1
|
Terfa GN, Pan W, Hu L, Hao J, Zhao Q, Jia Y, Nie X. Mechanisms of Salt and Drought Stress Responses in Foxtail Millet. PLANTS (BASEL, SWITZERLAND) 2025; 14:1215. [PMID: 40284101 PMCID: PMC12030529 DOI: 10.3390/plants14081215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 04/07/2025] [Accepted: 04/11/2025] [Indexed: 04/29/2025]
Abstract
Salt and drought are destructive abiotic stresses that severely impact crop production and productivity, posing an increasing threat to global food security, particularly as their occurrence rises annually due to climate change. These salt and drought stresses adversely affect plant growth and development, leading to significant reductions in crop yields. Foxtail millet (Setaria italica) exhibits various adaptive mechanisms, including enhanced antioxidative systems, osmotic adjustment through osmolyte accumulation, and root system modification, which facilitate its tolerance to stressors. These traits underscore its significant potential for breeding climate-resilient crops to address food security and climate change challenges. Understanding the molecular basis of salt and drought tolerance mechanisms is essential for breeding or genetically engineering foxtail millet varieties with enhanced salt and drought tolerance, as well as improved yield potential. This review systematically overviewed the research progress and current status of the mechanisms underlying foxtail millet's tolerance to salt and drought stress from the perspectives of physiological, biochemical, and molecular responses. Additionally, it provides some future perspectives that will contribute to further deciphering the genetic mechanisms governing salt and drought tolerance, as well as further genetic improvement in foxtail millet.
Collapse
Affiliation(s)
- Gemechu Nedi Terfa
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Agronomy and Yangling Branch of the China Wheat Improvement Center, Northwest A & F University, Yangling 712100, China; (G.N.T.)
- Department of Plant Science, School of Agricultural Science, Ambo University, P.O. Box 19 Ambo, Ethiopia
| | - Wenqiu Pan
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Agronomy and Yangling Branch of the China Wheat Improvement Center, Northwest A & F University, Yangling 712100, China; (G.N.T.)
| | - Longjiao Hu
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Agronomy and Yangling Branch of the China Wheat Improvement Center, Northwest A & F University, Yangling 712100, China; (G.N.T.)
| | - Junwei Hao
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Agronomy and Yangling Branch of the China Wheat Improvement Center, Northwest A & F University, Yangling 712100, China; (G.N.T.)
| | - Qinlong Zhao
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Agronomy and Yangling Branch of the China Wheat Improvement Center, Northwest A & F University, Yangling 712100, China; (G.N.T.)
| | - Yanzhe Jia
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Agronomy and Yangling Branch of the China Wheat Improvement Center, Northwest A & F University, Yangling 712100, China; (G.N.T.)
| | - Xiaojun Nie
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Agronomy and Yangling Branch of the China Wheat Improvement Center, Northwest A & F University, Yangling 712100, China; (G.N.T.)
| |
Collapse
|
2
|
Wang H, Zang Y, Xin J, Li X, Xue S, Liang S, Tang X, Chen J. Exploring the leaf regeneration cycles response of Zostera japonica to ocean acidification. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176830. [PMID: 39389131 DOI: 10.1016/j.scitotenv.2024.176830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 09/23/2024] [Accepted: 10/07/2024] [Indexed: 10/12/2024]
Abstract
Ocean acidification is one of the major global environmental problems facing humankind today, and it has far-reaching impacts on marine organisms and the entire marine ecosystem. Zostera japonica, an important supporting species of intertidal seagrass beds, exhibits high photosynthetic productivity and plays an important role in the carbon cycle of nearshore waters. However, little is known about the characteristics, processes, and mechanisms of its response to ocean acidification. In this study, we conducted a 120-day acidification experiment in Z. japonica; here, plants underwent four leaf regeneration cycles to reveal the response mechanism of Z. japonica to ocean acidification (OA). We found that acidification significantly affected the seedling stage of Z. japonica, impacting leaf regeneration cycles by altering physiological and molecular responses. In one leaf regeneration cycle, the short-term exposure to CO2 affected the seagrass parameters, such as the regulation of inorganic carbon uptake modes and the regulation of photosynthesis between the dark and light reactions, with the potential to affect the carbon sinks of the marine organisms. The long-term effects on the regulation of antioxidant enzymes and antioxidant metabolites, caused an improvement in the marine life adaptation to OA. In a comparison of the different leaf regeneration cycles, the response pattern of Z. japonica showed an offset of the acidification during the short cycles and an adaption to the acidification during the long cycles. This study revealed the response mechanism of Z. japonica to OA at different time scales and could provide a theoretical basis for accurately assessing the impact of OA on seagrass and the entire seagrass bed ecosystem.
Collapse
Affiliation(s)
- Hongzhen Wang
- Lab of Marine Ecology, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| | - Yu Zang
- Key Lab of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China.
| | - Jiayi Xin
- Lab of Marine Ecology, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| | - Xinqi Li
- Lab of Marine Ecology, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| | - Song Xue
- Lab of Marine Ecology, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| | - Shuo Liang
- Department of Agriculture, Forestry and Food Science, Turin University, Grugliasco 10129, Italy.
| | - Xuexi Tang
- Lab of Marine Ecology, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; Lab for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao 266237, China.
| | - Jun Chen
- Lab of Marine Ecology, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
3
|
Gudi S, Halladakeri P, Singh G, Kumar P, Singh S, Alwutayd KM, Abd El-Moneim D, Sharma A. Deciphering the genetic landscape of seedling drought stress tolerance in wheat ( Triticum aestivum L.) through genome-wide association studies. FRONTIERS IN PLANT SCIENCE 2024; 15:1351075. [PMID: 38510445 PMCID: PMC10952099 DOI: 10.3389/fpls.2024.1351075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 02/12/2024] [Indexed: 03/22/2024]
Abstract
Wheat is an important cereal crop constrained by several biotic and abiotic stresses including drought stress. Understating the effect of drought stress and the genetic basis of stress tolerance is important to develop drought resilient, high-yielding wheat cultivars. In this study, we investigated the effects of drought stress on seedling characteristics in an association panel consisting of 198 germplasm lines. Our findings revealed that drought stress had a detrimental effect on all the seedling characteristics under investigation with a maximum effect on shoot length (50.94% reduction) and the minimum effect on germination percentage (7.9% reduction). To gain a deeper understanding, we conducted a genome-wide association analysis using 12,511 single nucleotide polymorphisms (SNPs), which led to the identification of 39 marker-trait associations (MTAs). Of these 39 MTAs, 13 were particularly noteworthy as they accounted for >10% of the phenotypic variance with a LOD score >5. These high-confidence MTAs were further utilized to extract 216 candidate gene (CGs) models within 1 Mb regions. Gene annotation and functional characterization identified 83 CGs with functional relevance to drought stress. These genes encoded the WD40 repeat domain, Myb/SANT-like domain, WSD1-like domain, BTB/POZ domain, Protein kinase domain, Cytochrome P450, Leucine-rich repeat domain superfamily, BURP domain, Calmodulin-binding protein60, Ubiquitin-like domain, etc. Findings from this study hold significant promise for wheat breeders as they provide direct assistance in selecting lines harboring favorable alleles for improved drought stress tolerance. Additionally, the identified SNPs and CGs will enable marker-assisted selection of potential genomic regions associated with enhanced drought stress tolerance in wheat.
Collapse
Affiliation(s)
- Santosh Gudi
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Priyanka Halladakeri
- Department of Genetics and Plant Breeding, Anand Agricultural University, Anand, India
| | - Gurjeet Singh
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, India
- Texas A&M University, AgriLife Research Center, Beaumont, TX, United States
| | - Pradeep Kumar
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, India
- Department of Agronomy, Horticulture, and Plant Science, South Dakota State University, Brookings, SD, United States
| | - Satinder Singh
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Khairiah Mubarak Alwutayd
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Diaa Abd El-Moneim
- Department of Plant Production (Genetic Branch), Faculty of Environmental Agricultural Sciences, Arish University, El-Arish, Egypt
| | - Achla Sharma
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, India
| |
Collapse
|
4
|
Alseekh S, Karakas E, Zhu F, Wijesingha Ahchige M, Fernie AR. Plant biochemical genetics in the multiomics era. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:4293-4307. [PMID: 37170864 PMCID: PMC10433942 DOI: 10.1093/jxb/erad177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 05/09/2023] [Indexed: 05/13/2023]
Abstract
Our understanding of plant biology has been revolutionized by modern genetics and biochemistry. However, biochemical genetics can be traced back to the foundation of Mendelian genetics; indeed, one of Mendel's milestone discoveries of seven characteristics of pea plants later came to be ascribed to a mutation in a starch branching enzyme. Here, we review both current and historical strategies for the elucidation of plant metabolic pathways and the genes that encode their component enzymes and regulators. We use this historical review to discuss a range of classical genetic phenomena including epistasis, canalization, and heterosis as viewed through the lens of contemporary high-throughput data obtained via the array of approaches currently adopted in multiomics studies.
Collapse
Affiliation(s)
- Saleh Alseekh
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
- Center of Plant Systems Biology and Biotechnology, Plovdiv, Bulgaria
| | - Esra Karakas
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Feng Zhu
- National R&D Center for Citrus Preservation, Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, 430070 Wuhan, China
| | | | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
- Center of Plant Systems Biology and Biotechnology, Plovdiv, Bulgaria
| |
Collapse
|
5
|
Khodaeiaminjan M, Knoch D, Ndella Thiaw MR, Marchetti CF, Kořínková N, Techer A, Nguyen TD, Chu J, Bertholomey V, Doridant I, Gantet P, Graner A, Neumann K, Bergougnoux V. Genome-wide association study in two-row spring barley landraces identifies QTL associated with plantlets root system architecture traits in well-watered and osmotic stress conditions. FRONTIERS IN PLANT SCIENCE 2023; 14:1125672. [PMID: 37077626 PMCID: PMC10106628 DOI: 10.3389/fpls.2023.1125672] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 03/15/2023] [Indexed: 05/03/2023]
Abstract
Water availability is undoubtedly one of the most important environmental factors affecting crop production. Drought causes a gradual deprivation of water in the soil from top to deep layers and can occur at diverse stages of plant development. Roots are the first organs that perceive water deficit in soil and their adaptive development contributes to drought adaptation. Domestication has contributed to a bottleneck in genetic diversity. Wild species or landraces represent a pool of genetic diversity that has not been exploited yet in breeding program. In this study, we used a collection of 230 two-row spring barley landraces to detect phenotypic variation in root system plasticity in response to drought and to identify new quantitative trait loci (QTL) involved in root system architecture under diverse growth conditions. For this purpose, young seedlings grown for 21 days in pouches under control and osmotic-stress conditions were phenotyped and genotyped using the barley 50k iSelect SNP array, and genome-wide association studies (GWAS) were conducted using three different GWAS methods (MLM GAPIT, FarmCPU, and BLINK) to detect genotype/phenotype associations. In total, 276 significant marker-trait associations (MTAs; p-value (FDR)< 0.05) were identified for root (14 and 12 traits under osmotic-stress and control conditions, respectively) and for three shoot traits under both conditions. In total, 52 QTL (multi-trait or identified by at least two different GWAS approaches) were investigated to identify genes representing promising candidates with a role in root development and adaptation to drought stress.
Collapse
Affiliation(s)
- Mortaza Khodaeiaminjan
- Czech Advanced Technology and Research Institute, Palacký University in Olomouc, Olomouc, Czechia
| | - Dominic Knoch
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | | | - Cintia F. Marchetti
- Czech Advanced Technology and Research Institute, Palacký University in Olomouc, Olomouc, Czechia
| | - Nikola Kořínková
- Czech Advanced Technology and Research Institute, Palacký University in Olomouc, Olomouc, Czechia
| | - Alexie Techer
- Czech Advanced Technology and Research Institute, Palacký University in Olomouc, Olomouc, Czechia
| | - Thu D. Nguyen
- Czech Advanced Technology and Research Institute, Palacký University in Olomouc, Olomouc, Czechia
| | - Jianting Chu
- Department of Breeding Research, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Valentin Bertholomey
- Limagrain Field Seeds, Traits and Technologies, Groupe Limagrain Centre de Recherche, Chappes, France
| | - Ingrid Doridant
- Limagrain Field Seeds, Traits and Technologies, Groupe Limagrain Centre de Recherche, Chappes, France
| | - Pascal Gantet
- Czech Advanced Technology and Research Institute, Palacký University in Olomouc, Olomouc, Czechia
- Unité Mixte de Recherche DIADE, Université de Montpellier, IRD, CIRAD, Montpellier, France
| | - Andreas Graner
- Department Genebank, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Kerstin Neumann
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Véronique Bergougnoux
- Czech Advanced Technology and Research Institute, Palacký University in Olomouc, Olomouc, Czechia
| |
Collapse
|
6
|
Lathakumari S, Seenipandian S, Balakrishnan S, Raj APMS, Sugiyama H, Namasivayam GP, Sivasubramaniam S. Identification of genes responsible for the social skill in the earthworm, Eudrilus eugeniae. GENE REPORTS 2023. [DOI: 10.1016/j.genrep.2023.101774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
|
7
|
Diao J, Gu W, Jiang Z, Wang J, Zou H, Zong C, Ma L. Comprehensive Analysis of Universal Stress Protein Family Genes and Their Expression in Fusarium oxysporum Response of Populus davidiana × P. alba var. pyramidalis Louche Based on the Transcriptome. Int J Mol Sci 2023; 24:ijms24065405. [PMID: 36982480 PMCID: PMC10049587 DOI: 10.3390/ijms24065405] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 02/24/2023] [Accepted: 03/07/2023] [Indexed: 03/14/2023] Open
Abstract
Universal stress proteins (USPs) are typical stress-inducible proteins that function directly in a variety of biotic or abiotic stresses and effectively protect plants from complex, adverse environments. However, the expression patterns of USP genes under pathogen stress and their molecular mechanisms in stress resistance have not been reported in detail. In this study, 46 USP genes were identified from Populus trichocarpa (PtrUSPs), and their biological characteristics were comprehensively analyzed based on phylogeny, physicochemical properties of proteins, and gene structures. The promoter regions of PtrUSPs contain a variety of cis-acting elements related to hormone and stress response. The results of a collinearity analysis showed that PtsrUSPs were highly conserved with homologous genes from four other representative species (Arabidopsis thaliana, Eucalyptus grandis, Glycine max, and Solanum lycopersicum). Furthermore, RNA-Seq analysis showed that the expression of 46 USPs from P. davidiana × P. alba var. pyramidalis Louche (PdpapUSPs) was significantly induced by Fusarium oxysporum. The co-expression network and gene ontology analysis of PtrUSPs showed that they participated in the response to stress and response to stimulus through precise coordination. The results of this paper systematically revealed the biological characteristics of PtrUSPs and the characteristics of their response to F. oxysporum stress, which will lay a theoretical foundation for improving genetic traits and the breeding of poplar disease-resistant varieties in subsequent studies.
Collapse
Affiliation(s)
- Jian Diao
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China
| | - Wei Gu
- College of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Zhehui Jiang
- College of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Jiaqi Wang
- College of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Hongfei Zou
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China
| | - Cheng Zong
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China
- Correspondence: (C.Z.); (L.M.)
| | - Ling Ma
- College of Forestry, Northeast Forestry University, Harbin 150040, China
- Correspondence: (C.Z.); (L.M.)
| |
Collapse
|
8
|
Luo D, Wu Z, Bai Q, Zhang Y, Huang M, Huang Y, Li X. Universal Stress Proteins: From Gene to Function. Int J Mol Sci 2023; 24:ijms24054725. [PMID: 36902153 PMCID: PMC10003552 DOI: 10.3390/ijms24054725] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/23/2023] [Accepted: 02/23/2023] [Indexed: 03/05/2023] Open
Abstract
Universal stress proteins (USPs) exist across a wide range of species and are vital for survival under stressful conditions. Due to the increasingly harsh global environmental conditions, it is increasingly important to study the role of USPs in achieving stress tolerance. This review discusses the role of USPs in organisms from three aspects: (1) organisms generally have multiple USP genes that play specific roles at different developmental periods of the organism, and, due to their ubiquity, USPs can be used as an important indicator to study species evolution; (2) a comparison of the structures of USPs reveals that they generally bind ATP or its analogs at similar sequence positions, which may underlie the regulatory role of USPs; and (3) the functions of USPs in species are diverse, and are generally directly related to the stress tolerance. In microorganisms, USPs are associated with cell membrane formation, whereas in plants they may act as protein chaperones or RNA chaperones to help plants withstand stress at the molecular level and may also interact with other proteins to regulate normal plant activities. This review will provide directions for future research, focusing on USPs to provide clues for the development of stress-tolerant crop varieties and for the generation of novel green pesticide formulations in agriculture, and to better understand the evolution of drug resistance in pathogenic microorganisms in medicine.
Collapse
|
9
|
Alvarez-Morezuelas A, Barandalla L, Ritter E, Ruiz de Galarreta JI. Genome-Wide Association Study of Agronomic and Physiological Traits Related to Drought Tolerance in Potato. PLANTS (BASEL, SWITZERLAND) 2023; 12:734. [PMID: 36840081 PMCID: PMC9963855 DOI: 10.3390/plants12040734] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/02/2023] [Accepted: 02/04/2023] [Indexed: 06/18/2023]
Abstract
Potato (Solanum tuberosum L.) is often considered a water-sensitive crop and its production can be threatened by drought events, making water stress tolerance a trait of increasing interest. In this study, a panel of 144 tetraploid potato genotypes was evaluated for two consecutive years (2019 and 2020) to observe the variation of several physiological traits such as chlorophyll content and fluorescence, stomatal conductance, NDVI, and leaf area and circumference. In addition, agronomic parameters such as yield, tuber fresh weight, tuber number, starch content, dry matter and reducing sugars were determined. GGP V3 Potato array was used to genotype the population, obtaining a total of 18,259 high-quality SNP markers. Marker-trait association was performed using GWASpoly package in R software and Q + K linear mixed models were considered. This approach allowed us to identify eighteen SNP markers significantly associated with the studied traits in both treatments and years, which were related to genes with known functions. Markers related to chlorophyll content and number of tubers under control and stress conditions, and related to stomatal conductance, NDVI, yield and reducing sugar content under water stress, were identified. Although these markers were distributed throughout the genome, the SNPs associated with the traits under control conditions were found mainly on chromosome 11, while under stress conditions they were detected on chromosome 4. These results contribute to the knowledge of the mechanisms of potato tolerance to water stress and are useful for future marker-assisted selection programs.
Collapse
|
10
|
The Current Developments in Medicinal Plant Genomics Enabled the Diversification of Secondary Metabolites' Biosynthesis. Int J Mol Sci 2022; 23:ijms232415932. [PMID: 36555572 PMCID: PMC9781956 DOI: 10.3390/ijms232415932] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/04/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022] Open
Abstract
Medicinal plants produce important substrates for their adaptation and defenses against environmental factors and, at the same time, are used for traditional medicine and industrial additives. Plants have relatively little in the way of secondary metabolites via biosynthesis. Recently, the whole-genome sequencing of medicinal plants and the identification of secondary metabolite production were revolutionized by the rapid development and cheap cost of sequencing technology. Advances in functional genomics, such as transcriptomics, proteomics, and metabolomics, pave the way for discoveries in secondary metabolites and related key genes. The multi-omics approaches can offer tremendous insight into the variety, distribution, and development of biosynthetic gene clusters (BGCs). Although many reviews have reported on the plant and medicinal plant genome, chemistry, and pharmacology, there is no review giving a comprehensive report about the medicinal plant genome and multi-omics approaches to study the biosynthesis pathway of secondary metabolites. Here, we introduce the medicinal plant genome and the application of multi-omics tools for identifying genes related to the biosynthesis pathway of secondary metabolites. Moreover, we explore comparative genomics and polyploidy for gene family analysis in medicinal plants. This study promotes medicinal plant genomics, which contributes to the biosynthesis and screening of plant substrates and plant-based drugs and prompts the research efficiency of traditional medicine.
Collapse
|
11
|
Kamruzzaman M, Beyene MA, Siddiqui MN, Ballvora A, Léon J, Naz AA. Pinpointing genomic loci for drought-induced proline and hydrogen peroxide accumulation in bread wheat under field conditions. BMC PLANT BIOLOGY 2022; 22:584. [PMID: 36513990 PMCID: PMC9746221 DOI: 10.1186/s12870-022-03943-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 11/14/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Proline (Pro) and hydrogen peroxide (H2O2) play a critical role in plants during drought adaptation. Genetic mapping for drought-induced Pro and H2O2 production under field conditions is very limited in crop plants since their phenotyping with large populations is labor-intensive. A genome-wide association study (GWAS) of a diversity panel comprised of 184 bread wheat cultivars grown in natural field (control) and rain-out shelter (drought) environments was performed to identify candidate loci and genes regulating Pro and H2O2 accumulation induced by drought. RESULTS The GWAS identified top significant marker-trait associations (MTAs) on 1A and 2A chromosomes, respectively for Pro and H2O2 in response to drought. Similarly, MTAs for stress tolerance index (STI) of Pro and H2O2 were identified on 5B and 1B chromosomes, respectively. Total 143 significant MTAs were identified including 36 and 71 were linked to drought and 2 and 34 were linked to STI for Pro and H2O2, respectively. Next, linkage disequilibrium analysis revealed minor alleles of significant single-markers and haplotypes were associated with higher Pro and H2O2 accumulation under drought. Several putative candidate genes for Pro and H2O2 content encode proteins with kinase, transporter or protein-binding activities. CONCLUSIONS The identified genetic factors associated with Pro and H2O2 biosynthesis underlying drought adaptation lay a fundamental basis for functional studies and future marker-assisted breeding programs.
Collapse
Affiliation(s)
- Mohammad Kamruzzaman
- Institute of Crop Science and Resource Conservation (INRES)-Plant Breeding and Biotechnology, University of Bonn, Bonn, Germany
- Plant Breeding Division, Bangladesh Institute of Nuclear Agriculture (BINA), Mymensingh-2202, Bangladesh
| | - Mekides Abebe Beyene
- Institute of Crop Science and Resource Conservation (INRES)-Plant Breeding and Biotechnology, University of Bonn, Bonn, Germany
| | - Md Nurealam Siddiqui
- Institute of Crop Science and Resource Conservation (INRES)-Plant Breeding and Biotechnology, University of Bonn, Bonn, Germany
- Department of Biochemistry and Molecular Biology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh
| | - Agim Ballvora
- Institute of Crop Science and Resource Conservation (INRES)-Plant Breeding and Biotechnology, University of Bonn, Bonn, Germany
| | - Jens Léon
- Institute of Crop Science and Resource Conservation (INRES)-Plant Breeding and Biotechnology, University of Bonn, Bonn, Germany
- Field Lab Campus Klein-Altendorf, University of Bonn, Bonn, Germany
| | - Ali Ahmad Naz
- Institute of Crop Science and Resource Conservation (INRES)-Plant Breeding and Biotechnology, University of Bonn, Bonn, Germany.
- Department of Plant Breeding, University of Applied Sciences, Osnabrueck, Osnabrueck, Germany.
| |
Collapse
|
12
|
Shrestha A, Fendel A, Nguyen TH, Adebabay A, Kullik AS, Benndorf J, Leon J, Naz AA. Natural diversity uncovers P5CS1 regulation and its role in drought stress tolerance and yield sustainability in barley. PLANT, CELL & ENVIRONMENT 2022; 45:3523-3536. [PMID: 36130879 DOI: 10.1111/pce.14445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 09/13/2022] [Accepted: 09/17/2022] [Indexed: 06/15/2023]
Abstract
Proline accumulation is one of the major responses of plants to many abiotic stresses. However, the significance of proline accumulation for drought stress tolerance remains enigmatic in crop plants. First, we examined the natural variation of the pyrolline-5-carboxylate synthase (P5CS1) among 49 barley genotypes. Allele mining identified a previously unknown allelic series that showed polymorphisms at 42 cis-elements across the P5CS1 promoter. Selected haplotypes had quantitative variation in P5CS1 gene expression and proline accumulation, putatively influenced by both abscisic acid-dependent and independent pathways under drought stress. Next, we introgressed the P5CS1 allele from a high proline accumulating wild barley accession ISR42-8 into cultivar Scarlett developing a near-isogenic line (NIL-143). NIL-143 accumulated higher proline concentrations than Scarlett under drought stress at seedling and reproductive stages. Under drought stress, NIL-143 showed less pigment damage, sustained photosynthetic health, and higher drought stress recovery compared to Scarlett. Further, the drought-induced damage to yield-related traits, mainly thousand-grain weight, was lower in NIL-143 compared with Scarlett in field conditions. Our data uncovered new variants of the P5CS1 promoter and the significance of the increased proline accumulation regulated by the P5CS1 allele of ISR42-8 in drought stress tolerance and yield stability in barley.
Collapse
Affiliation(s)
- Asis Shrestha
- Department of Plant Breeding, Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, Germany
| | - Alexander Fendel
- Department of Plant Breeding, Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, Germany
| | - Thuy H Nguyen
- Department of Crop Science, Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, Germany
| | - Anteneh Adebabay
- Department of Plant Breeding, Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, Germany
| | - Annika Stina Kullik
- Department of Plant Breeding, Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, Germany
| | - Jan Benndorf
- Department of Plant Breeding, Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, Germany
| | - Jens Leon
- Department of Plant Breeding, Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, Germany
| | - Ali A Naz
- Department of Plant Breeding, Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, Germany
| |
Collapse
|
13
|
Kim DG, Lyu JI, Kim JM, Seo JS, Choi HI, Jo YD, Kim SH, Eom SH, Ahn JW, Bae CH, Kwon SJ. Identification of Loci Governing Agronomic Traits and Mutation Hotspots via a GBS-Based Genome-Wide Association Study in a Soybean Mutant Diversity Pool. Int J Mol Sci 2022; 23:10441. [PMID: 36142354 PMCID: PMC9499481 DOI: 10.3390/ijms231810441] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/05/2022] [Accepted: 09/07/2022] [Indexed: 11/25/2022] Open
Abstract
In this study, we performed a genotyping-by-sequencing analysis and a genome-wide association study of a soybean mutant diversity pool previously constructed by gamma irradiation. A GWAS was conducted to detect significant associations between 37,249 SNPs, 11 agronomic traits, and 6 phytochemical traits. In the merged data set, 66 SNPs on 13 chromosomes were highly associated (FDR p < 0.05) with the following 4 agronomic traits: days of flowering (33 SNPs), flower color (16 SNPs), node number (6 SNPs), and seed coat color (11 SNPs). These results are consistent with the findings of earlier studies on other genetic features (e.g., natural accessions and recombinant inbred lines). Therefore, our observations suggest that the genomic changes in the mutants generated by gamma irradiation occurred at the same loci as the mutations in the natural soybean population. These findings are indicative of the existence of mutation hotspots, or the acceleration of genome evolution in response to high doses of radiation. Moreover, this study demonstrated that the integration of GBS and GWAS to investigate a mutant population derived from gamma irradiation is suitable for dissecting the molecular basis of complex traits in soybeans.
Collapse
Affiliation(s)
- Dong-Gun Kim
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongup 56212, Korea
| | - Jae Il Lyu
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongup 56212, Korea
- Research Center of Crop Breeding for Omics and Artificial Intelligence, Kongju National University, Yesan 32439, Korea
| | - Jung Min Kim
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongup 56212, Korea
| | - Ji Su Seo
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongup 56212, Korea
| | - Hong-Il Choi
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongup 56212, Korea
| | - Yeong Deuk Jo
- Department of Horticultural Science, Chungnam National University, Daejeon 34134, Korea
| | - Sang Hoon Kim
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongup 56212, Korea
| | - Seok Hyun Eom
- Department of Horticultural Biotechnology, Institute of Life Sciences & Resources, Kyung Hee University, Yongin 17104, Korea
| | - Joon-Woo Ahn
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongup 56212, Korea
| | - Chang-Hyu Bae
- Department of Life Resources, Graduate School, Sunchon National University, Suncheon 57922, Korea
| | - Soon-Jae Kwon
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongup 56212, Korea
| |
Collapse
|
14
|
Chien PS, Chao YT, Chou CH, Hsu YY, Chiang SF, Tung CW, Chiou TJ. Phosphate transporter PHT1;1 is a key determinant of phosphorus acquisition in Arabidopsis natural accessions. PLANT PHYSIOLOGY 2022; 190:682-697. [PMID: 35639954 PMCID: PMC9434223 DOI: 10.1093/plphys/kiac250] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 05/04/2022] [Indexed: 05/11/2023]
Abstract
Phosphorus (P) is a mineral nutrient essential for plant growth and development, but most P in the soil is unavailable for plants. To understand the genetic basis of P acquisition regulation, we performed genome-wide association studies (GWASs) on a diversity panel of Arabidopsis (Arabidopsis thaliana). Two primary determinants of P acquisition were considered, namely, phosphate (Pi)-uptake activity and PHOSPHATE TRANSPORTER 1 (PHT1) protein abundance. Association mapping revealed a shared significant peak on chromosome 5 (Chr5) where the PHT1;1/2/3 genes reside, suggesting a connection between the regulation of Pi-uptake activity and PHT1 protein abundance. Genes encoding transcription factors, kinases, and a metalloprotease associated with both traits were also identified. Conditional GWAS followed by statistical analysis of genotype-dependent PHT1;1 expression and transcriptional activity assays revealed an epistatic interaction between PHT1;1 and MYB DOMAIN PROTEIN 52 (MYB52) on Chr1. Further, analyses of F1 hybrids generated by crossing two subgroups of natural accessions carrying specific PHT1;1- and MYB52-associated single nucleotide polymorphisms (SNPs) revealed strong effects of these variants on PHT1;1 expression and Pi uptake activity. Notably, the soil P contents in Arabidopsis habitats coincided with PHT1;1 haplotype, emphasizing how fine-tuned P acquisition activity through natural variants allows environmental adaptation. This study sheds light on the complex regulation of P acquisition and offers a framework to systematically assess the effectiveness of GWAS approaches in the study of quantitative traits.
Collapse
Affiliation(s)
| | | | - Chia-Hui Chou
- Department of Agronomy, National Taiwan University, Taipei, Taiwan
| | - Yu-Ying Hsu
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Su-Fen Chiang
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | | | | |
Collapse
|
15
|
Abstract
Water-use efficiency (WUE) is the ratio of biomass produced per unit of water consumed; thus, it can be altered by genetic factors that affect either side of the ratio. In the present study, we exploited natural variation for WUE to discover loci affecting either biomass accumulation or water use as factors affecting WUE. Genome-wide association studies (GWAS) using integrated WUE measured through carbon isotope discrimination (δ13C) of Arabidopsis thaliana accessions identified genomic regions associated with WUE. Reverse genetic analysis of 70 candidate genes selected based on the GWAS results and transcriptome data identified 25 genes affecting WUE as measured by gravimetric and δ13C analyses. Mutants of four genes had higher WUE than wild type, while mutants of the other 21 genes had lower WUE. The differences in WUE were caused by either altered biomass or water consumption (or both). Stomatal density (SD) was not a primary cause of altered WUE in these mutants. Leaf surface temperatures indicated that transpiration differed for mutants of 16 genes, but generally biomass accumulation had a greater effect on WUE. The genes we identified are involved in diverse cellular processes, including hormone and calcium signaling, meristematic activity, photosynthesis, flowering time, leaf/vasculature development, and cell wall composition; however, none of them had been previously linked to WUE. Thus, our study successfully identified effectors of WUE that can be used to understand the genetic basis of WUE and improve crop productivity.
Collapse
|
16
|
Galić V, Mlinarić S, Marelja M, Zdunić Z, Brkić A, Mazur M, Begović L, Šimić D. Contrasting Water Withholding Responses of Young Maize Plants Reveal Link Between Lipid Peroxidation and Osmotic Regulation Corroborated by Genetic Analysis. FRONTIERS IN PLANT SCIENCE 2022; 13:804630. [PMID: 35873985 PMCID: PMC9296821 DOI: 10.3389/fpls.2022.804630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
Linking biochemistry and genetics of tolerance to osmotic stress is of interest for understanding plant adaptations to unfavorable conditions. The aims of this study were to investigate the variability in responses of panel of elite maize inbred lines to water withholding for stress-related traits through association study and to identify pathways linked to detected associations for better understanding of maize stress responses. Densely genotyped public and expired Plant Variety Protection Certificate (ex-PVP) inbred lines were planted in controlled conditions (16-h/8-h day/night, 25°C, 50% RH) in control (CO) and exposed to 10-day water withholding (WW). Traits analyzed were guaiacol peroxidase activity (GPOD), total protein content (PROT), lipid peroxidation (TBARS), hydrogen peroxide accumulation (H2O2), proline accumulation (proline), and current water content (CWC). Proline accumulation was found to be influenced by H2O2 and TBARS signaling pathways acting as an accumulation-switching mechanism. Most of the associations detected were for proline (29.4%) and TBARS (44.1%). Gene ontology (GO) enrichment analysis showed significant enrichment in regulation of integral membrane parts and peroxisomes along with regulation of transcription and polysaccharide catabolism. Dynamic studies involving inbreds with extreme phenotypes are needed to elucidate the role of this signaling mechanism in regulation of response to water deficit.
Collapse
Affiliation(s)
- Vlatko Galić
- Department of Maize Breeding and Genetics, Agricultural Institute Osijek, Osijek, Croatia
| | - Selma Mlinarić
- Department of Biology, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Matea Marelja
- Department of Biology, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Zvonimir Zdunić
- Department of Maize Breeding and Genetics, Agricultural Institute Osijek, Osijek, Croatia
- Centre of Excellence for Biodiversity and Molecular Plant Breeding (CroP-BioDiv), Zagreb, Croatia
| | - Andrija Brkić
- Department of Maize Breeding and Genetics, Agricultural Institute Osijek, Osijek, Croatia
| | - Maja Mazur
- Department of Maize Breeding and Genetics, Agricultural Institute Osijek, Osijek, Croatia
| | - Lidija Begović
- Department of Biology, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Domagoj Šimić
- Department of Maize Breeding and Genetics, Agricultural Institute Osijek, Osijek, Croatia
- Centre of Excellence for Biodiversity and Molecular Plant Breeding (CroP-BioDiv), Zagreb, Croatia
| |
Collapse
|
17
|
Toum L, Perez-Borroto LS, Peña-Malavera AN, Luque C, Welin B, Berenstein A, Fernández Do Porto D, Vojnov A, Castagnaro AP, Pardo EM. Selecting putative drought-tolerance markers in two contrasting soybeans. Sci Rep 2022; 12:10872. [PMID: 35761017 PMCID: PMC9237119 DOI: 10.1038/s41598-022-14334-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 06/06/2022] [Indexed: 12/04/2022] Open
Abstract
Identifying high-yield genotypes under low water availability is essential for soybean climate-smart breeding. However, a major bottleneck lies in phenotyping, particularly in selecting cost-efficient markers associated with stress tolerance and yield stabilization. Here, we conducted in-depth phenotyping experiments in two soybean genotypes with contrasting drought tolerance, MUNASQA (tolerant) and TJ2049 (susceptible), to better understand soybean stress physiology and identify/statistically validate drought-tolerance and yield-stabilization traits as potential breeding markers. Firstly, at the critical reproductive stage (R5), the molecular differences between the genotype's responses to mild water deficit were explored through massive analysis of cDNA ends (MACE)-transcriptomic and gene ontology. MUNASQA transcriptional profile, compared to TJ2049, revealed significant differences when responding to drought. Next, both genotypes were phenotyped under mild water deficit, imposed in vegetative (V3) and R5 stages, by evaluating 22 stress-response, growth, and water-use markers, which were subsequently correlated between phenological stages and with yield. Several markers showed high consistency, independent of the phenological stage, demonstrating the effectiveness of the phenotyping methodology and its possible use for early selection. Finally, these markers were classified and selected according to their cost-feasibility, statistical weight, and correlation with yield. Here, pubescence, stomatal density, and canopy temperature depression emerged as promising breeding markers for the early selection of drought-tolerant soybeans.
Collapse
Affiliation(s)
- Laila Toum
- Instituto de Tecnología Agroindustrial del Noroeste Argentino, Estación Experimental Agroindustrial Obispo Colombres- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), William Cross 3150, Las Talitas, Tucumán, Argentina
| | - Lucia Sandra Perez-Borroto
- Plant Breeding, Wageningen University & Research, 6708 PB, Wageningen, The Netherlands
- Centro de Bioplantas, Universidad de Ciego de Ávila "Máximo Gómez Báez", Road to Morón 9 ½ Km, Ciego de Ávila, Cuba
| | - Andrea Natalia Peña-Malavera
- Instituto de Tecnología Agroindustrial del Noroeste Argentino, Estación Experimental Agroindustrial Obispo Colombres- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), William Cross 3150, Las Talitas, Tucumán, Argentina
| | - Catalina Luque
- Cátedra de Anatomía Vegetal. Facultad de Ciencias Naturales E IML, Universidad Nacional de Tucumán, Miguel Lillo 205, San Miguel de Tucumán, Tucumán, Argentina
| | - Bjorn Welin
- Instituto de Tecnología Agroindustrial del Noroeste Argentino, Estación Experimental Agroindustrial Obispo Colombres- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), William Cross 3150, Las Talitas, Tucumán, Argentina
| | - Ariel Berenstein
- Laboratorio de Biología Molecular, División Patología, Instituto Multidisciplinario de Investigaciones en Patologías Pediátricas (IMIPP), CONICET-GCBA, C1425EFD, Buenos Aires, Argentina
| | - Darío Fernández Do Porto
- Instituto de Química Biológica (IQUIBICEN), Facultad de Ciencias Exactas y Naturales (FCEyN), Universidad de Buenos Aires, Intendente Guiraldes 2160, Buenos Aires, Argentina
| | - Adrian Vojnov
- Instituto de Ciencia y Tecnología "Dr. César Milstein", Fundación Pablo Cassará-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Saladillo 2468, C1440FFX, Buenos Aires, Argentina
| | - Atilio Pedro Castagnaro
- Instituto de Tecnología Agroindustrial del Noroeste Argentino, Estación Experimental Agroindustrial Obispo Colombres- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), William Cross 3150, Las Talitas, Tucumán, Argentina
| | - Esteban Mariano Pardo
- Instituto de Tecnología Agroindustrial del Noroeste Argentino, Estación Experimental Agroindustrial Obispo Colombres- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), William Cross 3150, Las Talitas, Tucumán, Argentina.
| |
Collapse
|
18
|
Kavi Kishor PB, Suravajhala P, Rathnagiri P, Sreenivasulu N. Intriguing Role of Proline in Redox Potential Conferring High Temperature Stress Tolerance. FRONTIERS IN PLANT SCIENCE 2022; 13:867531. [PMID: 35795343 PMCID: PMC9252438 DOI: 10.3389/fpls.2022.867531] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 04/21/2022] [Indexed: 05/24/2023]
Abstract
Proline is a proteinogenic amino acid synthesized from glutamate and ornithine. Pyrroline-5-carboxylate synthetase and pyrroline-5-carboxylate reductase are the two key enzymes involved in proline synthesis from glutamate. On the other hand, ornithine-δ-aminotransferase converts ornithine to pyrroline 5-carboxylate (P5C), an intermediate in the synthesis of proline as well as glutamate. Both proline dehydrogenase and P5C dehydrogenase convert proline back to glutamate. Proline accumulation is widespread in response to environmental challenges such as high temperatures, and it is known to defend plants against unpropitious situations promoting plant growth and flowering. While proline accumulation is positively correlated with heat stress tolerance in some crops, it has detrimental consequences in others. Although it has been established that proline is a key osmolyte, its exact physiological function during heat stress and plant ontogeny remains unknown. Emerging evidence pointed out its role as an overriding molecule in alleviating high temperature stress (HTS) by quenching singlet oxygen and superoxide radicals. Proline cycle acts as a shuttle and the redox couple (NAD+/NADH, NADP+/NADPH) appears to be highly crucial for energy transfer among different cellular compartments during plant development, exposure to HTS conditions and also during the recovery of stress. In this review, the progress made in recent years regarding its involvement in heat stress tolerance is highlighted.
Collapse
Affiliation(s)
- P. B. Kavi Kishor
- Department of Biotechnology, Vignan’s Foundation for Science, Technology & Research (Deemed to Be University), Guntur, India
| | - Prashanth Suravajhala
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham University, Kerala, India
| | - P. Rathnagiri
- Department of Biotechnology, Vignan’s Foundation for Science, Technology & Research (Deemed to Be University), Guntur, India
| | - Nese Sreenivasulu
- Consumer-Driven Grain Quality and Nutrition Research Unit, International Rice Research Institute, Los Banos, Philippines
| |
Collapse
|
19
|
Tandukar Z, Chopra R, Frels K, Heim B, Marks MD, Anderson JA. Genetic dissection of seed characteristics in field pennycress via genome-wide association mapping studies. THE PLANT GENOME 2022; 15:e20211. [PMID: 35484973 DOI: 10.1002/tpg2.20211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
Abstract
Field pennycress (Thlaspi arvense L.) is a new winter annual cash cover crop with high oil content and seed yield, excellent winter hardiness, early maturation, and resistance to most pests and diseases. It provides living cover on fallow croplands between summer seasons, and in doing so reduces nutrient leaching into water sources, mitigates soil erosion, and suppresses weed growth. The first ever genome-wide association study (GWAS) was conducted on a pennycress diversity panel to identify marker trait associations with important seed size and composition related traits. The entire population was phenotyped in three total environments over 2 yr, and seed area, length, width, thousand grain weight, total oil, and total protein were measured post-harvest with specialized high-throughput imaging and near-infrared spectroscopy. Basic unbiased linear prediction values were calculated for each trait. Seed size traits tended to have higher entry mean reliabilities (0.76-0.79) compared with oil content (0.51) and protein content (0.37). Genotyping-by-sequencing identified 33,606 high quality genome-wide single nucleotide polymorphism (SNPs) that were coupled with phenotypic data to perform GWAS for seed area, length, width, thousand grain weight, total oil, and total protein content. Fifty-nine total marker-trait associations were identified revealing genomic regions controlling each trait. The significant SNPs explained 0.06-0.18% of the total variance for that trait in our population. A list of candidate genes was identified based on their functional annotations and characterization in other species. Our results confirm that GWAS is an efficient strategy to identify significant marker-trait associations that can be incorporated into marker-assisted selection pipelines to accelerate pennycress breeding progress.
Collapse
Affiliation(s)
- Zenith Tandukar
- Dep. of Agronomy and Plant Genetics, Univ. of Minnesota, Saint Paul, MN, USA
| | - Ratan Chopra
- Dep. of Plant and Microbial Biology, Univ. of Minnesota, Saint Paul, MN, USA
| | - Katherine Frels
- Dep. of Agronomy and Horticulture, Univ. of Nebraska, Lincoln, NE, USA
| | - Brett Heim
- Dep. of Agronomy and Plant Genetics, Univ. of Minnesota, Saint Paul, MN, USA
| | - M David Marks
- Dep. of Plant and Microbial Biology, Univ. of Minnesota, Saint Paul, MN, USA
| | - James A Anderson
- Dep. of Agronomy and Plant Genetics, Univ. of Minnesota, Saint Paul, MN, USA
| |
Collapse
|
20
|
Meng X, Li L, Pascual J, Rahikainen M, Yi C, Jost R, He C, Fournier-Level A, Borevitz J, Kangasjärvi S, Whelan J, Berkowitz O. GWAS on multiple traits identifies mitochondrial ACONITASE3 as important for acclimation to submergence stress. PLANT PHYSIOLOGY 2022; 188:2039-2058. [PMID: 35043967 PMCID: PMC8968326 DOI: 10.1093/plphys/kiac011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 12/03/2021] [Indexed: 05/26/2023]
Abstract
Flooding causes severe crop losses in many parts of the world. Genetic variation in flooding tolerance exists in many species; however, there are few examples for the identification of tolerance genes and their underlying function. We conducted a genome-wide association study (GWAS) in 387 Arabidopsis (Arabidopsis thaliana) accessions. Plants were subjected to prolonged submergence followed by desubmergence, and seven traits (score, water content, Fv/Fm, and concentrations of nitrate, chlorophyll, protein, and starch) were quantified to characterize their acclimation responses. These traits showed substantial variation across the range of accessions. A total of 35 highly significant single-nucleotide polymorphisms (SNPs) were identified across the 20 GWA datasets, pointing to 22 candidate genes, with functions in TCA cycle, DNA modification, and cell division. Detailed functional characterization of one candidate gene, ACONITASE3 (ACO3), was performed. Chromatin immunoprecipitation followed by sequencing showed that a single nucleotide polymorphism in the ACO3 promoter co-located with the binding site of the master regulator of retrograde signaling ANAC017, while subcellular localization of an ACO3-YFP fusion protein confirmed a mitochondrial localization during submergence. Analysis of mutant and overexpression lines determined changes in trait parameters that correlated with altered submergence tolerance and were consistent with the GWAS results. Subsequent RNA-seq experiments suggested that impairing ACO3 function increases the sensitivity to submergence by altering ethylene signaling, whereas ACO3 overexpression leads to tolerance by metabolic priming. These results indicate that ACO3 impacts submergence tolerance through integration of carbon and nitrogen metabolism via the mitochondrial TCA cycle and impacts stress signaling during acclimation to stress.
Collapse
Affiliation(s)
- Xiangxiang Meng
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Department of Animal, Plant and Soil Science, ARC Centre of Excellence in Plant Energy Biology, La Trobe University, Bundoora, Victoria 3086, Australia
| | | | | | - Moona Rahikainen
- Molecular Plant Biology, Department of Biochemistry, University of Turku, Turku, FI-20014, Finland
| | - Changyu Yi
- Department of Animal, Plant and Soil Science, ARC Centre of Excellence in Plant Energy Biology, La Trobe University, Bundoora, Victoria 3086, Australia
| | - Ricarda Jost
- Department of Animal, Plant and Soil Science, ARC Centre of Excellence in Plant Energy Biology, La Trobe University, Bundoora, Victoria 3086, Australia
| | - Cunman He
- Department of Animal, Plant and Soil Science, ARC Centre of Excellence in Plant Energy Biology, La Trobe University, Bundoora, Victoria 3086, Australia
| | | | - Justin Borevitz
- Research School of Biology and Centre for Biodiversity Analysis, ARC Centre of Excellence in Plant Energy Biology, Australian National University, Canberra, ACT 0200, Australia
| | - Saijaliisa Kangasjärvi
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, Helsinki University, FI-00014, Finland
- Department of Agricultural Sciences, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, FI-00014, Finland
- Viikki Plant Science Center, University of Helsinki, Helsinki, FI-00014, Finland
| | - James Whelan
- Department of Animal, Plant and Soil Science, ARC Centre of Excellence in Plant Energy Biology, La Trobe University, Bundoora, Victoria 3086, Australia
| | | |
Collapse
|
21
|
Alvarez ME, Savouré A, Szabados L. Proline metabolism as regulatory hub. TRENDS IN PLANT SCIENCE 2022; 27:39-55. [PMID: 34366236 DOI: 10.1016/j.tplants.2021.07.009] [Citation(s) in RCA: 141] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 07/01/2021] [Accepted: 07/08/2021] [Indexed: 05/21/2023]
Abstract
Proline is a multifunctional amino acid that is accumulated in high concentrations in plants under various stress conditions. Proline accumulation is intimately connected to many cellular processes, such as osmotic pressure, energy status, nutrient availability, changes in redox balance, and defenses against pathogens. Proline biosynthesis and catabolism is linked to photosynthesis and mitochondrial respiration, respectively. Proline can function as a signal, modulating gene expression and certain metabolic processes. We review important findings on proline metabolism and function of the last decade, giving a more informative picture about the function of this unusual amino acid in maintaining cellular homeostasis, modulating plant development, and promoting stress acclimation.
Collapse
Affiliation(s)
- María E Alvarez
- CIQUIBIC, CONICET, Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba X5000HUA, Argentina.
| | - Arnould Savouré
- Sorbonne Université, UPEC, CNRS, IRD, INRAE, Institute of Ecology and Environmental Sciences of Paris (iEES), Paris, France
| | - László Szabados
- Institute of Plant Biology, Biological Research Centre, 6726-Szeged, Hungary.
| |
Collapse
|
22
|
Zheng Y, Cabassa-Hourton C, Planchais S, Lebreton S, Savouré A. The proline cycle as an eukaryotic redox valve. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:6856-6866. [PMID: 34331757 DOI: 10.1093/jxb/erab361] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 07/29/2021] [Indexed: 06/13/2023]
Abstract
The amino acid proline has been known for many years to be a component of proteins as well as an osmolyte. Many recent studies have demonstrated that proline has other roles such as regulating redox balance and energy status. In animals and plants, the well-described proline cycle is concomitantly responsible for the preferential accumulation of proline and shuttling of redox equivalents from the cytosol to mitochondria. The impact of the proline cycle goes beyond regulating proline levels. In this review, we focus on recent evidence of how the proline cycle regulates redox status in relation to other redox shuttles. We discuss how the interconversion of proline and glutamate shuttles reducing power between cellular compartments. Spatial aspects of the proline cycle in the entire plant are considered in terms of proline transport between organs with different metabolic regimes (photosynthesis versus respiration). Furthermore, we highlight the importance of this shuttle in the regulation of energy and redox power in plants, through a particularly intricate coordination, notably between mitochondria and cytosol.
Collapse
Affiliation(s)
- Yao Zheng
- Sorbonne Université, UPEC, CNRS, IRD, INRAE, Institute of Ecology and Environmental Sciences of Paris (iEES), F-75005 Paris, France
| | - Cécile Cabassa-Hourton
- Sorbonne Université, UPEC, CNRS, IRD, INRAE, Institute of Ecology and Environmental Sciences of Paris (iEES), F-75005 Paris, France
| | - Séverine Planchais
- Sorbonne Université, UPEC, CNRS, IRD, INRAE, Institute of Ecology and Environmental Sciences of Paris (iEES), F-75005 Paris, France
| | - Sandrine Lebreton
- Sorbonne Université, UPEC, CNRS, IRD, INRAE, Institute of Ecology and Environmental Sciences of Paris (iEES), F-75005 Paris, France
| | - Arnould Savouré
- Sorbonne Université, UPEC, CNRS, IRD, INRAE, Institute of Ecology and Environmental Sciences of Paris (iEES), F-75005 Paris, France
| |
Collapse
|
23
|
Cui X, Zhang P, Hu Y, Chen C, Liu Q, Guan P, Zhang J. Genome-wide analysis of the Universal stress protein A gene family in Vitis and expression in response to abiotic stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 165:57-70. [PMID: 34034161 DOI: 10.1016/j.plaphy.2021.04.033] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 04/27/2021] [Indexed: 06/12/2023]
Abstract
Universal Stress Protein A (USPA) plays critical roles in the regulation of growth, development and response to abiotic stress in plants. To date, most research related to the role of USPA in plants has been carried out in herbaceous models such as Arabidopsis, rice and soybean. Here, we used bioinformatics approaches to identify 21 USPA genes in the genome of Vitis vinifera L. Phylogenetic analysis revealed that VvUSPAs could be divided into eight clades. Based on predicted chromosomal locations, we identified 16 pairs of syntenic, orthologous genes between A. thaliana and V. vinifera. Further promoter cis-elements analysis, together with identification of potential microRNA (miRNA) binding sites, suggested that at least some of the VvUSPAs participate in response to phytohormones and abiotic stress. To add support for this, we analyzed the developmental and stress-responsive expression patterns of the homologous USPA genes in the drought-resistant wild Vitis yeshanensis accession 'Yanshan-1' and the drought-sensitive Vitis riparia accession 'He'an'. Most of the USPA genes were upregulated in different degrees in the two genotypes after drought stress and exposure to ethephon (ETH), abscisic acid (ABA) and methyl jasmonate (MeJA). Individual USPA genes showed various tissue-specific expression patterns. Heterologous expression of five selected genes (VvUSPA2, VvUSPA3, VvUSPA11, VvUSPA13 and VvUSPA16) in Escherichia coli (E. coli) enhanced resistance to drought stress. Our study provides a model for mapping gene function in response to abiotic stress and identified three candidate genes, VvUSPA3, VvUSPA11 and VvUSPA16, as regulators of drought response in V. vinifera.
Collapse
Affiliation(s)
- Xiaoyue Cui
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, China; State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Pingying Zhang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, China; State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Yafan Hu
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, China; State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Chengcheng Chen
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, China; State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Qiying Liu
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, China; State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Pingyin Guan
- Molecular Cell Biology, Botanical Institute, Karlsruhe Institute of Technology, Fritz-Haber-Weg, 476131, Karlsruhe, Germany.
| | - Jianxia Zhang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, China; State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
24
|
Zhang Y, Giese J, Kerbler SM, Siemiatkowska B, Perez de Souza L, Alpers J, Medeiros DB, Hincha DK, Daloso DM, Stitt M, Finkemeier I, Fernie AR. Two mitochondrial phosphatases, PP2c63 and Sal2, are required for posttranslational regulation of the TCA cycle in Arabidopsis. MOLECULAR PLANT 2021; 14:1104-1118. [PMID: 33798747 DOI: 10.1016/j.molp.2021.03.023] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 01/26/2021] [Accepted: 03/29/2021] [Indexed: 05/22/2023]
Abstract
Protein phosphorylation is a well-established post-translational mechanism that regulates protein functions and metabolic pathways. It is known that several plant mitochondrial proteins are phosphorylated in a reversible manner. However, the identities of the protein kinases/phosphatases involved in this mechanism and their roles in the regulation of the tricarboxylic acid (TCA) cycle remain unclear. In this study, we isolated and characterized plants lacking two mitochondrially targeted phosphatases (Sal2 and PP2c63) along with pyruvate dehydrogenase kinase (PDK). Protein-protein interaction analysis, quantitative phosphoproteomics, and enzymatic analyses revealed that PDK specifically regulates pyruvate dehydrogenase complex (PDC), while PP2c63 nonspecifically regulates PDC. When recombinant PP2c63 and Sal2 proteins were added to mitochondria isolated from mutant plants, protein-protein interaction and enzymatic analyses showed that PP2c63 directly phosphorylates and modulates the activity of PDC, while Sal2 only indirectly affects TCA cycle enzymes. Characterization of steady-state metabolite levels and fluxes in the mutant lines further revealed that these phosphatases regulate flux through the TCA cycle, and that altered metabolism in the sal2 pp2c63 double mutant compromises plant growth. These results are discussed in the context of current models of the control of respiration in plants.
Collapse
Affiliation(s)
- Youjun Zhang
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany; Center of Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria.
| | - Jonas Giese
- Institute of Plant Biology and Biotechnology, University of Muenster, Schlossplatz 7, 48149 Muenster, Germany
| | - Sandra M Kerbler
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Beata Siemiatkowska
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Leonardo Perez de Souza
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Jessica Alpers
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - David Barbosa Medeiros
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Dirk K Hincha
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Danilo M Daloso
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, Ceará, Brasil
| | - Mark Stitt
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Iris Finkemeier
- Institute of Plant Biology and Biotechnology, University of Muenster, Schlossplatz 7, 48149 Muenster, Germany.
| | - Alisdair R Fernie
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany; Center of Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria.
| |
Collapse
|
25
|
Mora-Poblete F, Ballesta P, Lobos GA, Molina-Montenegro M, Gleadow R, Ahmar S, Jiménez-Aspee F. Genome-wide association study of cyanogenic glycosides, proline, sugars, and pigments in Eucalyptus cladocalyx after 18 consecutive dry summers. PHYSIOLOGIA PLANTARUM 2021; 172:1550-1569. [PMID: 33511661 DOI: 10.1111/ppl.13349] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 01/07/2021] [Accepted: 01/20/2021] [Indexed: 06/12/2023]
Abstract
Natural variation of cyanogenic glycosides, soluble sugars, proline, and nondestructive optical sensing of pigments (chlorophyll, flavonols, and anthocyanins) was examined in ex situ natural populations of Eucalyptus cladocalyx F. Muell. grown under dry environmental conditions in the southern Atacama Desert, Chile. After 18 consecutive dry seasons, considerable plant-to-plant phenotypic variation for all the traits was observed in the field. For example, leaf hydrogen cyanide (HCN) concentrations varied from 0 (two acyanogenic individuals) to 1.54 mg cyanide g-1 DW. Subsequent genome-wide association study revealed associations with several genes with a known function in plants. HCN content was associated robustly with genes encoding Cytochrome P450 proteins, and with genes involved in the detoxification mechanism of HCN in cells (β-cyanoalanine synthase and cyanoalanine nitrilase). Another important finding was that sugars, proline, and pigment content were linked to genes involved in transport, biosynthesis, and/or catabolism. Estimates of genomic heritability (based on haplotypes) ranged between 0.46 and 0.84 (HCN and proline content, respectively). Proline and soluble sugars had the highest predictive ability of genomic prediction models (PA = 0.65 and PA = 0.71, respectively). PA values for HCN content and flavonols were relatively moderate, with estimates ranging from 0.44 to 0.50. These findings provide new understanding on the genetic architecture of cyanogenic capacity, and other key complex traits in cyanogenic E. cladocalyx.
Collapse
Affiliation(s)
| | - Paulina Ballesta
- Institute of Biological Sciences, Universidad de Talca, Talca, Chile
| | - Gustavo A Lobos
- Plant Breeding and Phenomic Center, Faculty of Agricultural Sciences, Universidad de Talca, Talca, Chile
| | - Marco Molina-Montenegro
- Institute of Biological Sciences, Universidad de Talca, Talca, Chile
- Centro de Estudios Avanzados en Zonas Áridas (CEAZA), Facultad de Ciencias del Mar, Universidad Católica del Norte, Coquimbo, Chile
| | - Roslyn Gleadow
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Sunny Ahmar
- Institute of Biological Sciences, Universidad de Talca, Talca, Chile
- College of Plant Sciences and Technology, Huazhong Agricultural University, Wuhan, China
| | - Felipe Jiménez-Aspee
- Department of Food Biofunctionality, Institute of Nutritional Sciences, University of Hohenheim, Stuttgart, Germany
- Departamento de Ciencias Básicas Biomédicas, Facultad de Ciencias de la Salud, Universidad de Talca, Talca, Chile
| |
Collapse
|
26
|
Peña-Garcia Y, Shinde S, Natarajan P, Lopez-Ortiz C, Balagurusamy N, Chavez ACD, Saminathan T, Nimmakayala P, Reddy UK. Arsenic Stress-Related F-Box (ASRF) gene regulates arsenic stress tolerance in Arabidopsis thaliana. JOURNAL OF HAZARDOUS MATERIALS 2021; 407:124831. [PMID: 33340971 DOI: 10.1016/j.jhazmat.2020.124831] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 12/05/2020] [Accepted: 12/09/2020] [Indexed: 06/12/2023]
Abstract
Arsenic (As), a non-biodegradable contaminant, is extremely toxic to plants and animals in its inorganic form. As negatively affects plant growth and development, primarily by inducing oxidative stress through redox imbalance. Here we characterized the Arabidopsis F-box protein gene AT2G16220 (Arsenic Stress-Related F-box (ASRF)) that we identified in the genome-wide association study. The asrf mutant seedlings showed high sensitivity to arsenate (AsV) stress. AsV significantly affected asrf seedling growth when germinated on or exposed to AsV-supplemented growth regimes. AsV stress significantly induced production of reactive oxygen species and proline accumulation in asrf, so the asrf maintained high proline content, possibly for cellular protection and redox homeostasis. Heterozygous seedlings (Col-0 x asrf, F1 progeny) were relatively less affected by AsV stress than asrf mutant but showed slightly reduced growth compared with the Col-0 wild type, which suggests that the homozygous ASRF locus is important for AsV stress resistance. Transcriptome analysis involving the mutant and wild type revealed altered phosphate homeostasis in asrf seedlings, which implies that ASRF is required for maintaining phosphate and cellular- homeostasis under excess AsV. Our findings confirm the roles of ASRF in As stress tolerance in plants, for a novel way to mitigate arsenic stress.
Collapse
Affiliation(s)
- Yadira Peña-Garcia
- Gus R. Douglass Institute and Department of Biology, West Virginia State University, Institute, WV 25112-1000, USA
| | - Suhas Shinde
- Gus R. Douglass Institute and Department of Biology, West Virginia State University, Institute, WV 25112-1000, USA
| | - Purushothaman Natarajan
- Gus R. Douglass Institute and Department of Biology, West Virginia State University, Institute, WV 25112-1000, USA; Department of Genetic Engineering, SRM Institute of Science and Technology, Chennai 603203, TN, India
| | - Carlos Lopez-Ortiz
- Gus R. Douglass Institute and Department of Biology, West Virginia State University, Institute, WV 25112-1000, USA
| | - Nagamani Balagurusamy
- Laboratorio de Biorremediación, Facultad de Ciencias Biológicas, Universidad Autónoma de Coahuila, Torreón, Coahuila 27000, Mexico
| | - Ana Cristina Delgado Chavez
- Gus R. Douglass Institute and Department of Biology, West Virginia State University, Institute, WV 25112-1000, USA; Laboratorio de Biorremediación, Facultad de Ciencias Biológicas, Universidad Autónoma de Coahuila, Torreón, Coahuila 27000, Mexico
| | - Thangasamy Saminathan
- Gus R. Douglass Institute and Department of Biology, West Virginia State University, Institute, WV 25112-1000, USA
| | - Padma Nimmakayala
- Gus R. Douglass Institute and Department of Biology, West Virginia State University, Institute, WV 25112-1000, USA
| | - Umesh K Reddy
- Gus R. Douglass Institute and Department of Biology, West Virginia State University, Institute, WV 25112-1000, USA.
| |
Collapse
|
27
|
Saidi A, Hajibarat Z. Application of Next Generation Sequencing, GWAS, RNA seq, WGRS, for genetic improvement of potato (Solanum tuberosum L.) under drought stress. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2020.101801] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
28
|
Toubiana D, Cabrera R, Salas E, Maccera C, Franco dos Santos G, Cevallos D, Lindqvist‐Kreuze H, Lopez JM, Maruenda H. Morphological and metabolic profiling of a tropical-adapted potato association panel subjected to water recovery treatment reveals new insights into plant vigor. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:2193-2210. [PMID: 32579242 PMCID: PMC7540292 DOI: 10.1111/tpj.14892] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 05/20/2020] [Accepted: 06/12/2020] [Indexed: 05/03/2023]
Abstract
Potato (Solanum tuberosum L.) is one of the world's most important crops, but it is facing major challenges due to climatic changes. To investigate the effects of intermittent drought on the natural variability of plant morphology and tuber metabolism in a novel potato association panel comprising 258 varieties we performed an augmented block design field study under normal irrigation and under water-deficit and recovery conditions in Ica, Peru. All potato genotypes were profiled for 45 morphological traits and 42 central metabolites via nuclear magnetic resonance. Statistical tests and norm of reaction analysis revealed that the observed variations were trait specific, that is, genotypic versus environmental. Principal component analysis showed a separation of samples as a result of conditional changes. To explore the relational ties between morphological traits and metabolites, correlation-based network analysis was employed, constructing one network for normal irrigation and one network for water-recovery samples. Community detection and difference network analysis highlighted the differences between the two networks, revealing a significant correlational link between fumarate and plant vigor. A genome-wide association study was performed for each metabolic trait. Eleven single nucleotide polymorphism (SNP) markers were associated with fumarate. Gene Ontology analysis of quantitative trait loci regions associated with fumarate revealed an enrichment of genes regulating metabolic processes. Three of the 11 SNPs were located within genes, coding for a protein of unknown function, a RING domain protein and a zinc finger protein ZAT2. Our findings have important implications for future potato breeding regimes, especially in countries suffering from climate change.
Collapse
Affiliation(s)
- David Toubiana
- Departamento de Ciencias – QuímicaCentro de Espectroscopia de Resonancia Magnética Nuclear (CERMN)Pontificia Universidad Católica del PerúAv. Universitaria 1801LimaLima 32Peru
| | - Rodrigo Cabrera
- Departamento de Ciencias – QuímicaCentro de Espectroscopia de Resonancia Magnética Nuclear (CERMN)Pontificia Universidad Católica del PerúAv. Universitaria 1801LimaLima 32Peru
| | - Elisa Salas
- Genetics and Crop ImprovementInternational Potato CenterAv. La Molina 1895LimaLima 12Peru
| | - Chiara Maccera
- Genetics and Crop ImprovementInternational Potato CenterAv. La Molina 1895LimaLima 12Peru
| | - Gabriel Franco dos Santos
- Departamento de Ciencias – QuímicaCentro de Espectroscopia de Resonancia Magnética Nuclear (CERMN)Pontificia Universidad Católica del PerúAv. Universitaria 1801LimaLima 32Peru
| | - Danny Cevallos
- Genetics and Crop ImprovementInternational Potato CenterAv. La Molina 1895LimaLima 12Peru
| | | | - Juan M. Lopez
- Departamento de Ciencias – QuímicaCentro de Espectroscopia de Resonancia Magnética Nuclear (CERMN)Pontificia Universidad Católica del PerúAv. Universitaria 1801LimaLima 32Peru
| | - Helena Maruenda
- Departamento de Ciencias – QuímicaCentro de Espectroscopia de Resonancia Magnética Nuclear (CERMN)Pontificia Universidad Católica del PerúAv. Universitaria 1801LimaLima 32Peru
| |
Collapse
|
29
|
Liu X, Qin D, Piersanti A, Zhang Q, Miceli C, Wang P. Genome-wide association study identifies candidate genes related to oleic acid content in soybean seeds. BMC PLANT BIOLOGY 2020; 20:399. [PMID: 32859172 PMCID: PMC7456086 DOI: 10.1186/s12870-020-02607-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 08/16/2020] [Indexed: 05/29/2023]
Abstract
BACKGROUND Soybean oil is a complex mixture of five fatty acids (palmitic, stearic, oleic, linoleic, and linolenic). Soybean oil with a high oleic acid content is desirable because this monounsaturated fatty acid improves the oxidative stability of the oil. To investigate the genetic architecture of oleic acid in soybean seeds, 260 soybean germplasms from Northeast China were collected as natural populations. A genome-wide association study (GWAS) was conducted on a panel of 260 germplasm resources. RESULTS Phenotypic identification results showed that the oleic acid content varied from 8.2 to 35.0%. A total of 2,311,337 single-nucleotide polymorphism (SNP) markers were obtained. GWAS analysis showed that there were many genes related to oleic acid content with a contribution rate of 7%. The candidate genes Glyma.11G229600.1 on chromosome 11 and Glyma.04G102900.1 on chromosome 4 were detected in a 2-year-long GWAS. The candidate gene Glyma.11G229600.1 showed a positive correlation with the oleic acid content, and the correlation coefficient was 0.980, while Glyma.04G102900.1 showed a negative correlation, with a coefficient of - 0.964. CONCLUSIONS Glyma.04G102900.1 on chromosome 4 and Glyma.11G229600.1 on chromosome 11 were detected in both analyses (2018 and 2019). Glyma.04G102900.1 and Glyma.11G229600.1 are new key candidate genes related to oleic acid in soybean seeds. These results will be useful for high-oleic soybean breeding.
Collapse
Affiliation(s)
- Xiaoyi Liu
- Research Center of Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, PR China
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, MC, Italy
- Biotechnology Center of Jilin Agricultural University, Jilin Agricultural University, Changchun, 130118, PR China
| | - Di Qin
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, MC, Italy.
- Biotechnology Center of Jilin Agricultural University, Jilin Agricultural University, Changchun, 130118, PR China.
| | - Angela Piersanti
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, MC, Italy
| | - Qi Zhang
- Biotechnology Center of Jilin Agricultural University, Jilin Agricultural University, Changchun, 130118, PR China
| | - Cristina Miceli
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, MC, Italy.
| | - Piwu Wang
- Biotechnology Center of Jilin Agricultural University, Jilin Agricultural University, Changchun, 130118, PR China.
| |
Collapse
|
30
|
Lu J, Fu Y, Li M, Wang S, Wang J, Yang Q, Ye J, Zhang X, Ma H, Chang F. Global Quantitative Proteomics Studies Revealed Tissue-Preferential Expression and Phosphorylation of Regulatory Proteins in Arabidopsis. Int J Mol Sci 2020; 21:ijms21176116. [PMID: 32854314 PMCID: PMC7503369 DOI: 10.3390/ijms21176116] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/18/2020] [Accepted: 08/21/2020] [Indexed: 12/24/2022] Open
Abstract
Organogenesis in plants occurs across all stages of the life cycle. Although previous studies have identified many genes as important for either vegetative or reproductive development at the RNA level, global information on translational and post-translational levels remains limited. In this study, six Arabidopsis stages/organs were analyzed using quantitative proteomics and phosphoproteomics, identifying 2187 non-redundant proteins and evidence for 1194 phosphoproteins. Compared to the expression observed in cauline leaves, the expression of 1445, 1644, and 1377 proteins showed greater than 1.5-fold alterations in stage 1–9 flowers, stage 10–12 flowers, and open flowers, respectively. Among these, 294 phosphoproteins with 472 phosphorylation sites were newly uncovered, including 275 phosphoproteins showing differential expression patterns, providing molecular markers and possible candidates for functional studies. Proteins encoded by genes preferentially expressed in anther (15), meiocyte (4), or pollen (15) were enriched in reproductive organs, and mutants of two anther-preferentially expressed proteins, acos5 and mee48, showed obviously reduced male fertility with abnormally organized pollen exine. In addition, more phosphorylated proteins were identified in reproductive stages (1149) than in the vegetative organs (995). The floral organ-preferential phosphorylation of GRP17, CDC2/CDKA.1, and ATSK11 was confirmed with western blot analysis. Moreover, phosphorylation levels of CDPK6 and MAPK6 and their interacting proteins were elevated in reproductive tissues. Overall, our study yielded extensive data on protein expression and phosphorylation at six stages/organs and provides an important resource for future studies investigating the regulatory mechanisms governing plant development.
Collapse
Affiliation(s)
- Jianan Lu
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering and Institute of Biodiversity Sciences, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China; (J.L.); (Y.F.); (M.L.); (S.W.); (J.W.); (Q.Y.); (J.Y.); (X.Z.)
| | - Ying Fu
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering and Institute of Biodiversity Sciences, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China; (J.L.); (Y.F.); (M.L.); (S.W.); (J.W.); (Q.Y.); (J.Y.); (X.Z.)
| | - Mengyu Li
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering and Institute of Biodiversity Sciences, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China; (J.L.); (Y.F.); (M.L.); (S.W.); (J.W.); (Q.Y.); (J.Y.); (X.Z.)
| | - Shuangshuang Wang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering and Institute of Biodiversity Sciences, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China; (J.L.); (Y.F.); (M.L.); (S.W.); (J.W.); (Q.Y.); (J.Y.); (X.Z.)
| | - Jingya Wang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering and Institute of Biodiversity Sciences, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China; (J.L.); (Y.F.); (M.L.); (S.W.); (J.W.); (Q.Y.); (J.Y.); (X.Z.)
| | - Qi Yang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering and Institute of Biodiversity Sciences, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China; (J.L.); (Y.F.); (M.L.); (S.W.); (J.W.); (Q.Y.); (J.Y.); (X.Z.)
| | - Juanying Ye
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering and Institute of Biodiversity Sciences, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China; (J.L.); (Y.F.); (M.L.); (S.W.); (J.W.); (Q.Y.); (J.Y.); (X.Z.)
| | - Xumin Zhang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering and Institute of Biodiversity Sciences, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China; (J.L.); (Y.F.); (M.L.); (S.W.); (J.W.); (Q.Y.); (J.Y.); (X.Z.)
| | - Hong Ma
- Department of Biology, the Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
- Correspondence: (H.M.); (F.C.); Tel.: +86-021-51630534 (H.M.); +1-814-865-5343 (F.C.)
| | - Fang Chang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering and Institute of Biodiversity Sciences, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China; (J.L.); (Y.F.); (M.L.); (S.W.); (J.W.); (Q.Y.); (J.Y.); (X.Z.)
- Correspondence: (H.M.); (F.C.); Tel.: +86-021-51630534 (H.M.); +1-814-865-5343 (F.C.)
| |
Collapse
|
31
|
Ma J, Lin Y, Tang S, Duan S, Wang Q, Wu F, Li C, Jiang X, Zhou K, Liu Y. A Genome-Wide Association Study of Coleoptile Length in Different Chinese Wheat Landraces. FRONTIERS IN PLANT SCIENCE 2020; 11:677. [PMID: 32582239 PMCID: PMC7287122 DOI: 10.3389/fpls.2020.00677] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 04/29/2020] [Indexed: 05/26/2023]
Abstract
From the perspective of wheat yield improvement, the coleoptile is vital for successful crop establishment, and long coleoptile lengths (CLs) are preferred in wheat-growing regions where deep planting is practiced. To determine the genetic basis of CL, we performed a genome-wide association study on a set of 707 Chinese wheat landraces using 18,594 single-nucleotide polymorphisms and 38,678 diversity array technology sequencing markers. We accordingly detected a total of 29 significant markers [-log10 (P) > 4.76] distributed on chromosomes 2B, 2D, 3A, 4A, 5A, 6A, 6B, 6D, and 7B. Based on linkage disequilibrium decay distance, we identified a total of 17 quantitative trait loci associated with CL, among which QCl.sicau-6B.2, located at 508.17-509.26 Mb on chromosome 6B, was recognized as a novel major locus. We subsequently developed a high-resolution melt marker for QCl.sicau-6B.2, which was validated in an F 2 : 3 population. Our findings provide important insights into the genetic mechanisms underlying coleoptile growth and could be applied to marker-assisted wheat selection.
Collapse
Affiliation(s)
- Jun Ma
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Yu Lin
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Si Tang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Shuonan Duan
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Qing Wang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Fangkun Wu
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Caixia Li
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Xiaojun Jiang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Kunyu Zhou
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yaxi Liu
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, China
| |
Collapse
|
32
|
Slaten ML, Yobi A, Bagaza C, Chan YO, Shrestha V, Holden S, Katz E, Kanstrup C, Lipka AE, Kliebenstein DJ, Nour-Eldin HH, Angelovici R. mGWAS Uncovers Gln-Glucosinolate Seed-Specific Interaction and its Role in Metabolic Homeostasis. PLANT PHYSIOLOGY 2020; 183:483-500. [PMID: 32317360 PMCID: PMC7271782 DOI: 10.1104/pp.20.00039] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 03/26/2020] [Indexed: 05/04/2023]
Abstract
Gln is a key player in plant metabolism. It is one of the major free amino acids that is transported into the developing seed and is central for nitrogen metabolism. However, Gln natural variation and its regulation and interaction with other metabolic processes in seeds remain poorly understood. To investigate the latter, we performed a metabolic genome-wide association study (mGWAS) of Gln-related traits measured from the dry seeds of the Arabidopsis (Arabidopsis thaliana) diversity panel using all potential ratios between Gln and the other members of the Glu family as traits. This semicombinatorial approach yielded multiple candidate genes that, upon further analysis, revealed an unexpected association between the aliphatic glucosinolates (GLS) and the Gln-related traits. This finding was confirmed by an independent quantitative trait loci mapping and statistical analysis of the relationships between the Gln-related traits and the presence of specific GLS in seeds. Moreover, an analysis of Arabidopsis mutants lacking GLS showed an extensive seed-specific impact on Gln levels and composition that manifested early in seed development. The elimination of GLS in seeds was associated with a large effect on seed nitrogen and sulfur homeostasis, which conceivably led to the Gln response. This finding indicates that both Gln and GLS play key roles in shaping the seed metabolic homeostasis. It also implies that select secondary metabolites might have key functions in primary seed metabolism. Finally, our study shows that an mGWAS performed on dry seeds can uncover key metabolic interactions that occur early in seed development.
Collapse
Affiliation(s)
- Marianne L Slaten
- Division of Biological Sciences, Interdisciplinary Plant Group, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65211
| | - Abou Yobi
- Division of Biological Sciences, Interdisciplinary Plant Group, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65211
| | - Clement Bagaza
- Division of Biological Sciences, Interdisciplinary Plant Group, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65211
| | - Yen On Chan
- Division of Biological Sciences, Interdisciplinary Plant Group, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65211
| | - Vivek Shrestha
- Division of Biological Sciences, Interdisciplinary Plant Group, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65211
| | - Samuel Holden
- Division of Biological Sciences, Interdisciplinary Plant Group, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65211
| | - Ella Katz
- Department of Plant Sciences, University of California Davis, Davis, California 95616
| | - Christa Kanstrup
- DynaMo Center, Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg C, Denmark
| | - Alexander E Lipka
- Department of Crop Sciences, University of Illinois, Urbana, Illinois 61801
| | - Daniel J Kliebenstein
- Department of Plant Sciences, University of California Davis, Davis, California 95616
| | - Hussam Hassan Nour-Eldin
- DynaMo Center, Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg C, Denmark
| | - Ruthie Angelovici
- Division of Biological Sciences, Interdisciplinary Plant Group, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65211
| |
Collapse
|
33
|
Lin Y, Yi X, Tang S, Chen W, Wu F, Yang X, Jiang X, Shi H, Ma J, Chen G, Chen G, Zheng Y, Wei Y, Liu Y. Dissection of Phenotypic and Genetic Variation of Drought-Related Traits in Diverse Chinese Wheat Landraces. THE PLANT GENOME 2019; 12:1-14. [PMID: 33016597 DOI: 10.3835/plantgenome2019.03.0025] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Accepted: 08/30/2019] [Indexed: 05/10/2023]
Abstract
Variations in 16 seedling traits under normal and drought conditions were investigated. Extremely resistant and sensitive accessions were identified for future analyses. Under normal and drought conditions, 57 and 29 QTL were identified, respectively. A total of 77 candidate genes were identified, and four were validated by qRT-PCR. Drought is one of the most important abiotic stressors affecting wheat (Triticum aestivum L.) production. To improve wheat yield, a better understanding of the genetic control of traits governing drought resistance is paramount. Here, using 645 wheat landraces, we evaluated 16 seedling traits related to root and shoot growth and water content under normal and drought (induced by polyethylene glycol) conditions. Extremely resistant and sensitive accessions were identified for future drought-resistance breeding and further genetic analyses. A genome-wide association study was performed for the 16 traits using 52,118 diversity arrays technology sequencing (DArT-seq) markers. A total of 57 quantitative trait loci (QTL) were detected for seven traits under normal conditions, whereas 29 QTL were detected for eight traits under drought conditions. On the basis of these markers, we identified 56 candidate genes for six seedling traits under normal conditions, and 21 candidate genes for seven seedling traits under drought conditions. Four candidate genes were validated under normal and drought conditions using quantitative reverse transcription polymerase chain reaction (qRT-PCR) data. The co-localization of the flowering date and drought-related traits indicates that the regulatory networks of flowering may also respond to drought stress or are associated with the correlated responses of these traits. The phenotypic and genetic elucidation of drought-related traits will assist future gene discovery efforts and provide a basis for breeding drought-resistant wheat cultivars.
Collapse
Affiliation(s)
- Yu Lin
- Triticeae Research Institute, Sichuan Agricultural Univ., Wenjiang, Chengdu, 611130, China
| | - Xin Yi
- College of Environmental Sciences, Sichuan Agricultural Univ., Wenjiang, Chengdu, 611130, China
| | - Si Tang
- Triticeae Research Institute, Sichuan Agricultural Univ., Wenjiang, Chengdu, 611130, China
| | - Wei Chen
- Triticeae Research Institute, Sichuan Agricultural Univ., Wenjiang, Chengdu, 611130, China
| | - Fangkun Wu
- Triticeae Research Institute, Sichuan Agricultural Univ., Wenjiang, Chengdu, 611130, China
| | - Xilan Yang
- Triticeae Research Institute, Sichuan Agricultural Univ., Wenjiang, Chengdu, 611130, China
| | - Xiaojun Jiang
- Triticeae Research Institute, Sichuan Agricultural Univ., Wenjiang, Chengdu, 611130, China
| | - Haoran Shi
- Triticeae Research Institute, Sichuan Agricultural Univ., Wenjiang, Chengdu, 611130, China
| | - Jian Ma
- Triticeae Research Institute, Sichuan Agricultural Univ., Wenjiang, Chengdu, 611130, China
| | - Guangdeng Chen
- Triticeae Research Institute, Sichuan Agricultural Univ., Wenjiang, Chengdu, 611130, China
| | - Guoyue Chen
- College of resources, Sichuan Agricultural Univ., Wenjiang, Chengdu, 611130, China
| | - Youliang Zheng
- Triticeae Research Institute, Sichuan Agricultural Univ., Wenjiang, Chengdu, 611130, China
| | - Yuming Wei
- Triticeae Research Institute, Sichuan Agricultural Univ., Wenjiang, Chengdu, 611130, China
| | - Yaxi Liu
- Triticeae Research Institute, Sichuan Agricultural Univ., Wenjiang, Chengdu, 611130, China
| |
Collapse
|
34
|
Mukami A, Ngetich A, Mweu C, Oduor RO, Muthangya M, Mbinda WM. Differential characterization of physiological and biochemical responses during drought stress in finger millet varieties. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2019; 25:837-846. [PMID: 31402813 PMCID: PMC6656826 DOI: 10.1007/s12298-019-00679-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 04/18/2019] [Accepted: 05/14/2019] [Indexed: 05/16/2023]
Abstract
Drought is the most perilous abiotic stress that affects finger millet growth and productivity worldwide. For the successful production of finger millet, selection of drought tolerant varieties is necessary and critical stages under drought stress, germination and early seedling growth, ought to be fully understood. This study investigated the physiological and biochemical responses of six finger millet varieties (GBK043137, GBK043128, GBK043124, GBK043122, GBK043094 and GBK043050) under mannitol-induced drought stress. Seeds were germinated in sterile soil and irrigated with various concentrations of mannitol (200, 400 and 600 mM) for 2 weeks. In a comparative analysis relative water content (RWC), chlorophyll, proline and malondialdehyde (MDA) contents were measured to obtain the physiological and biochemical characteristics of drought stress. The results showed that increased levels of drought stress seriously decreased germination and early seedling growth of finger millet varieties. However, root growth was increased. In addition, exposition to drought stress triggered a significant decrease in relative water content and chlorophyll content reduction, and the biochemical parameters assay showed less reduction in RWC. Furthermore, oxidative damage indicating parameters, such as proline concentration and MDA content, increased. Varieties GBK043137 and GBK043094 were less affected by drought than the other varieties as shown by significant changes in their physiological parameters. Our findings reveal the differences between the physiological and biochemical responses of finger millet to drought and are vital for breeding and selecting drought tolerant varieties of finger millet. Further, genomic and molecular investigations need to be undertaken to gain a deeper insight into the detailed mechanisms of drought tolerance in finger millet.
Collapse
Affiliation(s)
- Asunta Mukami
- Department of Life Sciences, South Eastern Kenya University, Kitui, Kenya
| | - Alex Ngetich
- Institute of Biotechnology Research, Jomo Kenyatta University of Agriculture Technology, Nairobi, Kenya
| | - Cecilia Mweu
- Institute of Biotechnology Research, Jomo Kenyatta University of Agriculture Technology, Nairobi, Kenya
| | - Richard O. Oduor
- Department of Biochemistry and Biotechnology, Kenyatta University, Nairobi, Kenya
| | - Mutemi Muthangya
- Department of Life Sciences, South Eastern Kenya University, Kitui, Kenya
| | - Wilton Mwema Mbinda
- Department of Biochemistry and Biotechnology, Pwani University, Kilifi, Kenya
| |
Collapse
|
35
|
Luo Z, Tomasi P, Fahlgren N, Abdel-Haleem H. Genome-wide association study (GWAS) of leaf cuticular wax components in Camelina sativa identifies genetic loci related to intracellular wax transport. BMC PLANT BIOLOGY 2019; 19:187. [PMID: 31064322 PMCID: PMC6505076 DOI: 10.1186/s12870-019-1776-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 04/12/2019] [Indexed: 05/23/2023]
Abstract
BACKGROUND It is important to explore renewable alternatives (e.g. biofuels) that can produce energy sources to help reduce reliance on fossil oils, and reduce greenhouse gases and waste solids resulted from fossil oils consumption. Camelina sativa is an oilseed crop which has received increasing attention due to its short life cycle, broader adaptation regions, high oil content, high level of omega-3 unsaturated fatty acids, and low-input requirements in agriculture practices. To expand its Camelina production areas into arid regions, there is a need to breed for new drought-tolerant cultivars. Leaf cuticular wax is known to facilitate plant development and growth under water-limited conditions. Dissecting the genetic loci underlying leaf cuticular waxes is important to breed for cultivars with improved drought tolerance. RESULTS Here we combined phenotypic data and single nucleotide polymorphism (SNP) data from a spring C. sativa diversity panel using genotyping-by-sequencing (GBS) technology, to perform a large-scale genome-wide association study (GWAS) on leaf wax compositions. A total of 42 SNP markers were significantly associated with 15 leaf wax traits including major wax components such as total primary alcohols, total alkanes, and total wax esters as well as their constituents. The vast majority of significant SNPs were associated with long-chain carbon monomers (carbon chain length longer than C28), indicating the important effects of long-chain carbon monomers on leaf total wax biosynthesis. These SNP markers are located on genes directly or indirectly related to wax biosynthesis such as maintaining endoplasmic reticulum (ER) morphology and enabling normal wax secretion from ER to plasma membrane or Golgi network-mediated transport. CONCLUSIONS These loci could potentially serve as candidates for the genetic control involved in intracellular wax transport that might directly or indirectly facilitate leaf wax accumulation in C. sativa and can be used in future marker-assisted selection (MAS) to breed for the cultivars with high wax content to improve drought tolerance.
Collapse
Affiliation(s)
- Zinan Luo
- US Arid Land Agricultural Research Center, USDA ARS, Maricopa, AZ 85138 USA
| | - Pernell Tomasi
- US Arid Land Agricultural Research Center, USDA ARS, Maricopa, AZ 85138 USA
| | - Noah Fahlgren
- Danforth Plant Science Center, St. Louis, MO 63132 USA
| | | |
Collapse
|
36
|
Kang Y, Torres‐Jerez I, An Z, Greve V, Huhman D, Krom N, Cui Y, Udvardi M. Genome-wide association analysis of salinity responsive traits in Medicago truncatula. PLANT, CELL & ENVIRONMENT 2019; 42:1513-1531. [PMID: 30593671 PMCID: PMC6850670 DOI: 10.1111/pce.13508] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 12/16/2018] [Indexed: 05/19/2023]
Abstract
Salinity stress is an important cause of crop yield loss in many parts of the world. Here, we performed genome-wide association studies of salinity-stress responsive traits in 132 HapMap genotypes of the model legume Medicago truncatula. Plants grown in soil were subjected to a step-wise increase in NaCl concentration, from 0 through 0.5% and 1.0% to 1.5%, and the following traits were measured: vigor, shoot biomass, shoot water content, leaf chlorophyll content, leaf size, and leaf and root concentrations of proline and major ions (Na+ , Cl- , K+ , Ca2+ , etc.). Genome-wide association studies were carried out using 2.5 million single nucleotide polymorphisms, and 12 genomic regions associated with at least four traits each were identified. Transcript-level analysis of the top eight candidate genes in five extreme genotypes revealed association between salinity tolerance and transcript-level changes for seven of the genes, encoding a vacuolar H+ -ATPase, two transcription factors, two proteins involved in vesicle trafficking, one peroxidase, and a protein of unknown function. Earlier functional studies on putative orthologues of two of the top eight genes (a vacuolar H+ -ATPase and a peroxidase) demonstrated their involvement in plant salinity tolerance.
Collapse
Affiliation(s)
- Yun Kang
- Noble Research InstituteArdmoreOklahoma73401
| | | | - Zewei An
- State Center for Rubber Breeding and Rubber Research InstituteDanzhouHainan571700China
| | - Veronica Greve
- College of Biological SciencesUniversity of MinnesotaHuntsvilleAlabama35806
| | | | | | - Yuehua Cui
- Department of Statistics and ProbabilityMichigan State UniversityEast LansingMichigan48824
| | | |
Collapse
|
37
|
Suneja Y, Gupta AK, Bains NS. Stress Adaptive Plasticity: Aegilops tauschii and Triticum dicoccoides as Potential Donors of Drought Associated Morpho-Physiological Traits in Wheat. FRONTIERS IN PLANT SCIENCE 2019; 10:211. [PMID: 30858862 PMCID: PMC6397871 DOI: 10.3389/fpls.2019.00211] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 02/07/2019] [Indexed: 05/05/2023]
Abstract
The inconsistent prevalence of abiotic stress in most of the agroecosystems can be addressed through deployment of plant material with stress adaptive plasticity. The present study explores water stress induced plasticity for early root-shoot development, proline induction and cell membrane injury in 57 accessions of Aegilops tauschii (DD-genome) and 26 accessions of Triticum dicoccoides (AABB-genome) along with durum and bread wheat cultivars. Thirty three Ae. tauschii accessions and 18 T. dicoccoides accessions showed an increase in root dry weight (ranging from 1.8 to 294.75%) under water stress. Shoot parameters- length and biomass, by and large were suppressed by water stress, but genotypes with stress adaptive plasticity leading to improvement of shoot traits (e.g., Ae tauschii accession 14191 and T. dicoccoides accession 7130) could be identified. Water stress induced active responses, rather than passive repartitioning of biomass was indicated by better shoot growth in seedlings of genotypes with enhanced root growth under stress. Membrane injury seemed to work as a trigger to activate water stress adaptive cellular machinery and was found positively correlated with several root-shoot based adaptive responses in seedlings. Stress induced proline accumulation in leaf tissue showed marked inter- and intra-specific genetic variation but hardly any association with stress adaptive plasticity. Genotypic variation for early stage plasticity traits viz., change in root dry weight, shoot length, shoot fresh weight, shoot dry weight and membrane injury positively correlated with grain weight based stress tolerance index (r = 0.267, r = 0.404, r = 0.299, r = 0.526, and r = 0.359, respectively). In another such trend, adaptive seedling plasticity correlated positively with resistance to early flowering under stress (r = 0.372 with membrane injury, r = 0.286 with change in root length, r = 0.352 with change in shoot length, r = 0.268 with change in shoot dry weight). Overall, Ae. tauschii accessions 9816, 14109, 14128, and T. dicoccoides accessions 5259 and 7130 were identified as potential donors of stress adaptive plasticity. The prospect of the study for molecular marker tagging, cloning of plasticity genes and creation of elite synthetic hexaploid donors is discussed.
Collapse
Affiliation(s)
- Yadhu Suneja
- Department of Biochemistry, Punjab Agricultural University, Ludhiana, India
| | - Anil Kumar Gupta
- Department of Biochemistry, Punjab Agricultural University, Ludhiana, India
| | - Navtej Singh Bains
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
| |
Collapse
|
38
|
Feng Y, Liu J, Zhai L, Gan Z, Zhang G, Yang S, Wang Y, Wu T, Zhang X, Xu X, Han Z. Natural variation in cytokinin maintenance improves salt tolerance in apple rootstocks. PLANT, CELL & ENVIRONMENT 2019; 42:424-436. [PMID: 29989184 DOI: 10.1111/pce.13403] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Revised: 07/02/2018] [Accepted: 07/04/2018] [Indexed: 05/20/2023]
Abstract
Plants experiencing salt-induced stress often reduce cytokinin levels during the early phases of stress-response. Interestingly, we found that the cytokinin content in the apple rootstock "robusta" was maintained at a high level under salt stress. Through screening genes involved in cytokinin biosynthesis and catabolism, we found that the high expression levels of IPT5b in robusta roots were involved in maintaining the high cytokinin content. We identified a 42 bp deletion in the promoter region of IPT5b, which elevated IPT5b expression levels, and this deletion was linked to salt tolerance in robusta×M.9 segregating population. The 42 bp deletion resulted in the deletion of a Proline Response Element (ProRE), and our results suggest that ProRE negatively regulates IPT5b expression in response to proline. Under salt stress, the robusta cultivar maintains high cytokinin levels as IPT5b expression cannot be inhibited by proline due to the deletion of ProRE, leading to improve salt tolerance.
Collapse
Affiliation(s)
- Yi Feng
- College of Horticulture, China Agricultural University, Beijing, China
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Jing Liu
- College of Horticulture, China Agricultural University, Beijing, China
| | - Longmei Zhai
- College of Horticulture, China Agricultural University, Beijing, China
| | - Zengyu Gan
- College of Horticulture, China Agricultural University, Beijing, China
| | - Guifen Zhang
- College of Horticulture, China Agricultural University, Beijing, China
| | - Shuhua Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yi Wang
- College of Horticulture, China Agricultural University, Beijing, China
| | - Ting Wu
- College of Horticulture, China Agricultural University, Beijing, China
| | - Xinzhong Zhang
- College of Horticulture, China Agricultural University, Beijing, China
| | - Xuefeng Xu
- College of Horticulture, China Agricultural University, Beijing, China
| | - Zhenhai Han
- College of Horticulture, China Agricultural University, Beijing, China
| |
Collapse
|
39
|
Raza A, Razzaq A, Mehmood SS, Zou X, Zhang X, Lv Y, Xu J. Impact of Climate Change on Crops Adaptation and Strategies to Tackle Its Outcome: A Review. PLANTS (BASEL, SWITZERLAND) 2019; 8:E34. [PMID: 30704089 PMCID: PMC6409995 DOI: 10.3390/plants8020034] [Citation(s) in RCA: 451] [Impact Index Per Article: 75.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 01/16/2019] [Accepted: 01/28/2019] [Indexed: 11/17/2022]
Abstract
Agriculture and climate change are internally correlated with each other in various aspects, as climate change is the main cause of biotic and abiotic stresses, which have adverse effects on the agriculture of a region. The land and its agriculture are being affected by climate changes in different ways, e.g., variations in annual rainfall, average temperature, heat waves, modifications in weeds, pests or microbes, global change of atmospheric CO₂ or ozone level, and fluctuations in sea level. The threat of varying global climate has greatly driven the attention of scientists, as these variations are imparting negative impact on global crop production and compromising food security worldwide. According to some predicted reports, agriculture is considered the most endangered activity adversely affected by climate changes. To date, food security and ecosystem resilience are the most concerning subjects worldwide. Climate-smart agriculture is the only way to lower the negative impact of climate variations on crop adaptation, before it might affect global crop production drastically. In this review paper, we summarize the causes of climate change, stresses produced due to climate change, impacts on crops, modern breeding technologies, and biotechnological strategies to cope with climate change, in order to develop climate resilient crops. Revolutions in genetic engineering techniques can also aid in overcoming food security issues against extreme environmental conditions, by producing transgenic plants.
Collapse
Affiliation(s)
- Ali Raza
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Wuhan 430062, China.
| | - Ali Razzaq
- Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, Faisalabad 38040, Pakistan.
| | - Sundas Saher Mehmood
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Wuhan 430062, China.
| | - Xiling Zou
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Wuhan 430062, China.
| | - Xuekun Zhang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Wuhan 430062, China.
| | - Yan Lv
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Wuhan 430062, China.
| | - Jinsong Xu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Wuhan 430062, China.
| |
Collapse
|
40
|
|
41
|
Deshmukh AB, Datir SS, Bhonde Y, Kelkar N, Samdani P, Tamhane VA. De novo root transcriptome of a medicinally important rare tree Oroxylum indicum for characterization of the flavonoid biosynthesis pathway. PHYTOCHEMISTRY 2018; 156:201-213. [PMID: 30317159 DOI: 10.1016/j.phytochem.2018.09.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Revised: 09/25/2018] [Accepted: 09/28/2018] [Indexed: 06/08/2023]
Abstract
Oroxylum indicum (L.) Kurz is a medicinally important and rare tree species of the family Bignoniaceae. It is rich in flavonoid content and its mature roots are extensively used in Ayurvedic formulations. O. indicum specific flavonoids like oroxylin B, prunetin and oroxindin possess antibacterial, antiproliferative, antioxidant and anticancerous properties, signifying its importance in modern medicine. In the present study, de novo transcriptome analysis of O. indicum root was performed to elucidate the genes involved in flavonoid metabolism. A total of 24,625,398 high quality reads were assembled into 121,286 transcripts with N50 value 1783. The BLASTx search of 81,002 clustered transcripts against Viridiplantae Uniprot database led to annotation of 46,517 transcripts. Furthermore, Gene ontology (GO) revealed that 34,231 transcripts mapped to 3049 GO terms and KEGG analysis demonstrated that 4570 transcripts plausibly involved in 132 biosynthetic pathways. The transcriptome data indicated that cinnamyl-alcohol dehydrogenase (OinCAD) was abundant in phenylpropanoid pathway genes while; naringenin chalcone synthase (OinCHS), flavone synthase (OinFNS) and flavonoid 3', 5'-methyltransferase (OinF35 MT) were abundant in flavonoid, isoflavonoid, flavone and flavonol biosynthesis pathways, respectively. Transcription factor analysis demonstrated the abundance of MYB, bHLH and WD40 transcription factor families, which regulate the flavonoid biosynthesis. Flavonoid pathway genes displayed differential expression in young and old roots of O. indicum. The transcriptome led to the identification of 31 diverse full length Cytochrome P450 (CYP450) genes which may be involved in biosynthesis of specialized metabolites and flavonoids like baicalein and baicalin. Thus, the information obtained in this study will be a valuable tool for identifying genes and developing system biology approaches for in vitro synthesis of specialized O. indicum metabolites.
Collapse
Affiliation(s)
- Aaditi B Deshmukh
- Institute of Bioinformatics and Biotechnology (IBB), Savitribai Phule Pune University, Ganeshkhind Road, Pune, 411007, Maharashtra, India
| | - Sagar S Datir
- Department of Biotechnology, Savitribai Phule Pune University, Pune, 411007, India
| | - Yogesh Bhonde
- Institute of Bioinformatics and Biotechnology (IBB), Savitribai Phule Pune University, Ganeshkhind Road, Pune, 411007, Maharashtra, India
| | - Natasha Kelkar
- Institute of Bioinformatics and Biotechnology (IBB), Savitribai Phule Pune University, Ganeshkhind Road, Pune, 411007, Maharashtra, India
| | - Pawan Samdani
- Eumentis Cloud, Office, 310, Amenity Building, Rose Icon, Pimple Saudagar, Pune, 411027, India
| | - Vaijayanti A Tamhane
- Institute of Bioinformatics and Biotechnology (IBB), Savitribai Phule Pune University, Ganeshkhind Road, Pune, 411007, Maharashtra, India.
| |
Collapse
|
42
|
Natural variation at XND1 impacts root hydraulics and trade-off for stress responses in Arabidopsis. Nat Commun 2018; 9:3884. [PMID: 30250259 PMCID: PMC6155316 DOI: 10.1038/s41467-018-06430-8] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 09/04/2018] [Indexed: 12/15/2022] Open
Abstract
Soil water uptake by roots is a key component of plant performance and adaptation to adverse environments. Here, we use a genome-wide association analysis to identify the XYLEM NAC DOMAIN 1 (XND1) transcription factor as a negative regulator of Arabidopsis root hydraulic conductivity (Lpr). The distinct functionalities of a series of natural XND1 variants and a single nucleotide polymorphism that determines XND1 translation efficiency demonstrate the significance of XND1 natural variation at species-wide level. Phenotyping of xnd1 mutants and natural XND1 variants show that XND1 modulates Lpr through action on xylem formation and potential indirect effects on aquaporin function and that it diminishes drought stress tolerance. XND1 also mediates the inhibition of xylem formation by the bacterial elicitor flagellin and counteracts plant infection by the root pathogen Ralstonia solanacearum. Thus, genetic variation at XND1, and xylem differentiation contribute to resolving the major trade-off between abiotic and biotic stress resistance in Arabidopsis. Soil water uptake is a major determinant of plant performance and stress tolerance. Here the authors show that, by affecting xylem formation in the root, natural variation at the Arabidopsis XND1 locus has contrasting effects on root hydraulics and drought tolerance versus pathogen resistance.
Collapse
|
43
|
Rajarammohan S, Pradhan AK, Pental D, Kaur J. Genome-wide association mapping in Arabidopsis identifies novel genes underlying quantitative disease resistance to Alternaria brassicae. MOLECULAR PLANT PATHOLOGY 2018; 19:1719-1732. [PMID: 29271603 PMCID: PMC6638106 DOI: 10.1111/mpp.12654] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 12/18/2017] [Accepted: 12/20/2017] [Indexed: 05/19/2023]
Abstract
Quantitative disease resistance (QDR) is the predominant form of resistance against necrotrophic pathogens. The genes and mechanisms underlying QDR are not well known. In the current study, the Arabidopsis-Alternaria brassicae pathosystem was used to uncover the genetic architecture underlying resistance to A. brassicae in a set of geographically diverse Arabidopsis accessions. Arabidopsis accessions revealed a rich variation in the host responses to the pathogen, varying from complete resistance to high susceptibility. Genome-wide association (GWA) mapping revealed multiple regions to be associated with disease resistance. A subset of genes prioritized on the basis of gene annotations and evidence of transcriptional regulation in other biotic stresses was analysed using a reverse genetics approach employing T-DNA insertion mutants. The mutants of three genes, namely At1g06990 (GDSL-motif lipase), At3g25180 (CYP82G1) and At5g37500 (GORK), displayed an enhanced susceptibility relative to the wild-type. These genes are involved in the development of morphological phenotypes (stomatal aperture) and secondary metabolite synthesis, thus defining some of the diverse facets of quantitative resistance against A. brassicae.
Collapse
Affiliation(s)
| | - Akshay Kumar Pradhan
- Department of GeneticsUniversity of Delhi South CampusNew Delhi110021India
- Centre for Genetic Manipulation of Crop PlantsUniversity of Delhi South CampusNew Delhi110021India
| | - Deepak Pental
- Centre for Genetic Manipulation of Crop PlantsUniversity of Delhi South CampusNew Delhi110021India
| | - Jagreet Kaur
- Department of GeneticsUniversity of Delhi South CampusNew Delhi110021India
| |
Collapse
|
44
|
Guo Z, Yang W, Chang Y, Ma X, Tu H, Xiong F, Jiang N, Feng H, Huang C, Yang P, Zhao H, Chen G, Liu H, Luo L, Hu H, Liu Q, Xiong L. Genome-Wide Association Studies of Image Traits Reveal Genetic Architecture of Drought Resistance in Rice. MOLECULAR PLANT 2018; 11:789-805. [PMID: 29614319 DOI: 10.1016/j.molp.2018.03.018] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 02/14/2018] [Accepted: 03/26/2018] [Indexed: 05/19/2023]
Abstract
Understanding how plants respond to drought can benefit drought resistance (DR) breeding. Using a non-destructive phenotyping facility, 51 image-based traits (i-traits) for 507 rice accessions were extracted. These i-traits can be used to monitor drought responses and evaluate DR. High heritability and large variation of these traits was observed under drought stress in the natural population. A genome-wide association study (GWAS) of i-traits and traditional DR traits identified 470 association loci, some containing known DR-related genes. Of these 470 loci, 443 loci (94%) were identified using i-traits, 437 loci (93%) co-localized with previously reported DR-related quantitative trait loci, and 313 loci (66.6%) were reproducibly identified by GWAS in different years. Association networks, established based on GWAS results, revealed hub i-traits and hub loci. This demonstrates the feasibility and necessity of dissecting the complex DR trait into heritable and simple i-traits. As proof of principle, we illustrated the power of this integrated approach to identify previously unreported DR-related genes. OsPP15 was associated with a hub i-trait, and its role in DR was confirmed by genetic transformation experiments. Furthermore, i-traits can be used for DR linkage analyses, and 69 i-trait locus associations were identified by both GWAS and linkage analysis of a recombinant inbred line population. Finally, we confirmed the relevance of i-traits to DR in the field. Our study provides a promising novel approach for the genetic dissection and discovery of causal genes for DR.
Collapse
Affiliation(s)
- Zilong Guo
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Wanneng Yang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China; Hubei Key Laboratory of Agricultural Bioinformatics, Huazhong Agricultural University, Wuhan 430070, China; College of Engineering, Huazhong Agricultural University, Wuhan 430070, China.
| | - Yu Chang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaosong Ma
- Shanghai Agrobiological Gene Center, Shanghai 201106, China
| | - Haifu Tu
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Fang Xiong
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Ni Jiang
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Hui Feng
- Hubei Key Laboratory of Agricultural Bioinformatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Chenglong Huang
- College of Engineering, Huazhong Agricultural University, Wuhan 430070, China
| | - Peng Yang
- College of Engineering, Huazhong Agricultural University, Wuhan 430070, China
| | - Hu Zhao
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Guoxing Chen
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, Huazhong Agricultural University, Wuhan 430070, China
| | - Hongyan Liu
- Shanghai Agrobiological Gene Center, Shanghai 201106, China
| | - Lijun Luo
- Shanghai Agrobiological Gene Center, Shanghai 201106, China
| | - Honghong Hu
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Qian Liu
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Lizhong Xiong
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
45
|
Martinelli F, Cannarozzi G, Balan B, Siegrist F, Weichert A, Blösch R, Tadele Z. Identification of miRNAs linked with the drought response of tef [Eragrostis tef (Zucc.) Trotter]. JOURNAL OF PLANT PHYSIOLOGY 2018; 224-225:163-172. [PMID: 29656008 DOI: 10.1016/j.jplph.2018.02.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 01/25/2018] [Accepted: 02/26/2018] [Indexed: 06/08/2023]
Abstract
Tef [Eragrostis tef (Zucc.) Trotter], a staple food crop in the Horn of Africa and particularly in Ethiopia, has several beneficial agronomical and nutritional properties, including waterlogging and drought tolerance. In this study, we performed microRNA profiling of tef using the Illumina HiSeq 2500 platform, analyzing both shoots and roots of two tef genotypes, one drought-tolerant (Tsedey) and one drought-susceptible (Alba). We obtained more than 10 million filtered reads for each of the 24 sequenced small cDNA libraries. Reads mapping to known miRNAs were more abundant in the root than shoot tissues. Thirteen and 35 miRNAs were significantly modulated in response to drought, in Alba and Tsedey roots, respectively. One miRNA was upregulated under drought conditions in both genotypes. In shoots, nine miRNAs were modulated in common between the two genotypes and all showed similar trends of expression. One-hundred and forty-seven new miRNA mature sequences were identified in silico, 22 of these were detected in all relevant samples and seven were differentially regulated when comparing drought with normal watering. Putative targets of the miRNA regulated under drought in root and shoot tissues were predicted. Among the targets were transcription factors such as CCAAT-HAP2, MADS and NAC. Verification with qRT-PCR revealed that five of six potential targets showed a pattern of expression that was consistent with the correspondent miRNA amount measured by RNA-Seq. In general, candidate miRNAs involved in the post-transcriptional regulation of the tef response to drought could be included in next-generation breeding programs.
Collapse
Affiliation(s)
- Federico Martinelli
- Dipartimento di Scienze Agrarie Alimentari Forestali, Università di Palermo, viale delle scienze Ed. 4., Palermo, Italy.
| | - Gina Cannarozzi
- Institute of Plant Sciences, Altenbergrain 21, University of Bern, Bern, Switzerland; Swiss Institute of Bioinformatics, Lausanne, Switzerland.
| | - Bipin Balan
- Dipartimento di Scienze Agrarie Alimentari Forestali, Università di Palermo, viale delle scienze Ed. 4., Palermo, Italy.
| | - Fredy Siegrist
- Institute of Plant Sciences, Altenbergrain 21, University of Bern, Bern, Switzerland.
| | - Annett Weichert
- Institute of Plant Sciences, Altenbergrain 21, University of Bern, Bern, Switzerland.
| | - Regula Blösch
- Institute of Plant Sciences, Altenbergrain 21, University of Bern, Bern, Switzerland.
| | - Zerihun Tadele
- Institute of Plant Sciences, Altenbergrain 21, University of Bern, Bern, Switzerland; Institute of Biotechnology, Addis Ababa University, Addis Ababa, Ethiopia.
| |
Collapse
|
46
|
Fichman Y, Koncz Z, Reznik N, Miller G, Szabados L, Kramer K, Nakagami H, Fromm H, Koncz C, Zilberstein A. SELENOPROTEIN O is a chloroplast protein involved in ROS scavenging and its absence increases dehydration tolerance in Arabidopsis thaliana. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 270:278-291. [PMID: 29576081 DOI: 10.1016/j.plantsci.2018.02.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 02/26/2018] [Accepted: 02/27/2018] [Indexed: 06/08/2023]
Abstract
The evolutionary conserved family of Selenoproteins performs redox-regulatory functions in bacteria, archaea and eukaryotes. Among them, members of the SELENOPROTEIN O (SELO) subfamily are located in mammalian and yeast mitochondria, but their functions are thus far enigmatic. Screening of T-DNA knockout mutants for resistance to the proline analogue thioproline (T4C), identified mutant alleles of the plant SELO homologue in Arabidopsis thaliana. Absence of SELO resulted in a stress-induced transcriptional activation instead of silencing of mitochondrial proline dehydrogenase, and also high elevation of Δ(1)-pyrroline-5-carboxylate dehydrogenase involved in degradation of proline, thereby alleviating T4C inhibition and lessening drought-induced proline accumulation. Unlike its animal homologues, SELO was localized to chloroplasts of plants ectopically expressing SELO-GFP. The protein was co-fractionated with thylakoid membrane complexes, and co-immunoprecipitated with FNR, PGRL1 and STN7, all involved in regulating PSI and downstream electron flow. The selo mutants displayed extended survival under dehydration, accompanied by longer photosynthetic activity, compared with wild-type plants. Enhanced expression of genes encoding ROS scavenging enzymes in the unstressed selo mutant correlated with higher oxidant scavenging capacity and reduced methyl viologen damage. The study elucidates SELO as a PSI-related component involved in regulating ROS levels and stress responses.
Collapse
Affiliation(s)
- Yosef Fichman
- School of Plant Sciences and Food Security, Tel Aviv University, P.O. Box 39040, Tel Aviv 6997801, Israel
| | - Zsuzsa Koncz
- Department of Plant Developmental Biology, Max-Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, D-50829 Cologne, Germany
| | - Noam Reznik
- School of Plant Sciences and Food Security, Tel Aviv University, P.O. Box 39040, Tel Aviv 6997801, Israel
| | - Gad Miller
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - László Szabados
- Institute of Plant Biology, Biological Research Center of Hungarian Academy of Sciences, Temesvári krt. 62/64, H-6724 Szeged, Hungary
| | - Katharina Kramer
- Protein Mass Spectrometry Group, Max-Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, D-50829 Cologne, Germany
| | - Hirofumi Nakagami
- Protein Mass Spectrometry Group, Max-Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, D-50829 Cologne, Germany
| | - Hillel Fromm
- School of Plant Sciences and Food Security, Tel Aviv University, P.O. Box 39040, Tel Aviv 6997801, Israel
| | - Csaba Koncz
- Department of Plant Developmental Biology, Max-Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, D-50829 Cologne, Germany; Institute of Plant Biology, Biological Research Center of Hungarian Academy of Sciences, Temesvári krt. 62/64, H-6724 Szeged, Hungary
| | - Aviah Zilberstein
- School of Plant Sciences and Food Security, Tel Aviv University, P.O. Box 39040, Tel Aviv 6997801, Israel.
| |
Collapse
|
47
|
Julkowska MM, Koevoets IT, Mol S, Hoefsloot H, Feron R, Tester MA, Keurentjes JJB, Korte A, Haring MA, de Boer GJ, Testerink C. Genetic Components of Root Architecture Remodeling in Response to Salt Stress. THE PLANT CELL 2017; 29:3198-3213. [PMID: 29114015 PMCID: PMC5757256 DOI: 10.1105/tpc.16.00680] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 10/12/2017] [Accepted: 11/07/2017] [Indexed: 05/06/2023]
Abstract
Salinity of the soil is highly detrimental to plant growth. Plants respond by a redistribution of root mass between main and lateral roots, yet the genetic machinery underlying this process is still largely unknown. Here, we describe the natural variation among 347 Arabidopsis thaliana accessions in root system architecture (RSA) and identify the traits with highest natural variation in their response to salt. Salt-induced changes in RSA were associated with 100 genetic loci using genome-wide association studies. Two candidate loci associated with lateral root development were validated and further investigated. Changes in CYP79B2 expression in salt stress positively correlated with lateral root development in accessions, and cyp79b2 cyp79b3 double mutants developed fewer and shorter lateral roots under salt stress, but not in control conditions. By contrast, high HKT1 expression in the root repressed lateral root development, which could be partially rescued by addition of potassium. The collected data and multivariate analysis of multiple RSA traits, available through the Salt_NV_Root App, capture root responses to salinity. Together, our results provide a better understanding of effective RSA remodeling responses, and the genetic components involved, for plant performance in stress conditions.
Collapse
Affiliation(s)
- Magdalena M Julkowska
- Plant Physiology, University of Amsterdam, 1090GE Amsterdam, The Netherlands
- Plant Cell Biology, University of Amsterdam, 1090GE Amsterdam, The Netherlands
| | - Iko T Koevoets
- Plant Cell Biology, University of Amsterdam, 1090GE Amsterdam, The Netherlands
| | - Selena Mol
- Plant Physiology, University of Amsterdam, 1090GE Amsterdam, The Netherlands
- Plant Cell Biology, University of Amsterdam, 1090GE Amsterdam, The Netherlands
| | - Huub Hoefsloot
- Biosystems Data Analysis, University of Amsterdam, 1090GE Amsterdam, The Netherlands
| | - Richard Feron
- ENZA Zaden Research and Development, 1602DB Enkhuizen, The Netherlands
| | - Mark A Tester
- Department of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, 23955-6900 Thuwal-Jeddah, Kingdom of Saudi Arabia
| | - Joost J B Keurentjes
- Applied Quantitative Genetics, Swammerdam Institute for Life Sciences, 1090GE Amsterdam, The Netherlands
- Laboratory of Genetics, Wageningen University & Research, 6708PB Wageningen, The Netherlands
| | - Arthur Korte
- Center for Computational and Theoretical Biology, Wuerzburg Universitat, 97074 Wuerzburg, Germany
| | - Michel A Haring
- Plant Physiology, University of Amsterdam, 1090GE Amsterdam, The Netherlands
| | - Gert-Jan de Boer
- ENZA Zaden Research and Development, 1602DB Enkhuizen, The Netherlands
| | - Christa Testerink
- Plant Cell Biology, University of Amsterdam, 1090GE Amsterdam, The Netherlands
| |
Collapse
|
48
|
Vollmer AC, Bark SJ. Twenty-Five Years of Investigating the Universal Stress Protein: Function, Structure, and Applications. ADVANCES IN APPLIED MICROBIOLOGY 2017; 102:1-36. [PMID: 29680123 DOI: 10.1016/bs.aambs.2017.10.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Since the initial discovery of universal stress protein A (UspA) 25 years ago, remarkable advances in molecular and biochemical technologies have revolutionized our understanding of biology. Many studies using these technologies have focused on characterization of the uspA gene and Usp-type proteins. These studies have identified the conservation of Usp-like proteins across bacteria, archaea, plants, and even some invertebrate animals. Regulation of these proteins under diverse stresses has been associated with different stress-response genes including spoT and relA in the stringent response and the dosR two-component signaling pathways. These and other foundational studies suggest Usps serve regulatory and protective roles to enable adaptation and survival under external stresses. Despite these foundational studies, many bacterial species have multiple paralogs of genes encoding these proteins and ablation of the genes does not provide a distinct phenotype. This outcome has limited our understanding of the biochemical functions of these proteins. Here, we summarize the current knowledge of Usps in general and UspA in particular across different genera as well as conclusions about their functions from seminal studies in diverse organisms. Our objective has been to organize the foundational studies in this field to identify the significant impediments to further understanding of Usp functions at the molecular level. We propose ideas and experimental approaches that may overcome these impediments and drive future development of molecular approaches to understand and target Usps as central regulators of stress adaptation and survival. Despite the fact that the full functions of Usps are still not known, creative many applications have already been proposed, tested, and used. The complementary approaches of basic research and applications, along with new technology and analytic tools, may yield the elusive yet critical functions of universal stress proteins in diverse systems.
Collapse
|
49
|
Natural variation identifies genes affecting drought-induced abscisic acid accumulation in Arabidopsis thaliana. Proc Natl Acad Sci U S A 2017; 114:11536-11541. [PMID: 29073083 DOI: 10.1073/pnas.1705884114] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Accumulation of the stress hormone abscisic acid (ABA) in response to drought and low water-potential controls many downstream acclimation mechanisms. However, mechanisms controlling ABA accumulation itself are less known. There was a 10-fold range of variation in ABA levels among nearly 300 Arabidopsis thaliana accessions exposed to the same low water-potential severity. Genome-wide association analysis (GWAS) identified genomic regions containing clusters of ABA-associated SNPs. Candidate genes within these regions included few genes with known stress or ABA-related function. The GWAS data were used to guide reverse genetic analysis, which found effectors of ABA accumulation. These included plasma-membrane-localized signaling proteins such as receptor-like kinases, aspartic protease, a putative lipid-binding START domain protein, and other membrane proteins of unknown function as well as a RING U-box protein and possible effect of tonoplast transport on ABA accumulation. Putative loss-of-function polymorphisms within the START domain protein were associated with climate factors at accession sites of origin, indicating its potential involvement in drought adaptation. Overall, using ABA accumulation as a basis for a combined GWAS-reverse genetic strategy revealed the broad natural variation in low-water-potential-induced ABA accumulation and was successful in identifying genes that affect ABA levels and may act in upstream drought-related sensing and signaling mechanisms. ABA effector loci were identified even when each one was of incremental effect, consistent with control of ABA accumulation being distributed among the many branches of ABA metabolism or mediated by genes with partially redundant function.
Collapse
|
50
|
Fusari CM, Kooke R, Lauxmann MA, Annunziata MG, Enke B, Hoehne M, Krohn N, Becker FFM, Schlereth A, Sulpice R, Stitt M, Keurentjes JJB. Genome-Wide Association Mapping Reveals That Specific and Pleiotropic Regulatory Mechanisms Fine-Tune Central Metabolism and Growth in Arabidopsis. THE PLANT CELL 2017; 29:2349-2373. [PMID: 28954812 PMCID: PMC5774568 DOI: 10.1105/tpc.17.00232] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 08/30/2017] [Accepted: 09/25/2017] [Indexed: 05/18/2023]
Abstract
Central metabolism is a coordinated network that is regulated at multiple levels by resource availability and by environmental and developmental cues. Its genetic architecture has been investigated by mapping metabolite quantitative trait loci (QTL). A more direct approach is to identify enzyme activity QTL, which distinguishes between cis-QTL in structural genes encoding enzymes and regulatory trans-QTL. Using genome-wide association studies, we mapped QTL for 24 enzyme activities, nine metabolites, three structural components, and biomass in Arabidopsis thaliana We detected strong cis-QTL for five enzyme activities. A cis-QTL for UDP-glucose pyrophosphorylase activity in the UGP1 promoter is maintained through balancing selection. Variation in acid invertase activity reflects multiple evolutionary events in the promoter and coding region of VAC-INVcis-QTL were also detected for ADP-glucose pyrophosphorylase, fumarase, and phosphoglucose isomerase activity. We detected many trans-QTL, including transcription factors, E3 ligases, protein targeting components, and protein kinases, and validated some by knockout analysis. trans-QTL are more frequent but tend to have smaller individual effects than cis-QTL. We detected many colocalized QTL, including a multitrait QTL on chromosome 4 that affects six enzyme activities, three metabolites, protein, and biomass. These traits are coordinately modified by different ACCELERATED CELL DEATH6 alleles, revealing a trade-off between metabolism and defense against biotic stress.
Collapse
Affiliation(s)
- Corina M Fusari
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Rik Kooke
- Laboratory of Genetics, Wageningen University, 6708 PB Wageningen, The Netherlands
- Centre for Biosystems Genomics, Wageningen Campus, 6708 PB Wageningen, The Netherlands
| | - Martin A Lauxmann
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | | | - Beatrice Enke
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Melanie Hoehne
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Nicole Krohn
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Frank F M Becker
- Laboratory of Genetics, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - Armin Schlereth
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Ronan Sulpice
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Mark Stitt
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Joost J B Keurentjes
- Laboratory of Genetics, Wageningen University, 6708 PB Wageningen, The Netherlands
- Centre for Biosystems Genomics, Wageningen Campus, 6708 PB Wageningen, The Netherlands
| |
Collapse
|