1
|
Tang L, Qi X, Chen J, Zhao Y, Gu J, Zhu S, Gao W, Tu L. Genome-wide characterization and expression analysis of WRKY family genes in the biosynthesis of triptolide in Tripterygium wilfordii. BMC Genomics 2025; 26:403. [PMID: 40275125 PMCID: PMC12023552 DOI: 10.1186/s12864-025-11535-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 03/27/2025] [Indexed: 04/26/2025] Open
Abstract
BACKGROUND WRKY transcription factors play a vital role in regulating plant growth, development, and secondary metabolism. Tripterygium wilfordii is a medicinal plant that has been widely utilized in rheumatoid arthritis therapy; it contains triptolide, a prominent bioactive constituent exhibiting potent anti-inflammatory and anti-tumor properties. However, the mechanism underlying the regulatory effects of WRKY on triptolide biosynthesis is poorly understood. RESULTS In this study, 95 TwWRKY genes were identified in the T. wilfordii genome, which were divided into three groups. Phylogenetic analysis indicated that the TwWRKY were conservative relative to other plants. Collinearity analysis revealed that gene duplications played a crucial role in the evolution of this gene family. Transcriptome data from various plant tissues were integrated by correlation analysis, and a gene-to-metabolite network was successfully mapped; consequently, 32 TwWRKY genes were selected as potential regulators of triptolide biosynthesis. Furthermore, the expression changes in the 32 TwWRKY genes were analyzed following methyl jasmonate (MeJA) induction, and the key candidates likely to regulate the biosynthesis of triptolide were screened. Finally, we performed subcellular localization on the key candidate gene TW23G00056.1 and found that it plays its biological role in the nucleus. CONCLUSION Our study provides a valuable resource for further research on TwWRKY in T. wilfordii. The candidate genes reported here lay the foundation for elucidating the regulatory mechanism of triptolide.
Collapse
Affiliation(s)
- Limei Tang
- Department of Pharmacy, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, 310015, China
| | - Xinyu Qi
- Department of Pharmacy, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, 310015, China
| | - Jiayu Chen
- Department of Pharmacy, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, 310015, China
| | - Yujun Zhao
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Junhao Gu
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Shanshan Zhu
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, China.
| | - Wei Gao
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China.
| | - Lichan Tu
- Department of Pharmacy, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, 310015, China.
| |
Collapse
|
2
|
Wang X, Qu R, Wang S, Peng J, Guo J, Cui G, Chen T, Chen M, Shen Y. Genome-wide identification of the SmPHR gene family in Salvia miltiorrhiza and SmPHR7-mediated response to phosphate starvation in Arabidopsis thaliana. PLANT CELL REPORTS 2025; 44:73. [PMID: 40072562 DOI: 10.1007/s00299-025-03461-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 02/21/2025] [Indexed: 03/14/2025]
Abstract
KEY MESSAGE This study reveals the transcripts of S. miltiorrhiza in response to phosphate deficiency, identifies 18 SmPHRs in the genome, and tentatively establishes a role for SmPHR7 in regulating phosphate starvation. Phosphorus is essential for plant growth and development, and phosphate deficiency is a common nutritional stress. Salvia miltiorrhiza (Danshen) is a traditional Chinese herb whose main active medicinal secondary metabolite is used in the treatment of heart disease. However, the physiological and molecular effects of phosphate starvation in S. miltiorrhiza have not been well studied. Here, we first investigated the effect of phosphate starvation on the growth and major medicinal compounds. Biomass decreased with lower phosphate concentrations, while the accumulation of compounds varied in S. miltiorrhiza. Transcriptome analysis showed that phosphate starvation affected the expression of genes involved in processes such as glycolysis/gluconeogenesis, glycerolipid metabolism, and phenylpropanoid biosynthesis. Phosphate starvation response (PHR) transcription factors play an important role in the phosphate starvation response, and we identified 18 PHR family genes in S. miltiorrhiza, distributed across 8 chromosomes. The expression levels of different SmPHR family members in roots and shoots differ in response to phosphate starvation. SmPHR7, which is highly expressed in response to phosphate starvations, was selected for further functional characterization. SmPHR7 has transcriptional activation activity and is localized in the nucleus. Furthermore, the expression of SmPHR7 in the Arabidopsis thaliana mutant phr (SmPHR7-OX) is shown to partially rescue the phosphate starvation phenotype. The expression of the Pi starvation-induced (PSI) gene in SmPHR7-OX showed a significant induction compared to the phr mutant under phosphate starvation. The identification of the SmPHR gene family significantly contributes to a broader understanding of phosphate starvation signaling in S. miltiorrhiza.
Collapse
Affiliation(s)
- Xinxin Wang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, People's Republic of China
| | - Renjun Qu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, People's Republic of China
| | - Shiwei Wang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, People's Republic of China
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Jiaming Peng
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, People's Republic of China
| | - Juan Guo
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, People's Republic of China
| | - Guanghong Cui
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, People's Republic of China
| | - Tong Chen
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, People's Republic of China
| | - Meilan Chen
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, People's Republic of China
| | - Ye Shen
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, People's Republic of China.
| |
Collapse
|
3
|
Yu Y, Yang Z, Wu Y, Jiang Y, Liao J, Yang R, Zhang L. Quantitative Trait Locus Mapping and Candidate Gene Analysis of the Contents of Three Tanshinone Components in Salvia miltiorrhiza Bunge. Biochem Genet 2024:10.1007/s10528-024-10964-6. [PMID: 39548027 DOI: 10.1007/s10528-024-10964-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 10/29/2024] [Indexed: 11/17/2024]
Abstract
Tanshinones are abietane diterpenoid quinone compounds with diverse biological activities and pharmacological effects found in Salvia miltiorrhiza. Leveraging the high-density genetic map established through our prior research endeavors, we conducted a quantitative trait locus (QTL) analysis pertaining to the concentrations of three major tanshinone components, cryptotanshinone, tanshinone I, and tanshinone IIA, in S. miltiorrhiza. This extensive investigation was conducted across three distinct planting environments, ultimately identifying a comprehensive repertoire of 27 discernible QTLs. These QTLs were mapped onto four distinct linkage groups (LG), namely LG1, LG5, LG6, and LG7, which explained 3.11%-37.85% phenotypic variation. Candidate genes were projected based on consistent QTLs detected for each active ingredient in three environments. Nineteen putative candidate genes involved in the regulation of tanshinone biosynthesis were identified. These genes participate in primary metabolic and multiple branching terpenoid biosynthesis pathways, forming a complex regulatory network. Our findings have the potential to offer novel insights into advancing the understanding of the regulatory mechanisms governing tanshinone biosynthesis. Furthermore, these results establish crucial groundwork for gene discovery, marker-assisted selection breeding, and map-based cloning of functional genes associated with tanshinone content in S. miltiorrhiza.
Collapse
Affiliation(s)
- Yan Yu
- College of Science, Sichuan Agricultural University, Ya'an, 625014, People's Republic of China
- College of Life Science, China West Normal University, Nanchong, 637002, People's Republic of China
| | - Zaijun Yang
- College of Life Science, China West Normal University, Nanchong, 637002, People's Republic of China
| | - Yichao Wu
- College of Life Science, China West Normal University, Nanchong, 637002, People's Republic of China
| | - Yuanyuan Jiang
- College of Science, Sichuan Agricultural University, Ya'an, 625014, People's Republic of China
| | - Jinqiu Liao
- College of Science, Sichuan Agricultural University, Ya'an, 625014, People's Republic of China
| | - Ruiwu Yang
- College of Science, Sichuan Agricultural University, Ya'an, 625014, People's Republic of China
| | - Li Zhang
- College of Science, Sichuan Agricultural University, Ya'an, 625014, People's Republic of China.
| |
Collapse
|
4
|
Li H, Jiang X, Mashiguchi K, Yamaguchi S, Lu S. Biosynthesis and signal transduction of plant growth regulators and their effects on bioactive compound production in Salvia miltiorrhiza (Danshen). Chin Med 2024; 19:102. [PMID: 39049014 PMCID: PMC11267865 DOI: 10.1186/s13020-024-00971-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 07/17/2024] [Indexed: 07/27/2024] Open
Abstract
Plant growth regulators (PGRs) are involved in multiple aspects of plant life, including plant growth, development, and response to environmental stimuli. They are also vital for the formation of secondary metabolites in various plants. Salvia miltiorrhiza is a famous herbal medicine and has been used commonly for > 2000 years in China, as well as widely used in many other countries. S. miltiorrhiza is extensively used to treat cardiovascular and cerebrovascular diseases in clinical practices and has specific merit against various diseases. Owing to its outstanding medicinal and commercial potential, S. miltiorrhiza has been extensively investigated as an ideal model system for medicinal plant biology. Tanshinones and phenolic acids are primary pharmacological constituents of S. miltiorrhiza. As the growing market for S. miltiorrhiza, the enhancement of its bioactive compounds has become a research hotspot. S. miltiorrhiza exhibits a significant response to various PGRs in the production of phenolic acids and tanshinones. Here, we briefly review the biosynthesis and signal transduction of PGRs in plants. The effects and mechanisms of PGRs on bioactive compound production in S. miltiorrhiza are systematically summarized and future research is discussed. This article provides a scientific basis for further research, cultivation, and metabolic engineering in S. miltiorrhiza.
Collapse
Affiliation(s)
- Heqin Li
- College of Agronomy, Qingdao Agricultural University, No. 700 Changcheng Road, Chengyang District, Qingdao, 266109, Shandong, People's Republic of China
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
| | - Xuwen Jiang
- College of Agronomy, Qingdao Agricultural University, No. 700 Changcheng Road, Chengyang District, Qingdao, 266109, Shandong, People's Republic of China
- Shandong Bairuijia Food Co., Ltd, No. 8008, Yi Road, Laizhou, Yantai, 261400, Shandong, People's Republic of China
| | - Kiyoshi Mashiguchi
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
| | - Shinjiro Yamaguchi
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan.
| | - Shanfa Lu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 151 Malianwa North Road, Haidian District, Beijing, 100193, People's Republic of China.
| |
Collapse
|
5
|
Das S, Kwon M, Kim JY. Enhancement of specialized metabolites using CRISPR/Cas gene editing technology in medicinal plants. FRONTIERS IN PLANT SCIENCE 2024; 15:1279738. [PMID: 38450402 PMCID: PMC10915232 DOI: 10.3389/fpls.2024.1279738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 02/02/2024] [Indexed: 03/08/2024]
Abstract
Plants are the richest source of specialized metabolites. The specialized metabolites offer a variety of physiological benefits and many adaptive evolutionary advantages and frequently linked to plant defense mechanisms. Medicinal plants are a vital source of nutrition and active pharmaceutical agents. The production of valuable specialized metabolites and bioactive compounds has increased with the improvement of transgenic techniques like gene silencing and gene overexpression. These techniques are beneficial for decreasing production costs and increasing nutritional value. Utilizing biotechnological applications to enhance specialized metabolites in medicinal plants needs characterization and identification of genes within an elucidated pathway. The breakthrough and advancement of CRISPR/Cas-based gene editing in improving the production of specific metabolites in medicinal plants have gained significant importance in contemporary times. This article imparts a comprehensive recapitulation of the latest advancements made in the implementation of CRISPR-gene editing techniques for the purpose of augmenting specific metabolites in medicinal plants. We also provide further insights and perspectives for improving metabolic engineering scenarios in medicinal plants.
Collapse
Affiliation(s)
- Swati Das
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University, Jinju, Republic of Korea
| | - Moonhyuk Kwon
- Division of Life Science, Anti-aging Bio Cell Factory Regional Leading Research Center (ABC-RLRC), Research Institute of Molecular Alchemy (RIMA), Gyeongsang National University, Jinju, Republic of Korea
| | - Jae-Yean Kim
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University, Jinju, Republic of Korea
- Nulla Bio R&D Center, Nulla Bio Inc., Jinju, Republic of Korea
| |
Collapse
|
6
|
Bielecka M, Stafiniak M, Pencakowski B, Ślusarczyk S, Jastrzębski JP, Paukszto Ł, Łaczmański Ł, Gharibi S, Matkowski A. Comparative transcriptomics of two Salvia subg. Perovskia species contribute towards molecular background of abietane-type diterpenoid biosynthesis. Sci Rep 2024; 14:3046. [PMID: 38321199 PMCID: PMC10847172 DOI: 10.1038/s41598-024-53510-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 02/01/2024] [Indexed: 02/08/2024] Open
Abstract
Tanshinones, are a group of diterpenoid red pigments present in Danshen - an important herbal drug of Traditional Chinese Medicine which is a dried root of Salvia miltiorrhiza Bunge. Some of the tanshinones are sought after as pharmacologically active natural products. To date, the biosynthetic pathway of tanshinones has been only partially elucidated. These compounds are also present in some of the other Salvia species, i.a. from subgenus Perovskia, such as S. abrotanoides (Kar.) Sytsma and S. yangii B.T. Drew. Despite of the close genetic relationship between these species, significant qualitative differences in their diterpenoid profile have been discovered. In this work, we have used the Liquid Chromatography-Mass Spectrometry analysis to follow the content of diterpenoids during the vegetation season, which confirmed our previous observations of a diverse diterpenoid profile. As metabolic differences are reflected in different transcript profile of a species or tissues, we used metabolomics-guided transcriptomic approach to select candidate genes, which expression possibly led to observed chemical differences. Using an RNA-sequencing technology we have sequenced and de novo assembled transcriptomes of leaves and roots of S. abrotanoides and S. yangii. As a result, 134,443 transcripts were annotated by UniProt and 56,693 of them were assigned as Viridiplantae. In order to seek for differences, the differential expression analysis was performed, which revealed that 463, 362, 922 and 835 genes indicated changes in expression in four comparisons. GO enrichment analysis and KEGG functional analysis of selected DEGs were performed. The homology and expression of two gene families, associated with downstream steps of tanshinone and carnosic acid biosynthesis were studied, namely: cytochromes P-450 and 2-oxoglutarate-dependend dioxygenases. Additionally, BLAST analysis revealed existence of 39 different transcripts related to abietane diterpenoid biosynthesis in transcriptomes of S. abrotanoides and S. yangii. We have used quantitative real-time RT-PCR analysis of selected candidate genes, to follow their expression levels over the vegetative season. A hypothesis of an existence of a multifunctional CYP76AH89 in transcriptomes of S. abrotanoides and S. yangii is discussed and potential roles of other CYP450 homologs are speculated. By using the comparative transcriptomic approach, we have generated a dataset of candidate genes which provides a valuable resource for further elucidation of tanshinone biosynthesis. In a long run, our investigation may lead to optimization of diterpenoid profile in S. abrotanoides and S. yangii, which may become an alternative source of tanshinones for further research on their bioactivity and pharmacological therapy.
Collapse
Affiliation(s)
- Monika Bielecka
- Department of Pharmaceutical Biology and Biotechnology, Wroclaw Medical University, Borowska 211A, 50-556, Wrocław, Poland.
| | - Marta Stafiniak
- Department of Pharmaceutical Biology and Biotechnology, Wroclaw Medical University, Borowska 211A, 50-556, Wrocław, Poland
| | - Bartosz Pencakowski
- Department of Pharmaceutical Biology and Biotechnology, Wroclaw Medical University, Borowska 211A, 50-556, Wrocław, Poland
| | - Sylwester Ślusarczyk
- Department of Pharmaceutical Biology and Biotechnology, Wroclaw Medical University, Borowska 211A, 50-556, Wrocław, Poland
| | - Jan Paweł Jastrzębski
- Department of Plant Physiology, Genetics and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A/113, 10-719, Olsztyn, Poland
| | - Łukasz Paukszto
- Department of Botany and Nature Protection, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 17, 10-720, Olsztyn, Poland
| | - Łukasz Łaczmański
- Laboratory of Genomics & Bioinformatics, Hirszfeld Institute of Immunology and Experimental Therapy PAS, Rudolfa Weigla 12, Wrocław, Poland
| | - Shima Gharibi
- Department of Pharmaceutical Biology and Biotechnology, Wroclaw Medical University, Borowska 211A, 50-556, Wrocław, Poland
- Core Research Facilities (CRF), Isfahan University of Medical Sciences, Isfahan, 81746-73461, Iran
| | - Adam Matkowski
- Department of Pharmaceutical Biology and Biotechnology, Wroclaw Medical University, Borowska 211A, 50-556, Wrocław, Poland
- Botanical Garden of Medicinal Plants, Wroclaw Medical University, Jana Kochanowskiego 14, Wrocław, Poland
| |
Collapse
|
7
|
Hu J, Qiu S, Wang F, Li Q, Xiang CL, Di P, Wu Z, Jiang R, Li J, Zeng Z, Wang J, Wang X, Zhang Y, Fang S, Qiao Y, Ding J, Jiang Y, Xu Z, Chen J, Chen W. Functional divergence of CYP76AKs shapes the chemodiversity of abietane-type diterpenoids in genus Salvia. Nat Commun 2023; 14:4696. [PMID: 37542034 PMCID: PMC10403556 DOI: 10.1038/s41467-023-40401-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 07/26/2023] [Indexed: 08/06/2023] Open
Abstract
The genus Salvia L. (Lamiaceae) comprises myriad distinct medicinal herbs, with terpenoids as one of their major active chemical groups. Abietane-type diterpenoids (ATDs), such as tanshinones and carnosic acids, are specific to Salvia and exhibit taxonomic chemical diversity among lineages. To elucidate how ATD chemical diversity evolved, we carried out large-scale metabolic and phylogenetic analyses of 71 Salvia species, combined with enzyme function, ancestral sequence and chemical trait reconstruction, and comparative genomics experiments. This integrated approach showed that the lineage-wide ATD diversities in Salvia were induced by differences in the oxidation of the terpenoid skeleton at C-20, which was caused by the functional divergence of the cytochrome P450 subfamily CYP76AK. These findings present a unique pattern of chemical diversity in plants that was shaped by the loss of enzyme activity and associated catalytic pathways.
Collapse
Affiliation(s)
- Jiadong Hu
- The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Department of Pharmacy, Second Affiliated Hospital of Navy Medical University, Shanghai, 200003, China
| | - Shi Qiu
- The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Feiyan Wang
- The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Qing Li
- Department of Pharmacy, Second Affiliated Hospital of Navy Medical University, Shanghai, 200003, China
| | - Chun-Lei Xiang
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Peng Di
- State Local Joint Engineering Research Center of Ginseng Breeding and Application, College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China
| | - Ziding Wu
- The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Rui Jiang
- The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Jinxing Li
- The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Zhen Zeng
- The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Jing Wang
- The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xingxing Wang
- The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yuchen Zhang
- The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Shiyuan Fang
- The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yuqi Qiao
- The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Jie Ding
- Urban Horticulture Research and Extension Center, Shanghai Chenshan Botanical Garden, Shanghai, 201602, China
| | - Yun Jiang
- Urban Horticulture Research and Extension Center, Shanghai Chenshan Botanical Garden, Shanghai, 201602, China
| | - Zhichao Xu
- College of Life Sciences, Northeast Forestry University, Harbin, 150040, China.
| | - Junfeng Chen
- The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Wansheng Chen
- The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
- Department of Pharmacy, Second Affiliated Hospital of Navy Medical University, Shanghai, 200003, China.
| |
Collapse
|
8
|
Tong Y, Ma X, Hu T, Chen K, Cui G, Su P, Xu H, Gao W, Jiang T, Huang L. Structural and mechanistic insights into the precise product synthesis by a bifunctional miltiradiene synthase. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:165-175. [PMID: 36161753 PMCID: PMC9829396 DOI: 10.1111/pbi.13933] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 07/22/2022] [Accepted: 09/14/2022] [Indexed: 06/16/2023]
Abstract
Selaginella moellendorffii miltiradiene synthase (SmMDS) is a unique bifunctional diterpene synthase (diTPS) that catalyses the successive cyclization of (E,E,E)-geranylgeranyl diphosphate (GGPP) via (+)-copalyl diphosphate (CPP) to miltiradiene, which is a crucial precursor of important medicinal compounds, such as triptolide, ecabet sodium and carnosol. Miltiradiene synthetic processes have been studied in monofunctional diTPSs, while the precise mechanism by which active site amino acids determine product simplicity and the experimental evidence for reaction intermediates remain elusive. In addition, how bifunctional diTPSs work compared to monofunctional enzymes is attractive for detailed research. Here, by mutagenesis studies of SmMDS, we confirmed that pimar-15-en-8-yl+ is an intermediate in miltiradiene synthesis. Moreover, we determined the apo-state and the GGPP-bound state crystal structures of SmMDS. By structure analysis and mutagenesis experiments, possible contributions of key residues both in class I and II active sites were suggested. Based on the structural and functional analyses, we confirmed the copal-15-yl+ intermediate and unveiled more details of the catalysis process in the SmMDS class I active site. Moreover, the structural and experimental results suggest an internal channel for (+)-CPP produced in the class II active site moving towards the class I active site. Our research is a good example for intermediate identification of diTPSs and provides new insights into the product specificity determinants and intermediate transport, which should greatly facilitate the precise controlled synthesis of various diterpenes.
Collapse
Affiliation(s)
- Yuru Tong
- National Resource Center for Chinese Materia MedicaChina Academy of Chinese Medical SciencesBeijingChina
- School of Pharmaceutical SciencesCapital Medical UniversityBeijingChina
| | - Xiaoli Ma
- National Laboratory of BiomacromoleculesInstitute of Biophysics, Chinese Academy of SciencesBeijingChina
| | - Tianyuan Hu
- School of Pharmaceutical SciencesCapital Medical UniversityBeijingChina
| | - Kang Chen
- National Resource Center for Chinese Materia MedicaChina Academy of Chinese Medical SciencesBeijingChina
| | - Guanghong Cui
- National Resource Center for Chinese Materia MedicaChina Academy of Chinese Medical SciencesBeijingChina
| | - Ping Su
- National Resource Center for Chinese Materia MedicaChina Academy of Chinese Medical SciencesBeijingChina
| | - Haifeng Xu
- National Laboratory of BiomacromoleculesInstitute of Biophysics, Chinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Wei Gao
- Beijing Shijitan HospitalCapital Medical UniversityBeijingChina
| | - Tao Jiang
- National Laboratory of BiomacromoleculesInstitute of Biophysics, Chinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Luqi Huang
- National Resource Center for Chinese Materia MedicaChina Academy of Chinese Medical SciencesBeijingChina
| |
Collapse
|
9
|
Lee JB, Ohmura T, Yamamura Y. Functional Characterization of Three Diterpene Synthases Responsible for Tetracyclic Diterpene Biosynthesis in Scoparia dulcis. PLANTS (BASEL, SWITZERLAND) 2022; 12:69. [PMID: 36616198 PMCID: PMC9824296 DOI: 10.3390/plants12010069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 12/21/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
Scoparia dulcis produces unique biologically active diterpenoids such as scopadulcic acid B (SDB). They are biosynthesized from geranylgeranyl diphosphate (GGPP) via syn-copalyl diphosphate (syn-CPP) and scopadulanol as an important key intermediate. In this paper, we functionally characterized three diterpene synthases, SdCPS2, SdKSL1 and SdKSL2, from S. dulcis. The SdCPS2 catalyzed a cyclization reaction from GGPP to syn-CPP, and SdKSL1 did from syn-CPP to scopadulan-13α-ol. On the other hand, SdKSL2 was found to incorporate a non-sense mutation at 682. Therefore, we mutated the nucleotide residue from A to G in SdKSL2 to produce SdKSL2mut, and it was able to recover the catalytic function from syn-CPP to syn-aphidicol-16-ene, the precursor to scopadulin. From our results, SdCPS2 and SdKSL1 might be important key players for SDB biosynthesis in S. dulcis.
Collapse
|
10
|
Li Q, Fang X, Zhao Y, Cao R, Dong J, Ma P. The SmMYB36-SmERF6/SmERF115 module regulates the biosynthesis of tanshinones and phenolic acids in salvia miltiorrhiza hairy roots. HORTICULTURE RESEARCH 2022; 10:uhac238. [PMID: 36643739 PMCID: PMC9832864 DOI: 10.1093/hr/uhac238] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 10/16/2022] [Indexed: 06/17/2023]
Abstract
Tanshinone and phenolic acids are the most important active substances of Salvia miltiorrhiza, and the insight into their transcriptional regulatory mechanisms is an essential process to increase their content in vivo. SmMYB36 has been found to have important regulatory functions in the synthesis of tanshinone and phenolic acid; paradoxically, its mechanism of action in S. miltiorrhiza is not clear. Here, we demonstrated that SmMYB36 functions as a promoter of tanshinones accumulation and a suppressor of phenolic acids through the generation of SmMYB36 overexpressed and chimeric SmMYB36-SRDX (EAR repressive domain) repressor hairy roots in combination with transcriptomic-metabolomic analysis. SmMYB36 directly down-regulate the key enzyme gene of primary metabolism, SmGAPC, up-regulate the tanshinones biosynthesis branch genes SmDXS2, SmGGPPS1, SmCPS1 and down-regulate the phenolic acids biosynthesis branch enzyme gene, SmRAS. Meanwhile, SmERF6, a positive regulator of tanshinone synthesis activating SmCPS1, was up-regulated and SmERF115, a positive regulator of phenolic acid biosynthesis activating SmRAS, was down-regulated. Furthermore, the seven acidic amino acids at the C-terminus of SmMYB36 are required for both self-activating domain and activation of target gene expression. As a consequence, this study contributes to reveal the potential relevance of transcription factors synergistically regulating the biosynthesis of tanshinone and phenolic acid.
Collapse
Affiliation(s)
| | | | | | - Ruizhi Cao
- College of Life Sciences, Northwest A&F University, Yangling 71210, China
| | | | | |
Collapse
|
11
|
Wang Z, Peters RJ. Tanshinones: Leading the way into Lamiaceae labdane-related diterpenoid biosynthesis. CURRENT OPINION IN PLANT BIOLOGY 2022; 66:102189. [PMID: 35196638 PMCID: PMC8940693 DOI: 10.1016/j.pbi.2022.102189] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/06/2022] [Accepted: 01/14/2022] [Indexed: 05/06/2023]
Abstract
Tanshinones are the bioactive diterpenoid constituents of the traditional Chinese medicinal herb Danshen (Salvia miltiorrhiza), and are examples of the phenolic abietanes widely found within the Lamiaceae plant family. Due to the significant interest in these labdane-related diterpenoid natural products, their biosynthesis has been intensively investigated. In addition to providing the basis for metabolic engineering efforts, this work further yielded pioneering insights into labdane-related diterpenoid biosynthesis in the Lamiaceae more broadly. This includes stereochemical foreshadowing of aromatization, with novel protein domain loss in the relevant diterpene synthase, as well as broader phylogenetic conservation of the relevant enzymes. Beyond such summary of more widespread metabolism, formation of the furan ring that characterizes the tanshinones also has been recently elucidated. Nevertheless, the biocatalysts for the pair of demethylations remain unknown, and the intriguing potential connection of these reactions to the further aromatization observed in the tanshinones are speculated upon here.
Collapse
Affiliation(s)
- Zhibiao Wang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China; Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | - Reuben J Peters
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, Ames, IA 50011, USA.
| |
Collapse
|
12
|
Jiang M, Chen H, Du Q, Wang L, Liu X, Liu C. Genome-Wide Identification of Circular RNAs Potentially Involved in the Biosynthesis of Secondary Metabolites in Salvia miltiorrhiza. Front Genet 2021; 12:645115. [PMID: 34804110 PMCID: PMC8602197 DOI: 10.3389/fgene.2021.645115] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 10/13/2021] [Indexed: 11/13/2022] Open
Abstract
Circular RNAs (circRNAs) play various roles in cellular functions. However, no studies have been reported on the potential involvement of circRNAs in the biosynthesis of secondary metabolites in plants. Here, we performed a genome-wide discovery of circRNAs from root, stem and leaf samples of Salvia miltiorrhiza using RNA-Seq. We predicted a total of 2,476 circRNAs with at least two junction reads using circRNA_finder and CIRI, of which 2,096, 151 and 229 were exonic, intronic and intergenic circRNAs, respectively. Sequence similarity analysis showed that 294 out of 2,476 circRNAs were conserved amongst multiple plants. Of the 55 predicted circRNAs, 31 (56%) were validated successfully by PCR and Sanger sequencing using convergent and divergent primer pairs. Alternative circularisation analysis showed that most parental genes produced two circRNAs. Functional enrichment analyses of the parental genes showed that the primary metabolism pathways were significantly enriched, particularly the carbon metabolism. Differential expression analysis showed that the expression profiles of circRNAs were tissue-specific. Co-expression analysis showed 275 circRNAs, and their parental genes had significantly positive correlations. However, 14 had significantly negative correlations. Weighted gene co-expression network analysis showed that nine circRNAs were co-expressed with four modules of protein-coding genes. Next, we found 416 exonic circRNAs with miRNA-binding sites, suggesting possible interactions between circRNAs and miRNAs. Lastly, we found six validated circRNAs, namely, SMscf2473-46693-46978, SMscf3091-29256-29724, SMscf16-111773-112193, SMscf432-13232-13866, SMscf7007-10563-10888 and SMscf1730-1749-2013, which were originated from the genes involved in the biosynthesis of secondary metabolites. Their parental genes were acetyl-CoA C-acetyltransferase 1 (SmAACT1), 1-deoxy-d-xylulose-5-phosphate synthase 2 (SmDXS2), 4-hydroxy-3-methylbut-2-enyl diphosphate reductase 1 (SmHDR1), kaurene synthase-like 2 (SmKSL2), DWF4 and CYP88A3, respectively. In particular, the correlation coefficient of SMscf2473-46693-46978 and SmDXS2 gene was 0.86 (p = 0.003), indicating a potential interaction between this pair of circRNA and its parent gene. Our results provided the first comprehensive catalogue of circRNAs in S. miltiorrhiza and identified one circRNA that might play important roles in the biosynthesis of secondary metabolites.
Collapse
Affiliation(s)
- Mei Jiang
- School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China.,Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China.,Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine from Ministry of Education, Engineering Research Center of Chinese Medicine Resources from Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Haimei Chen
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine from Ministry of Education, Engineering Research Center of Chinese Medicine Resources from Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Qing Du
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine from Ministry of Education, Engineering Research Center of Chinese Medicine Resources from Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China.,Key Laboratory of Plant Resources of Qinghai-Tibet Plateau in Chemical Research, College of Pharmacy, Qinghai Nationalities University, Xining, China
| | - Liqiang Wang
- College of Pharmacy, Heze University, Heze, China
| | - Xinyue Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Chang Liu
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine from Ministry of Education, Engineering Research Center of Chinese Medicine Resources from Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| |
Collapse
|
13
|
Mao L, Jin B, Chen L, Tian M, Ma R, Yin B, Zhang H, Guo J, Tang J, Chen T, Lai C, Cui G, Huang L. Functional identification of the terpene synthase family involved in diterpenoid alkaloids biosynthesis in Aconitum carmichaelii. Acta Pharm Sin B 2021; 11:3310-3321. [PMID: 34729318 PMCID: PMC8546855 DOI: 10.1016/j.apsb.2021.04.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/22/2021] [Accepted: 04/02/2021] [Indexed: 02/07/2023] Open
Abstract
Aconitum carmichaelii is a high-value medicinal herb widely used across China, Japan, and other Asian countries. Aconitine-type diterpene alkaloids (DAs) are the characteristic compounds in Aconitum. Although six transcriptomes, based on short-read next generation sequencing technology, have been reported from the Aconitum species, the terpene synthase (TPS) corresponding to DAs biosynthesis remains unidentified. We apply a combination of Pacbio isoform sequencing and RNA sequencing to provide a comprehensive view of the A. carmichaelii transcriptome. Nineteen TPSs and five alternative splicing isoforms belonging to TPS-b, TPS-c, and TPS-e/f subfamilies were identified. In vitro enzyme reaction analysis functional identified two sesqui-TPSs and twelve diTPSs. Seven of the TPS-c subfamily genes reacted with GGPP to produce the intermediate ent-copalyl diphosphate. Five AcKSLs separately reacted with ent-CPP to produce ent-kaurene, ent-atiserene, and ent-13-epi-sandaracopimaradie: a new diterpene found in Aconitum. AcTPSs gene expression in conjunction DAs content analysis in different tissues validated that ent-CPP is the sole precursor to all DAs biosynthesis, with AcKSL1, AcKSL2s and AcKSL3-1 responsible for C20 atisine and napelline type DAs biosynthesis, respectively. These data clarified the molecular basis for the C20-DAs biosynthetic pathway in A. carmichaelii and pave the way for further exploration of C19-DAs biosynthesis in the Aconitum species.
Collapse
Affiliation(s)
- Liuying Mao
- College of Pharmacy, Shandong University of Chinese Medicine, Jinan 250355, China
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Baolong Jin
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Lingli Chen
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Mei Tian
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Rui Ma
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Biwei Yin
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Haiyan Zhang
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Juan Guo
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Jinfu Tang
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Tong Chen
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Changjiangsheng Lai
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Guanghong Cui
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Luqi Huang
- College of Pharmacy, Shandong University of Chinese Medicine, Jinan 250355, China
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| |
Collapse
|
14
|
Ma A, Qi X. Mining plant metabolomes: Methods, applications, and perspectives. PLANT COMMUNICATIONS 2021; 2:100238. [PMID: 34746766 PMCID: PMC8554038 DOI: 10.1016/j.xplc.2021.100238] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 07/31/2021] [Accepted: 09/02/2021] [Indexed: 06/13/2023]
Abstract
Plants produce a variety of metabolites that are essential for plant growth and human health. To fully understand the diversity of metabolites in certain plants, lots of methods have been developed for metabolites detection and data processing. In the data-processing procedure, how to effectively reduce false-positive peaks, analyze large-scale metabolic data, and annotate plant metabolites remains challenging. In this review, we introduce and discuss some prominent methods that could be exploited to solve these problems, including a five-step filtering method for reducing false-positive signals in LC-MS analysis, QPMASS for analyzing ultra-large GC-MS data, and MetDNA for annotating metabolites. The main applications of plant metabolomics in species discrimination, metabolic pathway dissection, population genetic studies, and some other aspects are also highlighted. To further promote the development of plant metabolomics, more effective and integrated methods/platforms for metabolite detection and comprehensive databases for metabolite identification are highly needed. With the improvement of these technologies and the development of genomics and transcriptomics, plant metabolomics will be widely used in many fields.
Collapse
Affiliation(s)
- Aimin Ma
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoquan Qi
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
15
|
Gupta P, Geniza M, Naithani S, Phillips JL, Haq E, Jaiswal P. Chia ( Salvia hispanica) Gene Expression Atlas Elucidates Dynamic Spatio-Temporal Changes Associated With Plant Growth and Development. FRONTIERS IN PLANT SCIENCE 2021; 12:667678. [PMID: 34354718 PMCID: PMC8330693 DOI: 10.3389/fpls.2021.667678] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 06/09/2021] [Indexed: 06/12/2023]
Abstract
Chia (Salvia hispanica L.), now a popular superfood and a pseudocereal, is one of the richest sources of dietary nutrients such as protein, fiber, and polyunsaturated fatty acids (PUFAs). At present, the genomic and genetic information available in the public domain for this crop are scanty, which hinders an understanding of its growth and development and genetic improvement. We report an RNA-sequencing (RNA-Seq)-based comprehensive transcriptome atlas of Chia sampled from 13 tissue types covering vegetative and reproductive growth stages. We used ~355 million high-quality reads of total ~394 million raw reads from transcriptome sequencing to generate de novo reference transcriptome assembly and the tissue-specific transcript assemblies. After the quality assessment of the merged assemblies and implementing redundancy reduction methods, 82,663 reference transcripts were identified. About 65,587 of 82,663 transcripts were translated into 99,307 peptides, and we were successful in assigning InterPro annotations to 45,209 peptides and gene ontology (GO) terms to 32,638 peptides. The assembled transcriptome is estimated to have the complete sequence information for ~86% of the genes found in the Chia genome. Furthermore, the analysis of 53,200 differentially expressed transcripts (DETs) revealed their distinct expression patterns in Chia's vegetative and reproductive tissues; tissue-specific networks and developmental stage-specific networks of transcription factors (TFs); and the regulation of the expression of enzyme-coding genes associated with important metabolic pathways. In addition, we identified 2,411 simple sequence repeats (SSRs) as potential genetic markers from the transcripts. Overall, this study provides a comprehensive transcriptome atlas, and SSRs, contributing to building essential genomic resources to support basic research, genome annotation, functional genomics, and molecular breeding of Chia.
Collapse
Affiliation(s)
- Parul Gupta
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States
| | - Matthew Geniza
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States
- Molecular and Cellular Biology Graduate Program, Oregon State University, Corvallis, OR, United States
| | - Sushma Naithani
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States
| | - Jeremy L. Phillips
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States
| | - Ebaad Haq
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States
| | - Pankaj Jaiswal
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States
| |
Collapse
|
16
|
Ma Y, Cui G, Chen T, Ma X, Wang R, Jin B, Yang J, Kang L, Tang J, Lai C, Wang Y, Zhao Y, Shen Y, Zeng W, Peters RJ, Qi X, Guo J, Huang L. Expansion within the CYP71D subfamily drives the heterocyclization of tanshinones synthesis in Salvia miltiorrhiza. Nat Commun 2021; 12:685. [PMID: 33514704 PMCID: PMC7846762 DOI: 10.1038/s41467-021-20959-1] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 01/01/2021] [Indexed: 11/09/2022] Open
Abstract
Tanshinones are the bioactive nor-diterpenoid constituents of the Chinese medicinal herb Danshen (Salvia miltiorrhiza). These groups of chemicals have the characteristic furan D-ring, which differentiates them from the phenolic abietane-type diterpenoids frequently found in the Lamiaceae family. However, how the 14,16-epoxy is formed has not been elucidated. Here, we report an improved genome assembly of Danshen using a highly homozygous genotype. We identify a cytochrome P450 (CYP71D) tandem gene array through gene expansion analysis. We show that CYP71D373 and CYP71D375 catalyze hydroxylation at carbon-16 (C16) and 14,16-ether (hetero)cyclization to form the D-ring, whereas CYP71D411 catalyzes upstream hydroxylation at C20. In addition, we discover a large biosynthetic gene cluster associated with tanshinone production. Collinearity analysis indicates a more specific origin of tanshinones in Salvia genus. It illustrates the evolutionary origin of abietane-type diterpenoids and those with a furan D-ring in Lamiaceae.
Collapse
Affiliation(s)
- Ying Ma
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Guanghong Cui
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Tong Chen
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaohui Ma
- College of Pharmaceutical Science, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Ruishan Wang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Baolong Jin
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jian Yang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Liping Kang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jinfu Tang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Changjiangsheng Lai
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yanan Wang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yujun Zhao
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ye Shen
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wen Zeng
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Reuben J Peters
- Roy J. Carver Dep. of Biochem., Biophys. & Mol. Biol., Iowa State University, Ames, IA, USA
| | - Xiaoquan Qi
- Institute of Botany, the Chinese Academy of Sciences, Beijing, China.
| | - Juan Guo
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Luqi Huang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
17
|
Zheng X, Li H, Chen M, Zhang J, Tan R, Zhao S, Wang Z. smi-miR396b targeted SmGRFs, SmHDT1, and SmMYB37/4 synergistically regulates cell growth and active ingredient accumulation in Salvia miltiorrhiza hairy roots. PLANT CELL REPORTS 2020; 39:1263-1283. [PMID: 32607753 DOI: 10.1007/s00299-020-02562-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 06/19/2020] [Indexed: 06/11/2023]
Abstract
MIR396b had been cloned and overexpressed in Salvia miltiorrhiza hairy roots. MiR396b targets SmGRFs, SmHDT1, and SmMYB37/4 to regulate cell growth and secondary metabolism in S. miltiorrhiza hairy roots. Danshen (Salvia miltiorrhiza Bunge) is a valuable medicinal herb with two kinds of clinically used natural products, salvianolic acids and tanshinones. miR396 is a conserved microRNA and plays extensive roles in plants. However, it is still unclear how miR396 works in S. miltiorrhiza. In this study, an smi-MIR396b has been cloned from S. miltiorrhiza. Overexpression of miR396b in danshen hairy roots inhibited hairy root growth, reduced salvianolic acid concentration, but enhanced tanshinone accumulation, resulting in the biomass and total salvianolic acids respectively reduced to 55.5 and 72.1% of the control and total tanshinones increased up to 1.91-fold of the control. Applied degradome sequencing, 5'RLM-RACE, and qRT-PCR, 13 targets for miR396b were identified including seven conserved SmGRF1-7 and six novel ones. Comparative transcriptomics and microRNomics analysis together with qRT-PCR results confirmed that miR396b targets SmGRFs, SmHDT1, and SmMYB37/4 to mediate the phytohormone, especially gibberellin signaling pathways and consequentially resulted in the phenotype variation of miR396b-OE hairy roots. Furthermore, miR396b could be activated by methyl jasmonate, abscisic acid, gibberellin, salt, and drought stresses. The findings in this study indicated that smi-miR396b acts as an upstream and central regulator in cell growth and the biosynthesis of tanshinones and salvianolic acids, shedding light on the coordinated regulation of plant growth and biosynthesis of active ingredients in S. miltiorrhiza.
Collapse
Affiliation(s)
- Xiaoyu Zheng
- The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines and Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Pudong New District, Shanghai, 201203, People's Republic of China
| | - Hang Li
- The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines and Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Pudong New District, Shanghai, 201203, People's Republic of China
| | - Min Chen
- The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines and Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Pudong New District, Shanghai, 201203, People's Republic of China
| | - Jinjia Zhang
- The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines and Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Pudong New District, Shanghai, 201203, People's Republic of China
| | - Ronghui Tan
- The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines and Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Pudong New District, Shanghai, 201203, People's Republic of China
| | - Shujuan Zhao
- The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines and Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Pudong New District, Shanghai, 201203, People's Republic of China.
| | - Zhengtao Wang
- The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines and Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Pudong New District, Shanghai, 201203, People's Republic of China.
| |
Collapse
|
18
|
Zhou Y, Feng J, Li Q, Huang D, Chen X, Du Z, Lv Z, Xiao Y, Han Y, Chen J, Chen W. SmMYC2b Enhances Tanshinone Accumulation in Salvia miltiorrhiza by Activating Pathway Genes and Promoting Lateral Root Development. FRONTIERS IN PLANT SCIENCE 2020; 11:559438. [PMID: 33042182 PMCID: PMC7517298 DOI: 10.3389/fpls.2020.559438] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 08/27/2020] [Indexed: 06/11/2023]
Abstract
Salvia miltiorrhiza Bunge (Lamiaceae) is an economically important medicinal plant as well as an emerging model plant. Our previous studies indicate that SmMYC2b is a positive transcription factor that can affect the biosynthesis of phenolic acids and tanshinones in S. miltiorrhiza. Moreover, MYC2s are well known to induce the development of lateral roots. As tanshinones are mainly distributed in the periderm, the promotion of lateral root development probably leads to increased accumulation of tanshinones. In this paper, we firstly discovered that SmMYC2b played a dual regulatory role in effectively enhancing the tanshinone accumulation by activating tanshinone biosynthetic pathway and promoting lateral root development. The expression levels of the previously studied pathway genes SmCPS1, SmKSL1, SmCYP76AH1, SmCYP76AH3, and SmCYP76AK1 dramatically increased. In addition, SmMYC2b was proved to exhibit a similar function as other homologs in promoting lateral root development, which increased the tanshinone produced tissue and further enhanced the biosynthesis of tanshinones. RNA-seq assays revealed that SmMYC2b-regulated genes comprised 30.6% (1,901 of 6,210) of JA-responsive genes, confirming that SmMYC2b played a crucial role in transcriptional regulation of JA-regulated genes. Overall, we concluded that SmMYC2b could enhance tanshinone accumulation by activating the tanshinone biosynthetic pathway and promoting lateral root development. Our study provides an effective approach to enhance the production of desired tanshinones and enriches our knowledge of the related regulatory network.
Collapse
Affiliation(s)
- Yangyun Zhou
- Department of Pharmacy, Changzheng Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
- Department of Pharmacy, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Jingxian Feng
- Research and Development Center of Chinese Medicine Resources and Biotechnology, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qing Li
- Department of Pharmacy, Changzheng Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Doudou Huang
- Department of Pharmacy, Changzheng Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Xiao Chen
- Research and Development Center of Chinese Medicine Resources and Biotechnology, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zenan Du
- Research and Development Center of Chinese Medicine Resources and Biotechnology, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zongyou Lv
- Research and Development Center of Chinese Medicine Resources and Biotechnology, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ying Xiao
- Research and Development Center of Chinese Medicine Resources and Biotechnology, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yonglong Han
- Department of Pharmacy, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Junfeng Chen
- Research and Development Center of Chinese Medicine Resources and Biotechnology, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wansheng Chen
- Department of Pharmacy, Changzheng Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
- Research and Development Center of Chinese Medicine Resources and Biotechnology, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
19
|
Integrated Analysis of mRNA and microRNA Elucidates the Regulation of Glycyrrhizic Acid Biosynthesis in Glycyrrhiza uralensis Fisch. Int J Mol Sci 2020; 21:ijms21093101. [PMID: 32353999 PMCID: PMC7247157 DOI: 10.3390/ijms21093101] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/13/2020] [Accepted: 04/21/2020] [Indexed: 01/24/2023] Open
Abstract
Licorice (Glycyrrhiza) is a staple Chinese herbal medicine in which the primary bioactive compound is glycyrrhizic acid (GA), which has important pharmacological functions. To date, the structural genes involved in GA biosynthesis have been identified. However, the regulation of these genes in G. uralensis has not been elucidated. In this study, we performed a comprehensive analysis based on the transcriptome and small RNAome by high-throughput sequencing. In total, we identified 18 structural GA genes and 3924 transporter genes. We identified genes encoding 2374 transporters, 1040 transcription factors (TFs), 262 transcriptional regulators (TRs) and 689 protein kinases (PKs), which were coexpressed with at least one structural gene. We also identified 50,970 alternative splicing (AS) events, in which 17 structural genes exhibited AS. Finally, we also determined that miRNAs potentially targeted 4 structural genes, and 318, 8, and 218 miRNAs potentially regulated 150 TFs, 34 TRs, and 88 PKs, respectively, related to GA. Overall, the results of this study helped to elucidate the gene expression and regulation of GA biosynthesis in G. uralensis, provided a theoretical basis for the synthesis of GA via synthetic biology, and laid a foundation for the cultivation of new varieties of licorice with high GA content.
Collapse
|
20
|
Jiang Y, Wang L, Lu S, Xue Y, Wei X, Lu J, Zhang Y. Transcriptome sequencing of Salvia miltiorrhiza after infection by its endophytic fungi and identification of genes related to tanshinone biosynthesis. PHARMACEUTICAL BIOLOGY 2019; 57:760-769. [PMID: 31694427 PMCID: PMC6844419 DOI: 10.1080/13880209.2019.1680706] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 10/06/2019] [Accepted: 10/11/2019] [Indexed: 05/25/2023]
Abstract
Context: Salvia miltiorrhiza Bunge (Labiatae) is a traditional Chinese herb. Endophytic fungi, which are biotic elicitors, can induce accumulation of secondary metabolites in their host plants.Objective: To analyze the interaction mechanism between S. miltiorrhiza and endophytic fungi.Materials and methods: Endophytic fungi U104 producing tanshinone IIA were isolated from the healthy disease-free tissue of root of S. miltiorrhiza by conventional methods. The endophytic fungus U104 of S. miltiorrhiza was co-cultured with the sterile seedlings of S. miltiorrhiza for 20 d (temp:day/night = 26 °C/18 °C, photoperiod:12/12 h, illuminance:2000 Lx). Transcriptome sequencing of S. miltiorrhiza seedlings after 20 d of co-cultivation was performed using the Illumina platform.Results: A total of 3713 differentially expressed genes (DEGs) were obtained. These different expression genes, such as STPII, LTP2, MYB transcription factors, CNGC, CDPK, Rboh, CaM, MAP2K1/MEK1, WRKY33, SGT1/SGT and Hsp90/htpG, showed that host S. miltiorrhiza had biological defence response in the initial stage of interaction. Under the induction of endophytic fungi, 14 key enzyme genes were up-regulated in the tanshinone biosynthesis pathway: DXS, DXS2, DXR, HMGR3, AACT, MK, PMK, GGPPS2, GPPS, KSL, IDI, IPII, FDPS and CPS.Discussion and conclusions: A total of 14 key genes were obtained from the tanshinone component synthesis and metabolic pathways, providing a reasonable explanation for the accumulation of tanshinone components, an accumulation induced by endophytic fungi, in the host plants. The large amounts of data generated in this study provide a strong and powerful platform for future functional and molecular studies of interactions between host plants and their endophytic fungi.
Collapse
Affiliation(s)
- Yan Jiang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Shaanxi Normal University, Xi’an, China
| | - Lei Wang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Shaanxi Normal University, Xi’an, China
| | - Shaorong Lu
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Shaanxi Normal University, Xi’an, China
| | - Yizhe Xue
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Shaanxi Normal University, Xi’an, China
| | - Xiying Wei
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Shaanxi Normal University, Xi’an, China
| | - Juan Lu
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Shaanxi Normal University, Xi’an, China
| | - Yanyan Zhang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Shaanxi Normal University, Xi’an, China
| |
Collapse
|
21
|
Li W, Bai Z, Pei T, Yang D, Mao R, Zhang B, Liu C, Liang Z. SmGRAS1 and SmGRAS2 Regulate the Biosynthesis of Tanshinones and Phenolic Acids in Salvia miltiorrhiza. FRONTIERS IN PLANT SCIENCE 2019; 10:1367. [PMID: 31737003 PMCID: PMC6831727 DOI: 10.3389/fpls.2019.01367] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Accepted: 10/04/2019] [Indexed: 05/24/2023]
Abstract
Salvia miltiorrhiza is one of the most widely used traditional Chinese medicinal plants because of its excellent performance in treating heart diseases. Tanshinones and phenolic acids are two important classes of effective metabolites, and their biosynthesis has attracted widespread interest. Here, we functionally characterized SmGRAS1 and SmGRAS2, two GRAS family transcription factors from S. miltiorrhiza. SmGRAS1/2 were highly expressed in the root periderm, where tanshinones mainly accumulated in S. miltiorrhiza. Overexpression of SmGRAS1/2 upregulated tanshinones accumulation and downregulated GA, phenolic acids contents, and root biomass. However, antisense expression of SmGRAS1/2 reduced the tanshinones accumulation and increased the GA, phenolic acids contents, and root biomass. The expression patterns of biosynthesis genes were consistent with the changes in compounds accumulation. GA treatment increased tanshinones, phenolic acids, and GA contents in the overexpression lines, and restored the root growth inhibited by overexpressing SmGRAS1/2. Subsequently, yeast one-hybrid, dual-luciferase, and electrophoretic mobility shift assays (EMSA) showed SmGRAS1 promoted tanshinones biosynthesis by directly binding to the GARE motif in the SmKSL1 promoter and activating its expression. Yeast two-hybrid assays showed SmGRAS1 interacted physically with SmGRAS2. Taken together, the results revealed that SmGRAS1/2 acted as repressors in root growth and phenolic acids biosynthesis but as positive regulators in tanshinones biosynthesis. Overall, our findings revealed the potential value of SmGRAS1/2 in genetically engineering changes in secondary metabolism.
Collapse
Affiliation(s)
- Wenrui Li
- Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Zhenqing Bai
- College of Life Sciences, Northwest A&F University, Yangling, China
| | - Tianlin Pei
- College of Life Sciences, Northwest A&F University, Yangling, China
| | - Dongfeng Yang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Renjun Mao
- College of Life Sciences, Northwest A&F University, Yangling, China
| | - Bingxue Zhang
- Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Chuangfeng Liu
- College of Life Sciences, Northwest A&F University, Yangling, China
| | - Zongsuo Liang
- Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, China
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| |
Collapse
|
22
|
Chang Y, Wang M, Li J, Lu S. Transcriptomic analysis reveals potential genes involved in tanshinone biosynthesis in Salvia miltiorrhiza. Sci Rep 2019; 9:14929. [PMID: 31624328 PMCID: PMC6797793 DOI: 10.1038/s41598-019-51535-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 09/28/2019] [Indexed: 12/17/2022] Open
Abstract
Tanshinones are important bioactive components in Salvia miltiorrhiza and mainly accumulate in the periderms of mature roots. Tanshinone biosynthesis is a complicated process, and little is known about the third stage of the pathway. To investigate potential genes that are responsible for tanshinone biosynthesis, we conducted transcriptome profiling analysis of two S. miltiorrhiza cultivars. Differential expression analysis provided 2,149 differentially expressed genes (DEGs) for further analysis. GO and KEGG analysis showed that the DEGs were mainly associated with the biosynthesis of secondary metabolites. Weighted gene coexpression network analysis (WGCNA) was further performed to identify a “cyan” module associated with tanshinone biosynthesis. In this module, 25 cytochromes P450 (CYPs), three 2-oxoglutarate-dependent dioxygenases (2OGDs), one short-chain alcohol dehydrogenases (SDRs) and eight transcription factors were found to be likely involved in tanshinone biosynthesis. Among these CYPs, 14 CYPs have been reported previously, and 11 CYPs were identified in this study. Expression analysis showed that four newly identified CYPs were upregulated upon application of MeJA, suggesting their possible roles in tanshinone biosynthesis. Overall, this study not only identified candidate genes involved in tanshinone biosynthesis but also provided a basis for characterization of genes involved in important active ingredients of other traditional Chinese medicinal plants.
Collapse
Affiliation(s)
- Yujie Chang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China.,Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Meizhen Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
| | - Jiang Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083, China
| | - Shanfa Lu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China.
| |
Collapse
|
23
|
Metabolome and transcriptome analyses reveal quality change in the orange-rooted Salvia miltiorrhiza (Danshen) from cultivated field. Chin Med 2019; 14:42. [PMID: 31592267 PMCID: PMC6775661 DOI: 10.1186/s13020-019-0265-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 09/23/2019] [Indexed: 01/10/2023] Open
Abstract
Background The dry root and rhizome of Salvia miltiorrhiza Bunge, or Danshen, is a well-known, traditional Chinese medicine. Tanshinones are active compounds that accumulate in the periderm, resulting in red-colored roots. However, lines with orange roots have been observed in cultivated fields. Here, we performed metabolome and transcriptome analyses to investigate the changes of orange-rooted Danshen. Methods Metabolome analysis was performed by ultra-high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC/Q-Tof–MS) to investigate the metabolites variation between orange Danshen and normal Danshen. RNA sequencing and KEGG enrichment analysis were performed to analyzing the differentially expressed genes between orange-rooted and normal Danshen. Results In total, 40 lipophilic components were detected in metabolome analysis, and seven compounds were significantly decreased in the orange Danshen, including the most abundant active compounds, tanshinone IIA and tanshinone I in normal Danshen. Systematic analysis of transcriptome profiles revealed that the down-regulated genes related to catalytic dehydrogenation was not detected. However, two genes related to stress resistance, and four genes related to endoplasmic reticulum (ER)-associated degradation of proteins were up-regulated in orange Danshen. Conclusions Decreases in the content of dehydrogenated furan ring tanshinones such as tanshinone IIA resulted in phenotypic changes and quality degradation of Danshen. Transcriptome analysis indicated that incorrect folding and ER-associated degradation of corresponding enzymes, which could catalyze C15-C16 dehydrogenase, might be contributed to the decrease in dehydrogenated furan ring tanshinones, rather than lower expression of the relative genes. This limited dehydrogenation of cryptotanshinone and dihydrotanshinone I into tanshinones IIA and I products, respectively, led to a reduced quality of Danshen in cultivated fields.
Collapse
|
24
|
Conserved bases for the initial cyclase in gibberellin biosynthesis: from bacteria to plants. Biochem J 2019; 476:2607-2621. [PMID: 31484677 DOI: 10.1042/bcj20190479] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 09/02/2019] [Accepted: 09/03/2019] [Indexed: 12/21/2022]
Abstract
All land plants contain at least one class II diterpene cyclase (DTC), which utilize an acid-base catalytic mechanism, for the requisite production of ent-copalyl diphosphate (ent-CPP) in gibberellin A (GA) phytohormone biosynthesis. These ent-CPP synthases (CPSs) are hypothesized to be derived from ancient bacterial origins and, in turn, to have given rise to the frequently observed additional DTCs utilized in more specialized plant metabolism. However, such gene duplication and neo-functionalization has occurred repeatedly, reducing the utility of phylogenetic analyses. Support for evolutionary scenarios can be found in more specific conservation of key enzymatic features. While DTCs generally utilize a DxDD motif as the catalytic acid, the identity of the catalytic base seems to vary depending, at least in part, on product outcome. The CPS from Arabidopsis thaliana has been found to utilize a histidine-asparagine dyad to ligate a water molecule that serves as the catalytic base, with alanine substitution leading to the production of 8β-hydroxy-ent-CPP. Here this dyad and effect of Ala substitution is shown to be specifically conserved in plant CPSs involved in GA biosynthesis, providing insight into plant DTC evolution and assisting functional assignment. Even more strikingly, while GA biosynthesis arose independently in plant-associated bacteria and fungi, the catalytic base dyad also is specifically found in the relevant bacterial, but not fungal, CPSs. This suggests functional conservation of CPSs from bacteria to plants, presumably reflecting an early role for derived diterpenoids in both plant development and plant-microbe interactions, eventually leading to GA, and a speculative evolutionary scenario is presented.
Collapse
|
25
|
Szymczyk P, Szymańska G, Lipert A, Weremczuk-Jeżyna I, Kochan E. Computer-Aided Saturation Mutagenesis of Arabidopsis thaliana Ent-Copalyl Diphosphate Synthase. Interdiscip Sci 2019; 12:32-43. [PMID: 31309397 PMCID: PMC7007437 DOI: 10.1007/s12539-019-00342-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 07/04/2019] [Accepted: 07/05/2019] [Indexed: 01/12/2023]
Abstract
Ent-copalyl diphosphate synthase controls the biosynthesis of gibberellin plant hormones, which in turn coordinate the expression of numerous enzymes. Some gibberellin-dependent genes encode enzymes coordinating the biosynthesis of tanshinones: diterpene derivatives with broad medical applications. New biotechnological approaches, such as metabolic engineering using naturally occurring or mutated enzymes, have been proposed to meet the growing demand for tanshinones which is currently met by the Chinese medicinal plant Salvia miltiorrhiza Bunge. These mutants may be prepared by directed evolution, saturation mutagenesis or rational enzyme design. In the presented paper, 15,257 non-synonymous variants of Arabidopsis thaliana ent-copalyl diphosphate synthase were obtained using the SNAP2 tool. The obtained forms were screened to isolate variants with potentially improved biological functions. A group of 455 mutants with potentially improved stability was isolated and subjected to further screening on the basis of ligand–substrate affinity, and both secondary structure and active site structure stability. Finally, a group of six single mutants was obtained, which were used to construct double mutants with potentially improved stability and ligand affinity. The potential influence of single mutations on protein stability and ligand affinity was evaluated by double mutant cycle analysis. Finally, the procedure was validated by in silico assessment of the experimentally verified enzyme mutants with reduced enzymatic activity.
Collapse
Affiliation(s)
- Piotr Szymczyk
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Medical University of Łódź, 90-151, Lodz, Poland.
| | - Grażyna Szymańska
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Medical University of Łódź, 90-151, Lodz, Poland
| | - Anna Lipert
- Department of Sports Medicine, Medical University of Łódź, 92-213, Lodz, Poland
| | - Izabela Weremczuk-Jeżyna
- Department of Biology and Pharmaceutical Botany, Faculty of Pharmacy, Medical University of Łódź, 90-151, Lodz, Poland
| | - Ewa Kochan
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Medical University of Łódź, 90-151, Lodz, Poland
| |
Collapse
|
26
|
Jia M, Mishra SK, Tufts S, Jernigan RL, Peters RJ. Combinatorial biosynthesis and the basis for substrate promiscuity in class I diterpene synthases. Metab Eng 2019; 55:44-58. [PMID: 31220664 DOI: 10.1016/j.ymben.2019.06.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 06/04/2019] [Accepted: 06/14/2019] [Indexed: 02/04/2023]
Abstract
Terpene synthases are capable of mediating complex reactions, but fundamentally simply catalyze lysis of allylic diphosphate esters with subsequent deprotonation. Even with the initially generated tertiary carbocation this offers a variety of product outcomes, and deprotonation further can be preceded by the addition of water. This is particularly evident with labdane-related diterpenes (LRDs) where such lysis follows bicyclization catalyzed by class II diterpene cyclases (DTCs) that generates preceding structural variation. Previous investigation revealed that two diterpene synthases (DTSs), one bacterial and the other plant-derived, exhibit extreme substrate promiscuity, but yet still typically produce exo-ene or tertiary alcohol LRD derivatives, respectively (i.e., demonstrating high catalytic specificity), enabling rational combinatorial biosynthesis. Here two DTSs that produce either cis or trans endo-ene LRD derivatives, also plant and bacterial (respectively), were examined for their potential analogous utility. Only the bacterial trans-endo-ene forming DTS was found to exhibit significant substrate promiscuity (with moderate catalytic specificity). This further led to investigation of the basis for substrate promiscuity, which was found to be more closely correlated with phylogenetic origin than reaction complexity. Specifically, bacterial DTSs exhibited significantly more substrate promiscuity than those from plants, presumably reflecting their distinct evolutionary context. In particular, plants typically have heavily elaborated LRD metabolism, in contrast to the rarity of such natural products in bacteria, and the lack of potential substrates presumably alleviates selective pressure against such promiscuity. Regardless of such speculation, this work provides novel biosynthetic access to almost 19 LRDs, demonstrating the power of the combinatorial approach taken here.
Collapse
Affiliation(s)
- Meirong Jia
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, Ames, IA, 50011, USA
| | - Sambit K Mishra
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, Ames, IA, 50011, USA
| | - Samuel Tufts
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, Ames, IA, 50011, USA
| | - Robert L Jernigan
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, Ames, IA, 50011, USA
| | - Reuben J Peters
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, Ames, IA, 50011, USA.
| |
Collapse
|
27
|
Zhang Y, Ji A, Xu Z, Luo H, Song J. The AP2/ERF transcription factor SmERF128 positively regulates diterpenoid biosynthesis in Salvia miltiorrhiza. PLANT MOLECULAR BIOLOGY 2019; 100:83-93. [PMID: 30847712 DOI: 10.1007/s11103-019-00845-7] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 02/18/2019] [Indexed: 05/02/2023]
Abstract
The novel AP2/ERF transcription factor SmERF128 positively regulates diterpenoid tanshinone biosynthesis by activating the expression of SmCPS1, SmKSL1, and SmCYP76AH1 in Salvia miltiorrhiza. Certain members of the APETALA2/ethylene-responsive factor (AP2/ERF) family regulate plant secondary metabolism. Although it is clearly documented that AP2/ERF transcription factors (TFs) are involved in sesquiterpenoid biosynthesis, the regulation of diterpenoid biosynthesis by AP2/ERF TFs remains elusive. Here, we report that the novel AP2/ERF TF SmERF128 positively regulates diterpenoid tanshinone biosynthesis in Salvia miltiorrhiza. Overexpression of SmERF128 increased the expression levels of copalyl diphosphate synthase 1 (SmCPS1), kaurene synthase-like 1 (SmKSL1) and cytochrome P450 monooxygenase 76AH1 (SmCYP76AH1), whereas their expression levels were decreased when SmERF128 was silenced. Accordingly, the content of tanshinone was reduced in SmERF128 RNA interference (RNAi) hairy roots and dramatically increased in SmERF128 overexpression hairy roots, as demonstrated through Ultra Performance Liquid Chromatography (UPLC) and Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS) analysis. Furthermore, SmERF128 activated the expression of SmCPS1, SmKSL1, and SmCYP76AH1 by binding to the GCC box, and to the CRTDREHVCBF2 (CBF2) and RAV1AAT (RAA) motifs within their promoters during in vivo and in vitro assays. Our findings not only reveal the molecular basis of how the AP2/ERF transcription factor SmERF128 regulates diterpenoid biosynthesis, but also provide useful information for improving tanshinone production through genetic engineering.
Collapse
Affiliation(s)
- Yu Zhang
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, China
- College of Chinese Materia Medica, Shanxi University of Chinese Medicine, Jinzhong, 030619, China
| | - Aijia Ji
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, China
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Zhichao Xu
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, China
| | - Hongmei Luo
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, China
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Beijing, 100193, China
| | - Jingyuan Song
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, China.
- Yunnan Branch, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Jinghong, 666100, China.
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Beijing, 100193, China.
| |
Collapse
|
28
|
Contreras A, Leroy B, Mariage PA, Wattiez R. Proteomic analysis reveals novel insights into tanshinones biosynthesis in Salvia miltiorrhiza hairy roots. Sci Rep 2019; 9:5768. [PMID: 30962498 PMCID: PMC6453882 DOI: 10.1038/s41598-019-42164-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 03/26/2019] [Indexed: 12/29/2022] Open
Abstract
Salvia miltiorrhiza is a medicinal plant highly appreciated by its content of tanshinones and salvianolic acids. Tanshinones are of particular relevance for their anti-oxidant, anti-tumoral and anti-inflammatory properties. Abiotic and biotic agents as silver nitrate and yeast extract have shown efficiently to stimulate tanshinone accumulation, but the underlying molecular mechanism remains essentially unknown. By using hairy roots as experimental material and the elicitors mentioned, were obtained up to 22 mg of tanshinones per gram of dry weight. Differential label-free quantitative proteomic analysis was applied to study the proteins involved in tanshinone biosynthesis. A total of 2650 proteins were identified in roots extracts, of which 893 showed statistically (p < 0.05) significant change in relative abundance compared to control roots, 251 proteins were upregulated and 642 downregulated. Among the upregulated proteins the predominant functional categories were metabolism (47%), stress defense (18%) and redox homeostasis (10%). Within the metabolism category, isoprenoid metabolism enzymes, cytochromes P450 and FAD-binding berberine proteins showed abundance profile linked to tanshinone concentration. The results presented here allowed to propose 5 new cytochromes P450 and 5 berberine enzymes as candidates to be involved into tanshinone biosynthesis, a novel finding that opens new avenues to improve tanshinone production through biotechnological approaches.
Collapse
Affiliation(s)
- Angela Contreras
- Proteomics and Microbiology department, Research center for Biosciences, University of Mons, 20 place du Parc, Mons, 7000, Belgium
| | - Baptiste Leroy
- Proteomics and Microbiology department, Research center for Biosciences, University of Mons, 20 place du Parc, Mons, 7000, Belgium
| | | | - Ruddy Wattiez
- Proteomics and Microbiology department, Research center for Biosciences, University of Mons, 20 place du Parc, Mons, 7000, Belgium.
| |
Collapse
|
29
|
Jiang Z, Gao W, Huang L. Tanshinones, Critical Pharmacological Components in Salvia miltiorrhiza. Front Pharmacol 2019; 10:202. [PMID: 30923500 PMCID: PMC6426754 DOI: 10.3389/fphar.2019.00202] [Citation(s) in RCA: 124] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 02/18/2019] [Indexed: 01/21/2023] Open
Abstract
Salvia miltiorrhiza Bunge, a member of the Lamiaceae family, is valued in traditional Chinese Medicine. Its dried root (named Danshen) has been used for hundreds of years, primarily for the treatment of cardiovascular and cerebrovascular diseases. Tanshinones are the main active ingredients in S. miltiorrhiza and exhibit significant pharmacological activities, such as antioxidant activity, anti-inflammatory activity, cardiovascular effects, and antitumor activity. Danshen dripping pill of Tianshili is an effective drug widely used in the clinical treatment of cardiovascular diseases. With the increasing demand for clinical drugs, the traditional method for extracting and separating tanshinones from medicinal plants is insufficient. Therefore, in combination with synthetic biological methods and strategies, it is necessary to analyze the biosynthetic pathway of tanshinones and construct high-yield functional bacteria to obtain tanshinones. Moreover, the biosynthesis of tanshinones has been studied for more than two decades but remains to be completely elucidated. This review will systematically present the composition, extraction and separation, pharmacological activities and biosynthesis of tanshinones from S. miltiorrhiza, with the intent to provide references for studies on other terpenoid bioactive components of traditional Chinese medicines and to provide new research strategies for the sustainable development of traditional Chinese medicine resources.
Collapse
Affiliation(s)
- Zhouqian Jiang
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
- School of Pharmaceutical Sciences, Capital Medical University, Beijing, China
| | - Wei Gao
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
- School of Pharmaceutical Sciences, Capital Medical University, Beijing, China
| | - Luqi Huang
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
30
|
Johnson SR, Bhat WW, Bibik J, Turmo A, Hamberger B, Evolutionary Mint Genomics Consortium, Hamberger B. A database-driven approach identifies additional diterpene synthase activities in the mint family (Lamiaceae). J Biol Chem 2019; 294:1349-1362. [PMID: 30498089 PMCID: PMC6349103 DOI: 10.1074/jbc.ra118.006025] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 11/12/2018] [Indexed: 12/30/2022] Open
Abstract
Members of the mint family (Lamiaceae) accumulate a wide variety of industrially and medicinally relevant diterpenes. We recently sequenced leaf transcriptomes from 48 phylogenetically diverse Lamiaceae species. Here, we summarize the available chemotaxonomic and enzyme activity data for diterpene synthases (diTPSs) in the Lamiaceae and leverage the new transcriptomes to explore the diTPS sequence and functional space. Candidate genes were selected with an intent to evenly sample the sequence homology space and to focus on species in which diTPS transcripts were found, yet from which no diterpene structures have been previously reported. We functionally characterized nine class II diTPSs and 10 class I diTPSs from 11 distinct plant species and found five class II activities, including two novel activities, as well as a spectrum of class I activities. Among the class II diTPSs, we identified a neo-cleroda-4(18),13E-dienyl diphosphate synthase from Ajuga reptans, catalyzing the likely first step in the biosynthesis of a variety of insect-antifeedant compounds. Among the class I diTPSs was a palustradiene synthase from Origanum majorana, leading to the discovery of specialized diterpenes in that species. Our results provide insights into the diversification of diterpene biosynthesis in the mint family and establish a comprehensive foundation for continued investigation of diterpene biosynthesis in the Lamiaceae.
Collapse
Affiliation(s)
- Sean R Johnson
- Departments of Biochemistry and Molecular Biology, East Lansing, Michigan 48824
| | - Wajid Waheed Bhat
- Departments of Biochemistry and Molecular Biology, East Lansing, Michigan 48824; Pharmacology and Toxicology, East Lansing, Michigan 48824
| | - Jacob Bibik
- Departments of Biochemistry and Molecular Biology, East Lansing, Michigan 48824
| | - Aiko Turmo
- Departments of Biochemistry and Molecular Biology, East Lansing, Michigan 48824
| | - Britta Hamberger
- Departments of Biochemistry and Molecular Biology, East Lansing, Michigan 48824
| | | | - Björn Hamberger
- Departments of Biochemistry and Molecular Biology, East Lansing, Michigan 48824.
| |
Collapse
|
31
|
Karunanithi PS, Zerbe P. Terpene Synthases as Metabolic Gatekeepers in the Evolution of Plant Terpenoid Chemical Diversity. FRONTIERS IN PLANT SCIENCE 2019; 10:1166. [PMID: 31632418 PMCID: PMC6779861 DOI: 10.3389/fpls.2019.01166] [Citation(s) in RCA: 170] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 08/26/2019] [Indexed: 05/18/2023]
Abstract
Terpenoids comprise tens of thousands of small molecule natural products that are widely distributed across all domains of life. Plants produce by far the largest array of terpenoids with various roles in development and chemical ecology. Driven by selective pressure to adapt to their specific ecological niche, individual species form only a fraction of the myriad plant terpenoids, typically representing unique metabolite blends. Terpene synthase (TPS) enzymes are the gatekeepers in generating terpenoid diversity by catalyzing complex carbocation-driven cyclization, rearrangement, and elimination reactions that enable the transformation of a few acyclic prenyl diphosphate substrates into a vast chemical library of hydrocarbon and, for a few enzymes, oxygenated terpene scaffolds. The seven currently defined clades (a-h) forming the plant TPS family evolved from ancestral triterpene synthase- and prenyl transferase-type enzymes through repeated events of gene duplication and subsequent loss, gain, or fusion of protein domains and further functional diversification. Lineage-specific expansion of these TPS clades led to variable family sizes that may range from a single TPS gene to families of more than 100 members that may further function as part of modular metabolic networks to maximize the number of possible products. Accompanying gene family expansion, the TPS family shows a profound functional plasticity, where minor active site alterations can dramatically impact product outcome, thus enabling the emergence of new functions with minimal investment in evolving new enzymes. This article reviews current knowledge on the functional diversity and molecular evolution of the plant TPS family that underlies the chemical diversity of bioactive terpenoids across the plant kingdom.
Collapse
Affiliation(s)
- Prema S Karunanithi
- Department of Plant Biology, University of California Davis, Davis, CA, United States
| | - Philipp Zerbe
- Department of Plant Biology, University of California Davis, Davis, CA, United States
| |
Collapse
|
32
|
Wei T, Gao Y, Deng K, Zhang L, Yang M, Liu X, Qi C, Wang C, Song W, Zhang Y, Chen C. Enhancement of tanshinone production in Salvia miltiorrhiza hairy root cultures by metabolic engineering. PLANT METHODS 2019; 15:53. [PMID: 31143241 PMCID: PMC6532201 DOI: 10.1186/s13007-019-0439-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 05/15/2019] [Indexed: 05/18/2023]
Abstract
BACKGROUND Tanshinones are diterpenoid compounds that are used to treat cardiovascular diseases. As current extraction methods for tanshinones are inefficient, there is a pressing need to improve the production of these bioactive compounds to meet increasing demand. RESULTS Overexpression of SmMDS (2-c-methyl-d-erythritol 2,4-cyclodiphosphate synthase, a tanshinone biosynthesis gene) in transgenic Salvia miltiorrhiza hairy roots significantly increased the tanshinone yield compared to the control, and total tanshinone content in SmMDS-overexpressing lines increased after elicitor treatment. Total tanshinones increased to 2.5, 2.3, and 3.2 mg/g DW (dry weight) following treatment with Ag+, YE (yeast extract), and MJ (methyl jasmonate), respectively, compared with the non-induced transgenic line (1.7 mg/g DW). Also, qRT-PCR analysis showed that the expression levels of two pathway genes was positively correlated with increased accumulation of tanshinone. CONCLUSIONS Our study provides an effective strategy for increasing the content of tanshinones and other natural compounds using a combination of genetic engineering and elicitor treatment.
Collapse
Affiliation(s)
- Tao Wei
- National Pesticide Engineering Research Center (Tianjin), Nankai University, Tianjin, 300071 People’s Republic of China
- College of Life Sciences, Nankai University, Tianjin, 300071 People’s Republic of China
- School of Life Sciences and Technology, University of Electronic Science and Technology of China, Chengdu, 610054 People’s Republic of China
| | - Yonghong Gao
- College of Life Sciences, Nankai University, Tianjin, 300071 People’s Republic of China
| | - Kejun Deng
- School of Life Sciences and Technology, University of Electronic Science and Technology of China, Chengdu, 610054 People’s Republic of China
- Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, 610054 People’s Republic of China
| | - Lipeng Zhang
- College of Life Sciences, Nankai University, Tianjin, 300071 People’s Republic of China
| | - Meiling Yang
- College of Life Sciences, Nankai University, Tianjin, 300071 People’s Republic of China
| | - Xiaopei Liu
- School of Life Sciences and Technology, University of Electronic Science and Technology of China, Chengdu, 610054 People’s Republic of China
- Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, 610054 People’s Republic of China
| | - Caiyan Qi
- School of Life Sciences and Technology, University of Electronic Science and Technology of China, Chengdu, 610054 People’s Republic of China
- Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, 610054 People’s Republic of China
| | - Chunguo Wang
- College of Life Sciences, Nankai University, Tianjin, 300071 People’s Republic of China
| | - Wenqin Song
- College of Life Sciences, Nankai University, Tianjin, 300071 People’s Republic of China
| | - Yong Zhang
- School of Life Sciences and Technology, University of Electronic Science and Technology of China, Chengdu, 610054 People’s Republic of China
- Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, 610054 People’s Republic of China
| | - Chengbin Chen
- College of Life Sciences, Nankai University, Tianjin, 300071 People’s Republic of China
| |
Collapse
|
33
|
Xing B, Liang L, Liu L, Hou Z, Yang D, Yan K, Zhang X, Liang Z. Overexpression of SmbHLH148 induced biosynthesis of tanshinones as well as phenolic acids in Salvia miltiorrhiza hairy roots. PLANT CELL REPORTS 2018; 37:1681-1692. [PMID: 30229287 DOI: 10.1007/s00299-018-2339-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Accepted: 08/23/2018] [Indexed: 05/24/2023]
Abstract
SmbHLH148 activated the whole biosynthetic pathways of phenolic acids and tanshinones, thus upregulated the production of both the two groups of pharmaceutical ingredients in Salvia miltiorrhiza. Phenolic acids and tanshinones are the two important groups of pharmaceutical ingredients presented in Salvia miltiorrhiza Bunge. The bHLH transcription factors could regulate secondary metabolism efficiently in plants. However, there are only some MYCs have been studied on regulation of either phenolic acids or tanshinones biosynthesis. In this study, a bHLH TF named SmbHLH148, which is homologous to AtbHLH148, AtbHLH147 and CubHLH1, was isolated and functionally characterized from S. miltiorrhiza. Transcription of SmbHLH148 could be intensely induced by ABA and also be moderately induced by MeJA and GA. SmbHLH148 is present in all the six tissues and mostly expressed in fibrous root and flowers. Subcellular localization analysis found that SmbHLH148 was localized in the nucleus. Overexpression of SmbHLH148 significantly increased not only three phenolic acids components accumulation but also three tanshinones content. Content of caffeic acid, rosmarinic acid and salvianolic acid B were reached to 2.87-, 4.00- and 5.99-fold of the control in the ObHLH148-3, respectively. Content of dihydrotanshinone I, cryptotanshinone, and tanshinone I were also present highest in ObHLH148-3, reached 2.5-, 5.04- and 3.97-fold of the control, respectively. Expression analysis of pathway genes of phenolic acids and tanshinones in transgenic lines showed that most of them were obviously upregulated. Moreover, transcription of AREB and JAZs were also induced in SmbHLH148 overexpression lines. These results suggested that SmbHLH148 might be taken part in ABA and MeJA signaling and activated almost the whole biosynthetic pathways of phenolic acids and tanshinones, thus the production of phenolic acids and tanshinones were upregulated.
Collapse
Affiliation(s)
- Bingcong Xing
- Institute of soil and water conservation, CAS and MWR, Yangling, 712100, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lijun Liang
- Institute of soil and water conservation, CAS and MWR, Yangling, 712100, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lin Liu
- College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Zhuoni Hou
- College of Life Sciences, Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, Zhejiang Sci-Tech University, 928 Second Avenue, Xiasha Higher Education Zone, Hangzhou, 310018, China
| | - Dongfeng Yang
- College of Life Sciences, Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, Zhejiang Sci-Tech University, 928 Second Avenue, Xiasha Higher Education Zone, Hangzhou, 310018, China
| | - Kaijing Yan
- Tasly R&D Institute, Tasly Holding Group Co. Ltd, Tianjin, 300410, China
| | - Xuemin Zhang
- Tasly R&D Institute, Tasly Holding Group Co. Ltd, Tianjin, 300410, China
| | - Zongsuo Liang
- Institute of soil and water conservation, CAS and MWR, Yangling, 712100, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- College of Life Sciences, Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, Zhejiang Sci-Tech University, 928 Second Avenue, Xiasha Higher Education Zone, Hangzhou, 310018, China.
- College of Life Sciences, Northwest A&F University, Yangling, 712100, China.
| |
Collapse
|
34
|
Kumar Y, Khan F, Rastogi S, Shasany AK. Genome-wide detection of terpene synthase genes in holy basil (Ocimum sanctum L.). PLoS One 2018; 13:e0207097. [PMID: 30444870 PMCID: PMC6239295 DOI: 10.1371/journal.pone.0207097] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 10/24/2018] [Indexed: 11/19/2022] Open
Abstract
Holy basil (Ocimum sanctum L.) and sweet basil (Ocimum basilicum L.) are the most commonly grown basil species in India for essential oil production and biosynthesis of potentially volatile and non-volatile phytomolecules with commercial significance. The aroma, flavor and pharmaceutical value of Ocimum species is a significance of its essential oil, which contains most of the monoterpenes and sesquiterpenes. A large number of plants have been studied for characterization and identification of terpene synthase genes, involved in terpenoids biosynthesis. The goal of this study is to discover and identify the putative functional terpene synthase genes in O. sanctum. HMMER search was performed by using a set of 13 well sequenced and annotated plant genomes including the newly sequenced genome of O. sanctum with Pfam-A database locally, using HMMER 3.0 hmmsearch for the two Pfam domains (PF01397 and PF03936). Using this search method 81 putative terpene synthases genes (OsaTPS) were identified in O. sanctum; the study further reveals 47 OsaTPS were putatively functional genes, 19 partial OsaTPS, and 15 OsaTPS as probably pseudogenes. All these identified OsaTPS genes were compared with other plant species, and phylogenetic analysis reveals the subfamily classification of OsaTPS in TPS-a, -b, -c, -e, -f and TPS-g subfamilies clusters. This genome-wide identification of OsaTPS genes, their phylogenetic analysis and secondary metabolite pathway mapping predictions together provide a comprehensive understanding of the TPS gene family in Ocimum sanctum and offer opportunities for the characterization and functional validation of numbers of terpene synthase genes.
Collapse
Affiliation(s)
- Yogesh Kumar
- Metabolic and Structural Biology Dept, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow (U.P.), INDIA
| | - Feroz Khan
- Metabolic and Structural Biology Dept, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow (U.P.), INDIA
- * E-mail:
| | - Shubhra Rastogi
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow (U.P.), INDIA
| | - Ajit Kumar Shasany
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow (U.P.), INDIA
| |
Collapse
|
35
|
Zhang H, Jin B, Bu J, Guo J, Chen T, Ma Y, Tang J, Cui G, Huang L. Transcriptomic Insight into Terpenoid Biosynthesis and Functional Characterization of Three Diterpene Synthases in Scutellaria barbata. Molecules 2018; 23:molecules23112952. [PMID: 30424547 PMCID: PMC6278268 DOI: 10.3390/molecules23112952] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 11/06/2018] [Accepted: 11/08/2018] [Indexed: 11/30/2022] Open
Abstract
Scutellaria barbata (Lamiaceae) is an important medicinal herb widely used in China, Korea, India, and other Asian countries. Neo-clerodane diterpenoids are the largest known group of Scutellaria diterpenoids and show promising cytotoxic activity against several cancer cell lines. Here, Illumina-based deep transcriptome analysis of flowers, the aerial parts (leaf and stem), and roots of S. barbata was used to explore terpenoid-related genes. In total, 121,958,564 clean RNA-sequence reads were assembled into 88,980 transcripts, with an average length of 1370 nt and N50 length of 2144 nt, indicating high assembly quality. We identified nearly all known terpenoid-related genes (33 genes) involved in biosynthesis of the terpenoid backbone and 14 terpene synthase genes which generate skeletons for different terpenoids. Three full length diterpene synthase genes were functionally identified using an in vitro assay. SbTPS8 and SbTPS9 were identified as normal-CPP and ent-CPP synthase, respectively. SbTPS12 reacts with SbTPS8 to produce miltiradiene. Furthermore, SbTPS12 was proven to be a less promiscuous class I diterpene synthase. These results give a comprehensive understanding of the terpenoid biosynthesis in S. barbata and provide useful information for enhancing the production of bioactive neo-clerodane diterpenoids through genetic engineering.
Collapse
Affiliation(s)
- Huabei Zhang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Baolong Jin
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China.
| | - Junling Bu
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Juan Guo
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Tong Chen
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Ying Ma
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Jinfu Tang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Guanghong Cui
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Luqi Huang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China.
| |
Collapse
|
36
|
Zhao F, Sun M, Zhang W, Jiang C, Teng J, Sheng W, Li M, Zhang A, Duan Y, Xue J. Comparative transcriptome analysis of roots, stems and leaves of Isodon amethystoides reveals candidate genes involved in Wangzaozins biosynthesis. BMC PLANT BIOLOGY 2018; 18:272. [PMID: 30409115 PMCID: PMC6225716 DOI: 10.1186/s12870-018-1505-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 10/26/2018] [Indexed: 05/23/2023]
Abstract
BACKGROUND Isodon amethystoides (Ben-th) Cy Wu et Hsuan is an important traditional medicinal plant endowed with pharmacological properties effective in the treatment of various diseases, including pulmonary tuberculosis. The tetracyclic diterpenoids, Wangzaozins (Wangzaozin A, glaucocalyxin A, glaucocalyxin B), are the major bioactive compounds of I. amethystoides. However, the molecular information about the biosynthesis of these compounds still remains unclear. RESULTS An examination of the accumulated levels of Wangzaozins in I. amethystoides revealed considerable variations in the root, stem, and leaf tissues of this plant, indicating possible differences in metabolite biosynthesis and accumulation among various tissues. To better elucidate the tetracyclic diterpenoid biosynthesis pathway, we generated transcriptome sequences from the root, stem, and leaf tissues, and performed de novo sequence assembly, yielding 230,974 transcripts and 114,488 unigenes, with average N50 lengths of 1914 and 1241 bp, respectively. Putative functions could be assigned to 73,693 transcripts (31.9%) based on BLAST searches against annotation databases, including GO, KEGG, Swiss-Prot, NR, and Pfam. Moreover, the candidate genes involving in the diterpenoid biosynthesis, such as CPS, KSL, were also analyzed. The expression profiles of eight transcripts, involving the tetracyclic diterpenoid biosynthesis, were validated in different I. amethystoides tissues by qRT-PCR, unraveling the gene expression profile of the pathway. The differential expressions of ISPD, ISPF and ISPH (MEP pathway), and IaCPS and IaKSL (diterpenoid pathway) candidate genes in leaves and roots, may contribute to the high accumulation of Wangzaozins in I. amethystoides leaves. CONCLUSION The genomic dataset and analyses reported here lay the foundations for further research on this important medicinal plant.
Collapse
Affiliation(s)
- Fenglan Zhao
- Key Laboratory of Resource Plant Biology of Anhui Province, College of Life Sciences, Huaibei Normal University, Huaibei City, China
| | - Mengchu Sun
- Key Laboratory of Resource Plant Biology of Anhui Province, College of Life Sciences, Huaibei Normal University, Huaibei City, China
| | - Wanjun Zhang
- Key Laboratory of Resource Plant Biology of Anhui Province, College of Life Sciences, Huaibei Normal University, Huaibei City, China
| | - Chunli Jiang
- Key Laboratory of Resource Plant Biology of Anhui Province, College of Life Sciences, Huaibei Normal University, Huaibei City, China
| | - Jingtong Teng
- Key Laboratory of Resource Plant Biology of Anhui Province, College of Life Sciences, Huaibei Normal University, Huaibei City, China
| | - Wei Sheng
- Key Laboratory of Resource Plant Biology of Anhui Province, College of Life Sciences, Huaibei Normal University, Huaibei City, China
| | - Mingzhi Li
- Genepioneer Biotechnologies Co. Ltd, Nanjing City, China
| | - Aimin Zhang
- Key Laboratory of Resource Plant Biology of Anhui Province, College of Life Sciences, Huaibei Normal University, Huaibei City, China
| | - Yongbo Duan
- Key Laboratory of Resource Plant Biology of Anhui Province, College of Life Sciences, Huaibei Normal University, Huaibei City, China.
| | - Jianping Xue
- Key Laboratory of Resource Plant Biology of Anhui Province, College of Life Sciences, Huaibei Normal University, Huaibei City, China.
| |
Collapse
|
37
|
Pelot KA, Chen R, Hagelthorn DM, Young CA, Addison JB, Muchlinski A, Tholl D, Zerbe P. Functional Diversity of Diterpene Synthases in the Biofuel Crop Switchgrass. PLANT PHYSIOLOGY 2018; 178:54-71. [PMID: 30008447 PMCID: PMC6130043 DOI: 10.1104/pp.18.00590] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 07/05/2018] [Indexed: 05/06/2023]
Abstract
Diterpenoids constitute a diverse class of metabolites with critical functions in plant development, defense, and ecological adaptation. Major monocot crops, such as maize (Zea mays) and rice (Oryza sativa), deploy diverse blends of specialized diterpenoids as core components of biotic and abiotic stress resilience. Here, we describe the genome-wide identification and functional characterization of stress-related diterpene synthases (diTPSs) in the dedicated bioenergy crop switchgrass (Panicum virgatum). Mining of the allotetraploid switchgrass genome identified an expansive diTPS family of 31 members, and biochemical analysis of 11 diTPSs revealed a modular metabolic network producing a diverse array of diterpenoid metabolites. In addition to ent-copalyl diphosphate (CPP) and ent-kaurene synthases predictably involved in gibberellin biosynthesis, we identified syn-CPP and ent-labda-13-en-8-ol diphosphate (LPP) synthases as well as two diTPSs forming (+)-labda-8,13E-dienyl diphosphate (8,13-CPP) and ent-neo-cis-trans-clerodienyl diphosphate (CT-CLPP) scaffolds not observed previously in plants. Structure-guided mutagenesis of the (+)-8,13-CPP and ent-neo-CT-CLPP synthases revealed residue substitutions in the active sites that altered product outcome, representing potential neofunctionalization events that occurred during diversification of the switchgrass diTPS family. The conversion of ent-CPP, ent-LPP, syn-CPP, and ent-neo-CT-CLPP by promiscuous diTPSs further yielded distinct labdane-type diterpene olefins and alcohols. Of these metabolites, the formation of 9β-hydroxy-syn-pimar-15-ene and the expression of the corresponding genes were induced in roots and leaves in response to oxidative stress and ultraviolet irradiation, indicating their possible roles in abiotic stress adaptation. Together, these findings expand the known chemical space of diterpenoid metabolism in monocot crops toward systematically investigating and ultimately improving stress resilience traits in crop species.
Collapse
Affiliation(s)
- Kyle A Pelot
- Department of Plant Biology, University of California, Davis, California 95616
| | - Ruibing Chen
- Department of Plant Biology, University of California, Davis, California 95616
- Department of Pharmaceutical Botany, School of Pharmacy, Second Military Medical University, 200433 Shanghai, China
| | - David M Hagelthorn
- Department of Plant Biology, University of California, Davis, California 95616
| | - Cari A Young
- Department of Plant Biology, University of California, Davis, California 95616
| | - J Bennett Addison
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, California 92182
| | - Andrew Muchlinski
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061
| | - Dorothea Tholl
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061
| | - Philipp Zerbe
- Department of Plant Biology, University of California, Davis, California 95616
| |
Collapse
|
38
|
Bai Z, Li W, Jia Y, Yue Z, Jiao J, Huang W, Xia P, Liang Z. The ethylene response factor SmERF6 co-regulates the transcription of SmCPS1 and SmKSL1 and is involved in tanshinone biosynthesis in Salvia miltiorrhiza hairy roots. PLANTA 2018; 248:243-255. [PMID: 29704055 DOI: 10.1007/s00425-018-2884-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 03/26/2018] [Indexed: 05/03/2023]
Abstract
The SmERF6, which recognizes the GCC-box of SmCPS1 and SmKSL1 promoter in nucleus, regulates the tanshinone biosynthesis in Salvia miltiorrhiza hairy roots. Tanshinone, an important medicinal ingredient in Salvia miltiorrhiza, is best known for its use in medicine. However, the transcription factor regulation of tanshinone biosynthesis is unclear. Here, we isolated and identified a transcription factor in the ERF family of S. miltiorrhiza, SmERF6, which was screened from an S. miltiorrhiza cDNA library by the promoters of two key tanshinone synthesis genes (SmKSL1 and SmCPS1); this factor regulated tanshinone biosynthesis. The gene was highly expressed in the root and responded to ethylene treatment. SmERF6 modulated tanshinone biosynthesis by directly binding to an ethylene-responsive element (GCC-box) of the SmKSL1 and SmCPS1 promoters and activating their transcription. Overexpression of SmERF6 in the hairy roots increased their tanshinone accumulation, and SmERF6 silencing by RNAi led to a lower tanshinone content. Furthermore, tanshinone accumulation maintained homeostasis with the total phenolic acid and flavonoid contents in S. miltiorrhiza. These findings elucidated how SmERF6 directly co-regulates the transcription of SmCPS1 and SmKSL1 and modulates tanshinone synthesis to accelerate the metabolic flux of tanshinone accumulation in S. miltiorrhiza.
Collapse
Affiliation(s)
- Zhenqing Bai
- College of Life Science, Northwest A&F University, Yangling, 712100, China
- College of Life Science, Yan'an University, Yan'an, China
| | - Wenrui Li
- Institute of Soil and Water Conservation, Chinese Academy of Sciences & Ministry of Water Resources, Yangling, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Yanyan Jia
- College of Life Science, Northwest A&F University, Yangling, 712100, China
| | - Zhiyong Yue
- College of Horticulture, Northwest A&F University, Yangling, China
| | - Jie Jiao
- College of Life Science, Northwest A&F University, Yangling, 712100, China
| | - Wenli Huang
- College of Life Science, Northwest A&F University, Yangling, 712100, China
| | - Pengguo Xia
- College of Life Science, Zhejiang Sci-Tech University, Hangzhou, China
| | - Zongsuo Liang
- College of Life Science, Northwest A&F University, Yangling, 712100, China.
- College of Life Science, Zhejiang Sci-Tech University, Hangzhou, China.
| |
Collapse
|
39
|
Schulte S, Potter KC, Lemke C, Peters RJ. Catalytic Bases and Stereocontrol in Lamiaceae Class II Diterpene Cyclases. Biochemistry 2018; 57:3473-3479. [PMID: 29787239 DOI: 10.1021/acs.biochem.8b00193] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Plants from the widespread Lamiaceae family produce many labdane-related diterpenoids, a number of which serve medicinal roles, and whose biosynthesis is initiated by class II diterpene cyclases (DTCs). These enzymes utilize a general acid-base catalyzed cyclo-isomerization reaction to produce various stereoisomers of the eponymous labdaenyl carbocation intermediate, which can then undergo rearrangement and/or the addition of water prior to terminating deprotonation. Identification of the pair of residues that cooperatively serve as the catalytic base in the DTCs that produce ent-copalyl diphosphate (CPP) required for gibberellin phytohormone biosynthesis in all vascular plants has led to insight into the addition of water as well as rearrangement. Lamiaceae plants generally contain an additional DTC that produces the enantiomeric normal CPP, as well as others that yield hydroxylated products derived from the addition of water. Here the catalytic base in these DTCs was investigated. Notably, changing two adjacent residues that seem to serve as the catalytic base in the normal CPP synthase from Salvia miltiorrhiza (SmCPS) to the residues found in the closely related perigrinol diphosphate synthase from Marrubium vulgare (MvPPS), which produces a partially rearranged and hydroxylated product derived from the distinct syn stereoisomer of labdaenyl+, altered the product outcome in an unexpected fashion. Specifically, the relevant SmCPS:H315N/T316V double mutant produces terpentedienyl diphosphate, which is derived from complete substituent rearrangement of syn rather than normal labdaenyl+. Accordingly, alteration of the residues that normally serve as the catalytic base surprisingly can impact stereocontrol.
Collapse
Affiliation(s)
- Samuel Schulte
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology , Iowa State University , Ames , Iowa 50011 , United States
| | - Kevin C Potter
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology , Iowa State University , Ames , Iowa 50011 , United States
| | - Cody Lemke
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology , Iowa State University , Ames , Iowa 50011 , United States
| | - Reuben J Peters
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology , Iowa State University , Ames , Iowa 50011 , United States
| |
Collapse
|
40
|
Li J, Li C, Lu S. Systematic analysis of DEMETER-like DNA glycosylase genes shows lineage-specific Smi-miR7972 involved in SmDML1 regulation in Salvia miltiorrhiza. Sci Rep 2018; 8:7143. [PMID: 29739980 PMCID: PMC5940787 DOI: 10.1038/s41598-018-25315-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 04/09/2018] [Indexed: 11/09/2022] Open
Abstract
DEMETER-like DNA glycosylases (DMLs) initiate the base excision repair-dependent DNA demethylation to regulate a wide range of biological processes in plants. Six putative SmDML genes, termed SmDML1-SmDML6, were identified from the genome of S. miltiorrhiza, an emerging model plant for Traditional Chinese Medicine (TCM) studies. Integrated analysis of gene structures, sequence features, conserved domains and motifs, phylogenetic analysis and differential expression showed the conservation and divergence of SmDMLs. SmDML1, SmDML2 and SmDML4 were significantly down-regulated by the treatment of 5Aza-dC, a general DNA methylation inhibitor, suggesting involvement of SmDMLs in genome DNA methylation change. SmDML1 was predicted and experimentally validated to be target of Smi-miR7972. Computational analysis of forty whole genome sequences and almost all of RNA-seq data from Lamiids revealed that MIR7972s were only distributed in some plants of the three orders, including Lamiales, Solanales and Boraginales, and the number of MIR7972 genes varied among species. It suggests that MIR7972 genes underwent expansion and loss during the evolution of some Lamiids species. Phylogenetic analysis of MIR7972s showed closer evolutionary relationships between MIR7972s in Boraginales and Solanales in comparison with Lamiales. These results provide a valuable resource for elucidating DNA demethylation mechanism in S. miltiorrhiza.
Collapse
Affiliation(s)
- Jiang Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No.151 Malianwa North Road, Haidian District, Beijing, 100193, China
| | - Caili Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No.151 Malianwa North Road, Haidian District, Beijing, 100193, China
| | - Shanfa Lu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No.151 Malianwa North Road, Haidian District, Beijing, 100193, China.
| |
Collapse
|
41
|
Mafu S, Ding Y, Murphy KM, Yaacoobi O, Addison JB, Wang Q, Shen Z, Briggs SP, Bohlmann J, Castro-Falcon G, Hughes CC, Betsiashvili M, Huffaker A, Schmelz EA, Zerbe P. Discovery, Biosynthesis and Stress-Related Accumulation of Dolabradiene-Derived Defenses in Maize. PLANT PHYSIOLOGY 2018; 176:2677-2690. [PMID: 29475898 PMCID: PMC5884620 DOI: 10.1104/pp.17.01351] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 02/16/2018] [Indexed: 05/18/2023]
Abstract
Terpenoids are a major component of maize (Zea mays) chemical defenses that mediate responses to herbivores, pathogens, and other environmental challenges. Here, we describe the biosynthesis and elicited production of a class of maize diterpenoids, named dolabralexins. Dolabralexin biosynthesis involves the sequential activity of two diterpene synthases, ENT-COPALYL DIPHOSPHATE SYNTHASE (ZmAN2) and KAURENE SYNTHASE-LIKE4 (ZmKSL4). Together, ZmAN2 and ZmKSL4 form the diterpene hydrocarbon dolabradiene. In addition, we biochemically characterized a cytochrome P450 monooxygenase, ZmCYP71Z16, which catalyzes the oxygenation of dolabradiene to yield the epoxides 15,16-epoxydolabrene (epoxydolabrene) and 3β-hydroxy-15,16-epoxydolabrene (epoxydolabranol). The absence of dolabradiene and epoxydolabranol in Zman2 mutants under elicited conditions confirmed the in vivo biosynthetic requirement of ZmAN2. Combined mass spectrometry and NMR experiments demonstrated that much of the epoxydolabranol is further converted into 3β,15,16-trihydroxydolabrene (trihydroxydolabrene). Metabolite profiling of field-grown maize root tissues indicated that dolabralexin biosynthesis is widespread across common maize cultivars, with trihydroxydolabrene as the predominant diterpenoid. Oxidative stress induced dolabralexin accumulation and transcript expression of ZmAN2 and ZmKSL4 in root tissues, and metabolite and transcript accumulation were up-regulated in response to elicitation with the fungal pathogens Fusarium verticillioides and Fusarium graminearum Consistently, epoxydolabranol significantly inhibited the growth of both pathogens in vitro at 10 µg mL-1, while trihydroxydolabrene-mediated inhibition was specific to Fverticillioides These findings suggest that dolabralexins have defense-related roles in maize stress interactions and expand the known chemical space of diterpenoid defenses as genetic targets for understanding and ultimately improving maize resilience.
Collapse
Affiliation(s)
- Sibongile Mafu
- Department of Plant Biology, University of California, Davis, California
| | - Yezhang Ding
- Section of Cell and Developmental Biology, University of California, La Jolla, California
| | - Katherine M Murphy
- Department of Plant Biology, University of California, Davis, California
| | - Omar Yaacoobi
- Department of Plant Biology, University of California, Davis, California
| | - J Bennett Addison
- Department of Chemistry, San Diego State University, San Diego, California
| | - Qiang Wang
- College of Agronomy and Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhouxin Shen
- Section of Cell and Developmental Biology, University of California, La Jolla, California
| | - Steven P Briggs
- Section of Cell and Developmental Biology, University of California, La Jolla, California
| | - Jörg Bohlmann
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4
| | - Gabriel Castro-Falcon
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, La Jolla, California
| | - Chambers C Hughes
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, La Jolla, California
| | - Mariam Betsiashvili
- Section of Cell and Developmental Biology, University of California, La Jolla, California
| | - Alisa Huffaker
- Section of Cell and Developmental Biology, University of California, La Jolla, California
| | - Eric A Schmelz
- Section of Cell and Developmental Biology, University of California, La Jolla, California
| | - Philipp Zerbe
- Department of Plant Biology, University of California, Davis, California
| |
Collapse
|
42
|
Murphy KM, Ma LT, Ding Y, Schmelz EA, Zerbe P. Functional Characterization of Two Class II Diterpene Synthases Indicates Additional Specialized Diterpenoid Pathways in Maize ( Zea mays). FRONTIERS IN PLANT SCIENCE 2018; 9:1542. [PMID: 30405674 PMCID: PMC6206430 DOI: 10.3389/fpls.2018.01542] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 10/02/2018] [Indexed: 05/18/2023]
Abstract
As a major staple food, maize (Zea mays) is critical to food security. Shifting environmental pressures increasingly hamper crop defense capacities, causing expanded harvest loss. Specialized labdane-type diterpenoids are key components of maize chemical defense and ecological adaptation. Labdane diterpenoid biosynthesis most commonly requires the pairwise activity of class II and class I diterpene synthases (diTPSs) that convert the central precursor geranylgeranyl diphosphate into distinct diterpenoid scaffolds. Two maize class II diTPSs, ANTHER EAR 1 and 2 (ZmAN1/2), have been previously identified as catalytically redundant ent-copalyl diphosphate (CPP) synthases. ZmAN1 is essential for gibberellin phytohormone biosynthesis, whereas ZmAN2 is stress-inducible and governs the formation of defensive kauralexin and dolabralexin diterpenoids. Here, we report the biochemical characterization of the two remaining class II diTPSs present in the maize genome, COPALYL DIPHOSPHATE SYNTHASE 3 (ZmCPS3) and COPALYL DIPHOSPHATE SYNTHASE 4 (ZmCPS4). Functional analysis via microbial co-expression assays identified ZmCPS3 as a (+)-CPP synthase, with functionally conserved orthologs occurring in wheat (Triticum aestivum) and numerous dicot species. ZmCPS4 formed the unusual prenyl diphosphate, 8,13-CPP (labda-8,13-dien-15-yl diphosphate), as verified by mass spectrometry and nuclear magnetic resonance. As a minor product, ZmCPS4 also produced labda-13-en-8-ol diphosphate (LPP). Root gene expression profiles did not indicate an inducible role of ZmCPS3 in maize stress responses. By contrast, ZmCPS4 showed a pattern of inducible gene expression in roots exposed to oxidative stress, supporting a possible role in abiotic stress responses. Identification of the catalytic activities of ZmCPS3 and ZmCPS4 clarifies the first committed reactions controlling the diversity of defensive diterpenoids in maize, and suggests the existence of additional yet undiscovered diterpenoid pathways.
Collapse
Affiliation(s)
- Katherine M. Murphy
- Department of Plant Biology, University of California, Davis, Davis, CA, United States
| | - Li-Ting Ma
- Department of Plant Biology, University of California, Davis, Davis, CA, United States
- School of Forestry and Resource Conservation, National Taiwan University, Taipei, Taiwan
| | - Yezhang Ding
- Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, United States
| | - Eric A. Schmelz
- Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, United States
| | - Philipp Zerbe
- Department of Plant Biology, University of California, Davis, Davis, CA, United States
- *Correspondence: Philipp Zerbe,
| |
Collapse
|
43
|
Liu Y, Sun G, Zhong Z, Ji L, Zhang Y, Zhou J, Zheng X, Deng K. Overexpression of AtEDT1 promotes root elongation and affects medicinal secondary metabolite biosynthesis in roots of transgenic Salvia miltiorrhiza. PROTOPLASMA 2017; 254:1617-1625. [PMID: 27915455 DOI: 10.1007/s00709-016-1045-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 11/07/2016] [Indexed: 05/13/2023]
Abstract
Medicinal secondary metabolites (salvianolic acids and tanshinones) are valuable natural bioactive compounds in Salvia miltiorrhiza and have widespread applications. Improvement of medicinal secondary metabolite accumulation through biotechnology is necessary and urgent to satisfy their increasing demand. Herein, it was demonstrated that the overexpression of the transcription factor Arabidopsis thaliana-enhanced drought tolerance 1 (AtEDT1) could affect medicinal secondary metabolite accumulation. In this study, we observed that the transgenic lines significantly conferred drought tolerance phenotype. Meanwhile, we found that the overexpression of AtEDT1 promoted root elongation in S. miltiorrhiza. Interestingly, we also found that the overexpression of AtEDT1 determined the accumulation of salvianolic acids, such as rosmarinic acid, lithospermic acid, salvianolic acid B, and total salvianolic acids due to the induction of the expression levels of salvianolic acid biosynthetic genes. Conversely, S. miltiorrhiza plants overexpressing the AtEDT1 transgene showed a decrease in tanshinone synthesis. Our results demonstrated that the overexpression of AtEDT1 significantly increased the accumulation of salvianolic acids in S. miltiorrhiza. Further studies are required to better elucidate the functional role of AtEDT1 in the regulation of phytochemical compound synthesis.
Collapse
Affiliation(s)
- Yu Liu
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China
- Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Geng Sun
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China
- Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Zhaohui Zhong
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China
- Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Linyi Ji
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China
- Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Yong Zhang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China
- Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Jianping Zhou
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China
- Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Xuelian Zheng
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China.
- Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, 610054, China.
| | - Kejun Deng
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China.
- Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, 610054, China.
| |
Collapse
|
44
|
Jin B, Cui G, Guo J, Tang J, Duan L, Lin H, Shen Y, Chen T, Zhang H, Huang L. Functional Diversification of Kaurene Synthase-Like Genes in Isodon rubescens. PLANT PHYSIOLOGY 2017; 174:943-955. [PMID: 28381502 PMCID: PMC5462038 DOI: 10.1104/pp.17.00202] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 04/03/2017] [Indexed: 05/11/2023]
Abstract
Ent-kaurene diterpenoids are the largest group of known Isodon diterpenoids. Among them, oridonin is accumulated in the leaves, and is the most frequently studied compound because of its antitumor and antibacterial activities. We have identified five copalyl diphosphate synthase (CPS) and six kaurene synthase-like (KSL) genes by transcriptome profiling of Isodon rubescens leaves. An in vitro assay assigns ten of them to five different diterpene biosynthesis pathways, except IrCPS3 that has a mutation in the catalytic motif. The Lamiaceae-specific clade genes (IrCPS1 and IrCPS2) synthesize the intermediate copalyl diphosphate (normal-CPP), while IrCPS4 and IrCPS5 synthesize the intermediate ent-copalyl diphosphate (ent-CPP). IrKSL2, IrKSL4, and IrKSL5 react with ent-CPP to produce an ent-isopimaradiene-like compound, ent-atiserene and ent-kaurene, respectively. Correspondingly, the Lamiaceae-specific clade genes IrKSL1 or IrKSL3 combined with normal-CPP led to the formation of miltiradiene. The compound then underwent aromatization and oxidization with a cytochrome P450 forming two related compounds, abietatriene and ferruginol, which were detected in the root bark. IrKSL6 reacts with normal-CPP to produce isopimaradiene. IrKSL3 and IrKSL6 have the γβα tridomain structure, as these proteins tend to possess the bidomain structure of IrKSL1, highlighting the evolutionary history of KSL gene domain loss and further elucidating chemical diversity evolution from a macroevolutionary stance in Lamiaceae.
Collapse
Affiliation(s)
- Baolong Jin
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China (B.J., G.C., J.G., J.T., H.L., Y.S., T.C., H.Z., L.H.); and
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China (L.D.)
| | - Guanghong Cui
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China (B.J., G.C., J.G., J.T., H.L., Y.S., T.C., H.Z., L.H.); and
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China (L.D.)
| | - Juan Guo
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China (B.J., G.C., J.G., J.T., H.L., Y.S., T.C., H.Z., L.H.); and
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China (L.D.)
| | - Jinfu Tang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China (B.J., G.C., J.G., J.T., H.L., Y.S., T.C., H.Z., L.H.); and
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China (L.D.)
| | - Lixin Duan
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China (B.J., G.C., J.G., J.T., H.L., Y.S., T.C., H.Z., L.H.); and
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China (L.D.)
| | - Huixin Lin
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China (B.J., G.C., J.G., J.T., H.L., Y.S., T.C., H.Z., L.H.); and
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China (L.D.)
| | - Ye Shen
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China (B.J., G.C., J.G., J.T., H.L., Y.S., T.C., H.Z., L.H.); and
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China (L.D.)
| | - Tong Chen
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China (B.J., G.C., J.G., J.T., H.L., Y.S., T.C., H.Z., L.H.); and
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China (L.D.)
| | - Huabei Zhang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China (B.J., G.C., J.G., J.T., H.L., Y.S., T.C., H.Z., L.H.); and
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China (L.D.)
| | - Luqi Huang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China (B.J., G.C., J.G., J.T., H.L., Y.S., T.C., H.Z., L.H.); and
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China (L.D.)
| |
Collapse
|
45
|
Pelot KA, Hagelthorn LM, Addison JB, Zerbe P. Biosynthesis of the oxygenated diterpene nezukol in the medicinal plant Isodon rubescens is catalyzed by a pair of diterpene synthases. PLoS One 2017; 12:e0176507. [PMID: 28445526 PMCID: PMC5405970 DOI: 10.1371/journal.pone.0176507] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 04/11/2017] [Indexed: 01/09/2023] Open
Abstract
Plants produce an immense diversity of natural products (i.e. secondary or specialized metabolites) that offer a rich source of known and potentially new pharmaceuticals and other desirable bioproducts. The Traditional Chinese Medicinal plant Isodon rubescens (Lamiaceae) contains an array of bioactive labdane-related diterpenoid natural products. Of these, the ent-kauranoid oridonin is the most prominent specialized metabolite that has been extensively studied for its potent antimicrobial and anticancer efficacy. Mining of a previously established transcriptome of I. rubescens leaf tissue identified seven diterpene synthase (diTPSs) candidates. Here we report the functional characterization of four I. rubescens diTPSs. IrTPS5 and IrTPS3 were identified as an ent-copalyl diphosphate (CPP) synthase and a (+)-CPP synthase, respectively. Distinct transcript abundance of IrTPS5 and the predicted ent-CPP synthase IrTPS1 suggested a role of IrTPS5 in specialized ent-kaurene metabolism possibly en route to oridonin. Nicotiana benthamiana co-expression assays demonstrated that IrTPS4 functions sequentially with IrTPS3 to form miltiradiene. In addition, IrTPS2 converted the IrTPS3 product (+)-CPP into the hydroxylated tricyclic diterpene nezukol not previously identified in I. rubescens. Metabolite profiling verified the presence of nezukol in I. rubescens leaf tissue. The proposed IrTPS2-catalyzed reaction mechanism proceeds via the common ionization of the diphosphate group of (+)-CPP, followed by formation of an intermediary pimar-15-en-8-yl+ carbocation and neutralization of the carbocation by water capture at C-8 to yield nezukol, as confirmed by nuclear magnetic resonance (NMR) analysis. Oxygenation activity is rare for the family of class I diTPSs and offers new catalysts for developing metabolic engineering platforms to produce a broader spectrum of bioactive diterpenoid natural products.
Collapse
Affiliation(s)
- Kyle A. Pelot
- Department of Plant Biology, University of California-Davis, Davis, California, United States of America
| | - Lynne M. Hagelthorn
- Department of Plant Biology, University of California-Davis, Davis, California, United States of America
| | - J. Bennett Addison
- Department of Chemistry, University of California-Davis, Davis, California, United States of America
| | - Philipp Zerbe
- Department of Plant Biology, University of California-Davis, Davis, California, United States of America
| |
Collapse
|
46
|
Xu Z, Song J. The 2-oxoglutarate-dependent dioxygenase superfamily participates in tanshinone production in Salvia miltiorrhiza. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:2299-2308. [PMID: 28398557 PMCID: PMC5447875 DOI: 10.1093/jxb/erx113] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Highly oxidized tanshinones are pharmacological ingredients extracted from the medicinal model plant Salvia miltiorrhiza and are mainly used to treat cardiovascular diseases. Previous studies have confirmed that cytochrome P450 mono-oxygenases (CYP450s) have a key function in the biosynthesis of tanshinones; however, no solid evidence links oxidation to the 2-oxoglutarate-dependent dioxygenase (2OGD) superfamily. Here, we identified 132 members of the DOXB and DOXC subfamilies of 2OGD by scanning the 2OG-FeII Oxy domain using a genome-wide strategy in S. miltiorrhiza. The DOXC class was phylogenetically divided into twelve clades. Combining phylogenetic relationships, differential expression and co-expression from various organs and tissues revealed that two 2OGDs were directly related to flavonoid metabolism, and that 13 2OGDs from different clades were predicted to be involved in tanshinone biosynthesis. Based on this insight into tanshinone production, we experimentally detected significant decreases in miltirone, cryptotanshinone, and tanshinone IIA (0.16-, 0.56-, and 0.56-fold, respectively) in 2OGD5 RNAi transgenic lines relative to the control lines using a metabonomics analysis. 2OGD5 was found to play a crucial role in the downstream biosynthesis of tanshinones following the hydroxylation of CYPs. Our results highlight the evolution and diversification of 2OGD superfamily members and suggest that they contribute to the complexity of tanshinone metabolites.
Collapse
Affiliation(s)
- Zhichao Xu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
| | - Jingyuan Song
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
| |
Collapse
|
47
|
Li B, Cui G, Shen G, Zhan Z, Huang L, Chen J, Qi X. Targeted mutagenesis in the medicinal plant Salvia miltiorrhiza. Sci Rep 2017; 7:43320. [PMID: 28256553 PMCID: PMC5335714 DOI: 10.1038/srep43320] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 01/25/2017] [Indexed: 12/19/2022] Open
Abstract
CRISPR/Cas9 is a powerful genome editing tool that has been extensively used in model plants and crops, such as Arabidopsis thaliana, rice, wheat, and soybean. Here, we report the use of CRISPR/Cas9 to precisely knock out the committed diterpene synthase gene (SmCPS1) involved in tanshinone biosynthesis in Salvia miltiorrhiza, a traditional Chinese medicinal herb with significant pharmacological activities, such as vasorelaxation, protection against ischemia-reperfusion injury, and antiarrhythmic effects. Three homozygous and eight chimeric mutants were obtained from 26 independent transgenic hairy root lines by Agrobacterium rhizogenes-mediated transformation. The metabolomic analysis based on LC-qTOF-MS and Q-TRAP-LC-MS/MS revealed that tanshinones, especially cryptotanshinone, tanshinone IIA and tanshinone I, are completely missing in homozygous mutants, without influencing other phenolic acid metabolites. By contrast, tanshinones are decreased but still detectable in chimeric mutants, which is similar to a previously-reported an RNAi study of SmCPS1. These results demonstrate that Agrobacterium rhizogenes- mediated transformation using CRISPR/Cas9 is a simple and efficient genome editing tool in S. miltiorrhiza, thus paving the way for large-scale genome editing in S. miltiorrhiza, which is important for pathway elucidation of secondary metabolites, quality improvement, and yield increases for this valuable traditional Chinese medicinal herb.
Collapse
Affiliation(s)
- Bin Li
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.,Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Guanghong Cui
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Guoan Shen
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Zhilai Zhan
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Luqi Huang
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Jiachun Chen
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiaoquan Qi
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| |
Collapse
|
48
|
Chen X, Berim A, Dayan FE, Gang DR. A (-)-kolavenyl diphosphate synthase catalyzes the first step of salvinorin A biosynthesis in Salvia divinorum. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:1109-1122. [PMID: 28204567 PMCID: PMC5441855 DOI: 10.1093/jxb/erw493] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Salvia divinorum (Lamiaceae) is an annual herb used by indigenous cultures of Mexico for medicinal and ritual purposes. The biosynthesis of salvinorin A, its major bioactive neo-clerodane diterpenoid, remains virtually unknown. This investigation aimed to identify the enzyme that catalyzes the first reaction of salvinorin A biosynthesis, the formation of (-)-kolavenyl diphosphate [(-)-KPP], which is subsequently dephosphorylated to afford (-)-kolavenol. Peltate glandular trichomes were identified as the major and perhaps exclusive site of salvinorin accumulation in S. divinorum. The trichome-specific transcriptome was used to identify candidate diterpene synthases (diTPSs). In vitro and in planta characterization of a class II diTPS designated as SdKPS confirmed its activity as (-)-KPP synthase and its involvement in salvinorin A biosynthesis. Mutation of a phenylalanine into histidine in the active site of SdKPS completely converts the product from (-)-KPP into ent-copalyl diphosphate. Structural elements were identified that mediate the natural formation of the neo-clerodane backbone by this enzyme and suggest how SdKPS and other diTPSs may have evolved from ent-copalyl diphosphate synthase.
Collapse
Affiliation(s)
- Xiaoyue Chen
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164,USA
| | - Anna Berim
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164,USA
| | - Franck E Dayan
- Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, CO 80523-1177, USA
| | - David R Gang
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164,USA
| |
Collapse
|
49
|
Wei T, Deng K, Zhang Q, Gao Y, Liu Y, Yang M, Zhang L, Zheng X, Wang C, Liu Z, Chen C, Zhang Y. Modulating AtDREB1C Expression Improves Drought Tolerance in Salvia miltiorrhiza. FRONTIERS IN PLANT SCIENCE 2017; 8:52. [PMID: 28174590 PMCID: PMC5259653 DOI: 10.3389/fpls.2017.00052] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 01/10/2017] [Indexed: 05/20/2023]
Abstract
Dehydration responsive element binding proteins are transcription factors of the plant-specific AP2 family, many of which contribute to abiotic stress responses in several plant species. We investigated the possibility of increasing drought tolerance in the traditional Chinese medicinal herb, Salvia miltiorrhiza, through modulating the transcriptional regulation of AtDREB1C in transgenic plants under the control of a constitutive (35S) or drought-inducible (RD29A) promoter. AtDREB1C transgenic S. miltiorrhiza plants showed increased survival under severe drought conditions compared to the non-transgenic wild-type (WT) control. However, transgenic plants with constitutive overexpression of AtDREB1C showed considerable dwarfing relative to WT. Physiological tests suggested that the higher chlorophyll content, photosynthetic capacity, and superoxide dismutase, peroxidase, and catalase activity in the transgenic plants enhanced plant drought stress resistance compared to WT. Transcriptome analysis of S. miltiorrhiza following drought stress identified a number of differentially expressed genes (DEGs) between the AtDREB1C transgenic lines and WT. These DEGs are involved in photosynthesis, plant hormone signal transduction, phenylpropanoid biosynthesis, ribosome, starch and sucrose metabolism, and other metabolic pathways. The modified pathways involved in plant hormone signaling are thought to be one of the main causes of the increased drought tolerance of AtDREB1C transgenic S. miltiorrhiza plants.
Collapse
Affiliation(s)
- Tao Wei
- College of Life Sciences, Nankai UniversityTianjin, China
- School of Life Sciences and Technology, University of Electronic Science and Technology of ChinaChengdu, China
| | - Kejun Deng
- School of Life Sciences and Technology, University of Electronic Science and Technology of ChinaChengdu, China
- Center for Informational Biology, University of Electronic Science and Technology of ChinaChengdu, China
| | - Qingxia Zhang
- College of Life Sciences, Nankai UniversityTianjin, China
| | - Yonghong Gao
- College of Life Sciences, Nankai UniversityTianjin, China
| | - Yu Liu
- School of Life Sciences and Technology, University of Electronic Science and Technology of ChinaChengdu, China
- Center for Informational Biology, University of Electronic Science and Technology of ChinaChengdu, China
| | - Meiling Yang
- College of Life Sciences, Nankai UniversityTianjin, China
| | - Lipeng Zhang
- College of Life Sciences, Nankai UniversityTianjin, China
| | - Xuelian Zheng
- School of Life Sciences and Technology, University of Electronic Science and Technology of ChinaChengdu, China
- Center for Informational Biology, University of Electronic Science and Technology of ChinaChengdu, China
| | - Chunguo Wang
- College of Life Sciences, Nankai UniversityTianjin, China
| | - Zhiwei Liu
- College of Life Sciences, Nankai UniversityTianjin, China
| | - Chengbin Chen
- College of Life Sciences, Nankai UniversityTianjin, China
- *Correspondence: Chengbin Chen, Yong Zhang,
| | - Yong Zhang
- School of Life Sciences and Technology, University of Electronic Science and Technology of ChinaChengdu, China
- Center for Informational Biology, University of Electronic Science and Technology of ChinaChengdu, China
- *Correspondence: Chengbin Chen, Yong Zhang,
| |
Collapse
|
50
|
Ma RF, Liu QZ, Xiao Y, Zhang L, Li Q, Yin J, Chen WS. The phenylalanine ammonia-lyase gene family in Isatis indigotica Fort.: molecular cloning, characterization, and expression analysis. Chin J Nat Med 2016; 14:801-812. [PMID: 27914524 PMCID: PMC7129711 DOI: 10.1016/s1875-5364(16)30097-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Indexed: 11/28/2022]
Abstract
Phenolic compounds, metabolites of the phenylpropanoid pathway, play an important role in the growth and environmental adaptation of many plants. Phenylalanine ammonia-lyase (PAL) is the first key enzyme of the phenylpropanoid pathway. The present study was designed to investigate whether there is a multi-gene family in I. Indigotic and, if so, to characterize their properties. We conducted a comprehensive survey on the transcription profiling database by using tBLASTn analysis. Several bioinformatics methods were employed to perform the prediction of composition and physicochemical characters. The expression levels of IiPAL genes in various tissues of I. indigotica with stress treatment were examined by quantitative real-time PCR. Protoplast transient transformation was used to observe the locations of IiPALs. IiPALs were functionally characterized by expression with pET-32a vector in Escherichia colis strain BL21 (DE3). Integration of transcripts and metabolite accumulations was used to reveal the relation between IiPALs and target compounds. An new gene (IiPAL2) was identified and both IiPALs had the conserved enzymatic active site Ala-Ser-Gly and were classified as members of dicotyledon. IiPAL1 and IiPAL2 were expressed in roots, stems, leaves, and flowers, with the highest expression levels of IiPAL1 and IiPAL2 being observed in stems and roots, respectively. The two genes responded to the exogenous elicitor in different manners. Subcellular localization experiment showed that both IiPALs were localized in the cytosol. The recombinant proteins were shown to catalyze the conversion of L-Phe to trans-cinnamic acid. Correlation analysis indicated that IiPAL1 was more close to the biosynthesis of secondary metabolites than IiPAL2. In conclusion, the present study provides a basis for the elucidation of the role of IiPALs genes in the biosynthesis of phenolic compounds, which will help further metabolic engineering to improve the accumulation of bioactive components in I. indigotica.
Collapse
Affiliation(s)
- Rui-Fang Ma
- Development and Utilization Key Laboratory of Northeast Plant Materials, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Qian-Zi Liu
- College of Pharmacy, Jiamusi University, Jiamusi 154007, China
| | - Ying Xiao
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Lei Zhang
- Department of Pharmaceutical Botany, School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Qing Li
- College of Pharmacy, Jiamusi University, Jiamusi 154007, China
| | - Jun Yin
- Development and Utilization Key Laboratory of Northeast Plant Materials, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Wan-Sheng Chen
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China.
| |
Collapse
|