1
|
Etesami H, Santoyo G. Boosting Rhizobium-legume symbiosis: The role of nodule non-rhizobial bacteria in hormonal and nutritional regulation under stress. Microbiol Res 2025; 297:128192. [PMID: 40279725 DOI: 10.1016/j.micres.2025.128192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 04/19/2025] [Accepted: 04/22/2025] [Indexed: 04/29/2025]
Abstract
Legumes are vital for sustainable agriculture due to their unique ability to fix atmospheric nitrogen through symbiosis with rhizobia. Recent research has highlighted the significant role of non-rhizobial bacteria (NRB) within root nodules in enhancing this symbiotic relationship, particularly under stress conditions. These NRB exhibit plant growth-promoting (PGP) metabolites by modulating phytohormones and enhancing nutrient availability, thereby improving nodule development and function. Bacteria produce essential hormones, such as auxin (indole-3-acetic acid), cytokinins, gibberellic acids abscisic acid, jasmonic acid, and salicylic acid, and enzymes like 1-aminocyclopropane-1-carboxylate deaminase, which mitigate ethylene's inhibitory effects on nodulation. Furthermore, NRB contribute to nutrient cycling by solubilizing minerals like phosphate, potassium, silicate, zinc, and iron, essential for effective nitrogen fixation. The co-inoculation of legumes with both rhizobia and NRB with multiple PGP metabolites has shown synergistic effects on plant growth, yield, and resilience against environmental stresses. This review emphasizes the need to further explore the diversity and functional roles of nodule-associated non-rhizobial endophytes, aiming to optimize legume productivity through improved nutrient and hormonal management. Understanding these interactions is crucial for developing sustainable agricultural practices that enhance the efficiency of legume-rhizobia symbiosis, ultimately contributing to food security and ecosystem health.
Collapse
Affiliation(s)
- Hassan Etesami
- Department of Soil Science, University of Tehran, Tehran, Iran.
| | - Gustavo Santoyo
- Institute of Chemical and Biological Research, Universidad Michoacana de San Nicolás de Hidalgo (UMSNH), Morelia 58095, Mexico
| |
Collapse
|
2
|
Chopra S, Sharma SG, Kaur S, Kumar V, Guleria P. Understanding the microRNA-mediated regulation of plant-microbe interaction and scope for regulation of abiotic and biotic stress tolerance in plants. PHYSIOLOGICAL AND MOLECULAR PLANT PATHOLOGY 2025; 136:102565. [DOI: 10.1016/j.pmpp.2025.102565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
|
3
|
Yang J, Lu X, Hu S, Yang X, Cao X. microRNA858 represses the transcription factor gene SbMYB47 and regulates flavonoid biosynthesis in Scutellaria baicalensis. PLANT PHYSIOLOGY 2024; 197:kiae607. [PMID: 39520698 DOI: 10.1093/plphys/kiae607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/17/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024]
Abstract
MicroRNAs (miRNAs) are noncoding endogenous single-stranded RNAs that regulate target gene expression by reducing their transcription and translation. Several miRNAs in plants function in secondary metabolism. The dried root of Scutellaria baicalensis Georgi is a traditional Chinese medicine that contains flavonoids (baicalin, wogonoside, and baicalein) as its main active ingredients. Although the S. baicalensis genome sequence has been published, information regarding its miRNAs is lacking. In this study, 12 small RNA libraries of different S. baicalensis tissues were compiled, including roots, stems, leaves, and flowers. A total of 129 miRNAs were identified, including 99 miRNAs from 27 miRNA families and 30 predicted miRNAs. Furthermore, 46 reliable target genes of 15 miRNA families were revealed using psRNATarget and confirmed by degradome sequencing. It was speculated that the microRNA858 (miR858)-SbMYB47 module might be involved in flavonoid biosynthesis. Transient assays in Nicotiana benthamiana leaves indicated that miR858 targets SbMYB47 and suppresses its expression. Artificial miRNA-mediated knockdown of miR858 and overexpression of SbMYB47 significantly increased the flavonoid content in S. baicalensis hairy roots, while SbMYB47 knockdown inhibited flavonoid accumulation. Yeast one-hybrid and dual-luciferase assays indicated that SbMYB47 directly binds to and activates the S. baicalensis phenylalanine ammonia-lyase 3 (SbPAL-3) and flavone synthase II (SbFNSⅡ-2) promoters. Our findings reveal the link between the miR858-SbMYB47 module and flavonoid biosynthesis, providing a potential strategy for the production of flavonoids with important pharmacological activities through metabolic engineering.
Collapse
Affiliation(s)
- Jiaxin Yang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Shaanxi Normal University, Xi'an 710119, China
- Department of Pharmacy, Medicine School, Xi'an International University, Xi'an 710077, China
| | - Xiayang Lu
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Shaanxi Normal University, Xi'an 710119, China
| | - Suying Hu
- Shaanxi Institute of Microbiology, Xi'an 710043, China
| | - Xiaozeng Yang
- Institute of Botany, Chinese of Academy Sciences, Beijing 100093, China
| | - Xiaoyan Cao
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Shaanxi Normal University, Xi'an 710119, China
| |
Collapse
|
4
|
Yang E, Zheng M, Zhang L, Chen X, Zhang J. Integrated analysis of microRNAs and lncRNAs expression profiles reveals regulatory modules during adventitious shoot induction in Moringa oleifera Lam. BMC PLANT BIOLOGY 2024; 24:1237. [PMID: 39716079 PMCID: PMC11665116 DOI: 10.1186/s12870-024-05983-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Accepted: 12/17/2024] [Indexed: 12/25/2024]
Abstract
BACKGROUND Embryogenic callus (EC) has strong regenerative potential, useful for propagation and genetic transformation. miRNAs have been confirmed to play key regulatory roles in EC regeneration across various plants. However, challenges in EC induction have hindered the breeding of drumstick (Moringa oleifera Lam.), a tree with significant commercial potential. Understanding the regulatory networks of miRNAs-lncRNAs during EC formation in drumstick is crucial for overcoming these barriers. RESULTS In this study, three drumstick EC small RNA libraries were sequenced using an Illumina Nova 6000 system. We identified 50 known miRNAs and 233 novel miRNAs. Target prediction and functional analysis showed that these miRNAs are involved in plant hormone signal transduction. Notably, miR319a and miR319b were upregulated throughout the entire process, while miR171 and miR160 were downregulated in the earlier stage but upregulated in the later stage. The expression patterns of 6 miRNAs detected by qRT-PCR were consistent with those observed in RNA-seq. The regulatory relationships between 6 selected highly expressed miRNAs and their target genes generally conformed to a negative regulatory pattern. Furthermore, miR156 and MolncRNA2275 were identified as key regulators in miRNA-mRNA-lncRNA network. CONCLUSIONS In summary, our study provides valuable insights into the molecular mechanisms underlying EC formation and enhances the understanding of the miRNA networks involved in this process.
Collapse
Affiliation(s)
- Endian Yang
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, Guangzhou, 510642, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, (South China Agricultural University), Guangzhou, 510642, China
- College of Life Science, Nanchang University, Nanchang, 330031, China
| | - Mengxia Zheng
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, Guangzhou, 510642, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, (South China Agricultural University), Guangzhou, 510642, China
| | - Limei Zhang
- South China Agricultural University Library, Guangzhou, 510642, China
| | - Xiaoyang Chen
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China.
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, Guangzhou, 510642, China.
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, (South China Agricultural University), Guangzhou, 510642, China.
- Guangdong Province Research Center of Woody Forage Engineering Technology, Guangzhou, 510642, China.
| | - Junjie Zhang
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China.
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, Guangzhou, 510642, China.
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, (South China Agricultural University), Guangzhou, 510642, China.
- Guangdong Province Research Center of Woody Forage Engineering Technology, Guangzhou, 510642, China.
| |
Collapse
|
5
|
Ouyang W, Sun H, Wang Y. Unlocking the small RNAs: local and systemic modulators for advancing agronomic enhancement. J Genet Genomics 2024:S1673-8527(24)00364-3. [PMID: 39716571 DOI: 10.1016/j.jgg.2024.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 12/17/2024] [Accepted: 12/17/2024] [Indexed: 12/25/2024]
Abstract
Small regulatory RNAs (sRNAs) are essential regulators of gene expression across a wide range of organisms to precisely modulate gene activity based on sequence-specific recognition. In model plants like Arabidopsis thaliana, extensive research has primarily concentrated on 21 to 24-nucleotide (nt) sRNAs, particularly microRNAs (miRNAs). Recent advancements in cell and tissue isolation techniques, coupled with advanced sequencing technologies, are revealing a diverse array of preciously uncharacterized sRNA species. These include previously novel structural RNA fragments as well as numerous cell- and tissue-specific sRNAs that are active during distinct developmental stages, thereby enhancing our understanding of the precise and dynamic regulatory roles of sRNAs in plant development regulation. Additionally, a notable feature of sRNAs is their capacity for amplification and movement between cells and tissues, which facilitates long-distance communication-an adaptation critical to plants due to their sessile nature. In this review, we will discuss the classification and mechanisms of action of sRNAs, using legumes as a primary example due to their essential engagement for the unique organ establishment of root nodules and long-distance signaling, and further illustrating the potential applications of sRNAs in modern agricultural breeding and environmentally sustainable plant protection strategies.
Collapse
Affiliation(s)
- Wenqi Ouyang
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Tropical Crops, Hainan University, Haikou, Hainan 570288, China
| | - Hongda Sun
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yuan Wang
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), Institute of Genetics and Developmental Biology, CAS, Beijing 100101, China.
| |
Collapse
|
6
|
Rudolf J, Tomovicova L, Panzarova K, Fajkus J, Hejatko J, Skalak J. Epigenetics and plant hormone dynamics: a functional and methodological perspective. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:5267-5294. [PMID: 38373206 PMCID: PMC11389840 DOI: 10.1093/jxb/erae054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 02/19/2024] [Indexed: 02/21/2024]
Abstract
Plant hormones, pivotal regulators of plant growth, development, and response to environmental cues, have recently emerged as central modulators of epigenetic processes governing gene expression and phenotypic plasticity. This review addresses the complex interplay between plant hormones and epigenetic mechanisms, highlighting the diverse methodologies that have been harnessed to decipher these intricate relationships. We present a comprehensive overview to understand how phytohormones orchestrate epigenetic modifications, shaping plant adaptation and survival strategies. Conversely, we explore how epigenetic regulators ensure hormonal balance and regulate the signalling pathways of key plant hormones. Furthermore, our investigation includes a search for novel genes that are regulated by plant hormones under the control of epigenetic processes. Our review offers a contemporary overview of the epigenetic-plant hormone crosstalk, emphasizing its significance in plant growth, development, and potential agronomical applications.
Collapse
Affiliation(s)
- Jiri Rudolf
- Mendel Centre for Plant Genomics and Proteomics, CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 753/5, CZ-62500 Brno, Czech Republic
- Department of Cell Biology and Radiobiology, Institute of Biophysics of the Czech Academy of Sciences, CZ-61265 Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 753/5, CZ-62500 Brno, Czech Republic
| | - Lucia Tomovicova
- Mendel Centre for Plant Genomics and Proteomics, CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 753/5, CZ-62500 Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 753/5, CZ-62500 Brno, Czech Republic
| | - Klara Panzarova
- Photon Systems Instruments, Prumyslova 470, CZ-664 24 Drasov, Czech Republic
| | - Jiri Fajkus
- Mendel Centre for Plant Genomics and Proteomics, CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 753/5, CZ-62500 Brno, Czech Republic
- Department of Cell Biology and Radiobiology, Institute of Biophysics of the Czech Academy of Sciences, CZ-61265 Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 753/5, CZ-62500 Brno, Czech Republic
| | - Jan Hejatko
- Mendel Centre for Plant Genomics and Proteomics, CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 753/5, CZ-62500 Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 753/5, CZ-62500 Brno, Czech Republic
| | - Jan Skalak
- Mendel Centre for Plant Genomics and Proteomics, CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 753/5, CZ-62500 Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 753/5, CZ-62500 Brno, Czech Republic
| |
Collapse
|
7
|
Tu T, Gao Z, Li L, Chen J, Ye K, Xu T, Mai S, Han Q, Chen C, Wu S, Dong Y, Chen J, Huang L, Guan Y, Xie F, Chen X. Soybean symbiotic-nodule zonation and cell differentiation are defined by NIN2 signaling and GH3-dependent auxin homeostasis. Dev Cell 2024; 59:2254-2269.e6. [PMID: 39053471 DOI: 10.1016/j.devcel.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 04/18/2024] [Accepted: 07/02/2024] [Indexed: 07/27/2024]
Abstract
Symbiotic nodules comprise two classes, indeterminate and determinate, defined by the presence/absence of apical meristem and developmental zonation. Why meristem and zonation are absent from determinate nodules remains unclear. Here, we define cell types in developing soybean nodules, highlighting the undifferentiated infection zones and differentiated nitrogen-fixation zones. Auxin governs infection zone maintenance. GRETCHEN HAGEN 3 (GH3) enzymes deactivate auxin by conjugation and promote cell differentiation. gh3 mutants increased undifferentiated cells and enlarged infection zones. The central symbiosis-transcription factor NIN2a activates GH3.1 to reduce auxin levels and facilitates cell differentiation. High auxin promotes NIN2a protein accumulation and enhances signaling, further deactivating auxin and depleting infection zones. Our findings shed light on the NIN2a-GH3-auxin module that drives soybean nodule cell differentiation. This study challenges our understanding of determinate nodule development and proposes that the regulation of nodule zonation offers valuable insights into broader mechanisms of cell differentiation across plant species.
Collapse
Affiliation(s)
- Tianli Tu
- Haixia Institute of Science and Technology, Horticultural Plant Biology and Metabolomics Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhen Gao
- Haixia Institute of Science and Technology, Horticultural Plant Biology and Metabolomics Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Linfang Li
- Haixia Institute of Science and Technology, Horticultural Plant Biology and Metabolomics Center, Fujian Agriculture and Forestry University, Fuzhou, China; College of Agriculture and Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Jiansheng Chen
- Haixia Institute of Science and Technology, Horticultural Plant Biology and Metabolomics Center, Fujian Agriculture and Forestry University, Fuzhou, China; College of Agriculture and Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Kangzhuo Ye
- Haixia Institute of Science and Technology, Horticultural Plant Biology and Metabolomics Center, Fujian Agriculture and Forestry University, Fuzhou, China; College of Agriculture and Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Tao Xu
- Haixia Institute of Science and Technology, Horticultural Plant Biology and Metabolomics Center, Fujian Agriculture and Forestry University, Fuzhou, China; College of Agriculture and Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Siyuan Mai
- Haixia Institute of Science and Technology, Horticultural Plant Biology and Metabolomics Center, Fujian Agriculture and Forestry University, Fuzhou, China; College of Agriculture and Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Qingqing Han
- Haixia Institute of Science and Technology, Horticultural Plant Biology and Metabolomics Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Chaofan Chen
- Haixia Institute of Science and Technology, Horticultural Plant Biology and Metabolomics Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shengwei Wu
- Haixia Institute of Science and Technology, Horticultural Plant Biology and Metabolomics Center, Fujian Agriculture and Forestry University, Fuzhou, China; College of Agriculture and Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Yankun Dong
- Haixia Institute of Science and Technology, Horticultural Plant Biology and Metabolomics Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jiaomei Chen
- Haixia Institute of Science and Technology, Horticultural Plant Biology and Metabolomics Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Laimei Huang
- Haixia Institute of Science and Technology, Horticultural Plant Biology and Metabolomics Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yuefeng Guan
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Fang Xie
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Xu Chen
- Haixia Institute of Science and Technology, Horticultural Plant Biology and Metabolomics Center, Fujian Agriculture and Forestry University, Fuzhou, China.
| |
Collapse
|
8
|
Yuan Y, Huang C, Pan K, Yao W, Xia R, Zhang M. Small RNA and Degradome Deep Sequencing Reveal Regulatory Roles of MicroRNAs in Response to Sugarcane Mosaic Virus Infection on Two Contrasting Sugarcane Cultivars. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2024; 37:583-593. [PMID: 38598845 DOI: 10.1094/mpmi-12-23-0220-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
MicroRNAs (miRNAs) play an essential regulatory role in plant-virus interaction. However, few studies have focused on the roles of miRNAs and their targets after sugarcane mosaic virus (SCMV) infection in sugarcane. To address this issue, we conducted small RNA (sRNA) and degradome sequencing on two contrasting sugarcanes (SCMV-resistant 'Fuoguo1' [FG1] and susceptible 'Badila') infected by SCMV at five time points. A total of 1,578 miRNAs were profiled from 30 sRNA libraries, comprising 660 known miRNAs and 380 novel miRNAs. Differential expression analysis of miRNAs revealed that most were highly expressed during the SCMV exponential phase in Badila at 18 h postinfection, with expression profiles positively correlated with virus replication dynamics as observed through clustering. Analysis of degradome data indicated a higher number of differential miRNA targets in Badila compared to FG1 at 18 h postinfection. Gene ontology (GO) enrichment analysis significantly enriched the stimulus-response pathway, suggesting negative regulatory roles to SCMV resistance. Specifically, miR160 upregulated expression patterns and validated in Badila through quantitative real-time PCR (qRT-PCR) in the early stages of SCMV multiplication. Our research provides new insights into the dynamic response of plant miRNA and virus replication and contributes valuable information on the intricate interplay between miRNAs and SCMV infection dynamics. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Yuan Yuan
- State Key Laboratory for Conservation and Utilization of Agro-Bioresources, Guangxi Key Laboratory for Sugarcane Biology, Guangxi University, Nanning 530005, China
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Science, Haikou 570105, China
| | - Cuilin Huang
- State Key Laboratory for Conservation and Utilization of Agro-Bioresources, Guangxi Key Laboratory for Sugarcane Biology, Guangxi University, Nanning 530005, China
| | - Kaiyuan Pan
- State Key Laboratory for Conservation and Utilization of Agro-Bioresources, Guangxi Key Laboratory for Sugarcane Biology, Guangxi University, Nanning 530005, China
| | - Wei Yao
- State Key Laboratory for Conservation and Utilization of Agro-Bioresources, Guangxi Key Laboratory for Sugarcane Biology, Guangxi University, Nanning 530005, China
| | - Rui Xia
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Muqing Zhang
- State Key Laboratory for Conservation and Utilization of Agro-Bioresources, Guangxi Key Laboratory for Sugarcane Biology, Guangxi University, Nanning 530005, China
| |
Collapse
|
9
|
Fang C, Du H, Wang L, Liu B, Kong F. Mechanisms underlying key agronomic traits and implications for molecular breeding in soybean. J Genet Genomics 2024; 51:379-393. [PMID: 37717820 DOI: 10.1016/j.jgg.2023.09.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 09/05/2023] [Accepted: 09/05/2023] [Indexed: 09/19/2023]
Abstract
Soybean (Glycine max [L.] Merr.) is an important crop that provides protein and vegetable oil for human consumption. As soybean is a photoperiod-sensitive crop, its cultivation and yield are limited by the photoperiodic conditions in the field. In contrast to other major crops, soybean has a special plant architecture and a special symbiotic nitrogen fixation system, representing two unique breeding directions. Thus, flowering time, plant architecture, and symbiotic nitrogen fixation are three critical or unique yield-determining factors. This review summarizes the progress made in our understanding of these three critical yield-determining factors in soybean. Meanwhile, we propose potential research directions to increase soybean production, discuss the application of genomics and genomic-assisted breeding, and explore research directions to address future challenges, particularly those posed by global climate changes.
Collapse
Affiliation(s)
- Chao Fang
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, Guangdong 510006, China
| | - Haiping Du
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, Guangdong 510006, China
| | - Lingshuang Wang
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, Guangdong 510006, China
| | - Baohui Liu
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, Guangdong 510006, China
| | - Fanjiang Kong
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, Guangdong 510006, China.
| |
Collapse
|
10
|
Wang C, Li X, Zhuang Y, Sun W, Cao H, Xu R, Kong F, Zhang D. A novel miR160a-GmARF16-GmMYC2 module determines soybean salt tolerance and adaptation. THE NEW PHYTOLOGIST 2024; 241:2176-2192. [PMID: 38135657 DOI: 10.1111/nph.19503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 11/26/2023] [Indexed: 12/24/2023]
Abstract
Salt stress is a major challenge that has a negative impact on soybean growth and productivity. Therefore, it is important to understand the regulatory mechanism of salt response to ensure soybean yield under such conditions. In this study, we identified and characterized a miR160a-GmARF16-GmMYC2 module and its regulation during the salt-stress response in soybean. miR160a promotes salt tolerance by cleaving GmARF16 transcripts, members of the Auxin Response Factor (ARF) family, which negatively regulates salt tolerance. In turn, GmARF16 activates GmMYC2, encoding a bHLH transcription factor that reduces salinity tolerance by down-regulating proline biosynthesis. Genomic analysis among wild and cultivated soybean accessions identified four distinct GmARF16 haplotypes. Among them, the GmARF16H3 haplotype is preferentially enriched in localities with relatively saline soils, suggesting GmARF16H3 was artificially selected to improve salt tolerance. Our findings therefore provide insights into the molecular mechanisms underlying salt response in soybean and provide valuable genetic targets for the molecular breeding of salt tolerance.
Collapse
Affiliation(s)
- Chaofan Wang
- College of Agronomy, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Xiaoming Li
- College of Agronomy, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Yongbin Zhuang
- College of Agronomy, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Wancai Sun
- College of Agronomy, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Hongxiang Cao
- College of Agronomy, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Ran Xu
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Ji'nan, Shandong, 250131, China
| | - Fanjiang Kong
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Dajian Zhang
- College of Agronomy, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| |
Collapse
|
11
|
Hazra S, Moulick D, Mukherjee A, Sahib S, Chowardhara B, Majumdar A, Upadhyay MK, Yadav P, Roy P, Santra SC, Mandal S, Nandy S, Dey A. Evaluation of efficacy of non-coding RNA in abiotic stress management of field crops: Current status and future prospective. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 203:107940. [PMID: 37738864 DOI: 10.1016/j.plaphy.2023.107940] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 07/23/2023] [Accepted: 08/04/2023] [Indexed: 09/24/2023]
Abstract
Abiotic stresses are responsible for the major losses in crop yield all over the world. Stresses generate harmful ROS which can impair cellular processes in plants. Therefore, plants have evolved antioxidant systems in defence against the stress-induced damages. The frequency of occurrence of abiotic stressors has increased several-fold due to the climate change experienced in recent times and projected for the future. This had particularly aggravated the risk of yield losses and threatened global food security. Non-coding RNAs are the part of eukaryotic genome that does not code for any proteins. However, they have been recently found to have a crucial role in the responses of plants to both abiotic and biotic stresses. There are different types of ncRNAs, for example, miRNAs and lncRNAs, which have the potential to regulate the expression of stress-related genes at the levels of transcription, post-transcription, and translation of proteins. The lncRNAs are also able to impart their epigenetic effects on the target genes through the alteration of the status of histone modification and organization of the chromatins. The current review attempts to deliver a comprehensive account of the role of ncRNAs in the regulation of plants' abiotic stress responses through ROS homeostasis. The potential applications ncRNAs in amelioration of abiotic stresses in field crops also have been evaluated.
Collapse
Affiliation(s)
- Swati Hazra
- Sharda School of Agricultural Sciences, Sharda University, Greater Noida, Uttar Pradesh 201310, India.
| | - Debojyoti Moulick
- Department of Environmental Science, University of Kalyani, Nadia, West Bengal 741235, India.
| | | | - Synudeen Sahib
- S. S. Cottage, Njarackal, P.O.: Perinad, Kollam, 691601, Kerala, India.
| | - Bhaben Chowardhara
- Department of Botany, Faculty of Science and Technology, Arunachal University of Studies, Arunachal Pradesh 792103, India.
| | - Arnab Majumdar
- Department of Earth Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, West Bengal 741246, India.
| | - Munish Kumar Upadhyay
- Department of Civil Engineering, Indian Institute of Technology Kanpur, Uttar Pradesh 208016, India.
| | - Poonam Yadav
- Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India.
| | - Priyabrata Roy
- Department of Molecular Biology and Biotechnology, University of Kalyani, West Bengal 741235, India.
| | - Subhas Chandra Santra
- Department of Environmental Science, University of Kalyani, Nadia, West Bengal 741235, India.
| | - Sayanti Mandal
- Department of Biotechnology, Dr. D. Y. Patil Arts, Commerce & Science College (affiliated to Savitribai Phule Pune University), Sant Tukaram Nagar, Pimpri, Pune, Maharashtra-411018, India.
| | - Samapika Nandy
- School of Pharmacy, Graphic Era Hill University, Bell Road, Clement Town, Dehradun, 248002, Uttarakhand, India; Department of Botany, Vedanta College, 33A Shiv Krishna Daw Lane, Kolkata-700054, India.
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata, West Bengal 700073, India.
| |
Collapse
|
12
|
A Germin-Like Protein GLP1 of Legumes Mediates Symbiotic Nodulation by Interacting with an Outer Membrane Protein of Rhizobia. Microbiol Spectr 2023; 11:e0335022. [PMID: 36633436 PMCID: PMC9927233 DOI: 10.1128/spectrum.03350-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Rhizobia can infect legumes and induce the coordinated expression of symbiosis and defense genes for the establishment of mutualistic symbiosis. Numerous studies have elucidated the molecular interactions between rhizobia and host plants, which are associated with Nod factor, exopolysaccharide, and T3SS effector proteins. However, there have been relatively few reports about how the host plant recognizes the outer membrane proteins (OMPs) of rhizobia to mediate symbiotic nodulation. In our previous work, a gene (Mhopa22) encoding an OMP was identified in Mesorhizobium huakuii 7653R, whose homologous genes are widely distributed in Rhizobiales. In this study, a germin-like protein GLP1 interacting with Mhopa22 was identified in Astragalus sinicus. RNA interference of AsGLP1 resulted in a decrease in nodule number, whereas overexpression of AsGLP1 increased the number of nodules in the hairy roots of A. sinicus. Consistent symbiotic phenotypes were identified in Medicago truncatula with MtGLPx (refer to medtr7g111240.1, the isogeny of AsGLP1) overexpression or Tnt1 mutant (glpx-1) in symbiosis with Sinorhizobium meliloti 1021. The glpx-1 mutant displayed hyperinfection and the formation of more infection threads but a decrease in root nodules. RNA sequencing analysis showed that many differentially expressed genes were involved in hormone signaling and symbiosis. Taken together, AsGLP1 and its homology play an essential role in mediating the early symbiotic process through interacting with the OMPs of rhizobia. IMPORTANCE This study is the first report to characterize a legume host plant protein to sense and interact with an outer membrane protein (OMP) of rhizobia. It can be speculated that GLP1 plays an essential role to mediate early symbiotic process through interacting with OMPs of rhizobia. The results provide deeper understanding and novel insights into the molecular interactive mechanism of a legume symbiosis signaling pathway in recognition with rhizobial OMPs. Our findings may also provide a new perspective to improve the symbiotic compatibility and nodulation of legume.
Collapse
|
13
|
Du H, Fang C, Li Y, Kong F, Liu B. Understandings and future challenges in soybean functional genomics and molecular breeding. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:468-495. [PMID: 36511121 DOI: 10.1111/jipb.13433] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 12/11/2022] [Indexed: 06/17/2023]
Abstract
Soybean (Glycine max) is a major source of plant protein and oil. Soybean breeding has benefited from advances in functional genomics. In particular, the release of soybean reference genomes has advanced our understanding of soybean adaptation to soil nutrient deficiencies, the molecular mechanism of symbiotic nitrogen (N) fixation, biotic and abiotic stress tolerance, and the roles of flowering time in regional adaptation, plant architecture, and seed yield and quality. Nevertheless, many challenges remain for soybean functional genomics and molecular breeding, mainly related to improving grain yield through high-density planting, maize-soybean intercropping, taking advantage of wild resources, utilization of heterosis, genomic prediction and selection breeding, and precise breeding through genome editing. This review summarizes the current progress in soybean functional genomics and directs future challenges for molecular breeding of soybean.
Collapse
Affiliation(s)
- Haiping Du
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Chao Fang
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Yaru Li
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Fanjiang Kong
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Baohui Liu
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| |
Collapse
|
14
|
Integrative Transcriptome, miRNAs, Degradome, and Phytohormone Analysis of Brassica rapa L. in Response to Plasmodiophora brassicae. Int J Mol Sci 2023; 24:ijms24032414. [PMID: 36768734 PMCID: PMC9916777 DOI: 10.3390/ijms24032414] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/09/2023] [Accepted: 01/18/2023] [Indexed: 01/28/2023] Open
Abstract
Clubroot is an infectious root disease caused by Plasmodiophora brassicae in Brassica crops, which can cause immeasurable losses. We analyzed integrative transcriptome, small RNAs, degradome, and phytohormone comprehensively to explore the infection mechanism of P. brassicae. In this study, root samples of Brassica rapa resistant line material BrT24 (R-line) and susceptible line material Y510-9 (S-line) were collected at four different time points for cytological, transcriptome, miRNA, and degradome analyses. We found the critical period of disease resistance and infection were at 0-3 DAI (days after inoculation) and 9-20 DAI, respectively. Based on our finding, we further analyzed the data of 9 DAI vs. 20 DAI of S-line and predicted the key genes ARF8, NAC1, NAC4, TCP10, SPL14, REV, and AtHB, which were related to clubroot disease development and regulating disease resistance mechanisms. These genes are mainly related to auxin, cytokinin, jasmonic acid, and ethylene cycles. We proposed a regulatory model of plant hormones under the mRNA-miRNA regulation in the critical period of P. brassicae infection by using the present data of the integrative transcriptome, small RNAs, degradome, and phytohormone with our previously published results. Our integrative analysis provided new insights into the regulation relationship of miRNAs and plant hormones during the process of disease infection with P. brassicae.
Collapse
|
15
|
Comparative phylogenomic analysis of 5’is-regulatory elements (CREs) of miR160 gene family in diploid and allopolyploid cotton (Gossypium) species. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2022.101721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
16
|
Stu-miR827-Targeted StWRKY48 Transcription Factor Negatively Regulates Drought Tolerance of Potato by Increasing Leaf Stomatal Density. Int J Mol Sci 2022; 23:ijms232314805. [PMID: 36499135 PMCID: PMC9741430 DOI: 10.3390/ijms232314805] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 12/05/2022] Open
Abstract
Stomata are specialized portals in plant leaves to modulate water loss from plants to the atmosphere by control of the transpiration, thereby determining the water-use efficiency and drought resistance of plants. Despite that the stomata developmental progression is well-understood at the molecular level, the experimental evidence that miRNA regulates stomata development is still lacking, and the underlying mechanism remains elusive. This study demonstrates the involvement of stu-miR827 in regulating the drought tolerance of potato due to its control over the leaf stomatal density. The expression analysis showed that stu-miR827 was obviously repressed by drought stresses and then rapidly increased after rewatering. Suppressing the expression of stu-miR827 transgenic potato lines showed an increase in stomatal density, correlating with a weaker drought resistance compared with wildtype potato lines. In addition, StWRKY48 was identified as the target gene of stu-miR827, and the expression of StWRKY48 was obviously induced by drought stresses and was greatly upregulated in stu-miR827 knockdown transgenic potato lines, suggesting its involvement in the drought stress response. Importantly, the expression of genes associated with stomata development, such as SDD (stomatal density and distribution) and TMM (too many mouths), was seriously suppressed in transgenic lines. Altogether, these observations demonstrated that suppression of stu-miR827 might lead to overexpression of StWRKY48, which may contribute to negatively regulating the drought adaptation of potato by increasing the stomatal density. The results may facilitate functional studies of miRNAs in the process of drought tolerance in plants.
Collapse
|
17
|
Fan K, Sze CC, Li MW, Lam HM. Roles of non-coding RNAs in the hormonal and nutritional regulation in nodulation and nitrogen fixation. FRONTIERS IN PLANT SCIENCE 2022; 13:997037. [PMID: 36330261 PMCID: PMC9623164 DOI: 10.3389/fpls.2022.997037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
Symbiotic nitrogen fixation is an important component in the nitrogen cycle and is a potential solution for sustainable agriculture. It is the result of the interactions between the plant host, mostly restricted to legume species, and the rhizobial symbiont. From the first encounter between the host and the symbiont to eventual successful nitrogen fixation, there are delicate processes involved, such as nodule organogenesis, rhizobial infection thread progression, differentiation of the bacteroid, deregulation of the host defense systems, and reallocation of resources. All these processes are tightly regulated at different levels. Recent evidence revealed that non-coding RNAs (ncRNAs), including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), participate in these processes by controlling the transcription and translation of effector genes. In general, ncRNAs are functional transcripts without translation potential and are important gene regulators. MiRNAs, negative gene regulators, bind to the target mRNAs and repress protein production by causing the cleavage of mRNA and translational silencing. LncRNAs affect the formation of chromosomal loops, DNA methylation, histone modification, and alternative splicing to modulate gene expression. Both lncRNAs and circRNAs could serve as target mimics of miRNA to inhibit miRNA functions. In this review, we summarized and discussed the current understanding of the roles of ncRNAs in legume nodulation and nitrogen fixation in the root nodule, mainly focusing on their regulation of hormone signal transduction, the autoregulation of nodulation (AON) pathway and nutrient homeostasis in nodules. Unraveling the mediation of legume nodulation by ncRNAs will give us new insights into designing higher-performance leguminous crops for sustainable agriculture.
Collapse
|
18
|
Velandia K, Reid JB, Foo E. Right time, right place: The dynamic role of hormones in rhizobial infection and nodulation of legumes. PLANT COMMUNICATIONS 2022; 3:100327. [PMID: 35605199 PMCID: PMC9482984 DOI: 10.1016/j.xplc.2022.100327] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 03/24/2022] [Accepted: 04/13/2022] [Indexed: 06/15/2023]
Abstract
Many legume plants form beneficial associations with rhizobial bacteria that are hosted in new plant root organs, nodules, in which atmospheric nitrogen is fixed. This association requires the precise coordination of two separate programs, infection in the epidermis and nodule organogenesis in the cortex. There is extensive literature indicating key roles for plant hormones during nodulation, but a detailed analysis of the spatial and temporal roles of plant hormones during the different stages of nodulation is required. This review analyses the current literature on hormone regulation of infection and organogenesis to reveal the differential roles and interactions of auxin, cytokinin, brassinosteroids, ethylene, and gibberellins during epidermal infection and cortical nodule initiation, development, and function. With the exception of auxin, all of these hormones suppress infection events. By contrast, there is evidence that all of these hormones promote nodule organogenesis, except ethylene, which suppresses nodule initiation. This differential role for many of the hormones between the epidermal and cortical programs is striking. Future work is required to fully examine hormone interactions and create a robust model that integrates this knowledge into our understanding of nodulation pathways.
Collapse
Affiliation(s)
- Karen Velandia
- Discipline of Biological Sciences, School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, TAS 7001, Australia
| | - James B Reid
- Discipline of Biological Sciences, School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, TAS 7001, Australia
| | - Eloise Foo
- Discipline of Biological Sciences, School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, TAS 7001, Australia.
| |
Collapse
|
19
|
Zhang F, Yang J, Zhang N, Wu J, Si H. Roles of microRNAs in abiotic stress response and characteristics regulation of plant. FRONTIERS IN PLANT SCIENCE 2022; 13:919243. [PMID: 36092392 PMCID: PMC9459240 DOI: 10.3389/fpls.2022.919243] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 08/08/2022] [Indexed: 05/27/2023]
Abstract
MicroRNAs (miRNAs) are a class of non-coding endogenous small RNAs (long 20-24 nucleotides) that negatively regulate eukaryotes gene expression at post-transcriptional level via cleavage or/and translational inhibition of targeting mRNA. Based on the diverse roles of miRNA in regulating eukaryotes gene expression, research on the identification of miRNA target genes has been carried out, and a growing body of research has demonstrated that miRNAs act on target genes and are involved in various biological functions of plants. It has an important influence on plant growth and development, morphogenesis, and stress response. Recent case studies indicate that miRNA-mediated regulation pattern may improve agronomic properties and confer abiotic stress resistance of plants, so as to ensure sustainable agricultural production. In this regard, we focus on the recent updates on miRNAs and their targets involved in responding to abiotic stress including low temperature, high temperature, drought, soil salinity, and heavy metals, as well as plant-growing development. In particular, this review highlights the diverse functions of miRNAs on achieving the desirable agronomic traits in important crops. Herein, the main research strategies of miRNAs involved in abiotic stress resistance and crop traits improvement were summarized. Furthermore, the miRNA-related challenges and future perspectives of plants have been discussed. miRNA-based research lays the foundation for exploring miRNA regulatory mechanism, which aims to provide insights into a potential form of crop improvement and stress resistance breeding.
Collapse
Affiliation(s)
- Feiyan Zhang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
- State Key Laboratory of Plant Genomics/Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Jiangwei Yang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Ning Zhang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Jiahe Wu
- State Key Laboratory of Plant Genomics/Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Huaijun Si
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
20
|
Kumar J, Kumar A, Sen Gupta D, Kumar S, DePauw RM. Reverse genetic approaches for breeding nutrient-rich and climate-resilient cereal and food legume crops. Heredity (Edinb) 2022; 128:473-496. [PMID: 35249099 PMCID: PMC9178024 DOI: 10.1038/s41437-022-00513-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 02/10/2022] [Accepted: 02/10/2022] [Indexed: 12/21/2022] Open
Abstract
In the last decade, advancements in genomics tools and techniques have led to the discovery of many genes. Most of these genes still need to be characterized for their associated function and therefore, such genes remain underutilized for breeding the next generation of improved crop varieties. The recent developments in different reverse genetic approaches have made it possible to identify the function of genes controlling nutritional, biochemical, and metabolic traits imparting drought, heat, cold, salinity tolerance as well as diseases and insect-pests. This article focuses on reviewing the current status and prospects of using reverse genetic approaches to breed nutrient-rich and climate resilient cereal and food legume crops.
Collapse
Affiliation(s)
- Jitendra Kumar
- Division of Crop Improvement, ICAR-Indian Institute of Pulses Research, Kanpur, India.
| | - Ajay Kumar
- Department of Plant Sciences, North Dakota State University, Fargo, ND, 58108, USA
| | - Debjyoti Sen Gupta
- Division of Crop Improvement, ICAR-Indian Institute of Pulses Research, Kanpur, India
| | - Sachin Kumar
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut, 250 004, India
| | - Ron M DePauw
- Advancing Wheat Technologies, 118 Strathcona Rd SW, Calgary, AB, T3H 1P3, Canada
| |
Collapse
|
21
|
Castaingts M, Kirolinko C, Rivero C, Artunian J, Mancini Villagra U, Blanco FA, Zanetti ME. Identification of conserved and new miRNAs that affect nodulation and strain selectivity in the Phaseolus vulgaris-Rhizobium etli symbiosis through differential analysis of host small RNAs. THE NEW PHYTOLOGIST 2022; 234:1430-1447. [PMID: 35203109 DOI: 10.1111/nph.18055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 02/07/2022] [Indexed: 06/14/2023]
Abstract
Phaseolus vulgaris plants from the Mesoamerican centre of genetic diversification establish a preferential and more efficient root nodule symbiosis with sympatric Rhizobium etli strains. This is mediated by changes in host gene expression, which might occur either at the transcriptional or at the post-transcriptional level. However, the implication of small RNA (sRNA)-mediated control of gene expression in strain selectivity has remained elusive. sRNA sequencing was used to identify host microRNAs (miRNAs) differentially regulated in roots at an early stage of the symbiotic interaction, which were further characterized by applying a reverse genetic approach. In silico analysis identified known and new miRNAs that accumulated to a greater extent in the preferential and more efficient interaction. One of them, designated as Pvu-miR5924, participates in the mechanisms that determine the selection of R. etli strains that will colonize the nodules. In addition, the functional analysis of Pvu-miR390b verified that this miRNA is a negative modulator of nodule formation and bacterial infection. This study not only extended the list of miRNAs identified in P. vulgaris but also enabled the identification of miRNAs that play relevant functions in nodule formation, rhizobial infection and the selection of the rhizobial strains that will occupy the nodule.
Collapse
Affiliation(s)
- Melisse Castaingts
- Facultad de Ciencias Exactas, Instituto de Biotecnología y Biología Molecular, Universidad Nacional de La Plata, Centro Científico y Tecnológico-La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, La Plata, 1900, Argentina
| | - Cristina Kirolinko
- Facultad de Ciencias Exactas, Instituto de Biotecnología y Biología Molecular, Universidad Nacional de La Plata, Centro Científico y Tecnológico-La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, La Plata, 1900, Argentina
| | - Claudio Rivero
- Facultad de Ciencias Exactas, Instituto de Biotecnología y Biología Molecular, Universidad Nacional de La Plata, Centro Científico y Tecnológico-La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, La Plata, 1900, Argentina
| | - Jennifer Artunian
- Facultad de Ciencias Exactas, Instituto de Biotecnología y Biología Molecular, Universidad Nacional de La Plata, Centro Científico y Tecnológico-La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, La Plata, 1900, Argentina
| | - Ulises Mancini Villagra
- Facultad de Ciencias Exactas, Instituto de Biotecnología y Biología Molecular, Universidad Nacional de La Plata, Centro Científico y Tecnológico-La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, La Plata, 1900, Argentina
| | - Flavio Antonio Blanco
- Facultad de Ciencias Exactas, Instituto de Biotecnología y Biología Molecular, Universidad Nacional de La Plata, Centro Científico y Tecnológico-La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, La Plata, 1900, Argentina
| | - María Eugenia Zanetti
- Facultad de Ciencias Exactas, Instituto de Biotecnología y Biología Molecular, Universidad Nacional de La Plata, Centro Científico y Tecnológico-La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, La Plata, 1900, Argentina
| |
Collapse
|
22
|
Chang H, Zhang H, Zhang T, Su L, Qin QM, Li G, Li X, Wang L, Zhao T, Zhao E, Zhao H, Liu Y, Stacey G, Xu D. A Multi-Level Iterative Bi-Clustering Method for Discovering miRNA Co-regulation Network of Abiotic Stress Tolerance in Soybeans. FRONTIERS IN PLANT SCIENCE 2022; 13:860791. [PMID: 35463453 PMCID: PMC9021755 DOI: 10.3389/fpls.2022.860791] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 02/24/2022] [Indexed: 06/14/2023]
Abstract
Although growing evidence shows that microRNA (miRNA) regulates plant growth and development, miRNA regulatory networks in plants are not well understood. Current experimental studies cannot characterize miRNA regulatory networks on a large scale. This information gap provides an excellent opportunity to employ computational methods for global analysis and generate valuable models and hypotheses. To address this opportunity, we collected miRNA-target interactions (MTIs) and used MTIs from Arabidopsis thaliana and Medicago truncatula to predict homologous MTIs in soybeans, resulting in 80,235 soybean MTIs in total. A multi-level iterative bi-clustering method was developed to identify 483 soybean miRNA-target regulatory modules (MTRMs). Furthermore, we collected soybean miRNA expression data and corresponding gene expression data in response to abiotic stresses. By clustering these data, 37 MTRMs related to abiotic stresses were identified, including stress-specific MTRMs and shared MTRMs. These MTRMs have gene ontology (GO) enrichment in resistance response, iron transport, positive growth regulation, etc. Our study predicts soybean MTRMs and miRNA-GO networks under different stresses, and provides miRNA targeting hypotheses for experimental analyses. The method can be applied to other biological processes and other plants to elucidate miRNA co-regulation mechanisms.
Collapse
Affiliation(s)
- Haowu Chang
- Key Laboratory of Symbol Computation and Knowledge Engineering, College of Computer Science and Technology, Ministry of Education, Jilin University, Jilin, China
- Department of Computer Science, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
| | - Hao Zhang
- Key Laboratory of Symbol Computation and Knowledge Engineering, College of Computer Science and Technology, Ministry of Education, Jilin University, Jilin, China
- Department of Computer Science, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
| | - Tianyue Zhang
- Key Laboratory of Symbol Computation and Knowledge Engineering, College of Computer Science and Technology, Ministry of Education, Jilin University, Jilin, China
| | - Lingtao Su
- Department of Computer Science, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
- College of Computer Science and Engineering, Shandong University of Science and Technology, Qingdao, China
| | - Qing-Ming Qin
- College of Plant Sciences and Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Jilin, China
| | - Guihua Li
- College of Plant Sciences and Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Jilin, China
| | - Xueqing Li
- Key Laboratory of Symbol Computation and Knowledge Engineering, College of Computer Science and Technology, Ministry of Education, Jilin University, Jilin, China
| | - Li Wang
- Key Laboratory of Symbol Computation and Knowledge Engineering, College of Computer Science and Technology, Ministry of Education, Jilin University, Jilin, China
| | - Tianheng Zhao
- Key Laboratory of Symbol Computation and Knowledge Engineering, College of Computer Science and Technology, Ministry of Education, Jilin University, Jilin, China
| | - Enshuang Zhao
- Key Laboratory of Symbol Computation and Knowledge Engineering, College of Computer Science and Technology, Ministry of Education, Jilin University, Jilin, China
| | - Hengyi Zhao
- Key Laboratory of Symbol Computation and Knowledge Engineering, College of Computer Science and Technology, Ministry of Education, Jilin University, Jilin, China
| | - Yuanning Liu
- Key Laboratory of Symbol Computation and Knowledge Engineering, College of Computer Science and Technology, Ministry of Education, Jilin University, Jilin, China
- Department of Computer Science, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
| | - Gary Stacey
- Division of Plant Sciences and Technology, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
| | - Dong Xu
- Department of Computer Science, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
| |
Collapse
|
23
|
Zhang M, Liu S, Wang Z, Yuan Y, Zhang Z, Liang Q, Yang X, Duan Z, Liu Y, Kong F, Liu B, Ren B, Tian Z. Progress in soybean functional genomics over the past decade. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:256-282. [PMID: 34388296 PMCID: PMC8753368 DOI: 10.1111/pbi.13682] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 08/04/2021] [Accepted: 08/09/2021] [Indexed: 05/24/2023]
Abstract
Soybean is one of the most important oilseed and fodder crops. Benefiting from the efforts of soybean breeders and the development of breeding technology, large number of germplasm has been generated over the last 100 years. Nevertheless, soybean breeding needs to be accelerated to meet the needs of a growing world population, to promote sustainable agriculture and to address future environmental changes. The acceleration is highly reliant on the discoveries in gene functional studies. The release of the reference soybean genome in 2010 has significantly facilitated the advance in soybean functional genomics. Here, we review the research progress in soybean omics (genomics, transcriptomics, epigenomics and proteomics), germplasm development (germplasm resources and databases), gene discovery (genes that are responsible for important soybean traits including yield, flowering and maturity, seed quality, stress resistance, nodulation and domestication) and transformation technology during the past decade. At the end, we also briefly discuss current challenges and future directions.
Collapse
Affiliation(s)
- Min Zhang
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyInnovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
| | - Shulin Liu
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyInnovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
| | - Zhao Wang
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyInnovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yaqin Yuan
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyInnovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Zhifang Zhang
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyInnovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Qianjin Liang
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyInnovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Xia Yang
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyInnovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Zongbiao Duan
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyInnovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yucheng Liu
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyInnovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
| | - Fanjiang Kong
- Innovative Center of Molecular Genetics and EvolutionSchool of Life SciencesGuangzhou UniversityGuangzhouChina
| | - Baohui Liu
- Innovative Center of Molecular Genetics and EvolutionSchool of Life SciencesGuangzhou UniversityGuangzhouChina
| | - Bo Ren
- State Key Laboratory of Plant GenomicsInstitute of Genetics and Developmental BiologyInnovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Zhixi Tian
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyInnovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
24
|
Triozzi PM, Irving TB, Schmidt HW, Keyser ZP, Chakraborty S, Balmant K, Pereira WJ, Dervinis C, Mysore KS, Wen J, Ané JM, Kirst M, Conde D. Spatiotemporal cytokinin response imaging and ISOPENTENYLTRANSFERASE 3 function in Medicago nodule development. PLANT PHYSIOLOGY 2022; 188:560-575. [PMID: 34599592 PMCID: PMC8774767 DOI: 10.1093/plphys/kiab447] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 08/24/2021] [Indexed: 06/13/2023]
Abstract
Most legumes can establish a symbiotic association with soil rhizobia that trigger the development of root nodules. These nodules host the rhizobia and allow them to fix nitrogen efficiently. The perception of bacterial lipo-chitooligosaccharides (LCOs) in the epidermis initiates a signaling cascade that allows rhizobial intracellular infection in the root and de-differentiation and activation of cell division that gives rise to the nodule. Thus, nodule organogenesis and rhizobial infection need to be coupled in space and time for successful nodulation. The plant hormone cytokinin (CK) contributes to the coordination of this process, acting as an essential positive regulator of nodule organogenesis. However, the temporal regulation of tissue-specific CK signaling and biosynthesis in response to LCOs or Sinorhizobium meliloti inoculation in Medicago truncatula remains poorly understood. In this study, using a fluorescence-based CK sensor (pTCSn::nls:tGFP), we performed a high-resolution tissue-specific temporal characterization of the sequential activation of CK response during root infection and nodule development in M. truncatula after inoculation with S. meliloti. Loss-of-function mutants of the CK-biosynthetic gene ISOPENTENYLTRANSFERASE 3 (IPT3) showed impairment of nodulation, suggesting that IPT3 is required for nodule development in M. truncatula. Simultaneous live imaging of pIPT3::nls:tdTOMATO and the CK sensor showed that IPT3 induction in the pericycle at the base of nodule primordium contributes to CK biosynthesis, which in turn promotes expression of positive regulators of nodule organogenesis in M. truncatula.
Collapse
Affiliation(s)
- Paolo M Triozzi
- School of Forest, Fisheries and Geomatics Sciences, University of Florida, Gainesville, Florida 32611, USA
| | - Thomas B Irving
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Henry W Schmidt
- School of Forest, Fisheries and Geomatics Sciences, University of Florida, Gainesville, Florida 32611, USA
| | - Zachary P Keyser
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Sanhita Chakraborty
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Kelly Balmant
- School of Forest, Fisheries and Geomatics Sciences, University of Florida, Gainesville, Florida 32611, USA
| | - Wendell J Pereira
- School of Forest, Fisheries and Geomatics Sciences, University of Florida, Gainesville, Florida 32611, USA
| | - Christopher Dervinis
- School of Forest, Fisheries and Geomatics Sciences, University of Florida, Gainesville, Florida 32611, USA
| | | | - Jiangqi Wen
- Noble Research Institute, Ardmore, Oklahoma 73401, USA
| | - Jean-Michel Ané
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
- Department of Agronomy, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Matias Kirst
- School of Forest, Fisheries and Geomatics Sciences, University of Florida, Gainesville, Florida 32611, USA
- Genetics Institute, University of Florida, Gainesville, Florida 32611, USA
| | - Daniel Conde
- School of Forest, Fisheries and Geomatics Sciences, University of Florida, Gainesville, Florida 32611, USA
| |
Collapse
|
25
|
Luo P, Di D, Wu L, Yang J, Lu Y, Shi W. MicroRNAs Are Involved in Regulating Plant Development and Stress Response through Fine-Tuning of TIR1/AFB-Dependent Auxin Signaling. Int J Mol Sci 2022; 23:ijms23010510. [PMID: 35008937 PMCID: PMC8745101 DOI: 10.3390/ijms23010510] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/27/2021] [Accepted: 01/01/2022] [Indexed: 11/30/2022] Open
Abstract
Auxin, primarily indole-3-acetic acid (IAA), is a versatile signal molecule that regulates many aspects of plant growth, development, and stress response. Recently, microRNAs (miRNAs), a type of short non-coding RNA, have emerged as master regulators of the auxin response pathways by affecting auxin homeostasis and perception in plants. The combination of these miRNAs and the autoregulation of the auxin signaling pathways, as well as the interaction with other hormones, creates a regulatory network that controls the level of auxin perception and signal transduction to maintain signaling homeostasis. In this review, we will detail the miRNAs involved in auxin signaling to illustrate its in planta complex regulation.
Collapse
Affiliation(s)
- Pan Luo
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China;
- Correspondence: (P.L.); (D.D.)
| | - Dongwei Di
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; (Y.L.); (W.S.)
- Correspondence: (P.L.); (D.D.)
| | - Lei Wu
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China;
| | - Jiangwei Yang
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China;
| | - Yufang Lu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; (Y.L.); (W.S.)
| | - Weiming Shi
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; (Y.L.); (W.S.)
| |
Collapse
|
26
|
Hao K, Wang Y, Zhu Z, Wu Y, Chen R, Zhang L. miR160: An Indispensable Regulator in Plant. FRONTIERS IN PLANT SCIENCE 2022; 13:833322. [PMID: 35392506 PMCID: PMC8981303 DOI: 10.3389/fpls.2022.833322] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/25/2022] [Indexed: 05/22/2023]
Abstract
MicroRNAs (miRNA), recognized as crucial regulators of gene expression at the posttranscriptional level, have been found to be involved in the biological processes of plants. Some miRNAs are up- or down-regulated during plant development, stress response, and secondary metabolism. Over the past few years, it has been proved that miR160 is directly related to the developments of different tissues and organs in multifarious species, as well as plant-environment interactions. This review highlights the recent progress on the contributions of the miR160-ARF module to important traits of plants and the role of miR160-centered gene regulatory network in coordinating growth with endogenous and environmental factors. The manipulation of miR160-guided gene regulation may provide a new method to engineer plants with improved adaptability and yield.
Collapse
Affiliation(s)
- Kai Hao
- Department of Pharmaceutical Botany, School of Pharmacy, Naval Medical University, Shanghai, China
| | - Yun Wang
- Biomedical Innovation R&D Center, School of Medicine, Shanghai University, Shanghai, China
| | - Zhanpin Zhu
- Department of Pharmaceutical Botany, School of Pharmacy, Naval Medical University, Shanghai, China
| | - Yu Wu
- Department of Pharmaceutical Botany, School of Pharmacy, Naval Medical University, Shanghai, China
| | - Ruibing Chen
- Department of Pharmaceutical Botany, School of Pharmacy, Naval Medical University, Shanghai, China
| | - Lei Zhang
- Department of Pharmaceutical Botany, School of Pharmacy, Naval Medical University, Shanghai, China
- Biomedical Innovation R&D Center, School of Medicine, Shanghai University, Shanghai, China
- Institute of Interdisciplinary Integrative Medicine Research, Medical School of Nantong University, Nantong, China
- Shanghai Key Laboratory for Pharmaceutical Metabolite Research, Shanghai, China
- *Correspondence: Lei Zhang,
| |
Collapse
|
27
|
miRNAomic Approach to Plant Nitrogen Starvation. Int J Genomics 2021; 2021:8560323. [PMID: 34796230 PMCID: PMC8595019 DOI: 10.1155/2021/8560323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 12/02/2022] Open
Abstract
Nitrogen (N) is one of the indispensable nutrients required by plants for their growth, development, and survival. Being a limited nutrient, it is mostly supplied exogenously to the plants, to maintain quality and productivity. The increased use of N fertilizers is associated with high-cost inputs and negative environmental consequences, which necessitates the development of nitrogen-use-efficient plants for sustainable agriculture. Understanding the regulatory mechanisms underlying N metabolism in plants under low N is one of the prerequisites for the development of nitrogen-use-efficient plants. One of the important and recently discovered groups of regulatory molecules acting at the posttranscriptional and translational levels are microRNAs (miRNAs). miRNAs are known to play critical roles in the regulation of gene expression in plants under different stress conditions including N stress. Several classes of miRNAs associated with N metabolism have been identified so far. These nitrogen-responsive miRNAs may provide a platform for a better understanding of the regulation of N metabolism and pave a way for the development of genotypes for better N utilization. The current review presents a brief outline of miRNAs and their regulatory role in N metabolism.
Collapse
|
28
|
Gupta SK, Vishwakarma A, Kenea HD, Galsurker O, Cohen H, Aharoni A, Arazi T. CRISPR/Cas9 mutants of tomato MICRORNA164 genes uncover their functional specialization in development. PLANT PHYSIOLOGY 2021; 187:1636-1652. [PMID: 34618074 PMCID: PMC8566253 DOI: 10.1093/plphys/kiab376] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 07/15/2021] [Indexed: 05/27/2023]
Abstract
Plant MICRORNA164 (miR164) plays diverse regulatory functions by post-transcriptional repression of certain NAM/ATAF/CUC-domain transcription factors. However, the involvement of miR164 in fleshy fruit development and ripening remains poorly understood. Here, de novo prediction of tomato (Solanum lycopersicum) MIR164 genes identified four genes (SlMIR164a-d), of which SlMIR164d has an atypically long pre-miRNA. The roles of the fruit expressed SlMIR164a, b, and d were studied by analysis of their Clustered Regularly Interspaced Short Palindromic Repeats mutants. The slmir164bCR mutant plants exhibited shoot and flower abnormalities characteristic of ectopic boundary specification, whereas the shoot and flower development of slmir164aCR and slmir164dCR mutants were indistinguishable from wild-type. Strikingly, the knockout of SlMIR164a practically eliminated sly-miR164 from the developing and ripening fruit pericarp. The sly-miR164-deficient slmir164aCR fruits were smaller than the wild-type, due to reduced pericarp cell division and expansion, and displayed intense red color and matte, instead of glossy appearance, upon ripening. We found that the fruit skin phenotypes were associated with morphologically abnormal outer epidermis and thicker cuticle. Quantitation of sly-miR164 target transcripts in slmir164aCR ripening fruits demonstrated the upregulation of SlNAM3 and SlNAM2. Specific expression of their miR164-resistant versions in the pericarp resulted in the formation of extremely small fruits with abnormal epidermis, highlighting the importance of their negative regulation by sly-miR164a. Taken together, our results demonstrate that SlMIR164a and SlMIR164b play specialized roles in development: SlMIR164b is required for shoot and flower boundary specification, and SlMIR164a is required for fruit growth including the expansion of its outer epidermis, which determines the properties of the fruit skin.
Collapse
Affiliation(s)
- Suresh Kumar Gupta
- Institute of Plant Sciences, ARO, Volcani Center, Rishon LeZion 7505101, Israel
| | | | - Hawi Deressa Kenea
- Institute of Plant Sciences, ARO, Volcani Center, Rishon LeZion 7505101, Israel
- Department of Plant Science, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Ortal Galsurker
- Institute of Plant Sciences, ARO, Volcani Center, Rishon LeZion 7505101, Israel
| | - Hagai Cohen
- Institute of Plant Sciences, ARO, Volcani Center, Rishon LeZion 7505101, Israel
| | - Asaph Aharoni
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Tzahi Arazi
- Institute of Plant Sciences, ARO, Volcani Center, Rishon LeZion 7505101, Israel
| |
Collapse
|
29
|
Gao Z, Chen Z, Cui Y, Ke M, Xu H, Xu Q, Chen J, Li Y, Huang L, Zhao H, Huang D, Mai S, Xu T, Liu X, Li S, Guan Y, Yang W, Friml J, Petrášek J, Zhang J, Chen X. GmPIN-dependent polar auxin transport is involved in soybean nodule development. THE PLANT CELL 2021; 33:2981-3003. [PMID: 34240197 PMCID: PMC8462816 DOI: 10.1093/plcell/koab183] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 07/01/2021] [Indexed: 05/27/2023]
Abstract
To overcome nitrogen deficiency, legume roots establish symbiotic interactions with nitrogen-fixing rhizobia that are fostered in specialized organs (nodules). Similar to other organs, nodule formation is determined by a local maximum of the phytohormone auxin at the primordium site. However, how auxin regulates nodule development remains poorly understood. Here, we found that in soybean, (Glycine max), dynamic auxin transport driven by PIN-FORMED (PIN) transporter GmPIN1 is involved in nodule primordium formation. GmPIN1 was specifically expressed in nodule primordium cells and GmPIN1 was polarly localized in these cells. Two nodulation regulators, (iso)flavonoids trigger expanded distribution of GmPIN1b to root cortical cells, and cytokinin rearranges GmPIN1b polarity. Gmpin1abc triple mutants generated with CRISPR-Cas9 showed the impaired establishment of auxin maxima in nodule meristems and aberrant divisions in the nodule primordium cells. Moreover, overexpression of GmPIN1 suppressed nodule primordium initiation. GmPIN9d, an ortholog of Arabidopsis thaliana PIN2, acts together with GmPIN1 later in nodule development to acropetally transport auxin in vascular bundles, fine-tuning the auxin supply for nodule enlargement. Our findings reveal how PIN-dependent auxin transport modulates different aspects of soybean nodule development and suggest that the establishment of auxin gradient is a prerequisite for the proper interaction between legumes and rhizobia.
Collapse
Affiliation(s)
- Zhen Gao
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Haixia Institute of Science and Technology, Horticultural Plant Biology and Metabolomics Center, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Zhiwei Chen
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Haixia Institute of Science and Technology, Horticultural Plant Biology and Metabolomics Center, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Yuanyuan Cui
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Haixia Institute of Science and Technology, Horticultural Plant Biology and Metabolomics Center, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Meiyu Ke
- Haixia Institute of Science and Technology, Horticultural Plant Biology and Metabolomics Center, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Huifang Xu
- Haixia Institute of Science and Technology, Horticultural Plant Biology and Metabolomics Center, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Qinzhen Xu
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiaomei Chen
- Haixia Institute of Science and Technology, Horticultural Plant Biology and Metabolomics Center, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Yang Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Laimei Huang
- Haixia Institute of Science and Technology, Horticultural Plant Biology and Metabolomics Center, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Hong Zhao
- Haixia Institute of Science and Technology, Horticultural Plant Biology and Metabolomics Center, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Dingquan Huang
- Haixia Institute of Science and Technology, Horticultural Plant Biology and Metabolomics Center, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Siyuan Mai
- Haixia Institute of Science and Technology, Horticultural Plant Biology and Metabolomics Center, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Tao Xu
- Haixia Institute of Science and Technology, Horticultural Plant Biology and Metabolomics Center, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Xiao Liu
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shujia Li
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yuefeng Guan
- Haixia Institute of Science and Technology, Horticultural Plant Biology and Metabolomics Center, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Wenqiang Yang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiří Friml
- Institute of Science and Technology Austria (IST Austria), Am Campus 1, 3400 Klosterneuburg, Austria
| | - Jan Petrášek
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 128 43 Prague 2, Czech Republic
- The Czech Academy of Sciences, Institute of Experimental Botany, Rozvojová 263, 165 02 Prague 6, Czech Republic
| | - Jing Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xu Chen
- Haixia Institute of Science and Technology, Horticultural Plant Biology and Metabolomics Center, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| |
Collapse
|
30
|
Chowdhury MR, Bahadur RP, Basak J. Genome-wide prediction of cauliflower miRNAs and lncRNAs and their roles in post-transcriptional gene regulation. PLANTA 2021; 254:72. [PMID: 34519918 DOI: 10.1007/s00425-021-03689-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 07/13/2021] [Indexed: 06/13/2023]
Abstract
We have predicted miRNAs, their targets and lncRNAs from the genome of Brassica oleracea along with their functional annotation. Selected miRNAs and their targets are experimentally validated. Roles of these non-coding RNAs in post-transcriptional gene regulation are also deciphered. Cauliflower (Brassica oleracea var. Botrytis) is an important vegetable crop for its dietary and medicinal values with rich source of vitamins, dietary fibers, flavonoids and antioxidants. MicroRNAs (miRNAs) are small non-coding RNAs (ncRNAs), which regulate gene expression by inhibiting translation or by degrading messenger RNAs (mRNAs). On the other hand, long non-coding RNAs (lncRNAs) are responsible for the up regulation and the down regulation of transcription. Although the genome of cauliflower is reported, yet the roles of these ncRNAs in post-transcriptional gene regulation (PTGR) remain elusive. In this study, we have computationally predicted 355 miRNAs, of which 280 miRNAs are novel compared to miRBase 22.1. All the predicted miRNAs belong to 121 different families. We have also identified 934 targets of 125 miRNAs along with their functional annotation. These targets are further classified into biological processes, molecular functions and cellular components. Moreover, we have predicted 634 lncRNAs, of which 61 are targeted by 30 novel miRNAs. Randomly chosen 10 miRNAs and 10 lncRNAs are experimentally validated. Five miRNA targets including squamosa promoter-binding-like protein 9, homeobox-leucine zipper protein HDG12-like, NAC domain-containing protein 100, CUP-SHAPED COTYLEDON 1 and kinesin-like protein NACK2 of four miRNAs including bol-miR156a, bol-miR162a, bol-miR164d and bol-miR2673 are also experimentally validated. We have built network models of interactions between miRNAs and their target mRNAs, as well as between miRNAs and lncRNAs. Our findings enhance the knowledge of non-coding genome of cauliflower and their roles in PTGR, and might play important roles in improving agronomic traits of this economically important crop.
Collapse
Affiliation(s)
- Moumita Roy Chowdhury
- Computational Structural Biology Lab, Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Ranjit Prasad Bahadur
- Computational Structural Biology Lab, Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Jolly Basak
- Department of Biotechnology, Visva-Bharati University, Santiniketan, 731235, India.
| |
Collapse
|
31
|
Yang J, Zhang N, Zhang J, Jin X, Zhu X, Ma R, Li S, Lui S, Yue Y, Si H. Knockdown of MicroRNA160a/b by STTM leads to root architecture changes via auxin signaling in Solanum tuberosum. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 166:939-949. [PMID: 34247108 DOI: 10.1016/j.plaphy.2021.06.051] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 06/25/2021] [Accepted: 06/27/2021] [Indexed: 06/13/2023]
Abstract
The root phenotype is an important aspect of plant architecture and plays a critical role in plant facilitation of the extraction of water and nutrition from the soil. MicroRNAs (miRNAs) are classes of small RNAs with important roles in regulating endogenous gene expression at the post-transcriptional level that function in a range of plant development processes and in the response to abiotic stresses. However, little is known concerning the molecular mechanism of miRNAs in regulating the generation and development of plant root architecture. Herein, we demonstrated that potato miR160a/b acted as a critical regulator and affected plant root architecture by targeting the mRNA of StARF10 and StARF16 for cleavage. The miR160a/b precursor was cloned from potato. Quantitative PCR assays showed that the expression levels of miR160 and its targets were down- or up-regulated with the development of potato roots, respectively. Moreover, transgenic lines with suppressed stu-miR160 expression were established with the short tandem targets mimic (STTM), and the results showed that the ectopic expression of miR160a/b altered the levels of auxin and the expression of auxin signaling-related genes and caused drastic change in root architecture compared with that in control plants. Suppressing the expression of miR160 led to a severe reduction in root length, an increase in the number of lateral roots, and a decrease in fresh root weight in potato. Collectively, our data established a key role of miR160 in modulating plant root architecture in potato.
Collapse
Affiliation(s)
- Jiangwei Yang
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, China; College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China.
| | - Ning Zhang
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China.
| | - Jinlin Zhang
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China; The State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Xin Jin
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Xi Zhu
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, China; College of Agronomy, Gansu Agricultural University, Lanzhou, 730070, China
| | - Rui Ma
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, China; College of Agronomy, Gansu Agricultural University, Lanzhou, 730070, China
| | - Shigui Li
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, China; College of Agronomy, Gansu Agricultural University, Lanzhou, 730070, China
| | - Shengyan Lui
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Yun Yue
- Gansu Pharmaceutical Investment Group Co., Ltd, Lanzhou, 730030, China
| | - Huaijun Si
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, China; College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| |
Collapse
|
32
|
The Lotus japonicus AFB6 Gene Is Involved in the Auxin Dependent Root Developmental Program. Int J Mol Sci 2021; 22:ijms22168495. [PMID: 34445201 PMCID: PMC8395167 DOI: 10.3390/ijms22168495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 07/30/2021] [Accepted: 08/03/2021] [Indexed: 11/16/2022] Open
Abstract
Auxin is essential for root development, and its regulatory action is exerted at different steps from perception of the hormone up to transcriptional regulation of target genes. In legume plants there is an overlap between the developmental programs governing lateral root and N2-fixing nodule organogenesis, the latter induced as the result of the symbiotic interaction with rhizobia. Here we report the characterization of a member of the L. japonicus TIR1/AFB auxin receptor family, LjAFB6. A preferential expression of the LjAFB6 gene in the aerial portion of L. japonicus plants was observed. Significant regulation of the expression was not observed during the symbiotic interaction with Mesorhizobium loti and the nodule organogenesis process. In roots, the LjAFB6 expression was induced in response to nitrate supply and was mainly localized in the meristematic regions of both primary and lateral roots. The phenotypic analyses conducted on two independent null mutants indicated a specialized role in the control of primary and lateral root elongation processes in response to auxin, whereas no involvement in the nodulation process was found. We also report the involvement of LjAFB6 in the hypocotyl elongation process and in the control of the expression profile of an auxin-responsive gene.
Collapse
|
33
|
Li Y, Luo W, Sun Y, Chang H, Ma K, Zhao Z, Lu L. Identification and Expression Analysis of miR160 and Their Target Genes in Cucumber. Biochem Genet 2021; 60:127-152. [PMID: 34117971 DOI: 10.1007/s10528-021-10093-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 06/02/2021] [Indexed: 11/28/2022]
Abstract
miR160 plays a crucial role in various biological processes by regulating their target gene auxin response factor (ARF) in plants. However, little is known about miR160 and ARF in cucumber fruit expansion. Here, 4 Csa-MIR160 family members and 17 CsARFs were identified through a genome-wide search. Csa-miR160 showed a closer relationship with those in melon. Phylogenetic analysis revealed that CsARFs were divided into four classes and most of CsARFs presented a closer evolutionary relationship with those from tomato. Putative cis-elements analysis predicted that Csa-MIR160 and CsARFs were involved in light, phytohormone and stress response, which proved that they might take part in light, phytohormone and stress signaling pathway by the miR160-ARF module. In addition, CsARF5, CsARF11, CsARF13 and CsARF14 were predicted as the target genes of Csa-miR160. qRT-PCR revealed that Csa-miR160 and their target gene CsARFs were differentially expressed in differential cucumber tissues and developmental stages. Csa-miR160d was only expressed in the expanded cucumber fruit. CsARF5, CsARF11 and CsARF13 exhibited the lower expression in the expanded fruit than those in the ovary, while, CsARF14 showed the reverse trend. Our results suggested that Csa-miR160d might play a crucial role in cucumber fruit expansion by negatively targeting CsARF5, CsARF11 and CsARF13. This is the first genome-wide analysis of miR160 in cucumber. These findings provide useful information and resources for further studying the role of miR160 and ARF in cucumber fruit expansion.
Collapse
Affiliation(s)
- Yaoyao Li
- School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, 453003, China.,Henan Province Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xinxiang, 453003, China
| | - Weirong Luo
- School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, 453003, China.,Henan Province Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xinxiang, 453003, China
| | - Yongdong Sun
- School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, 453003, China. .,Henan Province Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xinxiang, 453003, China.
| | - Huaicheng Chang
- School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, 453003, China.,Henan Province Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xinxiang, 453003, China
| | - Kai Ma
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
| | - Zhenxiang Zhao
- School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, 453003, China.,Henan Province Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xinxiang, 453003, China
| | - Lin Lu
- School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, 453003, China.,Henan Province Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xinxiang, 453003, China
| |
Collapse
|
34
|
Singh S, Singh A. A prescient evolutionary model for genesis, duplication and differentiation of MIR160 homologs in Brassicaceae. Mol Genet Genomics 2021; 296:985-1003. [PMID: 34052911 DOI: 10.1007/s00438-021-01797-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 05/21/2021] [Indexed: 12/18/2022]
Abstract
MicroRNA160 is a class of nitrogen-starvation responsive genes which governs establishment of root system architecture by down-regulating AUXIN RESPONSE FACTOR genes (ARF10, ARF16 and ARF17) in plants. The high copy number of MIR160 variants discovered by us from land plants, especially polyploid crop Brassicas, posed questions regarding genesis, duplication, evolution and function. Absence of studies on impact of whole genome and segmental duplication on retention and evolution of MIR160 homologs in descendent plant lineages prompted us to undertake the current study. Herein, we describe ancestry and fate of MIR160 homologs in Brassicaceae in context of polyploidy driven genome re-organization, copy number and differentiation. Paralogy amongst Brassicaceae MIR160a, MIR160b and MIR160c was inferred using phylogenetic analysis of 468 MIR160 homologs from land plants. The evolutionarily distinct MIR160a was found to represent ancestral form and progenitor of MIR160b and MIR160c. Chronology of evolutionary events resulting in origin and diversification of genomic loci containing MIR160 homologs was delineated using derivatives of comparative synteny. A prescient model for causality of segmental duplications in establishment of paralogy in Brassicaceae MIR160, with whole genome duplication accentuating the copy number increase, is being posited in which post-segmental duplication events viz. differential gene fractionation, gene duplications and inversions are shown to drive divergence of chromosome segments. While mutations caused the diversification of MIR160a, MIR160b and MIR160c, duplicated segments containing these diversified genes suffered gene rearrangements via gene loss, duplications and inversions. Yet the topology of phylogenetic and phenetic trees were found congruent suggesting similar evolutionary trajectory. Over 80% of Brassicaceae genomes and subgenomes showed a preferential retention of single copy each of MIR160a, MIR160b and MIR160c suggesting functional relevance. Thus, our study provides a blue-print for reconstructing ancestry and phylogeny of MIRNA gene families at genomics level and analyzing the impact of polyploidy on organismal complexity. Such studies are critical for understanding the molecular basis of agronomic traits and deploying appropriate candidates for crop improvement.
Collapse
Affiliation(s)
- Swati Singh
- Department of Biotechnology, TERI School of Advanced Studies, 10 Institutional Area, Vasant Kunj, New Delhi, 110070, India.,Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Plot no. 32-34, Knowledge Park III, Greater Noida, Uttar Pradesh, 201310, India
| | - Anandita Singh
- Department of Biotechnology, TERI School of Advanced Studies, 10 Institutional Area, Vasant Kunj, New Delhi, 110070, India.
| |
Collapse
|
35
|
Tiwari M, Pandey V, Singh B, Bhatia S. Dynamics of miRNA mediated regulation of legume symbiosis. PLANT, CELL & ENVIRONMENT 2021; 44:1279-1291. [PMID: 33347631 DOI: 10.1111/pce.13983] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 12/06/2020] [Accepted: 12/08/2020] [Indexed: 05/19/2023]
Abstract
Symbiotic nitrogen fixation in legume nodules is important in soils with low nitrogen availability. The initiation and sustainability of symbiosis require cellular reprogramming that involves the miRNA-mediated inhibition or activation of specific nodulation genes. The high-throughput sequencing of small RNA libraries has identified miRNAs and their targets, which are the major players in the post-transcriptional gene regulation (PTGS) of the different stages of legume-rhizobia symbiosis ranging from bacterial colonization and organogenesis to symbiotic nitrogen fixation. Here, we present an overview of information obtained from the miRNA libraries from nodulating tissues that have been sequenced to date. The functional analysis of miRNAs has revealed roles in phytohormone homeostasis and spatio-temporal regulation, as well as the mobility of miRNAs and their functions in shoot to root signalling that affects diverse functions, including bacterial entry, meristem division and differentiation, nitrogen fixation and senescence. Furthermore, small RNA fragments of rhizobial origin repress complementary plant mRNAs. We also consider the roles of miRNAs in determinate or indeterminate nodules. Taken together, this overview confirms that miRNAs are master regulators of the legume-rhizobia symbiosis.
Collapse
Affiliation(s)
- Manish Tiwari
- Legume Genomics Laboratory, National Institute of Plant Genome Research, New Delhi, India
| | - Vimal Pandey
- Legume Genomics Laboratory, National Institute of Plant Genome Research, New Delhi, India
| | - Baljinder Singh
- Legume Genomics Laboratory, National Institute of Plant Genome Research, New Delhi, India
| | - Sabhyata Bhatia
- Legume Genomics Laboratory, National Institute of Plant Genome Research, New Delhi, India
| |
Collapse
|
36
|
Kirolinko C, Hobecker K, Wen J, Mysore KS, Niebel A, Blanco FA, Zanetti ME. Auxin Response Factor 2 (ARF2), ARF3, and ARF4 Mediate Both Lateral Root and Nitrogen Fixing Nodule Development in Medicago truncatula. FRONTIERS IN PLANT SCIENCE 2021; 12:659061. [PMID: 33897748 PMCID: PMC8060633 DOI: 10.3389/fpls.2021.659061] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 03/02/2021] [Indexed: 06/12/2023]
Abstract
Auxin Response Factors (ARFs) constitute a large family of transcription factors that mediate auxin-regulated developmental programs in plants. ARF2, ARF3, and ARF4 are post-transcriptionally regulated by the microRNA390 (miR390)/trans-acting small interference RNA 3 (TAS3) module through the action of TAS3-derived trans - acting small interfering RNAs (ta-siRNA). We have previously reported that constitutive activation of the miR390/TAS3 pathway promotes elongation of lateral roots but impairs nodule organogenesis and infection by rhizobia during the nitrogen-fixing symbiosis established between Medicago truncatula and its partner Sinorhizobium meliloti. However, the involvement of the targets of the miR390/TAS3 pathway, i.e., MtARF2, MtARF3, MtARF4a, and MtARF4b, in root development and establishment of the nitrogen-fixing symbiosis remained unexplored. Here, promoter:reporter fusions showed that expression of both MtARF3 and MtARF4a was associated with lateral root development; however, only the MtARF4a promoter was active in developing nodules. In addition, up-regulation of MtARF2, MtARF3, and MtARF4a/b in response to rhizobia depends on Nod Factor perception. We provide evidence that simultaneous knockdown of MtARF2, MtARF3, MtARF4a, and MtARF4b or mutation in MtARF4a impaired nodule formation, and reduced initiation and progression of infection events. Silencing of MtARF2, MtARF3, MtARF4a, and MtARF4b altered mRNA levels of the early nodulation gene nodulation signaling pathway 2 (MtNSP2). In addition, roots with reduced levels of MtARF2, MtARF3, MtARF4a, and MtARF4b, as well as arf4a mutant plants exhibited altered root architecture, causing a reduction in primary and lateral root length, but increasing lateral root density. Taken together, our results suggest that these ARF members are common key players of the morphogenetic programs that control root development and the formation of nitrogen-fixing nodules.
Collapse
Affiliation(s)
- Cristina Kirolinko
- Instituto de Biotecnología y Biología Molecular, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Centro Científico y Tecnológico-La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, La Plata, Argentina
| | - Karen Hobecker
- Instituto de Biotecnología y Biología Molecular, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Centro Científico y Tecnológico-La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, La Plata, Argentina
| | - Jiangqi Wen
- Noble Research Institute LLC, Ardmore, OK, United States
| | | | - Andreas Niebel
- Laboratoire des Interactions Plantes-Microorganismes, INRAE, CNRS, Université de Toulouse, Castanet-Tolosan, France
| | - Flavio Antonio Blanco
- Instituto de Biotecnología y Biología Molecular, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Centro Científico y Tecnológico-La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, La Plata, Argentina
| | - María Eugenia Zanetti
- Instituto de Biotecnología y Biología Molecular, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Centro Científico y Tecnológico-La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, La Plata, Argentina
| |
Collapse
|
37
|
Biosensors: A Sneak Peek into Plant Cell's Immunity. Life (Basel) 2021; 11:life11030209. [PMID: 33800034 PMCID: PMC7999283 DOI: 10.3390/life11030209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/23/2021] [Accepted: 03/03/2021] [Indexed: 12/26/2022] Open
Abstract
Biosensors are indispensable tools to understand a plant’s immunity as its spatiotemporal dimension is key in withstanding complex plant immune signaling. The diversity of genetically encoded biosensors in plants is expanding, covering new analytes with ever higher sensitivity and robustness, but their assortment is limited in some respects, such as their use in following biotic stress response, employing more than one biosensor in the same chassis, and their implementation into crops. In this review, we focused on the available biosensors that encompass these aspects. We show that in vivo imaging of calcium and reactive oxygen species is satisfactorily covered with the available genetically encoded biosensors, while on the other hand they are still underrepresented when it comes to imaging of the main three hormonal players in the immune response: salicylic acid, ethylene and jasmonic acid. Following more than one analyte in the same chassis, upon one or more conditions, has so far been possible by using the most advanced genetically encoded biosensors in plants which allow the monitoring of calcium and the two main hormonal pathways involved in plant development, auxin and cytokinin. These kinds of biosensor are also the most evolved in crops. In the last section, we examine the challenges in the use of biosensors and demonstrate some strategies to overcome them.
Collapse
|
38
|
Stasko AK, Batnini A, Bolanos-Carriel C, Lin JE, Lin Y, Blakeslee JJ, Dorrance AE. Auxin Profiling and GmPIN Expression in Phytophthora sojae-Soybean Root Interactions. PHYTOPATHOLOGY 2020; 110:1988-2002. [PMID: 32602813 DOI: 10.1094/phyto-02-20-0046-r] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Auxin (indole-3-acetic acid, IAA) has been implicated as a susceptibility factor in both beneficial and pathogenic molecular plant-microbe interactions. Previous studies have identified a large number of auxin-related genes underlying quantitative disease resistance loci (QDRLs) for Phytophthora sojae. Thus, we hypothesized that auxin may be involved the P. sojae-soybean interaction. The levels of IAA and related metabolites were measured in mycelia and media supernatant as well as in mock and inoculated soybean roots in a time course assay. The expression of 11 soybean Pin-formed (GmPIN) auxin efflux transporter genes was also examined. Tryptophan, an auxin precursor, was detected in the P. sojae mycelia and media supernatant. During colonization of roots, levels of IAA and related metabolites were significantly higher in both moderately resistant Conrad and moderately susceptible Sloan inoculated roots compared with mock controls at 48 h postinoculation (hpi) in one experiment and at 72 hpi in a second, with Sloan accumulating higher levels of the auxin catabolite IAA-Ala than Conrad. Additionally, one GmPIN at 24 hpi, one at 48 hpi, and three at 72 hpi had higher expression in inoculated compared with the mock control roots in Conrad. The ability of resistant cultivars to cope with auxin accumulation may play an important role in quantitative disease resistance. Levels of jasmonic acid (JA), another plant hormone associated with defense responses, were also higher in inoculated roots at these same time points, suggesting that JA also plays a role during the later stages of infection.
Collapse
Affiliation(s)
- Anna K Stasko
- Department of Plant Pathology, The Ohio State University, Wooster, OH 44691
- Center for Soybean Research, The Ohio State University, Wooster, OH 44691
| | - Amine Batnini
- Department of Plant Pathology, The Ohio State University, Wooster, OH 44691
- Center for Soybean Research, The Ohio State University, Wooster, OH 44691
| | - Carlos Bolanos-Carriel
- Department of Plant Pathology, The Ohio State University, Wooster, OH 44691
- Center for Soybean Research, The Ohio State University, Wooster, OH 44691
| | - Jinshan Ella Lin
- Department of Horticulture and Crop Science and OARDC Metabolite Analysis Cluster, The Ohio State University, Wooster, OH 44691
| | - Yun Lin
- Department of Horticulture and Crop Science and OARDC Metabolite Analysis Cluster, The Ohio State University, Wooster, OH 44691
| | - Joshua J Blakeslee
- Department of Horticulture and Crop Science and OARDC Metabolite Analysis Cluster, The Ohio State University, Wooster, OH 44691
- Center for Applied Plant Sciences, The Ohio State University, Columbus, OH 43210
| | - Anne E Dorrance
- Department of Plant Pathology, The Ohio State University, Wooster, OH 44691
- Center for Soybean Research, The Ohio State University, Wooster, OH 44691
- Center for Applied Plant Sciences, The Ohio State University, Columbus, OH 43210
| |
Collapse
|
39
|
Lin J, Frank M, Reid D. No Home without Hormones: How Plant Hormones Control Legume Nodule Organogenesis. PLANT COMMUNICATIONS 2020; 1:100104. [PMID: 33367261 PMCID: PMC7747975 DOI: 10.1016/j.xplc.2020.100104] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 08/19/2020] [Accepted: 08/20/2020] [Indexed: 05/08/2023]
Abstract
The establishment of symbiotic nitrogen fixation requires the coordination of both nodule development and infection events. Despite the evolution of a variety of anatomical structures, nodule organs serve a common purpose in establishing a localized area that facilitates efficient nitrogen fixation. As in all plant developmental processes, the establishment of a new nodule organ is regulated by plant hormones. During nodule initiation, regulation of plant hormone signaling is one of the major targets of symbiotic signaling. We review the role of major developmental hormones in the initiation of the nodule organ and argue that the manipulation of plant hormones is a key requirement for engineering nitrogen fixation in non-legumes as the basis for improved food security and sustainability.
Collapse
Affiliation(s)
- Jieshun Lin
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Manuel Frank
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Dugald Reid
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
- Corresponding author
| |
Collapse
|
40
|
Israeli A, Reed JW, Ori N. Genetic dissection of the auxin response network. NATURE PLANTS 2020; 6:1082-1090. [PMID: 32807951 DOI: 10.1038/s41477-020-0739-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 07/06/2020] [Indexed: 05/24/2023]
Abstract
The expansion of gene families during evolution, which can generate functional overlap or specialization among their members, is a characteristic feature of signalling pathways in complex organisms. For example, families of transcriptional activators and repressors mediate responses to the plant hormone auxin. Although these regulators were identified more than 20 years ago, their overlapping functions and compensating negative feedbacks have hampered their functional analyses. Studies using loss-of-function approaches in basal land plants and gain-of-function approaches in angiosperms have in part overcome these issues but have still left an incomplete understanding. Here, we propose that renewed emphasis on genetic analysis of multiple mutants and species will shed light on the role of gene families in auxin response. Combining loss-of-function mutations in auxin-response activators and repressors can unravel complex outputs enabled by expanded gene families, such as fine-tuned developmental outcomes and robustness. Similar approaches and concepts may help to analyse other regulatory pathways whose components are also encoded by large gene families.
Collapse
Affiliation(s)
- Alon Israeli
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Hebrew University, Rehovot, Israel
| | - Jason W Reed
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Naomi Ori
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Hebrew University, Rehovot, Israel.
| |
Collapse
|
41
|
Li T, Gonzalez N, Inzé D, Dubois M. Emerging Connections between Small RNAs and Phytohormones. TRENDS IN PLANT SCIENCE 2020; 25:912-929. [PMID: 32381482 DOI: 10.1016/j.tplants.2020.04.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 03/30/2020] [Accepted: 04/03/2020] [Indexed: 05/20/2023]
Abstract
Small RNAs (sRNAs), mainly including miRNAs and siRNAs, are ubiquitous in eukaryotes. sRNAs mostly negatively regulate gene expression via (post-)transcriptional gene silencing through DNA methylation, mRNA cleavage, or translation inhibition. The mechanisms of sRNA biogenesis and function in diverse biological processes, as well as the interactions between sRNAs and environmental factors, like (a)biotic stress, have been deeply explored. Phytohormones are central in the plant's response to stress, and multiple recent studies highlight an emerging role for sRNAs in the direct response to, or the regulation of, plant hormonal pathways. In this review, we discuss recent progress on the unraveling of crossregulation between sRNAs and nine plant hormones.
Collapse
Affiliation(s)
- Ting Li
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium; VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Nathalie Gonzalez
- INRAE, Université de Bordeaux, UMR1332 Biologie du fruit et Pathologie, F-33882 Villenave d'Ornon cedex, France
| | - Dirk Inzé
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium; VIB Center for Plant Systems Biology, 9052 Ghent, Belgium.
| | - Marieke Dubois
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium; VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| |
Collapse
|
42
|
Repression of microRNA 160 results in retarded seed integument growth and smaller final seed size in cotton. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.cj.2019.12.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
43
|
Zanetti ME, Blanco F, Reynoso M, Crespi M. To keep or not to keep: mRNA stability and translatability in root nodule symbiosis. CURRENT OPINION IN PLANT BIOLOGY 2020; 56:109-117. [PMID: 32569975 DOI: 10.1016/j.pbi.2020.04.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 03/15/2020] [Accepted: 04/30/2020] [Indexed: 06/11/2023]
Abstract
Post-transcriptional control of gene expression allows plants to rapidly adapt to changes in their environment. Under low nitrogen conditions, legume plants engage into a symbiosis with soil bacteria that results in the formation of root nodules, where bacteria are allocated and fix atmospheric nitrogen for the plant's benefit. Recent studies highlighted the importance of small RNA-mediated mechanisms in the control of bacterial infection, nodule organogenesis, and the long-distance signaling that balances plant growth and nodulation. Examples of such mechanisms are shoot-to-root mobile microRNAs and small RNA fragments derived from degradation of bacterial transfer RNAs that repress complementary mRNAs in the host plant. Mechanisms of selective mRNA translation also contribute to rapidly modulate the expression of nodulation genes in a cell-specific manner during symbiosis. Here, the most recent advances made on the regulation of mRNA stability and translatability, and the emerging roles of long non-coding RNAs in symbiosis are summarized.
Collapse
Affiliation(s)
- María Eugenia Zanetti
- Instituto de Biotecnología y Biología Molecular, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Centro Científico y Tecnológico-La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, 1900 La Plata, Argentina.
| | - Flavio Blanco
- Instituto de Biotecnología y Biología Molecular, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Centro Científico y Tecnológico-La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, 1900 La Plata, Argentina
| | - Mauricio Reynoso
- Instituto de Biotecnología y Biología Molecular, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Centro Científico y Tecnológico-La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, 1900 La Plata, Argentina
| | - Martín Crespi
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, Universities Paris-Saclay, Evry and de Paris, Batiment 630, 91405 Orsay, France
| |
Collapse
|
44
|
miRNA-mediated regulation of auxin signaling pathway during plant development and stress responses. J Biosci 2020. [DOI: 10.1007/s12038-020-00062-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
45
|
Natarajan B, Banerjee AK. MicroRNA160 regulates leaf curvature in potato ( Solanum tuberosum L. cv. Désirée). PLANT SIGNALING & BEHAVIOR 2020; 15:1744373. [PMID: 32233909 PMCID: PMC7238881 DOI: 10.1080/15592324.2020.1744373] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/01/2020] [Accepted: 03/05/2020] [Indexed: 05/21/2023]
Abstract
Leaf development is a complex process and factors such as size, shape, curvature, compounding, and texture determine the final leaf morphology. MicroRNA160 is one of the crucial players that has been shown to regulate lamina formation and compounding in tomato. In this study, we show that miR160 also regulates leaf curvature in potato. miR160 targets a group of Auxin Response Factors - StARF10, StARF16, and StARF17 - that are proposed to function majorly as repressors of auxin signaling. We observed that overexpression of miR160 (miR160-OE) results in decrease in the levels of these ARFs along with hypersensitivity to exogenous auxin treatment, whereas knockdown of miR160 (miR160-KD) causes increased ARF levels and auxin hyposensitivity. The leaves of miR160-OE plants have a high positive curvature, but of miR160-KD plants are flattened compared to wildtype. A prolonged activation of cell cycle - as indicated by increased levels of StCYCLIND3;2 - in the center region of miR160-OE leaves appears to have caused this positive curvature. However, a comparable StTCP4 activity at both center and margin regions of miR160-KD leaves could be the cause for its flattened leaf phenotype. In summary, we show that miR160 plays an important role in regulating leaf curvature in potato plants.
Collapse
Affiliation(s)
- Bhavani Natarajan
- Biology Division, Indian Institute of Science Education and Research (IISER Pune), Pune, India
| | - Anjan K. Banerjee
- Biology Division, Indian Institute of Science Education and Research (IISER Pune), Pune, India
- CONTACT Anjan K. Banerjee Biology Division, Indian Institute of Science Education and Research (IISER Pune), Dr. Homi Bhabha Road, Pune 411008, India
| |
Collapse
|
46
|
Thibivilliers S, Farmer A, Libault M. Biological and Cellular Functions of the Microdomain-Associated FWL/CNR Protein Family in Plants. PLANTS 2020; 9:plants9030377. [PMID: 32204387 PMCID: PMC7154862 DOI: 10.3390/plants9030377] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 03/17/2020] [Accepted: 03/18/2020] [Indexed: 02/03/2023]
Abstract
Membrane microdomains/nanodomains are sub-compartments of the plasma membrane enriched in sphingolipids and characterized by their unique protein composition. They play important roles in regulating plant development and plant-microbe interactions including mutualistic symbiotic interactions. Several protein families are associated with the microdomain fraction of biological membranes such as flotillins, prohibitins, and remorins. More recently, GmFWL1, a FWL/CNR protein exclusively expressed in the soybean nodule, was functionally characterized as a new microdomain-associated protein. Interestingly, GmFWL1 is homologous to the tomato FW2-2 protein, a major regulator of tomato fruit development. In this review, we summarize the knowledge gained about the biological, cellular, and physiological functions of members of the FWL/CNR family across various plant species. The role of the FWL/CNR proteins is also discussed within the scope of their evolution and transcriptional regulation.
Collapse
Affiliation(s)
- Sandra Thibivilliers
- Department of Agronomy and Horticulture, Center for Plant Science Innovation, University of Nebraska-Lincoln, Beadle Center, Lincoln, NE 68503, USA;
| | - Andrew Farmer
- National Center for Genome Resources, Santa Fe, NM 87505, USA;
| | - Marc Libault
- Department of Agronomy and Horticulture, Center for Plant Science Innovation, University of Nebraska-Lincoln, Beadle Center, Lincoln, NE 68503, USA;
- Correspondence: ; Tel.: +1-402-472-4530
| |
Collapse
|
47
|
Hoang NT, Tóth K, Stacey G. The role of microRNAs in the legume-Rhizobium nitrogen-fixing symbiosis. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:1668-1680. [PMID: 32163588 DOI: 10.1093/jxb/eraa018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 01/10/2020] [Indexed: 06/10/2023]
Abstract
Under nitrogen starvation, most legume plants form a nitrogen-fixing symbiosis with Rhizobium bacteria. The bacteria induce the formation of a novel organ called the nodule in which rhizobia reside as intracellular symbionts and convert atmospheric nitrogen into ammonia. During this symbiosis, miRNAs are essential for coordinating the various plant processes required for nodule formation and function. miRNAs are non-coding, endogenous RNA molecules, typically 20-24 nucleotides long, that negatively regulate the expression of their target mRNAs. Some miRNAs can move systemically within plant tissues through the vascular system, which mediates, for example, communication between the stem/leaf tissues and the roots. In this review, we summarize the growing number of miRNAs that function during legume nodulation focusing on two model legumes, Lotus japonicus and Medicago truncatula, and two important legume crops, soybean (Glycine max) and common bean (Phaseolus vulgaris). This regulation impacts a variety of physiological processes including hormone signaling and spatial regulation of gene expression. The role of mobile miRNAs in regulating legume nodule number is also highlighted.
Collapse
Affiliation(s)
- Nhung T Hoang
- C.S. Bond Life Sciences Center, Divisions of Plant Science and Biochemistry, University of Missouri-Columbia, MO, USA
| | - Katalin Tóth
- C.S. Bond Life Sciences Center, Divisions of Plant Science and Biochemistry, University of Missouri-Columbia, MO, USA
| | - Gary Stacey
- C.S. Bond Life Sciences Center, Divisions of Plant Science and Biochemistry, University of Missouri-Columbia, MO, USA
| |
Collapse
|
48
|
Ng JLP, Welvaert A, Wen J, Chen R, Mathesius U. The Medicago truncatula PIN2 auxin transporter mediates basipetal auxin transport but is not necessary for nodulation. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:1562-1573. [PMID: 31738415 DOI: 10.1093/jxb/erz510] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 11/14/2019] [Indexed: 06/10/2023]
Abstract
The development of root nodules leads to an increased auxin response in early nodule primordia, which is mediated by changes in acropetal auxin transport in some legumes. Here, we investigated the role of root basipetal auxin transport during nodulation. Rhizobia inoculation significantly increased basipetal auxin transport in both Medicago truncatula and Lotus japonicus. In M. truncatula, this increase was dependent on functional Nod factor signalling through NFP, NIN, and NSP2, as well as ethylene signalling through SKL. To test whether increased basipetal auxin transport is required for nodulation, we examined a loss-of-function mutant of the M. truncatula PIN2 gene. The Mtpin2 mutant exhibited a reduction in basipetal auxin transport and an agravitropic phenotype. Inoculation of Mtpin2 roots with rhizobia still led to a moderate increase in basipetal auxin transport, but the mutant nodulated normally. No clear differences in auxin response were observed during nodule development. Interestingly, inoculation of wild-type roots increased lateral root numbers, whereas inoculation of Mtpin2 mutants resulted in reduced lateral root numbers compared with uninoculated roots. We conclude that the MtPIN2 auxin transporter is involved in basipetal auxin transport, that its function is not essential for nodulation, but that it plays an important role in the control of lateral root development.
Collapse
Affiliation(s)
- Jason L P Ng
- Division of Plant Science, Research School of Biology, Australian National University, Canberra, Australia
| | - Astrid Welvaert
- Division of Plant Science, Research School of Biology, Australian National University, Canberra, Australia
| | - Jiangqi Wen
- Noble Research Institute LLC, Ardmore, OK, USA
| | - Rujin Chen
- School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Ulrike Mathesius
- Division of Plant Science, Research School of Biology, Australian National University, Canberra, Australia
| |
Collapse
|
49
|
Liu S, Yang C, Wu L, Cai H, Li H, Xu M. The peu-miR160a-PeARF17.1/PeARF17.2 module participates in the adventitious root development of poplar. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:457-469. [PMID: 31314168 PMCID: PMC6953198 DOI: 10.1111/pbi.13211] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 05/23/2019] [Accepted: 07/11/2019] [Indexed: 05/12/2023]
Abstract
Deep roots give rise to flourishing leaves, and the two complement each other. However, the genetic mechanisms underlying adventitious rooting for forest trees have remained elusive. In this study, we verified that peu-miR160a targets six poplar genes AUXIN RESPONSE FACTORS (ARFs), PeARF10.1, PeARF16.1, PeARF16.2, PeARF16.3, PeARF17.1 and PeARF17.2, using 5'RLM-RACE. Interaction experiments with peu-miR160a and PeARFs in poplar protoplasts further confirmed that peu-miR160a targets and negatively regulates the six PeARFs. Peu-miR160a and its target genes exhibited obvious temporal expression in different stages of adventitious root development, and they could also be induced by IAA and abscisic acid. Peu-miR160a-overexpressing lines exhibited a significant shortening of adventitious root length, an increase in the number of lateral roots, severe dwarfing and shortened internodes. In addition, the overexpression of PeARF17.1 or mPeARF17.2 (peu-miR160a-resistant version of PeARF17.2) significantly increased the number of adventitious roots. Furthermore, PeARF17.1-overexpressing lines had multiple branches with no visible trunk, although the adventitious root length of the PeARF17.1-overexpressing lines was significantly increased. Our findings reveal that the peu-miR160a - PeARF17.1/PeARF17.2 module is an important regulator involved in the development of the adventitious roots of poplar.
Collapse
Affiliation(s)
- Sian Liu
- Co‐Innovation Center for Sustainable Forestry in Southern ChinaNanjing Forestry UniversityNanjingChina
- College of ForestryNanjing Forestry UniversityNanjingChina
| | - Chunxia Yang
- Co‐Innovation Center for Sustainable Forestry in Southern ChinaNanjing Forestry UniversityNanjingChina
- College of ForestryNanjing Forestry UniversityNanjingChina
- Jiangxi Academy of ForestryNanchangJiangxiChina
| | - Ling Wu
- Co‐Innovation Center for Sustainable Forestry in Southern ChinaNanjing Forestry UniversityNanjingChina
- College of ForestryNanjing Forestry UniversityNanjingChina
| | - Heng Cai
- Co‐Innovation Center for Sustainable Forestry in Southern ChinaNanjing Forestry UniversityNanjingChina
- College of ForestryNanjing Forestry UniversityNanjingChina
| | - Huogen Li
- Co‐Innovation Center for Sustainable Forestry in Southern ChinaNanjing Forestry UniversityNanjingChina
- College of ForestryNanjing Forestry UniversityNanjingChina
| | - Meng Xu
- Co‐Innovation Center for Sustainable Forestry in Southern ChinaNanjing Forestry UniversityNanjingChina
- College of ForestryNanjing Forestry UniversityNanjingChina
| |
Collapse
|
50
|
Identification of Appropriate Reference Genes for Normalizing miRNA Expression in Citrus Infected by Xanthomonas citri subsp. citri. Genes (Basel) 2019; 11:genes11010017. [PMID: 31877985 PMCID: PMC7017248 DOI: 10.3390/genes11010017] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 12/13/2019] [Accepted: 12/16/2019] [Indexed: 01/01/2023] Open
Abstract
MicroRNAs (miRNAs) are short noncoding RNA molecules that regulate gene expression at the posttranscriptional level. Reverse transcription-quantitative PCR (RT-qPCR) is one of the most common methods used for quantification of miRNA expression, and the levels of expression are normalized by comparing with reference genes. Thus, the selection of reference genes is critically important for accurate quantification. The present study was intended to identify appropriate miRNA reference genes for normalizing the level of miRNA expression in Citrus sinensis L. Osbeck and Citrus reticulata Blanco infected by Xanthomonas citri subsp. citri, which caused citrus canker disease. Five algorithms (Delta Ct, geNorm, NormFinder, BestKeeper and RefFinder) were used for screening reference genes, and two quantification approaches, poly(A) extension RT-qPCR and stem-loop RT-qPCR, were used to determine the most appropriate method for detecting expression patterns of miRNA. An overall comprehensive ranking output derived from the multi-algorithms showed that poly(A)-tailed miR162-3p/miR472 were the best reference gene combination for miRNA RT-qPCR normalization in citrus canker research. Candidate reference gene expression profiles determined by poly(A) RT-qPCR were more consistent in the two citrus species. To the best of our knowledge, this is the first systematic comparison of two miRNA quantification methods for evaluating reference genes. These results highlight the importance of rigorously assessing candidate reference genes and clarify some contradictory results in miRNA research on citrus.
Collapse
|