomolecules. Front Bioeng Biotechnol 2023; 11:1267826. [PMID: 37965048 PMCID: PMC10641005 DOI: 10.3389/fbioe.2023.1267826] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/11/2023] [Indexed: 11/16/2023] Open
Abstract
Microalgae, as photosynthetic organisms, have the potential to produce biomolecules for use in food, feed, cosmetics, nutraceuticals, fuel, and other applications. Faster growth rates and higher protein and lipid content make microalgae a popular chassis for many industrial applications. However, challenges such as low productivity and high production costs have limited their commercialization. To overcome these challenges, bioengineering approaches such as genetic engineering, metabolic engineering, and synthetic biology have been employed to improve the productivity and quality of microalgae-based products. Genetic engineering employing genome editing tools like CRISPR/Cas allows precise and targeted genetic modifications. CRISPR/Cas systems are presently used to modify the genetic makeup of microalgae for enhanced production of specific biomolecules. However, these tools are yet to be explored explicitly in microalgae owing to some limitations. Despite the progress made in CRISPR-based bioengineering approaches, there is still a need for further research to optimize the production of microalgae-based products. This includes improving the efficiency of genome editing tools, understanding the regulatory mechanisms of microalgal metabolism, and optimizing growth conditions and cultivation strategies. Additionally, addressing the ethical, social, and environmental concerns associated with genetic modification of microalgae is crucial for the responsible development and commercialization of microalgae-based products. This review summarizes the advancements of CRISPR-based bioengineering for production of industrially important biomolecules and provides key considerations to use CRISPR/Cas systems in microalgae. The review will help researchers to understand the progress and to initiate genome editing experiments in microalgae.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Bhaskar Bhadra
- Synthetic Biology Group, Reliance Industries Ltd., Navi Mumbai, India
| |
Collapse
|
24
|
Zhong Z, Liu G, Tang Z, Xiang S, Yang L, Huang L, He Y, Fan T, Liu S, Zheng X, Zhang T, Qi Y, Huang J, Zhang Y. Efficient plant genome engineering using a probiotic sourced CRISPR-Cas9 system. Nat Commun 2023; 14:6102. [PMID: 37773156 PMCID: PMC10541446 DOI: 10.1038/s41467-023-41802-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 09/19/2023] [Indexed: 10/01/2023] Open
Abstract
Among CRISPR-Cas genome editing systems, Streptococcus pyogenes Cas9 (SpCas9), sourced from a human pathogen, is the most widely used. Here, through in silico data mining, we have established an efficient plant genome engineering system using CRISPR-Cas9 from probiotic Lactobacillus rhamnosus. We have confirmed the predicted 5'-NGAAA-3' PAM via a bacterial PAM depletion assay and showcased its exceptional editing efficiency in rice, wheat, tomato, and Larix cells, surpassing LbCas12a, SpCas9-NG, and SpRY when targeting the identical sequences. In stable rice lines, LrCas9 facilitates multiplexed gene knockout through coding sequence editing and achieves gene knockdown via targeted promoter deletion, demonstrating high specificity. We have also developed LrCas9-derived cytosine and adenine base editors, expanding base editing capabilities. Finally, by harnessing LrCas9's A/T-rich PAM targeting preference, we have created efficient CRISPR interference and activation systems in plants. Together, our work establishes CRISPR-LrCas9 as an efficient and user-friendly genome engineering tool for diverse applications in crops and beyond.
Collapse
Affiliation(s)
- Zhaohui Zhong
- Department of Biotechnology, School of Life Sciences and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, 610054, Chengdu, China
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, School of Life Sciences, Southwest University, 400715, Chongqing, China
| | - Guanqing Liu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, 225012, Yangzhou, China
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, 225012, Yangzhou, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, 225012, Yangzhou, China
| | - Zhongjie Tang
- Department of Biotechnology, School of Life Sciences and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, 610054, Chengdu, China
| | - Shuyue Xiang
- Department of Biotechnology, School of Life Sciences and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, 610054, Chengdu, China
| | - Liang Yang
- Horticulture Research Institute, Sichuan Academy of Agricultural Sciences, Sichuan, China
- Vegetable Germplasm Innovation and Variety Improvement Key Laboratory of Sichuan Province, 610066, Chengdu, China
| | - Lan Huang
- Department of Biotechnology, School of Life Sciences and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, 610054, Chengdu, China
| | - Yao He
- Department of Biotechnology, School of Life Sciences and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, 610054, Chengdu, China
| | - Tingting Fan
- Department of Biotechnology, School of Life Sciences and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, 610054, Chengdu, China
| | - Shishi Liu
- Department of Biotechnology, School of Life Sciences and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, 610054, Chengdu, China
| | - Xuelian Zheng
- Department of Biotechnology, School of Life Sciences and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, 610054, Chengdu, China
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, School of Life Sciences, Southwest University, 400715, Chongqing, China
| | - Tao Zhang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, 225012, Yangzhou, China
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, 225012, Yangzhou, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, 225012, Yangzhou, China
| | - Yiping Qi
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, 20742, USA.
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD, 20850, USA.
| | - Jian Huang
- Department of Biotechnology, School of Life Sciences and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, 610054, Chengdu, China.
| | - Yong Zhang
- Department of Biotechnology, School of Life Sciences and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, 610054, Chengdu, China.
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, School of Life Sciences, Southwest University, 400715, Chongqing, China.
| |
Collapse
|
25
|
Sretenovic S, Green Y, Wu Y, Cheng Y, Zhang T, Van Eck J, Qi Y. Genome- and transcriptome-wide off-target analyses of a high-efficiency adenine base editor in tomato. PLANT PHYSIOLOGY 2023; 193:291-303. [PMID: 37315207 DOI: 10.1093/plphys/kiad347] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/22/2023] [Accepted: 05/26/2023] [Indexed: 06/16/2023]
Abstract
Adenine base editors (ABEs) are valuable, precise genome editing tools in plants. In recent years, the highly promising ADENINE BASE EDITOR8e (ABE8e) was reported for efficient A-to-G editing. However, compared to monocots, comprehensive off-target analyses for ABE8e are lacking in dicots. To determine the occurrence of off-target effects in tomato (Solanum lycopersicum), we assessed ABE8e and a high-fidelity version, ABE8e-HF, at 2 independent target sites in protoplasts, as well as stable T0 lines. Since ABE8e demonstrated higher on-target efficiency than ABE8e-HF in tomato protoplasts, we focused on ABE8e for off-target analyses in T0 lines. We conducted whole-genome sequencing (WGS) of wild-type (WT) tomato plants, green fluorescent protein (GFP)-expressing T0 lines, ABE8e-no-gRNA control T0 lines, and edited T0 lines. No guide RNA (gRNA)-dependent off-target edits were detected. Our data showed an average of approximately 1,200 to 1,500 single-nucleotide variations (SNVs) in either GFP control plants or base-edited plants. Also, no specific enrichment of A-to-G mutations were found in base-edited plants. We also conducted RNA sequencing (RNA-seq) of the same 6 base-edited and 3 GFP control T0 plants. On average, approximately 150 RNA-level SNVs were discovered per plant for either base-edited or GFP controls. Furthermore, we did not find enrichment of a TA motif on mutated adenine in the genomes and transcriptomes in base-edited tomato plants, as opposed to the recent discovery in rice (Oryza sativa). Hence, we could not find evidence for genome- and transcriptome-wide off-target effects by ABE8e in tomato.
Collapse
Affiliation(s)
- Simon Sretenovic
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD 20742, USA
| | - Yumi Green
- The Boyce Thompson Institute, Ithaca, NY 14853, USA
| | - Yuechao Wu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Yanhao Cheng
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD 20742, USA
| | - Tao Zhang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Joyce Van Eck
- The Boyce Thompson Institute, Ithaca, NY 14853, USA
- Plant Breeding and Genetics Section, Cornell University, Ithaca, NY 14853, USA
| | - Yiping Qi
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD 20742, USA
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850, USA
| |
Collapse
|
26
|
Gautam R, Shukla P, Kirti PB. Male sterility in plants: an overview of advancements from natural CMS to genetically manipulated systems for hybrid seed production. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:195. [PMID: 37606708 DOI: 10.1007/s00122-023-04444-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 08/07/2023] [Indexed: 08/23/2023]
Abstract
KEY MESSAGE The male sterility system in plants has traditionally been utilized for hybrid seed production. In last three decades, genetic manipulation for male sterility has revolutionized this area of research related to hybrid seed production technology. Here, we have surveyed some of the natural cytoplasmic male sterility (CMS) systems that existed/ were developed in different crop plants for developing male sterility-fertility restoration systems used in hybrid seed production and highlighted some of the recent biotechnological advancements in the development of genetically engineered systems that occurred in this area. We have indicated the possible future directions toward the development of engineered male sterility systems. Cytoplasmic male sterility (CMS) is an important trait that is naturally prevalent in many plant species, which has been used in the development of hybrid varieties. This is associated with the use of appropriate genes for fertility restoration provided by the restorer line that restores fertility on the corresponding CMS line. The development of hybrids based on a CMS system has been demonstrated in several different crops. However, there are examples of species, which do not have usable cytoplasmic male sterility and fertility restoration systems (Cytoplasmic Genetic Male Sterility Systems-CGMS) for hybrid variety development. In such plants, it is necessary to develop usable male sterile lines through genetic engineering with the use of heterologous expression of suitable genes that control the development of male gametophyte and fertile male gamete formation. They can also be developed through gene editing using the recently developed CRISPR-Cas technology to knock out suitable genes that are responsible for the development of male gametes. The present review aims at providing an insight into the development of various technologies for successful production of hybrid varieties and is intended to provide only essential information on male sterility systems starting from naturally occurring ones to the genetically engineered systems obtained through different means.
Collapse
Affiliation(s)
- Ranjana Gautam
- Department of Life Sciences and Biotechnology, Chhatrapati Shahu Ji Maharaj University, Kanpur, Uttar Pradesh, 208024, India
| | - Pawan Shukla
- Seri-Biotech Research Laboratory, Central Silk Board, Carmelram Post, Kodathi, Bangalore, 560035, India.
| | - P B Kirti
- Agri Biotech Foundation, PJTS Agricultural University Campus, Rajendranagar, Hyderabad, Telangana, 500030, India
| |
Collapse
|
27
|
Shahwar D, Ahn N, Kim D, Ahn W, Park Y. Mutagenesis-based plant breeding approaches and genome engineering: A review focused on tomato. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2023; 792:108473. [PMID: 37716439 DOI: 10.1016/j.mrrev.2023.108473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 09/08/2023] [Accepted: 09/08/2023] [Indexed: 09/18/2023]
Abstract
Breeding is the most important and efficient method for crop improvement involving repeated modification of the genetic makeup of a plant population over many generations. In this review, various accessible breeding approaches, such as conventional breeding and mutation breeding (physical and chemical mutagenesis and insertional mutagenesis), are discussed with respect to the actual impact of research on the economic improvement of tomato agriculture. Tomatoes are among the most economically important fruit crops consumed worldwide because of their high nutritional content and health-related benefits. Additionally, we summarize mutation-based mapping approaches, including Mutmap and MutChromeSeq, for the efficient mapping of several genes identified by random indel mutations that are beneficial for crop improvement. Difficulties and challenges in the adaptation of new genome editing techniques that provide opportunities to demonstrate precise mutations are also addressed. Lastly, this review focuses on various effective and convenient genome editing tools, such as RNA interference (RNAi), zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and clustered regularly interspaced short palindromic repeats (CRISPR/Cas9), and their potential for the improvement of numerous desirable traits to allow the development of better varieties of tomato and other horticultural crops.
Collapse
Affiliation(s)
- Durre Shahwar
- Department of Horticultural Bioscience, Pusan National University, Miryang 50463, Republic of Korea
| | - Namju Ahn
- Daenong Seed Company, Hwasun-gun 58155, Republic of Korea
| | - Donghyun Kim
- Daenong Seed Company, Hwasun-gun 58155, Republic of Korea
| | - Wooseong Ahn
- Daenong Seed Company, Hwasun-gun 58155, Republic of Korea
| | - Younghoon Park
- Department of Horticultural Bioscience, Pusan National University, Miryang 50463, Republic of Korea.
| |
Collapse
|
28
|
Ma H, Liu N, Sun X, Zhu M, Mao T, Huang S, Meng X, Li H, Wang M, Liang H. Establishment of an efficient transformation system and its application in regulatory mechanism analysis of biological macromolecules in tea plants. Int J Biol Macromol 2023:125372. [PMID: 37321436 DOI: 10.1016/j.ijbiomac.2023.125372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/08/2023] [Accepted: 06/11/2023] [Indexed: 06/17/2023]
Abstract
Tea (Camellia sinensis), one of the most important beverage crops originated from China and is now cultivated worldwide, provides numerous secondary metabolites that account for its health benefits and rich flavor. However, the lack of an efficient and reliable genetic transformation system has seriously hindered the gene function investigation and precise breeding of C. sinensis. In this study, we established a highly efficient, labor-saving, and cost-effective Agrobacterium rhizogenes-mediated hairy roots genetic transformation system for C. sinensis, which can be used for gene overexpression and genome editing. The established transformation system was simple to operate, bypassing tissue culture and antibiotic screening, and only took two months to complete. We used this system to conduct function analysis of transcription factor CsMYB73 and found that CsMYB73 negatively regulates L-theanine synthesis in tea plant. Additionally, callus formation was successfully induced using transgenic roots, and the transgenic callus exhibited normal chlorophyll production, enabling the study of the corresponding biological functions. Furthermore, this genetic transformation system was effective for multiple C. sinensis varieties and other woody plant species. By overcoming technical obstacles such as low efficiency, long experimental periods, and high costs, this genetic transformation will be a valuable tool for routine gene investigation and precise breeding in tea plants.
Collapse
Affiliation(s)
- Haijie Ma
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, Zhejiang, China; Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, China.
| | - Ningge Liu
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, Zhejiang, China
| | - Xuepeng Sun
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, Zhejiang, China
| | - Mengling Zhu
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, Zhejiang, China
| | - Tingfeng Mao
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, Zhejiang, China
| | - Suya Huang
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, Zhejiang, China
| | - Xinyue Meng
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, Zhejiang, China
| | - Hangfei Li
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, Zhejiang, China
| | - Min Wang
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, Zhejiang, China
| | - Huiling Liang
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, Zhejiang, China
| |
Collapse
|
29
|
Aman Mohammadi M, Maximiano MR, Hosseini SM, Franco OL. CRISPR-Cas engineering in food science and sustainable agriculture: recent advancements and applications. Bioprocess Biosyst Eng 2023; 46:483-497. [PMID: 36707422 DOI: 10.1007/s00449-022-02842-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 12/14/2022] [Indexed: 01/29/2023]
Abstract
The developments in the food supply chain to support the growing population of the world is one of today's most pressing issues, and to achieve this goal improvements should be performed in both crops and microbes. For this purpose, novel approaches such as genome editing (GE) methods have upgraded the biological sciences for genome manipulation and, among such methods, clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated proteins (Cas) are the main exciting innovations since the Green Revolution. CRISPR/Cas systems can be a potent tool for the food industry, improvement of agricultural crops and even for protecting food-grade bacteria from foreign genetic invasive elements. This review introduces the history and mechanism of the CRISPR-Cas system as a genome editing tool and its applications in the vaccination of starter cultures, production of antimicrobials and bioactive compounds, and genome editing of microorganisms.
Collapse
Affiliation(s)
- Masoud Aman Mohammadi
- Student Research Committee, Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences, Food Science and Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mariana Rocha Maximiano
- S-Inova Biotech, Graduate Program in Biotechnology, Universidade Católica Dom Bosco, Campo Grande, MS, Brazil.,Centro de Análises Proteômicas e Bioquímicas, Graduate Program in Genomic Science and Biotechnology, Universidade Católica de Brasília, Brasília, DF, Brazil
| | - Seyede Marzieh Hosseini
- Student Research Committee, Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences, Food Science and Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Octavio Luiz Franco
- S-Inova Biotech, Graduate Program in Biotechnology, Universidade Católica Dom Bosco, Campo Grande, MS, Brazil.,Centro de Análises Proteômicas e Bioquímicas, Graduate Program in Genomic Science and Biotechnology, Universidade Católica de Brasília, Brasília, DF, Brazil
| |
Collapse
|
30
|
Villao L, Chávez T, Pacheco R, Sánchez E, Bonilla J, Santos E. Genetic improvement in Musa through modern biotechnological methods. BIONATURA 2023. [DOI: 10.21931/rb/2023.08.01.20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023] Open
Abstract
Bananas, one of the most valued fruits worldwide, are produced in more than 135 countries in the tropics and subtropics for local consumption and export due to their tremendous nutritional value and ease of access.
The genetic improvement of commercial crops is a crucial strategy for managing pests or other diseases and abiotic stress factors. Although conventional breeding has developed new hybrids with highly productive or agronomic performance characteristics, in some banana cultivars, due to the high level of sterility, the traditional breeding strategy is hampered. Therefore, modern biotechniques have been developed in a banana for genetic improvement. In vitro, culture techniques have been a basis for crop micropropagation for elite banana varieties and the generation of methods for genetic modification. This review includes topics of great interest for improving bananas and their products worldwide, from their origins to the different improvement alternatives.
Keywords. Banana, genetic improvement, pest management, diseases, abiotic stress factors.
Collapse
Affiliation(s)
- L, Villao
- Escuela Superior Politécnica del Litoral, ESPOL, Biotechnological Research Center of Ecuador, Gustavo Galindo Campus Km. 30.5 Vía Perimetral, PO Box 09-01-5863, Guayaquil, Ecuador
| | - T, Chávez
- Escuela Superior Politécnica del Litoral, ESPOL, Biotechnological Research Center of Ecuador, Gustavo Galindo Campus Km. 30.5 Vía Perimetral, PO Box 09-01-5863, Guayaquil, Ecuador
| | - R, Pacheco
- Escuela Superior Politécnica del Litoral, ESPOL, Biotechnological Research Center of Ecuador, Gustavo Galindo Campus Km. 30.5 Vía Perimetral, PO Box 09-01-5863, Guayaquil, Ecuador
| | - E. Sánchez
- Escuela Superior Politécnica del Litoral, ESPOL, Biotechnological Research Center of Ecuador, Gustavo Galindo Campus Km. 30.5 Vía Perimetral, PO Box 09-01-5863, Guayaquil, Ecuador; Escuela Superior Politécnica del Litoral, ESPOL, Faculty of Life Sciences, Gustavo Galindo Campus Km. 30.5 Vía Perimetral, PO Box 09-01-5863, Guayaquil, Ecuador
| | - J. Bonilla
- Escuela Superior Politécnica del Litoral, ESPOL, Biotechnological Research Center of Ecuador, Gustavo Galindo Campus Km. 30.5 Vía Perimetral, PO Box 09-01-5863, Guayaquil, Ecuador ; Escuela Superior Politécnica del Litoral, ESPOL, Faculty of Life Sciences, Gustavo Galindo Campus Km. 30.5 Vía Perimetral, PO Box 09-01-5863, Guayaquil, Ecuador
| | - E. Santos
- Escuela Superior Politécnica del Litoral, ESPOL, Biotechnological Research Center of Ecuador, Gustavo Galindo Campus Km. 30.5 Vía Perimetral, PO Box 09-01-5863, Guayaquil, Ecuador ; Escuela Superior Politécnica del Litoral, ESPOL, Faculty of Life Sciences, Gustavo Galindo Campus Km. 30.5 Vía Perimetral, PO Box 09-01-5863, Guayaquil, Ecuador
| |
Collapse
|
31
|
Debbarma J, Saikia B, Singha DL, Das D, Keot AK, Maharana J, Velmurugan N, Arunkumar KP, Reddy PS, Chikkaputtaiah C. CRISPR/Cas9-Mediated Mutation in XSP10 and SlSAMT Genes Impart Genetic Tolerance to Fusarium Wilt Disease of Tomato ( Solanum lycopersicum L.). Genes (Basel) 2023; 14:488. [PMID: 36833415 PMCID: PMC9956927 DOI: 10.3390/genes14020488] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/29/2023] [Accepted: 02/11/2023] [Indexed: 02/17/2023] Open
Abstract
Fusarium wilt is a major devastating fungal disease of tomato (Solanum lycopersicum L.) caused by Fusarium oxysporum f. sp. lycopersici (Fol) which reduces the yield and production. Xylem sap protein 10 (XSP10) and Salicylic acid methyl transferase (SlSAMT) are two putative negative regulatory genes associated with Fusarium wilt of tomato. Fusarium wilt tolerance in tomato can be developed by targeting these susceptible (S) genes. Due to its efficiency, high target specificity, and versatility, CRISPR/Cas9 has emerged as one of the most promising techniques for knocking out disease susceptibility genes in a variety of model and agricultural plants to increase tolerance/resistance to various plant diseases in recent years. Though alternative methods, like RNAi, have been attempted to knock down these two S genes in order to confer resistance in tomato against Fusarium wilt, there has been no report of employing the CRISPR/Cas9 system for this specific intent. In this study, we provide a comprehensive downstream analysis of the two S genes via CRISPR/Cas9-mediated editing of single (XSP10 and SlSAMT individually) and dual-gene (XSP10 and SlSAMT simultaneously). Prior to directly advancing on to the generation of stable lines, the editing efficacy of the sgRNA-Cas9 complex was first validated using single cell (protoplast) transformation. In the transient leaf disc assay, the dual-gene editing showed strong phenotypic tolerance to Fusarium wilt disease with INDEL mutations than single-gene editing. In stable genetic transformation of tomato at the GE1 generation, dual-gene CRISPR transformants of XSP10 and SlSAMT primarily exhibited INDEL mutations than single-gene-edited lines. The dual-gene CRISPR-edited lines (CRELs) of XSP10 and SlSAMT at GE1 generation conferred a strong phenotypic tolerance to Fusarium wilt disease compared to single-gene-edited lines. Taken together, the reverse genetic studies in transient and stable lines of tomato revealed that, XSP10 and SlSAMT function together as negative regulators in conferring genetic tolerance to Fusarium wilt disease.
Collapse
Affiliation(s)
- Johni Debbarma
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat 785006, Assam, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Banashree Saikia
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat 785006, Assam, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Dhanawantari L. Singha
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat 785006, Assam, India
| | - Debajit Das
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat 785006, Assam, India
| | - Ajay Kumar Keot
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat 785006, Assam, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Jitendra Maharana
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat 785013, Assam, India
| | - Natarajan Velmurugan
- Branch Laboratory-Itanagar, Biological Sciences Division, CSIR-NEIST, Naharlagun 791110, Arunachal Pradesh, India
| | - Kallare P. Arunkumar
- Central Muga Eri Research and Training Institute (CMER&TI), Lahdoigarh, Jorhat 785700, Assam, India
| | - Palakolanu Sudhakar Reddy
- International Crop Research Institute for the Semi Arid Tropics (ICRISAT), Hyderabad 502324, Telangana, India
| | - Channakeshavaiah Chikkaputtaiah
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat 785006, Assam, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| |
Collapse
|
32
|
Kumar M, Prusty MR, Pandey MK, Singh PK, Bohra A, Guo B, Varshney RK. Application of CRISPR/Cas9-mediated gene editing for abiotic stress management in crop plants. FRONTIERS IN PLANT SCIENCE 2023; 14:1157678. [PMID: 37143874 PMCID: PMC10153630 DOI: 10.3389/fpls.2023.1157678] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 03/27/2023] [Indexed: 05/06/2023]
Abstract
Abiotic stresses, including drought, salinity, cold, heat, and heavy metals, extensively reducing global agricultural production. Traditional breeding approaches and transgenic technology have been widely used to mitigate the risks of these environmental stresses. The discovery of engineered nucleases as genetic scissors to carry out precise manipulation in crop stress-responsive genes and associated molecular network has paved the way for sustainable management of abiotic stress conditions. In this context, the clustered regularly interspaced short palindromic repeat-Cas (CRISPR/Cas)-based gene-editing tool has revolutionized due to its simplicity, accessibility, adaptability, flexibility, and wide applicability. This system has great potential to build up crop varieties with enhanced tolerance against abiotic stresses. In this review, we summarize the latest findings on understanding the mechanism of abiotic stress response in plants and the application of CRISPR/Cas-mediated gene-editing system towards enhanced tolerance to a multitude of stresses including drought, salinity, cold, heat, and heavy metals. We provide mechanistic insights on the CRISPR/Cas9-based genome editing technology. We also discuss applications of evolving genome editing techniques such as prime editing and base editing, mutant library production, transgene free and multiplexing to rapidly deliver modern crop cultivars adapted to abiotic stress conditions.
Collapse
Affiliation(s)
- Manoj Kumar
- Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Rishon Lezion, Israel
- *Correspondence: Rajeev K. Varshney, ; Baozhu Guo, ; Manoj Kumar,
| | - Manas Ranjan Prusty
- Institute for Cereal Crop Improvement, Plant Science, Tel Aviv University, Tel Aviv, Israel
| | - Manish K. Pandey
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Prashant Kumar Singh
- Department of Biotechnology, Mizoram University (A Central University), Pachhunga University College, Aizawl, India
| | - Abhishek Bohra
- State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, Murdoch, WA, Australia
| | - Baozhu Guo
- Crop Genetics and Breeding Research Unit, United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Tifton, GA, United States
- *Correspondence: Rajeev K. Varshney, ; Baozhu Guo, ; Manoj Kumar,
| | - Rajeev K. Varshney
- State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, Murdoch, WA, Australia
- *Correspondence: Rajeev K. Varshney, ; Baozhu Guo, ; Manoj Kumar,
| |
Collapse
|
33
|
Mitra S, Anand U, Ghorai M, Kant N, Kumar M, Radha, Jha NK, Swamy MK, Proćków J, de la Lastra JMP, Dey A. Genome editing technologies, mechanisms and improved production of therapeutic phytochemicals: Opportunities and prospects. Biotechnol Bioeng 2023; 120:82-94. [PMID: 36224758 PMCID: PMC10091730 DOI: 10.1002/bit.28260] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 09/10/2022] [Accepted: 10/08/2022] [Indexed: 11/09/2022]
Abstract
Plants produce a large number of secondary metabolites, known as phytometabolites that may be employed as medicines, dyes, poisons, and insecticides in the field of medicine, agriculture, and industrial use, respectively. The rise of genome management approaches has promised a factual revolution in genetic engineering. Targeted genome editing in living entities permits the understanding of the biological systems very clearly, and also sanctions to address a wide-ranging objective in the direction of improving features of plant and their yields. The last few years have introduced a number of unique genome editing systems, including transcription activator-like effector nucleases, zinc finger nucleases, and miRNA-regulated clustered regularly interspaced short palindromic repeats/Cas9 (CRISPR/Cas9). Genome editing systems have helped in the transformation of metabolic engineering, allowing researchers to modify biosynthetic pathways of different secondary metabolites. Given the growing relevance of editing genomes in plant research, the exciting novel methods are briefly reviewed in this chapter. Also, this chapter highlights recent discoveries on the CRISPR-based modification of natural products in different medicinal plants.
Collapse
Affiliation(s)
- Sicon Mitra
- Department of Biotechnology, School of Engineering & TechnologySharda UniversityGreater NoidaUttar PradeshIndia
| | | | - Mimosa Ghorai
- Department of Life SciencesPresidency UniversityKolkataWest BengalIndia
| | - Nishi Kant
- Department of Chemical EngineeringIndian Institute of Technology DelhiDelhiNew DelhiIndia
| | - Manoj Kumar
- Chemical and Biochemical Processing DivisionICAR‐Central Institute for Research on Cotton TechnologyMumbaiMaharashtraIndia
| | - Radha
- School of Biological and Environmental SciencesShoolini University of Biotechnology and Management SciencesSolanHimachal PradeshIndia
| | - Niraj K. Jha
- Department of Biotechnology, School of Engineering & TechnologySharda UniversityGreater NoidaUttar PradeshIndia
- Department of Biotechnology Engineering and Food TechnologyChandigarh UniversityMohaliPunjabIndia
- Department of Biotechnology, School of Applied & Life SciencesUttaranchal UniversityDehradunUttarakhandIndia
| | - Mallappa K. Swamy
- Department of BiotechnologyEast West First Grade College of ScienceBengaluruKarnatakaIndia
| | - Jarosław Proćków
- Department of Plant Biology, Institute of Environmental BiologyWrocław University of Environmental and Life SciencesWrocławPoland
| | - José M. Pérez de la Lastra
- Biotechnology of Macromolecules Research Group, Department of Life and Earth SciencesInstituto de Productos Naturales y Agrobiología‐Consejo Superior de Investigaciones Científicas, (IPNA‐CSIC)San Cristóbal de La LagunaTenerifeSpain
| | - Abhijit Dey
- Department of Life SciencesPresidency UniversityKolkataWest BengalIndia
| |
Collapse
|
34
|
Robertson G, Burger J, Campa M. CRISPR/Cas-based tools for the targeted control of plant viruses. MOLECULAR PLANT PATHOLOGY 2022; 23:1701-1718. [PMID: 35920132 PMCID: PMC9562834 DOI: 10.1111/mpp.13252] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 06/09/2022] [Accepted: 07/01/2022] [Indexed: 05/15/2023]
Abstract
Plant viruses are known to infect most economically important crops and pose a major threat to global food security. Currently, few resistant host phenotypes have been delineated, and while chemicals are used for crop protection against insect pests and bacterial or fungal diseases, these are inefficient against viral diseases. Genetic engineering emerged as a way of modifying the plant genome by introducing functional genes in plants to improve crop productivity under adverse environmental conditions. Recently, new breeding technologies, and in particular the exciting CRISPR/Cas (clustered regularly interspaced short palindromic repeats/CRISPR-associated proteins) technology, was shown to be a powerful alternative to engineer resistance against plant viruses, thus has great potential for reducing crop losses and improving plant productivity to directly contribute to food security. Indeed, it could circumvent the "Genetic modification" issues because it allows for genome editing without the integration of foreign DNA or RNA into the genome of the host plant, and it is simpler and more versatile than other new breeding technologies. In this review, we describe the predominant features of the major CRISPR/Cas systems and outline strategies for the delivery of CRISPR/Cas reagents to plant cells. We also provide an overview of recent advances that have engineered CRISPR/Cas-based resistance against DNA and RNA viruses in plants through the targeted manipulation of either the viral genome or susceptibility factors of the host plant genome. Finally, we provide insight into the limitations and challenges that CRISPR/Cas technology currently faces and discuss a few alternative applications of the technology in virus research.
Collapse
Affiliation(s)
- Gaëlle Robertson
- Department of GeneticsStellenbosch UniversityMatielandSouth Africa
- Department of Experimental and Health SciencesUniversitat Pompeu FabraBarcelonaSpain
| | - Johan Burger
- Department of GeneticsStellenbosch UniversityMatielandSouth Africa
| | - Manuela Campa
- Department of GeneticsStellenbosch UniversityMatielandSouth Africa
| |
Collapse
|
35
|
Angon PB, Tahjib-Ul-Arif M, Samin SI, Habiba U, Hossain MA, Brestic M. How Do Plants Respond to Combined Drought and Salinity Stress?-A Systematic Review. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11212884. [PMID: 36365335 PMCID: PMC9655390 DOI: 10.3390/plants11212884] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 06/12/2023]
Abstract
Plants are frequently exposed to one or more abiotic stresses, including combined salinity-drought, which significantly lowers plant growth. Many studies have been conducted to evaluate the responses of plants to combined salinity and drought stress. However, a meta-analysis-based systematic review has not been conducted yet. Therefore, this study analyzed how plants respond differently to combined salinity-drought stress compared to either stress alone. We initially retrieved 536 publications from databases and selected 30 research articles following a rigorous screening. Data on plant growth-related, physiological, and biochemical parameters were collected from these selected articles and analyzed. Overall, the combined salinity-drought stress has a greater negative impact on plant growth, photosynthesis, ionic balance, and oxidative balance than either stress alone. In some cases, salinity had a greater impact than drought stress and vice versa. Drought stress inhibited photosynthesis more than salinity, whereas salinity caused ionic imbalance more than drought stress. Single salinity and drought reduced shoot biomass equally, but salinity reduced root biomass more than drought. Plants experienced more oxidative stress under combined stress conditions because antioxidant levels did not increase in response to combined salinity-drought stress compared to individual salinity or drought stress. This study provided a comparative understanding of plants' responses to individual and combined salinity and drought stress, and identified several research gaps. More comprehensive genetic and physiological studies are needed to understand the intricate interplay between salinity and drought in plants.
Collapse
Affiliation(s)
- Prodipto Bishnu Angon
- Faculty of Agriculture, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Md. Tahjib-Ul-Arif
- Department of Biochemistry and Molecular Biology, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Samia Islam Samin
- Faculty of Agriculture, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Ummya Habiba
- Faculty of Agriculture, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - M. Afzal Hossain
- Department of Biochemistry and Molecular Biology, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Marian Brestic
- Institut of Plant and Environmental Sciences, Slovak University of Agriculture, A. Hlinku 2, 94976 Nitra, Slovakia
| |
Collapse
|
36
|
Wu Y, Ren Q, Zhong Z, Liu G, Han Y, Bao Y, Liu L, Xiang S, Liu S, Tang X, Zhou J, Zheng X, Sretenovic S, Zhang T, Qi Y, Zhang Y. Genome-wide analyses of PAM-relaxed Cas9 genome editors reveal substantial off-target effects by ABE8e in rice. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:1670-1682. [PMID: 35524459 PMCID: PMC9398351 DOI: 10.1111/pbi.13838] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 04/28/2022] [Indexed: 05/04/2023]
Abstract
PAM-relaxed Cas9 nucleases, cytosine base editors and adenine base editors are promising tools for precise genome editing in plants. However, their genome-wide off-target effects are largely unexplored. Here, we conduct whole-genome sequencing (WGS) analyses of transgenic plants edited by xCas9, Cas9-NGv1, Cas9-NG, SpRY, nCas9-NG-PmCDA1, nSpRY-PmCDA1 and nSpRY-ABE8e in rice. Our results reveal that Cas9 nuclease and base editors, when coupled with the same guide RNA (gRNA), prefer distinct gRNA-dependent off-target sites. De novo generated gRNAs by SpRY editors lead to additional, but insubstantial, off-target mutations. Strikingly, ABE8e results in ~500 genome-wide A-to-G off-target mutations at TA motif sites per transgenic plant. ABE8e's preference for the TA motif is also observed at the target sites. Finally, we investigate the timeline and mechanism of somaclonal variation due to tissue culture, which chiefly contributes to the background mutations. This study provides a comprehensive understanding on the scale and mechanisms of off-target and background mutations occurring during PAM-relaxed genome editing in plants.
Collapse
Affiliation(s)
- Yuechao Wu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Key Laboratory of Crop Genetics and PhysiologyAgricultural College of Yangzhou UniversityYangzhouChina
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Joint International Research Laboratory of Agriculture and Agri‐Product SafetyThe Ministry of Education of ChinaYangzhou UniversityYangzhouChina
- Jiangsu Co‐Innovation Center for Modern Production Technology of Grain CropsYangzhou UniversityYangzhouChina
| | - Qiurong Ren
- Department of BiotechnologySchool of Life Sciences and TechnologyCenter for Informational BiologyUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Zhaohui Zhong
- Department of BiotechnologySchool of Life Sciences and TechnologyCenter for Informational BiologyUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Guanqing Liu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Key Laboratory of Crop Genetics and PhysiologyAgricultural College of Yangzhou UniversityYangzhouChina
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Joint International Research Laboratory of Agriculture and Agri‐Product SafetyThe Ministry of Education of ChinaYangzhou UniversityYangzhouChina
- Jiangsu Co‐Innovation Center for Modern Production Technology of Grain CropsYangzhou UniversityYangzhouChina
| | - Yangshuo Han
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Key Laboratory of Crop Genetics and PhysiologyAgricultural College of Yangzhou UniversityYangzhouChina
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Joint International Research Laboratory of Agriculture and Agri‐Product SafetyThe Ministry of Education of ChinaYangzhou UniversityYangzhouChina
- Jiangsu Co‐Innovation Center for Modern Production Technology of Grain CropsYangzhou UniversityYangzhouChina
| | - Yu Bao
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Key Laboratory of Crop Genetics and PhysiologyAgricultural College of Yangzhou UniversityYangzhouChina
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Joint International Research Laboratory of Agriculture and Agri‐Product SafetyThe Ministry of Education of ChinaYangzhou UniversityYangzhouChina
- Jiangsu Co‐Innovation Center for Modern Production Technology of Grain CropsYangzhou UniversityYangzhouChina
| | - Li Liu
- Department of BiotechnologySchool of Life Sciences and TechnologyCenter for Informational BiologyUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Shuyue Xiang
- Department of BiotechnologySchool of Life Sciences and TechnologyCenter for Informational BiologyUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Shuo Liu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Key Laboratory of Crop Genetics and PhysiologyAgricultural College of Yangzhou UniversityYangzhouChina
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Joint International Research Laboratory of Agriculture and Agri‐Product SafetyThe Ministry of Education of ChinaYangzhou UniversityYangzhouChina
- Jiangsu Co‐Innovation Center for Modern Production Technology of Grain CropsYangzhou UniversityYangzhouChina
| | - Xu Tang
- Department of BiotechnologySchool of Life Sciences and TechnologyCenter for Informational BiologyUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Jianping Zhou
- Department of BiotechnologySchool of Life Sciences and TechnologyCenter for Informational BiologyUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Xuelian Zheng
- Department of BiotechnologySchool of Life Sciences and TechnologyCenter for Informational BiologyUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Simon Sretenovic
- Department of Plant Science and Landscape ArchitectureUniversity of MarylandCollege ParkMarylandUSA
| | - Tao Zhang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Key Laboratory of Crop Genetics and PhysiologyAgricultural College of Yangzhou UniversityYangzhouChina
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Joint International Research Laboratory of Agriculture and Agri‐Product SafetyThe Ministry of Education of ChinaYangzhou UniversityYangzhouChina
- Jiangsu Co‐Innovation Center for Modern Production Technology of Grain CropsYangzhou UniversityYangzhouChina
| | - Yiping Qi
- Department of Plant Science and Landscape ArchitectureUniversity of MarylandCollege ParkMarylandUSA
- Institute for Bioscience and Biotechnology ResearchUniversity of MarylandRockvilleMarylandUSA
| | - Yong Zhang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Key Laboratory of Crop Genetics and PhysiologyAgricultural College of Yangzhou UniversityYangzhouChina
- Department of BiotechnologySchool of Life Sciences and TechnologyCenter for Informational BiologyUniversity of Electronic Science and Technology of ChinaChengduChina
| |
Collapse
|
37
|
Li R, Han Z, Yin Q, Li M, Zhang M, Li Z, Wang P, Jiang L, Ow DW. Target Lines for in Planta Gene Stacking in Japonica Rice. Int J Mol Sci 2022; 23:ijms23169385. [PMID: 36012650 PMCID: PMC9409015 DOI: 10.3390/ijms23169385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/11/2022] [Accepted: 08/11/2022] [Indexed: 12/02/2022] Open
Abstract
The clustering of transgenes at a chromosome location minimizes the number of segregating loci that needs to be introgressed to field cultivars. Transgenes could be efficiently stacked through site-specific recombination and a recombinase-mediated in planta gene stacking process was described previously in tobacco based on the Mycobacteriophage Bxb1 site-specific integration system. Since this process requires a recombination site in the genome, this work describes the generation of target sites in the Japonica rice genome. Agrobacterium-mediated gene transfer yielded ~4000 random-insertion lines. Seven lines met the criteria of being single copy, not close to a centromere, not inserted within or close to a known gene or repetitive DNA, having precise recombination site sequences on both ends, and able to express the reporter gene. Each target line tested was able to accept the site-specific integration of a new gfp-containing plasmid and in three of those lines, we regenerated fertile plants. These target lines could be used as foundation lines for stacking new traits into Japonica rice.
Collapse
Affiliation(s)
- Ruyu Li
- Plant Gene Engineering Center, Chinese Academy of Sciences, Guangzhou 510650, China
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- Correspondence: (R.L.); (D.W.O.)
| | - Zhiguo Han
- Plant Gene Engineering Center, Chinese Academy of Sciences, Guangzhou 510650, China
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Qian Yin
- Plant Gene Engineering Center, Chinese Academy of Sciences, Guangzhou 510650, China
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Meiru Li
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Mingyong Zhang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Zhenzhen Li
- Plant Gene Engineering Center, Chinese Academy of Sciences, Guangzhou 510650, China
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Ping Wang
- Plant Gene Engineering Center, Chinese Academy of Sciences, Guangzhou 510650, China
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Li Jiang
- Plant Gene Engineering Center, Chinese Academy of Sciences, Guangzhou 510650, China
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - David W. Ow
- Plant Gene Engineering Center, Chinese Academy of Sciences, Guangzhou 510650, China
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- Correspondence: (R.L.); (D.W.O.)
| |
Collapse
|
38
|
Mitra S, Sarker J, Mojumder A, Shibbir TB, Das R, Emran TB, Tallei TE, Nainu F, Alshahrani AM, Chidambaram K, Simal-Gandara J. Genome editing and cancer: How far has research moved forward on CRISPR/Cas9? Biomed Pharmacother 2022; 150:113011. [PMID: 35483191 DOI: 10.1016/j.biopha.2022.113011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 04/16/2022] [Accepted: 04/19/2022] [Indexed: 11/02/2022] Open
Abstract
Cancer accounted for almost ten million deaths worldwide in 2020. Metastasis, characterized by cancer cell invasion to other parts of the body, is the main cause of cancer morbidity and mortality. Therefore, understanding the molecular mechanisms of tumor formation and discovery of potential drug targets are of great importance. Gene editing techniques can be used to find novel drug targets and study molecular mechanisms. In this review, we describe how popular gene-editing methods such as CRISPR/Cas9, TALEN and ZFNs work, and, by comparing them, we demonstrate that CRISPR/Cas9 has superior efficiency and precision. We further provide an overview of the recent applications of CRISPR/Cas9 to cancer research, focusing on the most common cancers such as breast cancer, lung cancer, colorectal cancer, and prostate cancer. We describe how these applications will shape future research and treatment of cancer, and propose new ways to overcome current challenges.
Collapse
Affiliation(s)
- Saikat Mitra
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - Joyatry Sarker
- Department of Genetic Engineering and Biotechnology, University of Dhaka, Dhaka 1000, Bangladesh
| | - Anik Mojumder
- Department of Genetic Engineering and Biotechnology, University of Dhaka, Dhaka 1000, Bangladesh
| | - Tasmim Bintae Shibbir
- Department of Genetic Engineering and Biotechnology, University of Dhaka, Dhaka 1000, Bangladesh
| | - Rajib Das
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh.
| | - Trina Ekawati Tallei
- Department of Biology, Faculty of Mathematics and Natural Sciences, Sam Ratulangi University, Manado 95115, North Sulawesi, Indonesia
| | - Firzan Nainu
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Sulawesi Selatan, Indonesia
| | - Asma M Alshahrani
- Department of Clinical Pharmacy, College of Pharmacy, King Khalid University, Abha 61441, Saudi Arabia
| | - Kumarappan Chidambaram
- Department of Pharmacology and Toxicology, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia
| | - Jesus Simal-Gandara
- Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, E32004 Ourense, Spain.
| |
Collapse
|
39
|
Van Vu T, Das S, Hensel G, Kim JY. Genome editing and beyond: what does it mean for the future of plant breeding? PLANTA 2022; 255:130. [PMID: 35587292 PMCID: PMC9120101 DOI: 10.1007/s00425-022-03906-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 04/26/2022] [Indexed: 05/04/2023]
Abstract
MAIN CONCLUSION Genome editing offers revolutionized solutions for plant breeding to sustain food production to feed the world by 2050. Therefore, genome-edited products are increasingly recognized via more relaxed legislation and community adoption. The world population and food production are disproportionally growing in a manner that would have never matched each other under the current agricultural practices. The emerging crisis is more evident with the subtle changes in climate and the running-off of natural genetic resources that could be easily used in breeding in conventional ways. Under these circumstances, affordable CRISPR-Cas-based gene-editing technologies have brought hope and charged the old plant breeding machine with the most energetic and powerful fuel to address the challenges involved in feeding the world. What makes CRISPR-Cas the most powerful gene-editing technology? What are the differences between it and the other genetic engineering/breeding techniques? Would its products be labeled as "conventional" or "GMO"? There are so many questions to be answered, or that cannot be answered within the limitations of our current understanding. Therefore, we would like to discuss and answer some of the mentioned questions regarding recent progress in technology development. We hope this review will offer another view on the role of CRISPR-Cas technology in future of plant breeding for food production and beyond.
Collapse
Affiliation(s)
- Tien Van Vu
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 660-701, Republic of Korea
- National Key Laboratory for Plant Cell Biotechnology, Agricultural Genetics Institute, km 02, Pham Van Dong Road, Co Nhue 1, Bac Tu Liem, Hanoi, 11917, Vietnam
| | - Swati Das
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 660-701, Republic of Korea
| | - Goetz Hensel
- Centre for Plant Genome Engineering, Institute of Plant Biochemistry, Heinrich-Heine-University, Universitätsstraße 1, 40225, Düsseldorf, Germany.
- Centre of Region Haná for Biotechnological and Agricultural Research, Czech Advanced Technology and Research Institute, Palacký University Olomouc, 78371, Olomouc, Czech Republic.
| | - Jae-Yean Kim
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 660-701, Republic of Korea.
- Division of Life Science, Gyeongsang National University, 501 Jinju-daero, Jinju, 52828, Republic of Korea.
| |
Collapse
|
40
|
Chen H, Neubauer M, Wang JP. Enhancing HR Frequency for Precise Genome Editing in Plants. FRONTIERS IN PLANT SCIENCE 2022; 13:883421. [PMID: 35592579 PMCID: PMC9113527 DOI: 10.3389/fpls.2022.883421] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 03/29/2022] [Indexed: 06/15/2023]
Abstract
Gene-editing tools, such as Zinc-fingers, TALENs, and CRISPR-Cas, have fostered a new frontier in the genetic improvement of plants across the tree of life. In eukaryotes, genome editing occurs primarily through two DNA repair pathways: non-homologous end joining (NHEJ) and homologous recombination (HR). NHEJ is the primary mechanism in higher plants, but it is unpredictable and often results in undesired mutations, frameshift insertions, and deletions. Homology-directed repair (HDR), which proceeds through HR, is typically the preferred editing method by genetic engineers. HR-mediated gene editing can enable error-free editing by incorporating a sequence provided by a donor template. However, the low frequency of native HR in plants is a barrier to attaining efficient plant genome engineering. This review summarizes various strategies implemented to increase the frequency of HDR in plant cells. Such strategies include methods for targeting double-strand DNA breaks, optimizing donor sequences, altering plant DNA repair machinery, and environmental factors shown to influence HR frequency in plants. Through the use and further refinement of these methods, HR-based gene editing may one day be commonplace in plants, as it is in other systems.
Collapse
Affiliation(s)
- Hao Chen
- Department of Plant and Microbial Biology, Program in Genetics, North Carolina State University, Raleigh, NC, United States
- College of Forestry, Shandong Agricultural University, Tai’an, China
| | - Matthew Neubauer
- Department of Plant and Microbial Biology, Program in Genetics, North Carolina State University, Raleigh, NC, United States
| | - Jack P. Wang
- Department of Forestry and Environmental Resources, Forest Biotechnology Group, North Carolina State University, Raleigh, NC, United States
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| |
Collapse
|
41
|
Bhattacharjee B, Hallan V. Geminivirus-Derived Vectors as Tools for Functional Genomics. Front Microbiol 2022; 13:799345. [PMID: 35432267 PMCID: PMC9010885 DOI: 10.3389/fmicb.2022.799345] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 02/03/2022] [Indexed: 11/24/2022] Open
Abstract
A persistent issue in the agricultural sector worldwide is the intensive damage caused to crops by the geminivirus family of viruses. The diverse types of viruses, rapid virus evolution rate, and broad host range make this group of viruses one of the most devastating in nature, leading to millions of dollars' worth of crop damage. Geminiviruses have a small genome and can be either monopartite or bipartite, with or without satellites. Their ability to independently replicate within the plant without integration into the host genome and the relatively easy handling make them excellent candidates for plant bioengineering. This aspect is of great importance as geminiviruses can act as natural nanoparticles in plants which can be utilized for a plethora of functions ranging from vaccine development systems to geminivirus-induced gene silencing (GIGS), through deconstructed viral vectors. Thus, the investigation of these plant viruses is pertinent to understanding their crucial roles in nature and subsequently utilizing them as beneficial tools in functional genomics. This review, therefore, highlights some of the characteristics of these viruses that can be deemed significant and the subsequent successful case studies for exploitation of these potentially significant pathogens for role mining in functional biology.
Collapse
Affiliation(s)
- Bipasha Bhattacharjee
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- Plant Virology Laboratory, Division of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
| | - Vipin Hallan
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- Plant Virology Laboratory, Division of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
| |
Collapse
|
42
|
Tay Fernandez CG, Nestor BJ, Danilevicz MF, Marsh JI, Petereit J, Bayer PE, Batley J, Edwards D. Expanding Gene-Editing Potential in Crop Improvement with Pangenomes. Int J Mol Sci 2022; 23:ijms23042276. [PMID: 35216392 PMCID: PMC8879065 DOI: 10.3390/ijms23042276] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/14/2022] [Accepted: 02/15/2022] [Indexed: 02/01/2023] Open
Abstract
Pangenomes aim to represent the complete repertoire of the genome diversity present within a species or cohort of species, capturing the genomic structural variance between individuals. This genomic information coupled with phenotypic data can be applied to identify genes and alleles involved with abiotic stress tolerance, disease resistance, and other desirable traits. The characterisation of novel structural variants from pangenomes can support genome editing approaches such as Clustered Regularly Interspaced Short Palindromic Repeats and CRISPR associated protein Cas (CRISPR-Cas), providing functional information on gene sequences and new target sites in variant-specific genes with increased efficiency. This review discusses the application of pangenomes in genome editing and crop improvement, focusing on the potential of pangenomes to accurately identify target genes for CRISPR-Cas editing of plant genomes while avoiding adverse off-target effects. We consider the limitations of applying CRISPR-Cas editing with pangenome references and potential solutions to overcome these limitations.
Collapse
|
43
|
Yin Q, Li R, Ow DW. Site-Specific Sequence Exchange Between Homologous and Non-homologous Chromosomes. FRONTIERS IN PLANT SCIENCE 2022; 13:828960. [PMID: 35185992 PMCID: PMC8850970 DOI: 10.3389/fpls.2022.828960] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 01/05/2022] [Indexed: 06/14/2023]
Abstract
Transgene integration typically takes place in an easy-to-transform laboratory variety before the transformation event is introgressed through backcrosses to elite cultivars. As new traits are added to existing transgenic lines, site-specific integration can stack new transgenes into a previously created transgenic locus. In planta site-specific integration minimizes the number of segregating loci to assemble into a breeding line, but cannot break genetic linkage between the transgenic locus and nearby undesirable traits. In this study, we describe an additional feature of an in planta gene-stacking scheme, in which the Cre (control of recombination) recombinase not only deletes transgenic DNA no longer needed after transformation but also mediates recombination between homologous or non-homologous chromosomes. Although the target site must first be introgressed through conventional breeding, subsequent transgenes inserted into the same locus would be able to use Cre-mediated translocation to expedite a linkage drag-free introgression to field cultivars.
Collapse
Affiliation(s)
- Qian Yin
- Plant Gene Engineering Center, Chinese Academy of Sciences Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangdong Key Laboratory of Applied Botany, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ruyu Li
- Plant Gene Engineering Center, Chinese Academy of Sciences Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangdong Key Laboratory of Applied Botany, Guangzhou, China
| | - David W. Ow
- Plant Gene Engineering Center, Chinese Academy of Sciences Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangdong Key Laboratory of Applied Botany, Guangzhou, China
| |
Collapse
|
44
|
Zhou J, Zhang R, Jia X, Tang X, Guo Y, Yang H, Zheng X, Qian Q, Qi Y, Zhang Y. CRISPR-Cas9 mediated OsMIR168a knockout reveals its pleiotropy in rice. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:310-322. [PMID: 34555252 PMCID: PMC8753357 DOI: 10.1111/pbi.13713] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/31/2021] [Accepted: 09/15/2021] [Indexed: 05/21/2023]
Abstract
MicroRNA168 (MIR168) is a key miRNA that targets the main RNA-induced silencing complex component Argonaute 1 (AGO1) to regulate plant growth and environmental stress responses. However, the regulatory functions of MIR168 need to be further elucidated in rice. In this paper, we generated clean OsMIR168a deletion mutants by CRISPR-Cas9 strategy. We then phenotypically and molecularly characterized these mutants. The rice OsMIR168a mutants grew rapidly at the seedling stage, produced more tillers and matured early. Compared to the wild-type plants, the mutants were shorter at maturity and produced smaller spikelets and seeds. Analysis of gene expression showed that the transcription levels of OsMIR168a's target genes such as OsAGO1a, OsAGO1b and OsAGO1d were elevated significantly in the OsMIR168a mutants. Intriguingly, OsAGO18, a member of a new AGO clade that is conserved in monocots, was confirmed to be a target of OsMIR168a not only by informatic prediction but also by expression analysis and a cell-based cleavage assay in the OsMIR168a mutants. Many protein-coding genes and miRNAs showed differential expression in the OsMIR168a mutants, suggesting OsMIR168a exerts a major transcriptional regulatory role, likely through its potential target genes such as OsAGO1s and OsAGO18. KEGG enrichment analysis of these differentially expressed genes pointed to OsMIR168a's involvement in important processes such as plant hormone signalling transduction and plant-pathogen interaction. These data collectively support that the complex regulation module of OsMIR168a-OsAGO1/OsAGO18-miRNAs-target genes contributes to agronomically important traits, which sheds light on miRNA-mediated crop breeding.
Collapse
Affiliation(s)
- Jianping Zhou
- Department of BiotechnologySchool of Life Sciences and TechnologyCenter for Informational BiologyUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Rui Zhang
- Department of BiotechnologySchool of Life Sciences and TechnologyCenter for Informational BiologyUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Xinyu Jia
- Department of BiotechnologySchool of Life Sciences and TechnologyCenter for Informational BiologyUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Xu Tang
- Department of BiotechnologySchool of Life Sciences and TechnologyCenter for Informational BiologyUniversity of Electronic Science and Technology of ChinaChengduChina
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhouChina
| | - Yachong Guo
- Department of BiotechnologySchool of Life Sciences and TechnologyCenter for Informational BiologyUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Han Yang
- Department of BiotechnologySchool of Life Sciences and TechnologyCenter for Informational BiologyUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Xuelian Zheng
- Department of BiotechnologySchool of Life Sciences and TechnologyCenter for Informational BiologyUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Qian Qian
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhouChina
| | - Yiping Qi
- Department of Plant Science and Landscape ArchitectureUniversity of MarylandCollege ParkMDUSA
- Institute for Bioscience and Biotechnology ResearchUniversity of MarylandRockvilleMDUSA
| | - Yong Zhang
- Department of BiotechnologySchool of Life Sciences and TechnologyCenter for Informational BiologyUniversity of Electronic Science and Technology of ChinaChengduChina
| |
Collapse
|
45
|
Banakar R, Schubert M, Kurgan G, Rai KM, Beaudoin SF, Collingwood MA, Vakulskas CA, Wang K, Zhang F. Efficiency, Specificity and Temperature Sensitivity of Cas9 and Cas12a RNPs for DNA-free Genome Editing in Plants. Front Genome Ed 2022; 3:760820. [PMID: 35098208 PMCID: PMC8790294 DOI: 10.3389/fgeed.2021.760820] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 12/07/2021] [Indexed: 12/26/2022] Open
Abstract
Delivery of genome editing reagents using CRISPR-Cas ribonucleoproteins (RNPs) transfection offers several advantages over plasmid DNA-based delivery methods, including reduced off-target editing effects, mitigation of random integration of non-native DNA fragments, independence of vector constructions, and less regulatory restrictions. Compared to the use in animal systems, RNP-mediated genome editing is still at the early development stage in plants. In this study, we established an efficient and simplified protoplast-based genome editing platform for CRISPR-Cas RNP delivery, and then evaluated the efficiency, specificity, and temperature sensitivity of six Cas9 and Cas12a proteins. Our results demonstrated that Cas9 and Cas12a RNP delivery resulted in genome editing frequencies (8.7-41.2%) at various temperature conditions, 22°C, 26°C, and 37°C, with no significant temperature sensitivity. LbCas12a often exhibited the highest activities, while AsCas12a demonstrated higher sequence specificity. The high activities of CRISPR-Cas RNPs at 22° and 26°C, the temperature preferred by plant transformation and tissue culture, led to high mutagenesis efficiencies (34.0-85.2%) in the protoplast-regenerated calli and plants with the heritable mutants recovered in the next generation. This RNP delivery approach was further extended to pennycress (Thlaspi arvense), soybean (Glycine max) and Setaria viridis with up to 70.2% mutagenesis frequency. Together, this study sheds light on the choice of RNP reagents to achieve efficient transgene-free genome editing in plants.
Collapse
Affiliation(s)
- Raviraj Banakar
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN, United States
- Center for Precision Plant Genomics, University of Minnesota, St. Paul, MN, United States
- Center for Genome Engineering, University of Minnesota, St. Paul, MN, United States
| | | | - Gavin Kurgan
- Integrated DNA Technologies, Coralville, IA, United States
| | - Krishan Mohan Rai
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN, United States
- Center for Precision Plant Genomics, University of Minnesota, St. Paul, MN, United States
- Center for Genome Engineering, University of Minnesota, St. Paul, MN, United States
| | | | | | | | - Kan Wang
- Department of Agronomy, Iowa State University, Ames, IA, United States
- Crop Bioengineering Center, Iowa State University, Ames, IA, United States
| | - Feng Zhang
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN, United States
- Center for Precision Plant Genomics, University of Minnesota, St. Paul, MN, United States
- Center for Genome Engineering, University of Minnesota, St. Paul, MN, United States
| |
Collapse
|
46
|
Banakar R, Rai KM, Zhang F. CRISPR DNA- and RNP-Mediated Genome Editing via Nicotiana benthamiana Protoplast Transformation and Regeneration. Methods Mol Biol 2022; 2464:65-82. [PMID: 35258825 DOI: 10.1007/978-1-0716-2164-6_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR)-Cas (CRISPR-associated system) has become the multipurpose tool to manipulate plant genome via their programmable sequence recognition, binding, and cleavage activities. Efficient plant genome modification often requires robust plant transformation. For most plant species, the CRISPR/Cas reagents are delivered into plants as plasmids by Agrobacterium-mediated T-DNA transfer or biolistic approaches. However, these methods are generally inefficient, heavily genotype dependent, and low throughput. Among the alternative plant transformation approaches, the protoplast-based transformation holds the potential to directly deliver DNA, RNA, or protein molecules into plant cells in an efficient and high-throughput manner. Here, we presented a robust and simplified protocol for protoplast-based DNA/ribonucleoprotein (RNP )-mediated genome editing in the model species Nicotiana benthamiana. Using this protocol, we have achieved the gene editing efficiency at 30-60% in protoplasts and 50-80% in regenerated calli and plants. The edited protoplasts can be readily regenerated without selection agents owing to highly efficient DNA or preassembled RNP transformation frequency. Lastly, this protocol utilized an improved culture media regime to overcome the complex media composition used in the previous studies. It offers quick turnaround time and higher throughput to facilitate the development of new genetic engineering technologies and holds the promise to combine with other genetic and genomic tools for fundamental and translational plant research.
Collapse
Affiliation(s)
- Raviraj Banakar
- Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, MN, USA
- Center for Precision Plant Genomics, University of Minnesota, Saint Paul, MN, USA
- Center for Genome Engineering, University of Minnesota, Saint Paul, MN, USA
| | - Krishan M Rai
- Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, MN, USA
- Center for Precision Plant Genomics, University of Minnesota, Saint Paul, MN, USA
- Center for Genome Engineering, University of Minnesota, Saint Paul, MN, USA
| | - Feng Zhang
- Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, MN, USA.
- Center for Precision Plant Genomics, University of Minnesota, Saint Paul, MN, USA.
- Center for Genome Engineering, University of Minnesota, Saint Paul, MN, USA.
| |
Collapse
|
47
|
Development and clinical translation of ex vivo gene therapy. Comput Struct Biotechnol J 2022; 20:2986-3003. [PMID: 35782737 PMCID: PMC9218169 DOI: 10.1016/j.csbj.2022.06.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 06/07/2022] [Accepted: 06/07/2022] [Indexed: 11/27/2022] Open
Abstract
Retroviral gene therapy has emerged as a promising therapeutic modality for multiple inherited and acquired human diseases. The capability of delivering curative treatment or mediating therapeutic benefits for a long-term period following a single application fundamentally distinguishes this medical intervention from traditional medicine and various lentiviral/γ-retroviral vector-mediated gene therapy products have been approved for clinical use. Continued advances in retroviral vector engineering, genomic editing, synthetic biology and immunology will broaden the medical applications of gene therapy and improve the efficacy and safety of the treatments based on genetic correction and alteration. This review will summarize the advent and clinical translation of ex vivo gene therapy, with the focus on the milestones during the exploitation of genetically engineered hematopoietic stem cells (HSCs) tackling a variety of pathological conditions which led to marketing approval. Finally, current statue and future prospects of gene editing as an alternative therapeutic approach are also discussed.
Collapse
|
48
|
Kumar M, Ayzenshtat D, Marko A, Bocobza S. Optimization of T-DNA configuration with UBIQUITIN10 promoters and tRNA-sgRNA complexes promotes highly efficient genome editing in allotetraploid tobacco. PLANT CELL REPORTS 2022; 41:175-194. [PMID: 34623476 DOI: 10.1007/s00299-021-02796-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 09/23/2021] [Indexed: 06/13/2023]
Abstract
KEY MESSAGE Combination of UBIQUITIN10 promoter-directed CAS9 and tRNA-gRNA complexes in gene-editing assay induces 80% mutant phenotype with a knockout of the four allelic copies in the T0 generation of allotetraploid tobaccos. While gene-editing methodologies, such as CRISPR-Cas9, have been developed and successfully used in many plant species, their use remains challenging, because they most often rely on stable or transient transgene expression. Regrettably, in all plant species, transformation causes epigenetic effects such as gene silencing and variable transgene expression. Here, UBIQUITIN10 promoters from several plant species were characterized and showed their capacity to direct high levels of transgene expression in transient and stable transformation assays, which in turn was used to improve the selection process of regenerated transformants. Furthermore, we compared various sgRNAs delivery systems and showed that the combination of UBIQUITIN10 promoters and tRNA-sgRNA complexes produced 80% mutant phenotype with a complete knockout of the four allelic copies, while the remaining 20% exhibited weaker phenotype, which suggested partial allelic knockout, in the T0 generation of the allotetraploid Nicotiana tabacum. These data provide valuable information to optimize future designs of gene editing constructs for plant research and crop improvement and open the way for valuable gene editing projects in non-model Solanaceae species.
Collapse
MESH Headings
- DNA, Bacterial/genetics
- DNA, Bacterial/metabolism
- DNA, Plant/genetics
- DNA, Plant/metabolism
- Gene Editing/methods
- Genome, Plant
- Plant Proteins/genetics
- Plant Proteins/metabolism
- Promoter Regions, Genetic/genetics
- RNA, Guide, CRISPR-Cas Systems/genetics
- RNA, Guide, CRISPR-Cas Systems/metabolism
- RNA, Plant/genetics
- RNA, Plant/metabolism
- RNA, Transfer/genetics
- RNA, Transfer/metabolism
- Tetraploidy
- Nicotiana/genetics
- Ubiquitins/genetics
- Ubiquitins/metabolism
Collapse
Affiliation(s)
- Manoj Kumar
- Department of Ornamental Plants and Agricultural Biotechnology, The Institute of Plant Sciences, The Volcani Center, ARO, Rishon LeZion, Israel
| | - Dana Ayzenshtat
- Department of Ornamental Plants and Agricultural Biotechnology, The Institute of Plant Sciences, The Volcani Center, ARO, Rishon LeZion, Israel
| | - Adar Marko
- Department of Ornamental Plants and Agricultural Biotechnology, The Institute of Plant Sciences, The Volcani Center, ARO, Rishon LeZion, Israel
| | - Samuel Bocobza
- Department of Ornamental Plants and Agricultural Biotechnology, The Institute of Plant Sciences, The Volcani Center, ARO, Rishon LeZion, Israel.
| |
Collapse
|
49
|
Dey A, Nandy S. CRISPER/Cas in Plant Natural Product Research: Therapeutics as Anticancer and other Drug Candidates and Recent Patents. Recent Pat Anticancer Drug Discov 2021; 16:460-468. [PMID: 34911411 DOI: 10.2174/1574892816666210706155602] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 02/02/2021] [Accepted: 02/15/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR- associated9 (Cas9) endonuclease system is a facile, highly efficient and selective site-directed mutagenesis tool for RNA-guided genome-editing. CRISPR/Cas9 genome-editing strategy uses designed guide-RNAs that recognizes a 3 base-pair protospacer adjacent motif (PAM) sequence in the target-DNA. CRISPR/Cas-editing tools have mainly been employed in crop plants in relation to yield and stress tolerance. However, the immense potential of this technology has not yet been fully utilized in medicinal plants in deciphering or modulating secondary metabolic pathways producing therapeutically active phytochemicals against cancer and other diseases. OBJECTIVE The present review elucidates the use of CRISPR-Cas9 as a promising genome-editing tool in plants and plant-derived natural products with anticancer and other therapeutic applications. It also includes recent patents on the therapeutic applications of CRISPR-CAS systems implicated to cancer and other human medical conditions. METHODS Popular search engines, such as PubMed, Scopus, Google Scholar, Google Patents, Medline, ScienceDirect, SpringerLink, EMBASE, Mendeley, etc., were searched in order to retrieve literature using relevant keywords viz. CRISPER/Cas, plant natural product research, anticancer, therapeutics, etc., either singly or in various combinations. RESULTS Retrieved citations and further cross-referencing among the literature have resulted in a total number of 71 publications and 3 patents are being cited in this work. Information presented in this review aims to support further biotechnological and clinical strategies to be carried using CRISPER/ Cas mediated optimization of plant natural products against cancer and an array of other human medical conditions. CONCLUSION Off late, knock-in and knock-out, point mutation, controlled tuning of gene-expression and targeted mutagenesis have enabled the versatile CRISPR/Cas-editing device to engineer medicinal plants' genomes. In addition, by combining CRISPR/Cas-editing tool with next-generation sequencing (NGS) and various tools of system biology, many medicinal plants have been engineered genetically to optimize the production of valuable bioactive compounds of industrial significance.
Collapse
Affiliation(s)
- Abhijit Dey
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata 700073, India
| | - Samapika Nandy
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata 700073, India
| |
Collapse
|
50
|
Biswas P, Anand U, Ghorai M, Pandey DK, Jha NK, Behl T, Kumar M, Kumar R, Shekhawat MS, Dey A. Unravelling the promise and limitations of CRISPR/Cas system in natural product research: Approaches and challenges. Biotechnol J 2021; 17:e2100507. [PMID: 34882991 DOI: 10.1002/biot.202100507] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/30/2021] [Accepted: 12/07/2021] [Indexed: 11/12/2022]
Abstract
An incredible array of natural products are produced by plants that serve several ecological functions, including protecting them from herbivores and microbes, attracting pollinators, and dispersing seeds. In addition to their obvious medical applications, natural products serve as flavouring agents, fragrances and many other uses by humans. With the increasing demand for natural products and the development of various gene engineering systems, researchers are trying to modify the plant genome to increase the biosynthetic pathway of the compound of interest or blocking the pathway of unwanted compound synthesis. The clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 has had widespread success in genome editing due to the system's high efficiency, ease of use, and accuracy which revolutionized the genome editing system in living organisms. This article highlights the method of the CRISPR/Cas system, its application in different organisms including microbes, algae, fungi and also higher plants in natural product research, its shortcomings and future prospects. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Protha Biswas
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, West Bengal, 700073, India
| | - Uttpal Anand
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Mimosa Ghorai
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, West Bengal, 700073, India
| | - Devendra Kumar Pandey
- Department of Biotechnology, Lovely Faculty of Technology and Sciences, Lovely Professional University, Phagwara, Punjab, 144402, India
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology, Sharda University, Greater Noida, Uttar Pradesh, 201310, India
| | - Tapan Behl
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Rajpura, Chandigarh, Punjab, 140401, India
| | - Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR - Central Institute for Research on Cotton Technology, Mumbai, Maharashtra, 400019, India
| | - Radha Kumar
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh, 173229, India
| | - Mahipal S Shekhawat
- Plant Biotechnology Unit, Kanchi Mamunivar Government Institute for Postgraduate Studies and Research, Puducherry, 605 008, India
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, West Bengal, 700073, India
| |
Collapse
|