1
|
Wang J, Wang Y, Wang Y, Zhong X, Wang X, Lin X. Metabolomic analyses reveal that graphene oxide alleviates nicosulfuron toxicity in sweet corn. FRONTIERS IN PLANT SCIENCE 2025; 16:1529598. [PMID: 40070713 PMCID: PMC11893866 DOI: 10.3389/fpls.2025.1529598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Accepted: 01/29/2025] [Indexed: 03/14/2025]
Abstract
Nicosulfuron can repress the growth and quality of sweet corn (Zea mays), and graphene oxide has been used for sustainable agriculture. However, the underlying mechanism of the toxicity of nicosulfuron that is mediated in sweet corn remains elusive. To explore the potential mechanism of GO-mediated nicosulfuron toxicity in sweet corn in this study, we investigated the effects of graphene oxide on nicosulfuron stress in the sweet corn sister inbred lines of H01 and H20. Furthermore, we performed a metabolomics analysis for the H01 and H20 under different treatments. The results showed that nicosulfuron severely affected the rate of survival, physiological parameters, photosynthetic indicators, and chlorophyll fluorescence parameters of corn seedlings, whereas foliar spraying with graphene oxide promoted the rate of survival under nicosulfuron toxicity. The metabolomics analysis showed that 70 and 90 metabolites differentially accumulated in the H01 and H20 inbred lines under nicosulfuron treatment, respectively. Graphene oxide restored 59 metabolites in the H01 seedlings and 56 metabolites to normal levels in the H20 seedlings, thereby promoting the rate of survival of the sweet corn seedlings. Compared with nicosulfuron treatment alone, graphene oxide resulted in 108 and 66 differential metabolites in the H01 and H20 inbred lines, respectively. A correlation analysis revealed that metabolites, such as doronine and (R)-2-hydroxy-2-hydroxylase-1,4-benzoxazin-3(4-hydroxylase)-1, were significantly correlated with the rate of survival, photosynthetic parameters and chlorophyll fluorescence parameters. Furthermore, metabolites related to the detoxification of graphene oxide were enriched in the flavonoid metabolic pathways. These results collectively indicate that graphene oxide can be used as a regulator of corn growth and provide insights into their use to improve crops in areas that are contaminated with nicosulfuron.
Collapse
Affiliation(s)
- Jian Wang
- College of Agronomy and Biotechnology, Hebei Key Laboratory of Crop Stress Biology, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Yanbing Wang
- Institute of Cereal and Oil Crops, Hebei Key Laboratory of Crop Genetics and Breeding, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, China
| | - Yanli Wang
- College of Agronomy and Biotechnology, Hebei Key Laboratory of Crop Stress Biology, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Xuemei Zhong
- College of Agronomy, Shenyang Agricultural University, Shenyang, China
| | - Xiuping Wang
- College of Agronomy and Biotechnology, Hebei Key Laboratory of Crop Stress Biology, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Xiaohu Lin
- College of Agronomy and Biotechnology, Hebei Key Laboratory of Crop Stress Biology, Hebei Normal University of Science and Technology, Qinhuangdao, China
| |
Collapse
|
2
|
Wang J, Fan Y, Liang L, Dong Z, Li M, Wu Z, Lin X, Wang X, Zhen Z. GO promotes detoxification of nicosulfuron in sweet corn by enhancing photosynthesis, chlorophyll fluorescence parameters, and antioxidant enzyme activity. Sci Rep 2024; 14:21213. [PMID: 39261661 PMCID: PMC11390891 DOI: 10.1038/s41598-024-72203-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 09/04/2024] [Indexed: 09/13/2024] Open
Abstract
Although graphene oxide (GO) has extensive recognized application prospects in slow-release fertilizer, plant pest control, and plant growth regulation, the incorporation of GO into nano herbicides is still in its early stages of development. This study selected a pair of sweet corn sister lines, nicosulfuron (NIF)-resistant HK301 and NIF-sensitive HK320, and sprayed them both with 80 mg kg-1 of GO-NIF, with clean water as a control, to study the effect of GO-NIF on sweet corn seedling growth, photosynthesis, chlorophyll fluorescence, and antioxidant system enzyme activity. Compared to spraying water and GO alone, spraying GO-NIF was able to effectively reduce the toxic effect of NIF on sweet corn seedlings. Compared with NIF treatment, 10 days after of spraying GO-NIF, the net photosynthetic rate (A), stomatal conductance (Gs), transpiration rate (E), photosystem II photochemical maximum quantum yield (Fv/Fm), photochemical quenching coefficient (qP), and photosynthetic electron transfer rate (ETR) of GO-NIF treatment were significantly increased by 328.31%, 132.44%, 574.39%, 73.53%, 152.41%, and 140.72%, respectively, compared to HK320. Compared to the imbalance of redox reactions continuously induced by NIF in HK320, GO-NIF effectively alleviated the observed oxidative pressure. Furthermore, compared to NIF treatment alone, GO-NIF treatment effectively increased the activities of superoxide dismutase (SOD), guaiacol peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX) in both lines, indicating GO induced resistance to the damage caused by NIF to sweet corn seedlings. This study will provides an empirical basis for understanding the detoxification promoting effect of GO in NIF and analyzing the mechanism of GO induced allogeneic detoxification in cells.
Collapse
Affiliation(s)
- Jian Wang
- Hebei Key Laboratory of Crop Stress Biology, College of Agronomy and Biotechnology, Hebei Normal University of Science and Technology, Qinhuangdao, 066000, Hebei Province, China
| | - Yanyan Fan
- Hebei Key Laboratory of Crop Stress Biology, College of Agronomy and Biotechnology, Hebei Normal University of Science and Technology, Qinhuangdao, 066000, Hebei Province, China
| | - Lina Liang
- Tangshan Agriculture and Rural Affairs Bureau, Crop Seeds Station of Tangshan, Tangshan, 063000, Hebei Province, China
| | - Zechen Dong
- Tangshan Agriculture and Rural Affairs Bureau, Crop Seeds Station of Tangshan, Tangshan, 063000, Hebei Province, China
| | - Mengyang Li
- Hebei Key Laboratory of Crop Stress Biology, College of Agronomy and Biotechnology, Hebei Normal University of Science and Technology, Qinhuangdao, 066000, Hebei Province, China
| | - Zhenxing Wu
- Institute of Maize and Featured Upland Crops, Zhejiang Academy of Agricultural Sciences, Dongyang, 322100, China
| | - Xiaohu Lin
- Hebei Key Laboratory of Crop Stress Biology, College of Agronomy and Biotechnology, Hebei Normal University of Science and Technology, Qinhuangdao, 066000, Hebei Province, China
| | - Xiuping Wang
- Hebei Key Laboratory of Crop Stress Biology, College of Agronomy and Biotechnology, Hebei Normal University of Science and Technology, Qinhuangdao, 066000, Hebei Province, China.
| | - Zhihua Zhen
- Tangshan Agriculture and Rural Affairs Bureau, Crop Seeds Station of Tangshan, Tangshan, 063000, Hebei Province, China.
| |
Collapse
|
3
|
An H, Wang D, Yu L, Wu H, Qin Y, Zhang S, Ji X, Xin Y, Li X. Potential Involvement of MnCYP710A11 in Botrytis cinerea Resistance in Arabidopsis thaliana and Morus notabilis. Genes (Basel) 2024; 15:853. [PMID: 39062632 PMCID: PMC11275358 DOI: 10.3390/genes15070853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024] Open
Abstract
Cytochrome P450 (CYP) is a crucial oxidoreductase enzyme that plays a significant role in plant defense mechanisms. In this study, a specific cytochrome P450 gene (MnCYP710A11) was discovered in mulberry (Morus notabilis). Bioinformatic analysis and expression pattern analysis were conducted to elucidate the involvement of MnCYP710A11 in combating Botrytis cinerea infection. After the infection of B. cinerea, there was a notable increase in the expression of MnCYP710A11. MnCYP710A11 is overexpressed in Arabidopsis and mulberry and strongly reacts to B. cinerea. The overexpression of the MnCYP710A11 gene in Arabidopsis and mulberry led to a substantial enhancement in resistance against B. cinerea, elevated catalase (CAT) activity, increased proline content, and reduced malondialdehyde (MDA) levels. At the same time, H2O2 and O2- levels in MnCYP710A11 transgenic Arabidopsis were decreased, which reduced the damage of ROS accumulation to plants. Furthermore, our research indicates the potential involvement of MnCYP710A11 in B. cinerea resistance through the modulation of other resistance-related genes. These findings establish a crucial foundation for gaining deeper insights into the role of cytochrome P450 in mulberry plants.
Collapse
Affiliation(s)
- Hui An
- Guangxi Key Laboratory of Sericulture Ecology and Applied Intelligent Technology, Hechi University, Hechi 546300, China; (H.A.); (Y.Q.); (S.Z.)
- Guangxi Collaborative Innovation Center of Modern Sericulture Silk, School of Chemistry and Bioengineering, Hechi University, Hechi 546300, China
| | - Donghao Wang
- College of Forestry, Shandong Agricultural University, Tai’an 271018, China; (D.W.); (L.Y.); (H.W.); (X.J.)
| | - Lin Yu
- College of Forestry, Shandong Agricultural University, Tai’an 271018, China; (D.W.); (L.Y.); (H.W.); (X.J.)
| | - Hongshun Wu
- College of Forestry, Shandong Agricultural University, Tai’an 271018, China; (D.W.); (L.Y.); (H.W.); (X.J.)
| | - Yue Qin
- Guangxi Key Laboratory of Sericulture Ecology and Applied Intelligent Technology, Hechi University, Hechi 546300, China; (H.A.); (Y.Q.); (S.Z.)
- Guangxi Collaborative Innovation Center of Modern Sericulture Silk, School of Chemistry and Bioengineering, Hechi University, Hechi 546300, China
| | - Shihao Zhang
- Guangxi Key Laboratory of Sericulture Ecology and Applied Intelligent Technology, Hechi University, Hechi 546300, China; (H.A.); (Y.Q.); (S.Z.)
- Guangxi Collaborative Innovation Center of Modern Sericulture Silk, School of Chemistry and Bioengineering, Hechi University, Hechi 546300, China
| | - Xianling Ji
- College of Forestry, Shandong Agricultural University, Tai’an 271018, China; (D.W.); (L.Y.); (H.W.); (X.J.)
| | - Youchao Xin
- College of Forestry, Shandong Agricultural University, Tai’an 271018, China; (D.W.); (L.Y.); (H.W.); (X.J.)
| | - Xiaodong Li
- Guangxi Key Laboratory of Sericulture Ecology and Applied Intelligent Technology, Hechi University, Hechi 546300, China; (H.A.); (Y.Q.); (S.Z.)
- Guangxi Collaborative Innovation Center of Modern Sericulture Silk, School of Chemistry and Bioengineering, Hechi University, Hechi 546300, China
| |
Collapse
|
4
|
Chakraborty P, Biswas A, Dey S, Bhattacharjee T, Chakrabarty S. Cytochrome P450 Gene Families: Role in Plant Secondary Metabolites Production and Plant Defense. J Xenobiot 2023; 13:402-423. [PMID: 37606423 PMCID: PMC10443375 DOI: 10.3390/jox13030026] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/07/2023] [Accepted: 07/24/2023] [Indexed: 08/23/2023] Open
Abstract
Cytochrome P450s (CYPs) are the most prominent family of enzymes involved in NADPH- and O2-dependent hydroxylation processes throughout all spheres of life. CYPs are crucial for the detoxification of xenobiotics in plants, insects, and other organisms. In addition to performing this function, CYPs serve as flexible catalysts and are essential for producing secondary metabolites, antioxidants, and phytohormones in higher plants. Numerous biotic and abiotic stresses frequently affect the growth and development of plants. They cause a dramatic decrease in crop yield and a deterioration in crop quality. Plants protect themselves against these stresses through different mechanisms, which are accomplished by the active participation of CYPs in several biosynthetic and detoxifying pathways. There are immense potentialities for using CYPs as a candidate for developing agricultural crop species resistant to biotic and abiotic stressors. This review provides an overview of the plant CYP families and their functions to plant secondary metabolite production and defense against different biotic and abiotic stresses.
Collapse
Affiliation(s)
- Panchali Chakraborty
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA;
| | - Ashok Biswas
- Annual Bast Fiber Breeding Laboratory, Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
- Department of Horticulture, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - Susmita Dey
- Annual Bast Fiber Breeding Laboratory, Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
- Department of Plant Pathology and Seed Science, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - Tuli Bhattacharjee
- Department of Chemistry, Jahangirnagar University, Dhaka 1342, Bangladesh
| | - Swapan Chakrabarty
- College of Forest Resources and Environmental Sciences, Michigan Technological University, Houghton, MI 49931, USA
- College of Computing, Department of Computer Science, Michigan Technological University, Houghton, MI 49931, USA
| |
Collapse
|
5
|
Zhao Y, Ye F, Fu Y. Research Progress on the Action Mechanism of Herbicide Safeners: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:3639-3650. [PMID: 36794646 DOI: 10.1021/acs.jafc.2c08815] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Herbicide safeners are agricultural chemicals that protect crops from herbicide injury and improve the safety of herbicides and the effectiveness of weed control. Safeners induce and enhance the tolerance of crops to herbicides through the synergism of multiple mechanisms. The principal mechanism is that the metabolic rate of the herbicide in the crop is accelerated by safeners, resulting in the damaging concentration at the site of action being reduced. We focused on discussing and summarizing the multiple mechanisms of safeners to protect crops in this review. It is also emphasized how safeners alleviate herbicide phytotoxicity to crops by regulating the detoxification process and conducting perspectives on future research on the action mechanism of safeners at the molecular level.
Collapse
Affiliation(s)
- Yaning Zhao
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Fei Ye
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Ying Fu
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
6
|
Zhang B, Gao H, Wang G, Zhang S, Shi M, Li Y, Huang Z, Xiang W, Gao W, Zhang C, Liu X. Guvermectin, a novel plant growth regulator, can promote the growth and high temperature tolerance of maize. FRONTIERS IN PLANT SCIENCE 2022; 13:1025634. [PMID: 36311060 PMCID: PMC9615569 DOI: 10.3389/fpls.2022.1025634] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 09/28/2022] [Indexed: 05/27/2023]
Abstract
Guvermectin is a recently discovered microbial N9-glucoside cytokinin compound extracted from Streptomyces sanjiangensis NEAU6. Although some research has reported that N9-glucoside cytokinin compounds do not have the activity of cytokinin, it has been noted that guvermectin can promote growth and antifungal activity in Arabidopsis. Maize is an important food crop in the world and exploring the effect of guvermectin on this crop could help its cultivation in regions with adverse environmental conditions such as a high temperature. Here, we investigated the effects of guvermectin seed soaking treatment on the growth of maize at the seedlings stage and its yield attributes with different temperature stresses. The maize (cv. Zhengdan 958) with guvermectin seed soaking treatment were in two systems: paper roll culture and field conditions. Guvermectin seed soaking treated plants had increased plant height, root length, and mesocotyl length at the seedlings stage, and spike weight at maturity in the field. But only root length was increased at the paper roll culture by guvermectin seed soaking treatment. Guvermectin seed soaking treatment reduced the adverse effects on maize seedling when grow at a high temperature. Further experiments showed that, in high temperature conditions, guvermectin treatment promoted the accumulation of heat shock protein (HSP) 17.0, HSP 17.4 and HSP 17.9 in maize roots. Comparative transcriptomic profiling showed there were 33 common differentially expressed genes (DEGs) in guvermectin treated plants under high temperature and room temperature conditions. The DEGs suggested that guvermectin treatment led to the differential modulation of several transcripts mainly related with plant defense, stress response, and terpenoid biosynthesis. Taken together, these results suggested that the guvermectin treatment promoted the growth and tolerance of high temperature stresses, possibly by activation of related pathways. These results show that guvermectin is a novel plant growth regulator and could be developed as an application to maize seeds to promote growth in high temperature environments.
Collapse
Affiliation(s)
- Borui Zhang
- Department of Plant Pathology, China Agricultural University, Beijing, China
| | - Huige Gao
- Department of Plant Pathology, China Agricultural University, Beijing, China
| | - Guozhen Wang
- Department of Plant Pathology, China Agricultural University, Beijing, China
| | - Sicong Zhang
- Department of Plant Pathology, China Agricultural University, Beijing, China
| | - Mengru Shi
- Department of Plant Pathology, China Agricultural University, Beijing, China
| | - Yun Li
- Department of Plant Pathology, China Agricultural University, Beijing, China
| | - Zhongqiao Huang
- Department of Plant Pathology, China Agricultural University, Beijing, China
| | - Wensheng Xiang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wenna Gao
- Science and Technology Research Center of China Customs, Beijing, China
| | - Can Zhang
- Department of Plant Pathology, China Agricultural University, Beijing, China
| | - Xili Liu
- Department of Plant Pathology, China Agricultural University, Beijing, China
- College of Plant Protection, Northwest A&F University, Yangling, China
| |
Collapse
|
7
|
Zhang C, Xu X, Xu X, Li Y, Zhao P, Chen X, Shen X, Zhang Z, Chen Y, Liu S, XuHan X, Lin Y, Lai Z. Genome-wide identification, evolution analysis of cytochrome P450 monooxygenase multigene family and their expression patterns during the early somatic embryogenesis in Dimocarpus longan Lour. Gene 2022; 826:146453. [PMID: 35337851 DOI: 10.1016/j.gene.2022.146453] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 02/26/2022] [Accepted: 03/18/2022] [Indexed: 11/04/2022]
Abstract
Cytochrome P450 (CYP), a multi-gene superfamily, is involved in a broad range of physiological processes, including hormone responses and secondary metabolism throughout the plant life cycle. Longan (Dimocarpus longan), a subtropical and tropical evergreen fruit tree, its embryonic development is closely related to the yield and quality of fruits. And a large number of secondary metabolites, such as flavonoids and carotenoids, are also produced during the longan somatic embryogenesis (SE). It is important, therefore, to study potential functions of CYPs in longan. However, the knowledge of longan CYPs is still very limited. Here, a total of 327 DlCYPs were identified using the genome-search method, which could be classified into nine clans. The expansion of the DlCYP family was mainly caused by tandem duplication (TD) events. Promoter cis-acting elements analysis elucidated that DlCYPs played important roles in hormonal responses. A total of 246 DlCYPs exhibited six different expression patterns during the early SE based on longan transcriptomic data. Eight DlCYPs underwent alternative splicing (AS) events, and they might produce one to six isoforms. And the AS transcript of DlCYP97C1 might act as an alternative to the full-length transcript in ICpEC and GE stages. Finally, protein-protein interaction (PPI) networks and miRNA target prediction elucidated that DlCYPs might be involved in the phenylpropanoid metabolic pathway and primarily regulated and targeted by miR413. In summary, our results provided valuable inventory for understanding the classification and biological functions of DlCYPs and provided insight into further functional verification of DlCYPs during the longan early SE.
Collapse
Affiliation(s)
- Chunyu Zhang
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xiaoqiong Xu
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xiaoping Xu
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yang Li
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Pengcheng Zhao
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xiaohui Chen
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xu Shen
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zihao Zhang
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yukun Chen
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Shengcai Liu
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xu XuHan
- Institut de la Recherche Interdisciplinaire de Toulouse, IRIT-ARI, 31300, Toulouse, France
| | - Yuling Lin
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zhongxiong Lai
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
8
|
Luo M, Sun X, Qi Y, Zhou J, Wu X, Tian Z. Phytophthora infestans RXLR effector Pi04089 perturbs diverse defense-related genes to suppress host immunity. BMC PLANT BIOLOGY 2021; 21:582. [PMID: 34886813 PMCID: PMC8656059 DOI: 10.1186/s12870-021-03364-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 11/23/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND The oomycete pathogen secretes many effectors into host cells to manipulate host defenses. For the majority of effectors, the mechanisms related to how they alter the expression of host genes and reprogram defenses are not well understood. In order to investigate the molecular mechanisms governing the influence that the Phytophthora infestans RXLR effector Pi04089 has on host immunity, a comparative transcriptome analysis was conducted on Pi04089 stable transgenic and wild-type potato plants. RESULTS Potato plants stably expressing Pi04089 were more susceptible to P. infestans. RNA-seq analysis revealed that 658 upregulated genes and 722 downregulated genes were characterized in Pi04089 transgenic lines. A large number of genes involved in the biological process, including many defense-related genes and certain genes that respond to salicylic acid, were suppressed. Moreover, the comparative transcriptome analysis revealed that Pi04089 significantly inhibited the expression of many flg22 (a microbe-associated molecular pattern, PAMP)-inducible genes, including various Avr9/Cf-9 rapidly elicited (ACRE) genes. Four selected differentially expressed genes (StWAT1, StCEVI57, StKTI1, and StP450) were confirmed to be involved in host resistance against P. infestans when they were transiently expressed in Nicotiana benthamiana. CONCLUSION The P. infestans effector Pi04089 was shown to suppress the expression of many resistance-related genes in potato plants. Moreover, Pi04089 was found to significantly suppress flg22-triggered defense signaling in potato plants. This research provides new insights into how an oomycete effector perturbs host immune responses at the transcriptome level.
Collapse
Affiliation(s)
- Ming Luo
- Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education, Wuhan, 430070, Hubei, China
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Wuhan, 430070, Hubei, China
- Potato Engineering and Technology Research Center (HZAU), Wuhan, 430070, Hubei, China
| | - Xinyuan Sun
- Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education, Wuhan, 430070, Hubei, China
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Wuhan, 430070, Hubei, China
- Potato Engineering and Technology Research Center (HZAU), Wuhan, 430070, Hubei, China
| | - Yetong Qi
- Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education, Wuhan, 430070, Hubei, China
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Wuhan, 430070, Hubei, China
- Potato Engineering and Technology Research Center (HZAU), Wuhan, 430070, Hubei, China
| | - Jing Zhou
- Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education, Wuhan, 430070, Hubei, China
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Wuhan, 430070, Hubei, China
- Potato Engineering and Technology Research Center (HZAU), Wuhan, 430070, Hubei, China
| | - Xintong Wu
- Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education, Wuhan, 430070, Hubei, China
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Wuhan, 430070, Hubei, China
- Potato Engineering and Technology Research Center (HZAU), Wuhan, 430070, Hubei, China
| | - Zhendong Tian
- Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education, Wuhan, 430070, Hubei, China.
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Wuhan, 430070, Hubei, China.
- Potato Engineering and Technology Research Center (HZAU), Wuhan, 430070, Hubei, China.
- Hubei Hongshan laboratory. Huazhong Agricultural University (HZAU), No.1, Shizishan Street, Hongshan District, Wuhan, 430070, Hubei, China.
| |
Collapse
|
9
|
Singh A, Panwar R, Mittal P, Hassan MI, Singh IK. Plant cytochrome P450s: Role in stress tolerance and potential applications for human welfare. Int J Biol Macromol 2021; 184:874-886. [PMID: 34175340 DOI: 10.1016/j.ijbiomac.2021.06.125] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 01/06/2023]
Abstract
Cytochrome P450s (CYPs) are a versatile group of enzymes and one of the largest families of proteins, controlling various physiological processes via biosynthetic and detoxification pathways. CYPs perform multiple roles through a critical irreversible enzymatic reaction in which an oxygen atom is inserted within hydrophobic molecules, converting them into the reactive and hydro soluble components. During evolution, plants have acquired significantly more number of CYPs and represent about 1% of the encoded genes . CYPs are highly conserved proteins involved in growth, development and tolerance against biotic and abiotic stresses. Furthermore, CYPs reinforce plants' molecular and chemical defense mechanisms by regulating the biosynthesis of secondary metabolites, enhancing reactive oxygen species (ROS) scavenging and controlling biosynthesis and homeostasis of phytohormones, including abscisic acid (ABA) and jasmonates. Thus, they are the critical targets of metabolic engineering for enhancing plant defense against environmental stresses. Additionally, CYPs are also used as biocatalysts in the fields of pharmacology and phytoremediation. Herein, we highlight the role of CYPs in plant stress tolerance and their applications for human welfare.
Collapse
Affiliation(s)
- Archana Singh
- Department of Botany, Hansraj College, University of Delhi, New Delhi 110007, India.
| | - Ruby Panwar
- Department of Botany, Hansraj College, University of Delhi, New Delhi 110007, India
| | - Pooja Mittal
- Molecular Biology Research Lab, Department of Zoology, Deshbandhu College, University of Delhi, Kalkaji, New Delhi 110019, India
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Indrakant Kumar Singh
- Molecular Biology Research Lab, Department of Zoology, Deshbandhu College, University of Delhi, Kalkaji, New Delhi 110019, India.
| |
Collapse
|
10
|
Nam KH, Kim DY, Moon YS, Pack IS, Jeong SC, Kim HB, Kim CG. Performance of hybrids between abiotic stress-tolerant transgenic rice and its weedy relatives under water-stressed conditions. Sci Rep 2020; 10:9319. [PMID: 32518274 PMCID: PMC7283212 DOI: 10.1038/s41598-020-66206-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 05/04/2020] [Indexed: 11/16/2022] Open
Abstract
Gene transfer from transgenic crops to their weedy relatives may introduce undesired ecological consequences that can increase the fitness and invasiveness of weedy populations. Here, we examined the rate of gene flow from abiotic stress-tolerant transgenic rice that over-express AtCYP78A7, a gene encoding cytochrome P450 protein, to six weedy rice accessions and compared the phenotypic performance and drought tolerance of their hybrids over generations. The rate of transgene flow from AtCYP78A7-overexpressing transgenic to weedy rice varied between 0% and 0.0396%. F1 hybrids containing AtCYP78A7 were significantly taller and heavier, but the percentage of ripened grains, grain numbers and weight per plant were significantly lower than their transgenic and weedy parents. The homozygous and hemizygous F2 progeny showed higher tolerance to drought stress than the nullizygous F2 progeny, as indicated by leaf rolling scores. Shoot growth of nullizygous F3 progeny was significantly greater than weedy rice under water-deficient conditions in a rainout shelter, however, that of homozygous F3 progeny was similar to weedy rice, indicating the cost of continuous expression of transgene. Our findings imply that gene flow from AtCYP78A7-overexpressing transgenic to weedy rice might increase drought tolerance as shown in the pot experiment, however, increased fitness under stressed conditions in the field were not observed for hybrid progeny containing transgenes.
Collapse
Affiliation(s)
- Kyong-Hee Nam
- LMO research team, National Institute of Ecology, Seocheon, 33657, Republic of Korea
| | - Do Young Kim
- Bio-Evaluation Center, Korea Research Institute of Bioscience & Biotechnology, Cheongju, 28116, Republic of Korea
| | - Ye Seul Moon
- Bio-Evaluation Center, Korea Research Institute of Bioscience & Biotechnology, Cheongju, 28116, Republic of Korea
| | - In Soon Pack
- Bio-Evaluation Center, Korea Research Institute of Bioscience & Biotechnology, Cheongju, 28116, Republic of Korea
| | - Soon-Chun Jeong
- Bio-Evaluation Center, Korea Research Institute of Bioscience & Biotechnology, Cheongju, 28116, Republic of Korea
| | - Ho Bang Kim
- Life Sciences Research Institute, Biomedic Co., Ltd., Bucheon, 14548, Republic of Korea
| | - Chang-Gi Kim
- Bio-Evaluation Center, Korea Research Institute of Bioscience & Biotechnology, Cheongju, 28116, Republic of Korea.
| |
Collapse
|
11
|
Pandian BA, Sathishraj R, Djanaguiraman M, Prasad PV, Jugulam M. Role of Cytochrome P450 Enzymes in Plant Stress Response. Antioxidants (Basel) 2020; 9:antiox9050454. [PMID: 32466087 PMCID: PMC7278705 DOI: 10.3390/antiox9050454] [Citation(s) in RCA: 210] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/21/2020] [Accepted: 05/21/2020] [Indexed: 12/20/2022] Open
Abstract
Cytochrome P450s (CYPs) are the largest enzyme family involved in NADPH- and/or O2-dependent hydroxylation reactions across all the domains of life. In plants and animals, CYPs play a central role in the detoxification of xenobiotics. In addition to this function, CYPs act as versatile catalysts and play a crucial role in the biosynthesis of secondary metabolites, antioxidants, and phytohormones in higher plants. The molecular and biochemical processes catalyzed by CYPs have been well characterized, however, the relationship between the biochemical process catalyzed by CYPs and its effect on several plant functions was not well established. The advent of next-generation sequencing opened new avenues to unravel the involvement of CYPs in several plant functions such as plant stress response. The expression of several CYP genes are regulated in response to environmental stresses, and they also play a prominent role in the crosstalk between abiotic and biotic stress responses. CYPs have an enormous potential to be used as a candidate for engineering crop species resilient to biotic and abiotic stresses. The objective of this review is to summarize the latest research on the role of CYPs in plant stress response.
Collapse
Affiliation(s)
- Balaji Aravindhan Pandian
- Department of Agronomy, Kansas State University, Manhattan, KS 66506, USA; (B.A.P.); (R.S.); (M.D.); (P.V.V.P.)
| | - Rajendran Sathishraj
- Department of Agronomy, Kansas State University, Manhattan, KS 66506, USA; (B.A.P.); (R.S.); (M.D.); (P.V.V.P.)
| | - Maduraimuthu Djanaguiraman
- Department of Agronomy, Kansas State University, Manhattan, KS 66506, USA; (B.A.P.); (R.S.); (M.D.); (P.V.V.P.)
- Department of Crop Physiology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu 641003, India
| | - P.V. Vara Prasad
- Department of Agronomy, Kansas State University, Manhattan, KS 66506, USA; (B.A.P.); (R.S.); (M.D.); (P.V.V.P.)
| | - Mithila Jugulam
- Department of Agronomy, Kansas State University, Manhattan, KS 66506, USA; (B.A.P.); (R.S.); (M.D.); (P.V.V.P.)
- Correspondence: ; Tel.: +1-785-532-2755
| |
Collapse
|
12
|
Martin RC, Kronmiller BA, Dombrowski JE. Transcriptome analysis of responses in Brachypodium distachyon overexpressing the BdbZIP26 transcription factor. BMC PLANT BIOLOGY 2020; 20:174. [PMID: 32312226 PMCID: PMC7171782 DOI: 10.1186/s12870-020-02341-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 03/12/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Biotic and abiotic stresses are the major cause of reduced growth, persistence, and yield in agriculture. Over the past decade, RNA-Sequencing and the use of transgenics with altered expression of stress related genes have been utilized to gain a better understanding of the molecular mechanisms leading to salt tolerance in a variety of species. Identification of transcription factors that, when overexpressed in plants, improve multiple stress tolerance may be valuable for crop improvement, but sometimes overexpression leads to deleterious effects during normal plant growth. RESULTS Brachypodium constitutively expressing the BdbZIP26:GFP gene showed reduced stature compared to wild type plants (WT). RNA-Seq analysis comparing WT and bZIP26 transgenic plants revealed 7772 differentially expressed genes (DEGs). Of these DEGs, 987 of the DEGs were differentially expressed in all three transgenic lines. Many of these DEGs are similar to those often observed in response to abiotic and biotic stress, including signaling proteins such as kinases/phosphatases, calcium/calmodulin related proteins, oxidases/reductases, hormone production and signaling, transcription factors, as well as disease responsive proteins. Interestingly, there were many DEGs associated with protein turnover including ubiquitin-related proteins, F-Box and U-box related proteins, membrane proteins, and ribosomal synthesis proteins. Transgenic and control plants were exposed to salinity stress. Many of the DEGs between the WT and transgenic lines under control conditions were also found to be differentially expressed in WT in response to salinity stress. This suggests that the over-expression of the transcription factor is placing the plant in a state of stress, which may contribute to the plants diminished stature. CONCLUSION The constitutive expression of BdbZIP26:GFP had an overall negative effect on plant growth and resulted in stunted plants compared to WT plants under control conditions, and a similar response to WT plants under salt stress conditions. The results of gene expression analysis suggest that the transgenic plants are in a constant state of stress, and that they are trying to allocate resources to survive.
Collapse
Affiliation(s)
- Ruth C. Martin
- United States Department of Agriculture, Agricultural Research Service, National Forage Seed Production Research Center, 3450 SW Campus Way, Corvallis, OR 97331 USA
| | - Brent A. Kronmiller
- Center for Genome Research and Biocomputing, Oregon State University, Corvallis, OR 97331 USA
| | - James E. Dombrowski
- United States Department of Agriculture, Agricultural Research Service, National Forage Seed Production Research Center, 3450 SW Campus Way, Corvallis, OR 97331 USA
| |
Collapse
|
13
|
Jiu S, Xu Y, Wang J, Wang L, Liu X, Sun W, Sabir IA, Ma C, Xu W, Wang S, Abdullah M, Zhang C. The Cytochrome P450 Monooxygenase Inventory of Grapevine ( Vitis vinifera L.): Genome-Wide Identification, Evolutionary Characterization and Expression Analysis. Front Genet 2020; 11:44. [PMID: 32133027 PMCID: PMC7040366 DOI: 10.3389/fgene.2020.00044] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 01/15/2020] [Indexed: 11/13/2022] Open
Abstract
The cytochrome P450 (CYP) monooxygenase superfamily, belonging to heme-thiolate protein products, plays a vital role in metabolizing physiologically valuable compounds in plants. To date, CYP superfamily genes have not yet been characterized in grapevine (V. vinifera L.), and their functions remain unclear. In this study, a sum of 236 VvCYPs, divided into 46 families and clustered into nine clans, have been identified based on bioinformatics analyses in grapevine genome. The characteristics of both exon-intron organizations and motif structures further supported the close evolutionary relationships of VvCYP superfamily as well as the reliability of phylogenetic analysis. The gene number-based hierarchical cluster of CYP subfamilies of different plants demonstrated that the loss of CYP families seems to be limited to single species or single taxa. Promoter analysis elucidated various cis-regulatory elements related to phytohormone signaling, plant growth and development, as well as abiotic/biotic stress responses. The tandem duplication mainly contributed to the expansion of the VvCYP superfamily, followed by singleton duplication in grapevine. Global RNA-sequencing data of grapevine showed functional divergence of VvCYPs as diverse expression patterns of VvCYPs in various organs, tissues, and developmental phases, which were confirmed by quantitative real-time reverse transcription PCR (qRT-PCR). Taken together, our results provided valuable inventory for understanding the classification and biological functions of the VvCYPs and paved the way for further functional verification of these VvCYPs and are helpful to grapevine molecular breeding.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Caixi Zhang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
14
|
Sharifian S, Homaei A, Kamrani E, Etzerodt T, Patel S. New insights on the marine cytochrome P450 enzymes and their biotechnological importance. Int J Biol Macromol 2020; 142:811-821. [DOI: 10.1016/j.ijbiomac.2019.10.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 10/02/2019] [Accepted: 10/02/2019] [Indexed: 01/09/2023]
|
15
|
Herbicide resistance: Development of wheat production systems and current status of resistant weeds in wheat cropping systems. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.cj.2019.09.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
16
|
Ye F, Zhai Y, Guo KL, Liu YX, Li N, Gao S, Zhao LX, Fu Y. Safeners Improve Maize Tolerance under Herbicide Toxicity Stress by Increasing the Activity of Enzymes in Vivo. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:11568-11576. [PMID: 31584809 DOI: 10.1021/acs.jafc.9b03587] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Tribenuron-methyl (TM), as one of the sulfonylurea (SU) herbicides, has been widely and effectively applied for many kinds of plants. SUs inhibit plant growth by restraining the biosynthetic pathway of branched-chain amino acids (BCAAs) catalyzed by acetolactate synthase (ALS). Safeners are agrochemicals that protect crops from herbicide injuries. To improve the crop tolerance under TM toxicity stress, this paper evaluated the protective effect of N-tosyloxazolidine-3-carboxamide. It turned out that most of the tested compounds showed significant protection against TM via enhancing the glutathione (GSH) content and glutathione S-transferase (GST) activity. Among all of the tested compounds, compound 16 exhibited more excellent protection than the contrast safener R-28725 and other target compounds. A positive correlation between the growth level, endogenous GSH content, and GST activity was observed in this research. The GST kinetic parameter Vmax of the maize was increased by 29.6% after treatment with compound 16, while Km was decreased by 51.9% compared to the untreated control. The molecular docking model indicated that compound 16 could compete with TM in the active site of ALS, which could interpret the protective effects of safeners. The present work demonstrated that N-tosyloxazolidine-3-carboxamide derivatives could be considered as potential candidates for developing new safeners in the future.
Collapse
Affiliation(s)
- Fei Ye
- Department of Applied Chemistry, College of Science , Northeast Agricultural University , Harbin , Heilongjiang 150030 , People's Republic of China
| | - Yue Zhai
- Department of Applied Chemistry, College of Science , Northeast Agricultural University , Harbin , Heilongjiang 150030 , People's Republic of China
| | - Ke-Liang Guo
- Department of Applied Chemistry, College of Science , Northeast Agricultural University , Harbin , Heilongjiang 150030 , People's Republic of China
| | - Yong-Xuan Liu
- Department of Applied Chemistry, College of Science , Northeast Agricultural University , Harbin , Heilongjiang 150030 , People's Republic of China
| | - Na Li
- Department of Applied Chemistry, College of Science , Northeast Agricultural University , Harbin , Heilongjiang 150030 , People's Republic of China
| | - Shuang Gao
- Department of Applied Chemistry, College of Science , Northeast Agricultural University , Harbin , Heilongjiang 150030 , People's Republic of China
| | - Li-Xia Zhao
- Department of Applied Chemistry, College of Science , Northeast Agricultural University , Harbin , Heilongjiang 150030 , People's Republic of China
| | - Ying Fu
- Department of Applied Chemistry, College of Science , Northeast Agricultural University , Harbin , Heilongjiang 150030 , People's Republic of China
| |
Collapse
|
17
|
Baldwin T, Baldwin S, Klos K, Bregitzer P, Marshall J. Deletion of the benzoxazinoid detoxification gene NAT1 in Fusarium graminearum reduces deoxynivalenol in spring wheat. PLoS One 2019; 14:e0214230. [PMID: 31299046 PMCID: PMC6625701 DOI: 10.1371/journal.pone.0214230] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 03/08/2019] [Indexed: 12/25/2022] Open
Abstract
Benzoxazinoid (Bx) metabolites produced by wheat and other members of the Poaceae have activity against Fusarium sp. that cause cereal diseases including Fusarium head blight (FHB) on wheat and barley. Certain Bx metabolites can be detoxified by Fusarium sp. with the arylamine N-acetyltransferase NAT1. Investigation of this pathway may reveal strategies for increasing FHB resistance, such as selection for higher levels of Bx metabolites within existing germplasm and/or engineering fungal susceptibility via host induced silencing of NAT1. We assessed the reactions of fifteen wheat cultivars or breeding lines adapted to the Northwestern United States to infection with F. graminearum Δnat1 mutants that should be sensitive to Bx metabolites. Significant differences were noted in disease severity and deoxynivalenol (DON) among the cultivars 21 d after inoculation with either mutant or wildtype (PH1) strains. Mutant vs. wildtype strains did not result in significant variation for infection severity (as measured by % infected florets), but inoculation with Δnat1 mutants vs. wildtype resulted in significantly lower DON concentrations in mature kernels (p < 0.0001). Of the cultivars tested, HRS3419 was the most resistant cultivar to PH1 (severity = 62%, DON = 45 ppm) and Δnat1 mutants (severity = 61%, DON = 30 ppm). The cultivar most susceptible to infection was Kelse with PH1 (severity = 100%, DON = 292 ppm) and Δnat1 mutants (severity = 100%, DON = 158 ppm). We hypothesized that sub-lethal Bx metabolite levels may suppress DON production in F. graminearum Δnat1 mutants. In vitro assays of Bx metabolites BOA, MBOA, and DIMBOA at 30 μM did not affect growth, but did reduce DON production by Δnat1 and PH1. Although the levels of Bx metabolites are likely too low in the wheat cultivars we tested to suppress FHB, higher levels of Bx metabolites may contribute towards reductions in DON and FHB.
Collapse
Affiliation(s)
- Thomas Baldwin
- National Small Grains Germplasm Research Facility, USDA-ARS, Aberdeen, Idaho, United States of America
- * E-mail: (TB); (JM)
| | - Suzette Baldwin
- Department of Plant, Soil, and Entomological Sciences University of Idaho Research and Extension, Idaho Falls, ID, United States of America
| | - Kathy Klos
- National Small Grains Germplasm Research Facility, USDA-ARS, Aberdeen, Idaho, United States of America
| | - Phil Bregitzer
- National Small Grains Germplasm Research Facility, USDA-ARS, Aberdeen, Idaho, United States of America
| | - Juliet Marshall
- Department of Plant, Soil, and Entomological Sciences University of Idaho Research and Extension, Idaho Falls, ID, United States of America
- * E-mail: (TB); (JM)
| |
Collapse
|
18
|
Huang H, Wang D, Wen B, Lv J, Zhang S. Roles of maize cytochrome P450 (CYP) enzymes in stereo-selective metabolism of hexabromocyclododecanes (HBCDs) as evidenced by in vitro degradation, biological response and in silico studies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 656:364-372. [PMID: 30513427 DOI: 10.1016/j.scitotenv.2018.11.351] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 11/21/2018] [Accepted: 11/24/2018] [Indexed: 06/09/2023]
Abstract
In vitro biotransformation of HBCDs by maize cytochrome P450 (CYP) enzymes, responses of CYPs to HBCDs at protein and transcription levels, and in silico simulation of interactions between CYPs and HBCDs were investigated in order to elucidate the roles of CYPs in the metabolism of HBCDs in maize. The results showed that degradation reactions of HBCDs by maize microsomal CYPs followed the first-order kinetics and were stereo-selective, with the metabolic rates following the order (-)γ- > (+)γ- > (+)α- > (-)α-HBCD. The hydroxylated metabolites OH-HBCDs, OH-PBCDs and OH-TBCDs were detected. (+)/(-)-α-HBCDs significantly decreased maize CYP protein content and inhibited CYP enzyme activity, whereas (+)/(-)-γ-HBCDs had obvious effects on the induction of CYPs. HBCDs selectively mediated the gene expression of maize CYPs, including the isoforms of CYP71C3v2, CYP71C1, CYP81A1, CYP92A1 and CYP97A16. Molecular docking results suggested that HBCDs could bind with these five CYPs, with binding affinity following the order CYP71C3v2 < CYP81A1 < CYP97A16 < CYP92A1 < CYP71C1. The shortest distances between the Br-unsubstituted C atom of HBCD isomers and the iron atom of heme in CYPs were 4.18-11.7 Å, with only the distances for CYP71C3v2 being shorter than 6 Å (4.61-5.38 Å). These results suggested that CYP71C3v2 was an efficient catalyst for degradation of HBCDs. For (+)α- and (-)γ-HBCDs, their binding affinities to CYPs were lower and the distances to the iron atom of heme in CYPs were shorter than their corresponding antipodes, consistent with the in vitro experimental results showing that they had shorter half-lives and were more easily hydroxylated. This study provides solid evidence for the roles of maize CYPs in the metabolism of HBCDs, and gives insight into the molecular mechanisms of the enantio-selective metabolism of HBCDs by plant CYPs.
Collapse
Affiliation(s)
- Honglin Huang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P. O. Box 2871, Beijing 100085, China
| | - Dan Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P. O. Box 2871, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bei Wen
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P. O. Box 2871, Beijing 100085, China
| | - Jitao Lv
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P. O. Box 2871, Beijing 100085, China
| | - Shuzhen Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P. O. Box 2871, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
19
|
Sun L, Xu H, Su W, Xue F, An S, Lu C, Wu R. The expression of detoxification genes in two maize cultivars by interaction of isoxadifen-ethyl and nicosulfuron. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 129:101-108. [PMID: 29870861 DOI: 10.1016/j.plaphy.2018.05.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 05/24/2018] [Accepted: 05/24/2018] [Indexed: 06/08/2023]
Abstract
Herbicide safeners protect crop plants from herbicide phytotoxicity, but an understanding of their molecular mechanisms is still lacking. We investigated the effects of the safener isoxadifen-ethyl and/or nicosulfuron on the expression of 10 genes, 8 glutathione transferases (GSTs), 1 glutathione transporter and 1 multidrug resistance protein gene in two maize cultivars. Nicosulfuron and isoxadifen-ethyl induce different detoxification enzyme genes. The expression analyses of the 10 genes revealed that most were expressed much higher in 'Zhengdan958' than those in 'Zhenghuangnuo No.2', both in control and in isoxadifen-ethyl- and/or nicosulfuron-treated plants. The expression levels of ZmGSTIV, ZmGST6, ZmGST31 and ZmMRP1 in two maize cultivars were up-regulated by isoxadifen-ethyl only, or in combination with nicosulfuron, whereas nicosulfuron down-regulated the expression of eight genes. Thus, ZmGSTIV, ZmGST6, ZmGST31 and ZmMRP1 could be considered safener-responsive and may be the core genes responsible for isoxadifen-ethyl increasing the tolerance of maize to nicosulfuron.
Collapse
Affiliation(s)
- Lanlan Sun
- Henan Key Laboratory of Crop Pest Control, Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou, Henan 450002, China
| | - Hongle Xu
- Henan Key Laboratory of Crop Pest Control, Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou, Henan 450002, China
| | - Wangcang Su
- Henan Key Laboratory of Crop Pest Control, Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou, Henan 450002, China
| | - Fei Xue
- Henan Key Laboratory of Crop Pest Control, Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou, Henan 450002, China
| | - Shiheng An
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Chuantao Lu
- Henan Key Laboratory of Crop Pest Control, Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou, Henan 450002, China
| | - Renhai Wu
- Henan Key Laboratory of Crop Pest Control, Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou, Henan 450002, China.
| |
Collapse
|
20
|
Wang J, Zhong X, Li F, Shi Z. Effects of nicosulfuron on growth, oxidative damage, and the ascorbate-glutathione pathway in paired nearly isogenic lines of waxy maize (Zea mays L.). PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2018; 145:108-117. [PMID: 29482726 DOI: 10.1016/j.pestbp.2018.01.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 01/23/2018] [Accepted: 01/30/2018] [Indexed: 06/08/2023]
Abstract
Nicosulfuron is a postemergence herbicide used for weed control in maize fields (Zea mays L.). We used the pair of nearly isogenic inbred lines, SN509-R (nicosulfuron resistant) and SN509-S (nicosulfuron sensitive), to study the effect of nicosulfuron on growth, oxidative stress, and the ascorbate-glutathione (AA-GSH) cycle in waxy maize seedlings. Nicosulfuron treatment was applied when the fourth leaves were fully developed and the obtained effects were compared to water treatment as control. After nicosulfuron treatment, compared to SN509-R, the death of SN509-S might be associated with increased oxidative stress, since higher O2- and H2O2 accumulations were observed in SN509-S. This in turn might have caused severe damage to lipids and proteins, thus reducing membrane stability. These effects were exacerbated with increasing exposure time. After nicosulfuron treatment, ascorbate peroxidase, monodehydroascorbate reductase, dehydroascorbate reductase, glutathione reductase, and guaiacol peroxidase of SN509-S were significantly lower than those of SN509-R. Compared to SN509-R, dehydroascorbate content, glutathione (GSH) content, and GSH to glutathione disulphide ratios significantly declined with increasing exposure time in SN509-S. Our results suggest that the rapid degradation of nicosulfuron in SN509-R results in only a small and transient increase in reactive oxygen species (ROS). In contrast, in SN509-S, reduced nicosulfuron degradation leads to increase ROS, while at the same time, the AA-GSH pathway is not activated.
Collapse
Affiliation(s)
- Jian Wang
- Department of Agronomy, Shenyang Agricultural University, Shenyang, Liaoning 110866, PR China
| | - Xuemei Zhong
- Department of Agronomy, Shenyang Agricultural University, Shenyang, Liaoning 110866, PR China
| | - Fenghai Li
- Department of Agronomy, Shenyang Agricultural University, Shenyang, Liaoning 110866, PR China.
| | - Zhensheng Shi
- Department of Agronomy, Shenyang Agricultural University, Shenyang, Liaoning 110866, PR China.
| |
Collapse
|
21
|
Wei K, Chen H. Global identification, structural analysis and expression characterization of cytochrome P450 monooxygenase superfamily in rice. BMC Genomics 2018; 19:35. [PMID: 29320982 PMCID: PMC5764023 DOI: 10.1186/s12864-017-4425-8] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 12/29/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The cytochrome P450 monooxygenases (CYP450, CYP, P450) catalyze numerous monooxygenation/hydroxylation reactions in biochemical pathways. Although CYP superfamily has been systematically studied in a few species, the genome-scale research about it in rice has not been done. RESULTS In this study, a total of 355 CYPs encoded by 326 genes were identified in japonica genome. The OsCYP genes are classified into 10 clans including 45 families according to phylogenetic analysis. More than half of the genes are distributed in 53 tandem duplicated gene clusters. Intron-exon structure of OsCYPs exhibits highly conserved and specificity within a family, and divergences of duplicate genes in gene structure result in non-functionalization, neo-functionalization or sub-functionalization. Selection pressure analysis showed that rice CYPs are under purifying selection. The microarray data analysis shows that some genes are tissue-specific expression, such as OsCYP710A5 and OsCYP71X14 in endosperm, OsCYP99A3 and OsCYP78A16 in root and OsCYP93G2 and OsCYP97D7 in leaf. Analysis of RNA-seq data derived from rice leaf developmental gradient indicates that some OsCYPs exhibit zone-specific expression patterns. OsCYP87C2, OsCYP96B5, OsCYP96B8 and OsCYP84A5 were specifically expressed in leaf base and transitional zone. The transcripts of lineages II and IV-1 members were highly abundant in maturing zone. Eighty three OsCYPs are differentially expressed in response to drought stress, of which OsCYP51G3, OsCYP709C9, OsCYP709C5, OsCYP81A6, OsCYP72A18 and OsCYP704A5 are strongly induced and OsCYP78A16, OsCYP89C9 and OsCYP704A5 are down-regulated significantly, and some of the results were validated by qPCR. And 23 up-regulated and 17 down-regulated genes are specific to Osbhlh148 mutation under drought stress. Compared to those in wild type, the changes in transcript levels of several genes are slight in the mutant, such as OsCYP51G3, OsCYP94C2, OsCYP709C9 and OsCYP709C5. CONCLUSION The whole-genomic analysis of rice P450 superfamily provides a clue to understanding biological function of OsCYPs in development regulation and drought stress response, and is helpful to rice molecular breeding.
Collapse
Affiliation(s)
- Kaifa Wei
- School of Biological Sciences and Biotechnology, Minnan Normal University, 36 Xian-Qian-Zhi Street, Zhangzhou, Fujian, 363000, China.
| | - Huiqin Chen
- School of Biological Sciences and Biotechnology, Minnan Normal University, 36 Xian-Qian-Zhi Street, Zhangzhou, Fujian, 363000, China.
| |
Collapse
|
22
|
Huang H, Zhang S, Lv J, Wen B, Wang S, Wu T. Experimental and Theoretical Evidence for Diastereomer- and Enantiomer-Specific Accumulation and Biotransformation of HBCD in Maize Roots. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:12205-12213. [PMID: 27741390 DOI: 10.1021/acs.est.6b03223] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Diastereomer- and enantiomer-specific accumulation and biotransformation of hexabromocyclododecane (HBCD) in maize (Zea mays L.) were investigated. Molecular interactions of HBCD with plant enzymes were further characterized by homology modeling combined with molecular docking. The (-)α-, (-)β-, and (+)γ-HBCD enantiomers accumulated to levels in maize significantly higher than those of their corresponding enantiomers. Bioisomerization from (+)/(-)-β- and γ-HBCDs to (-)α-HBCD was frequently observed, and (-)γ-HBCD was most easily converted, with bioisomerization efficiency of 90.5 ± 8.2%. Mono- and dihydroxyl HBCDs, debrominated metabolites including pentabromocyclododecene (PBCDe) and tetrabromocyclododecene (TBCDe), and HBCD-GSH adducts were detected in maize roots. Patterns of hydroxylated and debrominated metabolites were significantly different among HBCD diastereomers and enantiomers. Three pairs of HBCD enantiomers were selectively bound into the active sites and interacted with specific residues of maize enzymes CYP71C3v2 and GST31. (+)α-, (-)β-, and (-)γ-HBCDs preferentially bound to CYP71C3v2, whereas (-)α-, (-)β-, and (+)γ-HBCDs had strong affinities to GST31, consistent with experimental observations that (+)α-, (-)β-, and (-)γ-HBCDs were more easily hydroxylated, and (-)α-, (-)β-, and (+)γ-HBCDs were more easily isomerized and debrominated in maize compared to their corresponding enantiomers. This study for the first time provided both experimental and theoretical evidence for stereospecific behaviors of HBCD in plants.
Collapse
Affiliation(s)
- Honglin Huang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , P.O. Box 2871, Beijing 100085, China
| | - Shuzhen Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , P.O. Box 2871, Beijing 100085, China
- University of Chinese Academy of Sciences , Beijing 100049, China
| | - Jitao Lv
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , P.O. Box 2871, Beijing 100085, China
| | - Bei Wen
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , P.O. Box 2871, Beijing 100085, China
| | - Sen Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , P.O. Box 2871, Beijing 100085, China
- Department of Environmental Sciences, College of Urban and Environmental Sciences, Northwest University , Xi'an 710027, China
| | - Tong Wu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , P.O. Box 2871, Beijing 100085, China
- School of Environmental Science and Engineering, Hebei University of Science and Technology , Hebei 050018, China
| |
Collapse
|
23
|
Identification of Powdery Mildew Responsive Genes in Hevea brasiliensis through mRNA Differential Display. Int J Mol Sci 2016; 17:ijms17020181. [PMID: 26840302 PMCID: PMC4783915 DOI: 10.3390/ijms17020181] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Revised: 01/21/2016] [Accepted: 01/22/2016] [Indexed: 12/05/2022] Open
Abstract
Powdery mildew is an important disease of rubber trees caused by Oidium heveae B. A. Steinmann. As far as we know, none of the resistance genes related to powdery mildew have been isolated from the rubber tree. There is little information available at the molecular level regarding how a rubber tree develops defense mechanisms against this pathogen. We have studied rubber tree mRNA transcripts from the resistant RRIC52 cultivar by differential display analysis. Leaves inoculated with the spores of O. heveae were collected from 0 to 120 hpi in order to identify pathogen-regulated genes at different infection stages. We identified 78 rubber tree genes that were differentially expressed during the plant–pathogen interaction. BLAST analysis for these 78 ESTs classified them into seven functional groups: cell wall and membrane pathways, transcription factor and regulatory proteins, transporters, signal transduction, phytoalexin biosynthesis, other metabolism functions, and unknown functions. The gene expression for eight of these genes was validated by qRT-PCR in both RRIC52 and the partially susceptible Reyan 7-33-97 cultivars, revealing the similar or differential changes of gene expressions between these two cultivars. This study has improved our overall understanding of the molecular mechanisms of rubber tree resistance to powdery mildew.
Collapse
|
24
|
Zhong Y, Cheng CZ, Jiang NH, Jiang B, Zhang YY, Wu B, Hu ML, Zeng JW, Yan HX, Yi GJ, Zhong GY. Comparative Transcriptome and iTRAQ Proteome Analyses of Citrus Root Responses to Candidatus Liberibacter asiaticus Infection. PLoS One 2015; 10:e0126973. [PMID: 26046530 PMCID: PMC4457719 DOI: 10.1371/journal.pone.0126973] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2015] [Accepted: 04/09/2015] [Indexed: 11/23/2022] Open
Abstract
Root samples of 'Sanhu' red tangerine trees infected with and without Candidatus Liberibacter asiaticus (CLas) were collected at 50 days post inoculation and subjected to RNA-sequencing and isobaric tags for relative and absolute quantification (iTRAQ) to profile the differentially expressed genes (DEGs) and proteins (DEPs), respectively. Quantitative real-time PCR was subsequently used to confirm the expression of 16 selected DEGs. Results showed that a total of 3956 genes and 78 proteins were differentially regulated by HLB-infection. Among the most highly up-regulated DEPs were sperm specific protein 411, copper ion binding protein, germin-like proteins, subtilisin-like proteins and serine carboxypeptidase-like 40 proteins whose transcript levels were concomitantly up-regulated as shown by RNA-seq data. Comparison between our results and those of the previously reported showed that known HLB-modulated biological pathways including cell-wall modification, protease-involved protein degradation, carbohydrate metabolism, hormone synthesis and signaling, transcription activities, and stress responses were similarly regulated by HLB infection but different or root-specific changes did exist. The root unique changes included the down-regulation in genes of ubiquitin-dependent protein degradation pathway, secondary metabolism, cytochrome P450s, UDP-glucosyl transferases and pentatricopeptide repeat containing proteins. Notably, nutrient absorption was impaired by HLB-infection as the expression of the genes involved in Fe, Zn, N and P adsorption and transportation were significantly changed. HLB-infection induced some cellular defense responses but simultaneously reduced the biosynthesis of the three major classes of secondary metabolites, many of which are known to have anti-pathogen activities. Genes involved in callose deposition were up-regulated whereas those involved in callose degradation were also up-regulated, indicating that the sieve tube elements in roots were hanging on the balance of life and death at this stage. In addition, signs of carbohydrate starvation were already eminent in roots at this stage. Other interesting genes and pathways that were changed by HLB-infection were also discussed based on our findings.
Collapse
Affiliation(s)
- Yun Zhong
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, P.R.China
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture, Guangzhou, 510640, P.R.China
- Key Laboratory of Tropical and Subtropical Fruit Tree Researches, Guangdong Province, Guangzhou, 510640, P.R.China
| | - Chun-zhen Cheng
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, P.R.China
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture, Guangzhou, 510640, P.R.China
- Key Laboratory of Tropical and Subtropical Fruit Tree Researches, Guangdong Province, Guangzhou, 510640, P.R.China
| | - Nong-hui Jiang
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, P.R.China
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture, Guangzhou, 510640, P.R.China
- Key Laboratory of Tropical and Subtropical Fruit Tree Researches, Guangdong Province, Guangzhou, 510640, P.R.China
| | - Bo Jiang
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, P.R.China
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture, Guangzhou, 510640, P.R.China
- Key Laboratory of Tropical and Subtropical Fruit Tree Researches, Guangdong Province, Guangzhou, 510640, P.R.China
| | - Yong-yan Zhang
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, P.R.China
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture, Guangzhou, 510640, P.R.China
- Key Laboratory of Tropical and Subtropical Fruit Tree Researches, Guangdong Province, Guangzhou, 510640, P.R.China
| | - Bo Wu
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, P.R.China
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture, Guangzhou, 510640, P.R.China
- Key Laboratory of Tropical and Subtropical Fruit Tree Researches, Guangdong Province, Guangzhou, 510640, P.R.China
| | - Min-lun Hu
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, P.R.China
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture, Guangzhou, 510640, P.R.China
- Key Laboratory of Tropical and Subtropical Fruit Tree Researches, Guangdong Province, Guangzhou, 510640, P.R.China
| | - Ji-wu Zeng
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, P.R.China
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture, Guangzhou, 510640, P.R.China
- Key Laboratory of Tropical and Subtropical Fruit Tree Researches, Guangdong Province, Guangzhou, 510640, P.R.China
| | - Hua-xue Yan
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, P.R.China
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture, Guangzhou, 510640, P.R.China
- Key Laboratory of Tropical and Subtropical Fruit Tree Researches, Guangdong Province, Guangzhou, 510640, P.R.China
| | - Gan-jun Yi
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture, Guangzhou, 510640, P.R.China
- Key Laboratory of Tropical and Subtropical Fruit Tree Researches, Guangdong Province, Guangzhou, 510640, P.R.China
| | - Guang-yan Zhong
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, P.R.China
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture, Guangzhou, 510640, P.R.China
- Key Laboratory of Tropical and Subtropical Fruit Tree Researches, Guangdong Province, Guangzhou, 510640, P.R.China
| |
Collapse
|
25
|
Gion K, Inui H, Takakuma K, Yamada T, Kambara Y, Nakai S, Fujiwara H, Miyamura T, Imaishi H, Ohkawa H. Molecular mechanisms of herbicide-inducible gene expression of tobacco CYP71AH11 metabolizing the herbicide chlorotoluron. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2014; 108:49-57. [PMID: 24485315 DOI: 10.1016/j.pestbp.2013.12.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 12/19/2013] [Accepted: 12/19/2013] [Indexed: 05/27/2023]
Abstract
Tobacco cytochrome P450 (CYP) 71AH11 metabolized the herbicide chlorotoluron, and its mRNA level was increased in tobacco culture cells by the treatment of 2,4-D. In order to clarify molecular mechanisms of induced gene expression of CYP71AH11 by herbicide treatment, a 1574-bp 5'-flanking region of CYP71AH11 was cloned, ligated to the reporter β-glucuronidase (GUS) gene, and then transformed into tobacco plants. The GUS activity in the transgenic tobacco plants was highly induced by bromoxynil treatment, followed by 2,4-D. Chlorotoluron was slightly increased the GUS activity. The bromoxynil-increased GUS activity was partially repressed by the antioxidants, suggesting that reactive oxygen species may be involved in activation of the 5'-flanking region of CYP71AH11 by bromoxynil treatment. Deletion and mutation assays showed that the region CD (-1281 to -770bp from the start codon of CYP71AH11) was important, but not sufficient, for response to bromoxynil. Electrophoretic mobility shift assays and southwestern blotting revealed that the sequences AAAAAG, and GAACAAAC and GAAAATTC in the CD region were important for interaction to the nuclear proteins of <30 and ≈75 kDa, respectively. Particularly, interaction between AAAAAG and <30 kDa proteins was increased by bromoxynil treatment. These results gave a cue for understanding the bromoxynil-induced gene expression of CYP71AH11, which may contribute to herbicide tolerance and selectivity in crop plants.
Collapse
Affiliation(s)
- Keiko Gion
- Research Center for Environmental Genomics, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | - Hideyuki Inui
- Research Center for Environmental Genomics, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | - Kazuyuki Takakuma
- Graduate School of Science and Technology, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | - Takashi Yamada
- Graduate School of Science and Technology, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | - Yumiko Kambara
- Graduate School of Science and Technology, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | - Shuichi Nakai
- Graduate School of Science and Technology, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | - Hiroyuki Fujiwara
- Graduate School of Science and Technology, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | - Takashi Miyamura
- Graduate School of Science and Technology, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | - Hiromasa Imaishi
- Research Center for Environmental Genomics, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | - Hideo Ohkawa
- Research Center for Environmental Genomics, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe, Hyogo 657-8501, Japan.
| |
Collapse
|
26
|
Taylor VL, Cummins I, Brazier-Hicks M, Edwards R. Protective responses induced by herbicide safeners in wheat. ENVIRONMENTAL AND EXPERIMENTAL BOTANY 2013; 88:93-99. [PMID: 23564986 PMCID: PMC3608025 DOI: 10.1016/j.envexpbot.2011.12.030] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2011] [Revised: 12/13/2011] [Accepted: 12/22/2011] [Indexed: 05/25/2023]
Abstract
Safeners are agrochemicals which enhance tolerance to herbicides in cereals including wheat (Triticum aestivum L.) by elevating the expression of xenobiotic detoxifying enzymes, such as glutathione transferases (GSTs). When wheat plants were spray-treated with three safener chemistries, namely cloquintocet mexyl, mefenpyr diethyl and fenchlorazole ethyl, an apparently identical subset of GSTs derived from the tau, phi and lambda classes accumulated in the foliage. Treatment with the closely related mefenpyr diethyl and fenchlorazole ethyl enhanced seedling shoot growth, but this effect was not determined with the chemically unrelated cloquintocet mexyl. Focussing on cloquintocet mexyl, treatments were found to only give a transient induction of GSTs, with the period of elevation being dose dependent. Examining the role of safener metabolism in controlling these responses, it was determined that cloquintocet mexyl was rapidly hydrolysed to the respective carboxylic acid. Studies with cloquintocet showed that the acid was equally effective at inducing GSTs as the ester and appeared to be the active safener. Studies on the tissue induction of GSTs showed that whilst phi and tau class enzymes were induced in all tissues, the induction of the lambda enzymes was restricted to the meristems. To test the potential protective effects of cloquintocet mexyl in wheat on chemicals other than herbicides, seeds were pre-soaked in safeners prior to sowing on soil containing oil and a range of heavy metals. Whilst untreated seeds were unable to germinate on the contaminated soil, safener treatments resulted in seedlings briefly growing before succumbing to the pollutants. Our results show that safeners exert a range of protective and growth promoting activities in wheat that extend beyond enhancing tolerance to herbicides.
Collapse
Affiliation(s)
- Victoria L. Taylor
- Centre for Bioactive Chemistry, Department of Chemistry, Durham University, Durham DH1 3LE, UK
| | - Ian Cummins
- Centre for Bioactive Chemistry, Department of Chemistry, Durham University, Durham DH1 3LE, UK
| | | | - Robert Edwards
- Centre for Bioactive Chemistry, Department of Chemistry, Durham University, Durham DH1 3LE, UK
- Centre for Novel Agricultural Products, University of York, York YO10 5DD, UK
| |
Collapse
|
27
|
Cheng DW, Lin H, Takahashi Y, Walker MA, Civerolo EL, Stenger DC. Transcriptional regulation of the grape cytochrome P450 monooxygenase gene CYP736B expression in response to Xylella fastidiosa infection. BMC PLANT BIOLOGY 2010; 10:135. [PMID: 20591199 PMCID: PMC3095286 DOI: 10.1186/1471-2229-10-135] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2009] [Accepted: 07/01/2010] [Indexed: 05/18/2023]
Abstract
BACKGROUND Plant cytochrome P450 monooxygenases (CYP) mediate synthesis and metabolism of many physiologically important primary and secondary compounds that are related to plant defense against a range of pathogenic microbes and insects. To determine if cytochrome P450 monooxygenases are involved in defense response to Xylella fastidiosa (Xf) infection, we investigated expression and regulatory mechanisms of the cytochrome P450 monooxygenase CYP736B gene in both disease resistant and susceptible grapevines. RESULTS Cloning of genomic DNA and cDNA revealed that the CYP736B gene was composed of two exons and one intron with GT as a donor site and AG as an acceptor site. CYP736B transcript was up-regulated in PD-resistant plants and down-regulated in PD-susceptible plants 6 weeks after Xf inoculation. However, CYP736B expression was very low in stem tissues at all evaluated time points. 5'RACE and 3'RACE sequence analyses revealed that there were three candidate transcription start sites (TSS) in the upstream region and three candidate polyadenylation (PolyA) sites in the downstream region of CYP736B. Usage frequencies of each transcription initiation site and each polyadenylation site varied depending on plant genotype, developmental stage, tissue, and treatment. These results demonstrate that expression of CYP736B is regulated developmentally and in response to Xf infection at both transcriptional and post-transcriptional levels. Multiple transcription start and polyadenylation sites contribute to regulation of CYP736B expression. CONCLUSIONS This report provides evidence that the cytochrome P450 monooxygenase CYP736B gene is involved in defense response at a specific stage of Xf infection in grapevines; multiple transcription initiation and polyadenylation sites exist for CYP736B in grapevine; and coordinative and selective use of transcription initiation and polyadenylation sites play an important role in regulation of CYP736B expression during growth, development and response to Xf infection.
Collapse
Affiliation(s)
- Davis W Cheng
- San Joaquin Valley Agricultural Science Center, USDA-ARS 9611 South Riverbend Avenue, Parlier, CA 93648, USA
- Department of Biology, California State University, Fresno, CA 93740, USA
| | - Hong Lin
- San Joaquin Valley Agricultural Science Center, USDA-ARS 9611 South Riverbend Avenue, Parlier, CA 93648, USA
| | - Yuri Takahashi
- Department of Viticulture and Enology, University of California, Davis, CA 95616, USA
- Department of Food sciences, Ehime Women's College, Uwajima, Ehime, 798-0025 Japan
| | - M Andrew Walker
- Department of Viticulture and Enology, University of California, Davis, CA 95616, USA
| | - Edwin L Civerolo
- San Joaquin Valley Agricultural Science Center, USDA-ARS 9611 South Riverbend Avenue, Parlier, CA 93648, USA
| | - Drake C Stenger
- San Joaquin Valley Agricultural Science Center, USDA-ARS 9611 South Riverbend Avenue, Parlier, CA 93648, USA
| |
Collapse
|
28
|
Riechers DE, Kreuz K, Zhang Q. Detoxification without intoxication: herbicide safeners activate plant defense gene expression. PLANT PHYSIOLOGY 2010; 153:3-13. [PMID: 20237021 PMCID: PMC2862420 DOI: 10.1104/pp.110.153601] [Citation(s) in RCA: 134] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2010] [Accepted: 03/09/2010] [Indexed: 05/18/2023]
Affiliation(s)
- Dean E Riechers
- Department of Crop Sciences, University of Illinois, Urbana, Illinois 61801, USA.
| | | | | |
Collapse
|
29
|
Jensen K, Møller BL. Plant NADPH-cytochrome P450 oxidoreductases. PHYTOCHEMISTRY 2010; 71:132-41. [PMID: 19931102 DOI: 10.1016/j.phytochem.2009.10.017] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2009] [Accepted: 10/21/2009] [Indexed: 05/23/2023]
Abstract
NADPH-cytochrome P450 oxidoreductase (CPR) serves as the electron donor to almost all eukaryotic cytochromes P450. It belongs to a small family of diflavin proteins and is built of cofactor binding domains with high structural homology to those of bacterial flavodoxins and to ferredoxin-NADP(+) oxidoreductases. CPR shuttles electrons from NADPH through the FAD and FMN-cofactors into the central heme-group of the P450s. Mobile domains in CPR are essential for electron transfer between FAD and FMN and for P450 interaction. Blast searches identified 54 full-length gene sequences encoding CPR derived from a total of 35 different plant species. CPRs from vascular plants cluster into two major phylogenetic groups. Depending on the species, plants contain one, two or three paralogs of which one is inducible. The nature of the CPR-P450 interacting domains is well conserved as demonstrated by the ability of CPRs from different species or even from different kingdoms to at least partially complement each other functionally. This makes CPR an ideal bio-brick in synthetic biology approaches to re-design or develop entirely different combinations of existing biological systems to gain improved or completely altered functionalities based on the "share your parts" principle.
Collapse
Affiliation(s)
- Kenneth Jensen
- Plant Biochemistry Laboratory, Department of Plant Biology and Biotechnology, University of Copenhagen, 40 Thorvaldsensvej, DK-1871 Frederiksberg C, Copenhagen, Denmark
| | | |
Collapse
|
30
|
Niemeyer HM. Hydroxamic acids derived from 2-hydroxy-2H-1,4-benzoxazin-3(4H)-one: key defense chemicals of cereals. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2009; 57:1677-96. [PMID: 19199602 DOI: 10.1021/jf8034034] [Citation(s) in RCA: 265] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Many cereals accumulate hydroxamic acids derived from 2-hydroxy-2H-1,4-benzoxazin-3(4H)-one. These benzoxazinoid hydroxamic acids are involved in defense of maize against various lepidopteran pests, most notably the European corn borer, in defense of cereals against various aphid species, and in allelopathy affecting the growth of weeds associated with rye and wheat crops. The role of benzoxazinoid hydroxamic acids in defense against fungal infection is less clear and seems to depend on the nature of the interactions at the plant-fungus interface. Efficient use of benzoxazinoid hydroxamic acids as resistance factors has been limited by the inability to selectively increase their levels at the plant growth stage and the plant tissues where they are mostly needed for a given pest. Although the biosynthesis of benzoxazinoid hydroxamic acids has been elucidated, the genes and mechanisms controlling their differential expression in different plant tissues and along plant ontogeny remain to be unraveled.
Collapse
Affiliation(s)
- Hermann M Niemeyer
- Departamento de Ciencias Ecologicas, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago, Chile.
| |
Collapse
|
31
|
Kong L, Ohm HW, Anderson JM. Expression analysis of defense-related genes in wheat in response to infection by Fusarium graminearum. Genome 2008; 50:1038-48. [PMID: 18059549 DOI: 10.1139/g07-085] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Fusarium head blight (FHB), caused by the fungi Fusarium graminearum and Fusarium culmorum, is a worldwide disease of wheat (Triticum aestivum L.). The Chinese cultivar Ning 7840 is one of a few wheat cultivars with resistance to FHB. GeneCalling, an open-architecture mRNA-profiling technology, was used to identify differentially expressed genes induced or suppressed in spikes of Ning 7840 after infection by F. graminearum. One hundred and twenty-five cDNA fragments representing transcripts differentially expressed in wheat spikes were identified. Based on BLASTN and BLASTX analyses, putative functions were assigned to some of the genes: 28 were assigned functions in primary metabolism and photosynthesis, 7 were involved in defense response, 14 were involved in gene expression and regulation, 24 encoded proteins associated with structure and protein synthesis, 42 lacked homology to sequences in the database, and 3 were similar to cloned multidrug resistance or disease resistance proteins. Of particular interest in this study were genes associated with resistance and defense against pathogen infection. Real-time quantitative reverse-transcription PCR indicated that of 51 genes tested, 19 showed 2-fold or greater induction or suppression in infected Ning 7840 in comparison with the water-treated control. The remaining 32 genes were not significantly induced or suppressed in infected Ning 7840 compared with the control. Subsequently, these 19 induced or suppressed genes were examined in the wheat line KS24-1, containing FHB resistance derived from Lophopyrum elongatum, and Len, an FHB-susceptible wheat cultivar. The temporal expression of some of these sequences encoding resistance proteins or defense-related proteins showed FHB (resistance specific) induction, suggesting that these genes play a role in protection against toxic compounds in plant-fungus interactions. On the basis of comprehensive expression profiling of various biotic or abiotic stress response genes revealed by quantitative PCR in this study and other supporting data, we hypothesized that the plant-pathogen interactions may be highly integrated into a network of diverse biosynthetic pathways.
Collapse
Affiliation(s)
- Lingrang Kong
- Agronomy Department and United States Department of Agriculture (USDA), Agricultural Research Service (ARS), Purdue University, 915 West State Street, West Lafayette, IN 47907, USA
| | | | | |
Collapse
|
32
|
Song X, Ni Z, Yao Y, Xie C, Li Z, Wu H, Zhang Y, Sun Q. Wheat (Triticum aestivumL.) root proteome and differentially expressed root proteins between hybrid and parents. Proteomics 2007; 7:3538-57. [PMID: 17722204 DOI: 10.1002/pmic.200700147] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
To better understand the development of wheat roots, a reference map of the major soluble proteins of wheat roots was established using a combination of 2-DE and MALDI TOF MS and MS/MS, and a total of 450 protein spots were detected with silver staining in a pH ranges of 4-7, of which 282 spots corresponding to 240 proteins were identified. These identified proteins were grouped into diverse functional categories. In comparison with a wheat leave proteome, in root, proteins involved in metabolism and transport were over-represented, whereas proteins involved in energy, disease and defense, transcription, and signal transduction were under-represented. To further get an insight into the molecular basis of wheat heterosis, differential proteome analysis between hybrid and parents were performed. A total of 45 differentially expressed protein spots were detected, and both quantitative and qualitative differences could be observed. Moreover, 25 of the 45 differentially expressed protein spots were identified, which were involved in metabolism, signal transduction, energy, cell growth and division, disease and defense, secondary metabolism. These results indicated that hybridization between two parental lines can cause expression differences between wheat hybrid and its parents not only at mRNA levels but also at protein abundances.
Collapse
Affiliation(s)
- Xiao Song
- Key Laboratory of Crop Heterosis and Utilization, China Agricultural University, Beijing, China
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Guillaumie S, Pichon M, Martinant JP, Bosio M, Goffner D, Barrière Y. Differential expression of phenylpropanoid and related genes in brown-midrib bm1, bm2, bm3, and bm4 young near-isogenic maize plants. PLANTA 2007; 226:235-50. [PMID: 17226026 DOI: 10.1007/s00425-006-0468-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2006] [Accepted: 12/15/2006] [Indexed: 05/13/2023]
Abstract
The expression of phenylpropanoid and related genes was investigated in bm1, bm2, bm3, and bm4 near-isogenic maize plants at the 4-5 leaf stage using a gene-specific cell wall macro-array. The bm3 mutant, which is mutated in the caffeic acid O-methyltransferase (COMT) gene, exhibited the lowest number of differentially expressed genes. Although no other phenylpropanoid gene had an altered expression, two distinct OMT and two cytochrome P450 genes were overexpressed suggesting the activation of alternative hydroxylation/methylation pathways. The bm1 mutant had the highest number of differentially expressed genes, all of which were under-expressed. Bm1 mutant plants were affected not only in cinnamyl alcohol dehydrogenase (bm1 related CAD) gene expression as expected, but also in the expression of other CAD/SAD gene family members and several regulatory genes including MYB, ARGONAUTE and HDZip. As originally believed, the bm1 mutation could be localized at the CAD locus, but more probably in a gene that regulates the expression of the CAD gene family. The profile of under-expressed genes in the bm2 mutant is nearly similar to that of bm1. These genes fell under several functional categories including phenylpropanoid metabolism, transport and trafficking, transcription factors and regulatory genes. As the bm2 mutant exhibited a lower guaiacyl (G) unit lignin content, the bm2 mutation could affect a regulatory gene involved, perhaps indirectly, in the regulation, conjugation or transport of coniferaldehyde, or the establishment of G-rich maize tissues. The pattern of gene expression in bm4 plants, characterized by the over-expression of phenylpropanoid and methylation genes, suggests that the bm4 mutation likely also affects a gene involved in the regulation of lignification.
Collapse
Affiliation(s)
- Sabine Guillaumie
- INRA, Unité de Génétique et d'Amélioration des Plantes Fourragères, BP6, 86600, Lusignan, France
| | | | | | | | | | | |
Collapse
|
34
|
Abstract
Since varietal differences in allelopathy of crops against weeds were discovered in the 1970s, much research has documented the potential that allelopathic crops offer for integrated weed management with substantially reduced herbicide rates. Research groups worldwide have identified several crop species possessing potent allelopathic interference mediated by root exudation of allelochemicals. Rice, wheat, barley and sorghum have attracted most attention. Past research focused on germplasm screening for elite allelopathic cultivars and the identification of the allelochemicals involved. Based on this, traditional breeding efforts were initiated in rice and wheat to breed agronomically acceptable, weed-suppressive cultivars with improved allelopathic interference. Promising suppressive crosses are under investigation. Molecular approaches have elucidated the genetics of allelopathy by QTL mapping which associated the trait in rice and wheat with several chromosomes and suggested the involvement of several allelochemicals. Potentially important compounds that are constitutively secreted from roots have been identified in all crop species under investigation. Biosynthesis and exudation of these metabolites follow a distinct temporal pattern and can be induced by biotic and abiotic factors. The current state of knowledge suggests that allelopathy involves fluctuating mixtures of allelochemicals and their metabolites as regulated by genotype and developmental stage of the producing plant, environment, cultivation and signalling effects, as well as the chemical or microbial turnover of compounds in the rhizosphere. Functional genomics is being applied to identify genes involved in biosynthesis of several identified allelochemicals, providing the potential to improve allelopathy by molecular breeding. The dynamics of crop allelopathy, inducible processes and plant signalling is gaining growing attention; however, future research should also consider allelochemical release mechanisms, persistence, selectivity and modes of action, as well as consequences of improved crop allelopathy on plant physiology, the environment and management strategies. Creation of weed-suppressive cultivars with improved allelopathic interference is still a challenge, but traditional breeding or biotechnology should pave the way.
Collapse
Affiliation(s)
- Regina G Belz
- University of Hohenheim, Institute of Phytomedicine, Department of Weed Science, D-70593 Stuttgart, Germany.
| |
Collapse
|
35
|
Yuan JS, Tranel PJ, Stewart CN. Non-target-site herbicide resistance: a family business. TRENDS IN PLANT SCIENCE 2007; 12:6-13. [PMID: 17161644 DOI: 10.1016/j.tplants.2006.11.001] [Citation(s) in RCA: 266] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2006] [Revised: 10/13/2006] [Accepted: 11/24/2006] [Indexed: 05/12/2023]
Abstract
We have witnessed a dramatic increase in the frequency and diversity of herbicide-resistant weed biotypes over the past two decades, which poses a threat to the sustainability of agriculture at both local and global levels. In addition, non-target-site mechanisms of herbicide resistance seem to be increasingly implicated. Non-target-site herbicide resistance normally involves the biochemical modification of the herbicide and/or the compartmentation of the herbicide (and its metabolites). In contrast to herbicide target site mutations, fewer non-target mechanisms have been elucidated at the molecular level because of the inherently complicated biochemical processes and the limited genomic information available for weedy species. To further understand the mechanisms of non-target-site resistance, we propose an integrated genomics approach to dissect systematically the functional genomics of four gene families in economically important weed species.
Collapse
Affiliation(s)
- Joshua S Yuan
- Department of Plant Sciences, University of Tennessee, Knoxville, TN 37996, USA
| | | | | |
Collapse
|
36
|
Pasquer F, Ochsner U, Zarn J, Keller B. Common and distinct gene expression patterns induced by the herbicides 2,4-dichlorophenoxyacetic acid, cinidon-ethyl and tribenuron-methyl in wheat. PEST MANAGEMENT SCIENCE 2006; 62:1155-67. [PMID: 17054088 DOI: 10.1002/ps.1291] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
In wheat, herbicides are used to control weeds. Little is known about the changes induced in the metabolism of tolerant plants after herbicide treatment. The impact of three herbicides [2,4-dichlorophenoxyacetic acid (2,4-D), cinidon-ethyl and tribenuron-methyl] on the wheat transcriptome was studied using cDNA microarrays. Gene expression of plants grown in a controlled environment or in the field was studied between 24 h and 2 weeks after treatment. Under controlled conditions, 2,4-D induced genes of the phenylpropanoid pathway soon after treatment. Cinidon-ethyl triggered peroxidase and defence-related gene expression under controlled conditions, probably because reactive oxygen species are released by photo-oxidation of protoporphyrin-IX. The same genes were upregulated in the field as under controlled conditions, albeit at a weaker level. These results show that cinidon-ethyl specifically induces genes involved in plant defence. Under controlled conditions, tribenuron-methyl did not change the expression profile immediately after treatment, but defence-related genes were upregulated after 1 week. Sulfonylurea compounds such as tribenuron-methyl specifically inhibit acetolactate synthase and are rapidly detoxified, but the activity of some of the resulting metabolites could explain later changes in gene expression. Finally, overexpression of the isopropylmalate synthase gene, involved in branched-chain amino acid synthesis, and of defence-related genes was observed in the field after sulfonylurea treatment.
Collapse
Affiliation(s)
- Frédérique Pasquer
- Institute of Plant Biology, University of Zürich, Zollikerstrasse 107, CH-8008 Zürich, Switzerland
| | | | | | | |
Collapse
|
37
|
Sue M, Yamazaki K, Yajima S, Nomura T, Matsukawa T, Iwamura H, Miyamoto T. Molecular and structural characterization of hexameric beta-D-glucosidases in wheat and rye. PLANT PHYSIOLOGY 2006; 141:1237-47. [PMID: 16751439 PMCID: PMC1533919 DOI: 10.1104/pp.106.077693] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The wheat (Triticum aestivum) and rye (Secale cereale) beta-D-glucosidases hydrolyze hydroxamic acid-glucose conjugates, exist as different types of isozyme, and function as oligomers. In this study, three cDNAs encoding beta-D-glucosidases (TaGlu1a, TaGlu1b, and TaGlu1c) were isolated from young wheat shoots. Although the TaGlu1s share very high sequence homology, the mRNA level of Taglu1c was much lower than the other two genes in 48- and 96-h-old wheat shoots. The expression ratio of each gene was different between two wheat cultivars. Recombinant TaGlu1b expressed in Escherichia coli was electrophoretically distinct fromTaGlu1a and TaGlu1c. Furthermore, coexpression of TaGlu1a and TaGlu1b gave seven bands on a native-PAGE gel, indicating the formation of both homo- and heterohexamers. One distinctive property of the wheat and rye glucosidases is that they function as hexamers but lose activity when dissociated into smaller oligomers or monomers. The crystal structure of hexameric TaGlu1b was determined at a resolution of 1.8 A. The N-terminal region was located at the dimer-dimer interface and plays a crucial role in hexamer formation. Mutational analyses revealed that the aromatic side chain at position 378, which is located at the entrance to the catalytic center, plays an important role in substrate binding. Additionally, serine-464 and leucine-465 of TaGlu1a were shown to be critical in the relative specificity for DIMBOA-glucose (2-O-beta-D-glucopyranosyl-4-hydroxy-7-methoxy-1,4-benzoxazin-3-one) over DIBOA-glucose (7-demethoxy-DIMBOA-glucose).
Collapse
Affiliation(s)
- Masayuki Sue
- Department of Applied Biology and Chemistry , Tokyo University of Agriculture, Setagaya, Tokyo 156-8502, Japan.
| | | | | | | | | | | | | |
Collapse
|
38
|
Pan G, Zhang X, Liu K, Zhang J, Wu X, Zhu J, Tu J. Map-based cloning of a novel rice cytochrome P450 gene CYP81A6 that confers resistance to two different classes of herbicides. PLANT MOLECULAR BIOLOGY 2006; 61:933-43. [PMID: 16927205 DOI: 10.1007/s11103-006-0058-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2006] [Accepted: 03/29/2006] [Indexed: 05/11/2023]
Abstract
Development of hybrid rice has greatly contributed to increased yields during the past three decades. Two bentazon-lethal mutants 8077S and Norin8m are being utilized in developing new hybrid rice systems. When the male sterile lines are developed in such a mutant background, the problem of F1 seed contamination by self-seeds from the sterile lines can be solved by spraying bentazon at seedling stage. We first determined the sensitivity of the mutant plants to bentazon. Both mutants showed symptoms to bentazon starting from 100 mg/l, which was about 60-fold, lower than the sensitivity threshold of their wild-type controls. In addition, both mutants were sensitive to sulfonylurea-type herbicides. The locus for the mutant phenotype is bel for 8077S and bsl for Norin8m. Tests showed that the two loci are allelic to each other. The two genes were cloned by map-based cloning. Interestingly, both mutant alleles had a single-base deletion, which was confirmed by PCR-RFLP. The two loci are renamed bel ( a ) (for bel) and bel ( b ) (for bsl). The wild-type Bel gene encodes a novel cytochrome P450 monooxgenase, named CYP81A6. Analysis of the mutant protein sequence also revealed the reason for bel ( a ) being slightly tolerant than bel ( b ). Introduction of the wild-type Bel gene rescued the bentazon- and sulfonylurea-sensitive phenotype of bel ( a ) mutant. On the other hand, expression of antisense Bel in W6154S induced a mutant phenotype. Based on these results we conclude that the novel cytochrome P450 monooxygenase CYP81A6 encoded by Bel confers resistance to two different classes of herbicides.
Collapse
Affiliation(s)
- Gang Pan
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310029, Zhejiang, China
| | | | | | | | | | | | | |
Collapse
|
39
|
Zeng RS, Zeng RSL, Niu G, Wen Z, Schuler MA, Berenbaum MR. Toxicity of aflatoxin B1 to Helicoverpa zea and bioactivation by cytochrome P450 monooxygenases. J Chem Ecol 2006; 32:1459-71. [PMID: 16830213 DOI: 10.1007/s10886-006-9062-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2006] [Revised: 02/13/2006] [Accepted: 02/18/2006] [Indexed: 11/28/2022]
Abstract
Infestation of corn (Zea mays) by corn earworm (Helicoverpa zea) predisposes the plant to infection by Aspergillus fungi and concomitant contamination with the carcinogenic mycotoxin aflatoxin B1 (AFB1). Although effects of ingesting AFB1 are well documented in livestock and humans, the effects on insects that naturally encounter this mycotoxin are not as well defined. Toxicity of AFB1 to different stages of H. zea (first, third, and fifth instars) was evaluated with artificial diets containing varying concentrations. Although not acutely toxic at low concentrations (1-20 ng/g), AFB1 had significant chronic effects, including protracted development, increased mortality, decreased pupation rate, and reduced pupal weight. Sensitivity varied with developmental stage; whereas intermediate concentrations (200 ng/g) caused complete mortality in first instars, this same concentration had no detectable adverse effects on larvae encountering AFB1 in fifth instar. Fifth instars consuming AFB1 at higher concentrations (1 microg/g), however, displayed morphological deformities at pupation. That cytochrome P450 monooxygenases (P450s) are involved in the bioactivation of aflatoxin in this species is evidenced by the effects of piperonyl butoxide (PBO), a known P450 inhibitor, on toxicity; whereas no fourth instars pupated in the presence of 1 mug/g AFB1 in the diet, the presence of 0.1% PBO increased the pupation rate to 71.7%. Pupation rates of both fourth and fifth instars on diets containing 1 mug/g AFB1 also increased significantly in the presence of PBO. Effects of phenobarbital, a P450 inducer, on AFB1 toxicity were less dramatic than those of PBO. Collectively, these findings indicate that, as in many other vertebrates and invertebrates, toxicity of AFB1 to H. zea results from P450-mediated metabolic bioactivation.
Collapse
Affiliation(s)
- Ren Sen Zeng
- Department of Entomology, University of Illinois, Urbana, 61801, USA.
| | | | | | | | | | | |
Collapse
|
40
|
Hochholdinger F, Woll K, Guo L, Schnable PS. The accumulation of abundant soluble proteins changes early in the development of the primary roots of maize (Zea mays L.). Proteomics 2006; 5:4885-93. [PMID: 16247731 DOI: 10.1002/pmic.200402034] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
A reference database of the major soluble proteins of the primary root of the maize inbred line B73 was generated 5 days after germination (DAG) using a combination of 2-DE and MALDI-TOF MS. A total of 302 protein spots were detected with CBB in a pH 4-7 range and 81 proteins representing 74 distinct Genbank accessions were identified. Only 28% of the major proteins identified in 5 DAG primary roots were identified in similarly analyzed 9 DAG primary roots documenting remarkable changes in the accumulation of abundant soluble proteins early in primary root development.
Collapse
Affiliation(s)
- Frank Hochholdinger
- ZMBP, Center for Plant Molecular Biology, University of Tuebingen, Auf der Morgenstelle 28, 72076 Tuebingen, Germany.
| | | | | | | |
Collapse
|
41
|
Sue M, Yamazaki K, Kouyama JI, Sasaki Y, Ohsawa K, Miyamoto T, Iwamura H, Yajima S. Purification, crystallization and preliminary X-ray analysis of a hexameric beta-glucosidase from wheat. Acta Crystallogr Sect F Struct Biol Cryst Commun 2005; 61:864-6. [PMID: 16511181 PMCID: PMC1978116 DOI: 10.1107/s1744309105027028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2005] [Accepted: 08/25/2005] [Indexed: 11/10/2022]
Abstract
The wheat beta-glucosidase TaGlu1b, which is only active in a hexameric form, was tagged with 6xHis at the N-terminus, overexpressed in Escherichia coli and purified in two steps. The protein complexed with a substrate aglycone was crystallized at 293 K from a solution containing 10 mM HEPES pH 7.2, 1 M LiSO4 and 150 mM NaCl using the hanging-drop vapour-diffusion method. Diffraction data were collected to 1.7 A at the Photon Factory. The crystal belongs to space group P4(1)32, with unit-cell parameters a = b = c = 194.65 A, alpha = beta = gamma = 90 degrees. The asymmetric unit was confirmed by molecular-replacement solution to contain one monomer, giving a solvent content of 72.1%.
Collapse
Affiliation(s)
- Masayuki Sue
- Department of Applied Biology and Chemisry, Tokyo University of Agriculture, Setagaya-ku, Tokyo 156-8502, Japan
| | - Kana Yamazaki
- Department of Applied Biology and Chemisry, Tokyo University of Agriculture, Setagaya-ku, Tokyo 156-8502, Japan
| | - Jun-ichi Kouyama
- Department of Bioscience, Tokyo University of Agriculture, Setagaya-ku, Tokyo 156-8502, Japan
| | - Yasuyuki Sasaki
- Department of Bioscience, Tokyo University of Agriculture, Setagaya-ku, Tokyo 156-8502, Japan
| | - Kanju Ohsawa
- Department of Bioscience, Tokyo University of Agriculture, Setagaya-ku, Tokyo 156-8502, Japan
| | - Toru Miyamoto
- Department of Applied Biology and Chemisry, Tokyo University of Agriculture, Setagaya-ku, Tokyo 156-8502, Japan
| | - Hajime Iwamura
- Department of Biotechnology, School of Biology Oriented Science and Technology, Kinki University, Naga-gun, Wakayama 649-6493, Japan
| | - Shunsuke Yajima
- Department of Bioscience, Tokyo University of Agriculture, Setagaya-ku, Tokyo 156-8502, Japan
- Correspondence e-mail:
| |
Collapse
|
42
|
Denisov IG, Makris TM, Sligar SG, Schlichting I. Structure and Chemistry of Cytochrome P450. Chem Rev 2005; 105:2253-77. [PMID: 15941214 DOI: 10.1021/cr0307143] [Citation(s) in RCA: 1574] [Impact Index Per Article: 78.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ilia G Denisov
- Department of Biochemistry, Center for Biophysics and Computational Biology, University of Illinois, Urbana-Champaign, 61801, USA
| | | | | | | |
Collapse
|
43
|
Kong L, Anderson JM, Ohm HW. Induction of wheat defense and stress-related genes in response toFusarium graminearum. Genome 2005; 48:29-40. [PMID: 15729394 DOI: 10.1139/g04-097] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Fusarium head blight (FHB), caused by species of the fungus Fusarium, is a worldwide disease of wheat (Triticum aestivum L.). The Chinese T. aestivum 'Ning7840' is one of few wheat cultivars with resistance to FHB. To identify differentially expressed genes corresponding to FHB resistance, a cDNA library was constructed using pooled mRNA isolated from glumes of 'Ning7840' harvested at 2, 6, 12, 24, 36, 72, and 96 h after inoculation (hai) with a conidia spore suspension of Fusarium graminearum. Suppressive subtractive hybridization (SSH) cDNA subtraction was carried out using pooled glume mRNAs from the tester and the control. The cDNA library was differentially screened using the forward subtracted cDNAs and the reverse subtracted cDNAs as probes. Twenty-four clones with significant matches to either plant (16 sequences) or fungal (8 sequences) genes were isolated based on their specific hybridization with forward subtracted cDNA and not reverse subtracted cDNA. Six putative defense-related genes were confirmed by real-time quantitative reverse-transcriptase PCR. Many-fold higher induction of three clones (A3F8, B10H1, and B11H3) in the resistant genotypes compared with susceptible genotypes indicates a putative role in the resistance response to Fusarium graminearum. Transcript accumulations of P450, chitinase (Chi1), and one unknown gene (clone B8Q9) in both resistant and susceptible genotypes suggest an involvement in a generalized resistance response to F. graminearum. Nucleotide sequence analysis showed that cDNA clone A4C6 encodes a cytochrome P450 gene (CYP709C3v2), including 14 N-terminal amino acids that have a membrane-associated helical motif. Other domains characteristic of eukaryotic P450 are also present in CYP709C3v2. The deduced polypeptide of cDNA clone B2H2 encodes an acidic isoform of class I chitinase containing a 960-bp coding region. Southern hybridization using aneuploid lines of T. aestivum 'Chinese Spring' indicated that CYP709C3v2 was located on the short arm of chromosomes 2B and 2D.Key words: Fusarium head blight (FHB), suppressive subtractive hybridization, defense response, real-time quantitative RT-PCR.
Collapse
Affiliation(s)
- Lingrang Kong
- Agronomy Department and United States Department of Agriculture, Agricultural Research Service, Purdue University, West Lafayette, IN 47907, USA
| | | | | |
Collapse
|
44
|
Rishi AS, Munir S, Kapur V, Nelson ND, Goyal A. Identification and analysis of safener-inducible expressed sequence tags in Populus using a cDNA microarray. PLANTA 2004; 220:296-306. [PMID: 15378367 DOI: 10.1007/s00425-004-1356-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2004] [Accepted: 07/02/2004] [Indexed: 05/20/2023]
Abstract
Safeners are the chemicals used to protect plants from detrimental effects of herbicides, but their mode of action at the molecular level is not well understood. As an initial step towards understanding the molecular mechanism of safener action in trees, homologous genes in hybrid poplar (Populus nigra x Populus maximowiczii) that were induced by a safener were identified. We here describe the identification of differentially expressed genes in Populus that are induced by Concep-III, a herbicide safener. Expressed sequence tags (ESTs) enriched for transcriptionally induced genes were isolated by suppressive subtractive hybridization (SSH). The SSH library cDNA inserts were used to construct a cDNA microarray for high-throughput validation of the up-regulated expression of safener-induced genes. Single-pass and partial sequences of 1,344 safener-induced ESTs were assembled into 418 singletons and 328 clusters, but the putative functions of almost 53% of the ESTs are not known. Genes encoding proteins involved in all three different phases of safener action, viz., oxidation, conjugation, and sequestration, were found in the SSH library. Almost 75% of genes that showed greater than 2-fold expression upon safener treatment were redundant in the SSH library. The expression pattern for selected genes was validated by reverse transcription-polymerase chain reaction. A few safener-induced genes that were not previously reported to be induced by safeners, but which may have a role in herbicide metabolism, were identified. The newly identified genes could have potential for application in genetic engineering of plants for herbicide detoxification and tolerance.
Collapse
Affiliation(s)
- A S Rishi
- Biotechnology Initiative, Forestry and Forest Products Division, Center for Applied Research and Technology Development (CARTD), Natural Resources Research Institute, University of Minnesota-Duluth, MN 55811, Duluth, USA
| | | | | | | | | |
Collapse
|
45
|
Li G, Asiegbu FO. Use of Scots pine seedling roots as an experimental model to investigate gene expression during interaction with the conifer pathogen Heterobasidion annosum (P-type). JOURNAL OF PLANT RESEARCH 2004; 117:155-162. [PMID: 15108035 DOI: 10.1007/s10265-003-0140-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2003] [Accepted: 12/19/2003] [Indexed: 05/24/2023]
Abstract
The root-rot fungus Heterobasidion annosum is a major pathogen of woody trees in temperate regions of the world. In this study, seedling root of Scots pine was used as an experimental model to investigate gene expression in conifer trees during challenge with H. annosum. Initial cellular and histochemical studies have established the systems and indicated the key sequence of events during the infection process. Also, to correlate histochemical observations with the time-dependent pattern of events in host gene expression, a transcriptome profiling of a selected set of host genes from a pine-root subtraction cDNA library was conducted. Differential screening of the subset of genes arrayed on nylon membrane with cDNA probes made from seedling roots infected for 1, 3, 7 and 15 days revealed a number of up-regulated genes [disease-resistance gene analog, antimicrobial peptide (AMP) gene homolog etc.] following inoculation. The results also showed strong expression of genes involved in cell defense and protein synthesis at the early stages of the infection (3-7 days) with a decline at late stages of infection (15 days). The decline in expression of key defense genes at late stages of infection correlated well with the period of vascular colonization and subsequent loss of root turgor. Northern analyses with two of the major induced genes (AMP homolog and disease-resistance gene analog) indicated a several-fold increase in host gene expression following infection. In addition, a particular single gene (thaumatin-like protein) was consistently expressed throughout the four sampling periods of the experiment. BlastX analyses revealed that the Scots-pine thaumatin-like gene shared 51-77% sequence homology with other thaumatin-like proteins in GenBank. The importance of these results in tree defense and use of conifer seedling root in host-parasite interaction in forest trees is discussed.
Collapse
Affiliation(s)
- Guosheng Li
- Department of Forest Mycology and Pathology, Swedish University of Agricultural Sciences, Box 7026, 75007, Uppsala, Sweden
| | | |
Collapse
|
46
|
Chaban C, Waller F, Furuya M, Nick P. Auxin responsiveness of a novel cytochrome p450 in rice coleoptiles. PLANT PHYSIOLOGY 2003; 133:2000-9. [PMID: 14630954 PMCID: PMC300751 DOI: 10.1104/pp.103.022202] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2003] [Revised: 03/26/2003] [Accepted: 07/26/2003] [Indexed: 05/24/2023]
Abstract
An early auxin-induced gene was isolated from rice (Oryza sativa L. subsp. japonica cv Nihonmasari) coleoptiles by a fluorescent-labeled differential display screen. The full-length gene contains conserved domains characteristic for the cytochrome p450 superfamily. This gene, designated as CYP87A3, was weakly expressed in dark-grown coleoptiles but was up-regulated rapidly and transiently when coleoptile segments were incubated in 5 microm indole-3-acetic acid. This induction by auxin could not be suppressed by cycloheximide. Depletion of segments from endogenous auxin reduced the amount of CYP87A3 transcripts. The CYP87A3 transcript level was rapidly, although transiently, up-regulated in response to light as well. The observed pattern of gene regulation might indicate a role in the suppression of auxin-induced coleoptile growth. The role of CYP87A3 is discussed with respect to auxin signaling in the regulation of coleoptile growth.
Collapse
Affiliation(s)
- Christina Chaban
- Institut für Biologie II, Schänzlestrasse 1, D-79104 Freiburg, Germany.
| | | | | | | |
Collapse
|