1
|
Nimmo V, Brar GS, Martin AR, Isaac ME. Interacting effects of crop domestication and soil resources on leaf and root functional traits. PLANTA 2025; 261:75. [PMID: 40035881 DOI: 10.1007/s00425-025-04635-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 01/29/2025] [Indexed: 03/06/2025]
Abstract
MAIN CONCLUSION Domestication altered wheat leaf functional trait expression, and soil amendments altered root trait expression. These alterations shape crop suitability to stressed environments, and informs variety selection for agronomic conditions. Crop traits have been altered through domestication, resulting in syndromes that assist modern crops in contending with environmental constraints. Yet, we have limited understanding of how domestication has shaped the ability of crops to alter leaf and root functional traits for optimal performance under contemporary agronomic conditions, such as water limitation and organic amendments. We used a greenhouse pot experiment that included a wild progenitor of wheat (Aegilops tauschii), three domesticated wheat (Triticum aestivum) varieties (Watkins, Red Fife and Marquis), and three modern wheat varieties (developed from 1969 to 2016) to assess the effects of domestication on crop functional traits under water limitation and under organic and inorganic soil amendments, and to evaluate how this trait expression moderates rhizosphere soil conditions. Leaf functional trait expression varied significantly across wheat domestication classes, with these differences being almost independent of soil amendment or watering treatments. The wild progenitor expressed resource conservative leaf trait values, with low water use efficiency and stomatal conductance. Root trait expression was influenced by both soil amendment and watering treatment, with all wheat lineages expressing acquisitive traits, e.g., higher specific root length and lower root diameter, under organic amendments. Soil amendments and watering treatments impacted rhizosphere conditions, including microbial diversity and acid phosphatase activity, and domestication class impacted fungal diversity. Broadly, domestication altered the expression of wheat leaf functional traits, and soil amendments altered the expression of wheat root functional traits. These alterations in trait expression and rhizosphere soil response shape crop suitability to drought-prone or nutrient stressed environments, and should be considered when selecting varieties for hybridization for contemporary agronomic conditions.
Collapse
Affiliation(s)
- Victoria Nimmo
- Department of Geography, University of Toronto, Toronto, Canada
- Department of Geography, Penn State University, University Park, USA
| | - Gurcharn S Brar
- Department of Agricultural, Food and Nutritional Sciences, University of Alberta, Edmonton, Canada
| | - Adam R Martin
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, Canada
| | - Marney E Isaac
- Department of Geography, University of Toronto, Toronto, Canada.
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, Canada.
| |
Collapse
|
2
|
Kokla A, Leso M, Šimura J, Wärdig C, Hayashi M, Nishii N, Tsuchiya Y, Ljung K, Melnyk CW. A long-distance inhibitory system regulates haustoria numbers in parasitic plants. Proc Natl Acad Sci U S A 2025; 122:e2424557122. [PMID: 39964721 PMCID: PMC11874510 DOI: 10.1073/pnas.2424557122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 01/07/2025] [Indexed: 02/20/2025] Open
Abstract
The ability of parasitic plants to withdraw nutrients from their hosts depends on the formation of an infective structure known as the haustorium. How parasites regulate their haustoria numbers is poorly understood, and here, we uncovered that existing haustoria in the facultative parasitic plants Phtheirospermum japonicum and Parentucellia viscosa suppressed the formation of new haustoria located on distant roots. Using Phtheirospermum, we found that this effect depended on the formation of mature haustoria and could be induced through the application of external nutrients. To understand the molecular basis of this root plasticity, we analyzed hormone response and found that existing infections upregulated cytokinin-responsive genes first at the haustoria and then more distantly in Phtheirospermum shoots. We observed that infections increased endogenous cytokinin levels in Phtheirospermum roots and shoots, and this increase appeared relevant since local treatments with exogenous cytokinins blocked the formation of both locally and distantly formed haustoria. In addition, local overexpression of a cytokinin-degrading enzyme in Phtheirospermum prevented this systemic interhaustoria repression and increased haustoria numbers locally. We propose that a long-distance signal produced by haustoria negatively regulates future haustoria, and in Phtheirospermum, such a signaling system is mediated by a local increase in cytokinin to regulate haustoria numbers and balance nutrient acquisition.
Collapse
Affiliation(s)
- Anna Kokla
- Department of Plant Biology, Linnean Center for Plant Biology, Swedish University of Agricultural Sciences, Uppsala756 51, Sweden
| | - Martina Leso
- Department of Plant Biology, Linnean Center for Plant Biology, Swedish University of Agricultural Sciences, Uppsala756 51, Sweden
| | - Jan Šimura
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå90183, Sweden
| | - Cecilia Wärdig
- Department of Plant Biology, Linnean Center for Plant Biology, Swedish University of Agricultural Sciences, Uppsala756 51, Sweden
| | - Marina Hayashi
- Department of Biological Science, Graduate School of Science, Nagoya University, Nagoya464-8601, Japan
| | - Naoshi Nishii
- Department of Biological Science, Graduate School of Science, Nagoya University, Nagoya464-8601, Japan
| | - Yuichiro Tsuchiya
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya464-8601, Japan
| | - Karin Ljung
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå90183, Sweden
| | - Charles W. Melnyk
- Department of Plant Biology, Linnean Center for Plant Biology, Swedish University of Agricultural Sciences, Uppsala756 51, Sweden
| |
Collapse
|
3
|
Sathee L, R S, Barman D, Adavi SB, Jha SK, Chinnusamy V. Nitrogen at the crossroads of light: integration of light signalling and plant nitrogen metabolism. JOURNAL OF EXPERIMENTAL BOTANY 2025; 76:803-818. [PMID: 39540633 DOI: 10.1093/jxb/erae437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 11/12/2024] [Indexed: 11/16/2024]
Abstract
Plants have developed complex mechanisms to perceive, transduce, and respond to environmental signals, such as light, which are essential for acquiring and allocating resources, including nitrogen (N). This review delves into the complex interaction between light signals and N metabolism, emphasizing light-mediated regulation of N uptake and assimilation. Firstly, we examine the details of light-mediated regulation of N uptake and assimilation, focusing on the light-responsive activity of nitrate reductase (NR) and nitrate transporters. Secondly, we discuss the influence of light on N-dependent developmental plasticity, elucidating how N availability regulates crucial developmental transitions such as flowering time, shoot branching, and root growth, as well as how light modulates these processes. Additionally, we consider the molecular interaction between light and N signalling, focusing on photoreceptors and transcription factors such as HY5, which are necessary for N uptake and assimilation under varying light conditions. A recent understanding of the nitrate signalling and perception of low N is also highlighted. The in silico transcriptome analysis suggests a reprogramming of N signalling genes by shade, and identifies NLP7, bZIP1, CPK30, CBL1, LBD37, LBD38, and HRS1 as crucial molecular regulators integrating light-regulated N metabolism.
Collapse
Affiliation(s)
- Lekshmy Sathee
- Division of Plant Physiology, ICAR-Indian Agriculture Research Institute, New Delhi, 110012, India
| | - Suriyaprakash R
- Division of Plant Physiology, ICAR-Indian Agriculture Research Institute, New Delhi, 110012, India
| | - Dipankar Barman
- Division of Plant Physiology, ICAR-Indian Agriculture Research Institute, New Delhi, 110012, India
| | - Sandeep B Adavi
- ICAR-National Institute of Biotic Stress Management, Raipur, Chhattishgarh, 493 225, India
| | - Shailendra K Jha
- Division of Genetics, ICAR-Indian Agriculture Research Institute, New Delhi, 110012, India
| | - Viswanathan Chinnusamy
- Division of Plant Physiology, ICAR-Indian Agriculture Research Institute, New Delhi, 110012, India
| |
Collapse
|
4
|
Zhang W, Munyaneza V, Wang D, Huang C, Wu S, Han M, Wang X, Kant S, Ding G. Partial replacement by ammonium nutrition enhances Brassica napus growth by promoting root development, photosynthesis, and nitrogen metabolism. JOURNAL OF PLANT PHYSIOLOGY 2025; 304:154411. [PMID: 39721300 DOI: 10.1016/j.jplph.2024.154411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 11/11/2024] [Accepted: 12/16/2024] [Indexed: 12/28/2024]
Abstract
Nitrogen (N) is crucial for plant growth, available primarily as nitrate (NO3-) and ammonium (NH4+). However, its presence in soil is often limited, necessitating strategies to augment N availability. This study delves into the enigmatic interplay between NO3- and NH4+ in fostering the growth of Brassica napus, an important oil crop worldwide. Here, we examined the growth responses of 49 B. napus varieties to five NH4+:NO3- ratios (12:0, 9:3, 3:9, 1:11, 0:12). In general, the biomass of 49 rapeseed varieties increased with the decrease of NH4+ to NO3- ratios in the growth environment. However, different varieties may respond diversely to the mixed N sources, or sole NO3- or NH4+ condition. For some cultivars, the mixed N supply significantly enhanced the plant growth compared with the sole NO3- conditions. Thus, we further investigate the morphological, physiological and molecular response of rapeseed to the mixed N source condition using sole NO3- as a control. The results show that partial replacement by ammonium nutrition in the environment can promote rapeseed root development, net photosynthetic rate and NO3- reduction compared to NO3--only conditions. Using transcriptome analysis, we found a total of 399 and 465 genes which were differentially expressed in root and shoot under A1N11 compared to A0N12 treatments, respectively. Genes involved in photosynthesis, N uptake and assimilation were upregulated by mixed N supplies. These findings highlight that the mixed N supply primarily stimulates B. napus growth by enhancing root development, photosynthesis and N metabolism in the shoot. Such insights are crucial for optimizing N form selection in B. napus to enhance plant performance and N use efficiency.
Collapse
Affiliation(s)
- Wen Zhang
- College of Resources and Environment/Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, 430070, Wuhan, PR China
| | - Venuste Munyaneza
- College of Resources and Environment/Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, 430070, Wuhan, PR China
| | - Dandan Wang
- College of Resources and Environment/Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, 430070, Wuhan, PR China
| | - Chenfeng Huang
- College of Resources and Environment/Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, 430070, Wuhan, PR China
| | - Siyuan Wu
- College of Resources and Environment/Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, 430070, Wuhan, PR China
| | - Mingcun Han
- College of Resources and Environment/Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, 430070, Wuhan, PR China
| | - Xu Wang
- Institute of Quality Standard and Monitoring Technology for Agro-products of Guangdong Academy of Agricultural Sciences, Key Laboratory of Testing and Evaluation for Agro-product Safety and Quality, Ministry of Agriculture and Rural Affairs, PR China
| | - Surya Kant
- School of Agriculture, Biomedicine & Environment, La Trobe University, AgriBio, 5 Ring Road, Bundoora, VIC, 3083, Australia
| | - Guangda Ding
- College of Resources and Environment/Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, 430070, Wuhan, PR China.
| |
Collapse
|
5
|
Meng X, Ye R, Cao J, Tao L, Wang Z, Kong T, Hu C, Yi J, Gou X. CLAVATA3 INSENSITIVE RECEPTOR KINASEs regulate lateral root initiation and spacing in Arabidopsis. PLANT PHYSIOLOGY 2024; 197:kiae540. [PMID: 39387495 DOI: 10.1093/plphys/kiae540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 08/21/2024] [Accepted: 09/13/2024] [Indexed: 10/15/2024]
Abstract
The root system architecture is very critical for plants to adapt to ever-changing environmental stimulations and is largely affected by lateral roots (LRs). Therefore, how plants regulate LR initiation and spacing is a key point for root system development. Previous studies have shown that RECEPTOR-LIKE KINASE 7 (RLK7) and its ligand TARGET OF LBD SIXTEEN 2 (TOLS2) control the initiation and spacing of LRs. However, the molecular mechanism underlying the perception and transduction of the TOLS2 signal by RLK7 remains to be elucidated. In this study, we explored whether CLAVATA3 INSENSITIVE RECEPTOR KINASEs (CIKs) are critical signaling components during Arabidopsis (Arabidopsis thaliana) LR development by investigating phenotypes of cik mutants and examining interactions between CIKs and members of the RLK7-mediated signaling pathway. Our results showed that high-order cik mutants generated more LRs because of more LR initiation and defective LR spacing. The cik mutants showed reduced sensitivity to applied TOLS2 peptides. TOLS2 application enhanced the interactions between CIKs and RLK7 and the RLK7-dependent phosphorylation of CIKs. In addition, overexpression of transcription factor PUCHI and constitutive activation of MITOGEN-ACTIVATED PROTEIN KINASE KINASE 4 (MKK4) and MKK5 partially rescued the spacing defects of LRs in cik and rlk7-3 mutants. Moreover, we discovered that auxin maximum in pericycle cells altered subcellular localization of CIKs to determine lateral root founder cells. These findings revealed that CIKs and RLK7 function together to perceive the TOLS2 signal and regulate LR initiation and spacing through the MKK4/5-MPK3/6-PUCHI cascade.
Collapse
Affiliation(s)
- Xianghu Meng
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Rui Ye
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Jing Cao
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Liang Tao
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Zhe Wang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Tianzhen Kong
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Chong Hu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Jing Yi
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Xiaoping Gou
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
6
|
Fan Y, Miguez-Macho G. Infiltration depth, rooting depth, and regolith flushing-A global perspective. PNAS NEXUS 2024; 3:pgae514. [PMID: 39677371 PMCID: PMC11645107 DOI: 10.1093/pnasnexus/pgae514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 11/04/2024] [Indexed: 12/17/2024]
Abstract
In the vegetation root zone, infiltration (Inf) parts in two directions with distinct Earth-system functions. One goes up as evapotranspiration (E + Tr), returning Inf to the atmosphere (short-circuiting) and affecting short-term weather/climate and the carbon cycle. The other goes down as deep drainage (DD), flushing the regolith, mobilizing nutrients/contaminates and dissolved minerals into aquifers and rivers, eventually reaching the ocean (long-circuiting) thus regulating global biogeochemical cycles and long-term climate. We ask, what is the modern-day global structure in short- vs. long-circuiting? What forces and feedbacks create such structures? Synthesizing site-studies aided by global modeling, we found that: (i) long-circuiting prevails in evenly wet climates, in well-drained landscapes with a deep vadose zone, in substrates with deep conduits, and with plant biomass below natural equilibrium; (ii) soil B-horizons, via geochemical and vegetation feedbacks, enhance short-circuiting, while deep rock fractures enable long-circuiting even in dry climates; (iii) in dry climate/season and in uplands, plant roots follow Inf into deep vadose zone to tap wet-season Inf; (iv) plant water-use reinforces shallow Inf, reducing DD and regolith flushing in dry and season-dry climates; (v) where short-circuiting prevails, a dry soil zone separates modern surface processes from fossil groundwater; and (vi) the E + Tr supply depth, regolith flushing rate, and groundwater residence time vary greatly across the land, arising from multiscale drivers/feedbacks among climate, drainage, substrate, and biomass. These findings link site-based process discoveries to Earth-system level structures and functions of water belowground, shedding light on where/when/how the infiltrated rain influences the atmosphere above or the ocean downstream.
Collapse
Affiliation(s)
- Ying Fan
- Department of Earth and Planetary Sciences, Rutgers University, New Brunswick, NJ 08544, USA
| | - Gonzalo Miguez-Macho
- CRETUS, Non-Linear Physics Group, Faculty of Physics, Universidade de Santiago de Compostela, Galicia 15782, Spain
| |
Collapse
|
7
|
Dong Y, Krishnamoorthi S, Tan GZH, Poh ZY, Urano D. Co-option of plant gene regulatory network in nutrient responses during terrestrialization. NATURE PLANTS 2024; 10:1955-1968. [PMID: 39592744 DOI: 10.1038/s41477-024-01851-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 10/18/2024] [Indexed: 11/28/2024]
Abstract
Plant responses to nitrate, phosphate and sucrose form a complex molecular network crucial for terrestrial adaptation. However, the origins, functional diversity and evolvability of this network during plant terrestrialization remain scarcely understood. Here we compare the transcriptomic response to these nutrients in the bryophyte Marchantia polymorpha and the streptophyte alga Klebsormidium nitens. We show that the largely species-specific nutrient response pattern is driven by gene regulatory network (GRN) alterations. Intriguingly, while pathways governing the GRNs exhibit modest conservation, M. polymorpha GRNs exhibit more regulatory connections through the redeployment of ancient transcription factor CSD. In M. polymorpha, functional analyses reveal the involvement of pre-existing cytokinin machineries in downstream targets, orchestrating plastic morpho-physiological responses to nutrient status. Our findings implicate the genetic co-option events facilitating successful land plant establishment.
Collapse
Affiliation(s)
- Yating Dong
- Temasek Life Sciences Laboratory, Singapore, Singapore
| | | | | | | | - Daisuke Urano
- Temasek Life Sciences Laboratory, Singapore, Singapore.
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
8
|
Chen M, Xing Y, Chen C, Wang Z. Enhancing sugarcane's drought resilience: the influence of Streptomycetales and Rhizobiales. FRONTIERS IN PLANT SCIENCE 2024; 15:1471044. [PMID: 39678007 PMCID: PMC11637870 DOI: 10.3389/fpls.2024.1471044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 11/11/2024] [Indexed: 12/17/2024]
Abstract
Drought stress is a critical environmental factor affecting sugarcane yield, and the adaptability of the sugarcane rhizosphere bacterial community is essential for drought tolerance. This review examines the adaptive responses of sugarcane rhizosphere bacterial communities to water stress and explores their significant role in enhancing sugarcane drought tolerance. Under drought conditions, the sugarcane rhizosphere bacterial community undergoes structural and functional shifts, particularly the enrichment of beneficial bacteria, including Streptomycetales and Rhizobiales. These bacteria enhance sugarcane resilience to drought through various means, including nutrient acquisition and phytohormone synthesis. Furthermore, changes in the rhizosphere bacterial community were closely associated with the composition and levels of soil metabolites, which significantly influenced the physiological and biochemical processes of sugarcane during drought stress. This study deepens our understanding of rhizosphere bacterial communities and their interactions with sugarcane, laying a scientific foundation for developing drought-resistant sugarcane varieties, optimizing agricultural practices, and opening new avenues for agricultural applications.
Collapse
Affiliation(s)
| | | | | | - Ziting Wang
- State Key Lab for Conservation and Utilization of Subtropical Agri-Biological Resources, Guangxi Key Lab for Sugarcane Biology, College of Agriculture, Guangxi University, Nanning, China
| |
Collapse
|
9
|
Abel S, Naumann C. Evolution of phosphate scouting in the terrestrial biosphere. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230355. [PMID: 39343020 PMCID: PMC11528361 DOI: 10.1098/rstb.2023.0355] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/16/2024] [Accepted: 04/19/2024] [Indexed: 10/01/2024] Open
Abstract
Chemistry assigns phosphorus and its most oxidized form, inorganic phosphate, unique roles for propelling bioenergetics and metabolism in all domains of life, possibly since its very origin on prebiotic Earth. For plants, access to the vital mineral nutrient profoundly affects growth, development and vigour, thus constraining net primary productivity in natural ecosystems and crop production in modern agriculture. Unlike other major biogenic elements, the low abundance and uneven distribution of phosphate in Earth's crust result from the peculiarities of phosphorus cosmochemistry and geochemistry. Here, we trace the chemical evolution of the element, the geochemical phosphorus cycle and its acceleration during Earth's history until the present (Anthropocene) as well as during the evolution and rise of terrestrial plants. We highlight the chemical and biological processes of phosphate mobilization and acquisition, first evolved in bacteria, refined in fungi and algae and expanded into powerful phosphate-prospecting strategies during land plant colonization. Furthermore, we review the evolution of the genetic and molecular networks from bacteria to terrestrial plants, which monitor intracellular and extracellular phosphate availabilities and coordinate the appropriate responses and adjustments to fluctuating phosphate supply. Lastly, we discuss the modern global phosphorus cycle deranged by human activity and the challenges imposed ahead. This article is part of the theme issue 'Evolution and diversity of plant metabolism'.
Collapse
Affiliation(s)
- Steffen Abel
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Halle06120, Germany
- Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, Halle06120, Germany
- Department of Plant Sciences, University of California-Davis, Davis, CA95616, USA
| | - Christin Naumann
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Halle06120, Germany
| |
Collapse
|
10
|
Zhang W, Yang S, Wei T, Su Y. Enhancing Photosynthetic Carbon Transport in Rice Plant Optimizes Rhizosphere Bacterial Community in Saline Soil. Int J Mol Sci 2024; 25:12184. [PMID: 39596253 PMCID: PMC11594718 DOI: 10.3390/ijms252212184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024] Open
Abstract
Saline soils exert persistent salt stress on plants that inhibits their ability to carry out photosynthesis and leads to photosynthetic carbon (C) scarcity in plant roots and the rhizosphere. However, it remains unclear how a rhizosphere environment is shaped by photosynthetic C partitioning under saline conditions. Given that sucrose is the primary form of photosynthetic C transport, we, respectively, created sucrose transport distorted (STD) and enhanced (STE) rice lines through targeted mutation and overexpression of the sucrose transporter gene OsSUT5. This approach allowed us to investigate different scenarios of photosynthate partitioning to the rhizosphere. Compared to the non-saline soil, we found a significant decrease in soil dissolved organic carbon (DOC) in the rhizosphere, associated with a reduction in bacterial diversity when rice plants were grown under moderate saline conditions. These phenomena were sharpened with STD plants but were largely alleviated in the rhizosphere of STE plants, in which the rhizosphere DOC, and the diversity and abundances of dominant bacterial phyla were measured at comparable levels to the wildtype plants under non-saline conditions. The complexity of bacteria showed a greater level in the rhizosphere of STE plants grown under saline conditions. Several salt-tolerant genera, such as Halobacteroidaceae and Zixibacteria, were found to colonize the rhizosphere of STE plants that could contribute to improved rice growth under persistent saline stresses, due to an increase in C deposition.
Collapse
Affiliation(s)
- Weiwei Zhang
- Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shunying Yang
- Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Tianqi Wei
- Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanhua Su
- Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| |
Collapse
|
11
|
Mishra S, Levengood H, Fan J, Zhang C. Plants Under Stress: Exploring Physiological and Molecular Responses to Nitrogen and Phosphorus Deficiency. PLANTS (BASEL, SWITZERLAND) 2024; 13:3144. [PMID: 39599353 PMCID: PMC11597474 DOI: 10.3390/plants13223144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/28/2024] [Accepted: 10/30/2024] [Indexed: 11/29/2024]
Abstract
Nitrogen (N) and phosphorus (P) are essential mineral macronutrients critical for plant structure and function. Both contribute to processes ranging from cellular integrity to signal transduction. Since plants require these nutrients in high concentrations, replenishing them in soil often involves chemical fertilizers. However, the main source of P, rock phosphate, is non-renewable and in decline. N, second only to carbon, oxygen, and hydrogen in plant requirements, is vital for synthesizing proteins, nucleic acids, and plant pigments. Although N is available to plants through biological fixation or fertilizer application, the frequent application of N is not a sustainable solution due to environmental concerns like groundwater contamination and eutrophication. Plants have developed sophisticated mechanisms to adapt to nutrient deficiencies, such as changes in root architecture, local signaling, and long-distance signaling through the phloem. A dual deficiency of N and P is common in the field. In addition to individual N and P deficiency responses, this review also highlights some of the most recent discoveries in the responses of plants to the combined N and P deficiencies. Understanding the molecular and physiological responses in plants to mineral deficiency will help implement strategies to produce plants with high mineral use efficiency, leading to the reduced application of fertilizers, decreased mineral runoff, and improved environment.
Collapse
Affiliation(s)
| | | | | | - Cankui Zhang
- Department of Agronomy and Center for Plant Biology, Purdue University, West Lafayette, IN 47907, USA; (S.M.); (H.L.); (J.F.)
| |
Collapse
|
12
|
Li L, Jia L, Duan X, Lv Y, Ye C, Ding C, Zhang Y, Qi W, Motte H, Beeckman T, Luo L, Xuan W. A nitrogen-responsive cytokinin oxidase/dehydrogenase regulates root response to high ammonium in rice. THE NEW PHYTOLOGIST 2024; 244:1391-1407. [PMID: 39297368 DOI: 10.1111/nph.20128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 08/27/2024] [Indexed: 10/18/2024]
Abstract
Plant root system is significantly influenced by high soil levels of ammonium nitrogen, leading to reduced root elongation and enhanced lateral root branching. In Arabidopsis, these processes have been reported to be mediated by phytohormones and their downstream signaling pathways, while the controlling mechanisms remain elusive in crops. Through a transcriptome analysis of roots subjected to high/low ammonium treatments, we identified a cytokinin oxidase/dehydrogenase encoding gene, CKX3, whose expression is induced by high ammonium. Knocking out CKX3 and its homologue CKX8 results in shorter seminal roots, fewer lateral roots, and reduced sensitivity to high ammonium. Endogenous cytokinin levels are elevated by high ammonium or in ckx3 mutants. Cytokinin application results in shorter seminal roots and fewer lateral roots in wild-type, mimicking the root responses of ckx3 mutants to high ammonium. Furthermore, CKX3 is transcriptionally activated by type-B RR25 and RR26, and ckx3 mutants have reduced auxin content and signaling in roots under low ammonium. This study identified RR25/26-CKX3-cytokinin as a signal module that mediates root responses to external ammonium by modulating of auxin signaling in the root meristem and lateral root primordium. This highlights the critical role of cytokinin metabolism in regulating rice root development in response to ammonium.
Collapse
Affiliation(s)
- Lun Li
- Sanya Institute of Nanjing Agricultural University, National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization and MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing, 210095, China
| | - Letian Jia
- Sanya Institute of Nanjing Agricultural University, National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization and MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xingliang Duan
- Sanya Institute of Nanjing Agricultural University, National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization and MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yuanda Lv
- Zhongshan Biological Breeding Laboratory, Nanjing, 210014, China
- Excellence and Innovation Center, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Chengyu Ye
- Sanya Institute of Nanjing Agricultural University, National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization and MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chengqiang Ding
- College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Crop Physiology Ecology and Production Management, Ministry of Agriculture, Nanjing, 210095, China
- Collaborative Innovation Center for Modern Crop Production Co-sponsored by Province and Ministry, Nanjing, 210095, China
| | - Yuwen Zhang
- Sanya Institute of Nanjing Agricultural University, National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization and MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing, 210095, China
| | - Weicong Qi
- Zhongshan Biological Breeding Laboratory, Nanjing, 210014, China
- Excellence and Innovation Center, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Hans Motte
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, Ghent, B-9052, Belgium
- Center for Plant Systems Biology, VIB, Technologiepark 71, Ghent, B-9052, Belgium
| | - Tom Beeckman
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, Ghent, B-9052, Belgium
- Center for Plant Systems Biology, VIB, Technologiepark 71, Ghent, B-9052, Belgium
| | - Le Luo
- Sanya Institute of Nanjing Agricultural University, National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization and MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wei Xuan
- Sanya Institute of Nanjing Agricultural University, National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization and MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
13
|
Luo L, Yu L, Yang J, Wang E. Peptide Signals Regulate Nitrogen Deficiency Adaptation of Dicotyledonous Model Plants. PLANT, CELL & ENVIRONMENT 2024. [PMID: 39420598 DOI: 10.1111/pce.15203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/29/2024] [Accepted: 09/30/2024] [Indexed: 10/19/2024]
Abstract
Nitrogen is a crucial macroelement essential for plant growth and development. In Arabidopsis Thaliana, classical phytohormones such as auxin and cytokinin orchestrate local and systemic signalling networks coordinate plant growth and development in response to nitrogen deficiency. Nowadays, emerging signalling pathways involving small peptides like CLAVATA3/EMBRYO SURROUNDINGR REGION (CLE) and C-TERMINALLY ENCODED PEPTIDE (CEP) and their corresponding kinase receptors, also regulate Arabidopsis' adaptation to nitrogen scarcity. Unlike Arabidopsis, which adapts to nitrogen deficiency by changing root development, legumes have the unique ability to form nitrogen-fixing root nodules through symbiotic interactions with soil rhizobia. During the symbiotic nodulation in Medicago, CLE and CEP peptides and their receptors consist of an autoregulatory network governing the number of nodules in accordance with the soil nitrogen level. Additionally, other plant peptides, such as phytosulfokine (PSK) and root meristem growth factors (RGF), have been identified as new regulators of leguminous root nodule development under nitrogen-limited condition. However, the precise mechanism by which these peptides coordinate nitrogen deficiency response and the development of nitrogen-fixing organs remains to be fully elucidated. This review summarises the adaptive strategies of dicotyledons to nitrogen deficiency, with a particular focus on the regulation of Medicago nitrogen-fixing nodule development by the peptides.
Collapse
Affiliation(s)
- Li Luo
- Shanghai Key Laboratory of Bio-energy Crops, Center of Plant Science, School of Life Sciences, Shanghai University, Shanghai, China
| | - Liangliang Yu
- Shanghai Key Laboratory of Bio-energy Crops, Center of Plant Science, School of Life Sciences, Shanghai University, Shanghai, China
| | - Jun Yang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Ertao Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
14
|
Gautrat P, Buti S, Romanowski A, Lammers M, Matton SEA, Buijs G, Pierik R. Phytochrome-dependent responsiveness to root-derived cytokinins enables coordinated elongation responses to combined light and nitrate cues. Nat Commun 2024; 15:8489. [PMID: 39353942 PMCID: PMC11445486 DOI: 10.1038/s41467-024-52828-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 09/23/2024] [Indexed: 10/03/2024] Open
Abstract
Plants growing at high densities can detect competitors through changes in the composition of light reflected by neighbours. In response to this far-red-enriched light, plants elicit adaptive shade avoidance responses for light capture, but these need to be balanced against other input signals, such as nutrient availability. Here, we investigated how Arabidopsis integrates shade and nitrate signalling. We unveiled that nitrate modulates shade avoidance via a previously unknown shade response pathway that involves root-derived trans-zeatin (tZ) signal and the BEE1 transcription factor as an integrator of light and cytokinin signalling. Under nitrate-sufficient conditions, tZ promotes hypocotyl elongation specifically in the presence of supplemental far-red light. This occurs via PIF transcription factors-dependent inhibition of type-A ARRs cytokinin response inhibitors. Our data thus reveal how plants co-regulate responses to shade cues with root-derived information about nutrient availability, and how they restrict responses to this information to specific light conditions in the shoot.
Collapse
Affiliation(s)
- Pierre Gautrat
- Plant-Environment Signaling, Institute of Environmental Biology, Utrecht University, Utrecht, The Netherlands.
- Laboratory of Molecular Biology, Wageningen University, Wageningen, The Netherlands.
| | - Sara Buti
- Plant-Environment Signaling, Institute of Environmental Biology, Utrecht University, Utrecht, The Netherlands
| | - Andrés Romanowski
- Plant-Environment Signaling, Institute of Environmental Biology, Utrecht University, Utrecht, The Netherlands
- Laboratory of Molecular Biology, Wageningen University, Wageningen, The Netherlands
| | - Michiel Lammers
- Laboratory of Molecular Biology, Wageningen University, Wageningen, The Netherlands
| | - Sanne E A Matton
- Laboratory of Molecular Biology, Wageningen University, Wageningen, The Netherlands
| | - Guido Buijs
- Plant-Environment Signaling, Institute of Environmental Biology, Utrecht University, Utrecht, The Netherlands
| | - Ronald Pierik
- Plant-Environment Signaling, Institute of Environmental Biology, Utrecht University, Utrecht, The Netherlands.
- Laboratory of Molecular Biology, Wageningen University, Wageningen, The Netherlands.
| |
Collapse
|
15
|
Ma Y, Zhang Y, Xu J, Zhao D, Guo L, Liu X, Zhang H. Recent advances in response to environmental signals during Arabidopsis root development. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 215:109037. [PMID: 39173364 DOI: 10.1016/j.plaphy.2024.109037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/29/2024] [Accepted: 08/08/2024] [Indexed: 08/24/2024]
Abstract
Plants grow by anchoring their roots in the soil, acquiring essential water and nutrients for growth, and interacting with other signaling factors in the soil. Root systems are crucial for both the basic growth and development of plants and their response to external environmental stimuli. Under different environmental conditions, the configuration of root systems in plants can undergo significant changes, with their strength determining the plant's ability to adapt to the environment. Therefore, understanding the mechanisms by which environmental factors regulate root development is essential for crop root architecture improvement and breeding for stress resistance. This paper summarizes the research progress in genetic regulation of root development of the model plant Arabidopsis thaliana (L.) Heynh. amidst diverse environmental stimuli over the past five years. Specifically, it focuses on the regulatory networks of environmental signals, encompassing light, energy, temperature, water, nutrients, and reactive oxygen species, on root development. Furthermore, it provides prospects for the application of root architecture improvement in crop breeding for stress resistance and nutrient efficiency.
Collapse
Affiliation(s)
- Yuru Ma
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Ying Zhang
- Institute of Biotechnology and Food Science, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, 050051, China
| | - Jiahui Xu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Dan Zhao
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China; College of Life Sciences, Hengshui University, Hengshui, 053010, China
| | - Lin Guo
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China.
| | - Xigang Liu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China.
| | - Hao Zhang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China.
| |
Collapse
|
16
|
Su H, Wang Q, Wang L, Cui J. The Ca 2+-Regulated Protein Kinase CIPK1 Modulates Plant Response to Nitrate Deficiency in Arabidopsis. Genes (Basel) 2024; 15:1235. [PMID: 39336826 PMCID: PMC11431708 DOI: 10.3390/genes15091235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/16/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND/OBJECTIVES Nitrogen is an essential macroelement for plant growth and productivity. Calcium (Ca2+) acts as a critical second messenger in numerous adaptations and developmental processes in plants. The Calcineurin B-like protein (CBL)-interacting protein kinase (CIPK) signaling pathway has been demonstrated to be involved in multiple intracellular ion homeostasis of plants in response to stresses. However, whether CIPKs are involved in nitrate deficiency stress remains largely unknown. METHODS In this study, we screened Arabidopsis thaliana T-DNA insertion mutants of the CIPK family under nitrate deficiency conditions by a reverse genetic strategy. RESULTS We found that the cipk1 mutant showed a shorter primary root and had a lower fresh weight and total N content compared with wildtype (WT) plants under nitrate deficiency. The CIPK1 complementation lines completely rescued the sensitive phenotype. Additionally, CIPK1 mutation caused nitrogen-starvation marker genes to be decreased under nitrate deficiency. We further found that CIPK1 interacted with teosintebranched 1/cycloidea/proliferating cell factor 1-20 (TCP20) in a yeast two-hybrid system. CONCLUSIONS Collectively, our results reveal a novel role of CIPK1 in response to nitrate deficiency in Arabidopsis.
Collapse
Affiliation(s)
- Hang Su
- School of Landscape and Ecological Engineering, Hebei University of Engineering, Handan 056038, China; (L.W.); (J.C.)
- Research Center for Stress Physiology in Fruit Trees, Hebei University of Engineering, Handan 056038, China
| | - Qian Wang
- Library, Hebei University of Engineering, Handan 056038, China;
| | - Lihu Wang
- School of Landscape and Ecological Engineering, Hebei University of Engineering, Handan 056038, China; (L.W.); (J.C.)
- Research Center for Stress Physiology in Fruit Trees, Hebei University of Engineering, Handan 056038, China
| | - Junjun Cui
- School of Landscape and Ecological Engineering, Hebei University of Engineering, Handan 056038, China; (L.W.); (J.C.)
- Research Center for Stress Physiology in Fruit Trees, Hebei University of Engineering, Handan 056038, China
| |
Collapse
|
17
|
Mandal D, Datta S, Mitra S, Nag Chaudhuri R. ABSCISIC ACID INSENSITIVE 3 promotes auxin signalling by regulating SHY2 expression to control primary root growth in response to dehydration stress. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:5111-5129. [PMID: 38770693 DOI: 10.1093/jxb/erae237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 05/20/2024] [Indexed: 05/22/2024]
Abstract
Plants combat dehydration stress through different strategies including root architectural changes. Here we show that when exposed to varying levels of dehydration stress, primary root growth in Arabidopsis is modulated by regulating root meristem activity. Abscisic acid (ABA) in concert with auxin signalling adjust primary root growth according to stress levels. ABSCISIC ACID INSENSITIVE 3 (ABI3), an ABA-responsive transcription factor, stands at the intersection of ABA and auxin signalling and fine-tunes primary root growth in response to dehydration stress. Under low ABA or dehydration stress, induction of ABI3 expression promotes auxin signalling by decreasing expression of SHY2, a negative regulator of auxin response. This further enhances the expression of auxin transporter gene PIN1 and cell cycle gene CYCB1;1, resulting in an increase in primary root meristem size and root length. Higher levels of dehydration stress or ABA repress ABI3 expression and promote ABSCISIC ACID INSENSITIVE 5 (ABI5) expression. This elevates SHY2 expression, thereby impairing primary root meristem activity and retarding root growth. Notably, ABI5 can promote SHY2 expression only in the absence of ABI3. Such ABA concentration-dependent expression of ABI3 therefore functions as a regulatory sensor of dehydration stress levels and orchestrates primary root growth by coordinating its downstream regulation.
Collapse
Affiliation(s)
- Drishti Mandal
- Department of Biotechnology, St Xavier's College, 30, Mother Teresa Sarani, Kolkata-700016, India
| | - Saptarshi Datta
- Department of Biotechnology, St Xavier's College, 30, Mother Teresa Sarani, Kolkata-700016, India
| | - Sicon Mitra
- Department of Biotechnology, St Xavier's College, 30, Mother Teresa Sarani, Kolkata-700016, India
| | - Ronita Nag Chaudhuri
- Department of Biotechnology, St Xavier's College, 30, Mother Teresa Sarani, Kolkata-700016, India
| |
Collapse
|
18
|
Ren W, Li X, Liu T, Chen N, Xin M, Liu B, Qi Q, Li G. Impact of fertilization depth on sunflower yield and nitrogen utilization: a perspective on soil nutrient and root system compatibility. FRONTIERS IN PLANT SCIENCE 2024; 15:1440859. [PMID: 39206034 PMCID: PMC11349546 DOI: 10.3389/fpls.2024.1440859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 07/26/2024] [Indexed: 09/04/2024]
Abstract
Introduction The depth of fertilizer application significantly influences soil nitrate concentration (SNC), sunflower root length density (RLD), sunflower nitrogen uptake (SNU), and yield. However, current studies cannot precisely capture subtle nutrient variations between soil layers and their complex relationships with root growth. They also struggle to assess the impact of different fertilizer application depths on sunflower root development and distribution as well as their response to the spatial and temporal distribution of nutrients. Methods The Agricultural Production Systems sIMulator (APSIM) model was employed to explore the spatial and temporal patterns of nitrogen distribution in the soil at three controlled-release fertilizer (CRF) placement depths: 5, 15, and 25 cm. This study investigated the characteristics of the root system regarding nitrogen absorption and utilization and analyzed their correlation with sunflower yield formation. Furthermore, this study introduced the modified Jaccard index (considering the compatibility between soil nitrate and root length density) to analyze soil-root interactions, providing a deeper insight into how changes in CRF placement depth affect crop growth and nitrogen uptake efficiency. Results The results indicated that a fertilization depth of 15 cm improved the modified Jaccard index by 6.60% and 7.34% compared to 5 cm and 25 cm depths, respectively, maximizing sunflower yield (an increase of 9.44%) and nitrogen absorption rate (an increase of 5.40%). This depth promoted a greater Root Length Density (RLD), with an increases of 11.95% and 16.42% compared those at 5 cm and 25 cm, respectively, enhancing deeper root growth and improving nitrogen uptake. In contrast, shallow fertilization led to higher nitrate concentrations in the topsoil, whereas deeper fertilization increased the nitrate concentrations in the deeper soil layers. Discussion These results provide valuable insights for precision agriculture and sustainable soil management, highlighting the importance of optimizing root nitrogen absorption through tailored fertilization strategies to enhance crop production efficiency and minimize environmental impact.
Collapse
Affiliation(s)
- Wenhao Ren
- College of Water Conservancy and Civil Engineering, Inner Mongolia Agricultural University, Hohhot, China
| | - Xianyue Li
- College of Water Conservancy and Civil Engineering, Inner Mongolia Agricultural University, Hohhot, China
- Collaborative Innovation Center for Integrated Management of Water Resources and Water Environment in the Inner Mongolia Reaches of the Yellow River, Hohhot, China
- Research and Development of Efficient Water-saving Technology and Equipment and Research Engineering Center of Soil and Water Environment Effect in Arid Area of Inner Mongolia Autonomous Region, Hohhot, China
| | - Tingxi Liu
- College of Water Conservancy and Civil Engineering, Inner Mongolia Agricultural University, Hohhot, China
- Collaborative Innovation Center for Integrated Management of Water Resources and Water Environment in the Inner Mongolia Reaches of the Yellow River, Hohhot, China
| | - Ning Chen
- College of Water Conservancy and Civil Engineering, Inner Mongolia Agricultural University, Hohhot, China
| | - Maoxin Xin
- College of Water Conservancy and Civil Engineering, Inner Mongolia Agricultural University, Hohhot, China
| | - Bin Liu
- College of Water Conservancy and Civil Engineering, Inner Mongolia Agricultural University, Hohhot, China
| | - Qian Qi
- College of Water Conservancy and Civil Engineering, Inner Mongolia Agricultural University, Hohhot, China
| | - Gendong Li
- Inner Mongolia Hetao Irrigation District Water Conservancy Development Center, Bayannur, China
| |
Collapse
|
19
|
Aikpokpodion PE, Hsiao BS, Dimkpa CO. Mitigation of Nitrogen Losses in a Plant-Soil System through Incorporation of Nanocellulose and Zinc-Modified Nanocellulose. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:17295-17305. [PMID: 39073884 DOI: 10.1021/acs.jafc.4c03997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
Most nitrogen (N) applied to plants as fertilizer is lost through leaching. Here, nanocellulose was used in mitigating N leaching loss. Lettuce-cropped soil was treated with unmodified or Zn-modified nanocellulose (1-2% by wt) in combination with NPK, compared with urea and NPK-only treatments. Consecutive leaching, plant growth, plant N uptake, and soil nitrogen retention were assessed. Nanocellulose + NPK significantly (p ≤ 0.05) reduced N leaching, compared with urea and NPK-only. 1-and-2 wt % nanocellulose, as well as Zn-modified 1-and-2 wt % nanocellulose, reduced N leaching by 45, 38, 39, and 49% compared with urea and by 43, 36, 37, and 47% compared with NPK-only, respectively. Nitrogen leached mainly as NO3- (98.4%). Compared with urea and NPK, lettuce shoot mass was significantly (p ≤ 0.05) increased by 30-42% and by 44-57%, respectively, by all nanocellulose treatments, except for the Zn-modified 1 wt % nanocellulose. Leached N negatively correlated to biomass yield. Soil N retention was enhanced by the pristine and Zn-modified nanocelluloses between 27 and 94%. Demonstrably, nanocellulose can be utilized for mitigating N loss in soil and supporting crop production, resource management, and environmental sustainability.
Collapse
Affiliation(s)
- Paul E Aikpokpodion
- Department of Analytical Chemistry, Connecticut Agricultural Experiment Station, New Haven, Connecticut 06511, United States
| | - Benjamin S Hsiao
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States
| | - Christian O Dimkpa
- Department of Analytical Chemistry, Connecticut Agricultural Experiment Station, New Haven, Connecticut 06511, United States
| |
Collapse
|
20
|
Chen K, Xue W, Di X, Sun T, Gao W, Sun Y. Effects of nitrogen forms on Cd uptake and tolerance in wheat seedlings. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 936:173451. [PMID: 38782266 DOI: 10.1016/j.scitotenv.2024.173451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/25/2024] [Accepted: 05/20/2024] [Indexed: 05/25/2024]
Abstract
Hydroponic experiment was conducted to explore the effects of two nitrogen (N) levels with five nitrate nitrogen (NO3--N) and ammonium nitrogen (NH4+-N) ratios on the growth status and Cd migration patterns of wheat seedlings under Cd5 and Cd30 level. Results showed that higher Cd were detrimental to the growth, absorption of K and Ca, expression of genes mediating NO3--N and NH4+-N transport, which also increased the content of malondialdehyde (MDA) and hydrogen peroxide (H2O2) in shoots and roots of wheat seedlings. Higher N treatment alleviated the inhibitory effects of Cd stress on the biomass, root development, photosynthesis and increased the tolerance index of wheat seedlings. The ratio of NO3--N and NH4+-N was the main factor driving Cd accumulation in wheat seedlings, the combined application of NH4+-N and NO3--N was more conducive for the growth, nitrogen assimilation and Cd tolerance to the Cd stressed wheat seedlings. Increased NO3--N application rates significantly up-regulated the expression levels of TaNPF2.12, TaNRT2.2, increased NH4+-N application rates significantly up-regulated the expression levels of TaAMT1.1. The high proportion of NO3--N promoted the absorption of K, Ca and Cd in the shoots and roots of wheat seedlings, while NH4+-N was the opposite. Under low Cd conditions, the NO3--N to NH4+-N ratio of 1:1 was more conducive to the growth of wheat seedlings, under high Cd stress, the optimal of NO3--N to NH4+-N was 1:2 for inhibiting the accumulation of Cd in wheat seedlings. The results indicated that increasing NH4+-N ratio appropriately could inhibit wheat Cd uptake by increasing NH4+, K+ and Ca2+ for K and Ca channels, and promote wheat growth by promoting N assimilation process.
Collapse
Affiliation(s)
- Kexin Chen
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, P.R. China, Tianjin 300191, China
| | - Weijie Xue
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, P.R. China, Tianjin 300191, China.
| | - Xuerong Di
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, P.R. China, Tianjin 300191, China
| | - Tao Sun
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, P.R. China, Tianjin 300191, China
| | - Wei Gao
- College of Resources and Environment, Henan Agricultural University, No.218 Ping'an Avenue, Zhengzhou 450046, Henan, China; Henan Key Lab of Soil Pollution Control & Remediation, Henan Agricultural University, No.218 Ping'an Avenue, Zhengzhou 450046, Henan, China.
| | - Yuebing Sun
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, P.R. China, Tianjin 300191, China.
| |
Collapse
|
21
|
Wang D, Du M, Lyu P, Li J, Meng H, Liu X, Shi M, Gong Y, Sha Q, Men Q, Li X, Sun Y, Guo S. Functional Characterization of the Soybean Glycine max Actin Depolymerization Factor GmADF13 for Plant Resistance to Drought Stress. PLANTS (BASEL, SWITZERLAND) 2024; 13:1651. [PMID: 38931083 PMCID: PMC11207668 DOI: 10.3390/plants13121651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/31/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024]
Abstract
Abiotic stress significantly affects plant growth and has devastating effects on crop production. Drought stress is one of the main abiotic stressors. Actin is a major component of the cytoskeleton, and actin-depolymerizing factors (ADFs) are conserved actin-binding proteins in eukaryotes that play critical roles in plant responses to various stresses. In this study, we found that GmADF13, an ADF gene from the soybean Glycine max, showed drastic upregulation under drought stress. Subcellular localization experiments in tobacco epidermal cells and tobacco protoplasts showed that GmADF13 was localized in the nucleus and cytoplasm. We characterized its biological function in transgenic Arabidopsis and hairy root composite soybean plants. Arabidopsis plants transformed with GmADF13 displayed a more robust drought tolerance than wild-type plants, including having a higher seed germination rate, longer roots, and healthy leaves under drought conditions. Similarly, GmADF13-overexpressing (OE) soybean plants generated via the Agrobacterium rhizogenes-mediated transformation of the hairy roots showed an improved drought tolerance. Leaves from OE plants showed higher relative water, chlorophyll, and proline contents, had a higher antioxidant enzyme activity, and had decreased malondialdehyde, hydrogen peroxide, and superoxide anion levels compared to those of control plants. Furthermore, under drought stress, GmADF13 OE activated the transcription of several drought-stress-related genes, such as GmbZIP1, GmDREB1A, GmDREB2, GmWRKY13, and GmANK114. Thus, GmADF13 is a positive regulator of the drought stress response, and it may play an essential role in plant growth under drought stress conditions. These results provide new insights into the functional elucidation of soybean ADFs. They may be helpful for breeding new soybean cultivars with a strong drought tolerance and further understanding how ADFs help plants adapt to abiotic stress.
Collapse
Affiliation(s)
- Deying Wang
- School of Agricultural Science and Engineering, Liaocheng University, Liaocheng 252059, China; (D.W.); (M.D.); (P.L.); (J.L.); (H.M.); (X.L.); (M.S.); (Y.G.); (Q.S.); (Q.M.); (X.L.)
| | - Mengxue Du
- School of Agricultural Science and Engineering, Liaocheng University, Liaocheng 252059, China; (D.W.); (M.D.); (P.L.); (J.L.); (H.M.); (X.L.); (M.S.); (Y.G.); (Q.S.); (Q.M.); (X.L.)
| | - Peng Lyu
- School of Agricultural Science and Engineering, Liaocheng University, Liaocheng 252059, China; (D.W.); (M.D.); (P.L.); (J.L.); (H.M.); (X.L.); (M.S.); (Y.G.); (Q.S.); (Q.M.); (X.L.)
| | - Jingyu Li
- School of Agricultural Science and Engineering, Liaocheng University, Liaocheng 252059, China; (D.W.); (M.D.); (P.L.); (J.L.); (H.M.); (X.L.); (M.S.); (Y.G.); (Q.S.); (Q.M.); (X.L.)
| | - Huiran Meng
- School of Agricultural Science and Engineering, Liaocheng University, Liaocheng 252059, China; (D.W.); (M.D.); (P.L.); (J.L.); (H.M.); (X.L.); (M.S.); (Y.G.); (Q.S.); (Q.M.); (X.L.)
| | - Xinxin Liu
- School of Agricultural Science and Engineering, Liaocheng University, Liaocheng 252059, China; (D.W.); (M.D.); (P.L.); (J.L.); (H.M.); (X.L.); (M.S.); (Y.G.); (Q.S.); (Q.M.); (X.L.)
| | - Mengmeng Shi
- School of Agricultural Science and Engineering, Liaocheng University, Liaocheng 252059, China; (D.W.); (M.D.); (P.L.); (J.L.); (H.M.); (X.L.); (M.S.); (Y.G.); (Q.S.); (Q.M.); (X.L.)
| | - Yujie Gong
- School of Agricultural Science and Engineering, Liaocheng University, Liaocheng 252059, China; (D.W.); (M.D.); (P.L.); (J.L.); (H.M.); (X.L.); (M.S.); (Y.G.); (Q.S.); (Q.M.); (X.L.)
| | - Qi Sha
- School of Agricultural Science and Engineering, Liaocheng University, Liaocheng 252059, China; (D.W.); (M.D.); (P.L.); (J.L.); (H.M.); (X.L.); (M.S.); (Y.G.); (Q.S.); (Q.M.); (X.L.)
| | - Qingmei Men
- School of Agricultural Science and Engineering, Liaocheng University, Liaocheng 252059, China; (D.W.); (M.D.); (P.L.); (J.L.); (H.M.); (X.L.); (M.S.); (Y.G.); (Q.S.); (Q.M.); (X.L.)
| | - Xiaofei Li
- School of Agricultural Science and Engineering, Liaocheng University, Liaocheng 252059, China; (D.W.); (M.D.); (P.L.); (J.L.); (H.M.); (X.L.); (M.S.); (Y.G.); (Q.S.); (Q.M.); (X.L.)
| | - Yongwang Sun
- School of Agricultural Science and Engineering, Liaocheng University, Liaocheng 252059, China; (D.W.); (M.D.); (P.L.); (J.L.); (H.M.); (X.L.); (M.S.); (Y.G.); (Q.S.); (Q.M.); (X.L.)
| | - Shangjing Guo
- School of Agricultural Science and Engineering, Liaocheng University, Liaocheng 252059, China; (D.W.); (M.D.); (P.L.); (J.L.); (H.M.); (X.L.); (M.S.); (Y.G.); (Q.S.); (Q.M.); (X.L.)
- College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
| |
Collapse
|
22
|
Yu P, Li C, Li M, He X, Wang D, Li H, Marcon C, Li Y, Perez-Limón S, Chen X, Delgado-Baquerizo M, Koller R, Metzner R, van Dusschoten D, Pflugfelder D, Borisjuk L, Plutenko I, Mahon A, Resende MFR, Salvi S, Akale A, Abdalla M, Ahmed MA, Bauer FM, Schnepf A, Lobet G, Heymans A, Suresh K, Schreiber L, McLaughlin CM, Li C, Mayer M, Schön CC, Bernau V, von Wirén N, Sawers RJH, Wang T, Hochholdinger F. Seedling root system adaptation to water availability during maize domestication and global expansion. Nat Genet 2024; 56:1245-1256. [PMID: 38778242 DOI: 10.1038/s41588-024-01761-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 04/19/2024] [Indexed: 05/25/2024]
Abstract
The maize root system has been reshaped by indirect selection during global adaptation to new agricultural environments. In this study, we characterized the root systems of more than 9,000 global maize accessions and its wild relatives, defining the geographical signature and genomic basis of variation in seminal root number. We demonstrate that seminal root number has increased during maize domestication followed by a decrease in response to limited water availability in locally adapted varieties. By combining environmental and phenotypic association analyses with linkage mapping, we identified genes linking environmental variation and seminal root number. Functional characterization of the transcription factor ZmHb77 and in silico root modeling provides evidence that reshaping root system architecture by reducing the number of seminal roots and promoting lateral root density is beneficial for the resilience of maize seedlings to drought.
Collapse
Affiliation(s)
- Peng Yu
- Crop Functional Genomics, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Bonn, Germany.
- Emmy Noether Group Root Functional Biology, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Bonn, Germany.
| | - Chunhui Li
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, PR China
| | - Meng Li
- Department of Plant Science, The Pennsylvania State University, State College, PA, USA
| | - Xiaoming He
- Crop Functional Genomics, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Bonn, Germany
- Emmy Noether Group Root Functional Biology, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Bonn, Germany
| | - Danning Wang
- Crop Functional Genomics, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Bonn, Germany
- Emmy Noether Group Root Functional Biology, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Bonn, Germany
| | - Hongjie Li
- Crop Functional Genomics, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Bonn, Germany
- Emmy Noether Group Root Functional Biology, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Bonn, Germany
| | - Caroline Marcon
- Crop Functional Genomics, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Bonn, Germany
| | - Yu Li
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, PR China
| | - Sergio Perez-Limón
- Department of Plant Science, The Pennsylvania State University, State College, PA, USA
| | - Xinping Chen
- College of Resources and Environment, and Academy of Agricultural Sciences, Southwest University (SWU), Chongqing, PR China
| | - Manuel Delgado-Baquerizo
- Laboratorio de Biodiversidad y Funcionamiento Ecosistémico. Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, Sevilla, Spain
- Unidad Asociada CSIC-UPO (BioFun), Universidad Pablo de Olavide, Sevilla, Spain
| | - Robert Koller
- Institute of Bio- and Geosciences, Plant Sciences (IBG-2), Forschungszentrum Juelich GmbH, Juelich, Germany
| | - Ralf Metzner
- Institute of Bio- and Geosciences, Plant Sciences (IBG-2), Forschungszentrum Juelich GmbH, Juelich, Germany
| | - Dagmar van Dusschoten
- Institute of Bio- and Geosciences, Plant Sciences (IBG-2), Forschungszentrum Juelich GmbH, Juelich, Germany
| | - Daniel Pflugfelder
- Institute of Bio- and Geosciences, Plant Sciences (IBG-2), Forschungszentrum Juelich GmbH, Juelich, Germany
| | - Ljudmilla Borisjuk
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Iaroslav Plutenko
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Audrey Mahon
- Horticultural Sciences Department, University of Florida, Gainesville, FL, USA
| | - Marcio F R Resende
- Horticultural Sciences Department, University of Florida, Gainesville, FL, USA
| | - Silvio Salvi
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - Asegidew Akale
- Chair of Root-Soil Interactions, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Mohanned Abdalla
- Chair of Root-Soil Interactions, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Mutez Ali Ahmed
- Chair of Root-Soil Interactions, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Felix Maximilian Bauer
- Institute of Bio- and Geosciences, Agrosphere (IBG-3), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Andrea Schnepf
- Institute of Bio- and Geosciences, Agrosphere (IBG-3), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Guillaume Lobet
- Institute of Bio- and Geosciences, Agrosphere (IBG-3), Forschungszentrum Jülich GmbH, Jülich, Germany
- Earth and Life Institute, Université catholique de Louvain, UCLouvain, Belgium
| | - Adrien Heymans
- Earth and Life Institute, Université catholique de Louvain, UCLouvain, Belgium
| | - Kiran Suresh
- Institute of Cellular and Molecular Botany (IZMB), Department of Ecophysiology, University of Bonn, Bonn, Germany
| | - Lukas Schreiber
- Institute of Cellular and Molecular Botany (IZMB), Department of Ecophysiology, University of Bonn, Bonn, Germany
| | - Chloee M McLaughlin
- Intercollege Graduate Degree Program in Plant Biology, The Pennsylvania State University, State College, PA, USA
| | - Chunjian Li
- Key Laboratory of Plant-Soil Interactions, College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Ministry of Education, China Agricultural University, Beijing, PR China
| | - Manfred Mayer
- Plant Breeding, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Chris-Carolin Schön
- Plant Breeding, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Vivian Bernau
- North Central Regional Plant Introduction Station, USDA-Agriculture Research Service and Iowa State University, Ames, IA, USA
| | - Nicolaus von Wirén
- Department of Physiology and Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Ruairidh J H Sawers
- Department of Plant Science, The Pennsylvania State University, State College, PA, USA.
| | - Tianyu Wang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, PR China.
| | - Frank Hochholdinger
- Crop Functional Genomics, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Bonn, Germany.
| |
Collapse
|
23
|
Al-Mamun MH, Cazzonelli CI, Krishna P. BZR1 and BES1 transcription factors mediate brassinosteroid control over root system architecture in response to nitrogen availability. FRONTIERS IN PLANT SCIENCE 2024; 15:1387321. [PMID: 38779077 PMCID: PMC11109456 DOI: 10.3389/fpls.2024.1387321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 04/17/2024] [Indexed: 05/25/2024]
Abstract
Plants modify their root system architecture (RSA) in response to nitrogen (N) deficiency. The plant steroidal hormone, brassinosteroid (BR), plays important roles in root growth and development. This study demonstrates that optimal levels of exogenous BR impact significant increases in lateral root length and numbers in Arabidopsis seedlings under mild N-deficient conditions as compared to untreated seedlings. The impact of BR on RSA was stronger under mild N deficiency than under N-sufficient conditions. The BR effects on RSA were mimicked in dominant mutants of BZR1 and BES1 (bzr1-1D and bes1-D) transcription factors, while the RSA was highly reduced in the BR-insensitive mutant bri1-6, confirming that BR signaling is essential for the development of RSA under both N-sufficient and N-deficient conditions. Exogenous BR and constitutive activity of BZR1 and BES1 in dominant mutants led to enhanced root meristem, meristematic cell number, and cortical cell length. Under mild N deficiency, bzr1-1D displayed higher fresh and dry shoot weights, chlorophyll content, and N levels in the shoot, as compared to the wild type. These results indicate that BR modulates RSA under both N-sufficient and N-deficient conditions via the transcription factors BES1/BZR1 module and confers tolerance to N deficiency.
Collapse
Affiliation(s)
| | | | - Priti Krishna
- School of Science, Western Sydney University, Richmond, NSW, Australia
- Faculty of Life Sciences, Graphic Era Deemed to be University, Dehradun, Uttarakhand, India
| |
Collapse
|
24
|
Wang J, Liao E, Ren Z, Wang Q, Xu Z, Wu S, Yu C, Yin Y. Extraction and In Vitro Skincare Effect Assessment of Polysaccharides Extract from the Roots of Abelmoschus manihot (L.). Molecules 2024; 29:2109. [PMID: 38731598 PMCID: PMC11085328 DOI: 10.3390/molecules29092109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/28/2024] [Accepted: 04/28/2024] [Indexed: 05/13/2024] Open
Abstract
Obtaining high-added value compounds from agricultural waste receives increasing attention, as it can both improve resource utilization efficiency and reduce waste generation. In this study, polysaccharides are extracted from the discarded roots of Abelmoschus manihot (L.) by the high-efficiency ultrasound-assisted extraction (UAE). The optimized condition was determined as solid-liquid ratio SL ratio = 1:20, temperature T = 30 °C and time T = 40 min, achieving an extraction yield of 13.41%. Composition analysis revealed that glucose (Glc, 44.65%), rhamnose (Rha, 26.30%), galacturonic acid (GalA, 12.50%) and galactose (Gal, 9.86%) are the major monosaccharides of the extract. The extract showed a low degree of esterification (DE) value of 40.95%, and its Fourier-transform infrared (FT-IR) spectrum exhibited several characteristic peaks of polysaccharides. Inspired by the wide cosmetic applications of polysaccharides, the skincare effect of the extract was evaluated via the moisture retention, total phenolic content (TPC) quantification, 2,2-Diphenyl-1-picrylhydrazyl (DPPH)-free radical scavenging activity, anti-hyaluronidase and anti-elastase activity experiments. The extract solutions demonstrated a 48 h moisture retention rate of 10.75%, which is superior to that of commercially available moisturizer hyaluronic acid (HA). Moreover, both the TPC value of 16.16 mg GAE/g (dw) and DPPH-free radical scavenging activity of 89.20% at the concentration of 2 mg/mL indicated the strong anti-oxidant properties of the extract. Furthermore, the anti-hyaluronidase activity and moderate anti-elastase activity were determined as 72.16% and 42.02%, respectively. In general, in vitro skincare effect experiments suggest moisturizing, anti-oxidant, anti-radical and anti-aging activities of the A. manihot root extract, indicating its potential applications in the cosmetic industry.
Collapse
Affiliation(s)
- Junjie Wang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China; (J.W.); (E.L.); (Z.R.); (Z.X.); (C.Y.)
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China;
| | - Enhui Liao
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China; (J.W.); (E.L.); (Z.R.); (Z.X.); (C.Y.)
| | - Zixuan Ren
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China; (J.W.); (E.L.); (Z.R.); (Z.X.); (C.Y.)
| | - Qiong Wang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China; (J.W.); (E.L.); (Z.R.); (Z.X.); (C.Y.)
| | - Zenglai Xu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China; (J.W.); (E.L.); (Z.R.); (Z.X.); (C.Y.)
| | - Shufang Wu
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China;
| | - Chaoguang Yu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China; (J.W.); (E.L.); (Z.R.); (Z.X.); (C.Y.)
| | - Yunlong Yin
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China; (J.W.); (E.L.); (Z.R.); (Z.X.); (C.Y.)
| |
Collapse
|
25
|
Singh K, Gupta S, Singh AP. Review: Nutrient-nutrient interactions governing underground plant adaptation strategies in a heterogeneous environment. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 342:112024. [PMID: 38325661 DOI: 10.1016/j.plantsci.2024.112024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 12/20/2023] [Accepted: 02/01/2024] [Indexed: 02/09/2024]
Abstract
Plant growth relies on the mineral nutrients present in the rhizosphere. The distribution of nutrients in soils varies depending on their mobility and capacity to bind with soil particles. Consequently, plants often encounter either low or high levels of nutrients in the rhizosphere. Plant roots are the essential organs that sense changes in soil mineral content, leading to the activation of signaling pathways associated with the adjustment of plant architecture and metabolic responses. During differential availability of minerals in the rhizosphere, plants trigger adaptation strategies such as cellular remobilization of minerals, secretion of organic molecules, and the attenuation or enhancement of root growth to balance nutrient uptake. The interdependency, availability, and uptake of minerals, such as phosphorus (P), iron (Fe), zinc (Zn), potassium (K), nitrogen (N) forms, nitrate (NO3-), and ammonium (NH4+), modulate the root architecture and metabolic functioning of plants. Here, we summarized the interactions of major nutrients (N, P, K, Fe, Zn) in shaping root architecture, physiological responses, genetic components involved, and address the current challenges associated with nutrient-nutrient interactions. Furthermore, we discuss the major gaps and opportunities in the field for developing plants with improved nutrient uptake and use efficiency for sustainable agriculture.
Collapse
Affiliation(s)
- Kratika Singh
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | - Shreya Gupta
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | - Amar Pal Singh
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India.
| |
Collapse
|
26
|
Li D, Wang J, Chen R, Chen J, Zong J, Li L, Hao D, Guo H. Review: Nitrogen acquisition, assimilation, and seasonal cycling in perennial grasses. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 342:112054. [PMID: 38423392 DOI: 10.1016/j.plantsci.2024.112054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/19/2024] [Accepted: 02/26/2024] [Indexed: 03/02/2024]
Abstract
Perennial grasses seasonal nitrogen (N) cycle extends the residence and reuse time of N within the plant system, thereby enhancing N use efficiency. Currently, the mechanism of N metabolism has been extensively examined in model plants and annual grasses, and although perennial grasses exhibit similarities, they also possess distinct characteristics. Apart from assimilating and utilizing N throughout the growing season, perennial grasses also translocate N from aerial parts to perennial tissues, such as rhizomes, after autumn senescence. Subsequently, they remobilize the N from these perennial tissues to support new growth in the subsequent year, thereby ensuring their persistence. Previous studies indicate that the seasonal storage and remobilization of N in perennial grasses are not significantly associated with winter survival despite some amino acids and proteins associated with low temperature tolerance accumulating, but primarily with regrowth during the subsequent spring green-up stage. Further investigation can be conducted in perennial grasses to explore the correlation between stored N and dormant bud outgrowth in perennial tissues, such as rhizomes, during the spring green-up stage, building upon previous research on the relationship between N and axillary bud outgrowth in annual grasses. This exploration on seasonal N cycling in perennial grasses can offer valuable theoretical insights for new perennial grasses varieties with high N use efficiency through the application of gene editing and other advanced technologies.
Collapse
Affiliation(s)
- Dandan Li
- The National Forestry and Grassland Administration Engineering Research Center for Germplasm Innovation and Utilization of Warm-Season Turfgrasses, Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem, Sun Yat-Sen), Nanjing, Jiangsu 210014, China
| | - Jingjing Wang
- The National Forestry and Grassland Administration Engineering Research Center for Germplasm Innovation and Utilization of Warm-Season Turfgrasses, Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem, Sun Yat-Sen), Nanjing, Jiangsu 210014, China
| | - Rongrong Chen
- The National Forestry and Grassland Administration Engineering Research Center for Germplasm Innovation and Utilization of Warm-Season Turfgrasses, Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem, Sun Yat-Sen), Nanjing, Jiangsu 210014, China
| | - Jingbo Chen
- The National Forestry and Grassland Administration Engineering Research Center for Germplasm Innovation and Utilization of Warm-Season Turfgrasses, Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem, Sun Yat-Sen), Nanjing, Jiangsu 210014, China
| | - Junqin Zong
- The National Forestry and Grassland Administration Engineering Research Center for Germplasm Innovation and Utilization of Warm-Season Turfgrasses, Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem, Sun Yat-Sen), Nanjing, Jiangsu 210014, China
| | - Ling Li
- The National Forestry and Grassland Administration Engineering Research Center for Germplasm Innovation and Utilization of Warm-Season Turfgrasses, Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem, Sun Yat-Sen), Nanjing, Jiangsu 210014, China
| | - Dongli Hao
- The National Forestry and Grassland Administration Engineering Research Center for Germplasm Innovation and Utilization of Warm-Season Turfgrasses, Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem, Sun Yat-Sen), Nanjing, Jiangsu 210014, China
| | - Hailin Guo
- The National Forestry and Grassland Administration Engineering Research Center for Germplasm Innovation and Utilization of Warm-Season Turfgrasses, Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem, Sun Yat-Sen), Nanjing, Jiangsu 210014, China.
| |
Collapse
|
27
|
Xu Y, Qi S, Wang Y, Jia J. Integration of nitrate and abscisic acid signaling in plants. JOURNAL OF EXPERIMENTAL BOTANY 2024:erae128. [PMID: 38661493 DOI: 10.1093/jxb/erae128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 03/19/2024] [Indexed: 04/26/2024]
Abstract
To meet the demands of the new Green Revolution and sustainable agriculture, it is important to develop crop varieties with improved yield, nitrogen use efficiency, and stress resistance. Nitrate is the major form of inorganic nitrogen available for plant growth in many well-aerated agricultural soils, and acts as a signaling molecule regulating plant development, growth, and stress responses. Abscisic acid (ABA), an important phytohormone, plays vital roles in integrating extrinsic and intrinsic responses and mediating plant growth and development in response to biotic and abiotic stresses. Therefore, elucidating the interplay between nitrate and ABA can contribute to crop breeding and sustainable agriculture. Here, we review studies that have investigated the interplay between nitrate and ABA in root growth modulation, nitrate and ABA transport processes, seed germination regulation, and drought responses. We also focus on nitrate and ABA interplay in several reported omics analyses with some important nodes in the crosstalk between nitrate and ABA. Through these insights, we proposed some research perspectives that could help to develop crop varieties adapted to a changing environment and to improve crop yield with high nitrogen use efficiency and strong stress resistance.
Collapse
Affiliation(s)
- Yiran Xu
- National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Shengdong Qi
- National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Yong Wang
- National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Jingbo Jia
- National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong 271018, China
| |
Collapse
|
28
|
Zhu Z, Krall L, Li Z, Xi L, Luo H, Li S, He M, Yang X, Zan H, Gilbert M, Gombos S, Wang T, Neuhäuser B, Jacquot A, Lejay L, Zhang J, Liu J, Schulze WX, Wu XN. Transceptor NRT1.1 and receptor-kinase QSK1 complex controls PM H +-ATPase activity under low nitrate. Curr Biol 2024; 34:1479-1491.e6. [PMID: 38490203 DOI: 10.1016/j.cub.2024.02.066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 01/09/2024] [Accepted: 02/27/2024] [Indexed: 03/17/2024]
Abstract
NRT1.1, a nitrate transceptor, plays an important role in nitrate binding, sensing, and nitrate-dependent lateral root (LR) morphology. However, little is known about NRT1.1-mediated nitrate signaling transduction through plasma membrane (PM)-localized proteins. Through in-depth phosphoproteome profiling using membranes of Arabidopsis roots, we identified receptor kinase QSK1 and plasma membrane H+-ATPase AHA2 as potential downstream components of NRT1.1 signaling in a mild low-nitrate (LN)-dependent manner. QSK1, as a functional kinase and molecular link, physically interacts with NRT1.1 and AHA2 at LN and specifically phosphorylates AHA2 at S899. Importantly, we found that LN, not high nitrate (HN), induces formation of the NRT1.1-QSK1-AHA2 complex in order to repress the proton efflux into the apoplast by increased phosphorylation of AHA2 at S899. Loss of either NRT1.1 or QSK1 thus results in a higher T947/S899 phosphorylation ratio on AHA2, leading to enhanced pump activity and longer LRs under LN. Our results uncover a regulatory mechanism in which NRT1.1, under LN conditions, promotes coreceptor QSK1 phosphorylation and enhances the NRT1.1-QSK1 complex formation to transduce LN sensing to the PM H+-ATPase AHA2, controlling the phosphorylation ratio of activating and inhibitory phosphorylation sites on AHA2. This then results in altered proton pump activity, apoplast acidification, and regulation of NRT1.1-mediated LR growth.
Collapse
Affiliation(s)
- Zhe Zhu
- Yunnan Key Laboratory of Cell Metabolism and Diseases, State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, Center for Life Science and School of Life Sciences, Yunnan University, Kunming 650500, China
| | - Leonard Krall
- Yunnan Key Laboratory of Cell Metabolism and Diseases, State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, Center for Life Science and School of Life Sciences, Yunnan University, Kunming 650500, China.
| | - Zhi Li
- Department of Plant Systems Biology, University of Hohenheim, 70599 Stuttgart, Germany
| | - Lin Xi
- Department of Plant Systems Biology, University of Hohenheim, 70599 Stuttgart, Germany
| | - Hongxiu Luo
- Yunnan Key Laboratory of Cell Metabolism and Diseases, State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, Center for Life Science and School of Life Sciences, Yunnan University, Kunming 650500, China
| | - Shalan Li
- Yunnan Key Laboratory of Cell Metabolism and Diseases, State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, Center for Life Science and School of Life Sciences, Yunnan University, Kunming 650500, China
| | - Mingjie He
- Department of Plant Systems Biology, University of Hohenheim, 70599 Stuttgart, Germany
| | - Xiaolin Yang
- Yunnan Key Laboratory of Cell Metabolism and Diseases, State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, Center for Life Science and School of Life Sciences, Yunnan University, Kunming 650500, China
| | - Haitao Zan
- Yunnan Key Laboratory of Cell Metabolism and Diseases, State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, Center for Life Science and School of Life Sciences, Yunnan University, Kunming 650500, China
| | - Max Gilbert
- Department of Plant Systems Biology, University of Hohenheim, 70599 Stuttgart, Germany
| | - Sven Gombos
- Department of Plant Systems Biology, University of Hohenheim, 70599 Stuttgart, Germany
| | - Ting Wang
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Science, Beijing Normal University, Beijing 100875, China
| | - Benjamin Neuhäuser
- Nutritional Crop Physiology, University of Hohenheim, 70599 Stuttgart, Germany
| | - Aurore Jacquot
- IPSiM, University Montpellier, CNRS, INRAE, Institut Agro, 34060 Montpellier, France
| | - Laurence Lejay
- IPSiM, University Montpellier, CNRS, INRAE, Institut Agro, 34060 Montpellier, France
| | - Jingbo Zhang
- National Academy of Agriculture Green Development, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Junzhong Liu
- Yunnan Key Laboratory of Cell Metabolism and Diseases, State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, Center for Life Science and School of Life Sciences, Yunnan University, Kunming 650500, China
| | - Waltraud X Schulze
- Department of Plant Systems Biology, University of Hohenheim, 70599 Stuttgart, Germany.
| | - Xu Na Wu
- Yunnan Key Laboratory of Cell Metabolism and Diseases, State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, Center for Life Science and School of Life Sciences, Yunnan University, Kunming 650500, China.
| |
Collapse
|
29
|
Zheng L, Hu Y, Yang T, Wang Z, Wang D, Jia L, Xie Y, Luo L, Qi W, Lv Y, Beeckman T, Xuan W, Han Y. A root cap-localized NAC transcription factor controls root halotropic response to salt stress in Arabidopsis. Nat Commun 2024; 15:2061. [PMID: 38448433 PMCID: PMC10917740 DOI: 10.1038/s41467-024-46482-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 02/28/2024] [Indexed: 03/08/2024] Open
Abstract
Plants are capable of altering root growth direction to curtail exposure to a saline environment (termed halotropism). The root cap that surrounds root tip meristematic stem cells plays crucial roles in perceiving and responding to environmental stimuli. However, how the root cap mediates root halotropism remains undetermined. Here, we identified a root cap-localized NAC transcription factor, SOMBRERO (SMB), that is required for root halotropism. Its effect on root halotropism is attributable to the establishment of asymmetric auxin distribution in the lateral root cap (LRC) rather than to the alteration of cellular sodium equilibrium or amyloplast statoliths. Furthermore, SMB is essential for basal expression of the auxin influx carrier gene AUX1 in LRC and for auxin redistribution in a spatiotemporally-regulated manner, thereby leading to directional bending of roots away from higher salinity. Our findings uncover an SMB-AUX1-auxin module linking the role of the root cap to the activation of root halotropism.
Collapse
Affiliation(s)
- Lulu Zheng
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics & Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, Ghent, B-9052, Belgium
- VIB-UGent Center for Plant Systems Biology, Technologiepark 71, Ghent, B-9052, Belgium
| | - Yongfeng Hu
- Key Laboratory of Three Gorges Regional Plant Genetics and Germplasm Enhancement, Biotechnology Research Center, China Three Gorges University, Yichang, China
| | - Tianzhao Yang
- National Engineering Laboratory of Crop Stress Resistence Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Zhen Wang
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics & Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Daoyuan Wang
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics & Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Letian Jia
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics & Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Yuanming Xie
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics & Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Long Luo
- National Engineering Laboratory of Crop Stress Resistence Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Weicong Qi
- Excellence and Innovation Center, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Yuanda Lv
- Excellence and Innovation Center, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Tom Beeckman
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, Ghent, B-9052, Belgium
- VIB-UGent Center for Plant Systems Biology, Technologiepark 71, Ghent, B-9052, Belgium
| | - Wei Xuan
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics & Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China.
| | - Yi Han
- National Engineering Laboratory of Crop Stress Resistence Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
30
|
Cao H, Liu Z, Guo J, Jia Z, Shi Y, Kang K, Peng W, Wang Z, Chen L, Neuhaeuser B, Wang Y, Liu X, Hao D, Yuan L. ZmNRT1.1B (ZmNPF6.6) determines nitrogen use efficiency via regulation of nitrate transport and signalling in maize. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:316-329. [PMID: 37786281 PMCID: PMC10826987 DOI: 10.1111/pbi.14185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 09/11/2023] [Accepted: 09/15/2023] [Indexed: 10/04/2023]
Abstract
Nitrate (NO3 - ) is crucial for optimal plant growth and development and often limits crop productivity under low availability. In comparison with model plant Arabidopsis, the molecular mechanisms underlying NO3 - acquisition and utilization remain largely unclear in maize. In particular, only a few genes have been exploited to improve nitrogen use efficiency (NUE). Here, we demonstrated that NO3 - -inducible ZmNRT1.1B (ZmNPF6.6) positively regulated NO3 - -dependent growth and NUE in maize. We showed that the tandem duplicated proteoform ZmNRT1.1C is irrelevant to maize seedling growth under NO3 - supply; however, the loss of function of ZmNRT1.1B significantly weakened plant growth under adequate NO3 - supply under both hydroponic and field conditions. The 15 N-labelled NO3 - absorption assay indicated that ZmNRT1.1B mediated the high-affinity NO3 - -transport and root-to-shoot NO3 - translocation. Transcriptome analysis further showed, upon NO3 - supply, ZmNRT1.1B promotes cytoplasmic-to-nuclear shuttling of ZmNLP3.1 (ZmNLP8), which co-regulates the expression of genes involved in NO3 - response, cytokinin biosynthesis and carbon metabolism. Remarkably, overexpression of ZmNRT1.1B in modern maize hybrids improved grain yield under N-limiting fields. Taken together, our study revealed a crucial role of ZmNRT1.1B in high-affinity NO3 - transport and signalling and offers valuable genetic resource for breeding N use efficient high-yield cultivars.
Collapse
Affiliation(s)
- Huairong Cao
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, National Academy of Agriculture Green DevelopmentChina Agricultural UniversityBeijingChina
| | - Zhi Liu
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, National Academy of Agriculture Green DevelopmentChina Agricultural UniversityBeijingChina
| | - Jia Guo
- Key Laboratory for Agricultural Biotechnology of Jilin ProvincialInstitute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences (JAAS)JilinChina
| | - Zhongtao Jia
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, National Academy of Agriculture Green DevelopmentChina Agricultural UniversityBeijingChina
| | - Yandong Shi
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, National Academy of Agriculture Green DevelopmentChina Agricultural UniversityBeijingChina
| | - Kai Kang
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, National Academy of Agriculture Green DevelopmentChina Agricultural UniversityBeijingChina
| | - Wushuang Peng
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, National Academy of Agriculture Green DevelopmentChina Agricultural UniversityBeijingChina
| | - Zhangkui Wang
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, National Academy of Agriculture Green DevelopmentChina Agricultural UniversityBeijingChina
| | - Limei Chen
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, Center for Crop Functional Genomics and Molecular BreedingChina Agricultural UniversityBeijingChina
| | - Benjamin Neuhaeuser
- Department of Nutritional Crop Physiology, Institute of Crop ScienceUniversity of HohenheimStuttgartGermany
| | - Yong Wang
- National Key Laboratory of Wheat Improvement, College of Life SciencesShandong Agricultural UniversityTai'anShandongChina
| | - Xiangguo Liu
- Key Laboratory for Agricultural Biotechnology of Jilin ProvincialInstitute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences (JAAS)JilinChina
| | - Dongyun Hao
- Key Laboratory for Agricultural Biotechnology of Jilin ProvincialInstitute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences (JAAS)JilinChina
| | - Lixing Yuan
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, National Academy of Agriculture Green DevelopmentChina Agricultural UniversityBeijingChina
| |
Collapse
|
31
|
Hu J, Zheng Q, Neuhäuser B, Dong C, Tian Z, Dai T. Superior glucose metabolism supports NH 4+ assimilation in wheat to improve ammonium tolerance. FRONTIERS IN PLANT SCIENCE 2024; 15:1339105. [PMID: 38318495 PMCID: PMC10839024 DOI: 10.3389/fpls.2024.1339105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 01/05/2024] [Indexed: 02/07/2024]
Abstract
The use of slow-release fertilizers and seed-fertilizers cause localized high-ammonium (NH4 +) environments in agricultural fields, adversely affecting wheat growth and development and delaying its yield. Thus, it is important to investigate the physiological responses of wheat and its tolerance to NH4 + stress to improve the adaptation of wheat to high NH4 + environments. In this study, the physiological mechanisms of ammonium tolerance in wheat (Triticum aestivum) were investigated in depth by comparative analysis of two cultivars: NH4 +-tolerant Xumai25 and NH4 +-sensitive Yangmai20. Cultivation under hydroponic conditions with high NH4 + (5 mM NH4 +, AN) and nitrate (5 mM NO3 -, NN), as control, provided insights into the nuanced responses of both cultivars. Compared to Yangmai20, Xumai25 displayed a comparatively lesser sensitivity to NH4 + stress, as evident by a less pronounced reduction in dry plant biomass and a milder adverse impact on root morphology. Despite similarities in NH4 + efflux and the expression levels of TaAMT1.1 and TaAMT1.2 between the two cultivars, Xumai25 exhibited higher NH4 + influx, while maintaining a lower free NH4 + concentration in the roots. Furthermore, Xumai25 showed a more pronounced increase in the levels of free amino acids, including asparagine, glutamine, and aspartate, suggesting a superior NH4 + assimilation capacity under NH4 + stress compared to Yangmai20. Additionally, the enhanced transcriptional regulation of vacuolar glucose transporter and glucose metabolism under NH4 + stress in Xumai25 contributed to an enhanced carbon skeleton supply, particularly of 2-oxoglutarate and pyruvate. Taken together, our results demonstrate that the NH4 + tolerance of Xumai25 is intricately linked to enhanced glucose metabolism and optimized glucose transport, which contributes to the robust NH4 + assimilation capacity.
Collapse
Affiliation(s)
- Jinling Hu
- Key Laboratory of Crop Physiology Ecology and Production Management of Ministry of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Qiaomei Zheng
- Key Laboratory of Crop Physiology Ecology and Production Management of Ministry of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Benjamin Neuhäuser
- Institute of Crop Science, Nutritional Crop Physiology, University of Hohenheim, Stuttgart, Germany
| | - Chaofeng Dong
- Key Laboratory of Crop Physiology Ecology and Production Management of Ministry of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Zhongwei Tian
- Key Laboratory of Crop Physiology Ecology and Production Management of Ministry of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Tingbo Dai
- Key Laboratory of Crop Physiology Ecology and Production Management of Ministry of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| |
Collapse
|
32
|
Taleski M, Jin M, Chapman K, Taylor K, Winning C, Frank M, Imin N, Djordjevic MA. CEP hormones at the nexus of nutrient acquisition and allocation, root development, and plant-microbe interactions. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:538-552. [PMID: 37946363 PMCID: PMC10773996 DOI: 10.1093/jxb/erad444] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 11/04/2023] [Indexed: 11/12/2023]
Abstract
A growing understanding is emerging of the roles of peptide hormones in local and long-distance signalling that coordinates plant growth and development as well as responses to the environment. C-TERMINALLY ENCODED PEPTIDE (CEP) signalling triggered by its interaction with CEP RECEPTOR 1 (CEPR1) is known to play roles in systemic nitrogen (N) demand signalling, legume nodulation, and root system architecture. Recent research provides further insight into how CEP signalling operates, which involves diverse downstream targets and interactions with other hormone pathways. Additionally, there is emerging evidence of CEP signalling playing roles in N allocation, root responses to carbon levels, the uptake of other soil nutrients such as phosphorus and sulfur, root responses to arbuscular mycorrhizal fungi, plant immunity, and reproductive development. These findings suggest that CEP signalling more broadly coordinates growth across the whole plant in response to diverse environmental cues. Moreover, CEP signalling and function appear to be conserved in angiosperms. We review recent advances in CEP biology with a focus on soil nutrient uptake, root system architecture and organogenesis, and roles in plant-microbe interactions. Furthermore, we address knowledge gaps and future directions in this research field.
Collapse
Affiliation(s)
- Michael Taleski
- Division of Plant Sciences, Research School of Biology, College of Science, The Australian National University, Canberra, ACT, 2601Australia
| | - Marvin Jin
- Division of Plant Sciences, Research School of Biology, College of Science, The Australian National University, Canberra, ACT, 2601Australia
| | - Kelly Chapman
- Division of Plant Sciences, Research School of Biology, College of Science, The Australian National University, Canberra, ACT, 2601Australia
| | - Katia Taylor
- CSIRO Agriculture and Food, Canberra, ACT, 2601, Australia
| | - Courtney Winning
- Division of Plant Sciences, Research School of Biology, College of Science, The Australian National University, Canberra, ACT, 2601Australia
| | - Manuel Frank
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark
| | - Nijat Imin
- School of Science, Western Sydney University, Penrith, New South Wales 2751, Australia
| | - Michael A Djordjevic
- Division of Plant Sciences, Research School of Biology, College of Science, The Australian National University, Canberra, ACT, 2601Australia
| |
Collapse
|
33
|
Shi C, Wang P, Wang G, Hu T, Ru Z, Feng S. Responses of root characteristics and nitrogen absorption and assimilation to different pH gradients of winter wheat at seedling stage. PLoS One 2023; 18:e0293471. [PMID: 38127853 PMCID: PMC10735037 DOI: 10.1371/journal.pone.0293471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 10/12/2023] [Indexed: 12/23/2023] Open
Abstract
Nitrogen (N) and rhizosphere pH are the two main factors restricting the growth of winter wheat (Triticum aestivum L.) in North China Plain. Soil nutrient availability is affected by soil acidity and alkalinity. In order to understand the effect of rhizosphere pH value on wheat nitrogen metabolism and the response of wheat growth to pH value at seedling stage, winter wheat varieties 'Aikang 58' (AK58) and 'Bainong 4199' (BN4199) were tested in hydroponics under three pH treatments (pH = 4.0, 6.5, and 9.0). The results showed that the accumulation of dry matter in root and above ground under pH 4.0 and pH 9.0 treatments was lower than that under pH 6.5 treatments, and the root/shoot ratio increased with the increase of pH value. Regardless of pH value, 'BN4199' had higher root dry weight, root length, root surface area, root activity and root tip than 'AK58'. Therefore, wheat that is tolerant to extreme pH is able to adapt to the acid-base environment by changing root characteristics. At pH 4.0, the net H+ outflow rate of wheat roots was significantly lower than that of the control group, and the net NO3- flux of wheat roots was also low. The net H+ outflow occurred at pH 6.5 and 9.0, and at the same time, the net NO3- flux of roots also increased, and both increased with the increase of pH. The activity of nitrate reductase (NR) in stem of pH 9.0 treatment was significantly higher than that of other treatments, while the activity of glutamine synthetase (GS) in root and stem of pH 6.5 treatment was significantly higher than that of other treatments. Under pH 4.0 and pH 9.0 treatments, the activities of NR and GS in 'BN4199' were higher than those in 'AK58', The root respiration of 'BN4199' was significantly higher than that of 'AK58' under pH 4.0 and pH 9.0 treatment, and 'BN4199' had higher NO3- net flux, key enzyme activity of root nitrogen metabolism and root respiration. Therefore, we believe that 'BN4199' has strong resistance ability to extreme pH stress, and high root/shoot ratio and strong root respiration can be used as important indicators for wheat variety screening adapted to the alkaline environment at the seedling stage.
Collapse
Affiliation(s)
- Chenchen Shi
- Henan Provincial Key Laboratory of Hybrid Wheat, Henan Institute of Science and Technology / Collaborative Innovation Center of Modern Biological Breeding, Xinxiang, China
| | - Peiyu Wang
- Henan Provincial Key Laboratory of Hybrid Wheat, Henan Institute of Science and Technology / Collaborative Innovation Center of Modern Biological Breeding, Xinxiang, China
| | - Guangtao Wang
- Henan Provincial Key Laboratory of Hybrid Wheat, Henan Institute of Science and Technology / Collaborative Innovation Center of Modern Biological Breeding, Xinxiang, China
| | - Tiezhu Hu
- Henan Provincial Key Laboratory of Hybrid Wheat, Henan Institute of Science and Technology / Collaborative Innovation Center of Modern Biological Breeding, Xinxiang, China
| | - Zhengang Ru
- Henan Provincial Key Laboratory of Hybrid Wheat, Henan Institute of Science and Technology / Collaborative Innovation Center of Modern Biological Breeding, Xinxiang, China
| | - Suwei Feng
- Henan Provincial Key Laboratory of Hybrid Wheat, Henan Institute of Science and Technology / Collaborative Innovation Center of Modern Biological Breeding, Xinxiang, China
| |
Collapse
|
34
|
Sexauer M, Bhasin H, Schön M, Roitsch E, Wall C, Herzog U, Markmann K. A micro RNA mediates shoot control of root branching. Nat Commun 2023; 14:8083. [PMID: 38057302 PMCID: PMC10700597 DOI: 10.1038/s41467-023-43738-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 11/18/2023] [Indexed: 12/08/2023] Open
Abstract
Plants extract mineral nutrients from the soil, or from interactions with mutualistic soil microbes via their root systems. Adapting root architecture to nutrient availability enables efficient resource utilization, particularly in patchy and dynamic environments. Root growth responses to soil nitrogen levels are shoot-mediated, but the identity of shoot-derived mobile signals regulating root growth responses has remained enigmatic. Here we show that a shoot-derived micro RNA, miR2111, systemically steers lateral root initiation and nitrogen responsiveness through its root target TML (TOO MUCH LOVE) in the legume Lotus japonicus, where miR2111 and TML were previously shown to regulate symbiotic infections with nitrogen fixing bacteria. Intriguingly, systemic control of lateral root initiation by miR2111 and TML/HOLT (HOMOLOGUE OF LEGUME TML) was conserved in the nonsymbiotic ruderal Arabidopsis thaliana, which follows a distinct ecological strategy. Thus, the miR2111-TML/HOLT regulon emerges as an essential, conserved factor in adaptive shoot control of root architecture in dicots.
Collapse
Affiliation(s)
- Moritz Sexauer
- Eberhard-Karls-University, Centre for Molecular Biology of Plants, Tübingen, Germany
- Julius-Maximilians-University, Julius-von-Sachs Institute for Biosciences, Würzburg, Germany
| | - Hemal Bhasin
- Eberhard-Karls-University, Centre for Molecular Biology of Plants, Tübingen, Germany
- University of Toronto - Scarborough, Department of Biological Sciences, Toronto, ON, Canada
| | - Maria Schön
- Eberhard-Karls-University, Centre for Molecular Biology of Plants, Tübingen, Germany
| | - Elena Roitsch
- Eberhard-Karls-University, Centre for Molecular Biology of Plants, Tübingen, Germany
- Martin-Luther-University Halle-Wittenberg, Institute for Genetics, Halle/Saale, Germany
| | - Caroline Wall
- Eberhard-Karls-University, Centre for Molecular Biology of Plants, Tübingen, Germany
| | - Ulrike Herzog
- Eberhard-Karls-University, Centre for Molecular Biology of Plants, Tübingen, Germany
| | - Katharina Markmann
- Eberhard-Karls-University, Centre for Molecular Biology of Plants, Tübingen, Germany.
- Martin-Luther-University Halle-Wittenberg, Institute for Genetics, Halle/Saale, Germany.
- Julius-Maximilians-University, Julius-von-Sachs Institute for Biosciences, Würzburg, Germany.
| |
Collapse
|
35
|
Wu J, Yang S, Chen N, Jiang Q, Huang L, Qi J, Xu G, Shen L, Yu H, Fan X, Gan Y. Nuclear translocation of OsMADS25 facilitated by OsNAR2.1 in reponse to nitrate signals promotes rice root growth by targeting OsMADS27 and OsARF7. PLANT COMMUNICATIONS 2023; 4:100642. [PMID: 37353931 PMCID: PMC10721473 DOI: 10.1016/j.xplc.2023.100642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 05/24/2023] [Accepted: 06/20/2023] [Indexed: 06/25/2023]
Abstract
Nitrate is an important nitrogen source and signaling molecule that regulates plant growth and development. Although several components of the nitrate signaling pathway have been identified, the detailed mechanisms are still unclear. Our previous results showed that OsMADS25 can regulate root development in response to nitrate signals, but the mechanism is still unknown. Here, we try to answer two key questions: how does OsMADS25 move from the cytoplasm to the nucleus, and what are the direct target genes activated by OsMADS25 to regulate root growth after it moves to the nucleus in response to nitrate? Our results demonstrated that OsMADS25 moves from the cytoplasm to the nucleus in the presence of nitrate in an OsNAR2.1-dependent manner. Chromatin immunoprecipitation sequencing, chromatin immunoprecipitation qPCR, yeast one-hybrid, and luciferase experiments showed that OsMADS25 directly activates the expression of OsMADS27 and OsARF7, which are reported to be associated with root growth. Finally, OsMADS25-RNAi lines, the Osnar2.1 mutant, and OsMADS25-RNAi Osnar2.1 lines exhibited significantly reduced root growth compared with the wild type in response to nitrate supply, and expression of OsMADS27 and OsARF7 was significantly suppressed in these lines. Collectively, these results reveal a new mechanism by which OsMADS25 interacts with OsNAR2.1. This interaction is required for nuclear accumulation of OsMADS25, which promotes OsMADS27 and OsARF7 expression and root growth in a nitrate-dependent manner.
Collapse
Affiliation(s)
- Junyu Wu
- Zhejiang Key Laboratory of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310000, China
| | - Shuaiqi Yang
- Zhejiang Key Laboratory of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310000, China
| | - Nana Chen
- Zhejiang Key Laboratory of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310000, China
| | - Qining Jiang
- Zhejiang Key Laboratory of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310000, China
| | - Linli Huang
- Zhejiang Key Laboratory of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310000, China
| | - Jiaxuan Qi
- Zhejiang Key Laboratory of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310000, China
| | - Guohua Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Lisha Shen
- Temasek Life Sciences Laboratory and Department of Biological Sciences, National University of Singapore, 1 Research Link, Singapore 117604, Singapore
| | - Hao Yu
- Temasek Life Sciences Laboratory and Department of Biological Sciences, National University of Singapore, 1 Research Link, Singapore 117604, Singapore
| | - Xiaorong Fan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China.
| | - Yinbo Gan
- Zhejiang Key Laboratory of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310000, China.
| |
Collapse
|
36
|
Speißer B, van Kleunen M. Plants forage for soil patches free of plastic pollution but cannot bag the profits. Sci Rep 2023; 13:18506. [PMID: 37898611 PMCID: PMC10613303 DOI: 10.1038/s41598-023-45662-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 10/22/2023] [Indexed: 10/30/2023] Open
Abstract
Microplastics can affect their surroundings physically and chemically, resulting in diverse effects on plant-soil systems. Similar to other substances (e.g. nutrients and water), microplastics in the environment occur in patches. Such heterogeneous distributions could affect plant responses to plastic pollution. Yet, this has remained untested. We conducted a multispecies experiment including 29 herbaceous plant species and three different microplastic treatments (a control without microplastics, a homogeneous and a heterogeneous microplastic distribution). Based on biomass and root-morphological traits, we assessed how different plastic distributions affect the performance and root-foraging behavior of plants, and whether stronger root foraging is beneficial when microplastics are distributed patchily. Next to general effects on plant productivity and root morphology, we found very strong evidence for root-foraging responses to patchy plastic distributions, with a clear preference for plastic-free patches, resulting in 25% longer roots and 20% more root biomass in the plastic-free patches. Interestingly, however, these foraging responses were correlated with a reduced plant performance, indicating that the benefits of plastic avoidance did not compensate for the associated investments. Our results provide new insights in plant-microplastic interactions and suggest that plants might not just be passively affected by but could also actively respond to environmental plastic pollution.
Collapse
Affiliation(s)
- Benedikt Speißer
- Ecology, Department of Biology, University of Konstanz, 78464, Constance, Germany.
| | - Mark van Kleunen
- Ecology, Department of Biology, University of Konstanz, 78464, Constance, Germany
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, 318000, China
| |
Collapse
|
37
|
Zhang L, Braynen J, Fahey A, Chopra K, Cifani P, Tadesse D, Regulski M, Hu F, van Dam HJJ, Xie M, Ware D, Blaby-Haas CE. Two related families of metal transferases, ZNG1 and ZNG2, are involved in acclimation to poor Zn nutrition in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2023; 14:1237722. [PMID: 37965006 PMCID: PMC10642216 DOI: 10.3389/fpls.2023.1237722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 10/02/2023] [Indexed: 11/16/2023]
Abstract
Metal homeostasis has evolved to tightly modulate the availability of metals within the cell, avoiding cytotoxic interactions due to excess and protein inactivity due to deficiency. Even in the presence of homeostatic processes, however, low bioavailability of these essential metal nutrients in soils can negatively impact crop health and yield. While research has largely focused on how plants assimilate metals, acclimation to metal-limited environments requires a suite of strategies that are not necessarily involved in metal transport across membranes. The identification of these mechanisms provides a new opportunity to improve metal-use efficiency and develop plant foodstuffs with increased concentrations of bioavailable metal nutrients. Here, we investigate the function of two distinct subfamilies of the nucleotide-dependent metallochaperones (NMCs), named ZNG1 and ZNG2, that are found in plants, using Arabidopsis thaliana as a reference organism. AtZNG1 (AT1G26520) is an ortholog of human and fungal ZNG1, and like its previously characterized eukaryotic relatives, localizes to the cytosol and physically interacts with methionine aminopeptidase type I (AtMAP1A). Analysis of AtZNG1, AtMAP1A, AtMAP2A, and AtMAP2B transgenic mutants are consistent with the role of Arabidopsis ZNG1 as a Zn transferase for AtMAP1A, as previously described in yeast and zebrafish. Structural modeling reveals a flexible cysteine-rich loop that we hypothesize enables direct transfer of Zn from AtZNG1 to AtMAP1A during GTP hydrolysis. Based on proteomics and transcriptomics, loss of this ancient and conserved mechanism has pleiotropic consequences impacting the expression of hundreds of genes, including those involved in photosynthesis and vesicle transport. Members of the plant-specific family of NMCs, ZNG2A1 (AT1G80480) and ZNG2A2 (AT1G15730), are also required during Zn deficiency, but their target protein(s) remain to be discovered. RNA-seq analyses reveal wide-ranging impacts across the cell when the genes encoding these plastid-localized NMCs are disrupted.
Collapse
Affiliation(s)
- Lifang Zhang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, United States
| | - Janeen Braynen
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, United States
| | - Audrey Fahey
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, United States
| | - Kriti Chopra
- Computational Science Initiative, Brookhaven National Laboratory, Upton, NY, United States
| | - Paolo Cifani
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, United States
| | - Dimiru Tadesse
- Biology Department, Brookhaven National Laboratory, Upton, NY, United States
| | - Michael Regulski
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, United States
| | - Fangle Hu
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, United States
| | - Hubertus J. J. van Dam
- Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, NY, United States
| | - Meng Xie
- Biology Department, Brookhaven National Laboratory, Upton, NY, United States
| | - Doreen Ware
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, United States
- USDA ARS NAA Robert W. Holley Center for Agriculture and Health, Agricultural Research Service, Ithaca, NY, United States
| | - Crysten E. Blaby-Haas
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| |
Collapse
|
38
|
Yan K, Mei H, Ruan Y, Yu S, Su H, Zhi Y, Li S, Sun Y. Partial substitution of chemical fertilizer by Trichoderma biofertilizer improved nitrogen use efficiency in wolfberry ( Lycium chinense) in coastal saline land. FRONTIERS IN PLANT SCIENCE 2023; 14:1225028. [PMID: 37877079 PMCID: PMC10591101 DOI: 10.3389/fpls.2023.1225028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 09/22/2023] [Indexed: 10/26/2023]
Abstract
A two-year field trial was conducted to investigate the effects of partial substitution of chemical fertilizer (CF) by Trichoderma biofertilizer (TF) on nitrogen (N) use efficiency and associated mechanisms in wolfberry (Lycium chinense) in coastal saline land. As with plant biomass and fruit yield, apparent N use efficiency and plant N accumulation were also higher with TF plus 75% CF than 100% CF, indicating that TF substitution promoted plant growth and N uptake. As a reason, TF substitution stabilized soil N supply by mitigating steep deceases in soil NH4 +-N and NO3 -N concentrations in the second half of growing seasons. TF substitution also increased carbon (C) fixation according to higher photosynthetic rate (Pn) and stable 13C abundance with TF plus 75% CF than 100% CF. Importantly, leaf N accumulation significantly and positively related with Pn, biomass, and fruit yield, and structural equation modeling also confirmed the importance of the causal relation of N accumulation coupled with C fixation for biomass and yield formation. Consequently, physiological and agronomical N use efficiencies were significantly higher with TF plus 75% CF than 100% CF. Overall, partial substitution of CF by TF improved N use efficiency in wolfberry in coastal saline land by stabilizing soil N supply and coupling N accumulation with C fixation.
Collapse
Affiliation(s)
- Kun Yan
- School of Agriculture, Ludong University, Yantai, China
| | - Huimin Mei
- School of Life Sciences, Liaoning University, Shenyang, China
| | - Yanan Ruan
- School of Life Sciences, Liaoning University, Shenyang, China
| | - Shunyang Yu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences (CAS), Yantai, China
| | - Hongyan Su
- School of Agriculture, Ludong University, Yantai, China
| | - Yibo Zhi
- School of Agriculture, Ludong University, Yantai, China
| | - Suxin Li
- School of Agriculture, Ludong University, Yantai, China
| | - Yanan Sun
- School of Agriculture, Ludong University, Yantai, China
| |
Collapse
|
39
|
Marti-Jerez K, Català-Forner M, Tomàs N, Murillo G, Ortiz C, Sánchez-Torres MJ, Vitali A, Lopes MS. Agronomic performance and remote sensing assessment of organic and mineral fertilization in rice fields. FRONTIERS IN PLANT SCIENCE 2023; 14:1230012. [PMID: 37860263 PMCID: PMC10582757 DOI: 10.3389/fpls.2023.1230012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 09/15/2023] [Indexed: 10/21/2023]
Abstract
Introduction Rice heavily relies on nitrogen fertilizers, posing environmental, resource, and geopolitical challenges. This study explores sustainable alternatives like animal manure and remote sensing for resource-efficient rice cultivation. It aims to assess the long-term impact of organic fertilization and remote sensing monitoring on agronomic traits, yield, and nutrition. Methods A six-year experiment in rice fields evaluated fertilization strategies, including pig slurry (PS) and chicken manure (CM) with mineral fertilizers (MIN), MIN-only, and zero-fertilization. Traits, yield, spectral responses, and nutrient content were measured. Sentinel-2 remote sensing tracked crop development. Results Cost-effective organic fertilizers (PS and CM) caused a 13% and 15% yield reduction but still doubled zero-fertilization yield. PS reduced nitrogen leaching. Heavy metals in rice grains were present at safe amounts. Organic-fertilized crops showed nitrogen deficiency at the late vegetative stages, affecting yield. Sentinel-2 detected nutrient deficiencies through NDVI. Discussion Organic fertilizers, especially PS, reduce nitrogen loss, benefiting the environment. However, they come with yield trade-offs and nutrient management challenges that can be managed and balanced with reduced additional mineral applications. Sentinel-2 remote sensing helps manage nutrient deficiencies. In summary, this research favors cost-effective organic fertilizers with improved nutrient management for sustainable rice production.
Collapse
Affiliation(s)
- Karen Marti-Jerez
- Sustainable Field Crops, Institute of Agrifood Research and Technology, Amposta, Spain
| | - Mar Català-Forner
- Sustainable Field Crops, Institute of Agrifood Research and Technology, Amposta, Spain
| | - Núria Tomàs
- Sustainable Field Crops, Institute of Agrifood Research and Technology, Amposta, Spain
| | - Gemma Murillo
- Ministry of Climate Action, Food and Rural Agenda, Lleida, Spain
| | - Carlos Ortiz
- Ministry of Climate Action, Food and Rural Agenda, Lleida, Spain
| | | | - Andrea Vitali
- Ente Nazionale Risi, Rice Research Centre, Castello d’Agogna, Italy
| | - Marta S. Lopes
- Sustainable Field Crops, Institute of Agrifood Research and Technology, Lleida, Spain
| |
Collapse
|
40
|
Wang HQ, Zhao XY, Xuan W, Wang P, Zhao FJ. Rice roots avoid asymmetric heavy metal and salinity stress via an RBOH-ROS-auxin signaling cascade. MOLECULAR PLANT 2023; 16:1678-1694. [PMID: 37735869 DOI: 10.1016/j.molp.2023.09.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/14/2023] [Accepted: 09/14/2023] [Indexed: 09/23/2023]
Abstract
Root developmental plasticity is crucial for plants to adapt to a changing soil environment, where nutrients and abiotic stress factors are distributed heterogeneously. How plant roots sense and avoid heterogeneous abiotic stress in soil remains unclear. Here, we show that, in response to asymmetric stress of heavy metals (cadmium, copper, or lead) and salt, rice roots rapidly proliferate lateral roots (LRs) in the stress-free area, thereby remodeling root architecture to avoid localized stress. Imaging and quantitative analyses of reactive oxygen species (ROS) showed that asymmetric stress induces a ROS burst in the tips of the exposed roots and simultaneously triggers rapid systemic ROS signaling to the unexposed roots. Addition of a ROS scavenger to either the stressed or stress-free area abolished systemic ROS signaling and LR proliferation induced by asymmetric stress. Asymmetric stress also enhanced cytosolic calcium (Ca2+) signaling; blocking Ca2+signaling inhibited systemic ROS propagation and LR branching in the stress-free area. We identified two plasma-membrane-localized respiratory burst oxidase homologs, OsRBOHA and OsRBOHI, as key players in systemic ROS signaling under asymmetric stress. Expression of OsRBOHA and OsRBOHI in roots was upregulated by Cd stress, and knockout of either gene reduced systemic ROS signaling and LR proliferation under asymmetric stress. Furthermore, we demonstrated that auxin signaling and cell wall remodeling act downstream of the systemic ROS signaling to promote LR development. Collectively, our study reveals an RBOH-ROS-auxin signaling cascade that enables rice roots to avoid localized stress of heavy metals and salt and provides new insight into root system plasticity in heterogenous soil.
Collapse
Affiliation(s)
- Han-Qing Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Xing-Yu Zhao
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Wei Xuan
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Peng Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Fang-Jie Zhao
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
41
|
Jia Z, Giehl RFH, Hartmann A, Estevez JM, Bennett MJ, von Wirén N. A spatially concerted epidermal auxin signaling framework steers the root hair foraging response under low nitrogen. Curr Biol 2023; 33:3926-3941.e5. [PMID: 37699396 DOI: 10.1016/j.cub.2023.08.040] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/08/2023] [Accepted: 08/14/2023] [Indexed: 09/14/2023]
Abstract
As a major determinant of the nutrient-acquiring root surface, root hairs (RHs) provide a low-input strategy to enhance nutrient uptake. Although primary and lateral roots exhibit elongation responses under mild nitrogen (N) deficiency, the foraging response of RHs and underlying regulatory mechanisms remain elusive. Employing transcriptomics and functional studies revealed a framework of molecular components composing a cascade of auxin synthesis, transport, and signaling that triggers RH elongation for N acquisition. Through upregulation of Tryptophan Aminotransferase of Arabidopsis 1 (TAA1) and YUCCA8, low N increases auxin accumulation in the root apex. Auxin is then directed to the RH differentiation zone via the auxin transport machinery, AUXIN TRANSPORTER PROTEIN 1 (AUX1) and PIN-FORMED 2 (PIN2). Upon arrival to the RH zone, auxin activates the transcription factors AUXIN RESPONSE FACTOR 6 and 8 (ARF6/8) to promote the epidermal and auxin-inducible transcriptional module ROOT HAIR DEFECTIVE 6 (RHD6)-LOTUS JAPONICA ROOT HAIRLESS-LIKE 3 (LRL3) to steer RH elongation in response to low N. Our study uncovers a spatially defined regulatory signaling cascade for N foraging by RHs, expanding the mechanistic framework of hormone-regulated nutrient sensing in plant roots.
Collapse
Affiliation(s)
- Zhongtao Jia
- Molecular Plant Nutrition, Department of Physiology & Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, 06466 Gatersleben, Germany; State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China.
| | - Ricardo F H Giehl
- Molecular Plant Nutrition, Department of Physiology & Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, 06466 Gatersleben, Germany
| | - Anja Hartmann
- Molecular Plant Nutrition, Department of Physiology & Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, 06466 Gatersleben, Germany
| | - Jose M Estevez
- ANID - Millennium Science Initiative Program - Millennium Nucleus for the Development of Super Adaptable Plants (MN-SAP), Santiago, Chile; Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Malcolm J Bennett
- Future Food Beacon and School of Biosciences, University of Nottingham, Nottingham LE12 5RD, UK
| | - Nicolaus von Wirén
- Molecular Plant Nutrition, Department of Physiology & Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, 06466 Gatersleben, Germany.
| |
Collapse
|
42
|
Zhang C, Zhang C, Azuma T, Maruyama H, Shinano T, Watanabe T. Different nitrogen acquirement and utilization strategies might determine the ecological competition between ferns and angiosperms. ANNALS OF BOTANY 2023; 131:1097-1106. [PMID: 36661261 PMCID: PMC10457029 DOI: 10.1093/aob/mcad009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 01/11/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND AND AIMS The abundance or decline of fern populations in response to environmental change has been found to be largely dependent on specific physiological properties that distinguish ferns from angiosperms. Many studies have focused on water use efficiency and stomatal behaviours, but the effects of nutrition acquirement and utilization strategies on niche competition between ferns and flowering plants are rarely reported. METHODS We collected 34 ferns and 42 angiosperms from the Botanic Garden of Hokkaido University for nitrogen (N), sulphur (S), NO3- and SO42- analysis. We then used a hydroponic system to compare the different N and S utilization strategies between ferns and angiosperms under N deficiency conditions. KEY RESULTS Ferns had a significantly higher NO3--N concentration and NO3--N/N ratio than angiosperms, although the total N concentration in ferns was remarkably lower than that in the angiosperms. Meanwhile, a positive correlation between N and S was found, indicating that nutrient concentration is involved in assimilation. Pteris cretica, a fern species subjected to further study, maintained a slow growth rate and lower N requirement in response to low N stress, while both the biomass and N concentration in wheat (Triticum aestivum) responded quickly to N deficiency conditions. CONCLUSIONS The different nutritional strategies employed by ferns and angiosperms depended mainly on the effects of phylogenetic and evolutionary diversity. Ferns tend to adopt an opportunistic strategy of limiting growth rate to reduce N demand and store more pooled nitrate, whereas angiosperms probably utilize N nutrition to ensure as much development as possible under low N stress. Identifying the effects of mineral nutrition on the evolutionary results of ecological competition between plant species remains a challenge.
Collapse
Affiliation(s)
- Chengming Zhang
- College of Chemistry and Life Sciences, Sichuan Provincial Key Laboratory for Development and Utilization of Characteristic Horticultural Biological Resources, Chengdu Normal University, Haike Road-99 East Section, Chengdu, 611130, China
- Research Faculty of Agriculture, Hokkaido University, Kita-9, Nishi-9, Kitaku, Sapporo, 0608589, Japan
| | - Chaoqun Zhang
- Research Faculty of Agriculture, Hokkaido University, Kita-9, Nishi-9, Kitaku, Sapporo, 0608589, Japan
| | - Takayuki Azuma
- Field Science Center for Northern Biosphere, Botanic Garden, Hokkaido University, Kita-3, Nishi-8, Chuoku, Sapporo, 0600003, Japan
| | - Hayato Maruyama
- Research Faculty of Agriculture, Hokkaido University, Kita-9, Nishi-9, Kitaku, Sapporo, 0608589, Japan
| | - Takuro Shinano
- Research Faculty of Agriculture, Hokkaido University, Kita-9, Nishi-9, Kitaku, Sapporo, 0608589, Japan
| | - Toshihiro Watanabe
- Research Faculty of Agriculture, Hokkaido University, Kita-9, Nishi-9, Kitaku, Sapporo, 0608589, Japan
| |
Collapse
|
43
|
Liu L, Cui K, Qi X, Wu Y, Huang J, Peng S. Varietal responses of root characteristics to low nitrogen application explain the differing nitrogen uptake and grain yield in two rice varieties. FRONTIERS IN PLANT SCIENCE 2023; 14:1244281. [PMID: 37600168 PMCID: PMC10435752 DOI: 10.3389/fpls.2023.1244281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 07/18/2023] [Indexed: 08/22/2023]
Abstract
Rice root characteristics are tightly associated with high-efficient nitrogen uptake. To understand the relationship of root plastic responses with nitrogen uptake when reducing nitrogen application for green rice production, a hydroponic experiment and a soil pot experiment were conducted under high (HN) and low (LN) nitrogen applications, using two rice (Oryza sativa L.) varieties, NK57 and YD6, three nitrogen absorption traits (total nitrogen accumulation, net NH4 + influx on root surface, nitrogen uptake via apoplasmic pathway) and root characteristics were investigated. In comparison with HN, LN significantly reduced nitrogen absorption and grain yield in both varieties. Concomitantly, there was a decrease in total root length, root surface area, root number, root volume, and root cortical area under LN, while single root length, root aerenchyma area, and root lignin content increased. The expression of OsAMT1;1 and OsAMT1;2 down-regulated in both varieties. The findings revealed that YD6 had smaller reduction degree for the three nitrogen absorption traits and grain yield, accompanied by smaller reduction degree in total root length, root surface area, root cortical area, and expression of the two genes under LN. These root characteristics were significantly and positively correlated with the three nitrogen absorption traits and grain yield, especially under LN. These results indicate that a large root system, lower reduction degree in several root characters, and high expression of OsAMT genes in YD6 explains its high nitrogen accumulation and grain yield under reduced nitrogen application. The study may provide rationale for developing varieties with low nitrogen fertilizer requirements for enabling green rice production.
Collapse
Affiliation(s)
- Lei Liu
- National Key Laboratory of Crop Genetic Improvement, Wuhan, Hubei, China
- Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, Wuhan, Hubei, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Kehui Cui
- National Key Laboratory of Crop Genetic Improvement, Wuhan, Hubei, China
- Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, Wuhan, Hubei, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Xiaoli Qi
- National Key Laboratory of Crop Genetic Improvement, Wuhan, Hubei, China
- Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, Wuhan, Hubei, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yu Wu
- National Key Laboratory of Crop Genetic Improvement, Wuhan, Hubei, China
- Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, Wuhan, Hubei, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Jianliang Huang
- National Key Laboratory of Crop Genetic Improvement, Wuhan, Hubei, China
- Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, Wuhan, Hubei, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Shaobing Peng
- National Key Laboratory of Crop Genetic Improvement, Wuhan, Hubei, China
- Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, Wuhan, Hubei, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| |
Collapse
|
44
|
Corzo Remigio A, Harris HH, Paterson DJ, Edraki M, van der Ent A. Chemical transformations of arsenic in the rhizosphere-root interface of Pityrogramma calomelanos and Pteris vittata. Metallomics 2023; 15:mfad047. [PMID: 37528060 PMCID: PMC10427965 DOI: 10.1093/mtomcs/mfad047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 07/31/2023] [Indexed: 08/03/2023]
Abstract
Pityrogramma calomelanos and Pteris vittata are cosmopolitan fern species that are the strongest known arsenic (As) hyperaccumulators, with potential to be used in the remediation of arsenic-contaminated mine tailings. However, it is currently unknown what chemical processes lead to uptake of As in the roots. This information is critical to identify As-contaminated soils that can be phytoremediated, or to improve the phytoremediation process. Therefore, this study identified the in situ distribution of As in the root interface leading to uptake in P. calomelanos and P. vittata, using a combination of synchrotron micro-X-ray fluorescence spectroscopy and X-ray absorption near-edge structure imaging to reveal chemical transformations of arsenic in the rhizosphere-root interface of these ferns. The dominant form of As in soils was As(V), even in As(III)-dosed soils, and the major form in P. calomelanos roots was As(III), while it was As(V) in P. vittata roots. Arsenic was cycled from roots growing in As-rich soil to roots growing in control soil. This study combined novel analytical approaches to elucidate the As cycling in the rhizosphere and roots enabling insights for further application in phytotechnologies to remediated As-polluted soils.
Collapse
Affiliation(s)
- Amelia Corzo Remigio
- Centre for Water in the Minerals Industry, Sustainable Minerals Institute, The University of Queensland, Brisbane, Australia
| | - Hugh H Harris
- Department of Chemistry, The University of Adelaide, Adelaide, Australia
| | | | - Mansour Edraki
- Centre for Water in the Minerals Industry, Sustainable Minerals Institute, The University of Queensland, Brisbane, Australia
| | - Antony van der Ent
- Centre for Mined Land Rehabilitation, Sustainable Minerals Institute, The University of Queensland, Brisbane, Australia
- Laboratory of Genetics, Wageningen University and Research, Wageningen, The Netherlands
- Laboratoire Sols et Environnement, INRAE, Université de Lorraine, Nancy, France
| |
Collapse
|
45
|
Zhang H, Zhang X, Xiao J. Epigenetic Regulation of Nitrogen Signaling and Adaptation in Plants. PLANTS (BASEL, SWITZERLAND) 2023; 12:2725. [PMID: 37514337 PMCID: PMC10386408 DOI: 10.3390/plants12142725] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/14/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023]
Abstract
Nitrogen (N) is a crucial nutrient that plays a significant role in enhancing crop yield. Its availability, including both supply and deficiency, serves as a crucial signal for plant development. However, excessive N use in agriculture leads to environmental and economic issues. Enhancing nitrogen use efficiency (NUE) is, therefore, essential to minimize negative impacts. Prior studies have investigated the genetic factors involved in N responses and the process of low-nitrogen (LN) adaptation. In this review, we discuss recent advances in understanding how epigenetic modifications, including DNA methylation, histone modification, and small RNA, participate in the regulation of N response and LN adaptation. We highlight the importance of decoding the epigenome at various levels to accelerate the functional study of how plants respond to N availability. Understanding the epigenetic control of N signaling and adaptation can lead to new strategies to improve NUE and enhance crop productivity sustainably.
Collapse
Affiliation(s)
- Hao Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoyu Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun Xiao
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Hebei Collaboration Innovation Center for Cell Signaling, Shijiazhuang 050024, China
- Centre of Excellence for Plant and Microbial Science (CEPAMS), JIC-CAS, Beijing 100101, China
| |
Collapse
|
46
|
Montanari S, Salinitro M, Simoni A, Ciavatta C, Tassoni A. Foraging for selenium: a comparison between hyperaccumulator and non-accumulator plant species. Sci Rep 2023; 13:10661. [PMID: 37391494 PMCID: PMC10313833 DOI: 10.1038/s41598-023-37249-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 06/19/2023] [Indexed: 07/02/2023] Open
Abstract
Selenium (Se) hyperaccumulators are a unique group of plants that can accumulate this element in their aerial parts at concentrations exceeding 100 mg kgDW-1. These plants actively search for Se in the soil, a phenomenon known as root foraging, reported to date only by few studies. In this study, the effect of localized Se enrichment, in the form of selenite and selenate, was investigated on the root architecture of two Se-hyperaccumulators (Stanleya pinnata and Astragalus bisulcatus) and two non-accumulators (Brassica juncea and Medicago sativa). Rhizoboxes were divided into two halves: one half was filled with control soil while the other with selenate or selenite (30 mg kgDW-1) spiked soil. Seedling were transferred into the interface of the two soils and allowed to grow for three weeks under controlled light and temperature conditions. Staneya pinnata exhibited equal root density in both halves of the rhizobox when grown in control/control and selenite/control soil treatments. However, in the presence of selenate, S. pinnata developed 76% of the roots towards the selenate-enriched half, indicating an active root foraging. In contrast, A. bisulcatus and the non-accumulators B. juncea and M. sativa did not show any preferential distribution of roots. This study revealed that only S. pinnata showed the ability to detect and forage for Se when provided as selenate. Non-accumulators did not show any morphological or Se-accumulation difference associated with the presence of Se in soil in either form.
Collapse
Affiliation(s)
- Sofia Montanari
- Department of Biological Geological and Environmental Sciences, University of Bologna, Via Irnerio 42, 40126, Bologna, Italy
| | - Mirko Salinitro
- Department of Biological Geological and Environmental Sciences, University of Bologna, Via Irnerio 42, 40126, Bologna, Italy.
| | - Andrea Simoni
- Department of Agricultural and Food Sciences, University of Bologna, Viale Giuseppe Fanin 40, 40127, Bologna, Italy
| | - Claudio Ciavatta
- Department of Agricultural and Food Sciences, University of Bologna, Viale Giuseppe Fanin 40, 40127, Bologna, Italy
- Centro Interdipartimentale di Ricerca Industriale sull'Agroalimentare, University of Bologna, Via Quinto Bucci 336, 47521, Cesena, Italy
| | - Annalisa Tassoni
- Department of Biological Geological and Environmental Sciences, University of Bologna, Via Irnerio 42, 40126, Bologna, Italy
- Centro Interdipartimentale di Ricerca Industriale sull'Agroalimentare, University of Bologna, Via Quinto Bucci 336, 47521, Cesena, Italy
| |
Collapse
|
47
|
Roman A, Montenegro J, Fraile L, Urra M, Buezo J, Cornejo A, Moran JF, Gogorcena Y. Indole-3-acetaldoxime delays root iron-deficiency responses and modify auxin homeostasis in Medicago truncatula. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 332:111718. [PMID: 37105378 DOI: 10.1016/j.plantsci.2023.111718] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 03/18/2023] [Accepted: 04/23/2023] [Indexed: 05/06/2023]
Abstract
Iron (Fe) is an essential plant micronutrient, being a major limiting growth factor in calcareous soils. To increase Fe uptake, plants induce lateral roots growth, the expression of a Fe(III)-chelate reductase (FCR), a Fe(II)-transporter and a H+-ATPase and the secretion of flavins. Furthermore, auxin hormone family is involved in the Fe-deficiency responses but the action mechanism remains elusive. In this work, we evaluated the effect of the auxin-precursor indole-3-acetaldoxime (IAOx) on hydroponically grown Medicago truncatula plants under different Fe conditions. Upon 4-days of Fe starvation, the pH of the nutrient solution decreased, while both the FCR activity and the presence of flavins increased. Exogenous IAOx increased lateral roots growth contributing to superroot phenotype, decreased chlorosis, and delayed up to 3-days the pH-decrease, the FCR-activity increase, and the presence of flavins, compared to Fe-deficient plants. Gene expression levels were in concordance with the physiological responses. RESULTS: showed that IAOx was immediately transformed to IAN in roots and shoots to maintain auxin homeostasis. IAOx plays an active role in iron homeostasis delaying symptoms and responses in Fe-deficient plants. We may speculate that IAOx or its derivatives remobilize Fe from root cells to alleviate Fe-deficiency. Overall, these results point out that the IAOx-derived phenotype may have advantages to overcome nutritional stresses.
Collapse
Affiliation(s)
- Angela Roman
- Department of Pomology, Aula Dei Experimental Station, Consejo Superior de Investigaciones Científicas (CSIC), Avda. de Montañana 1005, E-50059 Zaragoza, Spain
| | - Joaquín Montenegro
- Department of Pomology, Aula Dei Experimental Station, Consejo Superior de Investigaciones Científicas (CSIC), Avda. de Montañana 1005, E-50059 Zaragoza, Spain
| | - Laura Fraile
- Department of Pomology, Aula Dei Experimental Station, Consejo Superior de Investigaciones Científicas (CSIC), Avda. de Montañana 1005, E-50059 Zaragoza, Spain
| | - Marina Urra
- Institute for Multidisciplinary Research in Applied Biology (IMAB), Department of Sciences, Public University of Navarre (UPNA), Avda. de Pamplona 123, E-31192 Mutilva, Spain
| | - Javier Buezo
- Institute for Multidisciplinary Research in Applied Biology (IMAB), Department of Sciences, Public University of Navarre (UPNA), Avda. de Pamplona 123, E-31192 Mutilva, Spain
| | - Alfonso Cornejo
- Institute for Advanced Materials and Mathematics (INAMAT2), Department of Sciences, Public University of Navarre (UPNA), Campus de Arrosadía, E-31006 Pamplona, Spain
| | - Jose Fernando Moran
- Institute for Multidisciplinary Research in Applied Biology (IMAB), Department of Sciences, Public University of Navarre (UPNA), Avda. de Pamplona 123, E-31192 Mutilva, Spain
| | - Yolanda Gogorcena
- Department of Pomology, Aula Dei Experimental Station, Consejo Superior de Investigaciones Científicas (CSIC), Avda. de Montañana 1005, E-50059 Zaragoza, Spain.
| |
Collapse
|
48
|
Zhang G, Liu Y, Xie Q, Tong H, Chu C. Crosstalk between brassinosteroid signaling and variable nutrient environments. SCIENCE CHINA. LIFE SCIENCES 2023:10.1007/s11427-022-2319-0. [PMID: 36907968 DOI: 10.1007/s11427-022-2319-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 03/04/2023] [Indexed: 03/14/2023]
Abstract
Brassinosteroid (BR) represents a group of steroid hormones that regulate plant growth and development as well as environmental adaptation. The fluctuation of external nutrient elements is a situation that plants frequently face in the natural environment, in which nitrogen (N) and phosphorus (P) are two of the most critical nutrients restraint of the early growth of plants. As the macronutrients, N and P are highly required by plants, but their availability or solubility in the soil is relatively low. Since iron (Fe) and P always modulate each other's content and function in plants mutually antagonistically, the regulatory mechanisms of Fe and P are inextricably linked. Recently, BR has emerged as a critical regulator in nutrient acquisition and phenotypic plasticity in response to the variable nutrient levels in Arabidopsis and rice. Here, we review the current understanding of the crosstalk between BR and the three major nutrients (N, P, and Fe), highlighting how nutrient signaling regulates BR synthesis and signaling to accommodate plant growth and development in Arabidopsis and rice.
Collapse
Affiliation(s)
- Guoxia Zhang
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China.,State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.,Key Laboratory for Enhancing Resource Use Efficiency of Crops in South China, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, China
| | - Yongqiang Liu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Qingjun Xie
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China.,Key Laboratory for Enhancing Resource Use Efficiency of Crops in South China, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, China
| | - Hongning Tong
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Chengcai Chu
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China. .,State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China. .,Key Laboratory for Enhancing Resource Use Efficiency of Crops in South China, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
49
|
Liu RX, Li HL, Rui L, Liu GD, Wang T, Wang XF, Li LG, Zhang Z, You CX. An apple NITRATE REDUCTASE 2 gene positively regulates nitrogen utilization and abiotic stress tolerance in Arabidopsis and apple callus. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 196:23-32. [PMID: 36689830 DOI: 10.1016/j.plaphy.2023.01.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/10/2023] [Accepted: 01/12/2023] [Indexed: 06/17/2023]
Abstract
Nitrogen (N) is an essential element that plays an important role in crop biomass accumulation and quality formation. Increased crop yield is relied on excessive application of fertilizers, which usually leads to environmental pollution and unsustainable development. Thus, identification and characterization of genes involved in promoting nitrogen use efficiency is of high priority in crop breeding. The activity of nitrate reductase (NR) plays a critical role in nitrogen metabolism. In model plant Arabidopsis, NITRATE REDUCTASE 2 (NIA2), one of the two NRs, is responsible for about 90% of the NR activity. In this study, MdNIA2 gene in apple (Malus domestica) genome was screened out and identified by using AtNIA2 as bait. Phylogenetic analysis revealed that MdNIA2 had the closest evolutionary relationship with MbNIA from Malus baccata. Ectopic expression of MdNIA2 in Arabidopsis elevated the nitrogen use efficiency and increased root hair elongation and formation, resulting in promoted plant growth. Furthermore, the overexpression of MdNIA2 improved salt and drought tolerance in transgenic Arabidopsis and improved the salt tolerance of transgenic apple callus, and MdNIA2-reagualted NO metabolism might contribute to the abiotic stress tolerance. Overall, our data indicate the critical role of MdNIA2 in regulating nitrogen utilization efficiency and abiotic stress responses.
Collapse
Affiliation(s)
- Ran-Xin Liu
- National Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Hong-Liang Li
- National Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Lin Rui
- National Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Guo-Dong Liu
- National Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Tian Wang
- National Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Xiao-Fei Wang
- National Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Lin-Guang Li
- Shandong Institute of Pomology, Tai-An, Shandong, 271000, China
| | - Zhenlu Zhang
- National Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China.
| | - Chun-Xiang You
- National Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China.
| |
Collapse
|
50
|
Cun Z, Wu HM, Zhang JY, Shuang SP, Hong J, An TX, Chen JW. High nitrogen inhibits biomass and saponins accumulation in a medicinal plant Panax notoginseng. PeerJ 2023; 11:e14933. [PMID: 36846464 PMCID: PMC9951802 DOI: 10.7717/peerj.14933] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 01/31/2023] [Indexed: 02/23/2023] Open
Abstract
Nitrogen (N) is an important macronutrient and is comprehensively involved in the synthesis of secondary metabolites. However, the interaction between N supply and crop yield and the accumulation of effective constituents in an N-sensitive medicinal plant Panax notoginseng (Burkill) F. H. Chen is not completely known. Morphological traits, N use and allocation, photosynthetic capacity and saponins accumulation were evaluated in two- and three-year-old P. notoginseng grown under different N regimes. The number and length of fibrous root, total root length and root volume were reduced with the increase of N supply. The accumulation of leaf and stem biomass (above-ground) were enhanced with increasing N supply, and LN-grown plants had the lowest root biomass. Above-ground biomass was closely correlated with N content, and the relationship between root biomass and N content was negatives in P. notoginseng (r = -0.92). N use efficiency-related parameters, NUE (N use efficiency, etc.), NC (N content in carboxylation system component) and P n (the net photosynthetic rate) were reduced in HN-grown P. notoginseng. SLN (specific leaf N), Chl (chlorophyll), NL (N content in light capture component) increased with an increase in N application. Interestingly, root biomass was positively correlated with NUE, yield and P n. Above-ground biomass was close negatively correlated with photosynthetic N use efficiency (PNUE). Saponins content was positively correlated with NUE and P n. Additionally, HN improved the root yield of per plant compared with LN, but reduced the accumulation of saponins, and the lowest yield of saponins per unit area (35.71 kg·hm-2) was recorded in HN-grown plants. HN-grown medicinal plants could inhibit the accumulation of root biomass by reducing N use and photosynthetic capacity, and HN-induced decrease in the accumulation of saponins (C-containing metabolites) might be closely related to the decline in N efficiency and photosynthetic capacity. Overall, N excess reduces the yield of root and C-containing secondary metabolites (active ingredient) in N-sensitive medicinal species such as P. notoginseng.
Collapse
Affiliation(s)
- Zhu Cun
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, China,National & Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, China,Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, China
| | - Hong-Min Wu
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, China,National & Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, China,Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, China
| | - Jin-Yan Zhang
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, China,National & Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, China,Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, China
| | - Sheng-Pu Shuang
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, China,National & Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, China,Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, China
| | - Jie Hong
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, China,National & Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, China,Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, China
| | - Tong-Xin An
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, China
| | - Jun-Wen Chen
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, China,National & Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, China,Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, China
| |
Collapse
|