1
|
Suzuki H, Savane P, Marion‐Poll L, Sechet J, Frey A, Berger A, Belcram K, Borrega N, Seo M, Voxeur A, Mouille G, Marion‐Poll A. Analysis of xyloglucan metabolism mutants highlights the prominent role of xylose cleavage in seed dormancy. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 122:e70063. [PMID: 40162689 PMCID: PMC11956407 DOI: 10.1111/tpj.70063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/05/2025] [Accepted: 02/10/2025] [Indexed: 04/02/2025]
Abstract
Seed dormancy is an adaptive trait that delays germination until environmental conditions become favorable for seedling survival and growth. Germination has been shown to depend on the mechanical resistance strength of the covering layers (testa and endosperm) that counteracts the growth force of the embryo. Cell wall remodeling is essential in the regulation of germination processes. In Arabidopsis thaliana, the side chain trimming of xyloglucans (XyG), the major hemicellulose in cell walls, by the apoplastic XYLOSIDASE1 (XYL1), has been previously shown to regulate XyG side chain length and seed dormancy. To investigate to what extent side chain complexity impacts on cell wall mechanical properties and regulates seed germination, xyl1 mutations were combined here with mutations in the two other glycosidases, the fucosidase AXY8 and the beta-galactosidase BGAL10. Analysis of germination phenotypes in axy8 bgal10 xyl1 and in several XyG biosynthesis mutants did not show any link between dormancy depth and side chain length. The very specific effect of xyl1 on seed dormancy in single and multiple mutants was clearly correlated with alterations in XyG intracellular localization, together with release and oxidation of free oligosaccharides (XGO). Accumulation of oxidized XGO could negatively impact cell wall remodeling by impairing remobilization and polarized secretion in cell walls, thus reducing growth anisotropy in elongating organs and modifying mechanical characteristics in seed tissues.
Collapse
Affiliation(s)
- Hiromi Suzuki
- Université Paris‐Saclay, INRAE, AgroParisTech, Institute Jean‐Pierre Bourgin for Plant Sciences (IJPB)78000VersaillesFrance
- RIKEN Center for Sustainable Resource ScienceYokohamaKanagawa230‐0045Japan
- Present address:
School of Bioscience and BiotechnologyTokyo University of TechnologyTokyo192‐0982Japan
| | - Parisa Savane
- Université Paris‐Saclay, INRAE, AgroParisTech, Institute Jean‐Pierre Bourgin for Plant Sciences (IJPB)78000VersaillesFrance
| | - Lucile Marion‐Poll
- Department of Basic Neurosciences, Faculty of MedicineUniversity of GenevaGenevaSwitzerland
| | - Julien Sechet
- Université Paris‐Saclay, INRAE, AgroParisTech, Institute Jean‐Pierre Bourgin for Plant Sciences (IJPB)78000VersaillesFrance
- Present address:
Alkion BioInnovations78000VersaillesFrance
| | - Anne Frey
- Université Paris‐Saclay, INRAE, AgroParisTech, Institute Jean‐Pierre Bourgin for Plant Sciences (IJPB)78000VersaillesFrance
| | - Adeline Berger
- Université Paris‐Saclay, INRAE, AgroParisTech, Institute Jean‐Pierre Bourgin for Plant Sciences (IJPB)78000VersaillesFrance
- Present address:
Université Clermont Auvergne, INRAE, UR QuaPA63122Saint‐Genès ChampanelleFrance
| | - Katia Belcram
- Université Paris‐Saclay, INRAE, AgroParisTech, Institute Jean‐Pierre Bourgin for Plant Sciences (IJPB)78000VersaillesFrance
| | - Nero Borrega
- Université Paris‐Saclay, INRAE, AgroParisTech, Institute Jean‐Pierre Bourgin for Plant Sciences (IJPB)78000VersaillesFrance
| | - Mitsunori Seo
- RIKEN Center for Sustainable Resource ScienceYokohamaKanagawa230‐0045Japan
- Present address:
Tropical Biosphere Research CenterUniversity of the RyukyusOkinawa903‐0213Japan
| | - Aline Voxeur
- Université Paris‐Saclay, INRAE, AgroParisTech, Institute Jean‐Pierre Bourgin for Plant Sciences (IJPB)78000VersaillesFrance
| | - Grégory Mouille
- Université Paris‐Saclay, INRAE, AgroParisTech, Institute Jean‐Pierre Bourgin for Plant Sciences (IJPB)78000VersaillesFrance
| | - Annie Marion‐Poll
- Université Paris‐Saclay, INRAE, AgroParisTech, Institute Jean‐Pierre Bourgin for Plant Sciences (IJPB)78000VersaillesFrance
| |
Collapse
|
2
|
Zhu Y, Wang X, He Y, Liu Y, Wang R, Liu Y, Wang S. Chromosome doubling increases PECTIN METHYLESTERASE 2 expression, biomass, and osmotic stress tolerance in kiwifruit. PLANT PHYSIOLOGY 2024; 196:2841-2855. [PMID: 39250762 PMCID: PMC11637999 DOI: 10.1093/plphys/kiae475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/22/2024] [Accepted: 08/09/2024] [Indexed: 09/11/2024]
Abstract
Chromosome doubling-induced polyploidization is a popular tool for crop breeding. Polyploidy crops commonly have multiple advantages, including increased biomass and stress tolerance. However, little is known about the genes responsible for these advantages. We found kiwifruit (Actinidia chinensis cv. Hongyang) PECTIN METHYLESTERASE 2 (AcPME2) is substantially upregulated in artificially created tetraploid plants that show increased biomass and enhanced tolerance to osmotic stress. Overexpression (OE) of AcPME2 led to increased biomass and enhanced stress tolerance in Arabidopsis (Arabidopsis thaliana), tomato (Solanum lycopersicum), and kiwifruit. Upon short-term osmotic stress treatment, AcPME2-OE plants showed higher levels of demethylesterified pectins and more Ca2+ accumulation in the cell wall than Col-0 plants, which led to increased cell wall stiffness. The stress-induced plasmolysis assays indicated that AcPME2 dynamically mediated the cell wall stiffness in response to osmotic stress, which is dependent on Ca2+ accumulation. Transcriptomic analysis discovered that dozens of stress-responsive genes were significantly upregulated in the AcPME2-OE plants under osmotic stress. Besides, AcPME2-mediated cell wall reinforcement prevented cell wall collapse and deformation under osmotic stress. Our results revealed a single gene contributes to two advantages of polyploidization (increased biomass and osmotic stress tolerance) and that AcPME2 dynamically regulates cell wall stiffness in response to osmotic stress.
Collapse
Affiliation(s)
- Yanyan Zhu
- Anhui Province Key Laboratory of Horticultural Crop Quality Biology, School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Xinlei Wang
- Anhui Province Key Laboratory of Horticultural Crop Quality Biology, School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Yan He
- Anhui Province Key Laboratory of Horticultural Crop Quality Biology, School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Yajing Liu
- Anhui Province Key Laboratory of Horticultural Crop Quality Biology, School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Runze Wang
- Anhui Province Key Laboratory of Horticultural Crop Quality Biology, School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Yongsheng Liu
- Anhui Province Key Laboratory of Horticultural Crop Quality Biology, School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
- Ministry of Education Key Laboratory for Bio-resource and Eco-environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610064, China
| | - Songhu Wang
- Anhui Province Key Laboratory of Horticultural Crop Quality Biology, School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| |
Collapse
|
3
|
Grandjean C, Veronesi C, Rusterucci C, Gautier C, Maillot Y, Leschevin M, Fournet F, Drouaud J, Marcelo P, Zabijak L, Delavault P, Simier P, Bouton S, Pageau K. Pectin Remodeling and Involvement of AtPME3 in the Parasitic Plant-Plant Interaction, Phelipanche ramosa- Arabidospis thaliana. PLANTS (BASEL, SWITZERLAND) 2024; 13:2168. [PMID: 39124288 PMCID: PMC11314565 DOI: 10.3390/plants13152168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 08/12/2024]
Abstract
Phelipanche ramosa is a root parasitic plant fully dependent on host plants for nutrition and development. Upon germination, the parasitic seedling develops inside the infected roots a specific organ, the haustorium, thanks to the cell wall-degrading enzymes of haustorial intrusive cells, and induces modifications in the host's cell walls. The model plant Arabidopsis thaliana is susceptible to P. ramosa; thus, mutants in cell wall metabolism, particularly those involved in pectin remodeling, like Atpme3-1, are of interest in studying the involvement of cell wall-degrading enzymes in the establishment of plant-plant interactions. Host-parasite co-cultures in mini-rhizotron systems revealed that parasite attachments are twice as numerous and tubercle growth is quicker on Atpme3-1 roots than on WT roots. Compared to WT, the increased susceptibility in AtPME3-1 is associated with reduced PME activity in the roots and a lower degree of pectin methylesterification at the host-parasite interface, as detected immunohistochemically in infected roots. In addition, both WT and Atpme3-1 roots responded to infestation by modulating the expression of PAE- and PME-encoding genes, as well as related global enzyme activities in the roots before and after parasite attachment. However, these modulations differed between WT and Atpme3-1, which may contribute to different pectin remodeling in the roots and contrasting susceptibility to P. ramosa. With this integrative study, we aim to define a model of cell wall response to this specific biotic stress and indicate, for the first time, the role of PME3 in this parasitic plant-plant interaction.
Collapse
Affiliation(s)
- Cyril Grandjean
- UMR INRAE 1158 BioEcoAgro, BIOlogie des Plantes et Innovation, Université de Picardie Jules Verne, F-80000 Amiens, France; (C.G.); (C.R.); (C.G.); (Y.M.); (M.L.); (F.F.)
| | - Christophe Veronesi
- CNRS, US2B, UMR 6286, Nantes Université, F-44000 Nantes, France; (C.V.); (P.D.); (P.S.)
| | - Christine Rusterucci
- UMR INRAE 1158 BioEcoAgro, BIOlogie des Plantes et Innovation, Université de Picardie Jules Verne, F-80000 Amiens, France; (C.G.); (C.R.); (C.G.); (Y.M.); (M.L.); (F.F.)
| | - Charlotte Gautier
- UMR INRAE 1158 BioEcoAgro, BIOlogie des Plantes et Innovation, Université de Picardie Jules Verne, F-80000 Amiens, France; (C.G.); (C.R.); (C.G.); (Y.M.); (M.L.); (F.F.)
| | - Yannis Maillot
- UMR INRAE 1158 BioEcoAgro, BIOlogie des Plantes et Innovation, Université de Picardie Jules Verne, F-80000 Amiens, France; (C.G.); (C.R.); (C.G.); (Y.M.); (M.L.); (F.F.)
| | - Maïté Leschevin
- UMR INRAE 1158 BioEcoAgro, BIOlogie des Plantes et Innovation, Université de Picardie Jules Verne, F-80000 Amiens, France; (C.G.); (C.R.); (C.G.); (Y.M.); (M.L.); (F.F.)
| | - Françoise Fournet
- UMR INRAE 1158 BioEcoAgro, BIOlogie des Plantes et Innovation, Université de Picardie Jules Verne, F-80000 Amiens, France; (C.G.); (C.R.); (C.G.); (Y.M.); (M.L.); (F.F.)
| | - Jan Drouaud
- Centre Régional de Ressources en Biologie Moléculaire UPJV, Bâtiment Serres-Transfert Rue Dallery—UFR des Sciences, Passage du Sourire d’Avril, F-80039 Amiens, France;
| | - Paulo Marcelo
- Plateforme d’Ingénierie Cellulaire & Analyses des Protéines ICAP, Université de Picardie Jules Verne, F-80000 Amiens, France; (P.M.); (L.Z.)
| | - Luciane Zabijak
- Plateforme d’Ingénierie Cellulaire & Analyses des Protéines ICAP, Université de Picardie Jules Verne, F-80000 Amiens, France; (P.M.); (L.Z.)
| | - Philippe Delavault
- CNRS, US2B, UMR 6286, Nantes Université, F-44000 Nantes, France; (C.V.); (P.D.); (P.S.)
| | - Philippe Simier
- CNRS, US2B, UMR 6286, Nantes Université, F-44000 Nantes, France; (C.V.); (P.D.); (P.S.)
| | - Sophie Bouton
- UMR INRAE 1158 BioEcoAgro, BIOlogie des Plantes et Innovation, Université de Picardie Jules Verne, F-80000 Amiens, France; (C.G.); (C.R.); (C.G.); (Y.M.); (M.L.); (F.F.)
| | - Karine Pageau
- UMR INRAE 1158 BioEcoAgro, BIOlogie des Plantes et Innovation, Université de Picardie Jules Verne, F-80000 Amiens, France; (C.G.); (C.R.); (C.G.); (Y.M.); (M.L.); (F.F.)
| |
Collapse
|
4
|
Chandler JO, Wilhelmsson PKI, Fernandez-Pozo N, Graeber K, Arshad W, Pérez M, Steinbrecher T, Ullrich KK, Nguyen TP, Mérai Z, Mummenhoff K, Theißen G, Strnad M, Scheid OM, Schranz ME, Petřík I, Tarkowská D, Novák O, Rensing SA, Leubner-Metzger G. The dimorphic diaspore model Aethionema arabicum (Brassicaceae): Distinct molecular and morphological control of responses to parental and germination temperatures. THE PLANT CELL 2024; 36:2465-2490. [PMID: 38513609 PMCID: PMC11218780 DOI: 10.1093/plcell/koae085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 02/21/2024] [Accepted: 02/23/2024] [Indexed: 03/23/2024]
Abstract
Plants in habitats with unpredictable conditions often have diversified bet-hedging strategies that ensure fitness over a wider range of variable environmental factors. A striking example is the diaspore (seed and fruit) heteromorphism that evolved to maximize species survival in Aethionema arabicum (Brassicaceae) in which external and endogenous triggers allow the production of two distinct diaspores on the same plant. Using this dimorphic diaspore model, we identified contrasting molecular, biophysical, and ecophysiological mechanisms in the germination responses to different temperatures of the mucilaginous seeds (M+ seed morphs), the dispersed indehiscent fruits (IND fruit morphs), and the bare non-mucilaginous M- seeds obtained by pericarp (fruit coat) removal from IND fruits. Large-scale comparative transcriptome and hormone analyses of M+ seeds, IND fruits, and M- seeds provided comprehensive datasets for their distinct thermal responses. Morph-specific differences in co-expressed gene modules in seeds, as well as in seed and pericarp hormone contents, identified a role of the IND pericarp in imposing coat dormancy by generating hypoxia affecting abscisic acid (ABA) sensitivity. This involved expression of morph-specific transcription factors, hypoxia response, and cell wall remodeling genes, as well as altered ABA metabolism, transport, and signaling. Parental temperature affected ABA contents and ABA-related gene expression and altered IND pericarp biomechanical properties. Elucidating the molecular framework underlying the diaspore heteromorphism can provide insight into developmental responses to globally changing temperatures.
Collapse
Affiliation(s)
- Jake O Chandler
- Department of Biological Sciences, Royal Holloway University of London, Egham, Surrey TW20 0EX, UK
| | - Per K I Wilhelmsson
- Plant Cell Biology, Faculty of Biology, University of Marburg, Marburg 35043, Germany
| | - Noe Fernandez-Pozo
- Plant Cell Biology, Faculty of Biology, University of Marburg, Marburg 35043, Germany
- Institute for Mediterranean and Subtropical Horticulture “La Mayora” (IHSM-CSIC-UMA), Málaga 29010, Spain
| | - Kai Graeber
- Department of Biological Sciences, Royal Holloway University of London, Egham, Surrey TW20 0EX, UK
| | - Waheed Arshad
- Department of Biological Sciences, Royal Holloway University of London, Egham, Surrey TW20 0EX, UK
| | - Marta Pérez
- Department of Biological Sciences, Royal Holloway University of London, Egham, Surrey TW20 0EX, UK
| | - Tina Steinbrecher
- Department of Biological Sciences, Royal Holloway University of London, Egham, Surrey TW20 0EX, UK
| | - Kristian K Ullrich
- Plant Cell Biology, Faculty of Biology, University of Marburg, Marburg 35043, Germany
| | - Thu-Phuong Nguyen
- Biosystematics Group, Wageningen University, PB Wageningen 6708, The Netherlands
| | - Zsuzsanna Mérai
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Vienna Biocenter (VBC), Vienna 1030, Austria
| | - Klaus Mummenhoff
- Department of Biology, Botany, University of Osnabrück, Osnabrück 49076, Germany
| | - Günter Theißen
- Matthias Schleiden Institute/Department of Genetics, Friedrich Schiller University Jena, Jena 07743, Germany
| | - Miroslav Strnad
- Laboratory of Growth Regulators, Faculty of Science, Palacký University and Institute of Experimental Botany, Czech Academy of Sciences, Olomouc 78371, Czech Republic
| | - Ortrun Mittelsten Scheid
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Vienna Biocenter (VBC), Vienna 1030, Austria
| | - M Eric Schranz
- Biosystematics Group, Wageningen University, PB Wageningen 6708, The Netherlands
| | - Ivan Petřík
- Laboratory of Growth Regulators, Faculty of Science, Palacký University and Institute of Experimental Botany, Czech Academy of Sciences, Olomouc 78371, Czech Republic
| | - Danuše Tarkowská
- Laboratory of Growth Regulators, Faculty of Science, Palacký University and Institute of Experimental Botany, Czech Academy of Sciences, Olomouc 78371, Czech Republic
| | - Ondřej Novák
- Laboratory of Growth Regulators, Faculty of Science, Palacký University and Institute of Experimental Botany, Czech Academy of Sciences, Olomouc 78371, Czech Republic
| | - Stefan A Rensing
- Plant Cell Biology, Faculty of Biology, University of Marburg, Marburg 35043, Germany
- Centre for Biological Signalling Studies (BIOSS), University of Freiburg, Freiburg 79104, Germany
| | - Gerhard Leubner-Metzger
- Department of Biological Sciences, Royal Holloway University of London, Egham, Surrey TW20 0EX, UK
- Laboratory of Growth Regulators, Faculty of Science, Palacký University and Institute of Experimental Botany, Czech Academy of Sciences, Olomouc 78371, Czech Republic
| |
Collapse
|
5
|
Arshad W, Steinbrecher T, Wilhelmsson PK, Fernandez-Pozo N, Pérez M, Mérai Z, Rensing SA, Chandler JO, Leubner-Metzger G. Aethionema arabicum dimorphic seed trait resetting during transition to seedlings. FRONTIERS IN PLANT SCIENCE 2024; 15:1358312. [PMID: 38525145 PMCID: PMC10957558 DOI: 10.3389/fpls.2024.1358312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 02/19/2024] [Indexed: 03/26/2024]
Abstract
The transition from germinating seeds to emerging seedlings is one of the most vulnerable plant life cycle stages. Heteromorphic diaspores (seed and fruit dispersal units) are an adaptive bet-hedging strategy to cope with spatiotemporally variable environments. While the roles and mechanisms of seedling traits have been studied in monomorphic species, which produce one type of diaspore, very little is known about seedlings in heteromorphic species. Using the dimorphic diaspore model Aethionema arabicum (Brassicaceae), we identified contrasting mechanisms in the germination responses to different temperatures of the mucilaginous seeds (M+ seed morphs), the dispersed indehiscent fruits (IND fruit morphs), and the bare non-mucilaginous M- seeds obtained from IND fruits by pericarp (fruit coat) removal. What follows the completion of germination is the pre-emergence seedling growth phase, which we investigated by comparative growth assays of early seedlings derived from the M+ seeds, bare M- seeds, and IND fruits. The dimorphic seedlings derived from M+ and M- seeds did not differ in their responses to ambient temperature and water potential. The phenotype of seedlings derived from IND fruits differed in that they had bent hypocotyls and their shoot and root growth was slower, but the biomechanical hypocotyl properties of 15-day-old seedlings did not differ between seedlings derived from germinated M+ seeds, M- seeds, or IND fruits. Comparison of the transcriptomes of the natural dimorphic diaspores, M+ seeds and IND fruits, identified 2,682 differentially expressed genes (DEGs) during late germination. During the subsequent 3 days of seedling pre-emergence growth, the number of DEGs was reduced 10-fold to 277 root DEGs and 16-fold to 164 shoot DEGs. Among the DEGs in early seedlings were hormonal regulators, in particular for auxin, ethylene, and gibberellins. Furthermore, DEGs were identified for water and ion transporters, nitrate transporter and assimilation enzymes, and cell wall remodeling protein genes encoding enzymes targeting xyloglucan and pectin. We conclude that the transcriptomes of seedlings derived from the dimorphic diaspores, M+ seeds and IND fruits, undergo transcriptional resetting during the post-germination pre-emergence growth transition phase from germinated diaspores to growing seedlings.
Collapse
Affiliation(s)
- Waheed Arshad
- Seed Biology and Technology Group, Department of Biological Sciences, Royal Holloway University of London, Egham, United Kingdom
| | - Tina Steinbrecher
- Seed Biology and Technology Group, Department of Biological Sciences, Royal Holloway University of London, Egham, United Kingdom
| | | | - Noe Fernandez-Pozo
- Plant Cell Biology, Faculty of Biology, University of Marburg, Marburg, Germany
- Department Plant Breeding and Physiology, Institute for Mediterranean and Subtropical Horticulture “La Mayora” (IHSM-CSIC-UMA), Málaga, Spain
| | - Marta Pérez
- Seed Biology and Technology Group, Department of Biological Sciences, Royal Holloway University of London, Egham, United Kingdom
| | - Zsuzsanna Mérai
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Vienna Biocenter (VBC), Vienna, Austria
| | - Stefan A. Rensing
- Plant Cell Biology, Faculty of Biology, University of Marburg, Marburg, Germany
- Centre for Biological Signalling Studies (BIOSS), University of Freiburg, Freiburg, Germany
- Faculty of Chemistry and Pharmacy, University of Freiburg, Freiburg, Germany
| | - Jake O. Chandler
- Seed Biology and Technology Group, Department of Biological Sciences, Royal Holloway University of London, Egham, United Kingdom
| | - Gerhard Leubner-Metzger
- Seed Biology and Technology Group, Department of Biological Sciences, Royal Holloway University of London, Egham, United Kingdom
- Laboratory of Growth Regulators, Faculty of Science, Palacký University and Institute of Experimental Botany, Czech Academy of Sciences, Olomouc, Czechia
| |
Collapse
|
6
|
Xiang Y, Zhao C, Li Q, Niu Y, Pan Y, Li G, Cheng Y, Zhang A. Pectin methylesterase 31 is transcriptionally repressed by ABI5 to negatively regulate ABA-mediated inhibition of seed germination. FRONTIERS IN PLANT SCIENCE 2024; 15:1336689. [PMID: 38371403 PMCID: PMC10869471 DOI: 10.3389/fpls.2024.1336689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 01/18/2024] [Indexed: 02/20/2024]
Abstract
Pectin methylesterase (PME), a family of enzymes that catalyze the demethylation of pectin, influences seed germination. Phytohormone abscisic acid (ABA) inhibits seed germination. However, little is known about the function of PMEs in response to ABA-mediated seed germination. In this study, we found the role of PME31 in response to ABA-mediated inhibition of seed germination. The expression of PME31 is prominent in the embryo and is repressed by ABA treatment. Phenotype analysis showed that disruption of PME31 increases ABA-mediated inhibition of seed germination, whereas overexpression of PME31 attenuates this effect. Further study found that ABI5, an ABA signaling bZIP transcription factor, is identified as an upstream regulator of PME31. Genetic analysis showed that PME31 functions downstream of ABI5 in ABA-mediated seed germination. Detailed studies showed that ABI5 directly binds to the PME31 promoter and inhibits its expression. In the plants, PME31 expression is reduced by ABI5 in ABA-mediated seed germination. Taken together, PME31 is transcriptionally inhibited by ABI5 and negatively regulates ABA-mediated seed germination inhibition. These findings shed new light on the mechanisms of PMEs in response to ABA-mediated seed germination.
Collapse
Affiliation(s)
- Yang Xiang
- College of Life Sciences, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, China
| | - Chongyang Zhao
- College of Life Sciences, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, China
| | - Qian Li
- College of Life Sciences, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, China
| | - Yingxue Niu
- College of Life Sciences, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, China
| | - Yitian Pan
- College of Life Sciences, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, China
| | - Guangdong Li
- College of Life Sciences, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, China
| | - Yuan Cheng
- College of Life Sciences, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, China
| | - Aying Zhang
- College of Life Sciences, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, China
- Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Sanya, China
| |
Collapse
|
7
|
Kamel H, Geitmann A. Strength in numbers: An isoform variety of homogalacturonan modifying enzymes may contribute to pollen tube fitness. PLANT PHYSIOLOGY 2023; 194:67-80. [PMID: 37819032 DOI: 10.1093/plphys/kiad544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 09/12/2023] [Accepted: 09/15/2023] [Indexed: 10/13/2023]
Abstract
Pectin is a major component of the cell wall in land plants. It plays crucial roles in cell wall assembly, cell growth, shaping, and signaling. The relative abundance of pectin in the cell wall is particularly high in rapidly growing organ regions and cell types. Homogalacturonan (HG), a polymer of 1,4-linked α-D-galacturonic acid, is a major pectin constituent in growing and dividing plant cells. In pollen tubes, an extremely rapidly growing cell type, HG is secreted at and inserted into the apical cell wall and is subject to further modification in muro by HG modifying enzymes (HGMEs). These enzymes, including pectin esterases and depolymerases, have multiple isoforms, some of which are specifically expressed in pollen. Given the importance of pectin chemistry for the fitness of pollen tubes, it is of interest to interrogate the potentially crucial roles these isoforms play in pollen germination and elongation. It is hypothesized that different HGME isoforms, through their action on apoplastic HG, may generate differential methylation and acetylation patterns endowing HG polysaccharides with specific, spatially and temporally varying properties that lead to a fine-tuned pattern of cell wall modification. In addition, these isoforms may be differentially activated and/or inhibited depending on the local conditions that may vary at subcellular resolution. In this Update we review the different HGME isoforms identified in recent years in Arabidopsis thaliana and postulate that the multiplicity of these isoforms may allow for specialized substrate recognition and conditional activation, leading to a sophisticated regulation scheme exemplified in the process that governs the dynamic properties of the cell wall in pollen tube growth.
Collapse
Affiliation(s)
- Hiba Kamel
- Department of Plant Science, Faculty of Agricultural and Environmental Sciences, McGill University, Sainte-Anne-de-Bellevue, Quebec H9X 3V9, Canada
| | - Anja Geitmann
- Department of Plant Science, Faculty of Agricultural and Environmental Sciences, McGill University, Sainte-Anne-de-Bellevue, Quebec H9X 3V9, Canada
| |
Collapse
|
8
|
Li WQ, Li JY, Zhang YF, Luo WQ, Dou Y, Yu S. Effect of Reactive Oxygen Scavenger N,N'-Dimethylthiourea (DMTU) on Seed Germination and Radicle Elongation of Maize. Int J Mol Sci 2023; 24:15557. [PMID: 37958543 PMCID: PMC10649595 DOI: 10.3390/ijms242115557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/20/2023] [Accepted: 10/22/2023] [Indexed: 11/15/2023] Open
Abstract
Reactive oxygen species (ROS) are an important part of adaptation to biotic and abiotic stresses and regulate seed germination through positive or negative signaling. Seed adaptation to abiotic stress may be mediated by hydrogen peroxide (H2O2). The effects of the ROS scavenger N,N'-dimethylthiourea (DMTU) on maize seed germination through endogenous H2O2 regulation is unclear. In this study, we investigated the effects of different doses of DMTU on seed endogenous H2O2 and radicle development parameters using two maize varieties (ZD958 and DMY1). The inhibitory effect of DMTU on the germination rate and radicle growth was dose-dependent. The inhibitory effect of DMTU on radicle growth ceased after transferring maize seeds from DMTU to a water medium. Histochemical analyses showed that DMTU eliminated stable H2O2 accumulation in the radicle sheaths and radicles. The activity of antioxidant enzyme and the expression of antioxidant enzyme-related genes (ZmAPX2 and ZmCAT2) were reduced in maize seeds cultured with DMTU compared with normal culture conditions (0 mmol·dm-3 DMTU). We suggest the use of 200 mmol·dm-3 DMTU as an H2O2 scavenger to study the ROS equilibrium mechanisms during the germination of maize seeds, assisting in the future with the efficient development of plant growth regulators to enhance the seed germination performance of test maize varieties under abiotic stress.
Collapse
Affiliation(s)
- Wei-Qing Li
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (W.-Q.L.); (J.-Y.L.); (W.-Q.L.); (Y.D.); (S.Y.)
| | - Jia-Yu Li
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (W.-Q.L.); (J.-Y.L.); (W.-Q.L.); (Y.D.); (S.Y.)
| | - Yi-Fei Zhang
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (W.-Q.L.); (J.-Y.L.); (W.-Q.L.); (Y.D.); (S.Y.)
- Key Laboratory of Low-Carbon Green Agriculture in Northeastern China, Ministry of Agriculture and Rural Affairs, Daqing 163319, China
| | - Wen-Qi Luo
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (W.-Q.L.); (J.-Y.L.); (W.-Q.L.); (Y.D.); (S.Y.)
| | - Yi Dou
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (W.-Q.L.); (J.-Y.L.); (W.-Q.L.); (Y.D.); (S.Y.)
| | - Song Yu
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (W.-Q.L.); (J.-Y.L.); (W.-Q.L.); (Y.D.); (S.Y.)
- Key Laboratory of Low-Carbon Green Agriculture in Northeastern China, Ministry of Agriculture and Rural Affairs, Daqing 163319, China
| |
Collapse
|
9
|
Wang H, Zhou X, Liu C, Li W, Guo W. Suppression of GhGLU19 encoding β-1,3-glucanase promotes seed germination in cotton. BMC PLANT BIOLOGY 2022; 22:357. [PMID: 35869418 PMCID: PMC9308338 DOI: 10.1186/s12870-022-03748-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 07/12/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND In eudicots, germination begins with water uptake by the quiescent dry seed and is greatly related to the permeability of micropyle enriched callose layers. Once imbibition starts, seeds undergo a cascade of physiological, biochemical, and molecular events to initiate cellular activities. However, the effects of callose on water uptake and following seed metabolic events during germination are largely unknown. Cotton (Gossypium hirsutum) is a eudicot plant with natural fiber and edible oil production for humans. Here, we addressed this question by examining the role of GhGLU19, a gene encoding β-1,3-glucanase, in cotton seed germination. RESULTS GhGLU19 belongs to subfamily B and was expressed predominately in imbibed seeds and early seedlings. Compared to wild type, GhGLU19-suppressing and GhGLU19-overexpressing transgenic cotton lines showed the higher and lower seed germination percentage, respectively. Callose was enriched more at inner integument (ii) than that in embryo and seed coat in cotton seeds. In GhGLU19-suppressing lines, callose at ii of cotton seeds was greatly increased and brought about a prolonged water uptake process during imbibition. Both proteomic and transcriptomic analysis revealed that contrary to GhGLU19-overexpressing lines, the glycolysis and pyruvate metabolism was decreased, and abscisic acid (ABA) biosynthesis related genes were downregulated in imbibed seeds of GhGLU19-suppressing lines. Also, endogenous ABA was significantly decreased in GhGLU19-suppressing line while increased in GhGLU19-overexpressing line. CONCLUSIONS Our results demonstrate that suppression of GhGLU19 improves cotton seed germination via accumulating callose of inner integument, modulating glycolysis and pyruvate metabolism, and decreasing ABA biosynthesis. This study provides a potential way for improving germination percentage in cotton seed production, and other eudicot crops.
Collapse
Affiliation(s)
- Haitang Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Germplasm Enhancement and Application Engineering Research Center (Ministry of Education), Nanjing Agricultural University, Nanjing, 210095 China
| | - Xuesong Zhou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Germplasm Enhancement and Application Engineering Research Center (Ministry of Education), Nanjing Agricultural University, Nanjing, 210095 China
| | - Chuchu Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Germplasm Enhancement and Application Engineering Research Center (Ministry of Education), Nanjing Agricultural University, Nanjing, 210095 China
| | - Weixi Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Germplasm Enhancement and Application Engineering Research Center (Ministry of Education), Nanjing Agricultural University, Nanjing, 210095 China
| | - Wangzhen Guo
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Germplasm Enhancement and Application Engineering Research Center (Ministry of Education), Nanjing Agricultural University, Nanjing, 210095 China
| |
Collapse
|
10
|
Grainge G, Nakabayashi K, Steinbrecher T, Kennedy S, Ren J, Iza F, Leubner-Metzger G. Molecular mechanisms of seed dormancy release by gas plasma-activated water technology. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:4065-4078. [PMID: 35427417 PMCID: PMC9232203 DOI: 10.1093/jxb/erac150] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 04/13/2022] [Indexed: 06/14/2023]
Abstract
Developing innovative agri-technologies is essential for the sustainable intensification of global food production. Seed dormancy is an adaptive trait which defines the environmental conditions in which the seed is able to germinate. Dormancy release requires sensing and integration of multiple environmental signals, a complex process which may be mimicked by seed treatment technologies. Here, we reveal molecular mechanisms by which non-thermal (cold) atmospheric gas plasma-activated water (GPAW) releases the physiological seed dormancy of Arabidopsis thaliana. GPAW triggered dormancy release by synergistic interaction between plasma-generated reactive chemical species (NO3-, H2O2, ·NO, and ·OH) and multiple signalling pathways targeting gibberellin and abscisic acid (ABA) metabolism and the expression of downstream cell wall-remodelling genes. Direct chemical action of GPAW on cell walls resulted in premature biomechanical endosperm weakening. The germination responses of dormancy signalling (nlp8, prt6, and dog1) and ABA metabolism (cyp707a2) mutants varied with GPAW composition. GPAW removes seed dormancy blocks by triggering multiple molecular signalling pathways combined with direct chemical tissue weakening to permit seed germination. Gas plasma technologies therefore improve seed quality by mimicking permissive environments in which sensing and integration of multiple signals lead to dormancy release and germination.
Collapse
Affiliation(s)
- Giles Grainge
- Department of Biological Sciences, Royal Holloway University of London, Egham, Surrey TW20 0EX, UK
| | - Kazumi Nakabayashi
- Department of Biological Sciences, Royal Holloway University of London, Egham, Surrey TW20 0EX, UK
| | - Tina Steinbrecher
- Department of Biological Sciences, Royal Holloway University of London, Egham, Surrey TW20 0EX, UK
| | - Sue Kennedy
- Elsoms Seeds Ltd, Spalding, Lincolnshire PE11 1QG, UK
| | - Junchen Ren
- Wolfson School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, Leicestershire LE11 3TU, UK
| | - Felipe Iza
- Wolfson School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, Leicestershire LE11 3TU, UK
- Division of Advanced Nuclear Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk 790-784, South Korea
| | | |
Collapse
|
11
|
Abstract
In angiosperms, double fertilization triggers the concomitant development of two closely juxtaposed tissues, the embryo and the endosperm. Successful seed development and germination require constant interactions between these tissues, which occur across their common interface. The embryo-endosperm interface is a complex and poorly understood compound apoplast comprising components derived from both tissues, across which nutrients transit to fuel embryo development. Interface properties, which affect molecular diffusion and thus communication, are themselves dynamically regulated by molecular and physical dialogues between the embryo and endosperm. We review the current understanding of embryo-endosperm interactions, with a focus on the structure, properties, and function of their shared interface. Concentrating on Arabidopsis, but with reference to other species, we aim to situate recent findings within the broader context of seed physiology, developmental biology, and genetic factors such as parental conflicts over resource allocation.
Collapse
Affiliation(s)
- Nicolas M Doll
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium;
- VIB Center of Plant Systems Biology, Ghent, Belgium
| | - Gwyneth C Ingram
- Laboratoire Reproduction et Développement des Plantes, ENS de Lyon, CNRS, INRAE, Université de Lyon 1, Lyon, France;
| |
Collapse
|
12
|
The Phytotoxin Myrigalone A Triggers a Phased Detoxification Programme and Inhibits Lepidium sativum Seed Germination via Multiple Mechanisms including Interference with Auxin Homeostasis. Int J Mol Sci 2022; 23:ijms23094618. [PMID: 35563008 PMCID: PMC9104956 DOI: 10.3390/ijms23094618] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/12/2022] [Accepted: 04/13/2022] [Indexed: 02/01/2023] Open
Abstract
Molecular responses of plants to natural phytotoxins comprise more general and compound-specific mechanisms. How phytotoxic chalcones and other flavonoids inhibit seedling growth was widely studied, but how they interfere with seed germination is largely unknown. The dihydrochalcone and putative allelochemical myrigalone A (MyA) inhibits seed germination and seedling growth. Transcriptome (RNAseq) and hormone analyses of Lepidium sativum seed responses to MyA were compared to other bioactive and inactive compounds. MyA treatment of imbibed seeds triggered the phased induction of a detoxification programme, altered gibberellin, cis-(+)-12-oxophytodienoic acid and jasmonate metabolism, and affected the expression of hormone transporter genes. The MyA-mediated inhibition involved interference with the antioxidant system, oxidative signalling, aquaporins and water uptake, but not uncoupling of oxidative phosphorylation or p-hydroxyphenylpyruvate dioxygenase expression/activity. MyA specifically affected the expression of auxin-related signalling genes, and various transporter genes, including for auxin transport (PIN7, ABCG37, ABCG4, WAT1). Responses to auxin-specific inhibitors further supported the conclusion that MyA interferes with auxin homeostasis during seed germination. Comparative analysis of MyA and other phytotoxins revealed differences in the specific regulatory mechanisms and auxin transporter genes targeted to interfere with auxin homestasis. We conclude that MyA exerts its phytotoxic activity by multiple auxin-dependent and independent molecular mechanisms.
Collapse
|
13
|
Hourston JE, Steinbrecher T, Chandler JO, Pérez M, Dietrich K, Turečková V, Tarkowská D, Strnad M, Weltmeier F, Meinhard J, Fischer U, Fiedler‐Wiechers K, Ignatz M, Leubner‐Metzger G. Cold-induced secondary dormancy and its regulatory mechanisms in Beta vulgaris. PLANT, CELL & ENVIRONMENT 2022; 45:1315-1332. [PMID: 35064681 PMCID: PMC9305896 DOI: 10.1111/pce.14264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 10/26/2021] [Accepted: 11/18/2021] [Indexed: 06/14/2023]
Abstract
The dynamic behaviour of seeds in soil seed banks depends on their ability to act as sophisticated environmental sensors to adjust their sensitivity thresholds for germination by dormancy mechanisms. Here we show that prolonged incubation of sugar beet fruits at low temperature (chilling at 5°C, generally known to release seed dormancy of many species) can induce secondary nondeep physiological dormancy of an apparently nondormant crop species. The physiological and biophysical mechanisms underpinning this cold-induced secondary dormancy include the chilling-induced accumulation of abscisic acid in the seeds, a reduction in the embryo growth potential and a block in weakening of the endosperm covering the embryonic root. Transcriptome analysis revealed distinct gene expression patterns in the different temperature regimes and upon secondary dormancy induction and maintenance. The chilling caused reduced expression of cell wall remodelling protein genes required for embryo cell elongation growth and endosperm weakening, as well as increased expression of seed maturation genes, such as for late embryogenesis abundant proteins. A model integrating the hormonal signalling and master regulator expression with the temperature-control of seed dormancy and maturation programmes is proposed. The revealed mechanisms of the cold-induced secondary dormancy are important for climate-smart agriculture and food security.
Collapse
Affiliation(s)
- James E. Hourston
- Department of Biological SciencesRoyal Holloway University of LondonEghamUK
| | - Tina Steinbrecher
- Department of Biological SciencesRoyal Holloway University of LondonEghamUK
| | - Jake O. Chandler
- Department of Biological SciencesRoyal Holloway University of LondonEghamUK
| | - Marta Pérez
- Department of Biological SciencesRoyal Holloway University of LondonEghamUK
| | | | - Veronika Turečková
- Laboratory of Growth Regulators, Palacký University and Institute of Experimental BotanyCzech Academy of SciencesOlomoucCzech Republic
| | - Danuše Tarkowská
- Laboratory of Growth Regulators, Palacký University and Institute of Experimental BotanyCzech Academy of SciencesOlomoucCzech Republic
| | - Miroslav Strnad
- Laboratory of Growth Regulators, Palacký University and Institute of Experimental BotanyCzech Academy of SciencesOlomoucCzech Republic
| | | | | | | | | | - Michael Ignatz
- Department of Biological SciencesRoyal Holloway University of LondonEghamUK
| | - Gerhard Leubner‐Metzger
- Department of Biological SciencesRoyal Holloway University of LondonEghamUK
- Laboratory of Growth Regulators, Palacký University and Institute of Experimental BotanyCzech Academy of SciencesOlomoucCzech Republic
| |
Collapse
|
14
|
Walker M, Pérez M, Steinbrecher T, Gawthrop F, Pavlović I, Novák O, Tarkowská D, Strnad M, Marone F, Nakabayashi K, Leubner-Metzger G. Molecular mechanisms and hormonal regulation underpinning morphological dormancy: a case study using Apium graveolens (Apiaceae). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 108:1020-1036. [PMID: 34510583 DOI: 10.1111/tpj.15489] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 09/02/2021] [Accepted: 09/06/2021] [Indexed: 06/13/2023]
Abstract
Underdeveloped (small) embryos embedded in abundant endosperm tissue, and thus having morphological dormancy (MD) or morphophysiological dormancy (MPD), are considered to be the ancestral state in seed dormancy evolution. This trait is retained in the Apiaceae family, which provides excellent model systems for investigating the underpinning mechanisms. We investigated Apium graveolens (celery) MD by combined innovative imaging and embryo growth assays with the quantification of hormone metabolism, as well as the analysis of hormone and cell-wall related gene expression. The integrated experimental results demonstrated that embryo growth occurred inside imbibed celery fruits in association with endosperm degradation, and that a critical embryo size was required for radicle emergence. The regulation of these processes depends on gene expression leading to gibberellin and indole-3-acetic acid (IAA) production by the embryo and on crosstalk between the fruit compartments. ABA degradation associated with distinct spatiotemporal patterns in ABA sensitivity control embryo growth, endosperm breakdown and radicle emergence. This complex interaction between gibberellins, IAA and ABA metabolism, and changes in the tissue-specific sensitivities to these hormones is distinct from non-MD seeds. We conclude that the embryo growth to reach the critical size and the associated endosperm breakdown inside MD fruits constitute a unique germination programme.
Collapse
Affiliation(s)
- Matthew Walker
- Department of Biological Sciences, Royal Holloway University of London, Egham, TW20 0EX, UK
- Tozer Seeds, Tozer Seeds Ltd, Cobham, KT11 3EH, UK
| | - Marta Pérez
- Department of Biological Sciences, Royal Holloway University of London, Egham, TW20 0EX, UK
| | - Tina Steinbrecher
- Department of Biological Sciences, Royal Holloway University of London, Egham, TW20 0EX, UK
| | | | - Iva Pavlović
- Laboratory of Growth Regulators, Institute of Experimental Botany, Czech Academy of Sciences and Faculty of Science, Palacký University Olomouc, Olomouc, CZ-78371, Czech Republic
| | - Ondřej Novák
- Laboratory of Growth Regulators, Institute of Experimental Botany, Czech Academy of Sciences and Faculty of Science, Palacký University Olomouc, Olomouc, CZ-78371, Czech Republic
| | - Danuše Tarkowská
- Laboratory of Growth Regulators, Institute of Experimental Botany, Czech Academy of Sciences and Faculty of Science, Palacký University Olomouc, Olomouc, CZ-78371, Czech Republic
| | - Miroslav Strnad
- Laboratory of Growth Regulators, Institute of Experimental Botany, Czech Academy of Sciences and Faculty of Science, Palacký University Olomouc, Olomouc, CZ-78371, Czech Republic
| | - Federica Marone
- Swiss Light Source, Paul Scherrer Institute, Villigen, CH-5232, Switzerland
| | - Kazumi Nakabayashi
- Department of Biological Sciences, Royal Holloway University of London, Egham, TW20 0EX, UK
| | - Gerhard Leubner-Metzger
- Department of Biological Sciences, Royal Holloway University of London, Egham, TW20 0EX, UK
- Laboratory of Growth Regulators, Institute of Experimental Botany, Czech Academy of Sciences and Faculty of Science, Palacký University Olomouc, Olomouc, CZ-78371, Czech Republic
| |
Collapse
|
15
|
Arshad W, Lenser T, Wilhelmsson PKI, Chandler JO, Steinbrecher T, Marone F, Pérez M, Collinson ME, Stuppy W, Rensing SA, Theißen G, Leubner-Metzger G. A tale of two morphs: developmental patterns and mechanisms of seed coat differentiation in the dimorphic diaspore model Aethionema arabicum (Brassicaceae). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:166-181. [PMID: 33945185 DOI: 10.1111/tpj.15283] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 04/15/2021] [Indexed: 06/12/2023]
Abstract
The developmental transition from a fertilized ovule to a dispersed diaspore (seed or fruit) involves complex differentiation processes of the ovule's integuments leading to the diversity in mature seed coat structures in angiosperms. In this study, comparative imaging and transcriptome analysis were combined to investigate the morph-specific developmental differences during outer seed coat differentiation and mucilage production in Aethionema arabicum, the Brassicaceae model for diaspore dimorphism. One of the intriguing adaptations of this species is the production and dispersal of morphologically distinct, mucilaginous and non-mucilaginous diaspores from the same plant (dimorphism). The dehiscent fruit morph programme producing multiple mucilaginous seed diaspores was used as the default trait combination, similar to Arabidopsis thaliana, and was compared with the indehiscent fruit morph programme leading to non-mucilaginous diaspores. Synchrotron-based radiation X-ray tomographic microscopy revealed a co-ordinated framework of morph-specific early changes in internal anatomy of developing A. arabicum gynoecia including seed abortion in the indehiscent programme and mucilage production by the mucilaginous seed coat. The associated comparative analysis of the gene expression patterns revealed that the unique seed coat dimorphism of Ae. arabicum provides an excellent model system for comparative study of the control of epidermal cell differentiation and mucilage biosynthesis by the mucilage transcription factor cascade and their downstream cell wall and mucilage remodelling genes. Elucidating the underlying molecular framework of the dimorphic diaspore syndrome is key to understanding differential regulation of bet-hedging survival strategies in challenging environments, timely in the face of global climatic change.
Collapse
Affiliation(s)
- Waheed Arshad
- Department of Biological Sciences, Royal Holloway University of London, Egham, TW20 0EX, UK
| | - Teresa Lenser
- Matthias Schleiden Institute/Genetics, Friedrich Schiller University Jena, Jena, D-07743, Germany
| | - Per K I Wilhelmsson
- Plant Cell Biology, Department of Biology, University of Marburg, Marburg, D-35043, Germany
| | - Jake O Chandler
- Department of Biological Sciences, Royal Holloway University of London, Egham, TW20 0EX, UK
| | - Tina Steinbrecher
- Department of Biological Sciences, Royal Holloway University of London, Egham, TW20 0EX, UK
| | - Federica Marone
- Swiss Light Source, Paul Scherrer Institute, Villigen, CH-5232, Switzerland
| | - Marta Pérez
- Department of Biological Sciences, Royal Holloway University of London, Egham, TW20 0EX, UK
| | - Margaret E Collinson
- Department of Earth Sciences, Royal Holloway University of London, Egham, TW20 0EX, UK
| | - Wolfgang Stuppy
- Botanischer Garten der Ruhr-Universität Bochum, Universitätsstraße 150, Bochum, D-44780, Germany
- The Royal Botanic Gardens, Kew, Wellcome Trust Millennium Building, Wakehurst Place, Ardingly, West Sussex, RH17 6TN, UK
| | - Stefan A Rensing
- Plant Cell Biology, Department of Biology, University of Marburg, Marburg, D-35043, Germany
| | - Günter Theißen
- Matthias Schleiden Institute/Genetics, Friedrich Schiller University Jena, Jena, D-07743, Germany
| | - Gerhard Leubner-Metzger
- Department of Biological Sciences, Royal Holloway University of London, Egham, TW20 0EX, UK
- Laboratory of Growth Regulators, Palacký University, Institute of Experimental Botany, Czech Academy of Sciences, Olomouc, CZ-78371, Czech Republic
| |
Collapse
|
16
|
Roig-Oliver M, Rayon C, Roulard R, Fournet F, Bota J, Flexas J. Reduced photosynthesis in Arabidopsis thaliana atpme17.2 and atpae11.1 mutants is associated to altered cell wall composition. PHYSIOLOGIA PLANTARUM 2021; 172:1439-1451. [PMID: 32770751 DOI: 10.1111/ppl.13186] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/31/2020] [Accepted: 08/06/2020] [Indexed: 05/06/2023]
Abstract
The cell wall is a complex and dynamic structure that determines plants' performance by constant remodeling of its compounds. Although cellulose is its major load-bearing component, pectins are crucial to determine wall characteristics. Changes in pectin physicochemical properties, due to pectin remodeling enzymes (PRE), induce the rearrangement of cell wall compounds, thus, modifying wall architecture. In this work, we tested for the first time how cell wall dynamics affect photosynthetic properties in Arabidopsis thaliana pectin methylesterase atpme17.2 and pectin acetylesterase atpae11.1 mutants in comparison to wild-type Col-0. Our results showed maintained PRE activities comparing mutants with wild-type and no significant differences in cellulose, but cell wall non-cellulosic neutral sugars contents changed. Particularly, the amount of galacturonic acid (GalA) - which represents to some extent the pectin cell wall proportion - was reduced in the two mutants. Additionally, physiological characterization revealed that mutants presented a decreased net CO2 assimilation (AN ) because of reductions in both stomatal (gs ) and mesophyll conductances (gm ). Thus, our results suggest that atpme17.2 and atpae11.1 cell wall modifications due to genetic alterations could play a significant role in determining photosynthesis.
Collapse
Affiliation(s)
- Margalida Roig-Oliver
- Research Group on Plant Biology under Mediterranean Conditions, Departament de Biologia, Universitat de les Illes Balears (UIB) - Agro-Environmental and Water Economics Institute (INAGEA), Palma, 07122, Spain
| | - Catherine Rayon
- EA 3900-BIOPI, Biologie des Plantes et Innovation, Université de Picardie Jules Verne, Amiens, 80039, France
| | - Romain Roulard
- EA 3900-BIOPI, Biologie des Plantes et Innovation, Université de Picardie Jules Verne, Amiens, 80039, France
| | - François Fournet
- EA 3900-BIOPI, Biologie des Plantes et Innovation, Université de Picardie Jules Verne, Amiens, 80039, France
| | - Josefina Bota
- Research Group on Plant Biology under Mediterranean Conditions, Departament de Biologia, Universitat de les Illes Balears (UIB) - Agro-Environmental and Water Economics Institute (INAGEA), Palma, 07122, Spain
| | - Jaume Flexas
- Research Group on Plant Biology under Mediterranean Conditions, Departament de Biologia, Universitat de les Illes Balears (UIB) - Agro-Environmental and Water Economics Institute (INAGEA), Palma, 07122, Spain
| |
Collapse
|
17
|
Zhu X, Tang C, Li Q, Qiao X, Li X, Cai Y, Wang P, Sun Y, Zhang H, Zhang S, Wu J. Characterization of the pectin methylesterase inhibitor gene family in Rosaceae and role of PbrPMEI23/39/41 in methylesterified pectin distribution in pear pollen tube. PLANTA 2021; 253:118. [PMID: 33961146 DOI: 10.1007/s00425-021-03638-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 05/01/2021] [Indexed: 05/02/2023]
Abstract
Pectin methylesterase inhibitor gene family in the seven Rosaceae species (including three pear cultivars) is characterized and three pectin methylesterase inhibitor genes are identified to regulate pollen tube growth in pear. Pectin methylesterase inhibitor (PMEI) participates in a variety of biological processes in plants. However, the information and function of PMEI genes in Rosaceae are largely unknown. In this study, a total of 423 PMEI genes are identified in the genomes of seven Rosaceae species. The PMEI genes in pear are categorized into five subfamilies based on structural analysis and evolutionary analysis. WGD and TD are the main duplication events in the PMEI gene family of pear. Quantitative real-time PCR analysis indicates that PbrPMEI23, PbrPMEI39, and PbrPMEI41 are increasingly expressed during pear pollen tube growth. Under the treatment of recombinant proteins PbrPMEI23, PbrPMEI39 or PbrPMEI41, the content of methylesterified pectin at the region 5-20 μm from the pollen tube tip significantly increases, and the growth of pear pollen tubes is promoted. These results indicate that PMEI regulates the growth of pollen tubes by changing the distribution of methylesterified pectin in the apex.
Collapse
Affiliation(s)
- Xiaoxuan Zhu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Centre of Pear Engineering Technology Research, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chao Tang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Centre of Pear Engineering Technology Research, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qionghou Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Centre of Pear Engineering Technology Research, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xin Qiao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Centre of Pear Engineering Technology Research, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xian Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Centre of Pear Engineering Technology Research, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yilin Cai
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Centre of Pear Engineering Technology Research, Nanjing Agricultural University, Nanjing, 210095, China
| | - Peng Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Centre of Pear Engineering Technology Research, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yangyang Sun
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Centre of Pear Engineering Technology Research, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hua Zhang
- Shanghai Vocational College of Agriculture and Forestry, Shanghai, 201699, China
| | - Shaoling Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Centre of Pear Engineering Technology Research, Nanjing Agricultural University, Nanjing, 210095, China
| | - Juyou Wu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Centre of Pear Engineering Technology Research, Nanjing Agricultural University, Nanjing, 210095, China.
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, 210014, China.
| |
Collapse
|
18
|
Xin A, Fei Y, Molnar A, Fry SC. Cutin:cutin-acid endo-transacylase (CCT), a cuticle-remodelling enzyme activity in the plant epidermis. Biochem J 2021; 478:777-798. [PMID: 33511979 PMCID: PMC7925011 DOI: 10.1042/bcj20200835] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 01/17/2021] [Accepted: 01/28/2021] [Indexed: 01/08/2023]
Abstract
Cutin is a polyester matrix mainly composed of hydroxy-fatty acids that occurs in the cuticles of shoots and root-caps. The cuticle, of which cutin is a major component, protects the plant from biotic and abiotic stresses, and cutin has been postulated to constrain organ expansion. We propose that, to allow cutin restructuring, ester bonds in this net-like polymer can be transiently cleaved and then re-formed (transacylation). Here, using pea epicotyl epidermis as the main model, we first detected a cutin:cutin-fatty acid endo-transacylase (CCT) activity. In-situ assays used endogenous cutin as the donor substrate for endogenous enzymes; the exogenous acceptor substrate was a radiolabelled monomeric cutin-acid, 16-hydroxy-[3H]hexadecanoic acid (HHA). High-molecular-weight cutin became ester-bonded to intact [3H]HHA molecules, which thereby became unextractable except by ester-hydrolysing alkalis. In-situ CCT activity correlated with growth rate in Hylotelephium leaves and tomato fruits, suggesting a role in loosening the outer epidermal wall during organ growth. The only well-defined cutin transacylase in the apoplast, CUS1 (a tomato cutin synthase), when produced in transgenic tobacco, lacked CCT activity. This finding provides a reference for future CCT protein identification, which can adopt our sensitive enzyme assay to screen other CUS1-related enzymes.
Collapse
Affiliation(s)
- Anzhou Xin
- The Edinburgh Cell Wall Group, Institute of Molecular Plant Sciences, The University of Edinburgh, Edinburgh EH9 3BF, U.K
| | - Yue Fei
- Institute of Molecular Plant Sciences, The University of Edinburgh, Edinburgh EH9 3BF, U.K
| | - Attila Molnar
- Institute of Molecular Plant Sciences, The University of Edinburgh, Edinburgh EH9 3BF, U.K
| | - Stephen C. Fry
- The Edinburgh Cell Wall Group, Institute of Molecular Plant Sciences, The University of Edinburgh, Edinburgh EH9 3BF, U.K
| |
Collapse
|
19
|
Grafi G. Dead but Not Dead End: Multifunctional Role of Dead Organs Enclosing Embryos in Seed Biology. Int J Mol Sci 2020; 21:ijms21218024. [PMID: 33126660 PMCID: PMC7662896 DOI: 10.3390/ijms21218024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 10/23/2020] [Accepted: 10/27/2020] [Indexed: 01/17/2023] Open
Abstract
Dry fruits consist of two types, dehiscent and indehiscent, whereby the fruit is splitting open or remains closed at maturity, respectively. The seed, the dispersal unit (DU) of dehiscent fruits, is composed of three major parts, the embryo and the food reserve, encapsulated by the maternally-derived organ, the seed coat. Indehiscent fruit constitutes the DU in which the embryo is covered by two protective layers (PLs), the seed coat and the fruit coat. In grasses, the caryopsis, a one-seeded fruit, can be further enclosed by the floral bracts to generate two types of DUs, florets and spikelets. All protective layers enclosing the embryo undergo programmed cell death (PCD) at maturation and are thought to provide mainly a physical shield for embryo protection and a means for dispersal. In this review article, I wish to highlight the elaborate function of these dead organs enclosing the embryo as unique storage structures for beneficial substances and discuss their potential role in seed biology and ecology.
Collapse
Affiliation(s)
- Gideon Grafi
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben Gurion 84990, Israel
| |
Collapse
|
20
|
Raviv B, Khadka J, Swetha B, Singiri JR, Grandhi R, Shapira E, Novoplansky N, Gutterman Y, Galis I, Sternberg M, Grafi G. Extreme drought alters progeny dispersal unit properties of winter wild oat (Avena sterilis L.). PLANTA 2020; 252:77. [PMID: 33033936 DOI: 10.1007/s00425-020-03491-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 10/04/2020] [Indexed: 06/11/2023]
Abstract
The dead husk is a vital component of the dispersal unit whose biochemical properties can be modified following exposure to drought. This might affect seed performance and fate, soil properties and consequently plant biodiversity. We investigated the effects of extreme drought on the dispersal unit (DU) properties of winter wild oat (Avena sterilis L.) in the Mediterranean ecosystems focusing on a commonly ignored component of the DU, namely the dead floral bracts (husk). DUs were collected from a climate change experimental research station in the Judean Hills, Israel, simulating extreme drought and from two additional sites differing in the rainfall amounts. Our results showed that drought conditions significantly affected A. sterilis reproductive traits displaying reduced DUs and caryopses weights. The husk contributes profoundly to seed performance showing that germination from the intact DUs or the intact florets 1 was higher, faster and more homogenous compared to naked caryopses; no effect of drought on germination properties was observed. The husk stored hundreds of proteins that retain enzymatic activity and multiple metabolites including phytohormones. Changes in rainfall amounts affected the composition and levels of proteins and other metabolites accumulated in the husk, with a notable effect on abscisic acid (ABA). The husk of both control and drought plants released upon hydration substances that selectively inhibited other species seed germination as well as substances that promoted microbial growth. Our data showed that the dead husk represents a functional component of the DU that have been evolved to nurture the embryo and to ensure its success in its unique habitat. Furthermore, drought conditions can modify husk biochemical properties, which in turn might affect seed performance and fate, soil microbiota and soil fertility and consequently plant species diversity.
Collapse
Affiliation(s)
- Buzi Raviv
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, 84990, Midreshet Ben Gurion, Israel
| | - Janardan Khadka
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, 84990, Midreshet Ben Gurion, Israel
| | - Bupur Swetha
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, 84990, Midreshet Ben Gurion, Israel
| | - Jeevan R Singiri
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, 84990, Midreshet Ben Gurion, Israel
| | - Rohith Grandhi
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, 84990, Midreshet Ben Gurion, Israel
| | - Eliyahu Shapira
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, 84990, Midreshet Ben Gurion, Israel
| | - Nurit Novoplansky
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, 84990, Midreshet Ben Gurion, Israel
| | - Yitzchak Gutterman
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, 84990, Midreshet Ben Gurion, Israel
| | - Ivan Galis
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama, 710-0046, Japan
| | - Marcelo Sternberg
- School of Plant Sciences and Food Security, Wise Faculty of Life Sciences, Tel Aviv University, 69978, Tel Aviv, Israel
| | - Gideon Grafi
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, 84990, Midreshet Ben Gurion, Israel.
| |
Collapse
|
21
|
Khadka J, Raviv B, Swetha B, Grandhi R, Singiri JR, Novoplansky N, Gutterman Y, Galis I, Huang Z, Grafi G. Maternal environment alters dead pericarp biochemical properties of the desert annual plant Anastatica hierochuntica L. PLoS One 2020; 15:e0237045. [PMID: 32735576 PMCID: PMC7394380 DOI: 10.1371/journal.pone.0237045] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 07/17/2020] [Indexed: 11/18/2022] Open
Abstract
The dead organs enclosing embryos (DOEEs) emerge as central components of the dispersal unit (DU) capable for long-term storage of active proteins and other substances that affect seed performance and fate. We studied the effect of maternal environment (salt and salt+heat) on progeny DU (dry indehiscent fruit) focusing on pericarp properties of Anastatica hierochuntica. Stressed plants displayed increased seed abortion and low level and rate of germination. Hydrated pericarps released antimicrobial factors and allelopathic substances that inhibit germination of heterologous species. Proteome analysis of dead pericarps revealed hundreds of proteins, among them nucleases, chitinases and proteins involved in reactive oxygen species detoxification and cell wall modification. Salt treatment altered the composition and level of proteins stored in the pericarp. We observed changes in protein profile released from seeds of salt-treated plants with a notable increase in a small anti-fungal protein, defensin. The levels of phytohormones including IAA, ABA and salicylic acid were reduced in dead pericarps of stressed plants. The data presented here highlighted the predominant effects of maternal environment on progeny DUs of the desert plant A. hierochuntica, particularly on pericarp properties, which in turn might affect seed performance and fate, soil fertility and consequently plant biodiversity.
Collapse
Affiliation(s)
- Janardan Khadka
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben Gurion, Israel
| | - Buzi Raviv
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben Gurion, Israel
| | - Bupur Swetha
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben Gurion, Israel
| | - Rohith Grandhi
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben Gurion, Israel
| | - Jeevan R. Singiri
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben Gurion, Israel
| | - Nurit Novoplansky
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben Gurion, Israel
| | - Yitzchak Gutterman
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben Gurion, Israel
| | - Ivan Galis
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama, Japan
| | - Zhenying Huang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Gideon Grafi
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben Gurion, Israel
- * E-mail:
| |
Collapse
|
22
|
The seed water content as a time-independent physiological trait during germination in wild tree species such as Ceiba aesculifolia. Sci Rep 2020; 10:10429. [PMID: 32591557 PMCID: PMC7319967 DOI: 10.1038/s41598-020-66759-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 05/26/2020] [Indexed: 12/26/2022] Open
Abstract
Seeds constitute a key physiological stage in plants life cycle. During seed germination, there is a spatial-temporal imbibition pattern that correlates with described physiological processes. However, only the moment of testa rupture has been described as a critical, discrete stage. Could a specific relative water content (RWC) value reflect a physiological stage useful for comparisons between seed batches? We tracked seed-by-seed imbibition during germination to homogenize sampling and selected a transcriptomic approach to analyse the physiological transitions that occur in seed batches collected in different years and with contrasting phenotypic responses to a priming treatment. The seed RWC reflected the transcriptional transitions that occur during germination, regardless of imbibition time or collection year, and revealed a set of biological processes that occur in the dry seed and during early germination are associated with the phenotypic response to priming. As climate shifts, so do the timing of developmental events important for determining organismal fitness, and poses another challenge to the comprehension of molecular and physiological processes driving the interaction between organisms and environment. In this study, we demonstrate that the use of physiological traits, specific to a particular developmental stage, is a reliable time-independent approach.
Collapse
|
23
|
Carrera-Castaño G, Calleja-Cabrera J, Pernas M, Gómez L, Oñate-Sánchez L. An Updated Overview on the Regulation of Seed Germination. PLANTS 2020; 9:plants9060703. [PMID: 32492790 PMCID: PMC7356954 DOI: 10.3390/plants9060703] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/22/2020] [Accepted: 05/26/2020] [Indexed: 02/07/2023]
Abstract
The ability of a seed to germinate and establish a plant at the right time of year is of vital importance from an ecological and economical point of view. Due to the fragility of these early growth stages, their swiftness and robustness will impact later developmental stages and crop yield. These traits are modulated by a continuous interaction between the genetic makeup of the plant and the environment from seed production to germination stages. In this review, we have summarized the established knowledge on the control of seed germination from a molecular and a genetic perspective. This serves as a “backbone” to integrate the latest developments in the field. These include the link of germination to events occurring in the mother plant influenced by the environment, the impact of changes in the chromatin landscape, the discovery of new players and new insights related to well-known master regulators. Finally, results from recent studies on hormone transport, signaling, and biophysical and mechanical tissue properties are underscoring the relevance of tissue-specific regulation and the interplay of signals in this crucial developmental process.
Collapse
|
24
|
Wen B, Zhang F, Wu X, Li H. Characterization of the Tomato ( Solanum lycopersicum) Pectin Methylesterases: Evolution, Activity of Isoforms and Expression During Fruit Ripening. FRONTIERS IN PLANT SCIENCE 2020; 11:238. [PMID: 32194610 PMCID: PMC7063471 DOI: 10.3389/fpls.2020.00238] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 02/17/2020] [Indexed: 06/01/2023]
Abstract
Pectin methylesterase (PME, EC 3.1.1.11) is a hydrolytic enzyme of pectin that plays multiple roles in different plant development processes and responses to biotic stress. To characterize the molecular evolution and functional divergence of the PME gene family, a genome-wide analysis of the PME gene family in the tomato was performed. In total, 57 non-redundant PME genes were identified, and these PME genes were divided into five groups based on their phylogeneny; their classification was supported by similar gene structures and domain distributions. The PME genes were found to be unevenly distributed among 12 chromosomes of the tomato. In addition, 11 segmental duplication and 11 tandem duplication events occurred in these PME genes, implying that both contributed to the expansion of the tomato PME gene family. Non-synonymous/synonymous mutation ratio analysis revealed that positive selection played a key role in the functional divergence of PME genes. Interspecific collinear analysis indicated a large divergence in the PME gene family after the divergence of monocot and dicot plants in ancient times. Gene expression pattern analysis suggested that PMEs plays roles in the different parts of the tomato plant, including the fruit. Three newly identified candidate genes (Solyc03g083360, Solyc07g071600, and Solyc12g098340) may have functions during fruit ripening. Immunoassays suggested that the tomato isoform PE1 and PE2 may change pectin structure at cell junctions, which could be associated with fruit softening. In addition, our analysis indicate that two undescribed PE isoforms might be active in leaves and fruits. This study increases our understanding of the PME gene family in the tomato and may facilitate further functional analyses to elucidate PME function, especially during fruit ripening.
Collapse
|
25
|
Xue C, Guan SC, Chen JQ, Wen CJ, Cai JF, Chen X. Genome wide identification and functional characterization of strawberry pectin methylesterases related to fruit softening. BMC PLANT BIOLOGY 2020; 20:13. [PMID: 31914938 PMCID: PMC6950920 DOI: 10.1186/s12870-019-2225-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Accepted: 12/30/2019] [Indexed: 05/10/2023]
Abstract
BACKGROUND Pectin methylesterase (PME) is a hydrolytic enzyme that catalyzes the demethylesterification of homogalacturonans and controls pectin reconstruction, being essential in regulation of cell wall modification. During fruit ripening stage, PME-mediated cell wall remodeling is an important process to determine fruit firmness and softening. Strawberry fruit is a soft fruit with a short postharvest life, due to a rapid loss of firm texture. Hence, preharvest improvement of strawberry fruit rigidity is a prerequisite for extension of fruit refreshing time. Although PME has been well characterized in model plants, knowledge regarding the functionality and evolutionary property of PME gene family in strawberry remain limited. RESULTS A total of 54 PME genes (FvPMEs) were identified in woodland strawberry (Fragaria vesca 'Hawaii 4'). Phylogeny and gene structure analysis divided these FvPME genes into four groups (Group 1-4). Duplicate events analysis suggested that tandem and dispersed duplications effectively contributed to the expansion of the PME family in strawberry. Through transcriptome analysis, we identified FvPME38 and FvPME39 as the most abundant-expressed PMEs at fruit ripening stages, and they were positively regulated by abscisic acid. Genetic manipulation of FvPME38 and FvPME39 by overexpression and RNAi-silencing significantly influences the fruit firmness, pectin content and cell wall structure, indicating a requirement of PME for strawberry fruit softening. CONCLUSION Our study globally analyzed strawberry pectin methylesterases by the approaches of phylogenetics, evolutionary prediction and genetic analysis. We verified the essential role of FvPME38 and FvPME39 in regulation of strawberry fruit softening process, which provided a guide for improving strawberry fruit firmness by modifying PME level.
Collapse
Affiliation(s)
- Cheng Xue
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Si-Cong Guan
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
- Haixia Institute of Science and Technology, Horticultural Plant Biology and Metabolomics Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jian-Qing Chen
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Chen-Jin Wen
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
- Haixia Institute of Science and Technology, Horticultural Plant Biology and Metabolomics Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jian-Fa Cai
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
- Haixia Institute of Science and Technology, Horticultural Plant Biology and Metabolomics Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xu Chen
- Haixia Institute of Science and Technology, Horticultural Plant Biology and Metabolomics Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
26
|
Nonogaki H. Seed germination and dormancy: The classic story, new puzzles, and evolution. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2019; 61:541-563. [PMID: 30565406 DOI: 10.1111/jipb.12762] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 12/17/2018] [Indexed: 05/18/2023]
Abstract
This review highlights recent progresses in seed germination and dormancy research. Research on the weakening of the endosperm during germination, which is almost a classic theme in seed biology, was resumed by α-xylosidase studies. Strong genetic evidence was presented to suggest that the quality control of xyloglucan biosynthesis in the endosperm (and the embryo) plays a critical role in germination. Further analyses on the endosperm and the adjacent layers have suggested that the cutin coat in the endosperm-testa interphase negatively affects germination while the endosperm-embryo interphase produces a sheath that facilitates germination. These progresses significantly advanced our understanding of seed germination mechanisms. A breakthrough in dormancy research, on the other hand, revealed the unique abscisic acid signaling pathway that is regulated by DELAY OF GERMINATION1 (DOG1). The detailed analysis of DOG1 expression uncovered the intriguing story of reciprocal regulation of the sense-antisense pair, which generated new questions. Recent studies also suggested that the DOG1 function is not limited to dormancy but extended through general seed maturation, which provokes questions about the evolution of DOG1 family proteins. Seed biology is becoming more exciting with the classic stories being revitalized and new puzzles emerging from the frontier.
Collapse
|
27
|
Sánchez-Montesino R, Bouza-Morcillo L, Marquez J, Ghita M, Duran-Nebreda S, Gómez L, Holdsworth MJ, Bassel G, Oñate-Sánchez L. A Regulatory Module Controlling GA-Mediated Endosperm Cell Expansion Is Critical for Seed Germination in Arabidopsis. MOLECULAR PLANT 2019; 12:71-85. [PMID: 30419294 PMCID: PMC7086157 DOI: 10.1016/j.molp.2018.10.009] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 10/30/2018] [Accepted: 10/31/2018] [Indexed: 05/19/2023]
Abstract
A key component of seed germination is the interplay of mechanical forces governing embryo growth and the surrounding restraining endosperm tissue. Endosperm cell separation is therefore thought to play a critical role in the control of this developmental transition. Here we demonstrate that in Arabidopsis thaliana seeds, endosperm cell expansion is a key component of germination. Endosperm cells expand to accommodate embryo growth prior to germination. We show that this is an actively regulated process supported by spatiotemporal control of the cell expansion gene EXPANSIN 2 (EXPA2). The NAC transcription factors NAC25 and NAC1L were identified as upstream regulators of EXPA2 expression, gibberellin-mediated endosperm expansion, and seed germination. The DELLA protein RGL2 repressed activation of the EXPA2 promoter by NAC25/NAC1L. Taken together, our findings uncover a key role of the GA/DELLA-NAC25/NAC1L-EXPA2 network in regulating endosperm cell expansion to control the seed-to-seedling transition.
Collapse
Affiliation(s)
- Rocío Sánchez-Montesino
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Campus de Montegancedo, Pozuelo de Alarcón, Madrid 28223, Spain
| | - Laura Bouza-Morcillo
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Campus de Montegancedo, Pozuelo de Alarcón, Madrid 28223, Spain
| | - Julietta Marquez
- School of Biosciences, University of Nottingham, Loughborough LE12 5RD, UK
| | - Melania Ghita
- School of Biosciences, University of Nottingham, Loughborough LE12 5RD, UK
| | | | - Luis Gómez
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Campus de Montegancedo, Pozuelo de Alarcón, Madrid 28223, Spain; Departamento de Sistemas y Recursos Naturales, E.T.S.I. Montes, Forestal y del Medio Natural, Campus de Moncloa, 28040 Madrid, Spain
| | | | - George Bassel
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK.
| | - Luis Oñate-Sánchez
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Campus de Montegancedo, Pozuelo de Alarcón, Madrid 28223, Spain.
| |
Collapse
|
28
|
Pectin Demethylesterification Generates Platforms that Anchor Peroxidases to Remodel Plant Cell Wall Domains. Dev Cell 2019; 48:261-276.e8. [DOI: 10.1016/j.devcel.2018.11.016] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 10/03/2018] [Accepted: 11/12/2018] [Indexed: 01/24/2023]
|
29
|
The Multifaceted Role of Pectin Methylesterase Inhibitors (PMEIs). Int J Mol Sci 2018; 19:ijms19102878. [PMID: 30248977 PMCID: PMC6213510 DOI: 10.3390/ijms19102878] [Citation(s) in RCA: 130] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 09/04/2018] [Accepted: 09/05/2018] [Indexed: 01/30/2023] Open
Abstract
Plant cell walls are complex and dynamic structures that play important roles in growth and development, as well as in response to stresses. Pectin is a major polysaccharide of cell walls rich in galacturonic acid (GalA). Homogalacturonan (HG) is considered the most abundant pectic polymer in plant cell walls and is partially methylesterified at the C6 atom of galacturonic acid. Its degree (and pattern) of methylation (DM) has been shown to affect biomechanical properties of the cell wall by making pectin susceptible for enzymatic de-polymerization and enabling gel formation. Pectin methylesterases (PMEs) catalyze the removal of methyl-groups from the HG backbone and their activity is modulated by a family of proteinaceous inhibitors known as pectin methylesterase inhibitors (PMEIs). As such, the interplay between PME and PMEI can be considered as a determinant of cell adhesion, cell wall porosity and elasticity, as well as a source of signaling molecules released upon cell wall stress. This review aims to highlight recent updates in our understanding of the PMEI gene family, their regulation and structure, interaction with PMEs, as well as their function in response to stress and during development.
Collapse
|
30
|
Raviv B, Godwin J, Granot G, Grafi G. The Dead Can Nurture: Novel Insights into the Function of Dead Organs Enclosing Embryos. Int J Mol Sci 2018; 19:E2455. [PMID: 30126259 PMCID: PMC6121506 DOI: 10.3390/ijms19082455] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 08/16/2018] [Accepted: 08/16/2018] [Indexed: 11/23/2022] Open
Abstract
Plants have evolved a variety of dispersal units whereby the embryo is enclosed by various dead protective layers derived from maternal organs of the reproductive system including seed coats (integuments), pericarps (ovary wall, e.g., indehiscent dry fruits) as well as floral bracts (e.g., glumes) in grasses. Commonly, dead organs enclosing embryos (DOEEs) are assumed to provide a physical shield for embryo protection and means for dispersal in the ecosystem. In this review article, we highlight recent studies showing that DOEEs of various species across families also have the capability for long-term storage of various substances including active proteins (hydrolases and ROS detoxifying enzymes), nutrients and metabolites that have the potential to support the embryo during storage in the soil and assist in germination and seedling establishment. We discuss a possible role for DOEEs as natural coatings capable of "engineering" the seed microenvironment for the benefit of the embryo, the seedling and the growing plant.
Collapse
Affiliation(s)
- Buzi Raviv
- French Associates Institute for Agriculture and Biotechnology of Drylands, Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben Gurion 84990, Israel.
| | - James Godwin
- French Associates Institute for Agriculture and Biotechnology of Drylands, Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben Gurion 84990, Israel.
| | - Gila Granot
- French Associates Institute for Agriculture and Biotechnology of Drylands, Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben Gurion 84990, Israel.
| | - Gideon Grafi
- French Associates Institute for Agriculture and Biotechnology of Drylands, Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben Gurion 84990, Israel.
| |
Collapse
|
31
|
Genome-Wide Identification, Molecular Evolution, and Expression Profiling Analysis of Pectin Methylesterase Inhibitor Genes in Brassica campestris ssp. chinensis. Int J Mol Sci 2018; 19:ijms19051338. [PMID: 29724020 PMCID: PMC5983585 DOI: 10.3390/ijms19051338] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 04/20/2018] [Accepted: 04/23/2018] [Indexed: 02/08/2023] Open
Abstract
Pectin methylesterase inhibitor genes (PMEIs) are a large multigene family and play crucial roles in cell wall modifications in plant growth and development. Here, a comprehensive analysis of the PMEI gene family in Brassicacampestris, an important leaf vegetable, was performed. We identified 100 BrassicacampestrisPMEI genes (BcPMEIs), among which 96 BcPMEIs were unevenly distributed on 10 chromosomes and nine tandem arrays containing 20 BcPMEIs were found. We also detected 80 pairs of syntenic PMEI orthologs. These findings indicated that whole-genome triplication (WGT) and tandem duplication (TD) were the main mechanisms accounting for the current number of BcPMEIs. In evolution, BcPMEIs were retained preferentially and biasedly, consistent with the gene balance hypothesis and two-step theory, respectively. The molecular evolution analysis of BcPMEIs manifested that they evolved through purifying selection and the divergence time is in accordance with the WGT data of B. campestris. To obtain the functional information of BcPMEIs, the expression patterns in five tissues and the cis-elements distributed in promoter regions were investigated. This work can provide a better understanding of the molecular evolution and biological function of PMEIs in B. campestris.
Collapse
|
32
|
Gianinetti A, Finocchiaro F, Bagnaresi P, Zechini A, Faccioli P, Cattivelli L, Valè G, Biselli C. Seed Dormancy Involves a Transcriptional Program That Supports Early Plastid Functionality during Imbibition. PLANTS 2018; 7:plants7020035. [PMID: 29671830 PMCID: PMC6026906 DOI: 10.3390/plants7020035] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 04/05/2018] [Accepted: 04/11/2018] [Indexed: 01/18/2023]
Abstract
Red rice fully dormant seeds do not germinate even under favorable germination conditions. In several species, including rice, seed dormancy can be removed by dry-afterripening (warm storage); thus, dormant and non-dormant seeds can be compared for the same genotype. A weedy (red) rice genotype with strong dormancy was used for mRNA expression profiling, by RNA-Seq, of dormant and non-dormant dehulled caryopses (here addressed as seeds) at two temperatures (30 °C and 10 °C) and two durations of incubation in water (8 h and 8 days). Aim of the study was to highlight the differences in the transcriptome of dormant and non-dormant imbibed seeds. Transcript data suggested important differences between these seeds (at least, as inferred by expression-based metabolism reconstruction): dry-afterripening seems to impose a respiratory impairment onto non-dormant seeds, thus glycolysis is deduced to be preferentially directed to alcoholic fermentation in non-dormant seeds but to alanine production in dormant ones; phosphoenolpyruvate carboxykinase, pyruvate phosphate dikinase and alanine aminotransferase pathways appear to have an important gluconeogenetic role associated with the restoration of plastid functions in the dormant seed following imbibition; correspondingly, co-expression analysis pointed out a commitment to guarantee plastid functionality in dormant seeds. At 8 h of imbibition, as inferred by gene expression, dormant seeds appear to preferentially use carbon and nitrogen resources for biosynthetic processes in the plastid, including starch and proanthocyanidins accumulation. Chromatin modification appears to be a possible mechanism involved in the transition from dormancy to germination. Non-dormant seeds show higher expression of genes related to cell wall modification, suggesting they prepare for acrospire/radicle elongation.
Collapse
Affiliation(s)
- Alberto Gianinetti
- Council for Agricultural Research and Economics-Research Centre for Genomics and Bioinformatics, via S. Protaso 302, 29017 Fiorenzuola d'Arda (PC), Italy.
| | - Franca Finocchiaro
- Council for Agricultural Research and Economics-Research Centre for Genomics and Bioinformatics, via S. Protaso 302, 29017 Fiorenzuola d'Arda (PC), Italy.
| | - Paolo Bagnaresi
- Council for Agricultural Research and Economics-Research Centre for Genomics and Bioinformatics, via S. Protaso 302, 29017 Fiorenzuola d'Arda (PC), Italy.
| | - Antonella Zechini
- Council for Agricultural Research and Economics-Research Centre for Genomics and Bioinformatics, via S. Protaso 302, 29017 Fiorenzuola d'Arda (PC), Italy.
| | - Primetta Faccioli
- Council for Agricultural Research and Economics-Research Centre for Genomics and Bioinformatics, via S. Protaso 302, 29017 Fiorenzuola d'Arda (PC), Italy.
| | - Luigi Cattivelli
- Council for Agricultural Research and Economics-Research Centre for Genomics and Bioinformatics, via S. Protaso 302, 29017 Fiorenzuola d'Arda (PC), Italy.
| | - Giampiero Valè
- Council for Agricultural Research and Economics-Research Centre for Genomics and Bioinformatics, via S. Protaso 302, 29017 Fiorenzuola d'Arda (PC), Italy.
- Council for Agricultural Research and Economics-Research Centre for Cereal and Industrial Crops, s.s. 11 to Torino, km 2.5, 13100 Vercelli, Italy.
| | - Chiara Biselli
- Council for Agricultural Research and Economics-Research Centre for Genomics and Bioinformatics, via S. Protaso 302, 29017 Fiorenzuola d'Arda (PC), Italy.
| |
Collapse
|
33
|
RNA-Seq using bulked recombinant inbred line populations uncovers the importance of brassinosteroid for seed longevity after priming treatments. Sci Rep 2017; 7:8095. [PMID: 28808238 PMCID: PMC5556009 DOI: 10.1038/s41598-017-08116-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 07/03/2017] [Indexed: 11/22/2022] Open
Abstract
Seed priming is a commercially used technique for improving seed performance including germination. However, the treatment sometimes reduces seed longevity as a side effect, limiting the storable period or longevity of the seeds. To overcome this problem, molecular mechanisms involved in the loss of seed longevity during priming were analyzed using natural variations of Arabidopsis thaliana. We found that the Est-1 accession retained longevity for longer after priming compared to the reference accession Col-0. QTL analysis using 279 recombinant inbred lines (RILs) derived from the Est-1 × Col-0 detected three QTL regions associated with the loss of seed longevity during priming. Bulked transcriptome analysis (RNA-Seq with bulked RIL populations) revealed that genes related to brassinosteroid (BR) biosynthesis/signaling and cell wall modification were highly expressed in primed seeds with shorter longevity. After priming, BR-deficient mutants cyp85a1/a2 and det2 showed significantly longer longevity than the wild type (WT). Moreover, tetrazolium staining indicated that mutant seed coats were less permeable after priming than those of WT. We suggest that the loss of seed longevity in primed seed is due to increased seed coat permeability, which is positively regulated, at least partly, via BR signaling.
Collapse
|
34
|
Groß F, Rudolf EE, Thiele B, Durner J, Astier J. Copper amine oxidase 8 regulates arginine-dependent nitric oxide production in Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:2149-2162. [PMID: 28383668 PMCID: PMC5447880 DOI: 10.1093/jxb/erx105] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Nitric oxide (NO) is a key signaling molecule in plants, regulating a wide range of physiological processes. However, its origin in plants remains unclear. It can be generated from nitrite through a reductive pathway, notably via the action of the nitrate reductase (NR), and evidence suggests an additional oxidative pathway, involving arginine. From an initial screen of potential Arabidopsis thaliana mutants impaired in NO production, we identified copper amine oxidase 8 (CuAO8). Two cuao8 mutant lines displayed a decreased NO production in seedlings after elicitor treatment and salt stress. The NR-dependent pathway was not responsible for the impaired NO production as no change in NR activity was found in the mutants. However, total arginase activity was strongly increased in cuao8 knockout mutants after salt stress. Moreover, NO production could be restored in the mutants by arginase inhibition or arginine addition. Furthermore, arginine supplementation reversed the root growth phenotype observed in the mutants. These results demonstrate that CuAO8 participates in NO production by influencing arginine availability through the modulation of arginase activity. The influence of CuAO8 on arginine-dependent NO synthesis suggests a new regulatory pathway for NO production in plants.
Collapse
Affiliation(s)
- Felicitas Groß
- Helmholtz Zentrum München, Department of Environmental Science, Institute of Biochemical Plant Pathology,D-85764 Neuherberg, Germany
| | - Eva-Esther Rudolf
- Helmholtz Zentrum München, Department of Environmental Science, Institute of Biochemical Plant Pathology,D-85764 Neuherberg, Germany
| | - Björn Thiele
- Forschungszentrum Jülich, Institute for Bio-and Geoscience, IBG-2, D-52428 Jülich, Germany
| | - Jörg Durner
- Helmholtz Zentrum München, Department of Environmental Science, Institute of Biochemical Plant Pathology, D-85764 Neuherberg, Germany
- Technical University Munich, Wissenschaftszentrum Weihenstephan, D-80333 München, Germany
| | - Jeremy Astier
- Helmholtz Zentrum München, Department of Environmental Science, Institute of Biochemical Plant Pathology,D-85764 Neuherberg, Germany
| |
Collapse
|
35
|
Ballesteros D, Hill LM, Walters C. Variation of desiccation tolerance and longevity in fern spores. JOURNAL OF PLANT PHYSIOLOGY 2017; 211:53-62. [PMID: 28152418 DOI: 10.1016/j.jplph.2017.01.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 01/11/2017] [Accepted: 01/12/2017] [Indexed: 05/26/2023]
Abstract
This work contributes to the understanding of plant cell responses to extreme water stress when it is applied at different intensity and duration. Fern spores are used to explore survival at relative humidity (RH)<85% because their unicellular nature eliminates complexities that may arise in multicellular organisms from slower drying and variable responses of different cell types. Fern spore cytoplasm solidifies between 30 and 60% RH and spores survive this transition, but subsequently lose viability. We characterized the kinetics of viability loss in terms of the fluid to solid transition using concepts of water activity (i.e., sorption) and glass transition (Tg), two concepts that dominate studies of food and pharmaceutical stability. For all fern species studied, longest survival times were observed in spores placed at about 10-25% RH and mortality rates increased sharply above and below this moisture level. A RH of 10-25% corresponds well to sorption behavior parameters and is below the glass transition, measured using differential scanning calorimetry. Though response to RH was similar among species, the kinetics of deterioration varied considerably among species and this implies differences in the structure or mobility of molecules within the solidified cytoplasm. Our work suggests that desiccation damage occurs in desiccation tolerant cells, and that it is expressed as a time-dependent response, otherwise known as aging.
Collapse
Affiliation(s)
- Daniel Ballesteros
- USDA-ARS National Laboratory for Genetic Resources Preservation, 1111 South Mason Street, Fort Collins, CO 80521, USA.
| | - Lisa M Hill
- USDA-ARS National Laboratory for Genetic Resources Preservation, 1111 South Mason Street, Fort Collins, CO 80521, USA.
| | - Christina Walters
- USDA-ARS National Laboratory for Genetic Resources Preservation, 1111 South Mason Street, Fort Collins, CO 80521, USA.
| |
Collapse
|
36
|
Chahtane H, Kim W, Lopez-Molina L. Primary seed dormancy: a temporally multilayered riddle waiting to be unlocked. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:857-869. [PMID: 27729475 DOI: 10.1093/jxb/erw377] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Primary seed dormancy is an important adaptive plant trait whereby seed germination is blocked under conditions that would otherwise be favorable for germination. This trait is found in newly produced mature seeds of many species, but not all. Once produced, dry seeds undergo an aging time period, called dry after-ripening, during which they lose primary dormancy and gradually acquire the capacity to germinate when exposed to favorable germination conditions. Primary seed dormancy has been extensively studied not only for its scientific interest but also for its ecological, phenological, and agricultural importance. Nevertheless, the mechanisms underlying primary seed dormancy and its regulation during after-ripening remain poorly understood. Here we review the principal developmental stages where primary dormancy is established and regulated prior to and during seed after-ripening, where it is progressively lost. We attempt to identify and summarize what is known about the molecular and genetic mechanisms intervening over time in each of these stages.
Collapse
Affiliation(s)
- Hicham Chahtane
- Department of Plant Biology and Institute for Genetics and Genomics in Geneva (iGE3), University of Geneva, Geneva, Switzerland
| | - Woohyun Kim
- Department of Plant Biology and Institute for Genetics and Genomics in Geneva (iGE3), University of Geneva, Geneva, Switzerland
| | - Luis Lopez-Molina
- Department of Plant Biology and Institute for Genetics and Genomics in Geneva (iGE3), University of Geneva, Geneva, Switzerland
| |
Collapse
|
37
|
Guénin S, Hardouin J, Paynel F, Müller K, Mongelard G, Driouich A, Lerouge P, Kermode AR, Lehner A, Mollet JC, Pelloux J, Gutierrez L, Mareck A. AtPME3, a ubiquitous cell wall pectin methylesterase of Arabidopsis thaliana, alters the metabolism of cruciferin seed storage proteins during post-germinative growth of seedlings. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:1083-1095. [PMID: 28375469 DOI: 10.1093/jxb/erx023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
AtPME3 (At3g14310) is a ubiquitous cell wall pectin methylesterase. Atpme3-1 loss-of-function mutants exhibited distinct phenotypes from the wild type (WT), and were characterized by earlier germination and reduction of root hair production. These phenotypical traits were correlated with the accumulation of a 21.5-kDa protein in the different organs of 4-day-old Atpme3-1 seedlings grown in the dark, as well as in 6-week-old mutant plants. Microarray analysis showed significant down-regulation of the genes encoding several pectin-degrading enzymes and enzymes involved in lipid and protein metabolism in the hypocotyl of 4-day-old dark grown mutant seedlings. Accordingly, there was a decrease in proteolytic activity of the mutant as compared with the WT. Among the genes specifying seed storage proteins, two encoding CRUCIFERINS were up-regulated. Additional analysis by RT-qPCR showed an overexpression of four CRUCIFERIN genes in the mutant Atpme3-1, in which precursors of the α- and β-subunits of CRUCIFERIN accumulated. Together, these results provide evidence for a link between AtPME3, present in the cell wall, and CRUCIFERIN metabolism that occurs in vacuoles.
Collapse
Affiliation(s)
- Stéphanie Guénin
- BIOPI Biologie des Plantes et Innovation EA3900, Université de Picardie Jules Verne, 33 Rue Saint Leu, 80039 Amiens Cedex, France
- CRRBM, Bâtiment Serres Transfert, Université de Picardie Jules Verne, 33 Rue Saint Leu, 80039 Amiens Cedex, France
| | - Julie Hardouin
- Université de Rouen Normandie, CNRS, Laboratoire PBS, 76000 Rouen, France
| | - Florence Paynel
- Université de Rouen Normandie, Laboratoire Glyco-MEV, 76000 Rouen, France
| | - Kerstin Müller
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, BC V6A 1S6, Canada
| | - Gaëlle Mongelard
- CRRBM, Bâtiment Serres Transfert, Université de Picardie Jules Verne, 33 Rue Saint Leu, 80039 Amiens Cedex, France
| | - Azeddine Driouich
- Université de Rouen Normandie, Laboratoire Glyco-MEV, 76000 Rouen, France
| | - Patrice Lerouge
- Université de Rouen Normandie, Laboratoire Glyco-MEV, 76000 Rouen, France
| | - Allison R Kermode
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, BC V6A 1S6, Canada
| | - Arnaud Lehner
- Université de Rouen Normandie, Laboratoire Glyco-MEV, 76000 Rouen, France
| | - Jean-Claude Mollet
- Université de Rouen Normandie, Laboratoire Glyco-MEV, 76000 Rouen, France
| | - Jérôme Pelloux
- BIOPI Biologie des Plantes et Innovation EA3900, Université de Picardie Jules Verne, 33 Rue Saint Leu, 80039 Amiens Cedex, France
| | - Laurent Gutierrez
- CRRBM, Bâtiment Serres Transfert, Université de Picardie Jules Verne, 33 Rue Saint Leu, 80039 Amiens Cedex, France
| | - Alain Mareck
- Université de Rouen Normandie, Laboratoire Glyco-MEV, 76000 Rouen, France
| |
Collapse
|
38
|
Steinbrecher T, Leubner-Metzger G. The biomechanics of seed germination. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:765-783. [PMID: 27927995 DOI: 10.1093/jxb/erw428] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
From a biomechanical perspective, the completion of seed (and fruit) germination depends on the balance of two opposing forces: the growth potential of the embryonic axis (radicle-hypocotyl growth zone) and the restraint of the seed-covering layers (endosperm, testa, and pericarp). The diverse seed tissues are composite materials which differ in their dynamic properties based on their distinct cell wall composition and water uptake capacities. The biomechanics of embryo cell growth during seed germination depend on irreversible cell wall loosening followed by water uptake due to the decreasing turgor, and this leads to embryo elongation and eventually radicle emergence. Endosperm weakening as a prerequisite for radicle emergence is a widespread phenomenon among angiosperms. Research into the biochemistry and biomechanics of endosperm weakening has demonstrated that the reduction in puncture force of a seed's micropylar endosperm is environmentally and hormonally regulated and involves tissue-specific expression of cell wall remodelling proteins such as expansins, diverse hydrolases, and the production of directly acting apoplastic reactive oxygen. The endosperm-weakening biomechanics and its underlying cell wall biochemistry differ between the micropylar (ME) and chalazal (CE) endosperm domains. In the ME, they involve cell wall loosening, cell separation, and programmed cell death to provide decreased and localized ME tissue resistance, autolysis, and finally the formation of an ME hole required for radicle emergence. Future work will further unravel the molecular mechanisms, environmental regulation, and evolution of the diverse biomechanical cell wall changes underpinning the control of germination by endosperm weakening.
Collapse
Affiliation(s)
- Tina Steinbrecher
- School of Biological Sciences, Plant Molecular Science and Centre for Systems and Synthetic Biology, Royal Holloway University of London, Egham, Surrey TW20 0EX, UK
| | - Gerhard Leubner-Metzger
- School of Biological Sciences, Plant Molecular Science and Centre for Systems and Synthetic Biology, Royal Holloway University of London, Egham, Surrey TW20 0EX, UK
| |
Collapse
|
39
|
Reactive Oxygen Species Generated by NADPH Oxidases Promote Radicle Protrusion and Root Elongation during Rice Seed Germination. Int J Mol Sci 2017; 18:ijms18010110. [PMID: 28098759 PMCID: PMC5297744 DOI: 10.3390/ijms18010110] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 12/30/2016] [Accepted: 01/03/2017] [Indexed: 01/24/2023] Open
Abstract
Seed germination is a complicated biological process that requires regulation through various enzymatic and non-enzymatic mechanisms. Although it has been recognized that reactive oxygen species (ROS) regulate radicle emergence and root elongation in a non-enzymatic manner during dicot seed germination, the role of ROS in monocot seed germination remains unknown. NADPH oxidases (NOXs) are the major ROS producers in plants; however, whether and how NOXs regulate rice seed germination through ROS generation remains unclear. Here, we report that diphenyleneiodinium (DPI), a specific NOX inhibitor, potently inhibited embryo and seedling growth—especially that of the radicle and of root elongation—in a dose-dependent manner. Notably, the DPI-mediated inhibition of radicle and root growth could be eliminated by transferring seedlings from DPI to water. Furthermore, ROS production/accumulation during rice seed germination was quantified via histochemistry. Superoxide radicals (O2−), hydrogen peroxide (H2O2) and hydroxyl radicals (•OH) accumulated steadily in the coleorhiza, radicle and seedling root of germinating rice seeds. Expression profiles of the nine typical NOX genes were also investigated. According to quantitative PCR, OsNOX5, 7 and 9 were expressed relatively higher. When seeds were incubated in water, OsNOX5 expression progressively increased in the embryo from 12 to 48 h, whereas OsNOX7 and 9 expressions increased from 12 to 24 h and decreased thereafter. As expected, DPI inhibits the expression at predetermined time points for each of these genes. Taken together, these results suggest that ROS produced by NOXs are involved in radicle and root elongation during rice seed germination, and OsNOX5, 7 and 9 could play crucial roles in rice seed germination. These findings will facilitate further studies of the roles of ROS generated by NOXs during seed germination and seedling establishment and also provide valuable information for the regulation of NOX family gene expression in germinating seeds of monocot cereals.
Collapse
|
40
|
Dekkers BJW, Pearce SP, van Bolderen-Veldkamp RPM, Holdsworth MJ, Bentsink L. Dormant and after-Ripened Arabidopsis thaliana Seeds are Distinguished by Early Transcriptional Differences in the Imbibed State. FRONTIERS IN PLANT SCIENCE 2016; 7:1323. [PMID: 27625677 PMCID: PMC5003841 DOI: 10.3389/fpls.2016.01323] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 08/18/2016] [Indexed: 05/22/2023]
Abstract
Seed dormancy is a genetically controlled block preventing the germination of imbibed seeds in favorable conditions. It requires a period of dry storage (after-ripening) or certain environmental conditions to be overcome. Dormancy is an important seed trait, which is under selective pressure, to control the seasonal timing of seed germination. Dormant and non-dormant (after-ripened) seeds are characterized by large sets of differentially expressed genes. However, little information is available concerning the temporal and spatial transcriptional changes during early stages of rehydration in dormant and non-dormant seeds. We employed genome-wide transcriptome analysis on seeds of the model plant Arabidopsis thaliana to investigate transcriptional changes in dry seeds upon rehydration. We analyzed gene expression of dormant and after-ripened seeds of the Cvi accession over four time points and two seed compartments (the embryo and surrounding single cell layer endosperm), during the first 24 h after sowing. This work provides a global view of gene expression changes in dormant and non-dormant seeds with temporal and spatial detail, and these may be visualized via a web accessible tool (http://www.wageningenseedlab.nl/resources). A large proportion of transcripts change similarly in both dormant and non-dormant seeds upon rehydration, however, the first differences in transcript abundances become visible shortly after the initiation of imbibition, indicating that changes induced by after-ripening are detected and responded to rapidly upon rehydration. We identified several gene expression profiles which contribute to differential gene expression between dormant and non-dormant samples. Genes with enhanced expression in the endosperm of dormant seeds were overrepresented for stress-related Gene Ontology categories, suggesting a protective role for the endosperm against biotic and abiotic stress to support persistence of the dormant seed in its environment.
Collapse
Affiliation(s)
- Bas J. W. Dekkers
- Department of Molecular Plant Physiology, Utrecht UniversityUtrecht, Netherlands
- Wageningen Seed Laboratory, Laboratory of Plant Physiology, Wageningen UniversityWageningen, Netherlands
| | - Simon P. Pearce
- Faculty of Biology, Medicine and Health, University of ManchesterManchester, UK
- School of Mathematics, University of ManchesterManchester, UK
| | - R. P. M. van Bolderen-Veldkamp
- Department of Molecular Plant Physiology, Utrecht UniversityUtrecht, Netherlands
- Wageningen Seed Laboratory, Laboratory of Plant Physiology, Wageningen UniversityWageningen, Netherlands
| | - Michael J. Holdsworth
- Division of Plant and Crop Science, School of Biosciences, University of NottinghamLeicestershire, UK
| | - Leónie Bentsink
- Wageningen Seed Laboratory, Laboratory of Plant Physiology, Wageningen UniversityWageningen, Netherlands
| |
Collapse
|
41
|
Meyer M, Huttenlocher F, Cedzich A, Procopio S, Stroeder J, Pau-Roblot C, Lequart-Pillon M, Pelloux J, Stintzi A, Schaller A. The subtilisin-like protease SBT3 contributes to insect resistance in tomato. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:4325-38. [PMID: 27259555 PMCID: PMC5301937 DOI: 10.1093/jxb/erw220] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Subtilisin-like proteases (SBTs) constitute a large family of extracellular plant proteases, the function of which is still largely unknown. In tomato plants, the expression of SBT3 was found to be induced in response to wounding and insect attack in injured leaves but not in healthy systemic tissues. The time course of SBT3 induction resembled that of proteinase inhibitor II and other late wound response genes suggesting a role for SBT3 in herbivore defense. Consistent with such a role, larvae of the specialist herbivore Manduca sexta performed better on transgenic plants silenced for SBT3 expression (SBT3-SI). Supporting a contribution of SBT3 to systemic wound signaling, systemic induction of late wound response genes was attenuated in SBT3-SI plants. The partial loss of insect resistance may thus be explained by a reduction in systemic defense gene expression. Alternatively, SBT3 may play a post-ingestive role in plant defense. Similar to other anti-nutritive proteins, SBT3 was found to be stable and active in the insect's digestive system, where it may act on unidentified proteins of insect or plant origin. Finally, a reduction in the level of pectin methylesterification that was observed in transgenic plants with altered levels of SBT3 expression suggested an involvement of SBT3 in the regulation of pectin methylesterases (PMEs). While such a role has been described in other systems, PME activity and the degree of pectin methylesterification did not correlate with the level of insect resistance in SBT3-SI and SBT3 overexpressing plants and are thus unrelated to the observed resistance phenotype.
Collapse
Affiliation(s)
- Michael Meyer
- Institute of Plant Physiology and Biotechnology, University of Hohenheim, 70593 Stuttgart, Germany
| | - Franziska Huttenlocher
- Institute of Plant Physiology and Biotechnology, University of Hohenheim, 70593 Stuttgart, Germany
| | - Anna Cedzich
- Institute of Plant Physiology and Biotechnology, University of Hohenheim, 70593 Stuttgart, Germany
| | - Susanne Procopio
- Institute of Plant Physiology and Biotechnology, University of Hohenheim, 70593 Stuttgart, Germany
| | - Jasper Stroeder
- Institute of Plant Physiology and Biotechnology, University of Hohenheim, 70593 Stuttgart, Germany
| | - Corinne Pau-Roblot
- EA3900-BIOPI Biologie des Plantes et Innovation, Université de Picardie, 80039 Amiens, France
| | - Michelle Lequart-Pillon
- EA3900-BIOPI Biologie des Plantes et Innovation, Université de Picardie, 80039 Amiens, France
| | - Jérôme Pelloux
- EA3900-BIOPI Biologie des Plantes et Innovation, Université de Picardie, 80039 Amiens, France
| | - Annick Stintzi
- Institute of Plant Physiology and Biotechnology, University of Hohenheim, 70593 Stuttgart, Germany
| | - Andreas Schaller
- Institute of Plant Physiology and Biotechnology, University of Hohenheim, 70593 Stuttgart, Germany
| |
Collapse
|
42
|
Turbant A, Fournet F, Lequart M, Zabijak L, Pageau K, Bouton S, Van Wuytswinkel O. PME58 plays a role in pectin distribution during seed coat mucilage extrusion through homogalacturonan modification. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:2177-90. [PMID: 26895630 PMCID: PMC4809284 DOI: 10.1093/jxb/erw025] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Pectins are major components of plant primary cell walls. They include homogalacturonans (HGs), which are the most abundant pectin and can be the target of apoplastic enzymes like pectin methylesterases (PMEs) that control their methylesterification level. Several PMEs are expressed in the seed coat of Arabidopsis thaliana, particularly in mucilage secretory cells (MSCs). On the basis of public transcriptomic data, seven PME genes were selected and checked for their seed-specific expression by quantitative reverse transcription PCR. Of these, PME58 presented the highest level of expression and was specifically expressed in MSCs at the early stages of seed development. pme58 mutants presented two discrete phenotypes: (i) their adherent mucilage was less stained by ruthenium red when compared to wild-type seeds, but only in the presence of EDTA, a Ca(2+)chelator; and (ii) the MSC surface area was decreased. These phenotypes are the consequence of an increase in the degree of HG methylesterification connected to a decrease in PME activity. Analysis of the sugar composition of soluble and adherent mucilage showed that, in the presence of EDTA, sugars of adherent mucilage were more readily extracted in pme58 mutants. Immunolabelling with LM19, an antibody that preferentially recognizes unesterified HGs, also showed that molecular interactions with HGs were modified in the adherent mucilage of pme58 mutants, suggesting a role of PME58 in mucilage structure and organization. In conclusion, PME58 is the first PME identified to play a direct role in seed mucilage structure.
Collapse
Affiliation(s)
- Amélie Turbant
- Unité Biologie des Plantes et Innovation (BIOPI) EA3900, Université de Picardie Jules Verne, 80039 Amiens, France
| | - Françoise Fournet
- Unité Biologie des Plantes et Innovation (BIOPI) EA3900, Université de Picardie Jules Verne, 80039 Amiens, France
| | - Michelle Lequart
- Unité Biologie des Plantes et Innovation (BIOPI) EA3900, Université de Picardie Jules Verne, 80039 Amiens, France
| | - Luciane Zabijak
- Plateforme d'Ingénierie Cellulaire et Analyses des Protéines, Université de Picardie Jules Verne, 80036 Amiens, France
| | - Karine Pageau
- Unité Biologie des Plantes et Innovation (BIOPI) EA3900, Université de Picardie Jules Verne, 80039 Amiens, France
| | - Sophie Bouton
- Unité Biologie des Plantes et Innovation (BIOPI) EA3900, Université de Picardie Jules Verne, 80039 Amiens, France
| | - Olivier Van Wuytswinkel
- Unité Biologie des Plantes et Innovation (BIOPI) EA3900, Université de Picardie Jules Verne, 80039 Amiens, France
| |
Collapse
|
43
|
Chen BX, Li WY, Gao YT, Chen ZJ, Zhang WN, Liu QJ, Chen Z. Involvement of Polyamine Oxidase-Produced Hydrogen Peroxide during Coleorhiza-Limited Germination of Rice Seeds. FRONTIERS IN PLANT SCIENCE 2016; 7:1219. [PMID: 27570530 PMCID: PMC4981591 DOI: 10.3389/fpls.2016.01219] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Accepted: 08/02/2016] [Indexed: 05/18/2023]
Abstract
Seed germination is a complicated biological process that requires regulated enzymatic and non-enzymatic reactions. The action of polyamine oxidase (PAO) produces hydrogen peroxide (H2O2), which promotes dicot seed germination. However, whether and, if so, how PAOs regulate monocot seed germination via H2O2 production is unclear. Herein, we report that the coleorhiza is the main physical barrier to radicle protrusion during germination of rice seed (a monocot seed) and that it does so in a manner similar to that of dicot seed micropylar endosperm. We found that H2O2 specifically and steadily accumulated in the coleorhizae and radicles of germinating rice seeds and was accompanied by increased PAO activity as the germination percentage increased. These physiological indexes were strongly decreased in number by guazatine, a PAO inhibitor. We also identified 11 PAO homologs (OsPAO1-11) in the rice genome, which could be classified into four subfamilies (I, IIa, IIb, and III). The OsPAO genes in subfamilies I, IIa, and IIb (OsPAO1-7) encode PAOs, whereas those in subfamily III (OsPAO8-11) encode histone lysine-specific demethylases. In silico-characterized expression profiles of OsPAO1-7 and those determined by qPCR revealed that OsPAO5 is markedly upregulated in imbibed seeds compared with dry seeds and that its transcript accumulated to a higher level in embryos than in the endosperm. Moreover, its transcriptional abundance increased gradually during seed germination in water and was inhibited by 5 mM guazatine. Taken together, these results suggest that PAO-generated H2O2 is involved in coleorhiza-limited rice seed germination and that OsPAO5 expression accounts for most PAO expression and activity during rice seed germination. These findings should facilitate further study of PAOs and provide valuable information for functional validation of these proteins during seed germination of monocot cereals.
Collapse
|
44
|
Oracz K, Karpiński S. Phytohormones Signaling Pathways and ROS Involvement in Seed Germination. FRONTIERS IN PLANT SCIENCE 2016; 7:864. [PMID: 27379144 PMCID: PMC4908112 DOI: 10.3389/fpls.2016.00864] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 06/01/2016] [Indexed: 05/06/2023]
Abstract
Phytohormones and reactive oxygen species (ROS) are major determinants of the regulation of development and stress responses in plants. During life cycle of these organisms, signaling networks of plant growth regulators and ROS interact in order to render an appropriate developmental and environmental response. In plant's photosynthetic (e.g., leaves) and non-photosynthetic (e.g., seeds) tissues, enhanced and suboptimal ROS production is usually associated with stress, which in extreme cases can be lethal to cells, a whole organ or even an organism. However, controlled production of ROS is appreciated for cellular signaling. Despite the current progress that has been made in plant biology and increasing number of findings that have revealed roles of ROS and hormonal signaling in germination, some questions still arise, e.g., what are the downstream protein targets modified by ROS enabling stimulus-specific cellular responses of the seed? Or which molecular regulators allow ROS/phytohormones interactions and what is their function in seed life? In this particular review the role of some transcription factors, kinases and phosphatases is discussed, especially those which usually known to be involved in ROS and hormonal signal transduction under stress in plants, may also play a role in the regulation of processes occurring in seeds. The summarized recent findings regarding particular ROS- and phytohormones-related regulatory proteins, as well as their integration, allowed to propose a novel, possible model of action of LESION SIMULATING DISEASE 1, ENHANCED DISEASE SUSCEPTIBILITY 1, and PHYTOALEXIN DEFICIENT 4 functioning during seeds life.
Collapse
Affiliation(s)
- Krystyna Oracz
- Department of Plant Physiology, Warsaw University of Life SciencesWarsaw, Poland
- *Correspondence: Krystyna Oracz, ; Stanisław Karpiński,
| | - Stanisław Karpiński
- Department of Plant Genetics, Breeding and Biotechnology, Warsaw University of Life SciencesWarsaw, Poland
- *Correspondence: Krystyna Oracz, ; Stanisław Karpiński,
| |
Collapse
|
45
|
De Giorgi J, Piskurewicz U, Loubery S, Utz-Pugin A, Bailly C, Mène-Saffrané L, Lopez-Molina L. An Endosperm-Associated Cuticle Is Required for Arabidopsis Seed Viability, Dormancy and Early Control of Germination. PLoS Genet 2015; 11:e1005708. [PMID: 26681322 PMCID: PMC4683086 DOI: 10.1371/journal.pgen.1005708] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 11/06/2015] [Indexed: 12/14/2022] Open
Abstract
Cuticular layers and seeds are prominent plant adaptations to terrestrial life that appeared early and late during plant evolution, respectively. The cuticle is a waterproof film covering plant aerial organs preventing excessive water loss and protecting against biotic and abiotic stresses. Cutin, consisting of crosslinked fatty acid monomers, is the most abundant and studied cuticular component. Seeds are dry, metabolically inert structures promoting plant dispersal by keeping the plant embryo in an arrested protected state. In Arabidopsis thaliana seeds, the embryo is surrounded by a single cell endosperm layer itself surrounded by a seed coat layer, the testa. Whole genome analyses lead us to identify cutin biosynthesis genes as regulatory targets of the phytohormones gibberellins (GA) and abscisic acid (ABA) signaling pathways that control seed germination. Cutin-containing layers are present in seed coats of numerous species, including Arabidopsis, where they regulate permeability to outer compounds. However, the role of cutin in mature seed physiology and germination remains poorly understood. Here we identify in mature seeds a thick cuticular film covering the entire outer surface of the endosperm. This seed cuticle is defective in cutin-deficient bodyguard1 seeds, which is associated with alterations in endospermic permeability. Furthermore, mutants affected in cutin biosynthesis display low seed dormancy and viability levels, which correlates with higher levels of seed lipid oxidative stress. Upon seed imbibition cutin biosynthesis genes are essential to prevent endosperm cellular expansion and testa rupture in response to low GA synthesis. Taken together, our findings suggest that in the course of land plant evolution cuticular structures were co-opted to achieve key physiological seed properties. Seeds are remarkable plant structures that appeared late during land plant evolution. Indeed, within seeds plant embryos lie in a metabolic inert and highly resistant state. Seeds allow plants to disperse and find a favorable living environment. Remarkably as well, the “near-dead” embryo is able to germinate and turn into a fragile young seedling. The fragility of this transition is betrayed by the existence of control mechanisms that block germination in response to harmful environmental conditions. Seeds therefore transform plants into time and space travellers and largely explain land plant colonization by flowering plants. The key to this success lies in the seed’s physiological feats, a major yet unresolved question in plant biology. We show that mature seeds of the model plant Arabidopsis contain an earlier land plant evolutionary innovation: the cuticle, a waxy film covering the aerial parts of the plant preventing excessive transpiration. The seed cuticle, which contains cutin, a major lipid polymer component of the leaf cuticle, encloses all the living tissues within the seed. Seeds with cutin defects are highly oxidized and have low seed viability and dormancy. They are also unable to control their germination. Thus, land plants co-opted an ancient innovation to achieve the remarkable physiology of seeds.
Collapse
Affiliation(s)
- Julien De Giorgi
- Department of Plant Biology and Institute for Genetics and Genomics in Geneva (iGE3), University of Geneva, Geneva, Switzerland
| | - Urszula Piskurewicz
- Department of Plant Biology and Institute for Genetics and Genomics in Geneva (iGE3), University of Geneva, Geneva, Switzerland
| | - Sylvain Loubery
- Department of Plant Biology and Institute for Genetics and Genomics in Geneva (iGE3), University of Geneva, Geneva, Switzerland
| | - Anne Utz-Pugin
- Department of Plant Biology and Institute for Genetics and Genomics in Geneva (iGE3), University of Geneva, Geneva, Switzerland
| | - Christophe Bailly
- Developmental Biology Laboratory, Université Pierre et Marie Curie, Paris, France
| | | | - Luis Lopez-Molina
- Department of Plant Biology and Institute for Genetics and Genomics in Geneva (iGE3), University of Geneva, Geneva, Switzerland
- * E-mail:
| |
Collapse
|
46
|
Levesque-Tremblay G, Pelloux J, Braybrook SA, Müller K. Tuning of pectin methylesterification: consequences for cell wall biomechanics and development. PLANTA 2015; 242:791-811. [PMID: 26168980 DOI: 10.1007/s00425-015-2358-5] [Citation(s) in RCA: 150] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2014] [Accepted: 06/24/2015] [Indexed: 05/25/2023]
Abstract
Recent publications have increased our knowledge of how pectin composition and the degree of homogalacturonan methylesterification impact the biochemical and biomechanical properties of plant cell walls, plant development, and plants' interactions with their abiotic and biotic environments. Experimental observations have shown that the relationships between the DM, the pattern of de-methylesterificaton, its effect on cell wall elasticity, other biomechanical parameters, and growth are not straightforward. Working towards a detailed understanding of these relationships at single cell resolution is one of the big tasks of pectin research. Pectins are highly complex polysaccharides abundant in plant primary cell walls. New analytical and microscopy techniques are revealing the composition and mechanical properties of the cell wall and increasing our knowledge on the topic. Progress in plant physiological research supports a link between cell wall pectin modifications and plant development and interactions with the environment. Homogalacturonan pectins, which are major components of the primary cell wall, have a potential for modifications such as methylesterification, as well as an ability to form cross-linked structures with divalent cations. This contributes to changing the mechanical properties of the cell wall. This review aims to give a comprehensive overview of the pectin component homogalacturonan, including its synthesis, modification, regulation and role in the plant cell wall.
Collapse
Affiliation(s)
- Gabriel Levesque-Tremblay
- Energy Bioscience Institute, University of California Berkeley, 2151 Berkeley Way, Berkeley, CA, 94704, USA
| | | | | | | |
Collapse
|
47
|
González-Calle V, Barrero-Sicilia C, Carbonero P, Iglesias-Fernández R. Mannans and endo-β-mannanases (MAN) in Brachypodium distachyon: expression profiling and possible role of the BdMAN genes during coleorhiza-limited seed germination. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:3753-64. [PMID: 25922488 PMCID: PMC4473977 DOI: 10.1093/jxb/erv168] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Immunolocalization of mannans in the seeds of Brachypodium distachyon reveals the presence of these polysaccharides in the root embryo and in the coleorhiza in the early stages of germination (12h), decreasing thereafter to the point of being hardly detected at 27h. Concurrently, the activity of endo-β-mannanases (MANs; EC 3.2.1.78) that catalyse the hydrolysis of β-1,4 bonds in mannan polymers, increases as germination progresses. The MAN gene family is represented by six members in the Brachypodium genome, and their expression has been explored in different organs and especially in germinating seeds. Transcripts of BdMAN2, BdMAN4 and BdMAN6 accumulate in embryos, with a maximum at 24-30h, and are detected in the coleorhiza and in the root by in situ hybridization analyses, before root protrusion (germination sensu stricto). BdMAN4 is not only present in the embryo root and coleorhiza, but is abundant in the de-embryonated (endosperm) imbibed seeds, while BdMAN2 and BdMAN6 are faintly expressed in endosperm during post-germination (36-42h). BdMAN4 and BdMAN6 transcripts are detected in the aleurone layer. These data indicate that BdMAN2, BdMAN4 and BdMAN6 are important for germination sensu stricto and that BdMAN4 and BdMAN6 may also influence reserve mobilization. Whether the coleorhiza in monocots and the micropylar endosperm in eudicots have similar functions, is discussed.
Collapse
Affiliation(s)
- Virginia González-Calle
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), and ETSI Agrónomos, Campus de Montegancedo, Universidad Politécnica de Madrid, Pozuelo de Alarcón, 28223-Madrid, Spain
| | - Cristina Barrero-Sicilia
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), and ETSI Agrónomos, Campus de Montegancedo, Universidad Politécnica de Madrid, Pozuelo de Alarcón, 28223-Madrid, Spain
| | - Pilar Carbonero
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), and ETSI Agrónomos, Campus de Montegancedo, Universidad Politécnica de Madrid, Pozuelo de Alarcón, 28223-Madrid, Spain
| | - Raquel Iglesias-Fernández
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), and ETSI Agrónomos, Campus de Montegancedo, Universidad Politécnica de Madrid, Pozuelo de Alarcón, 28223-Madrid, Spain
| |
Collapse
|
48
|
Voiniciuc C, Yang B, Schmidt MHW, Günl M, Usadel B. Starting to gel: how Arabidopsis seed coat epidermal cells produce specialized secondary cell walls. Int J Mol Sci 2015; 16:3452-73. [PMID: 25658798 PMCID: PMC4346907 DOI: 10.3390/ijms16023452] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 01/22/2015] [Accepted: 01/29/2015] [Indexed: 11/30/2022] Open
Abstract
For more than a decade, the Arabidopsis seed coat epidermis (SCE) has been used as a model system to study the synthesis, secretion and modification of cell wall polysaccharides, particularly pectin. Our detailed re-evaluation of available biochemical data highlights that Arabidopsis seed mucilage is more than just pectin. Typical secondary wall polymers such as xylans and heteromannans are also present in mucilage. Despite their low abundance, these components appear to play essential roles in controlling mucilage properties, and should be further investigated. We also provide a comprehensive community resource by re-assessing the mucilage phenotypes of almost 20 mutants using the same conditions. We conduct an in-depth functional evaluation of all the SCE genes described in the literature and propose a revised model for mucilage production. Further investigation of SCE cells will improve our understanding of plant cell walls.
Collapse
Affiliation(s)
- Cătălin Voiniciuc
- Institute for Bio- and Geosciences (IBG-2: Plant Sciences), Forschungszentrum Jülich, 52425 Jülich, Germany.
- Institute for Botany and Molecular Genetics (IBMG), RWTH Aachen University, 52056 Aachen, Germany.
| | - Bo Yang
- Institute for Botany and Molecular Genetics (IBMG), RWTH Aachen University, 52056 Aachen, Germany.
| | - Maximilian Heinrich-Wilhelm Schmidt
- Institute for Bio- and Geosciences (IBG-2: Plant Sciences), Forschungszentrum Jülich, 52425 Jülich, Germany.
- Institute for Botany and Molecular Genetics (IBMG), RWTH Aachen University, 52056 Aachen, Germany.
| | - Markus Günl
- Institute for Bio- and Geosciences (IBG-2: Plant Sciences), Forschungszentrum Jülich, 52425 Jülich, Germany.
| | - Björn Usadel
- Institute for Bio- and Geosciences (IBG-2: Plant Sciences), Forschungszentrum Jülich, 52425 Jülich, Germany.
- Institute for Botany and Molecular Genetics (IBMG), RWTH Aachen University, 52056 Aachen, Germany.
| |
Collapse
|