1
|
Quezada M, Giorello FM, Da Silva CC, Aguilar I, Balmelli G. Single-step genome-wide association study for susceptibility to Teratosphaeria nubilosa and precocity of vegetative phase change in Eucalyptus globulus. FRONTIERS IN PLANT SCIENCE 2023; 14:1124768. [PMID: 37465383 PMCID: PMC10350686 DOI: 10.3389/fpls.2023.1124768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 05/24/2023] [Indexed: 07/20/2023]
Abstract
Introduction Mycosphaerella leaf disease (MLD) is one of the most prevalent foliar diseases of Eucalyptus globulus plantations around the world. Since resistance management strategies have not been effective in commercial plantations, breeding to develop more resistant genotypes is the most promising strategy. Available genomic information can be used to detect genomic regions associated with resistance to MLD, which could significantly speed up the process of genetic improvement. Methods We investigated the genetic basis of MLD resistance in a breeding population of E. globulus which was genotyped with the EUChip60K SNP array. Resistance to MLD was evaluated through resistance of the juvenile foliage, as defoliation and leaf spot severity, and through precocity of change to resistant adult foliage. Genome-wide association studies (GWAS) were carried out applying four Single-SNP models, a Genomic Best Linear Unbiased Prediction (GBLUP-GWAS) approach, and a Single-step genome-wide association study (ssGWAS). Results The Single-SNP (model K) and GBLUP-GWAS models detected 13 and 16 SNP-trait associations in chromosomes 2, 3 y 11; whereas the ssGWAS detected 66 SNP-trait associations in the same chromosomes, and additional significant SNP-trait associations in chromosomes 5 to 9 for the precocity of phase change (proportion of adult foliage). For this trait, the two main regions in chromosomes 3 and 11 were identified for the three approaches. The SNPs identified in these regions were positioned near the key miRNA genes, miR156.5 and miR157.4, which have a main role in the regulation of the timing of vegetative change, and also in the response to environmental stresses in plants. Discussion Our results demonstrated that ssGWAS was more powerful in detecting regions that affect resistance than conventional GWAS approaches. Additionally, the results suggest a polygenic genetic architecture for the heteroblastic transition in E. globulus and identified useful SNP markers for the development of marker-assisted selection strategies for resistance to MLD.
Collapse
Affiliation(s)
- Marianella Quezada
- Programa Nacional de Investigación en Producción de Leche, Estación Experimental “Wilson Ferreira Adulnate”, Instituto Nacional de Investigación Agropecuaria, Canelones, Uruguay
- Laboratorio de Biotecnología, Departamento de Biología Vegetal, Facultad de Agronomía, Universidad de la República, Montevideo, Uruguay
| | - Facundo Matias Giorello
- PDU Espacio de Biología Vegetal del Noreste, sede Tacuarembó, CENUR Noreste, Universidad de la República, Tacuarembó, Uruguay
| | - Cecilia Corina Da Silva
- PDU Espacio de Biología Vegetal del Noreste, sede Tacuarembó, CENUR Noreste, Universidad de la República, Tacuarembó, Uruguay
| | - Ignacio Aguilar
- Programa Nacional de Investigación en Producción de Leche, Estación Experimental “Wilson Ferreira Adulnate”, Instituto Nacional de Investigación Agropecuaria, Canelones, Uruguay
| | - Gustavo Balmelli
- Programa Nacional de Investigación en Producción Forestal, Estación Experimental del Norte, Instituto Nacional de Investigación Agropecuaria, Tacuarembó, Uruguay
| |
Collapse
|
2
|
Co-Localization of Resistance and Metabolic Quantitative Trait Loci on Carrot Genome Reveals Fungitoxic Terpenes and Related Candidate Genes Associated with the Resistance to Alternaria dauci. Metabolites 2023; 13:metabo13010071. [PMID: 36676996 PMCID: PMC9863879 DOI: 10.3390/metabo13010071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 12/15/2022] [Accepted: 12/21/2022] [Indexed: 01/03/2023] Open
Abstract
Alternaria leaf blight, caused by the fungus Alternaria dauci, is the most damaging foliar disease of carrot. Some carrot genotypes exhibit partial resistance to this pathogen and resistance Quantitative Trait Loci (rQTL) have been identified. Co-localization of metabolic QTL and rQTL identified camphene, α-pinene, α-bisabolene, β-cubebene, caryophyllene, germacrene D and α-humulene as terpenes potentially involved in carrot resistance against ALB. By combining genomic and transcriptomic analyses, we identified, under the co-localization regions, terpene-related genes which are differentially expressed between a resistant and a susceptible carrot genotype. These genes include five terpene synthases and twenty transcription factors. In addition, significant mycelial growth inhibition was observed in the presence of α-humulene and caryophyllene.
Collapse
|
3
|
Xiao Z, He J, Niu Y, Xiong J, Zhang J. Characterization and comparison of aroma profiles of orange pulp and peel by GC–MS/O, OAV, aroma recombination and omission tests. Eur Food Res Technol 2022. [DOI: 10.1007/s00217-022-04157-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
4
|
Dwivedi V, Kumar SR, Shilpashree HB, Krishna R, Rao S, Shasany AK, Olsson SB, Nagegowda DA. An inducible potato (E,E)-farnesol synthase confers tolerance against bacterial pathogens in potato and tobacco. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:1308-1323. [PMID: 35778946 DOI: 10.1111/tpj.15890] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 06/10/2022] [Accepted: 06/24/2022] [Indexed: 06/15/2023]
Abstract
Terpene synthases (TPSs) have diverse biological functions in plants. Though the roles of TPSs in herbivore defense are well established in many plant species, their role in bacterial defense has been scarce and is emerging. Through functional genomics, here we report the in planta role of potato (Solanum tuberosum) terpene synthase (StTPS18) in bacterial defense. Expression of StTPS18 was highest in leaves and was induced in response to Pseudomonas syringae and methyl jasmonate treatments. The recombinant StTPS18 exhibited bona fide (E,E)-farnesol synthase activity forming a sesquiterpenoid, (E,E)-farnesol as the sole product, utilising (E,E)-farnesyl diphosphate (FPP). Subcellular localization of GFP fusion protein revealed that StTPS18 is localized to the cytosol. Silencing and overexpression of StTPS18 in potato resulted in reduced and enhanced tolerance, respectively, to bacterial pathogens P. syringae and Ralstonia solanacearum. Bacterial growth assay using medium containing (E,E)-farnesol significantly inhibited P. syringae growth. Moreover, StTPS18 overexpressing transgenic potato and Nicotiana tabacum leaves, and (E,E)-farnesol and P. syringae infiltrated potato leaves exhibited elevated expression of sterol pathway and members of pathogenesis-related genes with enhanced phytosterol accumulation. Interestingly, enhanced phytosterols in 13 C3 -(E,E)-farnesol infiltrated potato leaves were devoid of any noticeable 13 C labeling, indicating no direct utilization of (E,E)-farnesol in phytosterols formation. Furthermore, leaves of StTPS18 overexpressing transgenic lines had no detectable (E,E)-farnesol similar to the control plant, and emitted lower levels of sesquiterpenes than the control. These findings point towards an indirect involvement of StTPS18 and its product (E,E)-farnesol in bacterial defense through upregulation of phytosterol biosynthesis and defense genes.
Collapse
Affiliation(s)
- Varun Dwivedi
- Molecular Plant Biology and Biotechnology Lab, CSIR-Central Institute of Medicinal and Aromatic Plants, Research Centre, Bengaluru, 560065, India
| | - Sarma Rajeev Kumar
- Molecular Plant Biology and Biotechnology Lab, CSIR-Central Institute of Medicinal and Aromatic Plants, Research Centre, Bengaluru, 560065, India
| | - H B Shilpashree
- Molecular Plant Biology and Biotechnology Lab, CSIR-Central Institute of Medicinal and Aromatic Plants, Research Centre, Bengaluru, 560065, India
| | - Ram Krishna
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, India
| | - Srinivas Rao
- Naturalist-Inspired Chemical Ecology, National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bengaluru, 560065, India
| | - Ajit K Shasany
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, India
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012, India
| | - Shannon B Olsson
- Naturalist-Inspired Chemical Ecology, National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bengaluru, 560065, India
| | - Dinesh A Nagegowda
- Molecular Plant Biology and Biotechnology Lab, CSIR-Central Institute of Medicinal and Aromatic Plants, Research Centre, Bengaluru, 560065, India
| |
Collapse
|
5
|
Trujillo-Moya C, Ganthaler A, Stöggl W, Arc E, Kranner I, Schueler S, Ertl R, Espinosa-Ruiz A, Martínez-Godoy MÁ, George JP, Mayr S. Advances in understanding Norway spruce natural resistance to needle bladder rust infection: transcriptional and secondary metabolites profiling. BMC Genomics 2022; 23:435. [PMID: 35692040 PMCID: PMC9190139 DOI: 10.1186/s12864-022-08661-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 05/24/2022] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Needle rust caused by the fungus Chrysomyxa rhododendri causes significant growth decline and increased mortality of young Norway spruce trees in subalpine forests. Extremely rare trees with enhanced resistance represent promising candidates for practice-oriented reproduction approaches. They also enable the investigation of tree molecular defence and resistance mechanisms against this fungal disease. Here, we combined RNA-Seq, RT-qPCR and secondary metabolite analyses during a period of 38 days following natural infection to investigate differences in constitutive and infection-induced defence between the resistant genotype PRA-R and three susceptible genotypes. RESULTS Gene expression and secondary metabolites significantly differed among genotypes from day 7 on and revealed already known, but also novel candidate genes involved in spruce molecular defence against this pathogen. Several key genes related to (here and previously identified) spruce defence pathways to needle rust were differentially expressed in PRA-R compared to susceptible genotypes, both constitutively (in non-symptomatic needles) and infection-induced (in symptomatic needles). These genes encoded both new and well-known antifungal proteins such as endochitinases and chitinases. Specific genetic characteristics concurred with varying phenolic, terpene, and hormone needle contents in the resistant genotype, among them higher accumulation of several flavonoids (mainly kaempferol and taxifolin), stilbenes, geranyl acetone, α-ionone, abscisic acid and salicylic acid. CONCLUSIONS Combined transcriptional and metabolic profiling of the Norway spruce defence response to infection by C. rhododendri in adult trees under subalpine conditions confirmed the results previously gained on artificially infected young clones in the greenhouse, both regarding timing and development of infection, and providing new insights into genes and metabolic pathways involved. The comparison of genotypes with different degrees of susceptibility proved that several of the identified key genes are differently regulated in PRA-R, and that the resistant genotype combines a strong constitutive defence with an induced response in infected symptomatic needles following fungal invasion. Genetic and metabolic differences between the resistant and susceptible genotypes indicated a more effective hypersensitive response (HR) in needles of PRA-R that prevents penetration and spread of the rust fungus and leads to a lower proportion of symptomatic needles as well as reduced symptom development on the few affected needles.
Collapse
Affiliation(s)
- Carlos Trujillo-Moya
- Department of Forest Growth, Silviculture & Genetics, Austrian Research Centre for Forests BFW, Seckendorff-Gudent-Weg 8, 1131 Vienna, Austria
| | - Andrea Ganthaler
- Department of Botany, University of Innsbruck, Sternwartestraße 15, 6020 Innsbruck, Austria
| | - Wolfgang Stöggl
- Department of Botany, University of Innsbruck, Sternwartestraße 15, 6020 Innsbruck, Austria
| | - Erwann Arc
- Department of Botany, University of Innsbruck, Sternwartestraße 15, 6020 Innsbruck, Austria
| | - Ilse Kranner
- Department of Botany, University of Innsbruck, Sternwartestraße 15, 6020 Innsbruck, Austria
| | - Silvio Schueler
- Department of Forest Growth, Silviculture & Genetics, Austrian Research Centre for Forests BFW, Seckendorff-Gudent-Weg 8, 1131 Vienna, Austria
| | - Reinhard Ertl
- University of Veterinary Medicine, VetCore Facility for Research, Veterinärplatz 1, 1210 Vienna, Austria
| | - Ana Espinosa-Ruiz
- Institute for Plant Molecular and Cell Biology (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC) - Universidad Politécnica de Valencia (UPV), Valencia, Spain
| | - Maria Ángeles Martínez-Godoy
- Institute for Plant Molecular and Cell Biology (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC) - Universidad Politécnica de Valencia (UPV), Valencia, Spain
| | - Jan-Peter George
- Department of Forest Growth, Silviculture & Genetics, Austrian Research Centre for Forests BFW, Seckendorff-Gudent-Weg 8, 1131 Vienna, Austria
| | - Stefan Mayr
- Department of Botany, University of Innsbruck, Sternwartestraße 15, 6020 Innsbruck, Austria
| |
Collapse
|
6
|
New molecules in plant defence against pathogens. Essays Biochem 2022; 66:683-693. [PMID: 35642866 DOI: 10.1042/ebc20210076] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 04/14/2022] [Accepted: 05/09/2022] [Indexed: 12/12/2022]
Abstract
Plants host a multipart immune signalling network to ward off pathogens. Pathogen attack upon plant tissues can often lead to an amplified state of (induced) defence against subsequent infections in distal tissues; this is known as systemic acquired resistance (SAR). The interaction of plants with beneficial microbes of the rhizosphere microbiome can also lead to an induced resistance in above-ground plant tissues, known as induced systemic resistance. Second messengers such as calcium (Ca2+), reactive oxygen species (ROS), and nitric oxide (NO) are necessary for cell-to-cell signal propagation during SAR and show emergent roles in the mediation of other SAR metabolites. These include the lysine-derived signals pipecolic acid (Pip) and N-hydroxypipecolic acid (NHP), which are key signalling metabolites in SAR. Emerging evidence additionally pinpoints plant volatiles as modulators of defence signalling within and between plants. Plant volatile organic compounds (VOCs) such as monoterpenes can promote SAR by functioning through ROS. Furthermore, plant-derived and additionally also microbial VOCs can target both salicylic acid and jasmonic acid signalling pathways in plants and modulate defence against pathogens. In this review, an overview of recent findings in induced defence signalling, with a particular focus on newer signalling molecules and how they integrate into these networks is discussed.
Collapse
|
7
|
Abstract
Citrus essential oils (EOs) are widely used as flavoring agents in food, pharmaceutical, cosmetical and chemical industries. For this reason, their demand is constantly increasing all over the world. Besides industrial applications, the abundance of EOs in the epicarp is particularly relevant for the quality of citrus fruit. In fact, these compounds represent a natural protection against postharvest deteriorations due to their remarkable antimicrobial, insecticidal and antioxidant activities. Several factors, including genotype, climatic conditions and cultural practices, can influence the assortment and accumulation of EOs in citrus peels. This review is focused on factors influencing variation of the EOs’ composition during ripening and on the implications on postharvest quality of the fruit.
Collapse
|
8
|
Alquézar B, Bennici S, Carmona L, Gentile A, Peña L. Generation of Transfer-DNA-Free Base-Edited Citrus Plants. FRONTIERS IN PLANT SCIENCE 2022; 13:835282. [PMID: 35371165 PMCID: PMC8965368 DOI: 10.3389/fpls.2022.835282] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 01/28/2022] [Indexed: 06/14/2023]
Abstract
To recover transgenic citrus plants in the most efficient manner, the use of selection marker genes is essential. In this work, it was shown that the mutated forms of the acetolactate synthase (ALS) gene in combination with the herbicide selection agent imazapyr (IMZ) added to the selection medium may be used to achieve this goal. This approach enables the development of cisgenic regenerants, namely, plants without the incorporation of those bacterial genes currently employed for transgenic selection, and additionally it allows the generation of edited, non-transgenic plants with altered endogenous ALS genes leading to IMZ resistance. In this work, the citrus mutants, in which ALS has been converted into IMZ-resistant forms using a base editor system, were recovered after cocultivation of the explants with Agrobacterium tumefaciens carrying a cytidine deaminase fused to nSpCas9 in the T-DNA and selecting regenerants in the culture medium supplemented with IMZ. Analysis of transgene-free plants indicated that the transient expression of the T-DNA genes was sufficient to induce ALS mutations and thus generate IMZ-resistant shoots at 11.7% frequency. To our knowledge, this is the first report of T-DNA-free edited citrus plants. Although further optimization is required to increase edition efficiency, this methodology will allow generating new citrus varieties with improved organoleptic/agronomic features without the need to use foreign genes.
Collapse
Affiliation(s)
- Berta Alquézar
- Laboratório de Biotecnologia Vegetal, Pesquisa, and Desenvolvimento, Fundo de Defesa da Citricultura (Fundecitrus), Araraquara, Brazil
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas, Universidad Politécnica de Valencia, Valencia, Spain
| | - Stefania Bennici
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas, Universidad Politécnica de Valencia, Valencia, Spain
| | - Lourdes Carmona
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas, Universidad Politécnica de Valencia, Valencia, Spain
| | - Alessandra Gentile
- Department of Agriculture, Food, and Environment, University of Catania, Catania, Italy
| | - Leandro Peña
- Laboratório de Biotecnologia Vegetal, Pesquisa, and Desenvolvimento, Fundo de Defesa da Citricultura (Fundecitrus), Araraquara, Brazil
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas, Universidad Politécnica de Valencia, Valencia, Spain
| |
Collapse
|
9
|
Meng X, Zhang Y, Wang N, He H, Tan Q, Wen B, Zhang R, Sun M, Zhao X, Fu X, Li D, Lu W, Chen X, Li L. Prunus persica Terpene Synthase PpTPS1 Interacts with PpABI5 to Enhance Salt Resistance in Transgenic Tomatoes. FRONTIERS IN PLANT SCIENCE 2022; 13:807342. [PMID: 35283925 PMCID: PMC8905318 DOI: 10.3389/fpls.2022.807342] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 01/11/2022] [Indexed: 06/14/2023]
Abstract
Terpene synthase (TPS) is related to the production of aromatic substances, but there are few studies on the impact of abiotic stress on TPS and its molecular mechanism, especially in peaches. This study found that salt resistance and abscisic acid (ABA) sensitivity of transgenic tomatoes were enhanced by overexpression of PpTPS1. Moreover, it was found that PpTPS1 interacted with and antagonized the expression of the bZIP transcription factor ABA INSENSITIVE 5 (PpABI5), which is thought to play an important role in salt suitability. In addition, PpTCP1, PpTCP13, and PpTCP15 were found to activate the expression of PpTPS1 by yeast one-hybrid (Y1H) and dual-luciferase assays, and they could also be induced by ABA. In summary, PpTPS1 may be involved in the ABA signaling regulatory pathway and play an important role in salt acclimation, providing a new reference gene for the improvement of salt resistance in peaches.
Collapse
Affiliation(s)
- Xiangguang Meng
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, China
- Shandong Collaborative Innovation Center for Fruit & Vegetable Production With High Quality and Efficiency, Shandong Agricultural University, Tai’an, China
| | - Yuzheng Zhang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, China
- Shandong Collaborative Innovation Center for Fruit & Vegetable Production With High Quality and Efficiency, Shandong Agricultural University, Tai’an, China
| | - Ning Wang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, China
- Shandong Collaborative Innovation Center for Fruit & Vegetable Production With High Quality and Efficiency, Shandong Agricultural University, Tai’an, China
| | - Huajie He
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, China
- Shandong Collaborative Innovation Center for Fruit & Vegetable Production With High Quality and Efficiency, Shandong Agricultural University, Tai’an, China
| | - Qiuping Tan
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, China
- Shandong Collaborative Innovation Center for Fruit & Vegetable Production With High Quality and Efficiency, Shandong Agricultural University, Tai’an, China
| | - Binbin Wen
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, China
- Shandong Collaborative Innovation Center for Fruit & Vegetable Production With High Quality and Efficiency, Shandong Agricultural University, Tai’an, China
| | - Rui Zhang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, China
- Shandong Collaborative Innovation Center for Fruit & Vegetable Production With High Quality and Efficiency, Shandong Agricultural University, Tai’an, China
| | - Mingyue Sun
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, China
- Shandong Collaborative Innovation Center for Fruit & Vegetable Production With High Quality and Efficiency, Shandong Agricultural University, Tai’an, China
| | - Xuehui Zhao
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, China
- Shandong Collaborative Innovation Center for Fruit & Vegetable Production With High Quality and Efficiency, Shandong Agricultural University, Tai’an, China
| | - Xiling Fu
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, China
- Shandong Collaborative Innovation Center for Fruit & Vegetable Production With High Quality and Efficiency, Shandong Agricultural University, Tai’an, China
| | - Dongmei Li
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, China
- Shandong Collaborative Innovation Center for Fruit & Vegetable Production With High Quality and Efficiency, Shandong Agricultural University, Tai’an, China
| | - Wenli Lu
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, China
- Shandong Collaborative Innovation Center for Fruit & Vegetable Production With High Quality and Efficiency, Shandong Agricultural University, Tai’an, China
| | - Xiude Chen
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, China
- Shandong Collaborative Innovation Center for Fruit & Vegetable Production With High Quality and Efficiency, Shandong Agricultural University, Tai’an, China
| | - Ling Li
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, China
- Shandong Collaborative Innovation Center for Fruit & Vegetable Production With High Quality and Efficiency, Shandong Agricultural University, Tai’an, China
| |
Collapse
|
10
|
Wang Y, Yang Q, Zhu Y, Zhao L, Ju P, Wang G, Zhou C, Zhu C, Jia H, Jiao Y, Jia H, Gao Z. MrTPS3 and MrTPS20 Are Responsible for β-Caryophyllene and α-Pinene Production, Respectively, in Red Bayberry ( Morella rubra). FRONTIERS IN PLANT SCIENCE 2022; 12:798086. [PMID: 35069655 PMCID: PMC8777192 DOI: 10.3389/fpls.2021.798086] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 12/06/2021] [Indexed: 05/24/2023]
Abstract
Red bayberry is a sweet, tart fruit native to China and grown widely in the south. The key organic compounds forming the distinctive aroma in red bayberry, are terpenoids, mainly β-caryophyllene and α-pinene. However, the key genes responsible for different terpenoids are still unknown. Here, transcriptome analysis on samples from four cultivars, during fruit development, with different terpenoid production, provided candidate genes for volatile organic compound (VOC) production. Terpene synthases (TPS) are key enzymes regulating terpenoid biosynthesis, and 34 TPS family members were identified in the red bayberry genome. MrTPS3 in chromosome 2 and MrTPS20 in chromosome 7 were identified as key genes regulating β-caryophyllene and α-pinene synthesis, respectively, by qRT-PCR. Subcellular localization and enzyme activity assay showed that MrTPS3 was responsible for β-caryophyllene (sesquiterpenes) production and MrTPS20 for α-pinene (monoterpenes). Notably, one amino acid substitution between dark color cultivars and light color cultivars resulted in the loss of function of MrTPS3, causing the different β-caryophyllene production. Our results lay the foundation to study volatile organic compounds (VOCs) in red bayberry and provide potential genes for molecular breeding.
Collapse
Affiliation(s)
- Yan Wang
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Qinsong Yang
- Key Laboratory for Silviculture and Conservation, Ministry of Education, Beijing Forestry University, Beijing, China
| | - Yifan Zhu
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Lan Zhao
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Pengju Ju
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Guoyun Wang
- Yuyao Agriculture Technology Extension Center, Ningbo, China
| | - Chaochao Zhou
- Yuyao Agriculture Technology Extension Center, Ningbo, China
| | - Changqing Zhu
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Huijuan Jia
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Yun Jiao
- Institute of Forestry, Ningbo Academy of Agricultural Science, Ningbo, China
| | - Huimin Jia
- College of Agronomy, Jiangxi Agricultural University, Nanchang, China
| | - Zhongshan Gao
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| |
Collapse
|
11
|
Shimada T, Endo T, Fujii H, Rodríguez A, Yoshioka T, Peña L, Omura M. Biological and molecular characterization of linalool-mediated field resistance against Xanthomonas citri subsp. citri in citrus trees. TREE PHYSIOLOGY 2021; 41:2171-2188. [PMID: 33960371 DOI: 10.1093/treephys/tpab063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 04/28/2021] [Indexed: 06/12/2023]
Abstract
The biological and molecular traits of the Ponkan mandarin (Citrus reticulata Blanco) were characterized in an investigation of the mechanisms of field resistance against citrus canker disease caused by the bacterial pathogen, Xanthomonas citri subsp. citri (Xcc). Various conventional citrus varieties that show diverse responses to Xcc were investigated, and the temporal changes in Xcc titer in response to linalool concentrations among the varieties revealed differences in Xcc proliferation trends in the inoculated leaves of the immune, field-resistant and susceptible varieties. In addition, increased linalool accumulation was inversely related to Xcc titers in the field-resistant varieties, which is likely caused by host--pathogen interactions. Quantitative trait locus (QTL) analysis using the F1 population of the resistant Ponkan mandarin and susceptible 'Harehime' ('E-647' × 'Miyagawa-wase') cultivar revealed that linalool accumulation and Xcc susceptibility QTLs overlapped. These results provide novel insights into the molecular mechanisms of linalool-mediated field resistance to Xcc, and suggest that high linalool concentrations in leaves has an antibacterial effect and becomes a candidate-biomarker target for citrus breeding to produce seedlings with linalool-mediated field resistance against Xcc.
Collapse
Affiliation(s)
- Takehiko Shimada
- Department of Citriculture, Institute of Fruit Tree and Tea Science (NIFTS), National Agriculture and Bio-oriented Research Organization (NARO), Okitsu nakachou 485-6, Shimizu-ku, Shizuoka 424-0292, Japan
| | - Tomoko Endo
- Department of Citriculture, Institute of Fruit Tree and Tea Science (NIFTS), National Agriculture and Bio-oriented Research Organization (NARO), Okitsu nakachou 485-6, Shimizu-ku, Shizuoka 424-0292, Japan
| | - Hiroshi Fujii
- Department of Citriculture, Institute of Fruit Tree and Tea Science (NIFTS), National Agriculture and Bio-oriented Research Organization (NARO), Okitsu nakachou 485-6, Shimizu-ku, Shizuoka 424-0292, Japan
| | - Ana Rodríguez
- Fundecitrus, Av. Dr. Adhemar de Barros Pereira, 201.14807-040 Vila Melhado, Araraquara, Sao Paulo, Brazil
- Department of Biotechnology and Plant Improvement of Cultivated Species, Instituto de Biologia Molecular y Celular de Plantas (IBMCP/CSIC-UPV), Ingeniero Fausto Elio, Valencia 46022, Spain
| | - Terutaka Yoshioka
- Department of Citriculture, Institute of Fruit Tree and Tea Science (NIFTS), National Agriculture and Bio-oriented Research Organization (NARO), Okitsu nakachou 485-6, Shimizu-ku, Shizuoka 424-0292, Japan
| | - Leandro Peña
- Fundecitrus, Av. Dr. Adhemar de Barros Pereira, 201.14807-040 Vila Melhado, Araraquara, Sao Paulo, Brazil
- Department of Biotechnology and Plant Improvement of Cultivated Species, Instituto de Biologia Molecular y Celular de Plantas (IBMCP/CSIC-UPV), Ingeniero Fausto Elio, Valencia 46022, Spain
| | - Mitsuo Omura
- Faculty of Agriculture, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka 422-8529, Japan
| |
Collapse
|
12
|
Rosenkranz M, Chen Y, Zhu P, Vlot AC. Volatile terpenes - mediators of plant-to-plant communication. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 108:617-631. [PMID: 34369010 DOI: 10.1111/tpj.15453] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 08/03/2021] [Indexed: 06/13/2023]
Abstract
Plants interact with other organisms employing volatile organic compounds (VOCs). The largest group of plant-released VOCs are terpenes, comprised of isoprene, monoterpenes, and sesquiterpenes. Mono- and sesquiterpenes are well-known communication compounds in plant-insect interactions, whereas the smallest, most commonly emitted terpene, isoprene, is rather assigned a function in combating abiotic stresses. Recently, it has become evident that different volatile terpenes also act as plant-to-plant signaling cues. Upon being perceived, specific volatile terpenes can sensitize distinct signaling pathways in receiver plant cells, which in turn trigger plant innate immune responses. This vastly extends the range of action of volatile terpenes, which not only protect plants from various biotic and abiotic stresses, but also convey information about environmental constraints within and between plants. As a result, plant-insect and plant-pathogen interactions, which are believed to influence each other through phytohormone crosstalk, are likely equally sensitive to reciprocal regulation via volatile terpene cues. Here, we review the current knowledge of terpenes as volatile semiochemicals and discuss why and how volatile terpenes make good signaling cues. We discuss how volatile terpenes may be perceived by plants, what are possible downstream signaling events in receiver plants, and how responses to different terpene cues might interact to orchestrate the net plant response to multiple stresses. Finally, we discuss how the signal can be further transmitted to the community level leading to a mutually beneficial community-scale response or distinct signaling with near kin.
Collapse
Affiliation(s)
- Maaria Rosenkranz
- Research Unit Environmental Simulation, Institute of Biochemical Plant Pathology, Helmholtz Zentrum Muenchen, 85764, Neuherberg, Germany
| | - Yuanyuan Chen
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum Muenchen, 85764, Neuherberg, Germany
| | - Peiyuan Zhu
- Research Unit Environmental Simulation, Institute of Biochemical Plant Pathology, Helmholtz Zentrum Muenchen, 85764, Neuherberg, Germany
| | - A Corina Vlot
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum Muenchen, 85764, Neuherberg, Germany
| |
Collapse
|
13
|
Feng S, Liu Z, Cheng J, Li Z, Tian L, Liu M, Yang T, Liu Y, Liu Y, Dai H, Yang Z, Zhang Q, Wang G, Zhang J, Jiang H, Wei A. Zanthoxylum-specific whole genome duplication and recent activity of transposable elements in the highly repetitive paleotetraploid Z. bungeanum genome. HORTICULTURE RESEARCH 2021; 8:205. [PMID: 34480029 PMCID: PMC8417289 DOI: 10.1038/s41438-021-00665-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/29/2021] [Accepted: 07/30/2021] [Indexed: 05/14/2023]
Abstract
Zanthoxylum bungeanum is an important spice and medicinal plant that is unique for its accumulation of abundant secondary metabolites, which create a characteristic aroma and tingling sensation in the mouth. Owing to the high proportion of repetitive sequences, high heterozygosity, and increased chromosome number of Z. bungeanum, the assembly of its chromosomal pseudomolecules is extremely challenging. Here, we present a genome sequence for Z. bungeanum, with a dramatically expanded size of 4.23 Gb, assembled into 68 chromosomes. This genome is approximately tenfold larger than that of its close relative Citrus sinensis. After the divergence of Zanthoxylum and Citrus, the lineage-specific whole-genome duplication event η-WGD approximately 26.8 million years ago (MYA) and the recent transposable element (TE) burst ~6.41 MYA account for the substantial genome expansion in Z. bungeanum. The independent Zanthoxylum-specific WGD event was followed by numerous fusion/fission events that shaped the genomic architecture. Integrative genomic and transcriptomic analyses suggested that prominent species-specific gene family expansions and changes in gene expression have shaped the biosynthesis of sanshools, terpenoids, and anthocyanins, which contribute to the special flavor and appearance of Z. bungeanum. In summary, the reference genome provides a valuable model for studying the impact of WGDs with recent TE activity on gene gain and loss and genome reconstruction and provides resources to accelerate Zanthoxylum improvement.
Collapse
Affiliation(s)
- Shijing Feng
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, China
- Research Centre for Engineering and Technology of Zanthoxylum State Forestry Administration, Yangling, Shaanxi, China
| | - Zhenshan Liu
- College of Life Science, Northwest A&F University, Yangling, Shaanxi, China
| | - Jian Cheng
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Zihe Li
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, Shanxi, China
| | - Lu Tian
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, China
- Research Centre for Engineering and Technology of Zanthoxylum State Forestry Administration, Yangling, Shaanxi, China
| | - Min Liu
- Biomarker Technologies Corporation, Beijing, China
| | - Tuxi Yang
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, China
- Research Centre for Engineering and Technology of Zanthoxylum State Forestry Administration, Yangling, Shaanxi, China
| | - Yulin Liu
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, China
- Research Centre for Engineering and Technology of Zanthoxylum State Forestry Administration, Yangling, Shaanxi, China
| | - Yonghong Liu
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, China
- Research Centre for Engineering and Technology of Zanthoxylum State Forestry Administration, Yangling, Shaanxi, China
| | - He Dai
- Biomarker Technologies Corporation, Beijing, China
| | - Zujun Yang
- Center for Information in Biology, College of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Qing Zhang
- Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Gang Wang
- Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jisen Zhang
- Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China.
| | - Huifeng Jiang
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.
| | - Anzhi Wei
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, China.
- Research Centre for Engineering and Technology of Zanthoxylum State Forestry Administration, Yangling, Shaanxi, China.
| |
Collapse
|
14
|
Wang Z, Sui Y, Li J, Tian X, Wang Q. Biological control of postharvest fungal decays in citrus: a review. Crit Rev Food Sci Nutr 2020; 62:861-870. [PMID: 33034197 DOI: 10.1080/10408398.2020.1829542] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Citrus (Citrus spp.) species produce a variety of fruits that are popular worldwide. Citrus fruits, however, are susceptible to postharvest decays caused by various pathogenic fungi, including Penicillium digitatum, Penicillium italicum, Geotrichum citri-aurantii, Aspergillus niger, and Aspergillus flavus. Decays resulting from infections by these pathogens cause a significant reduction in citrus quality and marketable yield. Biological control of postharvest decay utilizing antagonistic bacteria and fungi has been explored as a promising alternative to synthetic fungicides. In the present article, the isolation of antagonists utilized to manage postharvest decays in citrus is reviewed, and the mechanism of action including recent molecular and genomic studies is discussed as well. Several recently-postulated mechanisms of action, such as biofilm formation and an oxidative burst of reactive oxygen species have been highlighted. Improvements in biocontrol efficacy of antagonists through the use of a combination of microbial antagonists and additives are also reviewed. Biological control utilizing bacterial and yeast antagonists is a critical component of an integrated management approach for the sustainable development of the citrus industry. Further research will be needed, however, to explore and utilize beneficial microbial consortia and novel approaches like CRISPR/Cas technology for management of postharvest decays.
Collapse
Affiliation(s)
- Zhenshuo Wang
- Department of Plant Pathology, MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China.,Engineering Research Center of Plant Growth Regulators/Crop Chemical Control Research Center, Department of Agronomy, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Yuan Sui
- Chongqing Key Laboratory of Economic Plant Biotechnology, College of Forestry and Life Science/Institute of Special Plants, Chongqing University of Arts and Sciences, Yongchuan, Chongqing, China
| | - Jishun Li
- Ecology Institute, Qilu University of Technology Shandong, Academy of Sciences, Jinan, China
| | - Xiaoli Tian
- Engineering Research Center of Plant Growth Regulators/Crop Chemical Control Research Center, Department of Agronomy, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Qi Wang
- Department of Plant Pathology, MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| |
Collapse
|
15
|
Zeng Y, Wang MY, Hunter DC, Matich AJ, McAtee PA, Knäbel M, Hamiaux C, Popowski EA, Jaeger SR, Nieuwenhuizen NJ, Yauk YK, Atkinson RG. Sensory-Directed Genetic and Biochemical Characterization of Volatile Terpene Production in Kiwifruit. PLANT PHYSIOLOGY 2020; 183:51-66. [PMID: 32184346 PMCID: PMC7210626 DOI: 10.1104/pp.20.00186] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 03/01/2020] [Indexed: 05/12/2023]
Abstract
Terpene volatiles are found in many important fruit crops, but their relationship to flavor is poorly understood. Here, we demonstrate using sensory descriptive and discriminant analysis that 1,8-cineole contributes a key floral/eucalyptus note to the aroma of ripe 'Hort16A' kiwifruit (Actinidia chinensis). Two quantitative trait loci (QTLs) for 1,8-cineole production were identified on linkage groups 27 and 29a in a segregating A. chinensis population, with the QTL on LG29a colocating with a complex cluster of putative terpene synthase (TPS)-encoding genes. Transient expression in Nicotiana benthamiana and analysis of recombinant proteins expressed in Escherichia coli showed four genes in the cluster (AcTPS1a-AcTPS1d) encoded functional TPS enzymes, which produced predominantly sabinene, 1,8-cineole, geraniol, and springene, respectively. The terpene profile produced by AcTPS1b closely resembled the terpenes detected in red-fleshed A chinensis AcTPS1b expression correlated with 1,8-cineole content in developing/ripening fruit and also showed a positive correlation with 1,8-cineole content in the mapping population, indicating the basis for segregation is an expression QTL. Transient overexpression of AcTPS1b in Actinidia eriantha fruit confirmed this gene produced 1,8-cineole in Actinidia Structure-function analysis showed AcTPS1a and AcTPS1b are natural variants at key TPS catalytic site residues previously shown to change enzyme specificity in vitro. Together, our results indicate that AcTPS1b is a key gene for production of the signature flavor terpene 1,8-cineole in ripe kiwifruit. Using a sensory-directed strategy for compound identification provides a rational approach for applying marker-aided selection to improving flavor in kiwifruit as well as other fruits.
Collapse
Affiliation(s)
- Yunliu Zeng
- Key Laboratory of Horticultural Plant Biology, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, P.R. China
- The New Zealand Institute for Plant and Food Research Ltd. (PFR), Auckland 1142, New Zealand
| | - Mindy Y Wang
- The New Zealand Institute for Plant and Food Research Ltd. (PFR), Auckland 1142, New Zealand
| | - Denise C Hunter
- The New Zealand Institute for Plant and Food Research Ltd. (PFR), Auckland 1142, New Zealand
| | | | - Peter A McAtee
- The New Zealand Institute for Plant and Food Research Ltd. (PFR), Auckland 1142, New Zealand
| | | | - Cyril Hamiaux
- The New Zealand Institute for Plant and Food Research Ltd. (PFR), Auckland 1142, New Zealand
| | | | - Sara R Jaeger
- The New Zealand Institute for Plant and Food Research Ltd. (PFR), Auckland 1142, New Zealand
| | - Niels J Nieuwenhuizen
- The New Zealand Institute for Plant and Food Research Ltd. (PFR), Auckland 1142, New Zealand
| | - Yar-Khing Yauk
- The New Zealand Institute for Plant and Food Research Ltd. (PFR), Auckland 1142, New Zealand
| | - Ross G Atkinson
- The New Zealand Institute for Plant and Food Research Ltd. (PFR), Auckland 1142, New Zealand
| |
Collapse
|
16
|
Bao L, Gao H, Zheng Z, Zhao X, Zhang M, Jiao F, Su C, Qian Y. Integrated Transcriptomic and Un-Targeted Metabolomics Analysis Reveals Mulberry Fruit ( Morus atropurpurea) in Response to Sclerotiniose Pathogen Ciboria shiraiana Infection. Int J Mol Sci 2020; 21:E1789. [PMID: 32150966 PMCID: PMC7084804 DOI: 10.3390/ijms21051789] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/29/2020] [Accepted: 03/04/2020] [Indexed: 02/08/2023] Open
Abstract
Mulberry sclerotiniose caused by Ciboria shiraiana is a devastating disease of mulberry (Morus alba L.) fruit in Northwest China. At present, no disease-resistant varieties are used in production, as the molecular mechanisms of this disease are not well understood. In this study, to explore new prevention methods and provide direction for molecular breeding, transcriptomic sequencing and un-targeted metabolomics were performed on healthy (CK), early-stage diseased (HB1), and middle-stage diseased (HB2) mulberry fruits. Functional annotation, gene ontology, a Kyoto encyclopedia of genes and genomes (KEGG) analysis, and a Mapman analysis of the differentially expressed genes revealed differential regulation of genes related to plant hormone signal transduction, transcription factors, and phenylpropanoid biosynthesis. A correspondence between the transcript pattern and metabolite profile was observed in the phenylpropanoid biosynthesis pathway. It should be noted that the log2 ratio of eugenol (isoeugenol) in HB1 and HB2 are 85 times and 23 times higher than CK, respectively. Our study shows that phenylpropanoid biosynthesis may play an essential role in response to sclerotiniose pathogen infection and eugenol(isoeugenol) enrichment in mulberry fruit, which may provide a novel method for mulberry sclerotiniose control.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Chao Su
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; (L.B.); (H.G.); (Z.Z.); (X.Z.); (M.Z.); (F.J.)
| | - Yonghua Qian
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; (L.B.); (H.G.); (Z.Z.); (X.Z.); (M.Z.); (F.J.)
| |
Collapse
|
17
|
Souleyre EJF, Bowen JK, Matich AJ, Tomes S, Chen X, Hunt MB, Wang MY, Ileperuma NR, Richards K, Rowan DD, Chagné D, Atkinson RG. Genetic control of α-farnesene production in apple fruit and its role in fungal pathogenesis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 100:1148-1162. [PMID: 31436867 DOI: 10.1111/tpj.14504] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 07/28/2019] [Accepted: 08/05/2019] [Indexed: 05/05/2023]
Abstract
Terpenes are important compounds in plant trophic interactions. A meta-analysis of GC-MS data from a diverse range of apple (Malus × domestica) genotypes revealed that apple fruit produces a range of terpene volatiles, with the predominant terpene being the acyclic branched sesquiterpene (E,E)-α-farnesene. Four quantitative trait loci (QTLs) for α-farnesene production in ripe fruit were identified in a segregating 'Royal Gala' (RG) × 'Granny Smith' (GS) population with one major QTL on linkage group 10 co-locating with the MdAFS1 (α-farnesene synthase-1) gene. Three of the four QTLs were derived from the GS parent, which was consistent with GC-MS analysis of headspace and solvent-extracted terpenes showing that cold-treated GS apples produced higher levels of (E,E)-α-farnesene than RG. Transgenic RG fruit downregulated for MdAFS1 expression produced significantly lower levels of (E,E)-α-farnesene. To evaluate the role of (E,E)-α-farnesene in fungal pathogenesis, MdAFS1 RNA interference transgenic fruit and RG controls were inoculated with three important apple post-harvest pathogens [Colletotrichum acutatum, Penicillium expansum and Neofabraea alba (synonym Phlyctema vagabunda)]. From results obtained over four seasons, we demonstrate that reduced (E,E)-α-farnesene is associated with decreased disease initiation rates of all three pathogens. In each case, the infection rate was significantly reduced 7 days post-inoculation, although the size of successful lesions was comparable with infections on control fruit. These results indicate that (E,E)-α-farnesene production is likely to be an important factor involved in fungal pathogenesis in apple fruit.
Collapse
Affiliation(s)
- Edwige J F Souleyre
- The New Zealand Institute for Plant and Food Research Limited (PFR), Private Bag 92169, Auckland, 1142, New Zealand
| | - Joanna K Bowen
- The New Zealand Institute for Plant and Food Research Limited (PFR), Private Bag 92169, Auckland, 1142, New Zealand
| | - Adam J Matich
- PFR, Private Bag 11600, Palmerston North, 4442, New Zealand
| | - Sumathi Tomes
- The New Zealand Institute for Plant and Food Research Limited (PFR), Private Bag 92169, Auckland, 1142, New Zealand
| | - Xiuyin Chen
- The New Zealand Institute for Plant and Food Research Limited (PFR), Private Bag 92169, Auckland, 1142, New Zealand
| | - Martin B Hunt
- PFR, Private Bag 11600, Palmerston North, 4442, New Zealand
| | - Mindy Y Wang
- The New Zealand Institute for Plant and Food Research Limited (PFR), Private Bag 92169, Auckland, 1142, New Zealand
| | - Nadeesha R Ileperuma
- The New Zealand Institute for Plant and Food Research Limited (PFR), Private Bag 92169, Auckland, 1142, New Zealand
| | - Kate Richards
- The New Zealand Institute for Plant and Food Research Limited (PFR), Private Bag 92169, Auckland, 1142, New Zealand
| | - Daryl D Rowan
- PFR, Private Bag 11600, Palmerston North, 4442, New Zealand
| | - David Chagné
- PFR, Private Bag 11600, Palmerston North, 4442, New Zealand
| | - Ross G Atkinson
- The New Zealand Institute for Plant and Food Research Limited (PFR), Private Bag 92169, Auckland, 1142, New Zealand
| |
Collapse
|
18
|
Hammerbacher A, Coutinho TA, Gershenzon J. Roles of plant volatiles in defence against microbial pathogens and microbial exploitation of volatiles. PLANT, CELL & ENVIRONMENT 2019; 42:2827-2843. [PMID: 31222757 DOI: 10.1111/pce.13602] [Citation(s) in RCA: 140] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 06/10/2019] [Accepted: 06/11/2019] [Indexed: 05/22/2023]
Abstract
Plants emit a large variety of volatile organic compounds during infection by pathogenic microbes, including terpenes, aromatics, nitrogen-containing compounds, and fatty acid derivatives, as well as the volatile plant hormones, methyl jasmonate, and methyl salicylate. Given the general antimicrobial activity of plant volatiles and the timing of emission following infection, these compounds have often been assumed to function in defence against pathogens without much solid evidence. In this review, we critically evaluate current knowledge on the toxicity of volatiles to fungi, bacteria, and viruses and their role in plant resistance as well as how they act to induce systemic resistance in uninfected parts of the plant and in neighbouring plants. We also discuss how microbes can detoxify plant volatiles and exploit them as nutrients, attractants for insect vectors, and inducers of volatile emissions, which stimulate immune responses that make plants more susceptible to infection. Although much more is known about plant volatile-herbivore interactions, knowledge of volatile-microbe interactions is growing and it may eventually be possible to harness plant volatiles to reduce disease in agriculture and forestry. Future research in this field can be facilitated by making use of the analytical and molecular tools generated by the prolific research on plant-herbivore interactions.
Collapse
Affiliation(s)
- Almuth Hammerbacher
- Department of Zoology and Entomology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, 0002, South Africa
| | - Teresa A Coutinho
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, Centre for Microbial Ecology and Genetics, University of Pretoria, Pretoria, 0002, South Africa
| | - Jonathan Gershenzon
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena, 07745, Germany
| |
Collapse
|
19
|
Transcriptomic Analysis of Orange Fruit Treated with Pomegranate Peel Extract (PGE). PLANTS 2019; 8:plants8040101. [PMID: 30999604 PMCID: PMC6524005 DOI: 10.3390/plants8040101] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 04/13/2019] [Accepted: 04/15/2019] [Indexed: 12/18/2022]
Abstract
A Pomegranate Peel Extract (PGE) has been proposed as a natural antifungal substance with a wide range of activity against plant diseases. Previous studies showed that the extract has a direct antimicrobial activity and can elicit resistance responses in plant host tissues. In the present study, the transcriptomic response of orange fruit toward PGE treatments was evaluated. RNA-seq analyses, conducted on wounded fruits 0, 6, and 24 h after PGE applications, showed a significantly different transcriptome in treated oranges as compared to control samples. The majority (273) of the deferentially expressed genes (DEGs) were highly up-regulated compared to only 8 genes that were down-regulated. Gene Ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) pathway enrichment analysis showed the involvement of 1233 gene ontology (GO) terms and 35 KEGG metabolic pathways. Among these, important defense pathways were induced and antibiotic biosynthesis was the most enriched one. These findings may explain the underlying preventive and curative activity of PGE against plant diseases.
Collapse
|
20
|
Tao N, Chen Y, Wu Y, Wang X, Li L, Zhu A. The terpene limonene induced the green mold of citrus fruit through regulation of reactive oxygen species (ROS) homeostasis in Penicillium digitatum spores. Food Chem 2019; 277:414-422. [DOI: 10.1016/j.foodchem.2018.10.142] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 10/30/2018] [Accepted: 10/30/2018] [Indexed: 12/17/2022]
|
21
|
Review of toxicological assessment of d-limonene, a food and cosmetics additive. Food Chem Toxicol 2018; 120:668-680. [DOI: 10.1016/j.fct.2018.07.052] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 07/22/2018] [Accepted: 07/28/2018] [Indexed: 11/23/2022]
|
22
|
Koutouan C, Clerc VL, Baltenweck R, Claudel P, Halter D, Hugueney P, Hamama L, Suel A, Huet S, Merlet MHB, Briard M. Link between carrot leaf secondary metabolites and resistance to Alternaria dauci. Sci Rep 2018; 8:13746. [PMID: 30213972 PMCID: PMC6137067 DOI: 10.1038/s41598-018-31700-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 08/21/2018] [Indexed: 11/08/2022] Open
Abstract
Alternaria Leaf Blight (ALB), caused by the fungus Alternaria dauci, is the most damaging foliar disease affecting carrots (Daucus carota). In order to identify compounds potentially linked to the resistance to A. dauci, we have used a combination of targeted and non-targeted metabolomics to compare the leaf metabolome of four carrot genotypes with different resistance levels. Targeted analyses were focused on terpene volatiles, while total leaf methanolic extracts were subjected to non-targeted analyses using liquid chromatography couple to high-resolution mass spectrometry. Differences in the accumulation of major metabolites were highlighted among genotypes and some of these metabolites were identified as potentially involved in resistance or susceptibility. A bulk segregant analysis on F3 progenies obtained from a cross between one of the resistant genotypes and a susceptible one, confirmed or refuted the hypothesis that the metabolites differentially accumulated by these two parents could be linked to resistance.
Collapse
Affiliation(s)
- Claude Koutouan
- IRHS, Université d'Angers, Agrocampus-Ouest, INRA, SFR 4207 QuaSaV, 49071, Beaucouzé, France
| | - Valérie Le Clerc
- IRHS, Université d'Angers, Agrocampus-Ouest, INRA, SFR 4207 QuaSaV, 49071, Beaucouzé, France.
| | | | | | - David Halter
- SVQV, Université de Strasbourg, INRA, 68000 Colmar, France
| | | | - Latifa Hamama
- IRHS, Université d'Angers, Agrocampus-Ouest, INRA, SFR 4207 QuaSaV, 49071, Beaucouzé, France
| | - Anita Suel
- IRHS, Université d'Angers, Agrocampus-Ouest, INRA, SFR 4207 QuaSaV, 49071, Beaucouzé, France
| | - Sébastien Huet
- IRHS, Université d'Angers, Agrocampus-Ouest, INRA, SFR 4207 QuaSaV, 49071, Beaucouzé, France
| | | | - Mathilde Briard
- IRHS, Université d'Angers, Agrocampus-Ouest, INRA, SFR 4207 QuaSaV, 49071, Beaucouzé, France
| |
Collapse
|
23
|
Rodríguez A, Kava V, Latorre‐García L, da Silva GJ, Pereira RG, Glienke C, Ferreira‐Maba LS, Vicent A, Shimada T, Peña L. Engineering d-limonene synthase down-regulation in orange fruit induces resistance against the fungus Phyllosticta citricarpa through enhanced accumulation of monoterpene alcohols and activation of defence. MOLECULAR PLANT PATHOLOGY 2018; 19:2077-2093. [PMID: 29573543 PMCID: PMC6638045 DOI: 10.1111/mpp.12681] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 01/29/2018] [Accepted: 03/15/2018] [Indexed: 05/27/2023]
Abstract
Terpene volatiles play an important role in the interactions between specialized pathogens and fruits. Citrus black spot (CBS), caused by the fungus Phyllosticta citricarpa, is associated with crop losses in different citrus-growing areas worldwide. The pathogen may infect the fruit for 20-24 weeks after petal fall, but the typical hard spot symptoms appear when the fruit have almost reached maturity, caused by fungal colonization and the induction of cell lysis around essential oil cavities. d-Limonene represents approximately 95% of the total oil gland content in mature orange fruit. Herein, we investigated whether orange fruit with reduced d-limonene content in peel oil glands via an antisense (AS) approach may affect fruit interaction with P. citricarpa relative to empty vector (EV) controls. AS fruit showed enhanced resistance to the fungus relative to EV fruit. Because of the reduced d-limonene content, an over-accumulation of linalool and other monoterpene alcohols was found in AS relative to EV fruit. A global gene expression analysis at 2 h and 8 days after inoculation with P. citricarpa revealed the activation of defence responses in AS fruit via the up-regulation of different pathogenesis-related (PR) protein genes, probably as a result of enhanced constitutive accumulation of linalool and other alcohols. When assayed in vitro and in vivo, monoterpene alcohols at the concentrations present in AS fruit showed strong antifungal activity. We show here that terpene engineering in fruit peels could be a promising method for the development of new strategies to obtain resistance to fruit diseases.
Collapse
Affiliation(s)
- Ana Rodríguez
- Laboratório de Biotecnologia Vegetal, Fundo de Defesa da Citricultura (Fundecitrus)AraraquaraSão Paulo 14807–040Brazil
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas (IBMCP‐CSIC)Valencia 46022Spain
| | - Vanessa Kava
- Depto. de Genética, Universidade Federal do ParanáCuritibaParaná 81.531‐980Brazil
| | - Lorena Latorre‐García
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas (IBMCP‐CSIC)Valencia 46022Spain
| | - Geraldo J. da Silva
- Laboratório de Biotecnologia Vegetal, Fundo de Defesa da Citricultura (Fundecitrus)AraraquaraSão Paulo 14807–040Brazil
| | - Rosana G. Pereira
- Laboratório de Biotecnologia Vegetal, Fundo de Defesa da Citricultura (Fundecitrus)AraraquaraSão Paulo 14807–040Brazil
| | - Chirlei Glienke
- Depto. de Genética, Universidade Federal do ParanáCuritibaParaná 81.531‐980Brazil
| | | | - Antonio Vicent
- Centro de Protección Vegetal y Biotecnología, Instituto Valenciano de Investigaciones Agrarias (IVIA)Moncada, Valencia 46113Spain
| | - Takehiko Shimada
- National Institute of Fruit Tree Science (NIFTS), National Agriculture and Bio‐oriented Research Organization (NARO)Shizuoka, Shizuoka 424‐0292Japan
| | - Leandro Peña
- Laboratório de Biotecnologia Vegetal, Fundo de Defesa da Citricultura (Fundecitrus)AraraquaraSão Paulo 14807–040Brazil
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas (IBMCP‐CSIC)Valencia 46022Spain
| |
Collapse
|
24
|
He Y, Han J, Liu R, Ding Y, Wang J, Sun L, Yang X, Zeng Y, Wen W, Xu J, Zhang H, Yan X, Chen Z, Gu Z, Chen H, Tang H, Deng X, Cheng Y. Integrated transcriptomic and metabolomic analyses of a wax deficient citrus mutant exhibiting jasmonic acid-mediated defense against fungal pathogens. HORTICULTURE RESEARCH 2018; 5:43. [PMID: 30083358 PMCID: PMC6068166 DOI: 10.1038/s41438-018-0051-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 04/03/2018] [Accepted: 04/30/2018] [Indexed: 05/05/2023]
Abstract
Naturally, resistant crop germplasms are important resources for managing the issues of agricultural product safety and environment deterioration. We found a spontaneous mutant of 'Newhall' navel orange (Citrus sinensis Osbeck) (MT) with broad-spectrum protections against fungal pathogens in the orchard, postharvest-storage, and artificial inoculation conditions. To understand the defense mechanism of MT fruit, we constructed a genome-scale metabolic network that integrated metabolome and transcriptome datasets. The coordinated transcriptomic and metabolic data were enriched in two sub-networks, showing the decrease in very long chain fatty acid (by 41.53%) and cuticular wax synthesis (by 81.34%), and increase in the synthesis of jasmonic acid (JA) (by 95.23%) and JA-induced metabolites such as 5-dimethylnobietin (by 28.37%) in MT. Furthermore, cytological and biochemical analyses confirmed that the response to fungal infection in MT was independent of wax deficiency and was correlated with the levels of jasmonates, and the expression of plant defensin gene PDF1.2. Results of exogenous application of MeJA and JA inhibitors such as propyl gallate proved that JA-mediated defense contributes to the strong tolerance against pathogens in MT. Our results indicated that jasmonate biosynthesis and signaling are stimulated by the fatty acid redirection of MT, and participate in the tolerance of pathogenic fungi.
Collapse
Affiliation(s)
- Yizhong He
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070 China
| | - Jingwen Han
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070 China
| | - Runsheng Liu
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070 China
| | - Yuduan Ding
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070 China
| | - Jinqiu Wang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070 China
| | - Li Sun
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070 China
| | - Xiaoming Yang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070 China
| | - Yunliu Zeng
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070 China
| | - Weiwei Wen
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070 China
| | - Juan Xu
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070 China
| | - Hongming Zhang
- Institute of Citrus Science Research of Ganzhou, Ganzhou, 341000 Jiangxi Province China
| | - Xiang Yan
- Institute of Citrus Science Research of Ganzhou, Ganzhou, 341000 Jiangxi Province China
| | - Zhaoxing Chen
- Institute of Citrus Science Research of Ganzhou, Ganzhou, 341000 Jiangxi Province China
| | - Zuliang Gu
- Research Center of Navel Orange Planting Technology of Anyuan County, Ganzhou, 341000 Jiangxi Province China
| | - Hong Chen
- Research Center of Navel Orange Planting Technology of Anyuan County, Ganzhou, 341000 Jiangxi Province China
| | - Huanqing Tang
- Research Center of Navel Orange Planting Technology of Anyuan County, Ganzhou, 341000 Jiangxi Province China
| | - Xiuxin Deng
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070 China
| | - Yunjiang Cheng
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070 China
| |
Collapse
|
25
|
Zhu M, Lin J, Ye J, Wang R, Yang C, Gong J, Liu Y, Deng C, Liu P, Chen C, Cheng Y, Deng X, Zeng Y. A comprehensive proteomic analysis of elaioplasts from citrus fruits reveals insights into elaioplast biogenesis and function. HORTICULTURE RESEARCH 2018; 5:6. [PMID: 29423236 PMCID: PMC5802726 DOI: 10.1038/s41438-017-0014-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Revised: 12/07/2017] [Accepted: 12/10/2017] [Indexed: 05/02/2023]
Abstract
Elaioplasts of citrus peel are colorless plastids which accumulate significant amounts of terpenes. However, other functions of elaioplasts have not been fully characterized to date. Here, a LC-MS/MS shotgun technology was applied to identify the proteins from elaioplasts that were highly purified from young fruit peel of kumquat. A total of 655 putative plastid proteins were identified from elaioplasts according to sequence homology in silico and manual curation. Based on functional classification via Mapman, ~50% of the identified proteins fall into six categories, including protein metabolism, transport, and lipid metabolism. Of note, elaioplasts contained ATP synthase and ADP, ATP carrier proteins at high abundance, indicating important roles for ATP generation and transport in elaioplast biogenesis. Additionally, a comparison of proteins between citrus chromoplast and elaioplast proteomes suggest a high level of functional conservation. However, some distinctive protein profiles were also observed in both types of plastids notably for isoprene biosynthesis in elaioplasts, and carotenoid metabolism in chromoplasts. In conclusion, this comprehensive proteomic study provides new insights into the major metabolic pathways and unique characteristics of elaioplasts and chromoplasts in citrus fruit.
Collapse
Affiliation(s)
- Man Zhu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070 China
- Institute of Citrus Science, Huazhong Agricultural University, Wuhan, 430070 China
| | - Jiajia Lin
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070 China
- Institute of Citrus Science, Huazhong Agricultural University, Wuhan, 430070 China
| | - Junli Ye
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070 China
- Institute of Citrus Science, Huazhong Agricultural University, Wuhan, 430070 China
| | - Rui Wang
- Shanghai Applied Protein Technology Co. Ltd, Shanghai, 200233 China
| | - Chao Yang
- Shanghai Applied Protein Technology Co. Ltd, Shanghai, 200233 China
| | - Jinli Gong
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070 China
- Institute of Citrus Science, Huazhong Agricultural University, Wuhan, 430070 China
| | - Yun Liu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070 China
- Institute of Citrus Science, Huazhong Agricultural University, Wuhan, 430070 China
| | - Chongling Deng
- Guangxi Citrus Research Institute, Guangxi, 541004 China
| | - Ping Liu
- Guangxi Citrus Research Institute, Guangxi, 541004 China
| | - Chuanwu Chen
- Guangxi Citrus Research Institute, Guangxi, 541004 China
| | - Yunjiang Cheng
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070 China
- Institute of Citrus Science, Huazhong Agricultural University, Wuhan, 430070 China
| | - Xiuxin Deng
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070 China
- Institute of Citrus Science, Huazhong Agricultural University, Wuhan, 430070 China
| | - Yunliu Zeng
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070 China
- Institute of Citrus Science, Huazhong Agricultural University, Wuhan, 430070 China
| |
Collapse
|
26
|
Riedlmeier M, Ghirardo A, Wenig M, Knappe C, Koch K, Georgii E, Dey S, Parker JE, Schnitzler JP, Vlot AC. Monoterpenes Support Systemic Acquired Resistance within and between Plants. THE PLANT CELL 2017; 29:1440-1459. [PMID: 28536145 PMCID: PMC5502447 DOI: 10.1105/tpc.16.00898] [Citation(s) in RCA: 175] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 05/08/2017] [Accepted: 05/19/2017] [Indexed: 05/19/2023]
Abstract
This study investigates the role of volatile organic compounds in systemic acquired resistance (SAR), a salicylic acid (SA)-associated, broad-spectrum immune response in systemic, healthy tissues of locally infected plants. Gas chromatography coupled to mass spectrometry analyses of SAR-related emissions of wild-type and non-SAR-signal-producing mutant plants associated SAR with monoterpene emissions. Headspace exposure of Arabidopsis thaliana to a mixture of the bicyclic monoterpenes α-pinene and β-pinene induced defense, accumulation of reactive oxygen species, and expression of SA- and SAR-related genes, including the SAR regulatory AZELAIC ACID INDUCED1 (AZI1) gene and three of its paralogs. Pinene-induced resistance was dependent on SA biosynthesis and signaling and on AZI1 Arabidopsis geranylgeranyl reductase1 mutants with reduced monoterpene biosynthesis were SAR-defective but mounted normal local resistance and methyl salicylate-induced defense responses, suggesting that monoterpenes act in parallel with SA The volatile emissions from SAR signal-emitting plants induced defense in neighboring plants, and this was associated with the presence of α-pinene, β-pinene, and camphene in the emissions of the "sender" plants. Our data suggest that monoterpenes, particularly pinenes, promote SAR, acting through ROS and AZI1, and likely function as infochemicals in plant-to-plant signaling, thus allowing defense signal propagation between neighboring plants.
Collapse
Affiliation(s)
- Marlies Riedlmeier
- Helmholtz Zentrum Muenchen, Department of Environmental Sciences, Institute of Biochemical Plant Pathology, D-85764 Neuherberg, Germany
| | - Andrea Ghirardo
- Helmholtz Zentrum Muenchen, Institute of Biochemical Plant Pathology, Research Unit Environmental Simulation, D-85764 Neuherberg, Germany
| | - Marion Wenig
- Helmholtz Zentrum Muenchen, Department of Environmental Sciences, Institute of Biochemical Plant Pathology, D-85764 Neuherberg, Germany
| | - Claudia Knappe
- Helmholtz Zentrum Muenchen, Department of Environmental Sciences, Institute of Biochemical Plant Pathology, D-85764 Neuherberg, Germany
| | - Kerstin Koch
- Helmholtz Zentrum Muenchen, Institute of Biochemical Plant Pathology, Research Unit Environmental Simulation, D-85764 Neuherberg, Germany
| | - Elisabeth Georgii
- Helmholtz Zentrum Muenchen, Department of Environmental Sciences, Institute of Biochemical Plant Pathology, D-85764 Neuherberg, Germany
| | - Sanjukta Dey
- Helmholtz Zentrum Muenchen, Department of Environmental Sciences, Institute of Biochemical Plant Pathology, D-85764 Neuherberg, Germany
| | - Jane E Parker
- Max Planck Institute for Plant Breeding Research, Department of Plant-Microbe Interactions, D-50829 Cologne, Germany
| | - Jörg-Peter Schnitzler
- Helmholtz Zentrum Muenchen, Institute of Biochemical Plant Pathology, Research Unit Environmental Simulation, D-85764 Neuherberg, Germany
| | - A Corina Vlot
- Helmholtz Zentrum Muenchen, Department of Environmental Sciences, Institute of Biochemical Plant Pathology, D-85764 Neuherberg, Germany
| |
Collapse
|
27
|
Shimada T, Endo T, Rodríguez A, Fujii H, Goto S, Matsuura T, Hojo Y, Ikeda Y, Mori IC, Fujikawa T, Peña L, Omura M. Ectopic accumulation of linalool confers resistance to Xanthomonas citri subsp. citri in transgenic sweet orange plants. TREE PHYSIOLOGY 2017; 37:654-664. [PMID: 28131994 DOI: 10.1093/treephys/tpw134] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 01/05/2017] [Indexed: 05/21/2023]
Abstract
In order to clarify whether high linalool content in citrus leaves alone induces strong field resistance to citrus canker caused by Xanthomonas citri subsp. citri (Xcc), and to assess whether this trait can be transferred to a citrus type highly sensitive to the bacterium, transgenic 'Hamlin' sweet orange (Citrus sinensis L. Osbeck) plants over-expressing a linalool synthase gene (CuSTS3-1) were generated. Transgenic lines (LIL) with the highest linalool content showed strong resistance to citrus canker when spray inoculated with the bacterium. In LIL plants inoculated by wounding (multiple-needle inoculation), the linalool level was correlated with the repression of the bacterial titer and up-regulation of defense-related genes. The exogenous application of salicylic acid, methyl jasmonate or linalool triggered responses similar to those constitutively induced in LIL plants. The linalool content in Ponkan mandarin leaves was significantly higher than that of leaves from six other representative citrus genotypes with different susceptibilities to Xcc. We propose that linalool-mediated resistance might be unique to citrus tissues accumulating large amounts of volatile organic compounds in oil cells. Linalool might act not only as a direct antibacterial agent, but also as a signal molecule involved in triggering a non-host resistance response against Xcc.
Collapse
Affiliation(s)
- Takehiko Shimada
- Institute of Fruit Tree and Tea Science (NIFTS), National Agriculture and Bio-Oriented Research Organization (NARO), Shizuoka 424-0292, Japan
| | - Tomoko Endo
- Institute of Fruit Tree and Tea Science (NIFTS), National Agriculture and Bio-Oriented Research Organization (NARO), Shizuoka 424-0292, Japan
| | - Ana Rodríguez
- Fundecitrus, Av. Dr. Adhemar de Barros Pereira, 201, 14807-040 Vila Melhado, Araraquara, Sao Paulo, Brazil
- Instituto de Biología Molecular y Celular de Plantas (IBMCP/CSIC-UPV), Ingeniero Fausto Elio, Valencia 46022, Spain
| | - Hiroshi Fujii
- Institute of Fruit Tree and Tea Science (NIFTS), National Agriculture and Bio-Oriented Research Organization (NARO), Shizuoka 424-0292, Japan
| | - Shingo Goto
- Institute of Fruit Tree and Tea Science (NIFTS), National Agriculture and Bio-Oriented Research Organization (NARO), Shizuoka 424-0292, Japan
| | - Takakazu Matsuura
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki 710-0046, Japan
| | - Yuko Hojo
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki 710-0046, Japan
| | - Yoko Ikeda
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki 710-0046, Japan
| | - Izumi C Mori
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki 710-0046, Japan
| | - Takashi Fujikawa
- Institute of Fruit Tree and Tea Science (NIFTS), National Agriculture and Bio-Oriented Research Organization (NARO), Shizuoka 424-0292, Japan
| | - Leandro Peña
- Fundecitrus, Av. Dr. Adhemar de Barros Pereira, 201, 14807-040 Vila Melhado, Araraquara, Sao Paulo, Brazil
- Instituto de Biología Molecular y Celular de Plantas (IBMCP/CSIC-UPV), Ingeniero Fausto Elio, Valencia 46022, Spain
| | - Mitsuo Omura
- Faculty of Agriculture, Shizuoka University, Shizuoka 422-8529, Japan
| |
Collapse
|
28
|
Alquézar B, Rodríguez A, de la Peña M, Peña L. Genomic Analysis of Terpene Synthase Family and Functional Characterization of Seven Sesquiterpene Synthases from Citrus sinensis. FRONTIERS IN PLANT SCIENCE 2017; 8:1481. [PMID: 28883829 PMCID: PMC5573811 DOI: 10.3389/fpls.2017.01481] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 08/09/2017] [Indexed: 05/17/2023]
Abstract
Citrus aroma and flavor, chief traits of fruit quality, are derived from their high content in essential oils of most plant tissues, including leaves, stems, flowers, and fruits. Accumulated in secretory cavities, most components of these oils are volatile terpenes. They contribute to defense against herbivores and pathogens, and perhaps also protect tissues against abiotic stress. In spite of their importance, our understanding of the physiological, biochemical, and genetic regulation of citrus terpene volatiles is still limited. The availability of the sweet orange (Citrus sinensis L. Osbeck) genome sequence allowed us to characterize for the first time the terpene synthase (TPS) family in a citrus type. CsTPS is one of the largest angiosperm TPS families characterized so far, formed by 95 loci from which just 55 encode for putative functional TPSs. All TPS angiosperm families, TPS-a, TPS-b, TPS-c, TPS-e/f, and TPS-g were represented in the sweet orange genome, with 28, 18, 2, 2, and 5 putative full length genes each. Additionally, sweet orange β-farnesene synthase, (Z)-β-cubebene/α-copaene synthase, two β-caryophyllene synthases, and three multiproduct enzymes yielding β-cadinene/α-copaene, β-elemene, and β-cadinene/ledene/allo-aromandendrene as major products were identified, and functionally characterized via in vivo recombinant Escherichia coli assays.
Collapse
Affiliation(s)
- Berta Alquézar
- Laboratório de Biotecnologia Vegetal, Pesquisa y Desenvolvimento, Fundo de Defesa da CitriculturaAraraquara, Brazil
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas and Universidad Politécnica de ValenciaValencia, Spain
| | - Ana Rodríguez
- Laboratório de Biotecnologia Vegetal, Pesquisa y Desenvolvimento, Fundo de Defesa da CitriculturaAraraquara, Brazil
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas and Universidad Politécnica de ValenciaValencia, Spain
| | - Marcos de la Peña
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas and Universidad Politécnica de ValenciaValencia, Spain
| | - Leandro Peña
- Laboratório de Biotecnologia Vegetal, Pesquisa y Desenvolvimento, Fundo de Defesa da CitriculturaAraraquara, Brazil
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas and Universidad Politécnica de ValenciaValencia, Spain
- *Correspondence: Leandro Peña
| |
Collapse
|
29
|
Rodríguez A, Peris JE, Redondo A, Shimada T, Costell E, Carbonell I, Rojas C, Peña L. Impact of d-limonene synthase up- or down-regulation on sweet orange fruit and juice odor perception. Food Chem 2016; 217:139-150. [PMID: 27664619 DOI: 10.1016/j.foodchem.2016.08.076] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 08/21/2016] [Accepted: 08/23/2016] [Indexed: 11/28/2022]
Abstract
Citrus fruits are characterized by a complex mixture of volatiles making up their characteristic aromas, being the d-limonene the most abundant one. However, its role on citrus fruit and juice odor is controversial. Transgenic oranges engineered for alterations in the presence or concentration of few related chemical groups enable asking precise questions about their contribution to overall odor, either positive or negative, as perceived by the human nose. Here, either down- or up-regulation of a d-limonene synthase allowed us to infer that a decrease of as much as 51 times in d-limonene and an increase of as much as 3.2 times in linalool in juice were neutral for odor perception while an increase of only 3 times in ethyl esters stimulated the preference of 66% of the judges. The ability to address these questions presents exciting opportunities to understand the basic principles of selection of food.
Collapse
Affiliation(s)
- Ana Rodríguez
- Departamento de Biotecnología y Mejora Vegetal de Especies Cultivadas, Instituto de Biología Molecular y Celular de Plantas - Consejo Superior de Investigaciones Científicas (IBMCP-CSIC), Av. Ingeniero Fausto Elio s/n. 46022 Valencia, Spain; Fundo de Defesa da Citricultura, 14807-040 Vila Melhado, Araraquara, São Paulo, Brazil
| | - Josep E Peris
- Departamento de Biotecnología y Mejora Vegetal de Especies Cultivadas, Instituto de Biología Molecular y Celular de Plantas - Consejo Superior de Investigaciones Científicas (IBMCP-CSIC), Av. Ingeniero Fausto Elio s/n. 46022 Valencia, Spain; Fundo de Defesa da Citricultura, 14807-040 Vila Melhado, Araraquara, São Paulo, Brazil
| | - Ana Redondo
- Centro de Protección Vegetal y Biotecnología, Instituto Valenciano de Investigaciones Agrarias (IVIA), carretera Moncada-Náquera Km. 4.5, 46113 Moncada, Valencia, Spain
| | - Takehiko Shimada
- National Institute of Fruit Tree Science (NIFTS), National Agriculture and Bio-oriented Research Organization (NARO), Sizuoka, Shizuoka 424-0292, Japan
| | - Elvira Costell
- Departamento de análisis sensorial, Instituto de Agroquímica y Tecnología de Alimentos - Consejo Superior de Investigaciones Científicas (IATA-CSIC), C/Catedrático Agustín Escardino Benlloch, 7, 46980 Paterna, Valencia, Spain
| | - Inmaculada Carbonell
- Departamento de análisis sensorial, Instituto de Agroquímica y Tecnología de Alimentos - Consejo Superior de Investigaciones Científicas (IATA-CSIC), C/Catedrático Agustín Escardino Benlloch, 7, 46980 Paterna, Valencia, Spain
| | - Cristina Rojas
- Centro de Tecnología Poscosecha, Instituto Valenciano de Investigaciones Agrarias (IVIA), carretera Moncada-Náquera Km. 4.5, 46113 Moncada, Valencia, Spain
| | - Leandro Peña
- Departamento de Biotecnología y Mejora Vegetal de Especies Cultivadas, Instituto de Biología Molecular y Celular de Plantas - Consejo Superior de Investigaciones Científicas (IBMCP-CSIC), Av. Ingeniero Fausto Elio s/n. 46022 Valencia, Spain; Fundo de Defesa da Citricultura, 14807-040 Vila Melhado, Araraquara, São Paulo, Brazil.
| |
Collapse
|
30
|
Lee GW, Chung MS, Kang M, Chung BY, Lee S. Direct suppression of a rice bacterial blight (Xanthomonas oryzae pv. oryzae) by monoterpene (S)-limonene. PROTOPLASMA 2016; 253:683-690. [PMID: 26530963 DOI: 10.1007/s00709-015-0904-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 10/21/2015] [Indexed: 06/05/2023]
Abstract
Rice bacterial blight, caused by Xanthomonas oryzae pv. oryzae (Xoo), is a severe disease of rice plants. Upon pathogen infection, rice biosynthesizes phytoalexins, including diterpenoids such as momilactones, phytocassanes, and oryzalexins. However, information on headspace volatiles in response to Xoo infection is limited. We have examined headspace volatile terpenes, induced by the infection of Xoo, and investigated their biological roles in the rice plant. Monoterpenes α-thujene, α-pinene, sabinene, myrcene, α-terpene, and (S)-limonene and sesquiterpenes cyclosativene, α-copaene, and β-elemene were detected from 1-week-old Xoo-infected rice seedlings, by solid-phase microextraction-gas chromatography-mass spectrometry. All monoterpenes were constitutively released from rice seedlings before Xoo infection. However, (S)-limonene emission was further elicited after exposure of the seedlings to Xoo in coincidence with upregulation of limonene synthase gene (OsTPS20) transcripts. Only the stereospecific (S)-limonene [and not (R)-limonene or other monoterpenes] severely inhibited Xoo growth, as confirmed by disc diffusion and liquid culture assays. Rice seedlings showed suppressed pathogenic symptoms suggestive of resistance to Xoo infection after foliar treatment with (S)-limonene. Collectively, our findings suggest that (S)-limonene is a volatile phytoanticipin, which plays a significant role in suppressing Xoo growth in rice seedlings.
Collapse
Affiliation(s)
- Gun Woong Lee
- Research Division for Biotechnology, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 29 Geumgu-gil, Jeongeup-si, Jeollabuk-do, 580-185, Republic of Korea
| | - Moon-Soo Chung
- Research Division for Biotechnology, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 29 Geumgu-gil, Jeongeup-si, Jeollabuk-do, 580-185, Republic of Korea
| | - Mihyung Kang
- Crop Foundation Research Division, National Institute of Crop Science, 181 Hyeoksin-ro, Iseo-myeon, Jeollabuk-do, 565-851, Republic of Korea
| | - Byung Yeoup Chung
- Research Division for Biotechnology, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 29 Geumgu-gil, Jeongeup-si, Jeollabuk-do, 580-185, Republic of Korea.
| | - Sungbeom Lee
- Research Division for Biotechnology, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 29 Geumgu-gil, Jeongeup-si, Jeollabuk-do, 580-185, Republic of Korea.
- Department of Radiation Biotechnology and Applied Radioisotope Science, University of Science and Technology, 113 Gwahak-ro, Yuseong-gu, Daejeon, 305-600, Republic of Korea.
| |
Collapse
|
31
|
Omura M, Shimada T. Citrus breeding, genetics and genomics in Japan. BREEDING SCIENCE 2016; 66:3-17. [PMID: 27069387 PMCID: PMC4780800 DOI: 10.1270/jsbbs.66.3] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 12/09/2015] [Indexed: 05/03/2023]
Abstract
Citrus is one of the most cultivated fruits in the world, and satsuma mandarin (Citrus unshiu Marc.) is a major cultivated citrus in Japan. Many excellent cultivars derived from satsuma mandarin have been released through the improvement of mandarins using a conventional breeding method. The citrus breeding program is a lengthy process owing to the long juvenility, and it is predicted that marker-assisted selection (MAS) will overcome the obstacle and improve the efficiency of conventional breeding methods. To promote citrus molecular breeding in Japan, a genetic mapping was initiated in 1987, and the experimental tools and resources necessary for citrus functional genomics have been developed in relation to the physiological analysis of satsuma mandarin. In this paper, we review the progress of citrus breeding and genome researches in Japan and report the studies on genetic mapping, expression sequence tag cataloguing, and molecular characterization of breeding characteristics, mainly in terms of the metabolism of bio-functional substances as well as factors relating to, for example, fruit quality, disease resistance, polyembryony, and flowering.
Collapse
Affiliation(s)
- Mitsuo Omura
- Faculty of Agriculture, Shizuoka University,
836 Ohya, Suruga, Shizuoka, Shizuoka 422-8529,
Japan
| | - Takehiko Shimada
- Citrus Research Division, NARO Institute of Fruit Tree Science,
485-6 Okitsunakacho, Shimizu, Shizuoka, Shizuoka 424-0292,
Japan
| |
Collapse
|
32
|
Rosenkranz M, Pugh TAM, Schnitzler JP, Arneth A. Effect of land-use change and management on biogenic volatile organic compound emissions--selecting climate-smart cultivars. PLANT, CELL & ENVIRONMENT 2015; 38:1896-1912. [PMID: 25255900 DOI: 10.1111/pce.12453] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 09/11/2014] [Accepted: 09/15/2014] [Indexed: 06/03/2023]
Abstract
Land-use change (LUC) has fundamentally altered the form and function of the terrestrial biosphere. Increasing human population, the drive for higher living standards and the potential challenges of mitigating and adapting to global environmental change mean that further changes in LUC are unavoidable. LUC has direct consequences on climate not only via emissions of greenhouse gases and changing the surface energy balance but also by affecting the emission of biogenic volatile organic compounds (BVOCs). Isoprenoids, which dominate global BVOC emissions, are highly reactive and strongly modify atmospheric composition. The effects of LUC on BVOC emissions and related atmospheric chemistry have been largely ignored so far. However, compared with natural ecosystems, most tree species used in bioenergy plantations are strong BVOC emitters, whereas intensively cultivated crops typically emit less BVOCs. Here, we summarize the current knowledge on LUC-driven BVOC emissions and how these might affect atmospheric composition and climate. We further discuss land management and plant-breeding strategies, which could be taken to move towards climate-friendly BVOC emissions while simultaneously maintaining or improving key ecosystem functions such as crop yield under a changing environment.
Collapse
Affiliation(s)
- Maaria Rosenkranz
- Institute of Biochemical Plant Pathology, Research Unit Environmental Simulation, Helmholtz Zentrum München, 85764, Neuherberg, Germany
| | - Thomas A M Pugh
- Institute of Meteorology and Climate Research, Atmospheric Environmental Research, Karlsruhe Institute of Technology, 82467, Garmisch-Partenkirchen, Germany
| | - Jörg-Peter Schnitzler
- Institute of Biochemical Plant Pathology, Research Unit Environmental Simulation, Helmholtz Zentrum München, 85764, Neuherberg, Germany
| | - Almut Arneth
- Institute of Meteorology and Climate Research, Atmospheric Environmental Research, Karlsruhe Institute of Technology, 82467, Garmisch-Partenkirchen, Germany
| |
Collapse
|
33
|
Rodríguez A, Shimada T, Cervera M, Redondo A, Alquézar B, Rodrigo MJ, Zacarías L, Palou L, López MM, Peña L. Resistance to pathogens in terpene down-regulated orange fruits inversely correlates with the accumulation of D-limonene in peel oil glands. PLANT SIGNALING & BEHAVIOR 2015; 10:e1028704. [PMID: 26023857 PMCID: PMC4622707 DOI: 10.1080/15592324.2015.1028704] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 03/04/2015] [Accepted: 03/06/2015] [Indexed: 05/28/2023]
Abstract
Volatile organic compounds (VOCs) are secondary metabolites acting as a language for the communication of plants with the environment. In orange fruits, the monoterpene D-limonene accumulates at very high levels in oil glands from the peel. Drastic down-regulation of D-limonene synthase gene expression in the peel of transgenic oranges harboring a D-limonene synthase transgene in antisense (AS) configuration altered the monoterpene profile in oil glands, mainly resulting in reduced accumulation of D-limonene. This led to fruit resistance against Penicillium digitatum (Pd), Xanthomonas citri subsp. citri (Xcc) and other specialized pathogens. Here, we analyze resistance to pathogens in independent AS and empty vector (EV) lines, which have low, medium or high D-limonene concentrations and show that the level of resistance is inversely related to the accumulation of D-limonene in orange peels, thus explaining the need of high D-limonene accumulation in mature oranges in nature for the efficient attraction of specialized microorganism frugivores.
Collapse
Affiliation(s)
- Ana Rodríguez
- Fundo de Defesa da Citricultura; São Paulo, Brazil
- Instituto de Biología Molecular y Celular de Plantas; Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia; Valencia, Spain
| | - Takehiko Shimada
- Okitsu Citrus Research Station; National Institute of Fruit Tree Science; National Agricultural Research Organization; Shizuoka, Japan
| | - Magdalena Cervera
- Centro de Protección Vegetal y Biotecnología; Instituto Valenciano de Investigaciones Agrarias; Carretera Moncada-Náquera; Valencia, Spain
| | - Ana Redondo
- Centro de Protección Vegetal y Biotecnología; Instituto Valenciano de Investigaciones Agrarias; Carretera Moncada-Náquera; Valencia, Spain
| | - Berta Alquézar
- Fundo de Defesa da Citricultura; São Paulo, Brazil
- Instituto de Biología Molecular y Celular de Plantas; Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia; Valencia, Spain
| | - María Jesús Rodrigo
- Departamento de Ciencia de los Alimentos; Instituto de Agroquímica y Tecnología de Alimentos-Consejo Superior de Investigaciones Científicas; Valencia, Spain
| | - Lorenzo Zacarías
- Departamento de Ciencia de los Alimentos; Instituto de Agroquímica y Tecnología de Alimentos-Consejo Superior de Investigaciones Científicas; Valencia, Spain
| | - Lluís Palou
- Centro de Tecnología Postcosecha; Instituto Valenciano de Investigaciones Agrarias
| | - María M López
- Centro de Protección Vegetal y Biotecnología; Instituto Valenciano de Investigaciones Agrarias; Carretera Moncada-Náquera; Valencia, Spain
| | - Leandro Peña
- Fundo de Defesa da Citricultura; São Paulo, Brazil
- Instituto de Biología Molecular y Celular de Plantas; Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia; Valencia, Spain
| |
Collapse
|
34
|
Metabolic engineering of higher plants and algae for isoprenoid production. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2015; 148:161-99. [PMID: 25636485 DOI: 10.1007/10_2014_290] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Isoprenoids are a class of compounds derived from the five carbon precursors, dimethylallyl diphosphate, and isopentenyl diphosphate. These molecules present incredible natural chemical diversity, which can be valuable for humans in many aspects such as cosmetics, agriculture, and medicine. However, many terpenoids are only produced in small quantities by their natural hosts and can be difficult to generate synthetically. Therefore, much interest and effort has been directed toward capturing the genetic blueprint for their biochemistry and engineering it into alternative hosts such as plants and algae. These autotrophic organisms are attractive when compared to traditional microbial platforms because of their ability to utilize atmospheric CO2 as a carbon substrate instead of supplied carbon sources like glucose. This chapter will summarize important techniques and strategies for engineering the accumulation of isoprenoid metabolites into higher plants and algae by choosing the correct host, avoiding endogenous regulatory mechanisms, and optimizing potential flux into the target compound. Future endeavors will build on these efforts by fine-tuning product accumulation levels via the vast amount of available "-omic" data and devising metabolic engineering schemes that integrate this into a whole-organism approach. With the development of high-throughput transformation protocols and synthetic biology molecular tools, we have only begun to harness the power and utility of plant and algae metabolic engineering.
Collapse
|
35
|
Shimada T, Endo T, Fujii H, Rodríguez A, Peña L, Omura M. Characterization of three linalool synthase genes from Citrus unshiu Marc. and analysis of linalool-mediated resistance against Xanthomonas citri subsp. citri and Penicilium italicum in citrus leaves and fruits. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2014; 229:154-166. [PMID: 25443842 DOI: 10.1016/j.plantsci.2014.09.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 09/10/2014] [Accepted: 09/12/2014] [Indexed: 05/28/2023]
Abstract
Three cDNA clones from Satsuma mandarin (Citrus unshiu Marc.) were isolated and expressed in Escherichia coli. CuSTS3-1 and CuSTS3-2 encode linalool synthases and CuSTS4 encodes a nerolidol/linalool synthase. Transcripts of CuSTS3-1, CuSTS3-2 and CuSTS4 were abundant in young fruit at 60 days after flowering (DAF), flowers and leaves, respectively. Treatments with Xanthomonas citri subsp. citri (XCC), the causal agent of citrus canker and Penicillium italicum (PI), the cause of post-harvest fruit decay, and wounding up-regulated CuSTS3-1 in fruit and mainly CuSTS4 in leaves. Linalool, citral, geraniol and citronellol showed strong antibacterial and antifungal activities against XCC and PI in vitro, while most other mono-and sesquiterpenes, including limonene and gamma-terpinene, did not. Linalool, used at levels similar to those present in resistant Ponkan mandarin (Citrus reticulata Blanco) leaves, was able to inhibit growth of XCC in vitro. Compared to other five citrus types, linalool accumulated at extraordinarily high levels in Ponkan mandarin leaves and was released at high amounts from their leaves, while it was hardly detectable in the most susceptible species, indicating that linalool biosynthesis and accumulation might be involved in plant defense against bacterial and fungal pathogens and be associated with field resistance to citrus canker.
Collapse
Affiliation(s)
- Takehiko Shimada
- National Institute of Fruit Tree Science (NIFTS), National Agriculture and Bio-oriented Research Organization (NARO), Sizuoka, Shizuoka 424-0292, Japan.
| | - Tomoko Endo
- National Institute of Fruit Tree Science (NIFTS), National Agriculture and Bio-oriented Research Organization (NARO), Sizuoka, Shizuoka 424-0292, Japan
| | - Hiroshi Fujii
- National Institute of Fruit Tree Science (NIFTS), National Agriculture and Bio-oriented Research Organization (NARO), Sizuoka, Shizuoka 424-0292, Japan.
| | - Ana Rodríguez
- Fundecitrus, Av. Dr. Adhemar de Barros Pereira, 201, 14807-040 Vila Melhado, Araraquara, Sao Paulo, Brazil; Instituto de Biología Molecular y Celular de Plantas (IBMCP/CSIC-UPV), Ingeniero Fausto Elio, Valencia 46022, Spain.
| | - Leandro Peña
- Fundecitrus, Av. Dr. Adhemar de Barros Pereira, 201, 14807-040 Vila Melhado, Araraquara, Sao Paulo, Brazil; Instituto de Biología Molecular y Celular de Plantas (IBMCP/CSIC-UPV), Ingeniero Fausto Elio, Valencia 46022, Spain.
| | - Mitsuo Omura
- Faculty of Agriculture, Shizuoka University, Sizuoka, Shizuoka 422-8529, Japan.
| |
Collapse
|