1
|
Varghese M, Kumar R, Sharma A, Lone A, Gershenzon J, Bisht NC. Isopropylmalate synthase regulatory domain removal abolishes feedback regulation at the expense of leucine homeostasis in plants. PLANT PHYSIOLOGY 2025; 197:kiaf041. [PMID: 39869449 DOI: 10.1093/plphys/kiaf041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/03/2025] [Accepted: 01/06/2025] [Indexed: 01/29/2025]
Abstract
In the leucine (Leu) biosynthesis pathway, homeostasis is achieved through a feedback regulatory mechanism facilitated by the binding of the end product Leu at the C-terminal regulatory domain of the first committed enzyme, isopropylmalate synthase (IPMS). In vitro studies have shown that removing the regulatory domain abolishes the feedback regulation on plant IPMS while retaining its catalytic activity. However, the physiological consequences and underlying molecular regulation of Leu flux upon removing the IPMS regulatory domain remain to be explored in plants. Here, we removed the IPMS C-terminal regulatory domain using a CRISPR/Cas9-based gene editing system and studied the resulting impact on the Leu biosynthesis pathway under in planta conditions. Absence of the IPMS regulatory domain unexpectedly reduced the formation of the end product Leu but increased the levels of Leu pathway intermediates in mustard (Brassica juncea). Additionally, delayed growth was observed when IPMS devoid of the regulatory domain was introduced into IPMS-null mutants of Escherichia coli and Arabidopsis thaliana. Further, a detailed biochemical analysis showed that in the absence of the C-terminal regulatory domain, a Leu pathway intermediate (α-ketoisocaproate) could compete with the native IPMS substrate (2-oxoisovalerate) for the active site. Combining these metabolomic, biochemical, and in planta analyses, we demonstrate that the C-terminal regulatory domain of IPMS is critical for maintaining Leu-Val homeostasis in plants.
Collapse
Affiliation(s)
- Mohan Varghese
- BRIC - National Institute of Plant Genome Research, New Delhi 110067, India
| | - Roshan Kumar
- BRIC - National Institute of Plant Genome Research, New Delhi 110067, India
| | - Aprajita Sharma
- BRIC - National Institute of Plant Genome Research, New Delhi 110067, India
| | - Asif Lone
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Jonathan Gershenzon
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena D-07745, Germany
| | - Naveen C Bisht
- BRIC - National Institute of Plant Genome Research, New Delhi 110067, India
| |
Collapse
|
2
|
Fiesel PD, Kerwin RE, Jones AD, Last RL. Trading acyls and swapping sugars: metabolic innovations in Solanum trichomes. PLANT PHYSIOLOGY 2024; 196:1231-1253. [PMID: 38748602 PMCID: PMC11444299 DOI: 10.1093/plphys/kiae279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 03/19/2024] [Accepted: 05/01/2024] [Indexed: 05/28/2024]
Abstract
Solanaceae (nightshade family) species synthesize a remarkable array of clade- and tissue-specific specialized metabolites. Protective acylsugars, one such class of structurally diverse metabolites, are produced by ACYLSUGAR ACYLTRANSFERASE (ASAT) enzymes from sugars and acyl-coenzyme A esters. Published research has revealed trichome acylsugars composed of glucose and sucrose cores in species across the family. In addition, acylsugars have been analyzed across a small fraction of the >1,200 species in the phenotypically megadiverse Solanum genus, with a handful containing inositol and glycosylated inositol cores. The current study sampled several dozen species across subclades of Solanum to get a more detailed view of acylsugar chemodiversity. In depth characterization of acylsugars from the clade II species brinjal eggplant (Solanum melongena) led to the identification of eight unusual structures with inositol or inositol glycoside cores and hydroxyacyl chains. Liquid chromatography-mass spectrometry analysis of 31 additional species in the Solanum genus revealed striking acylsugar diversity, with some traits restricted to specific clades and species. Acylinositols and inositol-based acyldisaccharides were detected throughout much of the genus. In contrast, acylglucoses and acylsucroses were more restricted in distribution. Analysis of tissue-specific transcriptomes and interspecific acylsugar acetylation differences led to the identification of the brinjal eggplant ASAT 3-LIKE 1 (SmASAT3-L1; SMEL4.1_12g015780) enzyme. This enzyme is distinct from previously characterized acylsugar acetyltransferases, which are in the ASAT4 clade, and appears to be a functionally divergent ASAT3. This study provides a foundation for investigating the evolution and function of diverse Solanum acylsugar structures and harnessing this diversity in breeding and synthetic biology.
Collapse
Affiliation(s)
- Paul D Fiesel
- Department of Biochemistry and Molecular Biology, Michigan State University, 603 Wilson Road, East Lansing, MI 48823, USA
| | - Rachel E Kerwin
- Department of Biochemistry and Molecular Biology, Michigan State University, 603 Wilson Road, East Lansing, MI 48823, USA
| | - A Daniel Jones
- Department of Biochemistry and Molecular Biology, Michigan State University, 603 Wilson Road, East Lansing, MI 48823, USA
| | - Robert L Last
- Department of Biochemistry and Molecular Biology, Michigan State University, 603 Wilson Road, East Lansing, MI 48823, USA
- Department of Plant Biology, Michigan State University, 612 Wilson Road, East Lansing, MI 48823, USA
| |
Collapse
|
3
|
Fiesel PD, Kerwin RE, Daniel Jones A, Last RL. Trading acyls and swapping sugars: metabolic innovations in Solanum trichomes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.06.05.542877. [PMID: 37333341 PMCID: PMC10274652 DOI: 10.1101/2023.06.05.542877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Solanaceae (nightshade family) species synthesize a remarkable array of clade- and tissue-specific specialized metabolites. Protective acylsugars, one such class of structurally diverse metabolites, are produced by AcylSugar AcylTransferases from sugars and acyl-coenzyme A esters. Published research revealed trichome acylsugars composed of glucose and sucrose cores in species across the family. In addition, acylsugars were analyzed across a small fraction of the >1200 species in the phenotypically megadiverse Solanum genus, with a handful containing inositol and glycosylated inositol cores. The current study sampled several dozen species across subclades of the Solanum to get a more detailed view of acylsugar chemodiversity. In depth characterization of acylsugars from the Clade II species Solanum melongena (brinjal eggplant) led to the identification of eight unusual structures with inositol or inositol glycoside cores, and hydroxyacyl chains. Liquid chromatography-mass spectrometry analysis of 31 additional species in the Solanum genus revealed striking acylsugar diversity with some traits restricted to specific clades and species. Acylinositols and inositol-based acyldisaccharides were detected throughout much of the genus. In contrast, acylglucoses and acylsucroses were more restricted in distribution. Analysis of tissue-specific transcriptomes and interspecific acylsugar acetylation differences led to the identification of the S. melongena AcylSugar AcylTransferase 3-Like 1 (SmASAT3-L1; SMEL4.1_12g015780) enzyme. This enzyme is distinct from previously characterized acylsugar acetyltransferases, which are in the ASAT4 clade, and appears to be a functionally divergent ASAT3. This study provides a foundation for investigating the evolution and function of diverse Solanum acylsugar structures and harnessing this diversity in breeding and synthetic biology.
Collapse
Affiliation(s)
- Paul D. Fiesel
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48823 USA
| | - Rachel E. Kerwin
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48823 USA
| | - A. Daniel Jones
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48823 USA
| | - Robert L. Last
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48823 USA
- Department of Plant Biology, Michigan State University, East Lansing, MI 48823 USA
| |
Collapse
|
4
|
Selma S, Ntelkis N, Nguyen TH, Goossens A. Engineering the plant metabolic system by exploiting metabolic regulation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 114:1149-1163. [PMID: 36799285 DOI: 10.1111/tpj.16157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/10/2023] [Accepted: 02/15/2023] [Indexed: 05/31/2023]
Abstract
Plants are the most sophisticated biofactories and sources of food and biofuels present in nature. By engineering plant metabolism, the production of desired compounds can be increased and the nutritional or commercial value of the plant species can be improved. However, this can be challenging because of the complexity of the regulation of multiple genes and the involvement of different protein interactions. To improve metabolic engineering (ME) capabilities, different tools and strategies for rerouting the metabolic pathways have been developed, including genome editing and transcriptional regulation approaches. In addition, cutting-edge technologies have provided new methods for understanding uncharacterized biosynthetic pathways, protein degradation mechanisms, protein-protein interactions, or allosteric feedback, enabling the design of novel ME approaches.
Collapse
Affiliation(s)
- Sara Selma
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Nikolaos Ntelkis
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Trang Hieu Nguyen
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Alain Goossens
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| |
Collapse
|
5
|
Moghe G, Irfan M, Sarmah B. Dangerous sugars: Structural diversity and functional significance of acylsugar-like defense compounds in flowering plants. CURRENT OPINION IN PLANT BIOLOGY 2023; 73:102348. [PMID: 36842412 DOI: 10.1016/j.pbi.2023.102348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 01/19/2023] [Accepted: 01/22/2023] [Indexed: 06/10/2023]
Abstract
Acylsugars constitute a diverse class of secondary metabolites found in many flowering plant families. Comprising sugar cores and acyl groups connected by ester and/or ether linkages, acylsugar structures vary considerably at all taxonomic levels - from populations of the same species to across species of the same family and across flowering plants, with some species producing hundreds of acylsugars in a single organ. Acylsugars have been most well-studied in the Solanaceae family, but structurally analogous compounds have also been reported in the Convolvulaceae, Martyniaceae, Geraniaceae, Rubiaceae, Rosaceae and Caryophyllaceae families. Focusing on Solanaceae and Convolvulaceae acylsugars, this review highlights their structural diversity, the potential biosynthetic mechanisms that produce this diversity, and its functional significance. Finally, we also discuss the possibility that some of this diversity is merely "noise", arising out of enzyme promiscuity and/or non-adaptive evolutionary mechanisms.
Collapse
Affiliation(s)
- Gaurav Moghe
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA.
| | - Mohammad Irfan
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - Bhaswati Sarmah
- Department of Plant Breeding and Genetics, Assam Agricultural University, Jorhat, Assam 785013, India
| |
Collapse
|
6
|
Ji W, Mandal S, Rezenom YH, McKnight TD. Specialized metabolism by trichome-enriched Rubisco and fatty acid synthase components. PLANT PHYSIOLOGY 2023; 191:1199-1213. [PMID: 36264116 PMCID: PMC9922422 DOI: 10.1093/plphys/kiac487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Acylsugars, specialized metabolites with defense activities, are secreted by trichomes of many solanaceous plants. Several acylsugar metabolic genes (AMGs) remain unknown. We previously reported multiple candidate AMGs. Here, using multiple approaches, we characterized additional AMGs. First, we identified differentially expressed genes between high- and low-acylsugar-producing F2 plants derived from a cross between cultivated tomato (Solanum lycopersicum) and a wild relative (Solanum pennellii), which produce acylsugars that are ∼1% and ∼20% of leaf dry weight, respectively. Expression levels of many known and candidate AMGs positively correlated with acylsugar amounts in F2 individuals. Next, we identified lycopersicum-pennellii putative orthologs with higher nonsynonymous to synonymous substitutions. These analyses identified four candidate genes, three of which showed enriched expression in stem trichomes compared to underlying tissues (shaved stems). Virus-induced gene silencing confirmed two candidates, Sopen05g009610 [beta-ketoacyl-(acyl-carrier-protein) reductase; fatty acid synthase component] and Sopen07g006810 (Rubisco small subunit), as AMGs. Phylogenetic analysis indicated that Sopen05g009610 is distinct from specialized metabolic cytosolic reductases but closely related to two capsaicinoid biosynthetic reductases, suggesting evolutionary relationship between acylsugar and capsaicinoid biosynthesis. Analysis of publicly available datasets revealed enriched expression of Sopen05g009610 orthologs in trichomes of several acylsugar-producing species. Similarly, orthologs of Sopen07g006810 were identified as solanaceous trichome-enriched members, which form a phylogenetic clade distinct from those of mesophyll-expressed "regular" Rubisco small subunits. Furthermore, δ13C analyses indicated recycling of metabolic CO2 into acylsugars by Sopen07g006810 and showed how trichomes support high levels of specialized metabolite production. These findings have implications for genetic manipulation of trichome-specialized metabolism in solanaceous crops.
Collapse
Affiliation(s)
| | | | - Yohannes H Rezenom
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, USA
| | | |
Collapse
|
7
|
Schenck CA, Anthony TM, Jacobs M, Jones AD, Last RL. Natural variation meets synthetic biology: Promiscuous trichome-expressed acyltransferases from Nicotiana. PLANT PHYSIOLOGY 2022; 190:146-164. [PMID: 35477794 PMCID: PMC9434288 DOI: 10.1093/plphys/kiac192] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 03/23/2022] [Indexed: 06/14/2023]
Abstract
Acylsugars are defensive, trichome-synthesized sugar esters produced in plants across the Solanaceae (nightshade) family. Although assembled from simple metabolites and synthesized by a relatively short core biosynthetic pathway, tremendous within- and across-species acylsugar structural variation is documented across the family. To advance our understanding of the diversity and the synthesis of acylsugars within the Nicotiana genus, trichome extracts were profiled across the genus coupled with transcriptomics-guided enzyme discovery and in vivo and in vitro analysis. Differences in the types of sugar cores, numbers of acylations, and acyl chain structures contributed to over 300 unique annotated acylsugars throughout Nicotiana. Placement of acyl chain length into a phylogenetic context revealed that an unsaturated acyl chain type was detected in a few closely related species. A comparative transcriptomics approach identified trichome-enriched Nicotiana acuminata acylsugar biosynthetic candidate enzymes. More than 25 acylsugar variants could be produced in a single enzyme assay with four N. acuminata acylsugar acyltransferases (NacASAT1-4) together with structurally diverse acyl-CoAs and sucrose. Liquid chromatography coupled with mass spectrometry screening of in vitro products revealed the ability of these enzymes to make acylsugars not present in Nicotiana plant extracts. In vitro acylsugar production also provided insights into acyltransferase acyl donor promiscuity and acyl acceptor specificity as well as regiospecificity of some ASATs. This study suggests that promiscuous Nicotiana acyltransferases can be used as synthetic biology tools to produce novel and potentially useful metabolites.
Collapse
Affiliation(s)
- Craig A Schenck
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, USA
| | - Thilani M Anthony
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, USA
| | - MacKenzie Jacobs
- Department of Physical Sciences and Mathematics, West Liberty University, West Liberty, West Virginia 26074, USA
| | - A Daniel Jones
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, USA
| | - Robert L Last
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, USA
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824, USA
| |
Collapse
|
8
|
Feng H, Acosta-Gamboa L, Kruse LH, Tracy JD, Chung SH, Nava Fereira AR, Shakir S, Xu H, Sunter G, Gore MA, Casteel CL, Moghe GD, Jander G. Acylsugars protect Nicotiana benthamiana against insect herbivory and desiccation. PLANT MOLECULAR BIOLOGY 2022; 109:505-522. [PMID: 34586580 DOI: 10.1007/s11103-021-01191-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 09/12/2021] [Indexed: 06/13/2023]
Abstract
KEY MESSAGE Nicotiana benthamiana acylsugar acyltransferase (ASAT) is required for protection against desiccation and insect herbivory. Knockout mutations provide a new resource for investigation of plant-aphid and plant-whitefly interactions. Nicotiana benthamiana is used extensively as a transient expression platform for functional analysis of genes from other species. Acylsugars, which are produced in the trichomes, are a hypothesized cause of the relatively high insect resistance that is observed in N. benthamiana. We characterized the N. benthamiana acylsugar profile, bioinformatically identified two acylsugar acyltransferase genes, ASAT1 and ASAT2, and used CRISPR/Cas9 mutagenesis to produce acylsugar-deficient plants for investigation of insect resistance and foliar water loss. Whereas asat1 mutations reduced accumulation, asat2 mutations caused almost complete depletion of foliar acylsucroses. Three hemipteran and three lepidopteran herbivores survived, gained weight, and/or reproduced significantly better on asat2 mutants than on wildtype N. benthamiana. Both asat1 and asat2 mutations reduced the water content and increased leaf temperature. Our results demonstrate the specific function of two ASAT proteins in N. benthamiana acylsugar biosynthesis, insect resistance, and desiccation tolerance. The improved growth of aphids and whiteflies on asat2 mutants will facilitate the use of N. benthamiana as a transient expression platform for the functional analysis of insect effectors and resistance genes from other plant species. Similarly, the absence of acylsugars in asat2 mutants will enable analysis of acylsugar biosynthesis genes from other Solanaceae by transient expression.
Collapse
Affiliation(s)
- Honglin Feng
- Boyce Thompson Institute, Ithaca, NY, 14853, USA
| | - Lucia Acosta-Gamboa
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - Lars H Kruse
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Jake D Tracy
- Plant-Microbe Biology and Plant Pathology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT, 59717, USA
| | | | - Alba Ruth Nava Fereira
- Department of Biology, University of Texas San Antonio, San Antonio, TX, 78249, USA
- Department of Biological Sciences, Northern Illinois University, Dekalb, IL, 60115, USA
| | - Sara Shakir
- Boyce Thompson Institute, Ithaca, NY, 14853, USA
- Gembloux Agro-Bio Tech Institute, The University of Liege, Gembloux, Belgium
| | - Hongxing Xu
- Boyce Thompson Institute, Ithaca, NY, 14853, USA
- College of Life Science, The Shaanxi Normal University, Xi'an, China
| | - Garry Sunter
- Department of Biology, University of Texas San Antonio, San Antonio, TX, 78249, USA
- Department of Biological Sciences, Northern Illinois University, Dekalb, IL, 60115, USA
| | - Michael A Gore
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - Clare L Casteel
- Plant-Microbe Biology and Plant Pathology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - Gaurav D Moghe
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - Georg Jander
- Boyce Thompson Institute, Ithaca, NY, 14853, USA.
| |
Collapse
|
9
|
Leong BJ, Hurney S, Fiesel P, Anthony TM, Moghe G, Jones AD, Last RL. Identification of BAHD acyltransferases associated with acylinositol biosynthesis in Solanum quitoense (naranjilla). PLANT DIRECT 2022; 6:e415. [PMID: 35774622 PMCID: PMC9219006 DOI: 10.1002/pld3.415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/26/2022] [Accepted: 06/03/2022] [Indexed: 06/15/2023]
Abstract
Plants make a variety of specialized metabolites that can mediate interactions with animals, microbes, and competitor plants. Understanding how plants synthesize these compounds enables studies of their biological roles by manipulating their synthesis in vivo as well as producing them in vitro. Acylsugars are a group of protective metabolites that accumulate in the trichomes of many Solanaceae family plants. Acylinositol biosynthesis is of interest because it appears to be restricted to a subgroup of species within the Solanum genus. Previous work characterized a triacylinositol acetyltransferase involved in acylinositol biosynthesis in the Andean fruit plant Solanum quitoense (lulo or naranjilla). We characterized three additional S. quitoense trichome expressed enzymes and found that virus-induced gene silencing of each caused changes in acylinositol accumulation. pH was shown to influence the stability and rearrangement of the product of ASAT1H and could potentially play a role in acylinositol biosynthesis. Surprisingly, the in vitro triacylinositol products of these enzymes are distinct from those that accumulate in planta. This suggests that additional enzymes are required in acylinositol biosynthesis. These characterized S. quitoense enzymes, nonetheless, provide opportunities to test the biological impact and properties of these triacylinositols in vitro.
Collapse
Affiliation(s)
- Bryan J. Leong
- Department of Plant BiologyMichigan State UniversityEast LansingMichiganUSA
- Present address:
Horticultural Sciences DepartmentUniversity of FloridaGainesvilleFloridaUSA
| | - Steven Hurney
- Department of ChemistryMichigan State UniversityEast LansingMichiganUSA
- Present address:
Michigan Department of Health and Human ServicesLansingMichiganUSA
| | - Paul Fiesel
- Department of Biochemistry and Molecular BiologyMichigan State UniversityEast LansingMichiganUSA
| | - Thilani M. Anthony
- Department of Biochemistry and Molecular BiologyMichigan State UniversityEast LansingMichiganUSA
| | - Gaurav Moghe
- Department of Biochemistry and Molecular BiologyMichigan State UniversityEast LansingMichiganUSA
- Present address:
Plant Biology Section, School of Integrative Plant SciencesCornell UniversityIthacaNew YorkUSA
| | - Arthur Daniel Jones
- Department of ChemistryMichigan State UniversityEast LansingMichiganUSA
- Department of Biochemistry and Molecular BiologyMichigan State UniversityEast LansingMichiganUSA
| | - Robert L. Last
- Department of Plant BiologyMichigan State UniversityEast LansingMichiganUSA
- Department of Biochemistry and Molecular BiologyMichigan State UniversityEast LansingMichiganUSA
| |
Collapse
|
10
|
The Genetic Complexity of Type-IV Trichome Development Reveals the Steps towards an Insect-Resistant Tomato. PLANTS 2022; 11:plants11101309. [PMID: 35631734 PMCID: PMC9148003 DOI: 10.3390/plants11101309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/11/2022] [Accepted: 05/11/2022] [Indexed: 11/18/2022]
Abstract
The leaves of the wild tomato Solanum galapagense harbor type-IV glandular trichomes (GT) that produce high levels of acylsugars (AS), conferring insect resistance. Conversely, domesticated tomatoes (S. lycopersicum) lack type-IV trichomes on the leaves of mature plants, preventing high AS production, thus rendering the plants more vulnerable to insect predation. We hypothesized that cultivated tomatoes engineered to harbor type-IV trichomes on the leaves of adult plants could be insect-resistant. We introgressed the genetic determinants controlling type-IV trichome development from S. galapagense into cv. Micro-Tom (MT) and created a line named “Galapagos-enhanced trichomes” (MT-Get). Mapping-by-sequencing revealed that five chromosomal regions of S. galapagense were present in MT-Get. Further genetic mapping showed that S. galapagense alleles in chromosomes 1, 2, and 3 were sufficient for the presence of type-IV trichomes on adult organs but at lower densities. Metabolic and gene expression analyses demonstrated that type-IV trichome density was not accompanied by the AS production and exudation in MT-Get. Although the plants produce a significant amount of acylsugars, those are still not enough to make them resistant to whiteflies. We demonstrate that type-IV glandular trichome development is insufficient for high AS accumulation. The results from our study provided additional insights into the steps necessary for breeding an insect-resistant tomato.
Collapse
|
11
|
Zhu F, Wen W, Cheng Y, Fernie AR. The metabolic changes that effect fruit quality during tomato fruit ripening. MOLECULAR HORTICULTURE 2022; 2:2. [PMID: 37789428 PMCID: PMC10515270 DOI: 10.1186/s43897-022-00024-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 01/12/2022] [Indexed: 10/05/2023]
Abstract
As the most valuable organ of tomato plants, fruit has attracted considerable attention which most focus on its quality formation during the ripening process. A considerable amount of research has reported that fruit quality is affected by metabolic shifts which are under the coordinated regulation of both structural genes and transcriptional regulators. In recent years, with the development of the next generation sequencing, molecular and genetic analysis methods, lots of genes which are involved in the chlorophyll, carotenoid, cell wall, central and secondary metabolism have been identified and confirmed to regulate pigment contents, fruit softening and other aspects of fruit flavor quality. Here, both research concerning the dissection of fruit quality related metabolic changes, the transcriptional and post-translational regulation of these metabolic pathways are reviewed. Furthermore, a weighted gene correlation network analysis of representative genes of fruit quality has been carried out and the potential of the combined application of the gene correlation network analysis, fine-mapping strategies and next generation sequencing to identify novel candidate genes determinants of fruit quality is discussed.
Collapse
Affiliation(s)
- Feng Zhu
- National R&D Center for Citrus Preservation, Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476, Potsdam, Golm, Germany
| | - Weiwei Wen
- National R&D Center for Citrus Preservation, Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yunjiang Cheng
- National R&D Center for Citrus Preservation, Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Alisdair R Fernie
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476, Potsdam, Golm, Germany.
| |
Collapse
|
12
|
Kruse LH, Bennett AA, Mahood EH, Lazarus E, Park SJ, Schroeder F, Moghe GD. Illuminating the lineage-specific diversification of resin glycoside acylsugars in the morning glory (Convolvulaceae) family using computational metabolomics. HORTICULTURE RESEARCH 2022; 9:uhab079. [PMID: 35039851 PMCID: PMC8825387 DOI: 10.1093/hr/uhab079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/24/2021] [Accepted: 11/12/2021] [Indexed: 05/13/2023]
Abstract
Acylsugars are a class of plant defense compounds produced across many distantly related families. Members of the horticulturally important morning glory (Convolvulaceae) family produce a diverse sub-class of acylsugars called resin glycosides (RGs), which comprise oligosaccharide cores, hydroxyacyl chain(s), and decorating aliphatic and aromatic acyl chains. While many RG structures are characterized, the extent of structural diversity of this class in different genera and species is not known. In this study, we asked whether there has been lineage-specific diversification of RG structures in different Convolvulaceae species that may suggest diversification of the underlying biosynthetic pathways. Liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) was performed from root and leaf extracts of 26 species sampled in a phylogeny-guided manner. LC-MS/MS revealed thousands of peaks with signature RG fragmentation patterns with one species producing over 300 signals, mirroring the diversity in Solanaceae-type acylsugars. A novel RG from Dichondra argentea was characterized using Nuclear Magnetic Resonance spectroscopy, supporting previous observations of RGs with open hydroxyacyl chains instead of closed macrolactone ring structures. Substantial lineage-specific differentiation in utilization of sugars, hydroxyacyl chains, and decorating acyl chains was discovered, especially among Ipomoea and Convolvulus - the two largest genera in Convolvulaceae. Adopting a computational, knowledge-based strategy, we further developed a high-recall workflow that successfully explained ~72% of the MS/MS fragments, predicted the structural components of 11/13 previously characterized RGs, and partially annotated ~45% of the RGs. Overall, this study improves our understanding of phytochemical diversity and lays a foundation for characterizing the evolutionary mechanisms underlying RG diversification.
Collapse
Affiliation(s)
- Lars H Kruse
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
- Present Address: Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Alexandra A Bennett
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
- Present Address: Institute of Analytical Chemistry, Universität für Bodenkultur Wien, Vienna, 1090, Austria
| | - Elizabeth H Mahood
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - Elena Lazarus
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
- Present Address: Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, 94305, USA
| | - Se Jin Park
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - Frank Schroeder
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Gaurav D Moghe
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
13
|
Lou YR, Anthony TM, Fiesel PD, Arking RE, Christensen EM, Jones AD, Last RL. It happened again: Convergent evolution of acylglucose specialized metabolism in black nightshade and wild tomato. SCIENCE ADVANCES 2021; 7:eabj8726. [PMID: 34757799 PMCID: PMC8580325 DOI: 10.1126/sciadv.abj8726] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 09/20/2021] [Indexed: 05/09/2023]
Abstract
Plants synthesize myriad phylogenetically restricted specialized (aka “secondary”) metabolites with diverse structures. Metabolism of acylated sugar esters in epidermal glandular secreting trichomes across the Solanaceae (nightshade) family is ideal for investigating the mechanisms of evolutionary metabolic diversification. We developed methods to structurally analyze acylhexose mixtures by 2D NMR, which led to the insight that the Old World species black nightshade (Solanum nigrum) accumulates acylglucoses and acylinositols in the same tissue. Detailed in vitro biochemistry, cross-validated by in vivo virus-induced gene silencing, revealed two unique features of the four-step acylglucose biosynthetic pathway: A trichome-expressed, neofunctionalized invertase-like enzyme, SnASFF1, converts BAHD-produced acylsucroses to acylglucoses, which, in turn, are substrates for the acylglucose acyltransferase, SnAGAT1. This biosynthetic pathway evolved independently from that recently described in the wild tomato Solanum pennellii, reinforcing that acylsugar biosynthesis is evolutionarily dynamic with independent examples of primary metabolic enzyme cooption and additional variation in BAHD acyltransferases.
Collapse
Affiliation(s)
- Yann-Ru Lou
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Thilani M. Anthony
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Paul D. Fiesel
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | | | | | - A. Daniel Jones
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Robert L. Last
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
14
|
Glucosinolate biosynthesis: role of MAM synthase and its perspectives. Biosci Rep 2021; 41:229828. [PMID: 34545928 PMCID: PMC8490860 DOI: 10.1042/bsr20211634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/14/2021] [Accepted: 09/20/2021] [Indexed: 11/17/2022] Open
Abstract
Glucosinolates, synthesized by the glucosinolate biosynthesis pathway, are the secondary metabolites used as a defence mechanism in the Brassicaceae plants, including Arabidopsis thaliana. The first committed step in the pathway, catalysed by methylthioalkylmalate (MAM) synthase (EC: 2.3.3.17), is to produce different variants of glucosinolates. Phylogenetic analyses suggest that possibly MAM synthases have been evolved from isopropylmalate synthase (IPMS) by the substitutions of five amino acid residues (L143I, H167L, S216G, N250G and P252G) in the active site of IPMS due to point mutations. Considering the importance of MAM synthase in Brassicaceae plants, Petersen et al. (2019) made an effort to characterise the MAM synthase (15 MAM1 variants) in vitro by single substitution or double substitutions. In their study, the authors have expressed the variants in Escherichia coli and analysed the amino acids in the cultures of E. coli in vivo. Since modifying the MAM synthases by transgenic approaches could increase the resistance of Brassicaceae plants for enhancing the defence effect of glucosinolates and their degraded products; hence, MAM synthases should be characterized in detail in vivo in A. thaliana along with the structural analysis of the enzyme for meaningful impact and for its imminent use in vivo.
Collapse
|
15
|
Free Amino Acids Profile and Expression Analysis of Core Genes Involved in Branched-Chain Amino Acids Metabolism during Fruit Development of Longan ( Dimocarpus longan Lour.) Cultivars with Different Aroma Types. BIOLOGY 2021; 10:biology10080807. [PMID: 34440040 PMCID: PMC8389590 DOI: 10.3390/biology10080807] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/15/2021] [Accepted: 08/18/2021] [Indexed: 11/17/2022]
Abstract
Simple Summary In this study, three longan cultivars, including non-aroma types ‘Shixia’ (SX), ‘Lidongben’ (LDB), and strong aroma type ‘Xiangcui’ (XC), were selected to analyze free amino acids (FAAs) variations at six distinct growth stages. The genome-wide identification and expression analysis of genes related to the branched-chain amino acids (BCAA) synthesis pathway were carried out. Results showed that thirty-six FAAs were identified, which increased drastically with fruit development until ripening. During the period of rapid fruit expansion, the aroma of XC changed from light to strong, and the contents of L-alanine and L-leucine were significantly higher than those of SX and LDB. The content of Leu was negatively correlated with the expression of DilBCAT1, -6, and -9 in three varieties, but positively correlated with DilBCAT16, indicating that these four genes may be responsible for the different synthesis and degradation of Leu among cultivars. Abstract Amino acids are important component of fruit nutrition and quality. In this study, three longan cultivars, including non-aroma types ‘Shixia’ (SX), ‘Lidongben’ (LDB), and strong aroma type ‘Xiangcui’ (XC), were selected to analyze free amino acids (FAAs) variations at six distinct growth stages (S1–S6). The genome-wide identification and expression analysis of genes related to the branched-chain amino acids (BCAA) synthesis pathway were carried out. Results showed that 36 FAAs were identified, and the total FAAs content ranged from 2601.0 to 9073.5 mg/kg, which increased drastically with fruit development until ripening. L-glutamic acid (Glu), L-alanine (Ala), L-arginine (Arg), γ-Aminobutyric acid (GABA), L-aspartic acid (Asp), L-leucine (Leu), hydroxyl-proline (Hypro), and L-serine (Ser) were the predominant FAAs (1619.9–7213.9 mg/kg) in pulp, accounting for 62.28–92.05% of the total amino acids. During the period of rapid fruit expansion (S2–S4), the aroma of XC changed from light to strong, and the contents of L-alanine (Ala) and L-leucine (Leu) were significantly higher than those of SX and LDB. Furthermore, a total of two 2-isopropyl malate synthase (IPMS), two 3-isopropyl malate dehydrogenase (IPMD), and 16 BCAA transferase (BCAT) genes were identified. The expression levels of DilBCAT1, -6, and -9 genes in XC were significantly higher than those in SX and LDB, while DilBCAT16 in XC was lower. The content of Leu was negatively correlated with the expression of DilBCAT1, -6, and -9 in three varieties, but positively correlated with DilBCAT16, indicating that these four genes may be responsible for the different synthesis and degradation of Leu among cultivars.
Collapse
|
16
|
Cinelli MA, Jones AD. Alkaloids of the Genus Datura: Review of a Rich Resource for Natural Product Discovery. Molecules 2021; 26:molecules26092629. [PMID: 33946338 PMCID: PMC8124590 DOI: 10.3390/molecules26092629] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 04/23/2021] [Accepted: 04/25/2021] [Indexed: 11/16/2022] Open
Abstract
The genus Datura (Solanaceae) contains nine species of medicinal plants that have held both curative utility and cultural significance throughout history. This genus’ particular bioactivity results from the enormous diversity of alkaloids it contains, making it a valuable study organism for many disciplines. Although Datura contains mostly tropane alkaloids (such as hyoscyamine and scopolamine), indole, beta-carboline, and pyrrolidine alkaloids have also been identified. The tools available to explore specialized metabolism in plants have undergone remarkable advances over the past couple of decades and provide renewed opportunities for discoveries of new compounds and the genetic basis for their biosynthesis. This review provides a comprehensive overview of studies on the alkaloids of Datura that focuses on three questions: How do we find and identify alkaloids? Where do alkaloids come from? What factors affect their presence and abundance? We also address pitfalls and relevant questions applicable to natural products and metabolomics researchers. With both careful perspectives and new advances in instrumentation, the pace of alkaloid discovery—from not just Datura—has the potential to accelerate dramatically in the near future.
Collapse
Affiliation(s)
- Maris A. Cinelli
- Correspondence: or (M.A.C.); (A.D.J.); Tel.: +1-906-360-8177 (M.A.C.); +1-517-432-7126 (A.D.J.)
| | - A. Daniel Jones
- Correspondence: or (M.A.C.); (A.D.J.); Tel.: +1-906-360-8177 (M.A.C.); +1-517-432-7126 (A.D.J.)
| |
Collapse
|
17
|
Sugimoto N, Engelgau P, Jones AD, Song J, Beaudry R. Citramalate synthase yields a biosynthetic pathway for isoleucine and straight- and branched-chain ester formation in ripening apple fruit. Proc Natl Acad Sci U S A 2021; 118:e2009988118. [PMID: 33431667 PMCID: PMC7826400 DOI: 10.1073/pnas.2009988118] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
A plant pathway that initiates with the formation of citramalate from pyruvate and acetyl-CoA by citramalate synthase (CMS) is shown to contribute to the synthesis of α-ketoacids and important odor-active esters in apple (Malus × domestica) fruit. Microarray screening led to the discovery of a gene with high amino acid similarity to 2-isopropylmalate synthase (IPMS). However, functional analysis of recombinant protein revealed its substrate preference differed substantially from IPMS and was more typical of CMS. MdCMS also lacked the regulatory region present in MdIPMS and was not sensitive to feedback inhibition. 13C-acetate feeding of apple tissue labeled citramalate and α-ketoacids in a manner consistent with the presence of the citramalate pathway, labeling both straight- and branched-chain esters. Analysis of genomic DNA (gDNA) revealed the presence of two nearly identical alleles in "Jonagold" fruit (MdCMS_1 and MdCMS_2), differing by two nonsynonymous single-nucleotide polymorphisms (SNPs). The mature proteins differed only at amino acid 387, possessing either glutamine387 (MdCMS_1) or glutamate387 (MdCMS_2). Glutamate387 was associated with near complete loss of activity. MdCMS expression was fruit-specific, increasing severalfold during ripening. The translated protein product was detected in ripe fruit. Transient expression of MdCMS_1 in Nicotiana benthamiana induced the accumulation of high levels of citramalate, whereas MdCMS_2 did not. Domesticated apple lines with MdCMS isozymes containing only glutamate387 produced a very low proportion of 2-methylbutanol- and 2-methylbutanoate (2MB) and 1-propanol and propanoate (PROP) esters. The citramalate pathway, previously only described in microorganisms, is shown to function in ripening apple and contribute to isoleucine and 2MB and PROP ester biosynthesis without feedback regulation.
Collapse
Affiliation(s)
- Nobuko Sugimoto
- Department of Horticulture, Michigan State University, East Lansing, MI 48824
| | - Philip Engelgau
- Department of Horticulture, Michigan State University, East Lansing, MI 48824
| | - A Daniel Jones
- Mass Spectrometry and Metabolomics Core, Research Technology Support Facility, Michigan State University, East Lansing, MI 48824
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824
- Department of Chemistry, Michigan State University, East Lansing, MI 48824
| | - Jun Song
- Kentville Research and Development Center, Agriculture and Agri-Food Canada, Kentville, NS B4N 1J5, Canada
| | - Randolph Beaudry
- Department of Horticulture, Michigan State University, East Lansing, MI 48824;
| |
Collapse
|
18
|
An Integrated Analytical Approach Reveals Trichome Acylsugar Metabolite Diversity in the Wild Tomato Solanum pennellii. Metabolites 2020; 10:metabo10100401. [PMID: 33050231 PMCID: PMC7599763 DOI: 10.3390/metabo10100401] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/29/2020] [Accepted: 10/03/2020] [Indexed: 12/12/2022] Open
Abstract
Acylsugars constitute an abundant class of pest- and pathogen-protective Solanaceae family plant-specialized metabolites produced in secretory glandular trichomes. Solanum pennellii produces copious triacylated sucrose and glucose esters, and the core biosynthetic pathway producing these compounds was previously characterized. We performed untargeted metabolomic analysis of S. pennellii surface metabolites from accessions spanning the species range, which indicated geographic trends in the acylsugar profile and revealed two compound classes previously undescribed from this species, tetraacylglucoses and flavonoid aglycones. A combination of ultrahigh-performance liquid chromatography–high resolution mass spectrometry (UHPLC–HR-MS) and NMR spectroscopy identified variations in the number, length, and branching pattern of acyl chains, and the proportion of sugar cores in acylsugars among accessions. The new dimensions of acylsugar variation revealed by this analysis further indicate variation in the biosynthetic and degradative pathways responsible for acylsugar accumulation. These findings provide a starting point for deeper investigation of acylsugar biosynthesis, an understanding of which can be exploited through crop breeding or metabolic engineering strategies to improve the endogenous defenses of crop plants.
Collapse
|
19
|
Analysis of wild tomato introgression lines elucidates the genetic basis of transcriptome and metabolome variation underlying fruit traits and pathogen response. Nat Genet 2020; 52:1111-1121. [PMID: 32989321 DOI: 10.1038/s41588-020-0690-6] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 08/13/2020] [Indexed: 02/07/2023]
Abstract
Wild tomato species represent a rich gene pool for numerous desirable traits lost during domestication. Here, we exploited an introgression population representing wild desert-adapted species and a domesticated cultivar to establish the genetic basis of gene expression and chemical variation accompanying the transfer of wild-species-associated fruit traits. Transcriptome and metabolome analysis of 580 lines coupled to pathogen sensitivity assays resulted in the identification of genomic loci associated with levels of hundreds of transcripts and metabolites. These associations occurred in hotspots representing coordinated perturbation of metabolic pathways and ripening-related processes. Here, we identify components of the Solanum alkaloid pathway, as well as genes and metabolites involved in pathogen defense and linking fungal resistance with changes in the fruit ripening regulatory network. Our results outline a framework for understanding metabolism and pathogen resistance during tomato fruit ripening and provide insights into key fruit quality traits.
Collapse
|
20
|
García-García JD, Joshi J, Patterson JA, Trujillo-Rodriguez L, Reisch CR, Javanpour AA, Liu CC, Hanson AD. Potential for Applying Continuous Directed Evolution to Plant Enzymes: An Exploratory Study. Life (Basel) 2020; 10:E179. [PMID: 32899502 PMCID: PMC7555113 DOI: 10.3390/life10090179] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 08/31/2020] [Accepted: 09/01/2020] [Indexed: 12/22/2022] Open
Abstract
Plant evolution has produced enzymes that may not be optimal for maximizing yield and quality in today's agricultural environments and plant biotechnology applications. By improving enzyme performance, it should be possible to alleviate constraints on yield and quality currently imposed by kinetic properties or enzyme instability. Enzymes can be optimized more quickly than naturally possible by applying directed evolution, which entails mutating a target gene in vitro and screening or selecting the mutated gene products for the desired characteristics. Continuous directed evolution is a more efficient and scalable version that accomplishes the mutagenesis and selection steps simultaneously in vivo via error-prone replication of the target gene and coupling of the host cell's growth rate to the target gene's function. However, published continuous systems require custom plasmid assembly, and convenient multipurpose platforms are not available. We discuss two systems suitable for continuous directed evolution of enzymes, OrthoRep in Saccharomyces cerevisiae and EvolvR in Escherichia coli, and our pilot efforts to adapt each system for high-throughput plant enzyme engineering. To test our modified systems, we used the thiamin synthesis enzyme THI4, previously identified as a prime candidate for improvement. Our adapted OrthoRep system shows promise for efficient plant enzyme engineering.
Collapse
Affiliation(s)
| | - Jaya Joshi
- Horticultural Sciences Department, University of Florida, Gainesville, FL 32611, USA;
| | - Jenelle A. Patterson
- Horticultural Sciences Department, University of Florida, Gainesville, FL 32611, USA;
| | - Lidimarie Trujillo-Rodriguez
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32603, USA; (L.T.-R.); (C.R.R.)
| | - Christopher R. Reisch
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32603, USA; (L.T.-R.); (C.R.R.)
| | - Alex A. Javanpour
- Department of Biomedical Engineering, University of California, Irvine, CA 92617, USA; (A.A.J.); (C.C.L.)
| | - Chang C. Liu
- Department of Biomedical Engineering, University of California, Irvine, CA 92617, USA; (A.A.J.); (C.C.L.)
- Department of Chemistry, University of California, Irvine, CA 92617, USA
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697, USA
| | - Andrew D. Hanson
- Horticultural Sciences Department, University of Florida, Gainesville, FL 32611, USA;
| |
Collapse
|
21
|
Moore BM, Wang P, Fan P, Lee A, Leong B, Lou YR, Schenck CA, Sugimoto K, Last R, Lehti-Shiu MD, Barry CS, Shiu SH. Within- and cross-species predictions of plant specialized metabolism genes using transfer learning. IN SILICO PLANTS 2020; 2:diaa005. [PMID: 33344884 PMCID: PMC7731531 DOI: 10.1093/insilicoplants/diaa005] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 07/21/2020] [Indexed: 06/12/2023]
Abstract
Plant specialized metabolites mediate interactions between plants and the environment and have significant agronomical/pharmaceutical value. Most genes involved in specialized metabolism (SM) are unknown because of the large number of metabolites and the challenge in differentiating SM genes from general metabolism (GM) genes. Plant models like Arabidopsis thaliana have extensive, experimentally derived annotations, whereas many non-model species do not. Here we employed a machine learning strategy, transfer learning, where knowledge from A. thaliana is transferred to predict gene functions in cultivated tomato with fewer experimentally annotated genes. The first tomato SM/GM prediction model using only tomato data performs well (F-measure = 0.74, compared with 0.5 for random and 1.0 for perfect predictions), but from manually curating 88 SM/GM genes, we found many mis-predicted entries were likely mis-annotated. When the SM/GM prediction models built with A. thaliana data were used to filter out genes where the A. thaliana-based model predictions disagreed with tomato annotations, the new tomato model trained with filtered data improved significantly (F-measure = 0.92). Our study demonstrates that SM/GM genes can be better predicted by leveraging cross-species information. Additionally, our findings provide an example for transfer learning in genomics where knowledge can be transferred from an information-rich species to an information-poor one.
Collapse
Affiliation(s)
- Bethany M Moore
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA
- Ecology, Evolutionary Biology, and Behavior Program, Michigan State University, East Lansing, MI, USA
| | - Peipei Wang
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA
| | - Pengxiang Fan
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
| | - Aaron Lee
- Department of Biology, The College of New Jersey, Ewing, NJ, USA
| | - Bryan Leong
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA
| | - Yann-Ru Lou
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
| | - Craig A Schenck
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
| | - Koichi Sugimoto
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, USA
- Science Research Center, Yamaguchi University, Yamaguchi, Japan
| | - Robert Last
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
| | | | - Cornelius S Barry
- Department of Horticulture, Michigan State University, East Lansing, MI, USA
| | - Shin-Han Shiu
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA
- Ecology, Evolutionary Biology, and Behavior Program, Michigan State University, East Lansing, MI, USA
- Department of Computational Mathematics, Science and Engineering, Michigan State University, East Lansing, MI
| |
Collapse
|
22
|
Chang AX, Chen B, Yang AG, Hu RS, Feng QF, Chen M, Yang XN, Luo CG, Li YY, Wang YY. The trichome-specific acetolactate synthase NtALS1 gene, is involved in acylsugar biosynthesis in tobacco (Nicotiana tabacum L.). PLANTA 2020; 252:13. [PMID: 32621079 DOI: 10.1007/s00425-020-03418-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 06/26/2020] [Indexed: 06/11/2023]
Abstract
MAIN CONCLUSION NtALS1 is specifically expressed in glandular trichomes, and can improve the content of acylsugars in tobacco. ABTRACT The glandular trichomes of many species in the Solanaceae family play an important role in plant defense. These epidermal outgrowths exhibit specialized secondary metabolism, including the production of structurally diverse acylsugars that function in defense against insects and have substantial developmental potential for commercial uses. However, our current understanding of genes involved in acyl chain biosynthesis of acylsugars remains poor in tobacco. In this study, we identified three acetolactate synthase (ALS) genes in tobacco through homology-based gene prediction using Arabidopsis ALS. Quantitative real-time PCR (qRT-PCR) and tissue distribution analyses suggested that NtALS1 was highly expressed in the tips of glandular trichomes. Subcellular localization analysis showed that the NtALS1 localized to the chloroplast. Moreover, in the wild-type K326 variety background, we generated two ntals1 loss-of-function mutants using the CRISPR-Cas9 system. Acylsugars contents in the two ntals1 mutants were significantly lower than those in the wild type. Through phylogenetic tree analysis, we also identified NtALS1 orthologs that may be involved in acylsugar biosynthesis in other Solanaceae species. Taken together, these findings indicate a functional role for NtALS1 in acylsugar biosynthesis in tobacco.
Collapse
Affiliation(s)
- Ai-Xia Chang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Biao Chen
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Ai-Guo Yang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Ri-Sheng Hu
- Hunan Tobacco Research Institute, Changsha, China
| | - Quan-Fu Feng
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Ming Chen
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Xiao-Ning Yang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Cheng-Gang Luo
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Yang-Yang Li
- Hunan Tobacco Research Institute, Changsha, China.
| | - Yuan-Ying Wang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China.
| |
Collapse
|
23
|
Fan P, Wang P, Lou YR, Leong BJ, Moore BM, Schenck CA, Combs R, Cao P, Brandizzi F, Shiu SH, Last RL. Evolution of a plant gene cluster in Solanaceae and emergence of metabolic diversity. eLife 2020; 9:e56717. [PMID: 32613943 PMCID: PMC7386920 DOI: 10.7554/elife.56717] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 07/01/2020] [Indexed: 12/15/2022] Open
Abstract
Plants produce phylogenetically and spatially restricted, as well as structurally diverse specialized metabolites via multistep metabolic pathways. Hallmarks of specialized metabolic evolution include enzymatic promiscuity and recruitment of primary metabolic enzymes and examples of genomic clustering of pathway genes. Solanaceae glandular trichomes produce defensive acylsugars, with sidechains that vary in length across the family. We describe a tomato gene cluster on chromosome 7 involved in medium chain acylsugar accumulation due to trichome specific acyl-CoA synthetase and enoyl-CoA hydratase genes. This cluster co-localizes with a tomato steroidal alkaloid gene cluster and is syntenic to a chromosome 12 region containing another acylsugar pathway gene. We reconstructed the evolutionary events leading to this gene cluster and found that its phylogenetic distribution correlates with medium chain acylsugar accumulation across the Solanaceae. This work reveals insights into the dynamics behind gene cluster evolution and cell-type specific metabolite diversity.
Collapse
Affiliation(s)
- Pengxiang Fan
- Department of Biochemistry and Molecular Biology, Michigan State UniversityEast LansingUnited States
| | - Peipei Wang
- Department of Plant Biology, Michigan State UniversityEast LansingUnited States
| | - Yann-Ru Lou
- Department of Biochemistry and Molecular Biology, Michigan State UniversityEast LansingUnited States
| | - Bryan J Leong
- Department of Plant Biology, Michigan State UniversityEast LansingUnited States
| | - Bethany M Moore
- Department of Plant Biology, Michigan State UniversityEast LansingUnited States
- University of WisconsinMadisonUnited States
| | - Craig A Schenck
- Department of Biochemistry and Molecular Biology, Michigan State UniversityEast LansingUnited States
| | - Rachel Combs
- Division of Biological Sciences, University of MissouriColumbusUnited States
| | - Pengfei Cao
- Department of Plant Biology, Michigan State UniversityEast LansingUnited States
- MSU-DOE Plant Research Laboratory, Michigan State UniversityEast LansingUnited States
| | - Federica Brandizzi
- Department of Plant Biology, Michigan State UniversityEast LansingUnited States
- MSU-DOE Plant Research Laboratory, Michigan State UniversityEast LansingUnited States
| | - Shin-Han Shiu
- Department of Plant Biology, Michigan State UniversityEast LansingUnited States
- Department of Computational Mathematics, Science, and Engineering, Michigan State UniversityEast LansingUnited States
| | - Robert L Last
- Department of Biochemistry and Molecular Biology, Michigan State UniversityEast LansingUnited States
- Department of Plant Biology, Michigan State UniversityEast LansingUnited States
| |
Collapse
|
24
|
Mihaylova-Kroumova AB, Artiouchine I, Korenkov VD, Wagner GJ. Patterns of inheritance of acylsugar acyl groups in selected interspecific hybrids of genus Nicotiana. JOURNAL OF PLANT RESEARCH 2020; 133:509-523. [PMID: 32277383 DOI: 10.1007/s10265-020-01188-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 04/02/2020] [Indexed: 05/26/2023]
Abstract
Glandular trichomes on the surface of Solanaceae species produce acyl sugars that are species-, and cultivar-specific. Acyl sugars are known to possess insecticidal, antibiotic, and hormone-like properties, and as such have great potential as a class of naturally occurring pesticides and antibiotics. The objective of this work was to analyze the acyl composition of acyl sugars in the leaf trichome exudate from selected Nicotiana species and to follow the inheritance of acyl content in their hybrids. Trichome exudates were collected, and the acyl profiles of acyl sugars were identified via GC-MS. The variations in acyl group inheritance in the hybrids (a single parent resemblance, missing, complementary, and novel groups) matched the patterns described in the literature for a variety of secondary metabolites. However, we did not find a complementation of major parental acyl groups. Instead, in some hybrids we observed a dynamic change in the proportions of acyl groups, distinguishing the acyl group profiles as novel. We observed paternal (i.e. N. tabacum cv. Turkish Samsun × N. benthamiana hybrids) and maternal (i.e. N. tabacum cv. Samsun-nn × N. otophora) inheritance patterns, novel acyl profiles (N. excelsior hybrids), and missing acyl groups (N. excelsiana). Selective inheritance of some acyl groups in the hybrids of N. benthamiana (4- and 5-methylheptanoic isomers) or N. alata (octanoate) was found. Suggestions are given to explain certain patterns of inheritance. The data presented here contribute to the body of knowledge about the effect of interspecific hybridization on the secondary metabolites by including acylsugar acyl groups that have not been studied previously.
Collapse
Affiliation(s)
- Antoaneta B Mihaylova-Kroumova
- Kentucky Tobacco Research and Development Center, College of Agriculture, University of Kentucky, 1401 University Dr., Lexington, KY, 40546-0236, USA.
| | - Ivan Artiouchine
- Kentucky Tobacco Research and Development Center, College of Agriculture, University of Kentucky, 1401 University Dr., Lexington, KY, 40546-0236, USA
| | - Victor D Korenkov
- Kentucky Tobacco Research and Development Center, College of Agriculture, University of Kentucky, 1401 University Dr., Lexington, KY, 40546-0236, USA
| | - George J Wagner
- Kentucky Tobacco Research and Development Center, College of Agriculture, University of Kentucky, 1401 University Dr., Lexington, KY, 40546-0236, USA
| |
Collapse
|
25
|
Leong BJ, Hurney SM, Fiesel PD, Moghe GD, Jones AD, Last RL. Specialized Metabolism in a Nonmodel Nightshade: Trichome Acylinositol Biosynthesis. PLANT PHYSIOLOGY 2020; 183:915-924. [PMID: 32354879 PMCID: PMC7333698 DOI: 10.1104/pp.20.00276] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 04/15/2020] [Indexed: 05/13/2023]
Abstract
Plants make many biologically active, specialized metabolites, which vary in structure, biosynthesis, and the processes they influence. An increasing number of these compounds are documented to protect plants from insects, pathogens, or herbivores or to mediate interactions with beneficial organisms, including pollinators and nitrogen-fixing microbes. Acylsugars, one class of protective compounds, are made in glandular trichomes of plants across the Solanaceae family. While most described acylsugars are acylsucroses, published examples also include acylsugars with hexose cores. The South American fruit crop naranjilla (lulo; Solanum quitoense) produces acylsugars containing a myoinositol core. We identified an enzyme that acetylates triacylinositols, a function homologous to the last step in the acylsucrose biosynthetic pathway of tomato (Solanum lycopersicum). Our analysis reveals parallels between S. lycopersicum acylsucrose and S. quitoense acylinositol biosynthesis, suggesting a common evolutionary origin.
Collapse
Affiliation(s)
- Bryan J Leong
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824
| | - Steven M Hurney
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824
| | - Paul D Fiesel
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824
| | - Gaurav D Moghe
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824
| | - A Daniel Jones
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824
| | - Robert L Last
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824
| |
Collapse
|
26
|
Mandal S, Ji W, McKnight TD. Candidate Gene Networks for Acylsugar Metabolism and Plant Defense in Wild Tomato Solanum pennellii. THE PLANT CELL 2020; 32:81-99. [PMID: 31628166 PMCID: PMC6961621 DOI: 10.1105/tpc.19.00552] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 09/30/2019] [Accepted: 10/16/2019] [Indexed: 05/13/2023]
Abstract
Many solanaceous plants secrete acylsugars, which are branched-chain and straight-chain fatty acids esterified to Glu or Suc. These compounds have important roles in plant defense and potential commercial applications. However, several acylsugar metabolic genes remain unidentified, and little is known about regulation of this pathway. Comparative transcriptomics between low- and high-acylsugar-producing accessions of Solanum pennellii revealed that expression levels of known and novel candidate genes (putatively encoding beta-ketoacyl-(acyl-carrier-protein) synthases, peroxisomal acyl-activating enzymes, ATP binding cassette (ABC) transporters, and central carbon metabolic proteins) were positively correlated with acylsugar accumulation, except two genes previously reported to be involved in acylglucose biosynthesis. Genes putatively encoding oxylipin metabolic proteins, subtilisin-like proteases, and other antimicrobial defense proteins were upregulated in low-acylsugar-producing accessions. Transcriptome analysis after biochemical inhibition of biosynthesis of branched-chain amino acids (precursors to branched-chain fatty acids) by imazapyr showed concentration-dependent downregulation of known and most acylsugar candidate genes, but not defense genes. Weighted gene correlation network analysis identified separate coexpressed gene networks for acylsugar metabolism (including six transcription factor genes and flavonoid metabolic genes) and plant defense (including genes putatively encoding NB-ARC and leucine-rich repeat sequences, protein kinases and defense signaling proteins, and previously mentioned defense proteins). Additionally, virus-induced gene silencing of two trichomes preferentially expressed candidate genes for straight-chain fatty acid biosynthesis confirmed their role in acylsugar metabolism.
Collapse
Affiliation(s)
- Sabyasachi Mandal
- Department of Biology, Texas A&M University, College Station, Texas 77843
| | - Wangming Ji
- Department of Biology, Texas A&M University, College Station, Texas 77843
| | - Thomas D McKnight
- Department of Biology, Texas A&M University, College Station, Texas 77843
| |
Collapse
|
27
|
Maeda HA. Harnessing evolutionary diversification of primary metabolism for plant synthetic biology. J Biol Chem 2019; 294:16549-16566. [PMID: 31558606 DOI: 10.1074/jbc.rev119.006132] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Plants produce numerous natural products that are essential to both plant and human physiology. Recent identification of genes and enzymes involved in their biosynthesis now provides exciting opportunities to reconstruct plant natural product pathways in heterologous systems through synthetic biology. The use of plant chassis, although still in infancy, can take advantage of plant cells' inherent capacity to synthesize and store various phytochemicals. Also, large-scale plant biomass production systems, driven by photosynthetic energy production and carbon fixation, could be harnessed for industrial-scale production of natural products. However, little is known about which plants could serve as ideal hosts and how to optimize plant primary metabolism to efficiently provide precursors for the synthesis of desirable downstream natural products or specialized (secondary) metabolites. Although primary metabolism is generally assumed to be conserved, unlike the highly-diversified specialized metabolism, primary metabolic pathways and enzymes can differ between microbes and plants and also among different plants, especially at the interface between primary and specialized metabolisms. This review highlights examples of the diversity in plant primary metabolism and discusses how we can utilize these variations in plant synthetic biology. I propose that understanding the evolutionary, biochemical, genetic, and molecular bases of primary metabolic diversity could provide rational strategies for identifying suitable plant hosts and for further optimizing primary metabolism for sizable production of natural and bio-based products in plants.
Collapse
Affiliation(s)
- Hiroshi A Maeda
- Department of Botany, University of Wisconsin-Madison, Madison, Wisconsin 53706
| |
Collapse
|
28
|
Fan P, Leong BJ, Last RL. Tip of the trichome: evolution of acylsugar metabolic diversity in Solanaceae. CURRENT OPINION IN PLANT BIOLOGY 2019; 49:8-16. [PMID: 31009840 PMCID: PMC6688940 DOI: 10.1016/j.pbi.2019.03.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 03/11/2019] [Accepted: 03/15/2019] [Indexed: 05/11/2023]
Abstract
Acylsugars are insecticidal plant specialized metabolites produced in the Solanaceae (nightshade family). Despite having simple constituents, these compounds are unusually structurally diverse. Their structural variations in phylogenetically closely related species enable comparative biochemical approaches to understand acylsugar biosynthesis and pathway diversification. Thus far, varied enzyme classes contributing to their synthesis were characterized in cultivated and wild tomatoes, including from core metabolism - isopropylmalate synthase (Leu) and invertase (carbon) - and a group of evolutionarily related BAHD acyltransferases known as acylsucrose acyltransferases. Gene duplication and neofunctionalization of these enzymes drove acylsugar diversification both within and beyond tomato. The broad set of evolutionary mechanisms underlying acylsugar diversity in Solanaceae make this metabolic network an exemplar for detailed understanding of the evolution of metabolic form and function.
Collapse
Affiliation(s)
- Pengxiang Fan
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Bryan J Leong
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Robert L Last
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA; Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
29
|
Leong BJ, Lybrand DB, Lou YR, Fan P, Schilmiller AL, Last RL. Evolution of metabolic novelty: A trichome-expressed invertase creates specialized metabolic diversity in wild tomato. SCIENCE ADVANCES 2019; 5:eaaw3754. [PMID: 31032420 PMCID: PMC6482016 DOI: 10.1126/sciadv.aaw3754] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 03/06/2019] [Indexed: 05/19/2023]
Abstract
Plants produce a myriad of taxonomically restricted specialized metabolites. This diversity-and our ability to correlate genotype with phenotype-makes the evolution of these ecologically and medicinally important compounds interesting and experimentally tractable. Trichomes of tomato and other nightshade family plants produce structurally diverse protective compounds termed acylsugars. While cultivated tomato (Solanum lycopersicum) strictly accumulates acylsucroses, the South American wild relative Solanum pennellii produces copious amounts of acylglucoses. Genetic, transgenic, and biochemical dissection of the S. pennellii acylglucose biosynthetic pathway identified a trichome gland cell-expressed invertase-like enzyme that hydrolyzes acylsucroses (Sopen03g040490). This enzyme acts on the pyranose ring-acylated acylsucroses found in the wild tomato but not on the furanose ring-decorated acylsucroses of cultivated tomato. These results show that modification of the core acylsucrose biosynthetic pathway leading to loss of furanose ring acylation set the stage for co-option of a general metabolic enzyme to produce a new class of protective compounds.
Collapse
Affiliation(s)
- Bryan J. Leong
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA
| | - Daniel B. Lybrand
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
| | - Yann-Ru Lou
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
| | - Pengxiang Fan
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
| | - Anthony L. Schilmiller
- Mass Spectrometry and Metabolomics Core, Michigan State University, East Lansing, MI, USA
| | - Robert L. Last
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
- Corresponding author.
| |
Collapse
|
30
|
Nunes-Nesi A, Alseekh S, de Oliveira Silva FM, Omranian N, Lichtenstein G, Mirnezhad M, González RRR, Sabio Y Garcia J, Conte M, Leiss KA, Klinkhamer PGL, Nikoloski Z, Carrari F, Fernie AR. Identification and characterization of metabolite quantitative trait loci in tomato leaves and comparison with those reported for fruits and seeds. Metabolomics 2019; 15:46. [PMID: 30874962 PMCID: PMC6420416 DOI: 10.1007/s11306-019-1503-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Accepted: 01/12/2019] [Indexed: 01/10/2023]
Abstract
INTRODUCTION To date, most studies of natural variation and metabolite quantitative trait loci (mQTL) in tomato have focused on fruit metabolism, leaving aside the identification of genomic regions involved in the regulation of leaf metabolism. OBJECTIVE This study was conducted to identify leaf mQTL in tomato and to assess the association of leaf metabolites and physiological traits with the metabolite levels from other tissues. METHODS The analysis of components of leaf metabolism was performed by phenotypying 76 tomato ILs with chromosome segments of the wild species Solanum pennellii in the genetic background of a cultivated tomato (S. lycopersicum) variety M82. The plants were cultivated in two different environments in independent years and samples were harvested from mature leaves of non-flowering plants at the middle of the light period. The non-targeted metabolite profiling was obtained by gas chromatography time-of-flight mass spectrometry (GC-TOF-MS). With the data set obtained in this study and already published metabolomics data from seed and fruit, we performed QTL mapping, heritability and correlation analyses. RESULTS Changes in metabolite contents were evident in the ILs that are potentially important with respect to stress responses and plant physiology. By analyzing the obtained data, we identified 42 positive and 76 negative mQTL involved in carbon and nitrogen metabolism. CONCLUSIONS Overall, these findings allowed the identification of S. lycopersicum genome regions involved in the regulation of leaf primary carbon and nitrogen metabolism, as well as the association of leaf metabolites with metabolites from seeds and fruits.
Collapse
Affiliation(s)
- Adriano Nunes-Nesi
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil.
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam, Golm, OT, Germany.
| | - Saleh Alseekh
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam, Golm, OT, Germany
- Center of Plant System Biology and Biotechnology (CPSBB), Plovdiv, Bulgaria
| | | | - Nooshin Omranian
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam, Golm, OT, Germany
- Center of Plant System Biology and Biotechnology (CPSBB), Plovdiv, Bulgaria
| | - Gabriel Lichtenstein
- Instituto de Biotecnología, Instituto Nacional de Tecnología Agropecuaría, Consejo Nacional de Investigaciones Científicas y Técnicas, B1712WAA, Castelar, Argentina
| | - Mohammad Mirnezhad
- Plant Ecology, Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE, Leiden, The Netherlands
| | - Roman R Romero González
- Plant Ecology, Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE, Leiden, The Netherlands
| | - Julia Sabio Y Garcia
- Instituto de Biotecnología, Instituto Nacional de Tecnología Agropecuaría, Consejo Nacional de Investigaciones Científicas y Técnicas, B1712WAA, Castelar, Argentina
| | - Mariana Conte
- Instituto de Biotecnología, Instituto Nacional de Tecnología Agropecuaría, Consejo Nacional de Investigaciones Científicas y Técnicas, B1712WAA, Castelar, Argentina
| | - Kirsten A Leiss
- Plant Ecology, Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE, Leiden, The Netherlands
- Business Unit Horticulture, Wageningen University & Research, Postbus 20, 2665 ZG, Bleiswijk, The Netherlands
| | - Peter G L Klinkhamer
- Plant Ecology, Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE, Leiden, The Netherlands
| | - Zoran Nikoloski
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam, Golm, OT, Germany
- Bioinformatics Group, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Fernando Carrari
- Instituto de Biotecnología, Instituto Nacional de Tecnología Agropecuaría, Consejo Nacional de Investigaciones Científicas y Técnicas, B1712WAA, Castelar, Argentina
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-UBA-CONICET), Universidad de Buenos Aires, Ciudad Universitaria, C1428EHA Buenos Aires, Argentina
- Facultad de Agronomía, Cátedra de Genética, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam, Golm, OT, Germany
- Center of Plant System Biology and Biotechnology (CPSBB), Plovdiv, Bulgaria
| |
Collapse
|
31
|
Abstract
Specialized metabolites are critical for plant–environment interactions, e.g., attracting pollinators or defending against herbivores, and are important sources of plant-based pharmaceuticals. However, it is unclear what proportion of enzyme-encoding genes play a role in specialized metabolism (SM) as opposed to general metabolism (GM) in any plant species. This is because of the diversity of specialized metabolites and the considerable number of incompletely characterized pathways responsible for their production. In addition, SM gene ancestors frequently played roles in GM. We evaluate features distinguishing SM and GM genes and build a computational model that accurately predicts SM genes. Our predictions provide candidates for experimental studies, and our modeling approach can be applied to other species that produce medicinally or industrially useful compounds. Plant specialized metabolism (SM) enzymes produce lineage-specific metabolites with important ecological, evolutionary, and biotechnological implications. Using Arabidopsis thaliana as a model, we identified distinguishing characteristics of SM and GM (general metabolism, traditionally referred to as primary metabolism) genes through a detailed study of features including duplication pattern, sequence conservation, transcription, protein domain content, and gene network properties. Analysis of multiple sets of benchmark genes revealed that SM genes tend to be tandemly duplicated, coexpressed with their paralogs, narrowly expressed at lower levels, less conserved, and less well connected in gene networks relative to GM genes. Although the values of each of these features significantly differed between SM and GM genes, any single feature was ineffective at predicting SM from GM genes. Using machine learning methods to integrate all features, a prediction model was established with a true positive rate of 87% and a true negative rate of 71%. In addition, 86% of known SM genes not used to create the machine learning model were predicted. We also demonstrated that the model could be further improved when we distinguished between SM, GM, and junction genes responsible for reactions shared by SM and GM pathways, indicating that topological considerations may further improve the SM prediction model. Application of the prediction model led to the identification of 1,220 A. thaliana genes with previously unknown functions, each assigned a confidence measure called an SM score, providing a global estimate of SM gene content in a plant genome.
Collapse
|
32
|
Maeda HA. Evolutionary Diversification of Primary Metabolism and Its Contribution to Plant Chemical Diversity. FRONTIERS IN PLANT SCIENCE 2019; 10:881. [PMID: 31354760 PMCID: PMC6635470 DOI: 10.3389/fpls.2019.00881] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 06/20/2019] [Indexed: 05/05/2023]
Abstract
Plants produce a diverse array of lineage-specific specialized (secondary) metabolites, which are synthesized from primary metabolites. Plant specialized metabolites play crucial roles in plant adaptation as well as in human nutrition and medicine. Unlike well-documented diversification of plant specialized metabolic enzymes, primary metabolism that provides essential compounds for cellular homeostasis is under strong selection pressure and generally assumed to be conserved across the plant kingdom. Yet, some alterations in primary metabolic pathways have been reported in plants. The biosynthetic pathways of certain amino acids and lipids have been altered in specific plant lineages. Also, two alternative pathways exist in plants for synthesizing primary precursors of the two major classes of plant specialized metabolites, terpenoids and phenylpropanoids. Such primary metabolic diversities likely underlie major evolutionary changes in plant metabolism and chemical diversity by acting as enabling or associated traits for the evolution of specialized metabolic pathways.
Collapse
|
33
|
Brog YM, Osorio S, Yichie Y, Alseekh S, Bensal E, Kochevenko A, Zamir D, Fernie AR. A Solanum neorickii introgression population providing a powerful complement to the extensively characterized Solanum pennellii population. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 97:391-403. [PMID: 30230636 PMCID: PMC7379295 DOI: 10.1111/tpj.14095] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 09/01/2018] [Accepted: 09/04/2018] [Indexed: 05/31/2023]
Abstract
We present a complementary resource for trait fine-mapping in tomato to those based on the intra-specific cross between cultivated tomato and the wild tomato species Solanum pennellii, which have been extensively used for quantitative genetics in tomato over the last 20 years. The current population of backcross inbred lines (BILs) is composed of 107 lines derived after three backcrosses of progeny of the wild species Solanum neorickii (LA2133) and cultivated tomato (cultivar TA209) and is freely available to the scientific community. These S. neorickii BILs were genotyped using the 10K SolCAP single nucleotide polymorphism chip, and 3111 polymorphic markers were used to map recombination break points relative to the physical map of Solanum lycopersicum. The BILs harbor on average 4.3 introgressions per line, with a mean introgression length of 34.7 Mbp, allowing partitioning of the genome into 340 bins and thereby facilitating rapid trait mapping. We demonstrate the power of using this resource in comparison with archival data from the S. pennellii resources by carrying out metabolic quantitative trait locus analysis following gas chromatography-mass spectrometry on fruits harvested from the S. neorickii BILs. The metabolic candidate genes phenylalanine ammonia-lyase and cystathionine gamma-lyase were then tested and validated in F2 populations and via agroinfiltration-based overexpression in order to exemplify the fidelity of this method in identifying the genes that drive tomato metabolic phenotypes.
Collapse
Affiliation(s)
- Yaacov Micha Brog
- Faculty of AgricultureThe Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture at the Hebrew University of JerusalemRehovot76100Israel
| | - Sonia Osorio
- Department of Molecular Biology and BiochemistryInstituto de Hortofruticultura Subtropical y Mediterránea ‘La Mayora’ – University of Malaga – Consejo Superior de Investigaciones Científicas (IHSM‐UMA‐CSIC)Campus de Teatinos29071MálagaSpain
- Max‐Planck‐Institute of Molecular Plant PhysiologyAm Mühlenberg 114476Potsdam‐GolmGermany
| | - Yoav Yichie
- Faculty of AgricultureThe Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture at the Hebrew University of JerusalemRehovot76100Israel
| | - Saleh Alseekh
- Max‐Planck‐Institute of Molecular Plant PhysiologyAm Mühlenberg 114476Potsdam‐GolmGermany
- Center of Plant Systems Biology and Biotechnology4000PlovdivBulgaria
| | - Elad Bensal
- Faculty of AgricultureThe Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture at the Hebrew University of JerusalemRehovot76100Israel
| | - Andriy Kochevenko
- Max‐Planck‐Institute of Molecular Plant PhysiologyAm Mühlenberg 114476Potsdam‐GolmGermany
| | - Dani Zamir
- Faculty of AgricultureThe Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture at the Hebrew University of JerusalemRehovot76100Israel
| | - Alisdair R. Fernie
- Max‐Planck‐Institute of Molecular Plant PhysiologyAm Mühlenberg 114476Potsdam‐GolmGermany
- Center of Plant Systems Biology and Biotechnology4000PlovdivBulgaria
| |
Collapse
|
34
|
Zhao X, Yuan X, Chen S, Meng L, Fu D. Role of the tomato TAGL1 gene in regulating fruit metabolites elucidated using RNA sequence and metabolomics analyses. PLoS One 2018; 13:e0199083. [PMID: 29894500 PMCID: PMC5997326 DOI: 10.1371/journal.pone.0199083] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 05/31/2018] [Indexed: 01/08/2023] Open
Abstract
Fruit ripening is a complex biological process affecting fruit quality. In tomato the fruit ripening process is delicately regulated by transcription factors (TFs). Among these, the TOMATO AGAMOUS-LIKE 1 (TAGL1) gene plays an important role in both the development and ripening of fruit. In this study, the TAGL1 gene was successfully silenced by virus-induced gene silencing technology (VIGS), and the global gene expression and metabolites profiles of TAGL1-silenced fruits were analyzed by RNA-sequence analysis (RNA-seq) and liquid chromatography-mass spectrometry (LC-MS/MS). The TAGL1-silenced fruits phenotypically displayed an orange pericarp, which was in accordance with the results expected from the down-regulation of genes associated with carotenoid synthesis. Levels of several amino acids and organic acids were lower in the TAGL1-silenced fruits than in the wild-type fruits, whereas, α-tomatine content was greatly increased (more than 10-fold) in the TAGL1-silenced fruits compared to wild-type fruits. The findings of this study showed that TAGL1 not only regulates the ripening of tomato fruits, but also affects the synthesis and levels of nutrients in the fruit.
Collapse
Affiliation(s)
- Xiaodan Zhao
- School of Food and Chemical Engineering, Beijing Technology and Business University, Haidian District, Beijing, China
- * E-mail:
| | - Xinyu Yuan
- Laboratory of Food Biotechnology, College of Food Science and Nutritional Engineering, China Agricultural University, Haidian District, Beijing, China
| | - Sha Chen
- Institute of Traditional Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lanhuan Meng
- Laboratory of Food Biotechnology, College of Food Science and Nutritional Engineering, China Agricultural University, Haidian District, Beijing, China
| | - Daqi Fu
- Laboratory of Food Biotechnology, College of Food Science and Nutritional Engineering, China Agricultural University, Haidian District, Beijing, China
| |
Collapse
|
35
|
Evolution of a flipped pathway creates metabolic innovation in tomato trichomes through BAHD enzyme promiscuity. Nat Commun 2017; 8:2080. [PMID: 29234041 PMCID: PMC5727100 DOI: 10.1038/s41467-017-02045-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 11/03/2017] [Indexed: 01/29/2023] Open
Abstract
Plants produce hundreds of thousands of structurally diverse specialized metabolites via multistep biosynthetic networks, including compounds of ecological and therapeutic importance. These pathways are restricted to specific plant groups, and are excellent systems for understanding metabolic evolution. Tomato and other plants in the nightshade family synthesize protective acylated sugars in the tip cells of glandular trichomes on stems and leaves. We describe a metabolic innovation in wild tomato species that contributes to acylsucrose structural diversity. A small number of amino acid changes in two acylsucrose acyltransferases alter their acyl acceptor preferences, resulting in reversal of their order of reaction and increased product diversity. This study demonstrates how small numbers of amino acid changes in multiple pathway enzymes can lead to diversification of specialized metabolites in plants. It also highlights the power of a combined genetic, genomic and in vitro biochemical approach to identify the evolutionary mechanisms leading to metabolic novelty. Plants produce large numbers of structurally diverse metabolites through multistep pathways that often use the same precursors. Here the authors utilize the pathway leading to the production of acylated sucroses in the tomato plant to illustrate how metabolite diversity can arise through biochemical pathway evolution.
Collapse
|
36
|
Nadakuduti SS, Uebler JB, Liu X, Jones AD, Barry CS. Characterization of Trichome-Expressed BAHD Acyltransferases in Petunia axillaris Reveals Distinct Acylsugar Assembly Mechanisms within the Solanaceae. PLANT PHYSIOLOGY 2017; 175:36-50. [PMID: 28701351 PMCID: PMC5580754 DOI: 10.1104/pp.17.00538] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 07/07/2017] [Indexed: 05/12/2023]
Abstract
Acylsugars are synthesized in the glandular trichomes of the Solanaceae family and are implicated in protection against abiotic and biotic stress. Acylsugars are composed of either sucrose or glucose esterified with varying numbers of acyl chains of differing length. In tomato (Solanum lycopersicum), acylsugar assembly requires four acylsugar acyltransferases (ASATs) of the BAHD superfamily. Tomato ASATs catalyze the sequential esterification of acyl-coenzyme A thioesters to the R4, R3, R3', and R2 positions of sucrose, yielding a tetra-acylsucrose. Petunia spp. synthesize acylsugars that are structurally distinct from those of tomato. To explore the mechanisms underlying this chemical diversity, a Petuniaaxillaris transcriptome was mined for trichome preferentially expressed BAHDs. A combination of phylogenetic analyses, gene silencing, and biochemical analyses coupled with structural elucidation of metabolites revealed that acylsugar assembly is not conserved between tomato and petunia. In P. axillaris, tetra-acylsucrose assembly occurs through the action of four ASATs, which catalyze sequential addition of acyl groups to the R2, R4, R3, and R6 positions. Notably, in P. axillaris, PaxASAT1 and PaxASAT4 catalyze the acylation of the R2 and R6 positions of sucrose, respectively, and no clear orthologs exist in tomato. Similarly, petunia acylsugars lack an acyl group at the R3' position, and congruently, an ortholog of SlASAT3, which catalyzes acylation at the R3' position in tomato, is absent in P. axillaris Furthermore, where putative orthologous relationships of ASATs are predicted between tomato and petunia, these are not supported by biochemical assays. Overall, these data demonstrate the considerable evolutionary plasticity of acylsugar biosynthesis.
Collapse
Affiliation(s)
| | - Joseph B Uebler
- Department of Horticulture, Michigan State University, East Lansing, Michigan 48824
| | - Xiaoxiao Liu
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824
| | - A Daniel Jones
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824
| | - Cornelius S Barry
- Department of Horticulture, Michigan State University, East Lansing, Michigan 48824
| |
Collapse
|
37
|
Moghe GD, Leong BJ, Hurney SM, Daniel Jones A, Last RL. Evolutionary routes to biochemical innovation revealed by integrative analysis of a plant-defense related specialized metabolic pathway. eLife 2017; 6:28468. [PMID: 28853706 PMCID: PMC5595436 DOI: 10.7554/elife.28468] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 07/25/2017] [Indexed: 12/22/2022] Open
Abstract
The diversity of life on Earth is a result of continual innovations in molecular networks influencing morphology and physiology. Plant specialized metabolism produces hundreds of thousands of compounds, offering striking examples of these innovations. To understand how this novelty is generated, we investigated the evolution of the Solanaceae family-specific, trichome-localized acylsugar biosynthetic pathway using a combination of mass spectrometry, RNA-seq, enzyme assays, RNAi and phylogenomics in different non-model species. Our results reveal hundreds of acylsugars produced across the Solanaceae family and even within a single plant, built on simple sugar cores. The relatively short biosynthetic pathway experienced repeated cycles of innovation over the last 100 million years that include gene duplication and divergence, gene loss, evolution of substrate preference and promiscuity. This study provides mechanistic insights into the emergence of plant chemical novelty, and offers a template for investigating the ~300,000 non-model plant species that remain underexplored. There are about 300,000 species of plant on Earth, which together produce over a million different small molecules called metabolites. Plants use many of these molecules to grow, to communicate with each other or to defend themselves against pests and disease. Humans have co-opted many of the same molecules as well; for example, some are important nutrients while others are active ingredients in medicines. Many plant metabolites are found in almost all plants, but hundreds of thousands of them are more specialized and only found in small groups of related plant species. These specialized metabolites have a wide variety of structures, and are made by different enzymes working together to carry out a series of biochemical reactions. Acylsugars are an example of a group of specialized metabolites with particularly diverse structures. These small molecules are restricted to plants in the Solanaceae family, which includes tomato and tobacco plants. Moghe et al. have now focused on acylsugars to better understand how plants produce the large diversity of chemical structures found in specialized metabolites, and how these processes have evolved over time. An analysis of over 35 plant species from across the Solanaceae family revealed hundreds of acylsugars, with some plants accumulating 300 or more different types of these specialized metabolites. Moghe et al. then looked at the enzymes that make acylsugars from a poorly studied flowering plant called Salpiglossis sinuata, partly because it produces a large diversity of these small molecules and partly because it sits in a unique position in the Solanaceae family tree. The activities of the enzymes were confirmed both in test tubes and in plants. This suggested that many of the enzymes were “promiscuous”, meaning that they could likely use a variety of molecules as starting points for their chemical reactions. This finding could help to explain how this plant species can make such a wide variety of acylsugars. Moghe et al. also discovered that many of the enzymes that make acylsugars are encoded by genes that were originally copies of other genes and that have subsequently evolved new activities. Plant scientists and plant breeders value tomato plants that produce acylsugars because these natural chemicals protect against pests like whiteflies and spider mites. A clearer understanding of the diversity of acylsugars in the Solanaceae family, as well as the enzymes that make these specialized metabolites, could help efforts to breed crops that are more resistant to pests. Some of the enzymes related to those involved in acylsugar production could also help to make chemicals with pharmaceutical value. These new findings might also eventually lead to innovative ways to produce these chemicals on a large scale.
Collapse
Affiliation(s)
- Gaurav D Moghe
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, United States
| | - Bryan J Leong
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, United States.,Department of Plant Biology, Michigan State University, East Lansing, United States
| | - Steven M Hurney
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, United States.,Department of Chemistry, Michigan State University, East Lansing, United States
| | - A Daniel Jones
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, United States.,Department of Chemistry, Michigan State University, East Lansing, United States
| | - Robert L Last
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, United States.,Department of Plant Biology, Michigan State University, East Lansing, United States
| |
Collapse
|
38
|
Xing A, Last RL. A Regulatory Hierarchy of the Arabidopsis Branched-Chain Amino Acid Metabolic Network. THE PLANT CELL 2017; 29:1480-1499. [PMID: 28522547 PMCID: PMC5502462 DOI: 10.1105/tpc.17.00186] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 04/12/2017] [Accepted: 05/11/2017] [Indexed: 05/18/2023]
Abstract
The branched-chain amino acids (BCAAs) Ile, Val, and Leu are essential nutrients that humans and other animals obtain from plants. However, total and relative amounts of plant BCAAs rarely match animal nutritional needs, and improvement requires a better understanding of the mechanistic basis for BCAA homeostasis. We present an in vivo regulatory model of BCAA homeostasis derived from analysis of feedback-resistant Arabidopsis thaliana mutants for the three allosteric committed enzymes in the biosynthetic network: threonine deaminase (also named l-O-methylthreonine resistant 1 [OMR1]), acetohydroxyacid synthase small subunit 2 (AHASS2), and isopropylmalate synthase 1 (IPMS1). In this model, OMR1 exerts primary control on Ile accumulation and functions independently of AHAS and IPMS AHAS and IPMS regulate Val and Leu homeostasis, where AHAS affects total Val+Leu and IPMS controls partitioning between these amino acids. In addition, analysis of feedback-resistant and loss-of-function single and double mutants revealed that each AHAS and IPMS isoenzyme contributes to homeostasis rather than being functionally redundant. The characterized feedback resistance mutations caused increased free BCAA levels in both seedlings and seeds. These results add to our understanding of the basis of in vivo BCAA homeostasis and inform approaches to improve the amount and balance of these essential nutrients in crops.
Collapse
Affiliation(s)
- Anqi Xing
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824-1319
| | - Robert L Last
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824-1319
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824-1319
| |
Collapse
|
39
|
Zhang H, Mittal N, Leamy LJ, Barazani O, Song B. Back into the wild-Apply untapped genetic diversity of wild relatives for crop improvement. Evol Appl 2017; 10:5-24. [PMID: 28035232 PMCID: PMC5192947 DOI: 10.1111/eva.12434] [Citation(s) in RCA: 180] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 09/07/2016] [Indexed: 12/18/2022] Open
Abstract
Deleterious effects of climate change and human activities, as well as diverse environmental stresses, present critical challenges to food production and the maintenance of natural diversity. These challenges may be met by the development of novel crop varieties with increased biotic or abiotic resistance that enables them to thrive in marginal lands. However, considering the diverse interactions between crops and environmental factors, it is surprising that evolutionary principles have been underexploited in addressing these food and environmental challenges. Compared with domesticated cultivars, crop wild relatives (CWRs) have been challenged in natural environments for thousands of years and maintain a much higher level of genetic diversity. In this review, we highlight the significance of CWRs for crop improvement by providing examples of CWRs that have been used to increase biotic and abiotic stress resistance/tolerance and overall yield in various crop species. We also discuss the surge of advanced biotechnologies, such as next-generation sequencing technologies and omics, with particular emphasis on how they have facilitated gene discovery in CWRs. We end the review by discussing the available resources and conservation of CWRs, including the urgent need for CWR prioritization and collection to ensure continuous crop improvement for food sustainability.
Collapse
Affiliation(s)
- Hengyou Zhang
- Department of Biological SciencesUniversity of North Carolina at CharlotteCharlotteNCUSA
| | - Neha Mittal
- Department of Biological SciencesUniversity of North Carolina at CharlotteCharlotteNCUSA
| | - Larry J. Leamy
- Department of Biological SciencesUniversity of North Carolina at CharlotteCharlotteNCUSA
| | - Oz Barazani
- The Institute for Plant SciencesIsrael Plant Gene BankAgricultural Research OrganizationBet DaganIsrael
| | - Bao‐Hua Song
- Department of Biological SciencesUniversity of North Carolina at CharlotteCharlotteNCUSA
| |
Collapse
|
40
|
Fulop D, Ranjan A, Ofner I, Covington MF, Chitwood DH, West D, Ichihashi Y, Headland L, Zamir D, Maloof JN, Sinha NR. A New Advanced Backcross Tomato Population Enables High Resolution Leaf QTL Mapping and Gene Identification. G3 (BETHESDA, MD.) 2016; 6:3169-3184. [PMID: 27510891 PMCID: PMC5068939 DOI: 10.1534/g3.116.030536] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 08/01/2016] [Indexed: 12/23/2022]
Abstract
Quantitative Trait Loci (QTL) mapping is a powerful technique for dissecting the genetic basis of traits and species differences. Established tomato mapping populations between domesticated tomato (Solanum lycopersicum) and its more distant interfertile relatives typically follow a near isogenic line (NIL) design, such as the S. pennellii Introgression Line (IL) population, with a single wild introgression per line in an otherwise domesticated genetic background. Here, we report on a new advanced backcross QTL mapping resource for tomato, derived from a cross between the M82 tomato cultivar and S. pennellii This so-called Backcrossed Inbred Line (BIL) population is comprised of a mix of BC2 and BC3 lines, with domesticated tomato as the recurrent parent. The BIL population is complementary to the existing S. pennellii IL population, with which it shares parents. Using the BILs, we mapped traits for leaf complexity, leaflet shape, and flowering time. We demonstrate the utility of the BILs for fine-mapping QTL, particularly QTL initially mapped in the ILs, by fine-mapping several QTL to single or few candidate genes. Moreover, we confirm the value of a backcrossed population with multiple introgressions per line, such as the BILs, for epistatic QTL mapping. Our work was further enabled by the development of our own statistical inference and visualization tools, namely a heterogeneous hidden Markov model for genotyping the lines, and by using state-of-the-art sparse regression techniques for QTL mapping.
Collapse
Affiliation(s)
- Daniel Fulop
- Department of Plant Biology, University of California at Davis, California 95616
| | - Aashish Ranjan
- Department of Plant Biology, University of California at Davis, California 95616
| | - Itai Ofner
- Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Michael F Covington
- Department of Plant Biology, University of California at Davis, California 95616
| | - Daniel H Chitwood
- Department of Plant Biology, University of California at Davis, California 95616
| | - Donelly West
- Department of Plant Biology, University of California at Davis, California 95616
| | - Yasunori Ichihashi
- Department of Plant Biology, University of California at Davis, California 95616
| | - Lauren Headland
- Department of Plant Biology, University of California at Davis, California 95616
| | - Daniel Zamir
- Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Julin N Maloof
- Department of Plant Biology, University of California at Davis, California 95616
| | - Neelima R Sinha
- Department of Plant Biology, University of California at Davis, California 95616
| |
Collapse
|
41
|
Opposing Roles of Foliar and Glandular Trichome Volatile Components in Cultivated Nightshade Interaction with a Specialist Herbivore. PLoS One 2016; 11:e0160383. [PMID: 27556560 PMCID: PMC4996519 DOI: 10.1371/journal.pone.0160383] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 07/18/2016] [Indexed: 11/19/2022] Open
Abstract
Plant chemistry is an important contributor to the interaction with herbivores. Here, we report on a previously unknown role for foliar and glandular trichome volatiles in their interaction with the specialist herbivore of solanaceous plants, the tomato red spider mite Tetranychus evansi. We used various bioassays and chemical analyses including coupled gas chromatography-mass spectrometry (GC/MS) and liquid chromatography coupled to quadrupole time of flight mass spectrometry (LC-QToF-MS) to investigate this interaction between cultivated African nightshades and T. evansi. We show that, whereas morphologically different cultivated African nightshade species released similar foliar volatile organic compounds (VOCs) that attracted T. evansi, VOCs released from exudates of ruptured glandular trichomes of one nightshade species influenced local defense on the leaf surface. VOCs from ruptured glandular trichomes comprising mainly saturated and unsaturated fatty acids deterred T. evansi oviposition. Of the fatty acids, the unsaturated fatty acids accounted for >40% of the oviposition deterrent activity. Our findings point to a defense strategy in a plant, based on opposing roles for volatiles released by foliar and glandular trichomes in response to attack by a specialist herbivore.
Collapse
|
42
|
Schilmiller AL, Gilgallon K, Ghosh B, Jones AD, Last RL. Acylsugar Acylhydrolases: Carboxylesterase-Catalyzed Hydrolysis of Acylsugars in Tomato Trichomes. PLANT PHYSIOLOGY 2016; 170:1331-44. [PMID: 26811191 PMCID: PMC4775116 DOI: 10.1104/pp.15.01348] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 01/23/2016] [Indexed: 05/05/2023]
Abstract
Glandular trichomes of cultivated tomato (Solanum lycopersicum) and many other species throughout the Solanaceae produce and secrete mixtures of sugar esters (acylsugars) on the plant aerial surfaces. In wild and cultivated tomato, these metabolites consist of a sugar backbone, typically glucose or sucrose, and two to five acyl chains esterified to various positions on the sugar core. The aliphatic acyl chains vary in length and branching and are transferred to the sugar by a series of reactions catalyzed by acylsugar acyltransferases. A phenotypic screen of a set of S. lycopersicum M82 × Solanum pennellii LA0716 introgression lines identified a dominant genetic locus on chromosome 5 from the wild relative that affected total acylsugar levels. Genetic mapping revealed that the reduction in acylsugar levels was consistent with the presence and increased expression of two S. pennellii genes (Sopen05g030120 and Sopen05g030130) encoding putative carboxylesterase enzymes of the α/β-hydrolase superfamily. These two enzymes, named ACYLSUGAR ACYLHYDROLASE1 (ASH1) and ASH2, were shown to remove acyl chains from specific positions of certain types of acylsugars in vitro. A survey of related genes in M82 and LA0716 identified another trichome-expressed ASH gene on chromosome 9 (M82, Solyc09g075710; LA0716, Sopen09g030520) encoding a protein with similar activity. Characterization of the in vitro activities of the SpASH enzymes showed reduced activities with acylsugars produced by LA0716, presumably contributing to the high-level production of acylsugars in the presence of highly expressed SpASH genes.
Collapse
Affiliation(s)
- Anthony L Schilmiller
- Department of Biochemistry and Molecular Biology (A.L.S, K.G., B.G., A.D.J., R.L.L.), Department of Chemistry (A.D.J.), and Department of Plant Biology (R.L.L.), Michigan State University, East Lansing, Michigan 48824-1319
| | - Karin Gilgallon
- Department of Biochemistry and Molecular Biology (A.L.S, K.G., B.G., A.D.J., R.L.L.), Department of Chemistry (A.D.J.), and Department of Plant Biology (R.L.L.), Michigan State University, East Lansing, Michigan 48824-1319
| | - Banibrata Ghosh
- Department of Biochemistry and Molecular Biology (A.L.S, K.G., B.G., A.D.J., R.L.L.), Department of Chemistry (A.D.J.), and Department of Plant Biology (R.L.L.), Michigan State University, East Lansing, Michigan 48824-1319
| | - A Daniel Jones
- Department of Biochemistry and Molecular Biology (A.L.S, K.G., B.G., A.D.J., R.L.L.), Department of Chemistry (A.D.J.), and Department of Plant Biology (R.L.L.), Michigan State University, East Lansing, Michigan 48824-1319
| | - Robert L Last
- Department of Biochemistry and Molecular Biology (A.L.S, K.G., B.G., A.D.J., R.L.L.), Department of Chemistry (A.D.J.), and Department of Plant Biology (R.L.L.), Michigan State University, East Lansing, Michigan 48824-1319
| |
Collapse
|
43
|
Escobar-Bravo R, Alba JM, Pons C, Granell A, Kant MR, Moriones E, Fernández-Muñoz R. A Jasmonate-Inducible Defense Trait Transferred from Wild into Cultivated Tomato Establishes Increased Whitefly Resistance and Reduced Viral Disease Incidence. FRONTIERS IN PLANT SCIENCE 2016; 7:1732. [PMID: 27920785 PMCID: PMC5118631 DOI: 10.3389/fpls.2016.01732] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 11/03/2016] [Indexed: 05/21/2023]
Abstract
Whiteflies damage tomatoes mostly via the viruses they transmit. Cultivated tomatoes lack many of the resistances of their wild relatives. In order to increase protection to its major pest, the whitefly Bemisia tabaci and its transmitted Tomato Yellow Leaf Curl Virus (TYLCV), we introgressed a trichome-based resistance trait from the wild tomato Solanum pimpinellifolium into cultivated tomato, Solanum lycopersicum. The tomato backcross line BC5S2 contains acylsucrose-producing type-IV trichomes, unlike cultivated tomatoes, and exhibits increased, yet limited protection to whiteflies at early development stages. Treatment of young plants with methyl jasmonate (MeJA) resulted in a 60% increase in type-IV trichome density, acylsucrose production, and enhanced resistance to whiteflies, leading to 50% decrease in the virus disease incidence compared to cultivated tomato. Using transcriptomics, metabolite analysis, and insect bioassays we established the basis of this inducible resistance. We found that MeJA activated the expression of the genes involved in the biosynthesis of the defensive acylsugars in young BC5S2 plants leading to enhanced chemical defenses in their acquired type-IV trichomes. Our results show that not only constitutive but also these inducible defenses can be transferred from wild into cultivated crops to aid sustainable protection, suggesting that conventional breeding strategies provide a feasible alternative to increase pest resistance in tomato.
Collapse
Affiliation(s)
- Rocío Escobar-Bravo
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, Universidad de Málaga – Consejo Superior de Investigaciones CientíficasAlgarrobo-Costa, Spain
| | - Juan M. Alba
- Department of Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of AmsterdamAmsterdam, Netherlands
| | - Clara Pons
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas – Universidad Politécnica de ValenciaValencia, Spain
| | - Antonio Granell
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas – Universidad Politécnica de ValenciaValencia, Spain
| | - Merijn R. Kant
- Department of Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of AmsterdamAmsterdam, Netherlands
| | - Enrique Moriones
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, Universidad de Málaga – Consejo Superior de Investigaciones CientíficasAlgarrobo-Costa, Spain
| | - Rafael Fernández-Muñoz
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, Universidad de Málaga – Consejo Superior de Investigaciones CientíficasAlgarrobo-Costa, Spain
- *Correspondence: Rafael Fernández-Muñoz,
| |
Collapse
|
44
|
In vitro reconstruction and analysis of evolutionary variation of the tomato acylsucrose metabolic network. Proc Natl Acad Sci U S A 2015; 113:E239-48. [PMID: 26715757 DOI: 10.1073/pnas.1517930113] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Plant glandular secreting trichomes are epidermal protuberances that produce structurally diverse specialized metabolites, including medically important compounds. Trichomes of many plants in the nightshade family (Solanaceae) produce O-acylsugars, and in cultivated and wild tomatoes these are mixtures of aliphatic esters of sucrose and glucose of varying structures and quantities documented to contribute to insect defense. We characterized the first two enzymes of acylsucrose biosynthesis in the cultivated tomato Solanum lycopersicum. These are type I/IV trichome-expressed BAHD acyltransferases encoded by Solyc12g006330--or S. lycopersicum acylsucrose acyltransferase 1 (Sl-ASAT1)--and Solyc04g012020 (Sl-ASAT2). These enzymes were used--in concert with two previously identified BAHD acyltransferases--to reconstruct the entire cultivated tomato acylsucrose biosynthetic pathway in vitro using sucrose and acyl-CoA substrates. Comparative genomics and biochemical analysis of ASAT enzymes were combined with in vitro mutagenesis to identify amino acids that influence CoA ester substrate specificity and contribute to differences in types of acylsucroses that accumulate in cultivated and wild tomato species. This work demonstrates the feasibility of the metabolic engineering of these insecticidal metabolites in plants and microbes.
Collapse
|
45
|
Moghe GD, Last RL. Something Old, Something New: Conserved Enzymes and the Evolution of Novelty in Plant Specialized Metabolism. PLANT PHYSIOLOGY 2015; 169:1512-23. [PMID: 26276843 PMCID: PMC4634076 DOI: 10.1104/pp.15.00994] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 08/13/2015] [Indexed: 05/18/2023]
Abstract
Plants produce hundreds of thousands of small molecules known as specialized metabolites, many of which are of economic and ecological importance. This remarkable variety is a consequence of the diversity and rapid evolution of specialized metabolic pathways. These novel biosynthetic pathways originate via gene duplication or by functional divergence of existing genes, and they subsequently evolve through selection and/or drift. Studies over the past two decades revealed that diverse specialized metabolic pathways have resulted from the incorporation of primary metabolic enzymes. We discuss examples of enzyme recruitment from primary metabolism and the variety of paths taken by duplicated primary metabolic enzymes toward integration into specialized metabolism. These examples provide insight into processes by which plant specialized metabolic pathways evolve and suggest approaches to discover enzymes of previously uncharacterized metabolic networks.
Collapse
Affiliation(s)
- Gaurav D Moghe
- Department of Biochemistry and Molecular Biology (G.D.M., R.L.L.) and Department of Plant Biology (R.L.L.), Michigan State University, East Lansing, Michigan 48824
| | - Robert L Last
- Department of Biochemistry and Molecular Biology (G.D.M., R.L.L.) and Department of Plant Biology (R.L.L.), Michigan State University, East Lansing, Michigan 48824
| |
Collapse
|