1
|
Zhang J, Liu L, Dong D, Xu J, Li H, Deng Q, Zhang Y, Huang W, Zhang H, Guo YD. The transcription factor SlLBD40 regulates seed germination by inhibiting cell wall remodeling enzymes during endosperm weakening. PLANT PHYSIOLOGY 2025; 197:kiaf022. [PMID: 39823429 DOI: 10.1093/plphys/kiaf022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 12/18/2024] [Accepted: 12/18/2024] [Indexed: 01/19/2025]
Abstract
Uniform seed germination is crucial for consistent seedling emergence and efficient seedling production. In this study, we identified a seed-expressed protein in tomato (Solanum lycopersicum), lateral organ boundaries domain 40 (SlLBD40), that regulates germination speed. CRISPR/Cas9-generated SlLBD40 knockout mutants exhibited faster germination due to enhanced seed imbibition, independent of the seed coat. The expression of SlLBD40 was induced during the imbibition process, particularly in the micropylar endosperm, suggesting its role in endosperm weakening. Gene ontology analysis of RNA-seq data indicated that differentially expressed genes were enriched in cell wall-related processes. SlLBD40 directly targeted genes encoding cell wall remodeling enzymes implicated in endosperm weakening, including expansin 6 (SlEXP6), xyloglucan endotransglucosylase/hydrolase 23 (SlXTH23), and endo-β-mannanase 1 (SlMAN1). Our findings shed light on the role of endosperm weakening in regulating seed germination and propose potential gene targets for improving germination in species constrained by endosperm strength.
Collapse
Affiliation(s)
- Jialong Zhang
- College of Horticulture, China Agricultural University, Beijing 100193, China
- Supervision, Inspection and Test Center of Vegetable Seed Quality of Ministry of Agriculture and Rural Affairs, Beijing 100097, China
| | - Lun Liu
- College of Horticulture, Anhui Agricultural University, Hefei 230036, China
| | - Danhui Dong
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Jiayi Xu
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Hongxin Li
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Qilin Deng
- Supervision, Inspection and Test Center of Vegetable Seed Quality of Ministry of Agriculture and Rural Affairs, Beijing 100097, China
| | - Yan Zhang
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, China Agricultural University, Beijing 100193, China
| | - Wei Huang
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, China Agricultural University, Beijing 100193, China
| | - Haijun Zhang
- Supervision, Inspection and Test Center of Vegetable Seed Quality of Ministry of Agriculture and Rural Affairs, Beijing 100097, China
- State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Science (BAAFS), Beijing 100097, China
| | - Yang-Dong Guo
- College of Horticulture, China Agricultural University, Beijing 100193, China
| |
Collapse
|
2
|
Li P, Xiang Q, Wang Y, Dong X. Characterizing seed dormancy in Epimedium brevicornu Maxim.: Development of novel chill models and determination of dormancy release mechanisms by transcriptomics. BMC PLANT BIOLOGY 2024; 24:757. [PMID: 39112934 PMCID: PMC11308244 DOI: 10.1186/s12870-024-05471-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 07/30/2024] [Indexed: 08/10/2024]
Abstract
PURPOSE Epimedium brevicornu Maxim. is a perennial persistent C3 plant of the genus Epimedium Linn. in the family Berberaceae that exhibits severe physiological and morphological seed dormancy.We placed mature E. brevicornu seeds under nine stratification treatment conditions and explored the mechanisms of influence by combining seed embryo growth status assessment with related metabolic pathways and gene co-expression analysis. RESULTS We identified 3.9 °C as the optimum cold-stratification temperature of E. brevicornu seeds via a chilling unit (CU) model. The best treatment was variable-temperature stratification (10/20 °C, 12/12 h) for 4 months followed by low-temperature stratification (4 °C) for 3 months (4-3). A total of 63801 differentially expressed genes were annotated to 2587 transcription factors (TFs) in 17 clusters in nine treatments (0-0, 0-3, 1-3, 2-3, 3-3, 4-3, 4-2, 4-1, 4-0). Genes specifically highly expressed in the dormancy release treatment group were significantly enriched in embryo development ending in seed dormancy and fatty acid degradation, indicating the importance of these two processes. Coexpression analysis implied that the TF GRF had the most reciprocal relationships with genes, and multiple interactions centred on zf-HD and YABBY as well as on MYB, GRF, and TCP were observed. CONCLUSION In this study, analyses of plant hormone signal pathways and fatty acid degradation pathways revealed changes in key genes during the dormancy release of E. brevicornu seeds, providing evidence for the filtering of E. brevicornu seed dormancy-related genes.
Collapse
Affiliation(s)
- Pengshu Li
- College of Agronomy and Biotechnology, China Agricultural University, No. 2, Old Summer Palace West Road, Haidian District, Beijing, 100193, China
- College of Agronomy and Biotechnology, Sanya Institute of China Agricultural University, Sanya, 610101, Hainan, China
| | - Qiuyan Xiang
- College of Agronomy and Biotechnology, China Agricultural University, No. 2, Old Summer Palace West Road, Haidian District, Beijing, 100193, China
| | - Yue Wang
- Shandong Academy of Agricultural Sciences, Jinan, 250100, Shandong, China.
| | - Xuehui Dong
- College of Agronomy and Biotechnology, China Agricultural University, No. 2, Old Summer Palace West Road, Haidian District, Beijing, 100193, China.
| |
Collapse
|
3
|
Yuan X, Gdanetz K, Outwater CA, Slack SM, Sundin GW. Evaluation of Plant Defense Inducers and Plant Growth Regulators for Fire Blight Management Using Transcriptome Studies and Field Assessments. PHYTOPATHOLOGY 2023; 113:2152-2164. [PMID: 37399041 DOI: 10.1094/phyto-04-23-0147-kc] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Fire blight, caused by Erwinia amylovora, is a destructive disease of pome fruit trees. In the United States, apple and pear growers rely on applications of copper and antibiotics during bloom to control fire blight, but such methods have already led to regional instances of resistance. In this study, we used transcriptome analyses and field trials to evaluate the effectiveness of three commercially available plant defense elicitors and one plant growth regulator for fire blight management. Our data indicated that foliar applications of acibenzolar-S-methyl (ASM; Actigard 50WG) triggered a strong defense-related response in apple leaves, whereas applications of Bacillus mycoides isolate J (LifeGard WG) or Reynoutria sachalinensis extract (Regalia) did not. Genes upregulated by ASM were enriched in the biological processes associated with plant immunity, such as defense response and protein phosphorylation. The expression of several pathogenesis-related (PR) genes was induced by ASM as well. Surprisingly, many differentially expressed genes in ASM-treated apple leaves overlapped with those induced by treatment with prohexadione-calcium (ProCa; Apogee), a plant growth regulator that suppresses shoot elongation. Further analysis suggested that ProCa likely acts similarly to ASM to stimulate plant immunity because genes involved in plant defense were shared and significantly upregulated (more than twofold) by both treatments. Our field trials agreed with the transcriptome study, demonstrating that ASM and ProCa exhibit the best control performance relative to the other biopesticides. Taken together, these data are pivotal for the understanding of plant response and shed light on future improvements of strategies for fire blight management.
Collapse
Affiliation(s)
- Xiaochen Yuan
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824
- Department of Plant Pathology, Entomology and Microbiology, Iowa State University, Ames, IA 50011
| | - Kristi Gdanetz
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824
| | - Cory A Outwater
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824
| | - Suzanne M Slack
- Department of Horticulture, Iowa State University, Ames, IA 50011
| | - George W Sundin
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824
| |
Collapse
|
4
|
Zhao Y, Tu J, Wang H, Xu Y, Wu F. Transcriptomic and targeted metabolomic unravelling the molecular mechanism of sugar metabolism regulating heteroblastic changes in Pinus massoniana seedlings. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 203:108029. [PMID: 37722284 DOI: 10.1016/j.plaphy.2023.108029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/01/2023] [Accepted: 09/08/2023] [Indexed: 09/20/2023]
Abstract
Pine seedling leaf characteristics show a distinct transition from primary to secondary needles, known as heteroblastic change. However, the underlying regulatory mechanism is poorly understood. The molecular mechanism of sugar metabolism involved in regulating heteroblastic changes in Pinus massoniana seedlings was investigated via transcriptomics and targeted metabolomics. The results identified 12 kinds of sugar metabolites in the foliage. Three types of sugar accumulated at the highest levels: sucrose, glucose and fructose. Compared to seedlings with only primary needles (PN), the contents of these soluble sugars were lower in seedlings with developing secondary needle buds (SNB). RNA-seq analysis highlighted 1086 DEGs between PN and SNB seedlings, revealing significant enrichment in KEGG pathways including starch and sucrose metabolism, plant hormone signal transduction and amino sugar and nucleic acid sugar metabolism. Combined transcriptomic and metabolomic analysis revealed that HK, MDH, and ATPase could potentially enhance sugar availability by stimulating the glycolytic/TCA cycle and oxidative phosphorylation. These processes may lead to a reduced sugar content in the foliage of SNB seedlings. We also identified 72 transcription factors, among which the expression levels of MYB, WRKY, NAC and C2H2 family genes were closely related to those of DEGs in the sugar metabolism pathway. In addition, we identified alternative splicing (AS) events in one NAC gene leading to two isoforms, PmNAC5L and PmNAC5S. PmNAC5L was significantly upregulated, while PmNAC5S was significantly downregulated in SNB seedlings. Overall, our results provide new insights into how sugar metabolism is involved in regulating heteroblastic changes in pine seedlings.
Collapse
Affiliation(s)
- Yuanxiang Zhao
- Institute for Forest Resources and Environment of Guizhou, Key Laboratory of Forest Cultivation in Plateau Mountain of Guizhou Province, College of Forestry, Guizhou University, Guiyang, 550025, China; College of Forestry, Guizhou University, Guiyang, 550025, China
| | - Jingjing Tu
- Institute for Forest Resources and Environment of Guizhou, Key Laboratory of Forest Cultivation in Plateau Mountain of Guizhou Province, College of Forestry, Guizhou University, Guiyang, 550025, China; College of Forestry, Guizhou University, Guiyang, 550025, China
| | - Haoyun Wang
- Institute for Forest Resources and Environment of Guizhou, Key Laboratory of Forest Cultivation in Plateau Mountain of Guizhou Province, College of Forestry, Guizhou University, Guiyang, 550025, China; College of Forestry, Guizhou University, Guiyang, 550025, China
| | - Yingying Xu
- Institute for Forest Resources and Environment of Guizhou, Key Laboratory of Forest Cultivation in Plateau Mountain of Guizhou Province, College of Forestry, Guizhou University, Guiyang, 550025, China; College of Forestry, Guizhou University, Guiyang, 550025, China
| | - Feng Wu
- Institute for Forest Resources and Environment of Guizhou, Key Laboratory of Forest Cultivation in Plateau Mountain of Guizhou Province, College of Forestry, Guizhou University, Guiyang, 550025, China; College of Forestry, Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
5
|
Nguyen TNG, Pham CV, Chowdhury R, Patel S, Jaysawal SK, Hou Y, Xu H, Jia L, Duan A, Tran PHL, Duan W. Development of Blueberry-Derived Extracellular Nanovesicles for Immunomodulatory Therapy. Pharmaceutics 2023; 15:2115. [PMID: 37631329 PMCID: PMC10458573 DOI: 10.3390/pharmaceutics15082115] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
Over the past decade, there has been a significant expansion in the development of plant-derived extracellular nanovesicles (EVs) as an effective drug delivery system for precision therapy. However, the lack of effective methods for the isolation and characterization of plant EVs hampers progress in the field. To solve a challenge related to systemic separation and characterization in the plant-derived EV field, herein, we report the development of a simple 3D inner filter-based method that allows the extraction of apoplastic fluid (AF) from blueberry, facilitating EV isolation as well as effective downstream applications. Class I chitinase (PR-3) was found in blueberry-derived EVs (BENVs). As Class I chitinase is expressed in a wide range of plants, it could serve as a universal marker for plant-derived EVs. Significantly, the BENVs exhibit not only higher drug loading capacity than that reported for other EVs but also possess the ability to modulate the release of the proinflammatory cytokine IL-8 and total glutathione in response to oxidative stress. Therefore, the BENV is a promising edible multifunctional nano-bio-platform for future immunomodulatory therapies.
Collapse
Affiliation(s)
- Tuong Ngoc-Gia Nguyen
- School of Medicine, Faculty of Health, Deakin University, Geelong Waurn Ponds Campus, Geelong, VIC 3216, Australia; (T.N.-G.N.); (C.V.P.); (R.C.); (S.P.); (S.K.J.)
| | - Cuong Viet Pham
- School of Medicine, Faculty of Health, Deakin University, Geelong Waurn Ponds Campus, Geelong, VIC 3216, Australia; (T.N.-G.N.); (C.V.P.); (R.C.); (S.P.); (S.K.J.)
| | - Rocky Chowdhury
- School of Medicine, Faculty of Health, Deakin University, Geelong Waurn Ponds Campus, Geelong, VIC 3216, Australia; (T.N.-G.N.); (C.V.P.); (R.C.); (S.P.); (S.K.J.)
| | - Shweta Patel
- School of Medicine, Faculty of Health, Deakin University, Geelong Waurn Ponds Campus, Geelong, VIC 3216, Australia; (T.N.-G.N.); (C.V.P.); (R.C.); (S.P.); (S.K.J.)
| | - Satendra Kumar Jaysawal
- School of Medicine, Faculty of Health, Deakin University, Geelong Waurn Ponds Campus, Geelong, VIC 3216, Australia; (T.N.-G.N.); (C.V.P.); (R.C.); (S.P.); (S.K.J.)
| | - Yingchun Hou
- Laboratory of Tumor Molecular and Cellular Biology, College of Life Sciences, Shaanxi Normal University, 620 West Chang’an Avenue, Xi’an 710119, China;
| | - Huo Xu
- College of Materials and Chemical Engineering, Minjiang University, Fuzhou 350108, China; (H.X.); (L.J.)
| | - Lee Jia
- College of Materials and Chemical Engineering, Minjiang University, Fuzhou 350108, China; (H.X.); (L.J.)
| | - Andrew Duan
- School of Medicine, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3800, Australia;
| | - Phuong Ha-Lien Tran
- School of Medicine, Faculty of Health, Deakin University, Geelong Waurn Ponds Campus, Geelong, VIC 3216, Australia; (T.N.-G.N.); (C.V.P.); (R.C.); (S.P.); (S.K.J.)
| | - Wei Duan
- School of Medicine, Faculty of Health, Deakin University, Geelong Waurn Ponds Campus, Geelong, VIC 3216, Australia; (T.N.-G.N.); (C.V.P.); (R.C.); (S.P.); (S.K.J.)
| |
Collapse
|
6
|
Liu Q, Li Z, Zhang M, Dong S, Yang P, Zhang J, Loades E. Systematic analysis of photo/sko-regulated germination and post-germination development of shallow photodormant seeds in Nicotiana tabacum L. FRONTIERS IN PLANT SCIENCE 2023; 13:1042981. [PMID: 36714753 PMCID: PMC9875545 DOI: 10.3389/fpls.2022.1042981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 11/22/2022] [Indexed: 06/18/2023]
Abstract
INTRODUCTION Light is a major environmental factor in regulating germination and post-germination development of shallow photo-dormant seeds in Nicotiana tabacum L. (tobacco). However, its molecular mechanism remains largely unclear. METHODS AND RESULTS In this study, we compared the phenotypes of the seeds germinated under light and dark, and systematically investigated their regulatory networks by integrating transcriptomic and proteomic data. Under light, the germination increased ~25%, the length of the hypocotyl shortened ~3 cm, and the apical hook disappeared. 9, 161, 342 differentially expressed genes (DEGs) and 128, 185, 81 differentially expressed proteins (DEPs) were regulated by light in the development stage of seed imbibition, radicle protrusion and cotyledon expansion respectively. 0, 19 and 1 co-up-regulated and 1, 30 and 64 co-down-regulated DEGs (DEP) were observed in the three stages, respectively. Of them, 2S albumin large chain, was down-regulated by light in imbibed seed. Oleosin 18.5 kDa (OLEO1) and Glyceraldehyde-3-phosphate dehydrogenase (GAPA1), Oxygen-evolving enhancer protein 1-1 and anchloroplastic (PSBO1), hub genes (proteins) in protein-protein interaction network (PPI), were downregulated and up-regulated in germinated seeds by light, respectively. OLEO1, a hub gene (proteins), was down-regulated by light in post-germination seedling. CONCLUSION These results systematically revealed the molecular networks regulated by light during germination and post-germination development of shallow photo-dormant tobacco seeds.
Collapse
Affiliation(s)
- Qiyuan Liu
- College of Agriculture, University of Guizhou, Guiyang, Guizhou, China
| | - Zhenhua Li
- College of Agriculture, University of Guizhou, Guiyang, Guizhou, China
| | - Min Zhang
- College of Agriculture, University of Guizhou, Guiyang, Guizhou, China
| | - Shuai Dong
- College of Agriculture, University of Guizhou, Guiyang, Guizhou, China
| | - Pingping Yang
- College of Agriculture, University of Guizhou, Guiyang, Guizhou, China
| | - Jie Zhang
- China National Tobacco Corporation (CNTC) Key Laboratory of Molecular Genetics, Guizhou Academy of Tobacco Science, Guiyang, Guizhou, China
| | - Eddison Loades
- Department of Biological Sciences, Royal Holloway, University of London, London, United Kingdom
| |
Collapse
|
7
|
Biba R, Cvjetko P, Tkalec M, Košpić K, Štefanić PP, Šikić S, Domijan AM, Balen B. Effects of Silver Nanoparticles on Physiological and Proteomic Responses of Tobacco ( Nicotiana tabacum) Seedlings Are Coating-Dependent. Int J Mol Sci 2022; 23:15923. [PMID: 36555562 PMCID: PMC9787911 DOI: 10.3390/ijms232415923] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/04/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
The harmful effects of silver nanoparticles (AgNPs) have been confirmed in many organisms, but the mechanism of their toxicity is not yet fully understood. In biological systems, AgNPs tend to aggregate and dissolve, so they are often stabilized by coatings that influence their physico-chemical properties. In this study, the effects of AgNPs with different coatings [polyvinylpyrrolidone (PVP) and cetyltrimethylammonium bromide (CTAB)] on oxidative stress appearance and proteome changes in tobacco (Nicotiana tabacum) seedlings have been examined. To discriminate between the nanoparticulate Ag form from the ionic one, the treatments with AgNO3, a source of Ag+ ions, were also included. Ag uptake and accumulation were found to be similarly effective upon exposure to all treatment types, although positively charged AgNP-CTAB showed less stability and a generally stronger impact on the investigated parameters in comparison with more stable and negatively charged AgNP-PVP and ionic silver (AgNO3). Both AgNP treatments induced reactive oxygen species (ROS) formation and increased the expression of proteins involved in antioxidant defense, confirming oxidative stress as an important mechanism of AgNP phytotoxicity. However, the mechanism of seedling responses differed depending on the type of AgNP used. The highest AgNP-CTAB concentration and CTAB coating resulted in increased H2O2 content and significant damage to lipids, proteins and DNA molecules, as well as a strong activation of antioxidant enzymes, especially CAT and APX. On the other hand, AgNP-PVP and AgNO3 treatments induced the nonenzymatic antioxidants by significantly increasing the proline and GSH content. Exposure to AgNP-CTAB also resulted in more noticeable changes in the expression of proteins belonging to the defense and stress response, carbohydrate and energy metabolism and storage protein categories in comparison to AgNP-PVP and AgNO3. Cysteine addition significantly reduced the effects of AgNP-PVP and AgNO3 for the majority of investigated parameters, indicating that AgNP-PVP toxicity mostly derives from released Ag+ ions. AgNP-CTAB effects, however, were not alleviated by cysteine addition, suggesting that their toxicity derives from the intrinsic properties of the nanoparticles and the coating itself.
Collapse
Affiliation(s)
- Renata Biba
- Department of Biology, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia
| | - Petra Cvjetko
- Department of Biology, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia
| | - Mirta Tkalec
- Department of Biology, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia
| | - Karla Košpić
- Department of Biology, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia
| | - Petra Peharec Štefanić
- Department of Biology, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia
| | - Sandra Šikić
- Department of Ecology, Institute of Public Health “Dr. Andrija Štampar”, Mirogojska cesta 16, 10000 Zagreb, Croatia
| | - Ana-Marija Domijan
- Department of Pharmaceutical Botany, Faculty of Pharmacy and Biochemistry, University of Zagreb, Ante Kovačića 1, 10000 Zagreb, Croatia
| | - Biljana Balen
- Department of Biology, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia
| |
Collapse
|
8
|
Wang H, Zhou X, Liu C, Li W, Guo W. Suppression of GhGLU19 encoding β-1,3-glucanase promotes seed germination in cotton. BMC PLANT BIOLOGY 2022; 22:357. [PMID: 35869418 PMCID: PMC9308338 DOI: 10.1186/s12870-022-03748-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 07/12/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND In eudicots, germination begins with water uptake by the quiescent dry seed and is greatly related to the permeability of micropyle enriched callose layers. Once imbibition starts, seeds undergo a cascade of physiological, biochemical, and molecular events to initiate cellular activities. However, the effects of callose on water uptake and following seed metabolic events during germination are largely unknown. Cotton (Gossypium hirsutum) is a eudicot plant with natural fiber and edible oil production for humans. Here, we addressed this question by examining the role of GhGLU19, a gene encoding β-1,3-glucanase, in cotton seed germination. RESULTS GhGLU19 belongs to subfamily B and was expressed predominately in imbibed seeds and early seedlings. Compared to wild type, GhGLU19-suppressing and GhGLU19-overexpressing transgenic cotton lines showed the higher and lower seed germination percentage, respectively. Callose was enriched more at inner integument (ii) than that in embryo and seed coat in cotton seeds. In GhGLU19-suppressing lines, callose at ii of cotton seeds was greatly increased and brought about a prolonged water uptake process during imbibition. Both proteomic and transcriptomic analysis revealed that contrary to GhGLU19-overexpressing lines, the glycolysis and pyruvate metabolism was decreased, and abscisic acid (ABA) biosynthesis related genes were downregulated in imbibed seeds of GhGLU19-suppressing lines. Also, endogenous ABA was significantly decreased in GhGLU19-suppressing line while increased in GhGLU19-overexpressing line. CONCLUSIONS Our results demonstrate that suppression of GhGLU19 improves cotton seed germination via accumulating callose of inner integument, modulating glycolysis and pyruvate metabolism, and decreasing ABA biosynthesis. This study provides a potential way for improving germination percentage in cotton seed production, and other eudicot crops.
Collapse
Affiliation(s)
- Haitang Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Germplasm Enhancement and Application Engineering Research Center (Ministry of Education), Nanjing Agricultural University, Nanjing, 210095 China
| | - Xuesong Zhou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Germplasm Enhancement and Application Engineering Research Center (Ministry of Education), Nanjing Agricultural University, Nanjing, 210095 China
| | - Chuchu Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Germplasm Enhancement and Application Engineering Research Center (Ministry of Education), Nanjing Agricultural University, Nanjing, 210095 China
| | - Weixi Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Germplasm Enhancement and Application Engineering Research Center (Ministry of Education), Nanjing Agricultural University, Nanjing, 210095 China
| | - Wangzhen Guo
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Germplasm Enhancement and Application Engineering Research Center (Ministry of Education), Nanjing Agricultural University, Nanjing, 210095 China
| |
Collapse
|
9
|
Thepbandit W, Papathoti NK, Daddam JR, Thumanu K, Siriwong S, Thanh TL, Buensanteai N. Identification of Salicylic Acid Mechanism against Leaf Blight Disease in Oryza sativa by SR-FTIR Microspectroscopic and Docking Studies. Pathogens 2021; 10:652. [PMID: 34074035 PMCID: PMC8225197 DOI: 10.3390/pathogens10060652] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/09/2021] [Accepted: 05/19/2021] [Indexed: 01/05/2023] Open
Abstract
The present study was to investigate the application and mechanism of salicylic acid (SA) as SA-Ricemate for the control of leaf blight disease using a Synchrotron Radiation-based Fourier-Transform Infra-Red (SR-FTIR) microspectroscopy and docking studies. After treating rice plants cv. KDML 105 with SA-Ricemate, the leaves were inoculated with Xanthomonas oryzae pv. oryzae, the causal agent of leaf blight, and disease severity were assessed. The leaves were also used to detect changes in endogenous SA content. The results indicated that SA-Ricemate, as an activated compound, reduced disease severity by 60% at three weeks post-inoculation and increased endogenous content by 50%. The SR-FTIR analysis of changes in the mesophyll of leaves (treated and untreated) showed that the groups of lipids, pectins, and proteins amide I and amide II occurred at higher values, and polysaccharides were shown at lower values in treated compared to untreated. Besides, docking studies were used to model a three-dimensional structure for Pathogenesis-related (PR1b) protein and further identify its interaction with SA. The results showed that ASP28, ARG31, LEU32, GLN97, and ALA93 are important residues that have strong hydrogen bonds with SA. The docking results showed that SA has a good interaction, confirming its role in expression.
Collapse
Affiliation(s)
- Wannaporn Thepbandit
- School of Crop Production Technology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand; (W.T.); (N.K.P.)
| | - Narendra Kumar Papathoti
- School of Crop Production Technology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand; (W.T.); (N.K.P.)
| | - Jayasimha Rayalu Daddam
- Department of Animal Science, Agriculture Research Organization, Volcani Center, Rishon Lezion 7505101, Israel;
| | - Kanjana Thumanu
- Synchrotron Light Research Institute, Nakhon Ratchasima 30000, Thailand; (K.T.); (S.S.)
| | - Supatcharee Siriwong
- Synchrotron Light Research Institute, Nakhon Ratchasima 30000, Thailand; (K.T.); (S.S.)
| | - Toan Le Thanh
- Department of Plant Protection, Can Tho University, Can Tho City 900000, Vietnam;
| | - Natthiya Buensanteai
- School of Crop Production Technology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand; (W.T.); (N.K.P.)
| |
Collapse
|
10
|
Pavese V, Moglia A, Gonthier P, Torello Marinoni D, Cavalet-Giorsa E, Botta R. Identification of Susceptibility Genes in Castanea sativa and Their Transcription Dynamics following Pathogen Infection. PLANTS 2021; 10:plants10050913. [PMID: 34063239 PMCID: PMC8147476 DOI: 10.3390/plants10050913] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/26/2021] [Accepted: 04/28/2021] [Indexed: 02/07/2023]
Abstract
Castanea sativa is one of the main multipurpose tree species valued for its timber and nuts. This species is susceptible to two major diseases, ink disease and chestnut blight, caused by Phytophthora spp. and Cryphonectria parasitica, respectively. The loss-of-function mutations of genes required for the onset of pathogenesis, referred to as plant susceptibility (S) genes, are one mechanism of plant resistance against pathogens. On the basis of sequence homology, functional domain identification, and phylogenetic analyses, we report for the first time on the identification of S-genes (mlo1, dmr6, dnd1, and pmr4) in the Castanea genus. The expression dynamics of S-genes were assessed in C. sativa and C. crenata plants inoculated with P. cinnamomi and C. parasitica. Our results highlighted the upregulation of pmr4 and dmr6 in response to pathogen infection. Pmr4 was strongly expressed at early infection phases of both pathogens in C. sativa, whereas in C. crenata, no significant upregulation was observed. The infection of P. cinnamomi led to a higher increase in the transcript level of dmr6 in C. sativa compared to C. crenata-infected samples. For a better understanding of plant responses, the transcript levels of defense genes gluB and chi3 were also analyzed.
Collapse
|
11
|
Sharma S, Deswal R. Dioscorea Alata Tuber Proteome Analysis Uncovers Differentially Regulated Growth-associated Pathways of Tuber Development. PLANT & CELL PHYSIOLOGY 2021; 62:191-204. [PMID: 33313836 DOI: 10.1093/pcp/pcaa151] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 11/23/2020] [Indexed: 06/12/2023]
Abstract
During its life cycle, the Dioscorea tuber undergoes multiple morphological and biochemical changes. To gain a better understanding of the metabolic changes associated with tuber growth, a stage-specific gel-free proteome analysis of four distinct morphological stages namely germinating tuber (S1), degrading tuber (S2), new tuber formation (S3) and tuber maturation (S4) was done and validated by principal component analysis. A comprehensive data set identifying 78.2% of the total 3,681 proteins was generated. PANTHER and KEGG MAPPER revealed both expected (carbohydrate metabolism and redox regulation) and novel biological processes (transcription factors and hormonal regulation) characteristic for each developmental stage. Higher abundance of the enzymes of ascorbate-glutathione cycle and carbohydrate metabolism was detected during tuber germination (S1) and tuber formation stages (S3) in comparison with the mature tuber. The presence of ethylene biosynthesis components during tuber formation hints toward its probable role in postharvest shelf life. The data set comprehensively describes the proteome of Dioscorea tuber and provides growth-specific markers for tuber germination (ascorbate peroxidase, monodehydroascorbate reductase, invertase) and tuber formation (sucrose synthase), which were validated by enzyme activity assays and Western blotting. The study provides information that may influence the direction of research for improving the productivity of this under-utilized and largely neglected crop.
Collapse
Affiliation(s)
- Shruti Sharma
- Molecular Physiology and Proteomics Laboratory, Department of Botany, University of Delhi, Delhi 110007, India
| | - Renu Deswal
- Molecular Physiology and Proteomics Laboratory, Department of Botany, University of Delhi, Delhi 110007, India
| |
Collapse
|
12
|
Rachidi F, Benhima R, Kasmi Y, Sbabou L, Arroussi HE. Evaluation of microalgae polysaccharides as biostimulants of tomato plant defense using metabolomics and biochemical approaches. Sci Rep 2021; 11:930. [PMID: 33441599 PMCID: PMC7806925 DOI: 10.1038/s41598-020-78820-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 12/01/2020] [Indexed: 01/29/2023] Open
Abstract
Microalgal polysaccharides (PSs) may be an effective elicitor agent that can efficiently protect plants against biotic stresses. In this study, wee investigates, the effect of PS obtained from microalgae and cyanobacteria (D. salina MS002, P. tricorontum MS023, Porphyridium sp. MS081, Desmodesmus sp., D. salina MS067 and A. platensis MS001) on the biochemical and metabolomics markers linked to defense pathways in tomato plants. The phenylalanine ammonia lyase (PAL), chitinase, 1,3-beta-glucanase and peroxidase (POX) activities have been improved in tomato plants leaves treated by polysaccharides extracted from P. triocnutum (238.26%); Desmodesmus sp. (19.95%); P. triocnutum (137.50%) and Porphyridium sp. (47.28%) respectively. For proteins, polyphenols and H2O2, the maximum effect was induced by D. salina 067 (55.01%), Porphyridium sp. (3.97%) and A. platensis (35.08%) respectively. On the other hand, Gas Chromatography-mass spectrometry (GC-MS) metabolomics analysis showed that PSs induced the modification of metabolite profile involved in the wax construction of tomato leaves, such as fatty acids, alkanes, alkenes and phytosterol. PS treatments improved the accumulation of fatty acids C16:3, C18:2 and C18:3 released from the membrane lipids as precursors of oxylipin biosynthesis which are signaling molecules of plant defense. In addition, PS treatment induced the accumulation of C18:0 and Azelaic acid which is a regulator of salicylic acid-dependent systemic acquired resistance. However, molecular and metabolic studies can determine more precisely the mode of action of microalgal polysaccharides as biostimulants/elicitors plant defense.
Collapse
Affiliation(s)
- Farid Rachidi
- Green Biotechnology Center, MASCIR (Moroccan Foundation for Advanced Science, Innovation & Research), Rue Mohamed Al Jazouli Madinat Al Irfane, 10 100, Rabat, Morocco
- Microbiology and Molecular Biology Team, Center of Plant and Microbial Biotechnology, Biodiversity and Environment, Faculty of Sciences, Mohammed V University, 4 Avenue Ibn Battouta, B.P. 1014, Rabat, Morocco
| | - Redouane Benhima
- Green Biotechnology Center, MASCIR (Moroccan Foundation for Advanced Science, Innovation & Research), Rue Mohamed Al Jazouli Madinat Al Irfane, 10 100, Rabat, Morocco
| | - Yassine Kasmi
- Green Biotechnology Center, MASCIR (Moroccan Foundation for Advanced Science, Innovation & Research), Rue Mohamed Al Jazouli Madinat Al Irfane, 10 100, Rabat, Morocco
| | - Laila Sbabou
- Microbiology and Molecular Biology Team, Center of Plant and Microbial Biotechnology, Biodiversity and Environment, Faculty of Sciences, Mohammed V University, 4 Avenue Ibn Battouta, B.P. 1014, Rabat, Morocco
| | - Hicham El Arroussi
- Green Biotechnology Center, MASCIR (Moroccan Foundation for Advanced Science, Innovation & Research), Rue Mohamed Al Jazouli Madinat Al Irfane, 10 100, Rabat, Morocco.
- Agrobiosciences Program, University Mohamed 6 polytechnic (UM6P), Benguerir, Morocco.
| |
Collapse
|
13
|
Purification of dual-functioning chitinases with hydrolytic and antifreeze activities from Hippophae rhamnoides seedlings. ACTA ACUST UNITED AC 2019. [DOI: 10.1007/s42485-019-00007-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
14
|
Štefanić PP, Cvjetko P, Biba R, Domijan AM, Letofsky-Papst I, Tkalec M, Šikić S, Cindrić M, Balen B. Physiological, ultrastructural and proteomic responses of tobacco seedlings exposed to silver nanoparticles and silver nitrate. CHEMOSPHERE 2018; 209:640-653. [PMID: 29958162 DOI: 10.1016/j.chemosphere.2018.06.128] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 06/14/2018] [Accepted: 06/19/2018] [Indexed: 06/08/2023]
Abstract
Since silver nanoparticles (AgNPs) are a dominant nanomaterial in consumer products, there is growing concern about their impact on the environment. Although numerous studies on the effects of AgNPs on living organisms have been conducted, the interaction of AgNPs with plants has not been fully clarified. To reveal the plant mechanisms activated after exposure to AgNPs and to differentiate between effects specific to nanoparticles and ionic silver, we investigated the physiological, ultrastructural and proteomic changes in seedlings of tobacco (Nicotiana tabacum) exposed to commercial AgNPs and ionic silver (AgNO3) from the seed stage. A higher Ag content was measured in seedlings exposed to AgNPs than in those exposed to the same concentration of AgNO3. However, the results on oxidative stress parameters obtained revealed that, in general, higher toxicity was recorded in AgNO3-treated seedlings than in those exposed to nanosilver. Ultrastructural analysis of root cells confirmed the presence of silver in the form of nanoparticles, which may explain the lower toxicity of AgNPs. However, the ultrastructural changes of chloroplasts as well as proteomic study showed that both AgNPs and AgNO3 can affect photosynthesis. Moreover, the majority of the proteins involved in the primary metabolism were up-regulated after both types of treatments, indicating that enhanced energy production, which can be used to reinforce defensive mechanisms, enables plants to cope with silver-induced toxicity.
Collapse
Affiliation(s)
- Petra Peharec Štefanić
- Department of Biology, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia
| | - Petra Cvjetko
- Department of Biology, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia
| | - Renata Biba
- Department of Biology, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia
| | - Ana-Marija Domijan
- Department of Pharmaceutical Botany, Faculty of Pharmacy and Biochemistry, University of Zagreb, Ante Kovačića 1, 10000, Zagreb, Croatia
| | - Ilse Letofsky-Papst
- Institute of Electron Microscopy and Nanoanalysis (FELMI), Graz University of Technology, Graz Centre for Electron Microscopy (ZFE), Austrian Cooperative Research (ACR), Steyrergasse 17, 8010, Graz, Austria
| | - Mirta Tkalec
- Department of Biology, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia
| | - Sandra Šikić
- Department of Ecology, Andrija Štampar Teaching Institute of Public Health, Mirogojska cesta 16, 10000, Zagreb, Croatia
| | - Mario Cindrić
- Ruđer Bošković Institute, POB 1016, 10 000, Zagreb, Croatia
| | - Biljana Balen
- Department of Biology, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia.
| |
Collapse
|
15
|
Palmer IA, Shang Z, Fu ZQ. Salicylic acid-mediated plant defense: Recent developments, missing links, and future outlook. ACTA ACUST UNITED AC 2017. [DOI: 10.1007/s11515-017-1460-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
16
|
Boboshko OP, Panyuta OO, Artemenko OY, Emelyanov VI, Taran NY. Time-course of pathogen induced accumulation of callose as mechanical protective barrier in wheat seedlings. CYTOL GENET+ 2017. [DOI: 10.3103/s0095452717010029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
17
|
Steinbrecher T, Leubner-Metzger G. The biomechanics of seed germination. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:765-783. [PMID: 27927995 DOI: 10.1093/jxb/erw428] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
From a biomechanical perspective, the completion of seed (and fruit) germination depends on the balance of two opposing forces: the growth potential of the embryonic axis (radicle-hypocotyl growth zone) and the restraint of the seed-covering layers (endosperm, testa, and pericarp). The diverse seed tissues are composite materials which differ in their dynamic properties based on their distinct cell wall composition and water uptake capacities. The biomechanics of embryo cell growth during seed germination depend on irreversible cell wall loosening followed by water uptake due to the decreasing turgor, and this leads to embryo elongation and eventually radicle emergence. Endosperm weakening as a prerequisite for radicle emergence is a widespread phenomenon among angiosperms. Research into the biochemistry and biomechanics of endosperm weakening has demonstrated that the reduction in puncture force of a seed's micropylar endosperm is environmentally and hormonally regulated and involves tissue-specific expression of cell wall remodelling proteins such as expansins, diverse hydrolases, and the production of directly acting apoplastic reactive oxygen. The endosperm-weakening biomechanics and its underlying cell wall biochemistry differ between the micropylar (ME) and chalazal (CE) endosperm domains. In the ME, they involve cell wall loosening, cell separation, and programmed cell death to provide decreased and localized ME tissue resistance, autolysis, and finally the formation of an ME hole required for radicle emergence. Future work will further unravel the molecular mechanisms, environmental regulation, and evolution of the diverse biomechanical cell wall changes underpinning the control of germination by endosperm weakening.
Collapse
Affiliation(s)
- Tina Steinbrecher
- School of Biological Sciences, Plant Molecular Science and Centre for Systems and Synthetic Biology, Royal Holloway University of London, Egham, Surrey TW20 0EX, UK
| | - Gerhard Leubner-Metzger
- School of Biological Sciences, Plant Molecular Science and Centre for Systems and Synthetic Biology, Royal Holloway University of London, Egham, Surrey TW20 0EX, UK
| |
Collapse
|
18
|
Rawat S, Ali S, Mittra B, Grover A. Expression analysis of chitinase upon challenge inoculation to Alternaria wounding and defense inducers in Brassica juncea. ACTA ACUST UNITED AC 2017; 13:72-79. [PMID: 28352565 PMCID: PMC5361129 DOI: 10.1016/j.btre.2017.01.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Revised: 12/09/2016] [Accepted: 01/03/2017] [Indexed: 01/30/2023]
Abstract
Expression of chitinase gene was studied by RT-PCR in response to Alternaria brassicae. Chitinase gene is induced by Alternaria, wounding and by JA and not by SA. It shows the tissue specificity of the gene. Pathogen-inducible 2.5 kb chitinase class IV promoter was isolated from B. juncea by Genome Walking. Induction pattern of chitinase gene is also reflected in promoter validation studied in transgenic Arabidopsis leaf. This will help in using this promoter discretely in developing fungus resistant transgenic plants.
Chitinases are the hydrolytic enzymes which belong to the pathogenesis-related (PR) protein family and play an important role not only in plant defense but also in various abiotic stresses. However, only a limited number of chitinase genes have been characterised in B. juncea. In this study, we have characterised B. juncea class IV chitinase gene (accession no EF586206) in response to fungal infection, salicylic acid (SA), jasmonic acid (JA) treatments and wounding. Gene expression studies revealed that the transcript levels of Bjchitinase (BjChp) gene increases significantly both in local and distal tissues after Alternaria infection. Bjchitinase gene was also induced by jasmonic acid and wounding but moderately by salicylic acid. A 2.5 kb class IV chitinase promoter of this gene was isolated from B. juncea by Genome walking (accession no KF055403.1). In-silico analysis of this promoter revealed a number of conserved cis-regulatory elements related to defense, wounding and signalling molecules like SA, and JA. For validation, chitinase promoter was fused to the GUS gene, and the resultant construct was then introduced into Arabidopsis plants. Histochemical analysis of T2 transgenic Arabidopsis plants showed that higher GUS activity in leaves after fungal infection, wounding and JA treatment but weakly by SA. GUS activity was seen in meristematic tissues, young leaves, seeds and siliques. Finally investigation has led to the identification of a pathogen-inducible, developmentally regulated and organ-specific promoter. Present study revealed that Bjchitinase (BjChp) promoter is induced during biotic and environmental stress and it can be used in developing finely tuned transgenics.
Collapse
Affiliation(s)
- Sandhya Rawat
- National Research Centre on Plant Biotechnology, Pusa Campus, New Delhi, 110012, India; Fakir Mohan University, Vyasa Vihar, Balasore, Orissa 756020, India
| | - Sajad Ali
- National Research Centre on Plant Biotechnology, Pusa Campus, New Delhi, 110012, India
| | - Bhabatosh Mittra
- Fakir Mohan University, Vyasa Vihar, Balasore, Orissa 756020, India
| | - Anita Grover
- National Research Centre on Plant Biotechnology, Pusa Campus, New Delhi, 110012, India
| |
Collapse
|
19
|
Shigeyama T, Watanabe A, Tokuchi K, Toh S, Sakurai N, Shibuya N, Kawakami N. α-Xylosidase plays essential roles in xyloglucan remodelling, maintenance of cell wall integrity, and seed germination in Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:5615-5629. [PMID: 27605715 PMCID: PMC5066485 DOI: 10.1093/jxb/erw321] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Regulation and maintenance of cell wall physical properties are crucial for plant growth and environmental response. In the germination process, hypocotyl cell expansion and endosperm weakening are prerequisites for dicot seeds to complete germination. We have identified the Arabidopsis mutant thermoinhibition-resistant germination 1 (trg1), which has reduced seed dormancy and insensitivity to unfavourable conditions for germination owing to a loss-of-function mutation of TRG1/XYL1, which encodes an α-xylosidase. Compared to those of wild type, the elongating stem of trg1 showed significantly lower viscoelasticity, and the fruit epidermal cells were longitudinally shorter and horizontally enlarged. Actively growing tissues of trg1 over-accumulated free xyloglucan oligosaccharides (XGOs), and the seed cell wall had xyloglucan with a greatly reduced molecular weight. These observations suggest that XGOs reduce xyloglucan size by serving as an acceptor in transglycosylation and eventually enhancing cell wall loosening. TRG1/XYL1 gene expression was abundant in growing wild-type organs and tissues but relatively low in cells at most actively elongating part of the tissues, suggesting that α-xylosidase contributes to maintaining the mechanical integrity of the primary cell wall in the growing and pre-growing tissues. In germinating seeds of trg1, expression of genes encoding specific abscisic acid and gibberellin metabolism enzymes was altered in accordance with the aberrant germination phenotype. Thus, cell wall integrity could affect seed germination not only directly through the physical properties of the cell wall but also indirectly through the regulation of hormone gene expression.
Collapse
Affiliation(s)
- Takuma Shigeyama
- Department of Life Sciences, School of Agriculture, Meiji University, Higashimita 1-1-1, Tama-ku, Kawasaki 214-8571, Japan
| | - Asuka Watanabe
- Department of Life Sciences, School of Agriculture, Meiji University, Higashimita 1-1-1, Tama-ku, Kawasaki 214-8571, Japan
| | - Konatsu Tokuchi
- Department of Life Sciences, School of Agriculture, Meiji University, Higashimita 1-1-1, Tama-ku, Kawasaki 214-8571, Japan
| | - Shigeo Toh
- Department of Life Sciences, School of Agriculture, Meiji University, Higashimita 1-1-1, Tama-ku, Kawasaki 214-8571, Japan
| | - Naoki Sakurai
- Graduate School of Biosphere Science, Hiroshima University, Kagamiyama 1-3-2, Higashihiroshima 739-8528, Japan
| | - Naoto Shibuya
- Department of Life Sciences, School of Agriculture, Meiji University, Higashimita 1-1-1, Tama-ku, Kawasaki 214-8571, Japan
| | - Naoto Kawakami
- Department of Life Sciences, School of Agriculture, Meiji University, Higashimita 1-1-1, Tama-ku, Kawasaki 214-8571, Japan
| |
Collapse
|
20
|
Chen B, Ma J, Xu Z, Wang X. Abscisic acid and ethephon regulation of cellulase in the endosperm cap and radicle during lettuce seed germination. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2016; 58:859-869. [PMID: 27017965 DOI: 10.1111/jipb.12479] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 03/22/2016] [Indexed: 05/09/2023]
Abstract
The purpose of this study was to investigate the role of cellulase in endosperm cap weakening and radicle elongation during lettuce (Lactuca sativa L.) seed germination. The application of abscisic acid (ABA) or ethephon inhibits or promotes germination, respectively, by affecting endosperm cap weakening and radicle elongation. Cellulase activities, and related protein and transcript abundances of two lettuce cellulase genes, LsCEL1 and LsCEL2, increase in the endosperm cap and radicle prior to radicle protrusion following imbibition in water. ABA or ethephon reduce or elevate, respectively, cellulase activity, and related protein and transcript abundances in the endosperm cap. Taken together, these observations suggest that cellulase plays a role in endosperm cap weakening and radicle elongation during lettuce seed germination, and that the regulation of cellulase in the endosperm cap by ABA and ethephon play a role in endosperm cap weakening. However, the influence of ABA and ethephon on radicle elongation may not be through their effects on cellulase.
Collapse
Affiliation(s)
- Bingxian Chen
- Seed Science and Technology Lab, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
- Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Jun Ma
- Seed Science and Technology Lab, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Zhenjiang Xu
- Seed Science and Technology Lab, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Xiaofeng Wang
- Seed Science and Technology Lab, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
21
|
Dogra V, Sharma R, Yelam S. Xyloglucan endo-transglycosylase/hydrolase (XET/H) gene is expressed during the seed germination in Podophyllum hexandrum: a high altitude Himalayan plant. PLANTA 2016; 244:505-515. [PMID: 27097640 DOI: 10.1007/s00425-016-2520-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 04/04/2016] [Indexed: 06/05/2023]
Abstract
Xyloglucan endo-transglycosylase/hydrolase ( Ph XET/H) regulates Podophyllum seed germination via GA mediated up-accumulation of Ph XET protein and subsequent endosperm weakening. Xyloglucan endo-transglycosylase/hydrolase (XET/H) belong to glycosyl hydrolase family 16, which play an important role in endosperm weakening and embryonic expansion during seed germination. Podophyllum hexandrum is a high altitude medicinal plant exploited for its etoposides which are potential anticancer compounds. During seed germination in Podophyllum, accumulation of XET/H transcripts was recorded. This data confirmed its possible role in determining the fate of seed for germination. Full length cDNA of a membrane bound XET/H (here onwards PhXET) was cloned from the germinating seeds of Podophyllum. Analysis of nucleotide sequence revealed PhXET with an open reading frame of 720 bp encoding a protein of 239 amino acids with a molecular mass of 28 kDa and pI of 7.58. In silico structure prediction of PhXET showed homology with that of Populus tremula (1UN1). PhXET was predicted to have a potential GPI-anchor domain and was located in plasma membrane. It was found that the exogenously applied phytohormones (GA and ABA) regulate the expression of PhXET. The obtained data showed that the PhXET regulates seed germination in Podophyllum by supplementing its activity along with other endosperm weakening and embryo expansion genes.
Collapse
Affiliation(s)
- Vivek Dogra
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, 176061, India
- Laboratory of Photosynthesis and Stress Signaling, Shanghai Center for Plant Stress Biology, CAS, Shanghai, China
| | - Ruchika Sharma
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, 176061, India
| | - Sreenivasulu Yelam
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, 176061, India.
| |
Collapse
|
22
|
Yan J, Yuan SS, Jiang LL, Ye XJ, Ng TB, Wu ZJ. Plant antifungal proteins and their applications in agriculture. Appl Microbiol Biotechnol 2015; 99:4961-81. [PMID: 25971197 DOI: 10.1007/s00253-015-6654-6] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Revised: 04/26/2015] [Accepted: 04/27/2015] [Indexed: 11/24/2022]
Abstract
Fungi are far more complex organisms than viruses or bacteria and can develop numerous diseases in plants that cause loss of a substantial portion of the crop every year. Plants have developed various mechanisms to defend themselves against these fungi which include the production of low-molecular-weight secondary metabolites and proteins and peptides with antifungal activity. In this review, families of plant antifungal proteins (AFPs) including defensins, lectins, and several others will be summarized. Moreover, the application of AFPs in agriculture will also be analyzed.
Collapse
Affiliation(s)
- Juan Yan
- Key Laboratory of Plant Virology of Fujian Province, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China,
| | | | | | | | | | | |
Collapse
|
23
|
Dogra V, Sreenivasulu Y. Cloning and functional characterization of β-1, 3-glucanase gene from Podophyllum hexandrum - a high altitude Himalayan plant. Gene 2015; 554:25-31. [PMID: 25303872 DOI: 10.1016/j.gene.2014.10.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 09/30/2014] [Accepted: 10/06/2014] [Indexed: 10/24/2022]
Abstract
Podophyllum hexandrum is a high-altitude medicinal plant exploited for its etoposides which are potential anticancer compounds. ß-1, 3-glucanase cDNA was cloned from the germinating seeds of Podophyllum (Ph-glucanase). Glucanases belong to pathogenesis related glycohydralase family of proteins, which also play an important role in endosperm weakening and testa rupture during seed germination. Analysis of cloned nucleotide sequence revealed Ph-glucanase with an open reading frame of 852bp encoding a protein of 283 amino acids with a molecular mass of 31kDa and pI of 4.39. In-silico structure prediction of Ph-glucanase showed homology with that of Hevea brasiliensis (3em5B). Structural stability and enhanced catalytic efficiency in harsh climatic conditions possibly due to the presence of glycosyl hydrolase motif (LGIVISESGWPSAG) and a connecting loop towards inner side and well exposed carbohydrate metabolism domain-COG5309, can readily hydrolyse cell wall sugar moieties. Seeds from the transgenic Arabidopsis plants over-expressing Ph-glucanase showed better germination performance against a wide range of temperatures and abscisic acid (ABA) stress. This can be attributed to the accumulation of Ph-glucanase at both transcript and protein levels during the seed germination in transgenic Arabidopsis. Results confirm that the cloned novel seed specific glucanase from a cold desert plant Podophyllum could be used for the manipulation of different plant species seeds against various harsh conditions.
Collapse
Affiliation(s)
- Vivek Dogra
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, HP, India
| | - Yelam Sreenivasulu
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, HP, India.
| |
Collapse
|
24
|
Burrieza HP, López-Fernández MP, Maldonado S. Analogous reserve distribution and tissue characteristics in quinoa and grass seeds suggest convergent evolution. FRONTIERS IN PLANT SCIENCE 2014; 5:546. [PMID: 25360139 PMCID: PMC4199267 DOI: 10.3389/fpls.2014.00546] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Accepted: 09/24/2014] [Indexed: 05/09/2023]
Abstract
Quinoa seeds are highly nutritious due to the quality of their proteins and lipids and the wide range of minerals and vitamins they store. Three compartments can be distinguished within the mature seed: embryo, endosperm, and perisperm. The distribution of main storage reserves is clearly different in those areas: the embryo and endosperm store proteins, lipids, and minerals, and the perisperm stores starch. Tissues equivalent (but not homologous) to those found in grasses can be identified in quinoa, suggesting the effectiveness of this seed reserve distribution strategy; as in cells of grass starchy endosperm, the cells of the quinoa perisperm endoreduplicate, increase in size, synthesize starch, and die during development. In addition, both systems present an extra-embryonic tissue that stores proteins, lipids and minerals: in gramineae, the aleurone layer(s) of the endosperm; in quinoa, the micropylar endosperm; in both cases, the tissues are living. Moreover, the quinoa micropylar endosperm and the coleorhiza in grasses play similar roles, protecting the root in the quiescent seed and controlling dormancy during germination. This investigation is just the beginning of a broader and comparative study of the development of quinoa and grass seeds. Several questions arise from this study, such as: how are synthesis and activation of seed proteins and enzymes regulated during development and germination, what are the genes involved in these processes, and lastly, what is the genetic foundation justifying the analogy to grasses.
Collapse
Affiliation(s)
- Hernán P. Burrieza
- Instituto de Biodiversidad y Biologia Experimental y Aplicada – Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos AiresArgentina
- Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Autónoma de Buenos AiresArgentina
| | - María P. López-Fernández
- Instituto de Biodiversidad y Biologia Experimental y Aplicada – Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos AiresArgentina
- Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Autónoma de Buenos AiresArgentina
| | - Sara Maldonado
- Instituto de Biodiversidad y Biologia Experimental y Aplicada – Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos AiresArgentina
- Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Autónoma de Buenos AiresArgentina
- *Correspondence: Sara Maldonado, Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, Ciudad Autónoma de Buenos Aires C1428EGA, Argentina e-mail:
| |
Collapse
|
25
|
Pinheiro C, Sergeant K, Machado CM, Renaut J, Ricardo CP. Two Traditional Maize Inbred Lines of Contrasting Technological Abilities Are Discriminated by the Seed Flour Proteome. J Proteome Res 2013; 12:3152-65. [DOI: 10.1021/pr400012t] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Carla Pinheiro
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República-EAN,
2780-157 Oeiras, Portugal
| | - Kjell Sergeant
- Department “Environment and Agro-biotechnologies” (EVA), Centre de Recherche Public-Gabriel Lippmann, 41, rue
du Brill, 4422 Belvaux, Luxembourg
| | - Cátia M. Machado
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República-EAN,
2780-157 Oeiras, Portugal
| | - Jenny Renaut
- Department “Environment and Agro-biotechnologies” (EVA), Centre de Recherche Public-Gabriel Lippmann, 41, rue
du Brill, 4422 Belvaux, Luxembourg
| | - Cândido P. Ricardo
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República-EAN,
2780-157 Oeiras, Portugal
| |
Collapse
|
26
|
Gai S, Zhang Y, Liu C, Zhang Y, Zheng G. Transcript profiling of Paoenia ostii during artificial chilling induced dormancy release identifies activation of GA pathway and carbohydrate metabolism. PLoS One 2013; 8:e55297. [PMID: 23405132 PMCID: PMC3566188 DOI: 10.1371/journal.pone.0055297] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Accepted: 12/20/2012] [Indexed: 11/23/2022] Open
Abstract
Endo-dormant flower buds must pass through a period of chilling to reinitiate growth and subsequent flowering, which is a major obstacle to the forcing culture of tree peony in winter. Customized cDNA microarray (8×15 K element) was used to investigate gene expression profiling in tree peony 'Feng Dan Bai' buds during 24 d chilling treatment at 0-4°C. According to the morphological changes after the whole plants were transferred to green house, endo-dormancy was released after 18 d chilling treatment, and prolonged chilling treatment increased bud break rate. Pearson correlation hierarchical clustering of sample groups was highly consistent with the dormancy transitions revealed by morphological changes. Totally 3,174 significantly differentially-expressed genes (P<0.05) were observed through endo-dormancy release process, of which the number of up-regulated (1,611) and that of down-regulated (1,563) was almost the same. Functional annotation of differentially-expressed genes revealed that cellular process, metabolic process, response to stimulus, regulation of biological process and development process were well-represented. Hierarchical clustering indicated that activation of genes involved in carbohydrate metabolism (Glycolysis, Citrate cycle and Pentose phosphate pathway), energy metabolism and cell growth. Based on the results of GO analysis, totally 51 probes presented in the microarray were associated with GA response and GA signaling pathway, and 22 of them were differently expressed. The expression profiles also revealed that the genes of GA biosynthesis, signaling and response involved in endo-dormancy release. We hypothesized that activation of GA pathway played a central role in the regulation of dormancy release in tree peony.
Collapse
Affiliation(s)
- Shupeng Gai
- College of Life Sciences, Qingdao Agricultural University, Key Lab of Plant Biotechnology in Universities of Shandong Province, Qingdao, China
| | - Yuxi Zhang
- College of Life Sciences, Qingdao Agricultural University, Key Lab of Plant Biotechnology in Universities of Shandong Province, Qingdao, China
| | - Chunying Liu
- College of Life Sciences, Qingdao Agricultural University, Key Lab of Plant Biotechnology in Universities of Shandong Province, Qingdao, China
| | - Yang Zhang
- College of Life Sciences, Qingdao Agricultural University, Key Lab of Plant Biotechnology in Universities of Shandong Province, Qingdao, China
| | - Guosheng Zheng
- College of Life Sciences, Qingdao Agricultural University, Key Lab of Plant Biotechnology in Universities of Shandong Province, Qingdao, China
| |
Collapse
|
27
|
Lee KJ, Dekkers BJ, Steinbrecher T, Walsh CT, Bacic A, Bentsink L, Leubner-Metzger G, Knox JP. Distinct cell wall architectures in seed endosperms in representatives of the Brassicaceae and Solanaceae. PLANT PHYSIOLOGY 2012; 160:1551-66. [PMID: 22961130 PMCID: PMC3490593 DOI: 10.1104/pp.112.203661] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Accepted: 09/04/2012] [Indexed: 05/04/2023]
Abstract
In some species, a crucial role has been demonstrated for the seed endosperm during germination. The endosperm has been shown to integrate environmental cues with hormonal networks that underpin dormancy and seed germination, a process that involves the action of cell wall remodeling enzymes (CWREs). Here, we examine the cell wall architectures of the endosperms of two related Brassicaceae, Arabidopsis (Arabidopsis thaliana) and the close relative Lepidium (Lepidium sativum), and that of the Solanaceous species, tobacco (Nicotiana tabacum). The Brassicaceae species have a similar cell wall architecture that is rich in pectic homogalacturonan, arabinan, and xyloglucan. Distinctive features of the tobacco endosperm that are absent in the Brassicaceae representatives are major tissue asymmetries in cell wall structural components that reflect the future site of radicle emergence and abundant heteromannan. Cell wall architecture of the micropylar endosperm of tobacco seeds has structural components similar to those seen in Arabidopsis and Lepidium endosperms. In situ and biomechanical analyses were used to study changes in endosperms during seed germination and suggest a role for mannan degradation in tobacco. In the case of the Brassicaceae representatives, the structurally homogeneous cell walls of the endosperm can be acted on by spatially regulated CWRE expression. Genetic manipulations of cell wall components present in the Arabidopsis seed endosperm demonstrate the impact of cell wall architectural changes on germination kinetics.
Collapse
Affiliation(s)
- Kieran J.D. Lee
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom (K.J.D.L., J.P.K.); Wageningen Seed Lab, Laboratory of Plant Physiology, Wageningen University, 6708 PB Wageningen, The Netherlands (B.J.W.D., L.B.); Department of Molecular Plant Physiology, Utrecht University, 3584 CH Utrecht, The Netherlands (B.J.W.D., L.B.); University of Freiburg, Faculty of Biology, Institute for Biology II, Botany/Plant Physiology, D–79104 Freiburg, Germany (T.S., G.L.-M.); and ARC Centre of Excellence in Plant Cell Walls, School of Botany, University of Melbourne, Parkville, Victoria 3010, Australia (C.T.W., A.B.)
| | - Bas J.W. Dekkers
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom (K.J.D.L., J.P.K.); Wageningen Seed Lab, Laboratory of Plant Physiology, Wageningen University, 6708 PB Wageningen, The Netherlands (B.J.W.D., L.B.); Department of Molecular Plant Physiology, Utrecht University, 3584 CH Utrecht, The Netherlands (B.J.W.D., L.B.); University of Freiburg, Faculty of Biology, Institute for Biology II, Botany/Plant Physiology, D–79104 Freiburg, Germany (T.S., G.L.-M.); and ARC Centre of Excellence in Plant Cell Walls, School of Botany, University of Melbourne, Parkville, Victoria 3010, Australia (C.T.W., A.B.)
| | | | - Cherie T. Walsh
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom (K.J.D.L., J.P.K.); Wageningen Seed Lab, Laboratory of Plant Physiology, Wageningen University, 6708 PB Wageningen, The Netherlands (B.J.W.D., L.B.); Department of Molecular Plant Physiology, Utrecht University, 3584 CH Utrecht, The Netherlands (B.J.W.D., L.B.); University of Freiburg, Faculty of Biology, Institute for Biology II, Botany/Plant Physiology, D–79104 Freiburg, Germany (T.S., G.L.-M.); and ARC Centre of Excellence in Plant Cell Walls, School of Botany, University of Melbourne, Parkville, Victoria 3010, Australia (C.T.W., A.B.)
| | - Antony Bacic
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom (K.J.D.L., J.P.K.); Wageningen Seed Lab, Laboratory of Plant Physiology, Wageningen University, 6708 PB Wageningen, The Netherlands (B.J.W.D., L.B.); Department of Molecular Plant Physiology, Utrecht University, 3584 CH Utrecht, The Netherlands (B.J.W.D., L.B.); University of Freiburg, Faculty of Biology, Institute for Biology II, Botany/Plant Physiology, D–79104 Freiburg, Germany (T.S., G.L.-M.); and ARC Centre of Excellence in Plant Cell Walls, School of Botany, University of Melbourne, Parkville, Victoria 3010, Australia (C.T.W., A.B.)
| | - Leónie Bentsink
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom (K.J.D.L., J.P.K.); Wageningen Seed Lab, Laboratory of Plant Physiology, Wageningen University, 6708 PB Wageningen, The Netherlands (B.J.W.D., L.B.); Department of Molecular Plant Physiology, Utrecht University, 3584 CH Utrecht, The Netherlands (B.J.W.D., L.B.); University of Freiburg, Faculty of Biology, Institute for Biology II, Botany/Plant Physiology, D–79104 Freiburg, Germany (T.S., G.L.-M.); and ARC Centre of Excellence in Plant Cell Walls, School of Botany, University of Melbourne, Parkville, Victoria 3010, Australia (C.T.W., A.B.)
| | | | - J. Paul Knox
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom (K.J.D.L., J.P.K.); Wageningen Seed Lab, Laboratory of Plant Physiology, Wageningen University, 6708 PB Wageningen, The Netherlands (B.J.W.D., L.B.); Department of Molecular Plant Physiology, Utrecht University, 3584 CH Utrecht, The Netherlands (B.J.W.D., L.B.); University of Freiburg, Faculty of Biology, Institute for Biology II, Botany/Plant Physiology, D–79104 Freiburg, Germany (T.S., G.L.-M.); and ARC Centre of Excellence in Plant Cell Walls, School of Botany, University of Melbourne, Parkville, Victoria 3010, Australia (C.T.W., A.B.)
| |
Collapse
|
28
|
Martínez-Andújar C, Pluskota WE, Bassel GW, Asahina M, Pupel P, Nguyen TT, Takeda-Kamiya N, Toubiana D, Bai B, Górecki RJ, Fait A, Yamaguchi S, Nonogaki H. Mechanisms of hormonal regulation of endosperm cap-specific gene expression in tomato seeds. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 71:575-86. [PMID: 22458548 DOI: 10.1111/j.1365-313x.2012.05010.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The micropylar region of endosperm in a seed, which is adjacent to the radicle tip, is called the 'endosperm cap', and is specifically activated before radicle emergence. This activation of the endosperm cap is a widespread phenomenon among species and is a prerequisite for the completion of germination. To understand the mechanisms of endosperm cap-specific gene expression in tomato seeds, GeneChip analysis was performed. The major groups of endosperm cap-enriched genes were pathogenesis-, cell wall-, and hormone-associated genes. The promoter regions of endosperm cap-enriched genes contained DNA motifs recognized by ethylene response factors (ERFs). The tomato ERF1 (TERF1) and its experimentally verified targets were enriched in the endosperm cap, suggesting an involvement of the ethylene response cascade in this process. The known endosperm cap enzyme endo-β-mannanase is induced by gibberellin (GA), which is thought to be the major hormone inducing endosperm cap-specific genes. The mechanism of endo-β-mannanase induction by GA was also investigated using isolated, embryoless seeds. Results suggested that GA might act indirectly on the endosperm cap. We propose that endosperm cap activation is caused by the ethylene response of this tissue, as a consequence of mechanosensing of the increase in embryonic growth potential by GA action.
Collapse
|
29
|
Janiak A, Piórko S, Matros A, Mock HP, Kwaśniewski M, Chwiałkowska K, Chmielewska B, Szarejko I. A comparative analysis of proteins that accumulate during the initial stage of root hair development in barley root hair mutants and their parent varieties. J Appl Genet 2012; 53:363-76. [PMID: 22847350 PMCID: PMC3477482 DOI: 10.1007/s13353-012-0105-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Revised: 06/15/2012] [Accepted: 07/02/2012] [Indexed: 12/19/2022]
Abstract
The mechanisms of root hair formation have been studied extensively in Arabidopsis but knowledge about these processes in monocot species is still limited, especially in relation to the proteome level. The aim of this study was to identify the proteins that are involved in the initiation and the early stage of root hair tip growth in barley using two-dimensional (2D) electrophoresis and mass spectrometry. A comparison of proteins that accumulate differentially in two root hair mutants and their respective parent varieties resulted in the identification of 13 proteins that take part in several processes related to the root hair morphogenesis, such as the control of vesicular trafficking, ROS signalling and homeostasis, signal transduction by phospholipids metabolism and ATP synthesis. Among the identified proteins, two ATP synthases, two ABC transporters, a small GTPase from the SAR1 family, a PDI-like protein, a monodehydroascorbate reductase, a C2 domain-containing protein and a Wali7 domain-containing protein were found. This study is the first report on the proteins identified in the initial stage of root hair formation in barley and gives new insights into the mechanisms of root hair morphogenesis in a monocot species.
Collapse
Affiliation(s)
- Agnieszka Janiak
- Department of Genetics, University of Silesia, Jagiellońska 28, 40-032 Katowice, Poland.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Rodríguez-Gacio MDC, Iglesias-Fernández R, Carbonero P, Matilla AJ. Softening-up mannan-rich cell walls. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:3976-88. [PMID: 22553284 DOI: 10.1093/jxb/ers096] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The softening and degradation of the cell wall (CW), often mannan enriched, is involved in several processes during development of higher plants, such as meristematic growth, fruit ripening, programmed cell death, and endosperm rupture upon germination. Mannans are also the predominant hemicellulosic CW polymers in many genera of green algae. The endosperm CWs of dry seeds often contain mannan polymers, sometimes in the form of galactomannans (Gal-mannans). The endo-β-mannanases (MANs) that catalyse the random hydrolysis of the β-linkage in the mannan backbone are one of the main hydrolytic enzymes involved in the loosening and remodelling of CWs. In germinating seeds, the softening of the endosperm seed CWs facilitates the emergence of the elongating radicle. Hydrolysis and mobilization of endosperm Gal-mannans by MANs also provides a source of nutrients for early seedling growth, since Gal-mannan, besides its structural role, serves as a storage polysaccharide. Therefore, the role of mannans and of their hydrolytic enzymes is decisive in the life cycle of seeds. This review updates and discusses the significance of mannans and MANs in seeds and explores the increasing biotechnological potential of MAN enzymes.
Collapse
|
31
|
Nakaune M, Hanada A, Yin YG, Matsukura C, Yamaguchi S, Ezura H. Molecular and physiological dissection of enhanced seed germination using short-term low-concentration salt seed priming in tomato. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2012; 52:28-37. [PMID: 22305065 DOI: 10.1016/j.plaphy.2011.11.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Accepted: 11/04/2011] [Indexed: 05/11/2023]
Abstract
Seed germination is the initial step of plant development. Seed priming with salt promotes seed germination in tomato (Solanum lycopersicum L.); however, the molecular and physiological mechanisms underlying the enhancement of seed germination by priming remain to be elucidated. In this study, we examined the following in seeds both during and after priming treatment: the endogenous abscisic acid (ABA) and gibberellin (GA) concentrations; the expression of genes encoding ABA catabolic and GA biosynthesis enzymes, including 8'-hydroxylase (CYP707A), copalyl diphosphate synthase (CPS), GA 20-oxidase (GA20ox) and GA 3-oxidase (GA3ox); and endosperm cap weakening enzymes, including expansin (EXP), class I β-1,3-glucanase (GulB), endo-β-mannanase (MAN) and xyloglucan endotransglucosylase (XTH). Tomato seeds were soaked for 24 h at 25 °C in the dark in 300 mM NaCl (NaCl-priming) or distilled water (hydro-priming). For both priming treatments, the ABA content in the seeds increased during treatment but rapidly decreased after sowing. Both during and after the priming treatments, the ABA levels in the hydro-primed seeds and NaCl-primed seeds were not significantly different. The expression levels of SlGA20ox1, SlGA3ox1 and SlGA3ox2 were significantly enhanced in the NaCl-primed seeds compared to the hydro-primed seeds. The GA(4) content was quantifiable after both types of priming, indicating that GA(4) is the major bioactive GA molecule involved in tomato seed germination. The GA(4) content was significantly higher in the NaCl-primed seeds than in the hydro-primed seeds 12 h after sowing and thereafter. Additionally, the peak expression levels of SlEXP4, SlGulB, SlMAN2 and SlXTH4 occurred earlier and were significantly higher in the NaCl-primed seeds than in the hydro-primed seeds. These results suggest that the observed effect of NaCl-priming on tomato seed germination is caused by an increase of the GA(4) content via GA biosynthetic gene activation and a subsequent increase in the expression of genes related to endosperm cap weakening.
Collapse
Affiliation(s)
- Makoto Nakaune
- Horticultural Laboratory, Saitama Prefecture Agriculture and Forestry Research Centre, 91 Rokumannbu, Kuki, Saitama 346-0037, Japan
| | | | | | | | | | | |
Collapse
|
32
|
Pluskota WE, Bradford KJ, Nonogaki H. Tissue-printing methods for localization of RNA and proteins that control seed dormancy and germination. Methods Mol Biol 2011; 773:329-39. [PMID: 21898264 DOI: 10.1007/978-1-61779-231-1_19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
A number of genes and proteins are expressed in a tissue- or cell layer-specific manner. Spatial patterns of gene expression are critical to understanding gene function. Tissue printing provides a simple and rapid method to analyze localization of mRNA and protein at the tissue and cellular levels. This is especially convenient for gene expression analysis in hard tissues, such as seeds that are often difficult to section. Seed RNA or protein can be transferred onto a suitable membrane by printing the cut surface of a bisected seed. This method has been used successfully to determine mRNA and protein localization in seed research. The resolution of printed seed images and RNA and protein signals in tissue printing is sufficient to identify embryo- or endosperm-specific expression of various genes and proteins. In some cases, these studies have contributed to elucidating the spatial characteristics of hydrolytic enzymes putatively involved in the completion of germination and/or early postgerminative growth. By the same principle, tissue-printing methods could also be valuable for elucidating the spatial characteristics of genes/proteins that control the inception, maintenance, and termination of seed dormancy.
Collapse
Affiliation(s)
- Wioletta E Pluskota
- Department of Plant Physiology and Biotechnology, University of Warmia and Mazury, Olsztyn, Poland
| | | | | |
Collapse
|
33
|
Yang H, Zhang T, Masuda T, Lv C, Sun L, Qu G, Zhao G. Chitinase III in pomegranate seeds (Punica granatum Linn.): a high-capacity calcium-binding protein in amyloplasts. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 68:765-76. [PMID: 21790816 DOI: 10.1111/j.1365-313x.2011.04727.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Chitinases are a class of ubiquitous proteins that are widely distributed in plants. Defense is the major natural role for chitinases, primarily against fungal pathogens. Little is known regarding their non-defensive roles in seeds. In this study, a new class III chitinase from pomegranate seeds (pomegranate seed chitinase, PSC) was isolated and purified to homogeneity. The native state of PSC is a monomer with a molecular weight of approximately 30 kDa. This chitinase naturally binds calcium ions with high capacity and low affinity, suggesting that PSC is a calcium storage protein. Consistent with this idea, its amino acid sequence (inferred from cDNA) is rich in acidic amino acid residues, especially Asp, similar to reported calcium storage proteins. The presence of calcium considerably improves the stability of the protein but has little effect on its enzymatic activity. Transmission electron microscopy analyses indicate that, similar to phytoferritin, this enzyme is widely distributed in the stroma of amyloplasts of the embryonic cells, suggesting that amyloplasts in seeds could serve as an alternative plastid for calcium storage. Indeed, the transmission electron microscopy results showed that, within the embryonic cells, calcium ions are mainly distributed in the stroma of the amyloplasts, consistent with a role for PSC in calcium storage. Thus, the plant appears to have evolved a new plastid for calcium storage in seeds. During seed germination, the content of this enzyme decreases with time, suggesting that it is involved in the germination process.
Collapse
Affiliation(s)
- Haixia Yang
- CAU & ACC Joint Laboratory of Space Food, College of Food Science & Nutritional Engineering, China Agricultural University, Key Laboratory of Functional Dairy, Ministry of Education, Beijing 100083, China
| | | | | | | | | | | | | |
Collapse
|
34
|
Lv C, Masuda T, Yang H, Sun L, Zhao G. High-capacity calcium-binding chitinase III from pomegranate seeds (Punica granatum Linn.) is located in amyloplasts. PLANT SIGNALING & BEHAVIOR 2011; 6:1963-5. [PMID: 22112454 PMCID: PMC3337188 DOI: 10.4161/psb.6.12.18147] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
We have recently identified a new class III chitinase from pomegranate seeds (PSC). Interestingly, this new chitinase naturally binds calcium ions with high capacity and low affinity, suggesting that PSC is a Ca-storage protein. Analysis of the amino acid sequence showed that this enzyme is rich in acidic amino acid residues, especially Asp, which are responsible for calcium binding. Different from other known chitinases, PSC is located in the stroma of amyloplasts in pomegranate seeds. Transmission electron microscopy (TEM) analysis indicated that the embryonic cells of pomegranate seeds are rich in calcium ions, most of which are distributed in the stroma and the starch granule of the amyloplasts, consistent with the above idea that PSC is involved in calcium storage, a newly non-defensive function.
Collapse
Affiliation(s)
- Chenyan Lv
- CAU & ACC Joint-Laboratory of Space Food; College of Food Science & Nutritional Engineering; China Agricultural University; Key Laboratory of Functional Dairy; Beijing, China
| | - Taro Masuda
- Laboratory of Food Quality Design and Development; Division of Agronomy and Horticultural Science; Graduate School of Agriculture; Kyoto University; Kyoto, Japan
| | - Haixia Yang
- CAU & ACC Joint-Laboratory of Space Food; College of Food Science & Nutritional Engineering; China Agricultural University; Key Laboratory of Functional Dairy; Beijing, China
| | - Lei Sun
- Center for Biological Imaging; Institute of Biophysics; Chinese Academy of Sciences; Beijing, China
| | - Guanghua Zhao
- CAU & ACC Joint-Laboratory of Space Food; College of Food Science & Nutritional Engineering; China Agricultural University; Key Laboratory of Functional Dairy; Beijing, China
| |
Collapse
|
35
|
Yang ZB, Eticha D, Rotter B, Rao IM, Horst WJ. Physiological and molecular analysis of polyethylene glycol-induced reduction of aluminium accumulation in the root tips of common bean (Phaseolus vulgaris). THE NEW PHYTOLOGIST 2011; 192:99-113. [PMID: 21668875 DOI: 10.1111/j.1469-8137.2011.03784.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
• Aluminium (Al) toxicity and drought are two major stress factors limiting common bean (Phaseolus vulgaris) production on tropical acid soils. Polyethylene glycol (PEG) treatment reduces Al uptake and Al toxicity. • The effect of PEG 6000-induced osmotic stress on the expression of genes was studied using SuperSAGE combined with next-generation sequencing and quantitative reverse transcription-polymerase chain reaction (qRT-PCR) for selected genes. • Less Al stress in PEG-treated roots was confirmed by decreased Al-induced up-regulation of MATE and ACCO genes. The withdrawal of PEG from the Al treatment solution restored the Al accumulation and reversed the expression of MATE and ACCO genes to the level of the treatment with Al alone. Using SuperSAGE, we identified 611 up- and 728 down-regulated genes in PEG-treated root tips, and the results were confirmed by qRT-PCR using 46 differentially expressed genes. Among the 12 genes studied in more detail, XTHa and BEG (down-regulated by PEG) and HRGP, bZIP, MYB and P5CS (up-regulated by PEG) recovered completely within 2 h after removal of PEG stress. • The results suggest that genes related to cell wall assembly and modification, such as XTHs, BEG and HRGP, play important roles in the PEG-induced decrease in cell wall porosity, leading to reduced Al accumulation in root tips.
Collapse
Affiliation(s)
- Zhong-Bao Yang
- Institute of Plant Nutrition, Leibniz Universität Hannover, Herrenhaeuser Str. 2, D-30419 Hannover, Germany
| | - Dejene Eticha
- Institute of Plant Nutrition, Leibniz Universität Hannover, Herrenhaeuser Str. 2, D-30419 Hannover, Germany
| | - Björn Rotter
- GenXPro GmbH, Altenhöferallee 3, 60438 Frankfurt am Main, Germany
| | | | - Walter Johannes Horst
- Institute of Plant Nutrition, Leibniz Universität Hannover, Herrenhaeuser Str. 2, D-30419 Hannover, Germany
| |
Collapse
|
36
|
Mohorianu I, Schwach F, Jing R, Lopez-Gomollon S, Moxon S, Szittya G, Sorefan K, Moulton V, Dalmay T. Profiling of short RNAs during fleshy fruit development reveals stage-specific sRNAome expression patterns. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 67:232-46. [PMID: 21443685 DOI: 10.1111/j.1365-313x.2011.04586.x] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Plants feature a particularly diverse population of short (s)RNAs, the central component of all RNA silencing pathways. Next generation sequencing techniques enable deeper insights into this complex and highly conserved mechanism and allow identification and quantification of sRNAs. We employed deep sequencing to monitor the sRNAome of developing tomato fruits covering the period between closed flowers and ripened fruits by profiling sRNAs at 10 time-points. It is known that microRNAs (miRNAs) play an important role in development but very little information is available about the majority of sRNAs that are not miRNAs. Here we show distinctive patterns of sRNA expression that often coincide with stages of the developmental process such as flowering, early and late fruit maturation. Moreover, thousands of non-miRNA sRNAs are differentially expressed during fruit development and ripening. Some of these differentially expressed sRNAs derived from transposons but many derive from protein coding genes or regions that show homology to protein coding genes, several of which are known to play a role in flower and fruit development. These findings raise the possibility of a regulative role of these sRNAs during fruit onset and maturation in a crop species. We also identified six new miRNAs and experimentally validated two target mRNAs. These two mRNAs are targeted by the same miRNA but do not belong to the same gene family, which is rare for plant miRNAs. Expression pattern and putative function of these targets indicate a possible role in glutamate accumulation, which contributes to establishing the taste of the fruit.
Collapse
Affiliation(s)
- Irina Mohorianu
- School of Computing Sciences, University of East Anglia, Norwich, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Iglesias-Fernández R, Rodríguez-Gacio MC, Barrero-Sicilia C, Carbonero P, Matilla A. Three endo-β-mannanase genes expressed in the micropylar endosperm and in the radicle influence germination of Arabidopsis thaliana seeds. PLANTA 2011; 233:25-36. [PMID: 20878180 DOI: 10.1007/s00425-010-1257-z] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Accepted: 08/17/2010] [Indexed: 05/28/2023]
Abstract
Mannans are hemicellulosic polysaccharides in the plant primary cell wall (CW). Mature seeds, specially their endosperm cells, have CWs rich in mannan-based polymers that confer a strong mechanical resistance for the radicle protrusion upon germination. The rupture of the seed coat and endosperm are two sequential events during the germination of Arabidopsis thaliana. Endo-β-mannanases (MAN; EC. 3.2.1.78) are hydrolytic enzymes that catalyze cleavage of β1 → 4 bonds in the mannan-polymer. In the genome of Arabidopsis, the endo-β-mannanase (MAN) family is represented by eight members. The expression of these eight MAN genes has been systematically explored in different organs of this plant and only four of them (AtMAN7, AtMAN6, AtMAN2 and AtMAN5) are expressed in the germinating seeds. Moreover, in situ hybridization analysis shows that their transcript accumulation is restricted to the micropylar endosperm and to the radicle and this expression disappears soon after radicle emergence. T-DNA insertion mutants in these genes (K.O. MAN7, K.O. MAN6, K.O. MAN5), except that corresponding to AtMAN2 (K.O. MAN2), germinate later than the wild type (Wt). K.O. MAN6 is the most affected in the germination time course with a t (50) almost double than that of the Wt. These data suggest that AtMAN7, AtMAN5 and specially AtMAN6 are important for the germination of A. thaliana seeds by facilitating the hydrolysis of the mannan-rich endosperm cell walls.
Collapse
Affiliation(s)
- Raquel Iglesias-Fernández
- Departamento de Fisiología Vegetal, Facultad de Farmacia, Universidad de Santiago de Compostela, Santiago de Compostela, Spain
| | | | | | | | | |
Collapse
|
38
|
Schwember AR, Bradford KJ. A genetic locus and gene expression patterns associated with the priming effect on lettuce seed germination at elevated temperatures. PLANT MOLECULAR BIOLOGY 2010; 73:105-18. [PMID: 20047028 PMCID: PMC2850532 DOI: 10.1007/s11103-009-9591-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2009] [Accepted: 12/16/2009] [Indexed: 05/18/2023]
Abstract
Seeds of most cultivated varieties of lettuce (Lactuca sativa L.) fail to germinate at warm temperatures (i.e., above 25-30 degrees C). Seed priming (controlled hydration followed by drying) alleviates this thermoinhibition by increasing the maximum germination temperature. We conducted a quantitative trait locus (QTL) analysis of seed germination responses to priming using a recombinant inbred line (RIL) population derived from a cross between L. sativa cv. Salinas and L. serriola accession UC96US23. Priming significantly increased the maximum germination temperature of the RIL population, and a single major QTL was responsible for 47% of the phenotypic variation due to priming. This QTL collocated with Htg6.1, a major QTL from UC96US23 associated with high temperature germination capacity. Seeds of three near-isogenic lines (NILs) carrying an Htg6.1 introgression from UC96US23 in a Salinas genetic background exhibited synergistic increases in maximum germination temperature in response to priming. LsNCED4, a gene encoding a key enzyme (9-cis-epoxycarotinoid dioxygenase) in the abscisic acid biosynthetic pathway, maps precisely with Htg6.1. Expression of LsNCED4 after imbibition for 24 h at high temperature was greater in non-primed seeds of Salinas, of a second cultivar (Titan) and of NILs containing Htg6.1 compared to primed seeds of the same genotypes. In contrast, expression of genes encoding regulated enzymes in the gibberellin and ethylene biosynthetic pathways (LsGA3ox1 and LsACS1, respectively) was enhanced by priming and suppressed by imbibition at elevated temperatures. Developmental and temperature regulation of hormonal biosynthetic pathways is associated with seed priming effects on germination temperature sensitivity.
Collapse
Affiliation(s)
- Andrés R. Schwember
- Department of Plant Sciences, One Shields Ave., University of California, Davis, CA 95616-8780 USA
| | - Kent J. Bradford
- Department of Plant Sciences, One Shields Ave., University of California, Davis, CA 95616-8780 USA
| |
Collapse
|
39
|
Okamoto M, Tatematsu K, Matsui A, Morosawa T, Ishida J, Tanaka M, Endo TA, Mochizuki Y, Toyoda T, Kamiya Y, Shinozaki K, Nambara E, Seki M. Genome-wide analysis of endogenous abscisic acid-mediated transcription in dry and imbibed seeds of Arabidopsis using tiling arrays. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 62:39-51. [PMID: 20088898 DOI: 10.1111/j.1365-313x.2010.04135.x] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The phytohormone abscisic acid (ABA) plays important roles in the induction and maintenance of seed dormancy. Although application of exogenous ABA inhibits germination, the effects of exogenous ABA on ABA-mediated gene transcription differ from those of endogenous ABA. To understand how endogenous ABA regulates the transcriptomes in seeds, we performed comprehensive expression analyses using whole-genome Affymetrix tiling arrays in two ABA metabolism mutants - an ABA-deficient mutant (aba2) and an ABA over-accumulation mutant (cyp707a1a2a3 triple mutant). Hierarchical clustering and principal components analyses showed that differences in endogenous ABA levels do not influence global expression of stored mRNA in dry seeds. However, the transcriptome after seed imbibition was related to endogenous ABA levels in both types of mutant. Endogenous ABA-regulated genes expressed in imbibed seeds included those encoding key ABA signaling factors and gibberellin-related components. In addition, cohorts of ABA-upregulated genes partially resembled those of dormant genes, whereas ABA-downregulated genes were partially overlapped with after-ripening-regulated genes. Bioinformatic analyses revealed that 6105 novel genes [non-Arabidopsis Genome Initiative (AGI) transcriptional units (TUs)] were expressed from unannotated regions. Interestingly, approximately 97% of non-AGI TUs possibly encoded hypothetical non-protein-coding RNAs, including a large number of antisense RNAs. In dry and imbibed seeds, global expression profiles of non-AGI TUs were similar to those of AGI genes. For both non-AGI TUs and AGI code genes, we identified those that were regulated differently in embryo and endosperm tissues. Our results suggest that transcription in Arabidopsis seeds is more complex and dynamic than previously thought.
Collapse
|
40
|
Fujino K, Matsuda Y. Genome-wide analysis of genes targeted by qLTG3-1 controlling low-temperature germinability in rice. PLANT MOLECULAR BIOLOGY 2010; 72:137-52. [PMID: 19851874 DOI: 10.1007/s11103-009-9559-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2009] [Accepted: 10/02/2009] [Indexed: 05/18/2023]
Abstract
The control of seed germination under environmental conditions, where plants will be grown, is important for the adaptability of plants. Low-temperature is one of the most common environmental stress factors that affect plant growth and development and places a major limit on crop productivity in cultivated areas. Previously, qLTG3-1, a major quantitative trait locus controlling low-temperature tolerance at the germination stage in rice (called low-temperature germinability) was identified, which encodes a protein of unknown function. To identify genes targeted by qLTG3-1, a genome-wide expression profiling analysis using the 44 K Rice Oligo microarray was performed. Because the expression of qLTG3-1 was dramatically increased at 1 day after incubation, the expression profiles at this time were compared between Hayamasari, which has a loss-of-function qLTG3-1 allele, and a near isogenic line with a functional allele. A total of 4,587 genes showed significant differences between their expression levels in the two lines. Most of these genes might be involved in the process of seed germination itself, and then a focus was made on qLTG3-1 dependently induced or suppressed genes, defined as 'qLTG3-1 dependent' genes. Twenty-nine 'qLTG3-1 dependent' genes with diverse functions were categorized, implying that disruption of cellular homeostasis leads to a wide range of metabolic alterations and diverse cross-talk between various signaling pathways. In particular, genes involved in defense responses were up-regulated by qLTG3-1, indicating that qLTG3-1 expression is required for the expression of defense response genes in low-temperature germinability in rice.
Collapse
Affiliation(s)
- Kenji Fujino
- Plant Breeding & Production Division, Agricultural Research Institute, Hokuren Federation of Agricultural Cooperatives, Naganuma, Hokkaido, 0691317, Japan.
| | | |
Collapse
|
41
|
Lara-Núñez A, Sánchez-Nieto S, Luisa Anaya A, Cruz-Ortega R. Phytotoxic effects of Sicyos deppei (Cucurbitaceae) in germinating tomato seeds. PHYSIOLOGIA PLANTARUM 2009; 136:180-192. [PMID: 19453504 DOI: 10.1111/j.1399-3054.2009.01228.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The phytotoxic effect of allelochemicals is referred to as allelochemical stress and it is considered a biotic stress. Sicyos deppei G. Don (Cucurbitaceae) is an allelopathic weed that causes phytotoxicity in Lycopersicon esculentum, delaying seed germination and severely inhibiting radicle growth. This paper reports in in vitro conditions, the effects of the aqueous leachate of S. deppei-throughout tomato germination times-on (1) the dynamics of starch and sugars metabolism, (2) activity and expression of the cell wall enzymes involved in endosperm weakening that allows the protrusion of the radicle, and (3) whether abscisic acid (ABA) is involved in this altered metabolic processes. Results showed that S. deppei leachate on tomato seed germination mainly caused: (1) delay in starch degradation as well as in sucrose hydrolysis; (2) lower activity of sucrose phosphate synthase, cell wall invertase, and alpha-amylase; being sucrose phosphate synthase (SPS) gene expression down-regulated, and the last two up regulated; (3) also, lower activity of endo beta-mannanase, beta-1,3 glucanase, alpha-galactosidase, and exo-polygalacturonase with altered gene expression; and (4) higher content of ABA during all times of germination. The phytotoxic effect of S. deppei aqueous leachate is because of the sum of many metabolic processes affected during tomato seed germination that finally is evidenced by a strong inhibition of radicle growth.
Collapse
Affiliation(s)
- Aurora Lara-Núñez
- Laboratorio de Alelopatía. Instituto de Ecología, Universidad Nacional Autónoma de México (UNAM), Apartado Postal 70-275, México D.F., 04510, Mexico
| | | | | | | |
Collapse
|
42
|
Barrero C, Royo J, Grijota-Martinez C, Faye C, Paul W, Sanz S, Steinbiss HH, Hueros G. The promoter of ZmMRP-1, a maize transfer cell-specific transcriptional activator, is induced at solute exchange surfaces and responds to transport demands. PLANTA 2009; 229:235-47. [PMID: 18830706 PMCID: PMC2757625 DOI: 10.1007/s00425-008-0823-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2008] [Revised: 08/15/2008] [Accepted: 09/11/2008] [Indexed: 05/19/2023]
Abstract
Transfer cells have specializations that facilitate the transport of solutes across plant exchange surfaces. ZmMRP-1 is a maize (Zea mays) endosperm transfer cell-specific transcriptional activator that plays a central role in the regulatory pathways controlling transfer cell differentiation and function. The present work investigates the signals controlling the expression of ZmMRP-1 through the production of transgenic lines of maize, Arabidopsis, tobacco and barley containing ZmMRP-1promoter:GUS reporter constructs. The GUS signal predominantly appeared in regions of active transport between source and sink tissues, including nematode-induced feeding structures and at sites of vascular connection between developing organs and the main plant vasculature. In those cases, promoter induction was associated with the initial developmental stages of transport structures. Significantly, transfer cells also differentiated in these regions suggesting that, independent of species, location or morphological features, transfer cells might differentiate in a similar way under the influence of conserved induction signals. In planta and yeast experiments showed that the promoter activity is modulated by carbohydrates, glucose being the most effective inducer.
Collapse
Affiliation(s)
- Cristina Barrero
- Departamento de Biología Celular y Genética, Universidad de Alcalá, Campus Universitario, Carretera Madrid-Barcelona Km 33.600, 28871 Alcalá de Henares, Madrid, Spain
| | - Joaquín Royo
- Departamento de Biología Celular y Genética, Universidad de Alcalá, Campus Universitario, Carretera Madrid-Barcelona Km 33.600, 28871 Alcalá de Henares, Madrid, Spain
| | - Carmen Grijota-Martinez
- Departamento de Biología Celular y Genética, Universidad de Alcalá, Campus Universitario, Carretera Madrid-Barcelona Km 33.600, 28871 Alcalá de Henares, Madrid, Spain
| | - Christian Faye
- Cereal Functional Analysis Group, Biogemma SAS, 8 Rue des Frères Lumière, 63028 Clermont-Ferrand Cedex 2, France
| | - Wyatt Paul
- Cereal Functional Analysis Group, Biogemma SAS, 8 Rue des Frères Lumière, 63028 Clermont-Ferrand Cedex 2, France
| | - Soledad Sanz
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| | - H.-H. Steinbiss
- Max Planck Institut für Züchturnsforschung, Carl von Linne Weg 10, Cologne, Germany
| | - Gregorio Hueros
- Departamento de Biología Celular y Genética, Universidad de Alcalá, Campus Universitario, Carretera Madrid-Barcelona Km 33.600, 28871 Alcalá de Henares, Madrid, Spain
| |
Collapse
|
43
|
Molecular identification of a major quantitative trait locus, qLTG3-1, controlling low-temperature germinability in rice. Proc Natl Acad Sci U S A 2008; 105:12623-8. [PMID: 18719107 DOI: 10.1073/pnas.0805303105] [Citation(s) in RCA: 168] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Tolerance to abiotic stress is an important agronomic trait in crops and is controlled by many genes, which are called quantitative trait loci (QTLs). Identification of these QTLs will contribute not only to the understanding of plant biology but also for plant breeding, to achieve stable crop production around the world. Previously, we mapped three QTLs controlling low-temperature tolerance at the germination stage (called low-temperature germinability). To understand the molecular basis of one of these QTLs, qLTG3-1 (quantitative trait locus for low-temperature germinability on chromosome 3), map-based cloning was performed, and this QTL was shown to be encoded by a protein of unknown function. The QTL qLTG3-1 is strongly expressed in the embryo during seed germination. Before and during seed germination, specific localization of beta-glucuronidase staining in the tissues covering the embryo, which involved the epiblast covering the coleoptile and the aleurone layer of the seed coat, was observed. Expression of qLTG3-1 was tightly associated with vacuolation of the tissues covering the embryo. This may cause tissue weakening, resulting in reduction of the mechanical resistance to the growth potential of the coleoptile. These phenomena are quite similar to the model system of seed germination presented by dicot plants, suggesting that this model may be conserved in both dicot and monocot plants.
Collapse
|
44
|
Guillaumie S, Goffner D, Barbier O, Martinant JP, Pichon M, Barrière Y. Expression of cell wall related genes in basal and ear internodes of silking brown-midrib-3, caffeic acid O-methyltransferase (COMT) down-regulated, and normal maize plants. BMC PLANT BIOLOGY 2008; 8:71. [PMID: 18582385 PMCID: PMC2453129 DOI: 10.1186/1471-2229-8-71] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2008] [Accepted: 06/26/2008] [Indexed: 05/18/2023]
Abstract
BACKGROUND Silage maize is a major forage and energy resource for cattle feeding, and several studies have shown that lignin content and structure are the determining factors in forage maize feeding value. In maize, four natural brown-midrib mutants have modified lignin content, lignin structure and cell wall digestibility. The greatest lignin reduction and the highest cell wall digestibility were observed in the brown-midrib-3 (bm3) mutant, which is disrupted in the caffeic acid O-methyltransferase (COMT) gene. RESULTS Expression of cell wall related genes was investigated in basal and ear internodes of normal, COMT antisens (AS225), and bm3 maize plants of the INRA F2 line. A cell wall macro-array was developed with 651 gene specific tags of genes specifically involved in cell wall biogenesis. When comparing basal (older lignifying) and ear (younger lignifying) internodes of the normal line, all genes known to be involved in constitutive monolignol biosynthesis had a higher expression in younger ear internodes. The expression of the COMT gene was heavily reduced, especially in the younger lignifying tissues of the ear internode. Despite the fact that AS225 transgene expression was driven only in sclerenchyma tissues, COMT expression was also heavily reduced in AS225 ear and basal internodes. COMT disruption or down-regulation led to differential expressions of a few lignin pathway genes, which were all over-expressed, except for a phenylalanine ammonia-lyase gene. More unexpectedly, several transcription factor genes, cell signaling genes, transport and detoxification genes, genes involved in cell wall carbohydrate metabolism and genes encoding cell wall proteins, were differentially expressed, and mostly over-expressed, in COMT-deficient plants. CONCLUSION Differential gene expressions in COMT-deficient plants highlighted a probable disturbance in cell wall assembly. In addition, the gene expressions suggested modified chronology of the different events leading to cell expansion and lignification with consequences far beyond the phenylpropanoid metabolism. The reduced availability of monolignols and S units in bm3 or AS225 plants led to plants also differing in cell wall carbohydrate, and probably protein, composition. Thus, the deficiency in a key-enzyme of the lignin pathway had correlative effects on the whole cell wall metabolism. Furthermore, the observed differential expression between bm3 and normal plants indicated the possible involvement in the maize lignin pathway of genes which up until now have not been considered to play this role.
Collapse
Affiliation(s)
- Sabine Guillaumie
- INRA, Unité de Génétique et d'Amélioration des Plantes Fourragères, BP6, F-86600 Lusignan, France
- UPS CNRS UMR 5546, Chemin de Borde Rouge, F-31326 Castanet-Tolosan, France
| | - Deborah Goffner
- UPS CNRS UMR 5546, Chemin de Borde Rouge, F-31326 Castanet-Tolosan, France
| | - Odile Barbier
- UPS CNRS UMR 5546, Chemin de Borde Rouge, F-31326 Castanet-Tolosan, France
| | | | - Magalie Pichon
- UPS CNRS UMR 5546, Chemin de Borde Rouge, F-31326 Castanet-Tolosan, France
| | - Yves Barrière
- INRA, Unité de Génétique et d'Amélioration des Plantes Fourragères, BP6, F-86600 Lusignan, France
| |
Collapse
|
45
|
Seo PJ, Lee AK, Xiang F, Park CM. Molecular and functional profiling of Arabidopsis pathogenesis-related genes: insights into their roles in salt response of seed germination. PLANT & CELL PHYSIOLOGY 2008; 49:334-44. [PMID: 18203731 DOI: 10.1093/pcp/pcn011] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Pathogenesis-related (PR) proteins are a group of heterogeneous proteins encoded by genes that are rapidly induced by pathogenic infections and by salicylic acid (SA), jasmonic acid (JA) and ethylene (ET). They are widely used as molecular markers for resistance response to pathogens and systemic acquired response (SAR). However, recent studies have shown that the PR genes are also regulated by environmental factors, including light and abiotic stresses, and by developmental cues, suggesting that they also play a role in certain stress responses and developmental processes. In this work, we systematically examined the expression patterns of Arabidopsis PR genes. We also investigated the effects of environmental stresses and growth hormones on the expression of PR genes. We found that individual PR genes are temporally and spatially regulated in distinct patterns. In addition, they are differentially regulated by plant growth hormones, including SA, ABA, JA, ET and brassinosteroid (BR), and by diverse abiotic stresses, supporting the contention that the PR proteins play a role in plant developmental processes other than disease resistance response. Interestingly, PR-3 was induced significantly by high salt in an ABA-dependent manner. Consistent with this, a T-DNA insertional knockout plant with disruption of the PR-3 gene showed a significantly reduced rate of seed germination in the presence of high salt. It is thus proposed that PR-3 mediates ABA-dependent salt stress signals that affect seed germination in Arabidopsis. PR-4 and PR-5 also contributed to salt regulation of seed germination, although their effects were not as evident as those of PR-3.
Collapse
Affiliation(s)
- Pil Joon Seo
- Molecular Signaling Laboratory, Department of Chemistry, Seoul National University, Seoul 151-742, Korea
| | | | | | | |
Collapse
|
46
|
Pinto LVA, Da silva EAA, Davide AC, De Jesus VAM, Toorop PE, Hilhorst HWM. Mechanism and control of Solanum lycocarpum seed germination. ANNALS OF BOTANY 2007; 100:1175-87. [PMID: 17855380 PMCID: PMC2759253 DOI: 10.1093/aob/mcm211] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2007] [Revised: 06/19/2007] [Accepted: 07/10/2007] [Indexed: 05/05/2023]
Abstract
BACKGROUND AND AIMS Solanaceae seed morphology and physiology have been widely studied but mainly in domesticated crops. The present study aimed to compare the seed morphology and the physiology of germination of Solanum lycocarpum, an important species native to the Brazilian Cerrado, with two species with endospermic seeds, tomato and coffee. METHODS Morphological parameters of fruits and seeds were determined by microscopy. Germination was monitored for 40 d under different temperature regimes. Endosperm digestion and resistance, with endo-beta-mannanase activity and required force to puncture the endosperm cap as respective markers, were measured during germination in water and in abscisic acid. KEY RESULTS Fruits of S. lycocarpum contain dormant seeds before natural dispersion. The best germination condition found was a 12-h alternating light/dark and high/low (20/30 degrees C) temperature cycle, which seemed to target properties of the endosperm cap. The endosperm cap contains 7-8 layers of elongated polygonal cells and is predestined to facilitate radicle protrusion. The force required to puncture the endosperm cap decreased in two stages during germination and showed a significant negative correlation with endo-beta-mannanase activity. As a result of the thick endosperm cap, the puncture force was significantly higher in S. lycocarpum than in tomato and coffee. Endo-beta-mannanase activity was detected in the endosperm cap prior to radicle protrusion. Abscisic acid inhibited germination, increase of embryo weight during imbibition, the second stage of weakening of the endosperm cap and of endo-beta-mannanase activity in the endosperm cap. CONCLUSIONS The germination mechanism of S. lycocarpum bears resemblance to that of tomato and coffee seeds. However, quantitative differences were observed in embryo pressure potential, endo-beta-mannanase activity and endosperm cap resistance that were related to germination rates across the three species.
Collapse
Affiliation(s)
- Lilian V. A. Pinto
- Escola Agrotécnica Federal de Inconfidentes – CEP 37·576-000 – Inconfidentes, MG, Brasil
| | - Edvaldo A. A. Da silva
- Universidade Federal de Lavras, Departamento de Ciências Florestais, Laboratório de Sementes Florestais, CP 3037 – 37200-000, Lavras, MG, Brasil
| | - Antonio C. Davide
- Universidade Federal de Lavras, Departamento de Ciências Florestais, Laboratório de Sementes Florestais, CP 3037 – 37200-000, Lavras, MG, Brasil
| | - Valquíria A. Mendes De Jesus
- Universidade Federal de Lavras, Departamento de Ciências Florestais, Laboratório de Sementes Florestais, CP 3037 – 37200-000, Lavras, MG, Brasil
| | - Peter E. Toorop
- Royal Botanic Gardens, Kew, Seed Conservation Department, Wakehurst Place, Ardingly, Haywards Heath, West Sussex RH17 6TN, UK
| | - Henk W. M. Hilhorst
- Laboratory of Plant Physiology, Wageningen University, Arboretumlaan 4, 6703 BD Wageningen, The Netherlands
| |
Collapse
|
47
|
Tian SP, Yao HJ, Deng X, Xu XB, Qin GZ, Chan ZL. Characterization and Expression of beta-1,3-Glucanase Genes in Jujube Fruit Induced by the Microbial Biocontrol Agent Cryptococcus laurentii. PHYTOPATHOLOGY 2007; 97:260-268. [PMID: 18943644 DOI: 10.1094/phyto-97-3-0260] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
ABSTRACT Two beta-1,3-glucanase genes were cloned from jujube (Ziziphus jujuba Mill) fruit and designated Glu-1 and Glu-2 (GenBank accession numbers DQ012940 and DQ093571), respectively. The expression of Glu-1 and Glu-2 in jujube fruit in response to wounding and microbial biocontrol agent was evaluated by semi-quantitative reverse-transcription polymerase chain reaction analysis. Wounding and treatment with Cryptococcus laurentii stimulated an increase in beta-1,3-glucanase (EC 3.2.1.39) activity in jujube fruit. Analysis of gene expression proved that Glu-1 was highly induced both by wounding and C. laurentii, whereas Glu-2 was broadly not responsive to the yeast. The expression of Glu-1 was noticeably enhanced with increased concentrations of C. laurentii, suggesting that Glu-1 may play a role in defense responses to fungal pathogens. The results hold true at the levels of gene activation and enzyme accumulation in jujube fruit treated by both stimuli, resulting in a significant decrease in disease incidence and lesion diameter, thus providing evidence that changes in beta-1,3-glucanase activity are related to expression of the genes. Taken together, these findings suggest the possible use of beta-1,3-glucanase activity as a biochemical marker for screening jujube fruit against fungal pathogens, and also provide a mechanistic framework for the functions of beta-1,3-glucanase in defense responses.
Collapse
|
48
|
Liu CT, Aono T, Kinoshita M, Miwa H, Iki T, Lee KB, Oyaizu H. Isolation and differential expression of β-1,3-glucanase messenger RNAs, SrGLU3 and SrGLU4, following inoculation of Sesbania rostrata. FUNCTIONAL PLANT BIOLOGY : FPB 2006; 33:983-990. [PMID: 32689309 DOI: 10.1071/fp06086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2006] [Accepted: 06/27/2006] [Indexed: 06/11/2023]
Abstract
We report here the isolation and characterisation of two new β-1,3-glucanase cDNAs, SrGLU3 and SrGLU4, from a tropical legume Sesbania rostrata Bremek. & Oberm., which form N2-fixing nodules on the stem after infection by Azorhizobium caulinodans. SrGLU3 was characterised as being grouped in a branch with tobacco class I β-1,3-glucanases, where the isoforms were reported to be induced by either pathogen infection or ethylene treatment. SrGLU4 was characterised as separate from other classes, and we propose this new branch as a new class (Class VI). The SrGLU3 gene was constitutively expressed in normal stem nodules induced by the wild type strain of A. caulinodans (ORS571), and also even in immature stem nodules induced by a mutant (ORS571-C1), which could not form mature stem-nodules. In contrast, the transcript accumulation of SrGLU4 was hardly detectable in immature nodules inoculated by the ORS571-C1 mutant. We suggest that S. rostrata makes use of SrGLU4 to discriminate between symbionts and non-symbionts (mutants) in developing nodules. We propose the SrGLU4 gene as a new nodulin during nodulation.
Collapse
Affiliation(s)
- Chi-Te Liu
- Laboratory of Plant Functional Biotechnology, Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Toshihiro Aono
- Laboratory of Plant Functional Biotechnology, Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Misako Kinoshita
- Laboratory of Plant Functional Biotechnology, Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Hiroki Miwa
- Laboratory of Plant Functional Biotechnology, Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Taichiro Iki
- Laboratory of Plant Functional Biotechnology, Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Kyung-Bum Lee
- Laboratory of Plant Functional Biotechnology, Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Hiroshi Oyaizu
- Laboratory of Plant Functional Biotechnology, Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
49
|
Hernández-Nistal J, Labrador E, Martín I, Jiménez T, Dopico B. Transcriptional profiling of cell wall protein genes in chickpea embryonic axes during germination and growth. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2006; 44:684-92. [PMID: 17110120 DOI: 10.1016/j.plaphy.2006.10.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2006] [Accepted: 10/09/2006] [Indexed: 05/01/2023]
Abstract
Cell wall hydrolases have been assumed to be involved in the regulation of seed germination, mostly through their contribution to the cell wall disassembly associated with endosperm cap weakening. In Cicer arietinum (a non-endospermic leguminosae seed), we have focused our research directly on the elongation process of the embryonic axes themselves during germination. The genes encoding cell wall proteins, previously implicated in the elongation of chickpea epicotyls, might also be involved in the expansion of embryonic axis cells, and the modulation of their expression could be part of the control of the germinative process. Thus, chickpea alpha-expansins and xyloglucan endotransglycosylase/hydrolase (XTH) acting on the cellulose/xyloglucan network seem to be involved in the elongation of both chickpea epicotyls and embryonic axes, although the products of different genes perform their actions on each organ. Among the four known cDNAs encoding chickpea alpha-expansins, Ca-EXPA1 was the only isoform highly expressed in embryonic axes during germination. In contrast to epicotyl elongation, the genes encoding cell wall beta-galactosidases, involved in pectin degradation, were not expressed during germination, suggesting no role in embryonic axis elongation, mainly due to the different metabolism of pectins during cell wall loosening in embryonic axis or epicotyl cells. The results concerning CanST-1 and -2, encoding two growth-related cell wall proteins, suggested that these genes were not involved in elongation of embryonic axes during germination. The transcription pattern of Cap28, which encodes a glutamic acid rich cell wall protein of unknown function, indicated a role in the development of the embryonic axes during germination.
Collapse
Affiliation(s)
- J Hernández-Nistal
- Departamento de Fisiología Vegetal, Universidad de Santiago de Compostela, Lugo 27002, Spain
| | | | | | | | | |
Collapse
|
50
|
Butenko MA, Stenvik GE, Alm V, Saether B, Patterson SE, Aalen RB. Ethylene-dependent and -independent pathways controlling floral abscission are revealed to converge using promoter::reporter gene constructs in the ida abscission mutant. JOURNAL OF EXPERIMENTAL BOTANY 2006; 57:3627-3637. [PMID: 16990374 DOI: 10.1093/jxb/erl130] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The process of floral organ abscission in Arabidopsis thaliana can be modulated by ethylene and involves numerous genes contributing to cell separation. One gene that is absolutely required for abscission is INFLORESCENCE DEFICIENT IN ABSCISSION, IDA, as the ida mutant is completely blocked in abscission. To elucidate the genetic pathways regulating floral abscission, molecular markers expressed in the floral abscission zone have been studied in an ida mutant background. Using plants with promoter-reporter gene constructs including promoters of a novel FLORAL ABSCISSION ASSOCIATED gene (FAA) encoding a putative single-stranded binding protein (BASIL), chitinase (CHIT::GUS) and cellulase (BAC::GUS), it is shown that IDA acts in the last steps of the abscission process. These markers, as well as HAESA, encoding a receptor-like kinase, were unaffected in their temporal expression patterns in ida compared with wild-type plants; thus showing that different regulatory pathways are active in the abscission process. In contrast to BASIL, CHIT::GUS and BAC::GUS showed, however, much weaker induction of expression in an ida background, consistent with a reduction in pathogen-associated responses and a lack of total dissolution of cell walls in the mutant. IDA, encoding a putative secreted peptide ligand, and HAESA appeared to have identical patterns of expression in floral abscission zones. Lastly, to address the role of ethylene, IDA::GUS expression in the wild type and the ethylene-insensitive mutant etr1-1 was compared. Similar temporal patterns, yet restricted spatial expression patterns were observed in etr1-1, suggesting that the pathways regulated by IDA and by ethylene act in parallel, but are, to some degree, interdependent.
Collapse
Affiliation(s)
- Melinka A Butenko
- Department of Molecular Biosciences, University of Oslo, PO Box 1041 Blindern, N-0316 Oslo, Norway
| | | | | | | | | | | |
Collapse
|