1
|
Awan MJA, Farooq MA, Buzdar MI, Zia A, Ehsan A, Waqas MAB, Hensel G, Amin I, Mansoor S. Advances in gene editing-led route for hybrid breeding in crops. Biotechnol Adv 2025; 81:108569. [PMID: 40154762 DOI: 10.1016/j.biotechadv.2025.108569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 02/22/2025] [Accepted: 03/24/2025] [Indexed: 04/01/2025]
Abstract
With the global demand for sustainable agriculture on the rise, RNA-guided nuclease technology offers transformative applications in crop breeding. Traditional hybrid breeding methods, like three-line and two-line systems, are often labor-intensive, transgenic, and economically burdensome. While chemical mutagens facilitate these systems, they not only generate weak alleles but also produce strong alleles that induce permanent sterility through random mutagenesis. In contrast, RNA-guided nuclease system, such as clustered regularly interspaced short palindromic repeats (CRISPR)- associated protein (Cas) system, facilitates more efficient hybrid production by inducing male sterility through targeted genome modifications in male sterility genes, such as MS8, MS10, MS26, and MS45 which allows precise manipulation of pollen development or pollen abortion in various crops. Moreover, this approach allows haploid induction for the rapid generation of recombinant and homozygous lines from hybrid parents by editing essential genes, like CENH3, MTL/NLD/PLA, and DMP, resulting in high-yield, transgene-free hybrids. Additionally, this system supports synthetic apomixis induction by employing the MiMe (Mitosis instead of Meiosis) strategy, coupled with parthenogenesis in hybrid plants, to create heterozygous lines and retain hybrid vigor in subsequent generations. RNA-guided nuclease-induced synthetic apomixis also enables genome stacking for autopolyploid progressive heterosis via clonal gamete production for trait maintenance to enhance crop adaptability without compromising yield. Additionally, CRISPR-Cas-mediated de novo domestication of wild relatives, along with recent advances to circumvent tissue culture- recalcitrance and -dependency through heterologous expression of morphogenic regulators, holds great promise for incorporating diversity-enriched germplasm into the breeding programs. These approaches aim to generate elite hybrids adapted to dynamic environments and address the anticipated challenges of food insecurity.
Collapse
Affiliation(s)
- Muhammad Jawad Akbar Awan
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Constituent College of Pakistan Institute of Engineering and Applied Sciences, Jhang Road, Faisalabad, Pakistan.
| | - Muhammad Awais Farooq
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Constituent College of Pakistan Institute of Engineering and Applied Sciences, Jhang Road, Faisalabad, Pakistan; Department of Agricultural and Food Sciences (DISTAL), Alma Mater Studiorum, University of Bologna, Italy
| | - Muhammad Ismail Buzdar
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Constituent College of Pakistan Institute of Engineering and Applied Sciences, Jhang Road, Faisalabad, Pakistan
| | - Asma Zia
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Constituent College of Pakistan Institute of Engineering and Applied Sciences, Jhang Road, Faisalabad, Pakistan
| | - Aiman Ehsan
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Constituent College of Pakistan Institute of Engineering and Applied Sciences, Jhang Road, Faisalabad, Pakistan
| | - Muhammad Abu Bakar Waqas
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Constituent College of Pakistan Institute of Engineering and Applied Sciences, Jhang Road, Faisalabad, Pakistan
| | - Goetz Hensel
- Heinrich Heine University Düsseldorf, Faculty of Mathematics and Natural Sciences, Centre for Plant Genome Engineering, Düsseldorf, Germany; Cluster of Excellence in Plant Sciences "SMART Plants for Tomorrow's Needs", Heinrich Heine University Düsseldorf, Germany.
| | - Imran Amin
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Constituent College of Pakistan Institute of Engineering and Applied Sciences, Jhang Road, Faisalabad, Pakistan.
| | - Shahid Mansoor
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Constituent College of Pakistan Institute of Engineering and Applied Sciences, Jhang Road, Faisalabad, Pakistan; Jamil ur Rehman Center for Genome Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan.
| |
Collapse
|
2
|
Vasupalli N, Mogilicherla K, Shaik V, Rao KRSS, Bhat SR, Lin X. Advances in plant male sterility for hybrid seed production: an overview of conditional nuclear male sterile lines and biotechnology-based male sterile systems. FRONTIERS IN PLANT SCIENCE 2025; 16:1540693. [PMID: 39974728 PMCID: PMC11835859 DOI: 10.3389/fpls.2025.1540693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 01/20/2025] [Indexed: 02/21/2025]
Abstract
Male sterility forms the foundation of hybrid seed production technology in field crops. A variety of genetically controlled male sterility/fertility systems starting with cytoplasmic male sterility (CMS), genic male sterility (GMS) including conditional male sterility and transgenic-based male sterility have been developed and deployed for heterosis breeding over the past century. Here we review environment-sensitive genic male sterility (EGMS) and biotechnology-based male sterility systems and describe the underlying molecular mechanisms. Advances in crop genomics and discovery of a large number of nuclear genes governing anther/pollen development, which are shared across species, are helping design diverse types of male sterile lines suitable for different crop species and situations. In particular, gene editing offers quick and easy route to develop novel male sterility systems for hybrid seed production. We discuss the advantages and challenges of biotechnology-based male sterility systems and present alternative strategies to address concerns of transgenics. Finally, we propose development of functional male sterility systems based on pollen competition as the future area that holds great promise for heterosis breeding.
Collapse
Affiliation(s)
- Naresh Vasupalli
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Lin’an, Hangzhou, Zhejiang, China
- Bamboo Industry Institute, Zhejiang A & F University, Lin’an, Hangzhou, Zhejiang, China
| | - Kanakachari Mogilicherla
- Department of Biotechnology, ICAR-Indian Institute of Rice Research (IIRR), Rajendranagar, Hyderabad, India
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Prague, Prague, Czechia
| | - Vahab Shaik
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Lin’an, Hangzhou, Zhejiang, China
- Bamboo Industry Institute, Zhejiang A & F University, Lin’an, Hangzhou, Zhejiang, China
| | - K. R. S. Sambasiva Rao
- Department of Pharmacy, Mangalayatan University-Jabalpur, Jabalpur, Madhya Pradesh, India
| | - Shripad R. Bhat
- ICAR-National Institute for Plant Biotechnology, New Delhi, India
| | - Xinchun Lin
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Lin’an, Hangzhou, Zhejiang, China
- Bamboo Industry Institute, Zhejiang A & F University, Lin’an, Hangzhou, Zhejiang, China
| |
Collapse
|
3
|
Zhang S, An X, Jiang Y, Hou Q, Ma B, Jiang Q, Zhang K, Zhao L, Wan X. Plastid-localized ZmENR1/ZmHAD1 complex ensures maize pollen and anther development through regulating lipid and ROS metabolism. Nat Commun 2024; 15:10857. [PMID: 39738019 DOI: 10.1038/s41467-024-55208-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 11/29/2024] [Indexed: 01/01/2025] Open
Abstract
Lipid metabolism is critical for male reproduction in plants. Many lipid-metabolic genic male-sterility (GMS) genes function in the anther tapetal endoplasmic reticulum, while little is known about GMS genes involved in de novo fatty acid biosynthesis in the anther tapetal plastid. In this study, we identify a maize male-sterile mutant, enr1, with early tapetal degradation, defective anther cuticle, and pollen exine. Using genetic mapping, we clone a key GMS gene, ZmENR1, which encodes a plastid-localized enoyl-acyl carrier protein (ACP) reductase. ZmENR1 interacts with β-hydroxyacyl-ACP dehydratase (ZmHAD1) to enhance the efficiency of de novo fatty acid biosynthesis. Furthermore, the ZmENR1/ZmHAD1 complex is regulated by a Maize Male Sterility 1 (ZmMS1)-mediated feedback repression loop to ensure anther cuticle and pollen exine formation by affecting the expression of cutin/wax- and sporopollenin-related genes. Intriguingly, homologous genes of ENR1 from rice and Arabidopsis also regulate male fertility, suggesting that the ENR1-mediated pathway likely represents a conserved regulatory mechanism underlying male reproduction in flowering plants.
Collapse
Affiliation(s)
- Shaowei Zhang
- Research Institute of Biology and Agriculture, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Zhongzhi International Institute of Agricultural Biosciences, Beijing, 100083, China
| | - Xueli An
- Research Institute of Biology and Agriculture, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Zhongzhi International Institute of Agricultural Biosciences, Beijing, 100083, China
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing, 100192, China
| | - Yilin Jiang
- Research Institute of Biology and Agriculture, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Zhongzhi International Institute of Agricultural Biosciences, Beijing, 100083, China
| | - Quancan Hou
- Research Institute of Biology and Agriculture, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Zhongzhi International Institute of Agricultural Biosciences, Beijing, 100083, China
| | - Bin Ma
- Research Institute of Biology and Agriculture, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Zhongzhi International Institute of Agricultural Biosciences, Beijing, 100083, China
| | - Qingping Jiang
- Research Institute of Biology and Agriculture, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Zhongzhi International Institute of Agricultural Biosciences, Beijing, 100083, China
| | - Kai Zhang
- Research Institute of Biology and Agriculture, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Zhongzhi International Institute of Agricultural Biosciences, Beijing, 100083, China
| | - Lina Zhao
- Research Institute of Biology and Agriculture, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Zhongzhi International Institute of Agricultural Biosciences, Beijing, 100083, China
| | - Xiangyuan Wan
- Research Institute of Biology and Agriculture, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
- Zhongzhi International Institute of Agricultural Biosciences, Beijing, 100083, China.
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing, 100192, China.
| |
Collapse
|
4
|
Ma L, Zhang T, Zhu QH, Zhang X, Sun J, Liu F. HSP70 and APX1 play important roles in cotton male fertility by mediating ROS homeostasis. Int J Biol Macromol 2024; 278:134856. [PMID: 39168224 DOI: 10.1016/j.ijbiomac.2024.134856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/22/2024] [Accepted: 08/17/2024] [Indexed: 08/23/2024]
Abstract
Male sterility is used in the production of hybrid seeds and can improve the breeding efficiency of cotton hybrids. Reactive oxygen species is closely associated with the tapetum and pollen development, but their relationship in cotton male fertility remains unclear. In this study, we comprehensively compared the cytology and proteome of the anthers from an Upland cotton (Gossypium hirsutum) material, Shida 98 (WT), and its nearly-isogenic male sterile line Shida 98A (MS). Cytology indicated delayed PCD in the tapetum and defects in microspores in MS anthers. And further studies revealed disruption of ROS homeostasis. Proteomic analysis identified proteins with differential abundance mainly being related to redox homeostasis, protein folding, and apoptotic signaling pathways. GhAPX1 interacted with GhHSP70 and played a crucial role in the development of cotton anthers. Exogenous application of HSP70 inhibitor increased H2O2 content and decreased the activity of APX1 and pollen viability. The GhAPX1 mutants generated by CRISPR/Cas9-mediated gene editing exhibited premature degradation of the tapetum, significant decrease in pollen viability, and significant increase in H2O2 content. Altogether, our results imply HSP70 and APX1 being the key players jointly regulating male fertility by mediating ROS homeostasis. These results provide insights into the proteins associated with male fertility.
Collapse
Affiliation(s)
- Lihong Ma
- Key Laboratory of Oasis Eco-agriculture, College of Agriculture, Shihezi University, Shihezi 832000, Xinjiang, China
| | - Tao Zhang
- Key Laboratory of Oasis Eco-agriculture, College of Agriculture, Shihezi University, Shihezi 832000, Xinjiang, China
| | - Qian-Hao Zhu
- CSIRO Agriculture and Food, GPO Box 1700, Canberra 2601, Australia
| | - Xinyu Zhang
- Key Laboratory of Oasis Eco-agriculture, College of Agriculture, Shihezi University, Shihezi 832000, Xinjiang, China
| | - Jie Sun
- Key Laboratory of Oasis Eco-agriculture, College of Agriculture, Shihezi University, Shihezi 832000, Xinjiang, China.
| | - Feng Liu
- Key Laboratory of Oasis Eco-agriculture, College of Agriculture, Shihezi University, Shihezi 832000, Xinjiang, China.
| |
Collapse
|
5
|
Xu W, Peng X, Li Y, Zeng X, Yan W, Wang C, Wang CR, Chen S, Xu C, Tang X. OsSNDP4, a Sec14-nodulin Domain Protein, is Required for Pollen Development in Rice. RICE (NEW YORK, N.Y.) 2024; 17:54. [PMID: 39207611 PMCID: PMC11362464 DOI: 10.1186/s12284-024-00730-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024]
Abstract
Pollen is encased in a robust wall that shields the male gametophyte from various stresses and aids in pollination. The pollen wall consists of gametophyte-derived intine and sporophyte-derived exine. The exine is mainly composed of sporopollenin, which is biopolymers of aliphatic lipids and phenolics. The process of exine formation has been the subject of extensive research, yet the underlying molecular mechanisms remain elusive. In this study, we identified a rice mutant of the OsSNDP4 gene that is impaired in pollen development. We demonstrated that OsSNDP4, a putative Sec14-nodulin domain protein, exhibits a preference for binding to phosphatidylinositol (3)-phosphate [PI(3)P], a lipid primarily found in endosomal and vacuolar membranes. The OsSNDP4 protein was detected in association with the endoplasmic reticulum (ER), vacuolar membranes, and the nucleus. OsSNDP4 expression was detected in all tested organs but was notably higher in anthers during exine development. Loss of OsSNDP4 function led to abnormal vacuole dynamics, inhibition in Ubisch body development, and premature degradation of cellular contents and organelles in the tapetal cells. Microspores from the ossndp4 mutant plant displayed abnormal exine formation, abnormal vacuole enlargement, and ultimately, pollen abortion. RNA-seq assay revealed that genes involved in the biosynthesis of fatty acid and secondary metabolites, the biosynthesis of lipid polymers, and exosome formation were enriched among the down-regulated genes in the mutant anthers, which correlated with the morphological defects observed in the mutant anthers. Base on these findings, we propose that OsSNDP4 regulates pollen development by binding to PI(3)P and influencing the dynamics of membrane systems. The involvement of membrane systems in the regulation of sporopollenin biosynthesis, Ubisch body formation, and exine formation provides a novel mechanism regulating pollen wall development.
Collapse
Affiliation(s)
- Weitao Xu
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Xiaoqun Peng
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Yiqi Li
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Xinhuang Zeng
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Wei Yan
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
- Shenzhen Institute of Molecular Crop Design, Shenzhen, China
| | - Changjian Wang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Cheng Rui Wang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Shunquan Chen
- Shenzhen Institute of Molecular Crop Design, Shenzhen, China
| | - Chunjue Xu
- Shenzhen Institute of Molecular Crop Design, Shenzhen, China.
| | - Xiaoyan Tang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China.
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.
- Shenzhen Institute of Molecular Crop Design, Shenzhen, China.
| |
Collapse
|
6
|
Hou XL, Han X, Meng Y, Wang L, Zhang W, Yang C, Li H, Tang S, Guo Z, Liu C, Qin Y, Zhang S, Shui G, Cao X, Song X. Acyl carrier protein OsMTACP2 confers rice cold tolerance at the booting stage. PLANT PHYSIOLOGY 2024; 195:1277-1292. [PMID: 38431526 DOI: 10.1093/plphys/kiae118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/19/2024] [Accepted: 01/21/2024] [Indexed: 03/05/2024]
Abstract
Low temperatures occurring at the booting stage in rice (Oryza sativa L.) often result in yield loss by impeding male reproductive development. However, the underlying mechanisms by which rice responds to cold at this stage remain largely unknown. Here, we identified MITOCHONDRIAL ACYL CARRIER PROTEIN 2 (OsMTACP2), the encoded protein of which mediates lipid metabolism involved in the cold response at the booting stage. Loss of OsMTACP2 function compromised cold tolerance, hindering anther cuticle and pollen wall development, resulting in abnormal anther morphology, lower pollen fertility, and seed setting. OsMTACP2 was highly expressed in tapetal cells and microspores during anther development, with the encoded protein localizing to both mitochondria and the cytoplasm. Comparative transcriptomic analysis revealed differential expression of genes related to lipid metabolism between the wild type and the Osmtacp2-1 mutant in response to cold. Through a lipidomic analysis, we demonstrated that wax esters, which are the primary lipid components of the anther cuticle and pollen walls, function as cold-responsive lipids. Their levels increased dramatically in the wild type but not in Osmtacp2-1 when exposed to cold. Additionally, mutants of two cold-induced genes of wax ester biosynthesis, ECERIFERUM1 and WAX CRYSTAL-SPARSE LEAF2, showed decreased cold tolerance. These results suggest that OsMTACP2-mediated wax ester biosynthesis is essential for cold tolerance in rice at the booting stage.
Collapse
Affiliation(s)
- Xiu-Li Hou
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiangyan Han
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Ying Meng
- Institute of Crop Cultivation and Tillage, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China
| | - Lizhi Wang
- Institute of Crop Cultivation and Tillage, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China
| | - Wenqi Zhang
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chao Yang
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hui Li
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shanjie Tang
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhenhua Guo
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Chunyan Liu
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yongmei Qin
- College of Life Sciences, Peking University, Beijing 100871, China
| | - Shaohua Zhang
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Guanghou Shui
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaofeng Cao
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xianwei Song
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- Key Laboratory of Seed Innovation, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
7
|
Jiang L, Guo T, Song X, Jiang H, Lu M, Luo J, Rossi V, He Y. MSH7 confers quantitative variation in pollen fertility and boosts grain yield in maize. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:1372-1386. [PMID: 38263872 PMCID: PMC11022798 DOI: 10.1111/pbi.14272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/15/2023] [Accepted: 12/08/2023] [Indexed: 01/25/2024]
Abstract
Fertile pollen is critical for the survival, fitness, and dispersal of flowering plants, and directly contributes to crop productivity. Extensive mutational screening studies have been carried out to dissect the genetic regulatory network determining pollen fertility, but we still lack fundamental knowledge about whether and how pollen fertility is controlled in natural populations. We used a genome-wide association study (GWAS) to show that ZmGEN1A and ZmMSH7, two DNA repair-related genes, confer natural variation in maize pollen fertility. Mutants defective in these genes exhibited abnormalities in meiotic or post-meiotic DNA repair, leading to reduced pollen fertility. More importantly, ZmMSH7 showed evidence of selection during maize domestication, and its disruption resulted in a substantial increase in grain yield for both inbred and hybrid. Overall, our study describes the first systematic examination of natural genetic effects on pollen fertility in plants, providing valuable genetic resources for optimizing male fertility. In addition, we find that ZmMSH7 represents a candidate for improvement of grain yield.
Collapse
Affiliation(s)
- Luguang Jiang
- National Maize Improvement Center of China, College of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
| | - Ting Guo
- Institute of Genetics and Developmental Biology, Key Laboratory of Seed InnovationChinese Academy of SciencesBeijingChina
| | - Xinyuan Song
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Agro‐Biotechnology Research InstituteJilin Academy of Agricultural SciencesChangchunChina
| | - Huan Jiang
- National Maize Improvement Center of China, College of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
| | - Minhui Lu
- Center for Crop Functional Genomics and Molecular BreedingChina Agricultural UniversityBeijingChina
| | - Jinhong Luo
- National Maize Improvement Center of China, College of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
- Institute of Genetics and Developmental Biology, Key Laboratory of Seed InnovationChinese Academy of SciencesBeijingChina
| | - Vincenzo Rossi
- Council for Agricultural Research and EconomicsResearch Centre for Cereal and Industrial CropsBergamoItaly
| | - Yan He
- National Maize Improvement Center of China, College of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
- Institute of Genetics and Developmental Biology, Key Laboratory of Seed InnovationChinese Academy of SciencesBeijingChina
| |
Collapse
|
8
|
An X, Zhang S, Jiang Y, Liu X, Fang C, Wang J, Zhao L, Hou Q, Zhang J, Wan X. CRISPR/Cas9-based genome editing of 14 lipid metabolic genes reveals a sporopollenin metabolon ZmPKSB-ZmTKPR1-1/-2 required for pollen exine formation in maize. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:216-232. [PMID: 37792967 PMCID: PMC10754010 DOI: 10.1111/pbi.14181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/20/2023] [Accepted: 09/12/2023] [Indexed: 10/06/2023]
Abstract
Lipid biosynthesis and transport are essential for plant male reproduction. Compared with Arabidopsis and rice, relatively fewer maize lipid metabolic genic male-sterility (GMS) genes have been identified, and the sporopollenin metabolon in maize anther remains unknown. Here, we identified two maize GMS genes, ZmTKPR1-1 and ZmTKPR1-2, by CRISPR/Cas9 mutagenesis of 14 lipid metabolic genes with anther stage-specific expression patterns. Among them, tkpr1-1/-2 double mutants displayed complete male sterility with delayed tapetum degradation and abortive pollen. ZmTKPR1-1 and ZmTKPR1-2 encode tetraketide α-pyrone reductases and have catalytic activities in reducing tetraketide α-pyrone produced by ZmPKSB (polyketide synthase B). Several conserved catalytic sites (S128/130, Y164/166 and K168/170 in ZmTKPR1-1/-2) are essential for their enzymatic activities. Both ZmTKPR1-1 and ZmTKPR1-2 are directly activated by ZmMYB84, and their encoded proteins are localized in both the endoplasmic reticulum and nuclei. Based on protein structure prediction, molecular docking, site-directed mutagenesis and biochemical assays, the sporopollenin biosynthetic metabolon ZmPKSB-ZmTKPR1-1/-2 was identified to control pollen exine formation in maize anther. Although ZmTKPR1-1/-2 and ZmPKSB formed a protein complex, their mutants showed different, even opposite, defective phenotypes of anther cuticle and pollen exine. Our findings discover new maize GMS genes that can contribute to male-sterility line-assisted maize breeding and also provide new insights into the metabolon-regulated sporopollenin biosynthesis in maize anther.
Collapse
Affiliation(s)
- Xueli An
- Research Institute of Biology and AgricultureUniversity of Science and Technology BeijingBeijingChina
- Industry Research Institute of Biotechnology BreedingYili Normal UniversityYiningChina
- Zhongzhi International Institute of Agricultural BiosciencesBeijingChina
- Beijing Engineering Laboratory of Main Crop Bio‐Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio‐Tech BreedingBeijing Solidwill Sci‐Tech Co. Ltd.BeijingChina
| | - Shaowei Zhang
- Research Institute of Biology and AgricultureUniversity of Science and Technology BeijingBeijingChina
- Zhongzhi International Institute of Agricultural BiosciencesBeijingChina
| | - Yilin Jiang
- Research Institute of Biology and AgricultureUniversity of Science and Technology BeijingBeijingChina
- Zhongzhi International Institute of Agricultural BiosciencesBeijingChina
| | - Xinze Liu
- Research Institute of Biology and AgricultureUniversity of Science and Technology BeijingBeijingChina
- Zhongzhi International Institute of Agricultural BiosciencesBeijingChina
| | - Chaowei Fang
- Research Institute of Biology and AgricultureUniversity of Science and Technology BeijingBeijingChina
- Zhongzhi International Institute of Agricultural BiosciencesBeijingChina
| | - Jing Wang
- Research Institute of Biology and AgricultureUniversity of Science and Technology BeijingBeijingChina
- Zhongzhi International Institute of Agricultural BiosciencesBeijingChina
| | - Lina Zhao
- Research Institute of Biology and AgricultureUniversity of Science and Technology BeijingBeijingChina
- Zhongzhi International Institute of Agricultural BiosciencesBeijingChina
| | - Quancan Hou
- Research Institute of Biology and AgricultureUniversity of Science and Technology BeijingBeijingChina
- Zhongzhi International Institute of Agricultural BiosciencesBeijingChina
| | - Juan Zhang
- Research Institute of Biology and AgricultureUniversity of Science and Technology BeijingBeijingChina
- Industry Research Institute of Biotechnology BreedingYili Normal UniversityYiningChina
- Zhongzhi International Institute of Agricultural BiosciencesBeijingChina
| | - Xiangyuan Wan
- Research Institute of Biology and AgricultureUniversity of Science and Technology BeijingBeijingChina
- Industry Research Institute of Biotechnology BreedingYili Normal UniversityYiningChina
- Zhongzhi International Institute of Agricultural BiosciencesBeijingChina
- Beijing Engineering Laboratory of Main Crop Bio‐Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio‐Tech BreedingBeijing Solidwill Sci‐Tech Co. Ltd.BeijingChina
| |
Collapse
|
9
|
Zhang Z, Sun W, Wen L, Liu Y, Guo X, Liu Y, Yao C, Xue Q, Sun Z, Wang Z, Zhang Y. Dynamic gene regulatory networks improving spike fertility through regulation of floret primordia fate in wheat. PLANT, CELL & ENVIRONMENT 2023; 46:3628-3643. [PMID: 37485926 DOI: 10.1111/pce.14672] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 07/09/2023] [Accepted: 07/11/2023] [Indexed: 07/25/2023]
Abstract
The developmental process of spike is critical for spike fertility through affecting floret primordia fate in wheat; however, the genetic regulation of this dynamic and complex developmental process remains unclear. Here, we conducted a high temporal-resolution analysis of spike transcriptomes and monitored the number and morphology of floret primordia within spike. The development of all floret primordia in a spike was clearly separated into three distinct phases: differentiation, pre-dimorphism and dimorphism. Notably, we identified that floret primordia with meiosis ability at the pre-dimorphism phase usually develop into fertile floret primordia in the next dimorphism phase. Compared to control, increasing plant space treatment achieved the maximum increasement range (i.e., 50%) in number of fertile florets by accelerating spike development. The process of spike fertility improvement was directed by a continuous and dynamic regulatory network involved in transcription factor and genes interaction. This was based on the coordination of genes related to heat shock protein and jasmonic acid biosynthesis during differentiation phase, and genes related to lignin, anthocyanin and chlorophyll biosynthesis during dimorphism phase. The multi-dimensional association with high temporal-resolution approach reported here allows rapid identification of genetic resource for future breeding studies to realise the maximum spike fertility potential in more cereal crops.
Collapse
Affiliation(s)
- Zhen Zhang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
- College of Biological Sciences, China Agricultural University, Beijing, China
| | - Wan Sun
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Liangyun Wen
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Yaqun Liu
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Xiaolei Guo
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Ying Liu
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Chunsheng Yao
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Qingwu Xue
- Texas A&M AgriLife Research and Extension Center at Amarillo, Amarillo, Texas, USA
| | - Zhencai Sun
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
- Engineering Technology Research Center for Agriculture in Low Plain Areas, Hebei Province, China
| | - Zhimin Wang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
- Engineering Technology Research Center for Agriculture in Low Plain Areas, Hebei Province, China
| | - Yinghua Zhang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
- Engineering Technology Research Center for Agriculture in Low Plain Areas, Hebei Province, China
| |
Collapse
|
10
|
Hou Q, An X, Ma B, Wu S, Wei X, Yan T, Zhou Y, Zhu T, Xie K, Zhang D, Li Z, Zhao L, Niu C, Long Y, Liu C, Zhao W, Ni F, Li J, Fu D, Yang ZN, Wan X. ZmMS1/ZmLBD30-orchestrated transcriptional regulatory networks precisely control pollen exine development. MOLECULAR PLANT 2023; 16:1321-1338. [PMID: 37501369 DOI: 10.1016/j.molp.2023.07.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/09/2023] [Accepted: 07/25/2023] [Indexed: 07/29/2023]
Abstract
Because of its significance for plant male fertility and, hence, direct impact on crop yield, pollen exine development has inspired decades of scientific inquiry. However, the molecular mechanism underlying exine formation and thickness remains elusive. In this study, we identified that a previously unrecognized repressor, ZmMS1/ZmLBD30, controls proper pollen exine development in maize. Using an ms1 mutant with aberrantly thickened exine, we cloned a male-sterility gene, ZmMs1, which encodes a tapetum-specific lateral organ boundary domain transcription factor, ZmLBD30. We showed that ZmMs1/ZmLBD30 is initially turned on by a transcriptional activation cascade of ZmbHLH51-ZmMYB84-ZmMS7, and then it serves as a repressor to shut down this cascade via feedback repression to ensure timely tapetal degeneration and proper level of exine. This activation-feedback repression loop regulating male fertility is conserved in maize and sorghum, and similar regulatory mechanism may also exist in other flowering plants such as rice and Arabidopsis. Collectively, these findings reveal a novel regulatory mechanism of pollen exine development by which a long-sought master repressor of upstream activators prevents excessive exine formation.
Collapse
Affiliation(s)
- Quancan Hou
- Research Institute of Biology and Agriculture, University of Science and Technology Beijing, Beijing 100083, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Zhongzhi International Institute of Agricultural Biosciences, Beijing 100192, China
| | - Xueli An
- Research Institute of Biology and Agriculture, University of Science and Technology Beijing, Beijing 100083, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Zhongzhi International Institute of Agricultural Biosciences, Beijing 100192, China
| | - Biao Ma
- Research Institute of Biology and Agriculture, University of Science and Technology Beijing, Beijing 100083, China
| | - Suowei Wu
- Research Institute of Biology and Agriculture, University of Science and Technology Beijing, Beijing 100083, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Zhongzhi International Institute of Agricultural Biosciences, Beijing 100192, China
| | - Xun Wei
- Research Institute of Biology and Agriculture, University of Science and Technology Beijing, Beijing 100083, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Zhongzhi International Institute of Agricultural Biosciences, Beijing 100192, China
| | - Tingwei Yan
- Research Institute of Biology and Agriculture, University of Science and Technology Beijing, Beijing 100083, China
| | - Yan Zhou
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Zhongzhi International Institute of Agricultural Biosciences, Beijing 100192, China
| | - Taotao Zhu
- Research Institute of Biology and Agriculture, University of Science and Technology Beijing, Beijing 100083, China
| | - Ke Xie
- Research Institute of Biology and Agriculture, University of Science and Technology Beijing, Beijing 100083, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Zhongzhi International Institute of Agricultural Biosciences, Beijing 100192, China
| | - Danfeng Zhang
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Zhongzhi International Institute of Agricultural Biosciences, Beijing 100192, China
| | - Ziwen Li
- Research Institute of Biology and Agriculture, University of Science and Technology Beijing, Beijing 100083, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Zhongzhi International Institute of Agricultural Biosciences, Beijing 100192, China
| | - Lina Zhao
- Research Institute of Biology and Agriculture, University of Science and Technology Beijing, Beijing 100083, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Zhongzhi International Institute of Agricultural Biosciences, Beijing 100192, China
| | - Canfang Niu
- Research Institute of Biology and Agriculture, University of Science and Technology Beijing, Beijing 100083, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Zhongzhi International Institute of Agricultural Biosciences, Beijing 100192, China
| | - Yan Long
- Research Institute of Biology and Agriculture, University of Science and Technology Beijing, Beijing 100083, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Zhongzhi International Institute of Agricultural Biosciences, Beijing 100192, China
| | - Chang Liu
- Research Institute of Biology and Agriculture, University of Science and Technology Beijing, Beijing 100083, China
| | - Wei Zhao
- Research Institute of Biology and Agriculture, University of Science and Technology Beijing, Beijing 100083, China
| | - Fei Ni
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Jinping Li
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Zhongzhi International Institute of Agricultural Biosciences, Beijing 100192, China
| | - Daolin Fu
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Zhong-Nan Yang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Xiangyuan Wan
- Research Institute of Biology and Agriculture, University of Science and Technology Beijing, Beijing 100083, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Zhongzhi International Institute of Agricultural Biosciences, Beijing 100192, China.
| |
Collapse
|
11
|
Zhao M, Peng Z, Qin Y, Tamang TM, Zhang L, Tian B, Chen Y, Liu Y, Zhang J, Lin G, Zheng H, He C, Lv K, Klaus A, Marcon C, Hochholdinger F, Trick HN, Liu Y, Cho MJ, Park S, Wei H, Zheng J, White FF, Liu S. Bacterium-enabled transient gene activation by artificial transcription factors for resolving gene regulation in maize. THE PLANT CELL 2023; 35:2736-2749. [PMID: 37233025 PMCID: PMC10396389 DOI: 10.1093/plcell/koad155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/11/2023] [Accepted: 05/04/2023] [Indexed: 05/27/2023]
Abstract
Understanding gene regulatory networks is essential to elucidate developmental processes and environmental responses. Here, we studied regulation of a maize (Zea mays) transcription factor gene using designer transcription activator-like effectors (dTALes), which are synthetic Type III TALes of the bacterial genus Xanthomonas and serve as inducers of disease susceptibility gene transcription in host cells. The maize pathogen Xanthomonas vasicola pv. vasculorum was used to introduce 2 independent dTALes into maize cells to induced expression of the gene glossy3 (gl3), which encodes a MYB transcription factor involved in biosynthesis of cuticular wax. RNA-seq analysis of leaf samples identified, in addition to gl3, 146 genes altered in expression by the 2 dTALes. Nine of the 10 genes known to be involved in cuticular wax biosynthesis were upregulated by at least 1 of the 2 dTALes. A gene previously unknown to be associated with gl3, Zm00001d017418, which encodes aldehyde dehydrogenase, was also expressed in a dTALe-dependent manner. A chemically induced mutant and a CRISPR-Cas9 mutant of Zm00001d017418 both exhibited glossy leaf phenotypes, indicating that Zm00001d017418 is involved in biosynthesis of cuticular waxes. Bacterial protein delivery of dTALes proved to be a straightforward and practical approach for the analysis and discovery of pathway-specific genes in maize.
Collapse
Affiliation(s)
- Mingxia Zhao
- Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, USA
| | - Zhao Peng
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611, USA
- College of Plant Protection, Jilin Agricultural University, Changchun, Jilin 130118, China
| | - Yang Qin
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Tej Man Tamang
- Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, USA
| | - Ling Zhang
- College of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI 49931, USA
| | - Bin Tian
- Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, USA
| | - Yueying Chen
- Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, USA
| | - Yan Liu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Junli Zhang
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611, USA
| | - Guifang Lin
- Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, USA
| | - Huakun Zheng
- Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, USA
| | - Cheng He
- Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, USA
| | - Kaiwen Lv
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Heilongjiang 150040, China
| | - Alina Klaus
- INRES, Institute of Crop Science and Resource Conservation, Crop Functional Genomics, University of Bonn, Bonn 53113, Germany
| | - Caroline Marcon
- INRES, Institute of Crop Science and Resource Conservation, Crop Functional Genomics, University of Bonn, Bonn 53113, Germany
| | - Frank Hochholdinger
- INRES, Institute of Crop Science and Resource Conservation, Crop Functional Genomics, University of Bonn, Bonn 53113, Germany
| | - Harold N Trick
- Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, USA
| | - Yunjun Liu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Myeong-Je Cho
- Innovative Genomics Institute, University of California, Berkeley, CA 94704, USA
| | - Sunghun Park
- Department of Horticulture and Natural Resources, Kansas State University, Manhattan, KS 66506, USA
| | - Hairong Wei
- College of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI 49931, USA
| | - Jun Zheng
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Frank F White
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611, USA
| | - Sanzhen Liu
- Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, USA
| |
Collapse
|
12
|
Cai D, Zhang Z, Zhao L, Liu J, Chen H. A novel hybrid seed production technology based on a unilateral cross-incompatibility gene in maize. SCIENCE CHINA. LIFE SCIENCES 2023; 66:595-601. [PMID: 36190647 DOI: 10.1007/s11427-022-2191-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 09/01/2022] [Indexed: 02/18/2023]
Abstract
Hybrid seed production technology (SPT) using genic recessive male sterility is of great importance in maize breeding. Here, we report a novel SPT based on a maize unilateral cross-incompatibility gene ZmGa1F with an extremely low transgene transmission rate (TTR). Proper pollen-specific ZmGa1F expression severely inhibits pollen tube growth leading to no fertilization. The maintainer line harbors a transgene cassette in an ipe1 male sterile background containing IPE1 to restore ipe1 male fertility, ZmGa1F to prevent transgenic pollen escape, the red fluorescence protein encoding gene DsRed2 for the separation of male sterile and fertile seeds, and the herbicide-resistant gene Bar for transgenic plant selection. When the maintainer line is selfed, gametes of ipe1/transgene and ipe1/- genotypes are produced, and pollen of the ipe1/transgene genotype is not able to fertilize female gametes due to pollen tube growth inhibition by ZmGa1F. Subsequently, seeds of ipe1/ipe1 and ipe1/transgene genotypes are produced at a 1:1 ratio and could be separated easily by fluorescence-based seed sorting. Not a single seed emitting fluorescence is detected in more than 200,000 seeds examined demonstrating that the pollen-tube-inhibition (PTI)-based TTR is lower than what has been reported for similar technologies to date. This PTI-based SPT shows promising potential for future maize hybrid seed production.
Collapse
Affiliation(s)
- Darun Cai
- State Key Laboratory of Plant Cell and Chromosome Engineering, Innovative Academy of Seed Design, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Zhaogui Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Innovative Academy of Seed Design, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Li Zhao
- State Key Laboratory of Plant Cell and Chromosome Engineering, Innovative Academy of Seed Design, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Juan Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Innovative Academy of Seed Design, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Huabang Chen
- State Key Laboratory of Plant Cell and Chromosome Engineering, Innovative Academy of Seed Design, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
13
|
Dong J, Hu F, Guan W, Yuan F, Lai Z, Zhong J, Liu J, Wu Z, Cheng J, Hu K. A 163-bp insertion in the Capana10g000198 encoding a MYB transcription factor causes male sterility in pepper (Capsicum annuum L.). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 113:521-535. [PMID: 36534067 DOI: 10.1111/tpj.16064] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 10/29/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
Male sterility provides an efficient approach for commercial exploitation of heterosis. Despite more than 20 genic male sterile (GMS) mutants documented in pepper (Capsicum annuum L.), only two causal genes have been successfully identified. Here, a novel spontaneous recessive GMS mutant, designated msc-3, is identified and characterized at both phenotypic and histological levels. Pollen abortion of msc-3 mutant may be due to the delayed tapetum degradation, leading to the non-degeneration of tetrads callosic wall. Then, a modified MutMap method and molecular marker linkage analysis were employed to fine mapping the msc-3 locus, which was delimited to the ~139.91-kb region harboring 10 annotated genes. Gene expression and structure variation analyses indicate the Capana10g000198, encoding a R2R3-MYB transcription factor, is the best candidate gene for the msc-3 locus. Expression profiling analysis shows the Capana10g000198 is an anther-specific gene, and a 163-bp insertion in the Capana10g000198 is highly correlated with the male sterile (MS) phenotype. Additionally, downregulation of Capana10g000198 in male fertile plants through virus-induced gene silencing resulted in male sterility. Finally, possible regulatory relationships of the msc-3 gene with the other two reported pepper GMS genes, msc-1 and msc-2, have been studied, and comparative transcriptome analysis reveals the expression of 16 GMS homologs are significantly downregulated in the MS anthers. Overall, our results reveal that Capana10g000198 is the causal gene underlying the msc-3 locus, providing important theoretical clues and basis for further in-depth study on the regulatory mechanisms of pollen development in pepper.
Collapse
Affiliation(s)
- Jichi Dong
- College of Horticulture, South China Agricultural University/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs/Guangdong Vegetables Engineering Research Center, Guangzhou, 510642, Guangdong, China
| | - Fang Hu
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Henry Fok School of Biology and Agricultural, Shaoguan University, Shaoguan, 512023, Guangdong, China
| | - Wendong Guan
- College of Horticulture, South China Agricultural University/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs/Guangdong Vegetables Engineering Research Center, Guangzhou, 510642, Guangdong, China
| | - Fanchong Yuan
- College of Horticulture, South China Agricultural University/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs/Guangdong Vegetables Engineering Research Center, Guangzhou, 510642, Guangdong, China
| | - Zepei Lai
- College of Horticulture, South China Agricultural University/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs/Guangdong Vegetables Engineering Research Center, Guangzhou, 510642, Guangdong, China
| | - Jian Zhong
- College of Horticulture, South China Agricultural University/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs/Guangdong Vegetables Engineering Research Center, Guangzhou, 510642, Guangdong, China
| | - Jia Liu
- College of Horticulture, South China Agricultural University/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs/Guangdong Vegetables Engineering Research Center, Guangzhou, 510642, Guangdong, China
| | - Zhiming Wu
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Jiaowen Cheng
- College of Horticulture, South China Agricultural University/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs/Guangdong Vegetables Engineering Research Center, Guangzhou, 510642, Guangdong, China
| | - Kailin Hu
- College of Horticulture, South China Agricultural University/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs/Guangdong Vegetables Engineering Research Center, Guangzhou, 510642, Guangdong, China
| |
Collapse
|
14
|
Zhan J, O'Connor L, Marchant DB, Teng C, Walbot V, Meyers BC. Coexpression network and trans-activation analyses of maize reproductive phasiRNA loci. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 113:160-173. [PMID: 36440497 DOI: 10.1111/tpj.16045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 11/16/2022] [Accepted: 11/21/2022] [Indexed: 06/16/2023]
Abstract
The anther-enriched phased, small interfering RNAs (phasiRNAs) play vital roles in sustaining male fertility in grass species. Their long non-coding precursors are synthesized by RNA polymerase II and are likely regulated by transcription factors (TFs). A few putative transcriptional regulators of the 21- or 24-nucleotide phasiRNA loci (referred to as 21- or 24-PHAS loci) have been identified in maize (Zea mays), but whether any of the individual TFs or TF combinations suffice to activate any PHAS locus is unclear. Here, we identified the temporal gene coexpression networks (modules) associated with maize anther development, including two modules highly enriched for the 21- or 24-PHAS loci. Comparisons of these coexpression modules and gene sets dysregulated in several reported male sterile TF mutants provided insights into TF timing with regard to phasiRNA biogenesis, including antagonistic roles for OUTER CELL LAYER4 and MALE STERILE23. Trans-activation assays in maize protoplasts of individual TFs using bulk-protoplast RNA-sequencing showed that two of the TFs coexpressed with 21-PHAS loci could activate several 21-nucleotide phasiRNA pathway genes but not transcription of 21-PHAS loci. Screens for combinatorial activities of these TFs and, separately, the recently reported putative transcriptional regulators of 24-PHAS loci using single-cell (protoplast) RNA-sequencing, did not detect reproducible activation of either 21-PHAS or 24-PHAS loci. Collectively, our results suggest that the endogenous transcriptional machineries and/or chromatin states in the anthers are necessary to activate reproductive PHAS loci.
Collapse
Affiliation(s)
- Junpeng Zhan
- Donald Danforth Plant Science Center, St Louis, MO, 63132, USA
| | - Lily O'Connor
- Donald Danforth Plant Science Center, St Louis, MO, 63132, USA
- Department of Biology, Washington University, St Louis, MO, 63130, USA
| | - D Blaine Marchant
- Department of Biology, Stanford University, Stanford, CA, 94305, USA
| | - Chong Teng
- Donald Danforth Plant Science Center, St Louis, MO, 63132, USA
| | - Virginia Walbot
- Department of Biology, Stanford University, Stanford, CA, 94305, USA
| | - Blake C Meyers
- Donald Danforth Plant Science Center, St Louis, MO, 63132, USA
- Division of Plant Science and Technology, University of Missouri, Columbia, MO, 65211, USA
| |
Collapse
|
15
|
Huang W, Li Y, Du Y, Pan L, Huang Y, Liu H, Zhao Y, Shi Y, Ruan YL, Dong Z, Jin W. Maize cytosolic invertase INVAN6 ensures faithful meiotic progression under heat stress. THE NEW PHYTOLOGIST 2022; 236:2172-2188. [PMID: 36104957 DOI: 10.1111/nph.18490] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 08/25/2022] [Indexed: 06/15/2023]
Abstract
Faithful meiotic progression ensures the generation of viable gametes. Studies suggested the male meiosis of plants is sensitive to ambient temperature, but the underlying molecular mechanisms remain elusive. Here, we characterized a maize (Zea mays ssp. mays L.) dominant male sterile mutant Mei025, in which the meiotic process of pollen mother cells (PMCs) was arrested after pachytene. An Asp-to-Asn replacement at position 276 of INVERTASE ALKALINE NEUTRAL 6 (INVAN6), a cytosolic invertase (CIN) that predominantly exists in PMCs and specifically hydrolyses sucrose, was revealed to cause meiotic defects in Mei025. INVAN6 interacts with itself as well as with four other CINs and seven 14-3-3 proteins. Although INVAN6Mei025 , the variant of INVAN6 found in Mei025, lacks hydrolytic activity entirely, its presence is deleterious to male meiosis, possibly in a dominant negative repression manner through interacting with its partner proteins. Notably, heat stress aggravated meiotic defects in invan6 null mutant. Further transcriptome data suggest INVAN6 has a fundamental role for sugar homeostasis and stress tolerance of male meiocytes. In summary, this work uncovered the function of maize CIN in male meiosis and revealed the role of CIN-mediated sugar metabolism and signalling in meiotic progression under heat stress.
Collapse
Affiliation(s)
- Wei Huang
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Crop Heterosis and Utilization (MOE), Joint Laboratory for International Cooperation in Crop Molecular Breeding (MOE), China Agricultural University, Beijing, 100193, China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, China
- Sanya Institute of China Agricultural University, Sanya, 572025, China
| | - Yunfei Li
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Crop Heterosis and Utilization (MOE), Joint Laboratory for International Cooperation in Crop Molecular Breeding (MOE), China Agricultural University, Beijing, 100193, China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Yan Du
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Crop Heterosis and Utilization (MOE), Joint Laboratory for International Cooperation in Crop Molecular Breeding (MOE), China Agricultural University, Beijing, 100193, China
| | - Lingling Pan
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Crop Heterosis and Utilization (MOE), Joint Laboratory for International Cooperation in Crop Molecular Breeding (MOE), China Agricultural University, Beijing, 100193, China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Yumin Huang
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Crop Heterosis and Utilization (MOE), Joint Laboratory for International Cooperation in Crop Molecular Breeding (MOE), China Agricultural University, Beijing, 100193, China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Hongbing Liu
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Crop Heterosis and Utilization (MOE), Joint Laboratory for International Cooperation in Crop Molecular Breeding (MOE), China Agricultural University, Beijing, 100193, China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Yue Zhao
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Crop Heterosis and Utilization (MOE), Joint Laboratory for International Cooperation in Crop Molecular Breeding (MOE), China Agricultural University, Beijing, 100193, China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Yunlu Shi
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Yong-Ling Ruan
- Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| | - Zhaobin Dong
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Crop Heterosis and Utilization (MOE), Joint Laboratory for International Cooperation in Crop Molecular Breeding (MOE), China Agricultural University, Beijing, 100193, China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Weiwei Jin
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Crop Heterosis and Utilization (MOE), Joint Laboratory for International Cooperation in Crop Molecular Breeding (MOE), China Agricultural University, Beijing, 100193, China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, China
- Sanya Institute of China Agricultural University, Sanya, 572025, China
- Fresh Corn Research Center of BTH, College of Agronomy & Resources and Environment, Tianjin Agricultural University, Tianjin, 300384, China
| |
Collapse
|
16
|
Liu X, Jiang Y, Wu S, Wang J, Fang C, Zhang S, Xie R, Zhao L, An X, Wan X. The ZmMYB84-ZmPKSB regulatory module controls male fertility through modulating anther cuticle-pollen exine trade-off in maize anthers. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:2342-2356. [PMID: 36070225 PMCID: PMC9674315 DOI: 10.1111/pbi.13911] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/25/2022] [Accepted: 08/12/2022] [Indexed: 05/31/2023]
Abstract
Anther cuticle and pollen exine are two crucial lipid layers that ensure normal pollen development and pollen-stigma interaction for successful fertilization and seed production in plants. Their formation processes share certain common pathways of lipid biosynthesis and transport across four anther wall layers. However, molecular mechanism underlying a trade-off of lipid-metabolic products to promote the proper formation of the two lipid layers remains elusive. Here, we identified and characterized a maize male-sterility mutant pksb, which displayed denser anther cuticle but thinner pollen exine as well as delayed tapetal degeneration compared with its wild type. Based on map-based cloning and CRISPR/Cas9 mutagenesis, we found that the causal gene (ZmPKSB) of pksb mutant encoded an endoplasmic reticulum (ER)-localized polyketide synthase (PKS) with catalytic activities to malonyl-CoA and midchain-fatty acyl-CoA to generate triketide and tetraketide α-pyrone. A conserved catalytic triad (C171, H320 and N353) was essential for its enzymatic activity. ZmPKSB was specifically expressed in maize anthers from stages S8b to S9-10 with its peak at S9 and was directly activated by a transcription factor ZmMYB84. Moreover, loss function of ZmMYB84 resulted in denser anther cuticle but thinner pollen exine similar to the pksb mutant. The ZmMYB84-ZmPKSB regulatory module controlled a trade-off between anther cuticle and pollen exine formation by altering expression of a series of genes related to biosynthesis and transport of sporopollenin, cutin and wax. These findings provide new insights into the fine-tuning regulation of lipid-metabolic balance to precisely promote anther cuticle and pollen exine formation in plants.
Collapse
Affiliation(s)
- Xinze Liu
- Research Center of Biology and Agriculture, Shunde Graduate School, School of Chemistry and Biological EngineeringUniversity of Science and Technology BeijingBeijingChina
- Zhongzhi International Institute of Agricultural BiosciencesBeijingChina
| | - Yilin Jiang
- Research Center of Biology and Agriculture, Shunde Graduate School, School of Chemistry and Biological EngineeringUniversity of Science and Technology BeijingBeijingChina
- Zhongzhi International Institute of Agricultural BiosciencesBeijingChina
| | - Suowei Wu
- Research Center of Biology and Agriculture, Shunde Graduate School, School of Chemistry and Biological EngineeringUniversity of Science and Technology BeijingBeijingChina
- Zhongzhi International Institute of Agricultural BiosciencesBeijingChina
- Beijing Engineering Laboratory of Main Crop Bio‐Tech BreedingBeijing International Science and Technology Cooperation Base of Bio‐Tech Breeding, Beijing Solidwill Sci‐Tech Co. Ltd.BeijingChina
| | - Jing Wang
- Research Center of Biology and Agriculture, Shunde Graduate School, School of Chemistry and Biological EngineeringUniversity of Science and Technology BeijingBeijingChina
- Zhongzhi International Institute of Agricultural BiosciencesBeijingChina
| | - Chaowei Fang
- Research Center of Biology and Agriculture, Shunde Graduate School, School of Chemistry and Biological EngineeringUniversity of Science and Technology BeijingBeijingChina
- Zhongzhi International Institute of Agricultural BiosciencesBeijingChina
| | - Shaowei Zhang
- Research Center of Biology and Agriculture, Shunde Graduate School, School of Chemistry and Biological EngineeringUniversity of Science and Technology BeijingBeijingChina
- Zhongzhi International Institute of Agricultural BiosciencesBeijingChina
| | - Rongrong Xie
- Research Center of Biology and Agriculture, Shunde Graduate School, School of Chemistry and Biological EngineeringUniversity of Science and Technology BeijingBeijingChina
- Zhongzhi International Institute of Agricultural BiosciencesBeijingChina
| | - Lina Zhao
- Research Center of Biology and Agriculture, Shunde Graduate School, School of Chemistry and Biological EngineeringUniversity of Science and Technology BeijingBeijingChina
- Zhongzhi International Institute of Agricultural BiosciencesBeijingChina
| | - Xueli An
- Research Center of Biology and Agriculture, Shunde Graduate School, School of Chemistry and Biological EngineeringUniversity of Science and Technology BeijingBeijingChina
- Zhongzhi International Institute of Agricultural BiosciencesBeijingChina
- Beijing Engineering Laboratory of Main Crop Bio‐Tech BreedingBeijing International Science and Technology Cooperation Base of Bio‐Tech Breeding, Beijing Solidwill Sci‐Tech Co. Ltd.BeijingChina
| | - Xiangyuan Wan
- Research Center of Biology and Agriculture, Shunde Graduate School, School of Chemistry and Biological EngineeringUniversity of Science and Technology BeijingBeijingChina
- Zhongzhi International Institute of Agricultural BiosciencesBeijingChina
- Beijing Engineering Laboratory of Main Crop Bio‐Tech BreedingBeijing International Science and Technology Cooperation Base of Bio‐Tech Breeding, Beijing Solidwill Sci‐Tech Co. Ltd.BeijingChina
| |
Collapse
|
17
|
Marchant DB, Walbot V. Anther development-The long road to making pollen. THE PLANT CELL 2022; 34:4677-4695. [PMID: 36135809 PMCID: PMC9709990 DOI: 10.1093/plcell/koac287] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 08/29/2022] [Indexed: 06/01/2023]
Abstract
Anthers express the most genes of any plant organ, and their development involves sequential redifferentiation of many cell types to perform distinctive roles from inception through pollen dispersal. Agricultural yield and plant breeding depend on understanding and consequently manipulating anthers, a compelling motivation for basic plant biology research to contribute. After stamen initiation, two theca form at the tip, and each forms an adaxial and abaxial lobe composed of pluripotent Layer 1-derived and Layer 2-derived cells. After signal perception or self-organization, germinal cells are specified from Layer 2-derived cells, and these secrete a protein ligand that triggers somatic differentiation of their neighbors. Historically, recovery of male-sterile mutants has been the starting point for studying anther biology. Many genes and some genetic pathways have well-defined functions in orchestrating subsequent cell fate and differentiation events. Today, new tools are providing more detailed information; for example, the developmental trajectory of germinal cells illustrates the power of single cell RNA-seq to dissect the complex journey of one cell type. We highlight ambiguities and gaps in available data to encourage attention on important unresolved issues.
Collapse
Affiliation(s)
- D Blaine Marchant
- Department of Biology, Stanford University, Stanford, California 94505, USA
| | - Virginia Walbot
- Department of Biology, Stanford University, Stanford, California 94505, USA
| |
Collapse
|
18
|
Hu M, Li Y, Zhang X, Song W, Jin W, Huang W, Zhao H. Maize sterility gene DRP1 encodes a desiccation-related protein that is critical for Ubisch bodies and pollen exine development. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:6800-6815. [PMID: 35922377 DOI: 10.1093/jxb/erac331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 07/30/2022] [Indexed: 06/15/2023]
Abstract
Desiccation tolerance is a remarkable feature of pollen, seeds, and resurrection-type plants. Exposure to desiccation stress can cause sporophytic defects, resulting in male sterility. Here, we report the novel maize sterility gene DRP1 (Desiccation-Related Protein 1), which was identified by bulked-segregant analysis sequencing and encodes a desiccation-related protein. Loss of function of DRP1 results in abnormal Ubisch bodies, defective tectum of the pollen exine, and complete male sterility. Our results suggest that DRP1 may facilitate anther dehydration to maintain appropriate water status. DRP1 is a secretory protein that is specifically expressed in the tapetum and microspore from the tetrad to the uninucleate microspore stage. Differentially expressed genes in drp1 are enriched in Gene Ontology terms for pollen exine formation, polysaccharide catabolic process, extracellular region, and response to heat. In addition, DRP1 is a target of selection that appears to have played an important role in the spread of maize from tropical/subtropical to temperate regions. Taken together, our results suggest that DRP1 encodes a desiccation-related protein whose loss of function causes male sterility. Our findings provide a potential genetic resource that may be used to design crops for heterosis utilization.
Collapse
Affiliation(s)
- Mingjian Hu
- State Key Laboratory of Plant Physiology and Biochemistry and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, China
- State Key Laboratory of Wheat and Maize Crop Science and Center for Crop Genome Engineering, Henan Agricultural University, Zhengzhou, China
| | - Yunfei Li
- State Key Laboratory of Plant Physiology and Biochemistry and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, China
| | - Xiangbo Zhang
- State Key Laboratory of Plant Physiology and Biochemistry and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, China
| | - Weibin Song
- State Key Laboratory of Plant Physiology and Biochemistry and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, China
| | - Weiwei Jin
- State Key Laboratory of Plant Physiology and Biochemistry and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, China
- College of Agronomy & Resources and Environment, Tianjin Agricultural University, Tianjin, China
| | - Wei Huang
- State Key Laboratory of Plant Physiology and Biochemistry and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, China
| | - Haiming Zhao
- State Key Laboratory of Plant Physiology and Biochemistry and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, China
| |
Collapse
|
19
|
Zhang Y, Li Y, Zhong X, Wang J, Zhou L, Han Y, Li D, Wang N, Huang X, Zhu J, Yang Z. Mutation of glucose-methanol-choline oxidoreductase leads to thermosensitive genic male sterility in rice and Arabidopsis. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:2023-2035. [PMID: 35781755 PMCID: PMC9491461 DOI: 10.1111/pbi.13886] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 05/28/2022] [Accepted: 06/26/2022] [Indexed: 05/30/2023]
Abstract
Thermosensitive genic male sterility (TGMS) lines serve as the major genetic resource for two-line hybrid breeding in rice. However, their unstable sterility under occasional low temperatures in summer highly limits their application. In this study, we identified a novel rice TGMS line, ostms18, of cultivar ZH11 (Oryza sativa ssp. japonica). ostms18 sterility is more stable in summer than the TGMS line carrying the widely used locus tms5 in the ZH11 genetic background, suggesting its potential application for rice breeding. The ostms18 TGMS trait is caused by the point mutation from Gly to Ser in a glucose-methanol-choline (GMC) oxidoreductase; knockout of the oxidoreductase was previously reported to cause complete male sterility. Cellular analysis revealed the pollen wall of ostms18 to be defective, leading to aborted pollen under high temperature. Further analysis showed that the tapetal transcription factor OsMS188 directly regulates OsTMS18 for pollen wall formation. Under low temperature, the flawed pollen wall in ostms18 is sufficient to protect its microspore, allowing for development of functional pollen and restoring fertility. We identified the orthologous gene in Arabidopsis. Although mutants for the gene were fertile under normal conditions (24°C), fertility was significantly reduced under high temperature (28°C), exhibiting a TGMS trait. A cellular mechanism integrated with genetic mutations and different plant species for fertility restoration of TGMS lines is proposed.
Collapse
Affiliation(s)
- Yan‐Fei Zhang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life SciencesShanghai Normal UniversityShanghaiChina
- Development Center of Plant Germplasm Resources, College of Life SciencesShanghai Normal UniversityShanghaiChina
| | - Yue‐Ling Li
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life SciencesShanghai Normal UniversityShanghaiChina
- Zhejiang Provincial Key Laboratory of Plant Evolutionary and ConservationTaizhou UniversityTaizhouChina
| | - Xiang Zhong
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life SciencesShanghai Normal UniversityShanghaiChina
| | - Jun‐Jie Wang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life SciencesShanghai Normal UniversityShanghaiChina
| | - Lei Zhou
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life SciencesShanghai Normal UniversityShanghaiChina
- Development Center of Plant Germplasm Resources, College of Life SciencesShanghai Normal UniversityShanghaiChina
| | - Yu Han
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life SciencesShanghai Normal UniversityShanghaiChina
- Development Center of Plant Germplasm Resources, College of Life SciencesShanghai Normal UniversityShanghaiChina
| | - Dan‐Dan Li
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life SciencesShanghai Normal UniversityShanghaiChina
| | - Na Wang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life SciencesShanghai Normal UniversityShanghaiChina
| | - Xue‐Hui Huang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life SciencesShanghai Normal UniversityShanghaiChina
| | - Jun Zhu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life SciencesShanghai Normal UniversityShanghaiChina
| | - Zhong‐Nan Yang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life SciencesShanghai Normal UniversityShanghaiChina
- Development Center of Plant Germplasm Resources, College of Life SciencesShanghai Normal UniversityShanghaiChina
| |
Collapse
|
20
|
Fang C, Wu S, Niu C, Hou Q, An X, Wei X, Zhao L, Jiang Y, Liu X, Wan X. Triphasic regulation of ZmMs13 encoding an ABCG transporter is sequentially required for callose dissolution, pollen exine and anther cuticle formation in maize. J Adv Res 2022:S2090-1232(22)00208-9. [PMID: 36130683 DOI: 10.1016/j.jare.2022.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/08/2022] [Accepted: 09/13/2022] [Indexed: 10/14/2022] Open
Abstract
INTRODUCTION ATP Binding Cassette G (ABCG) transporters are associated with plant male reproduction, while their regulatory mechanisms underlying anther and pollen development remain largely unknown. OBJECTIVES Identify and characterize a male-sterility gene ZmMs13 encoding an ABCG transporter in modulating anther and pollen development in maize. METHODS Phenotypic, cytological observations, and histochemistry staining were performed to characterize the ms13-6060 mutant. Map-based cloning and CRISPR/Cas9 gene editing were used to identify ZmMs13 gene. RNA-seq data and qPCR analyses, phylogenetic and microsynteny analyses, transient dual-luciferase reporter and EMSA assays, subcellular localization, and ATPase activity and lipidomic analyses were carried out to determine the regulatory mechanisms of ZmMs13 gene. RESULTS Maize ms13-6060 mutant displays complete male sterility with delayed callose degradation, premature tapetal programmed cell death (PCD), and defective pollen exine and anther cuticle formation. ZmMs13 encodes a plasm membrane (PM)- and endoplasmic reticulum (ER)-localized half-size ABCG transporter (ZmABCG2a). The allele of ZmMs13 in ms13-6060 mutant has one amino acid (I311) deletion due to a 3-bp deletion in its fourth exon. The I311 and other conserved amino acid K99 are essential for the ATPase and lipid binding activities of ZmMS13. ZmMs13 is specifically expressed in anthers with three peaks at stages S5, S8b, and S10, which are successively regulated by transcription factors ZmbHLH122, ZmMYB84, and ZmMYB33-1/-2 at these three stages. The triphasic regulation of ZmMs13 is sequentially required for callose dissolution, tapetal PCD and pollen exine development, and anther cuticle formation, corresponding to transcription alterations of callose-, ROS-, PCD-, sporopollenin-, and anther cuticle-related genes in ms13-6060 anthers. CONCLUSION ms13-6060 mutation with one key amino acid (I311) deletion greatly reduces ZmMS13 ATPase and lipid binding activities and displays multiple effects during maize male reproduction. Our findings provide new insights into molecular mechanisms of ABCG transporters controlling anther and pollen development and male fertility in plants.
Collapse
Affiliation(s)
- Chaowei Fang
- Zhongzhi International Institute of Agricultural Biosciences, Research Center of Biology and Agriculture, Shunde Graduate School, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100096, China
| | - Suowei Wu
- Zhongzhi International Institute of Agricultural Biosciences, Research Center of Biology and Agriculture, Shunde Graduate School, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100096, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing 100192, China
| | - Canfang Niu
- Zhongzhi International Institute of Agricultural Biosciences, Research Center of Biology and Agriculture, Shunde Graduate School, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100096, China
| | - Quancan Hou
- Zhongzhi International Institute of Agricultural Biosciences, Research Center of Biology and Agriculture, Shunde Graduate School, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100096, China
| | - Xueli An
- Zhongzhi International Institute of Agricultural Biosciences, Research Center of Biology and Agriculture, Shunde Graduate School, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100096, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing 100192, China
| | - Xun Wei
- Zhongzhi International Institute of Agricultural Biosciences, Research Center of Biology and Agriculture, Shunde Graduate School, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100096, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing 100192, China
| | - Lina Zhao
- Zhongzhi International Institute of Agricultural Biosciences, Research Center of Biology and Agriculture, Shunde Graduate School, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100096, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing 100192, China
| | - Yilin Jiang
- Zhongzhi International Institute of Agricultural Biosciences, Research Center of Biology and Agriculture, Shunde Graduate School, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100096, China
| | - Xinze Liu
- Zhongzhi International Institute of Agricultural Biosciences, Research Center of Biology and Agriculture, Shunde Graduate School, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100096, China
| | - Xiangyuan Wan
- Zhongzhi International Institute of Agricultural Biosciences, Research Center of Biology and Agriculture, Shunde Graduate School, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100096, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing 100192, China.
| |
Collapse
|
21
|
Li Z, Liu S, Zhu T, An X, Wei X, Zhang J, Wu S, Dong Z, Long Y, Wan X. The Loss-Function of the Male Sterile Gene ZmMs33/ZmGPAT6 Results in Severely Oxidative Stress and Metabolic Disorder in Maize Anthers. Cells 2022; 11:cells11152318. [PMID: 35954161 PMCID: PMC9367433 DOI: 10.3390/cells11152318] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/23/2022] [Accepted: 07/25/2022] [Indexed: 02/04/2023] Open
Abstract
In plants, oxidative stress and metabolic reprogramming frequently induce male sterility, however our knowledge of the underlying molecular mechanism is far from complete. Here, a maize genic male-sterility (GMS) mutant (ms33-6038) with a loss-of-function of the ZmMs33 gene encoding glycerol-3-phosphate acyltransferase 6 (GPAT6) displayed severe deficiencies in the development of a four-layer anther wall and microspores and excessive reactive oxygen species (ROS) content in anthers. In ms33-6038 anthers, transcriptome analysis identified thousands of differentially expressed genes that were functionally enriched in stress response and primary metabolism pathways. Further investigation revealed that 64 genes involved in ROS production, scavenging, and signaling were specifically changed in expression levels in ms33-6038 anthers compared to the other five investigated GMS lines. The severe oxidative stress triggered premature tapetal autophagy and metabolic reprogramming mediated mainly by the activated SnRK1-bZIP pathway, as well as the TOR and PP2AC pathways, proven by transcriptome analysis. Furthermore, 20 reported maize GMS genes were altered in expression levels in ms33-6038 anthers. The excessive oxidative stress and the metabolic reprogramming resulted in severe phenotypic deficiencies in ms33-6038 anthers. These findings enrich our understanding of the molecular mechanisms by which ROS and metabolic homeostasis impair anther and pollen development in plants.
Collapse
Affiliation(s)
- Ziwen Li
- Shunde Graduate School, Zhongzhi International Institute of Agricultural Biosciences, Research Center of Biology and Agriculture, University of Science and Technology Beijing, Beijing 100024, China; (Z.L.); (S.L.); (T.Z.); (X.A.); (X.W.); (J.Z.); (S.W.); (Z.D.)
| | - Shuangshuang Liu
- Shunde Graduate School, Zhongzhi International Institute of Agricultural Biosciences, Research Center of Biology and Agriculture, University of Science and Technology Beijing, Beijing 100024, China; (Z.L.); (S.L.); (T.Z.); (X.A.); (X.W.); (J.Z.); (S.W.); (Z.D.)
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co., Ltd., Beijing 100192, China
| | - Taotao Zhu
- Shunde Graduate School, Zhongzhi International Institute of Agricultural Biosciences, Research Center of Biology and Agriculture, University of Science and Technology Beijing, Beijing 100024, China; (Z.L.); (S.L.); (T.Z.); (X.A.); (X.W.); (J.Z.); (S.W.); (Z.D.)
| | - Xueli An
- Shunde Graduate School, Zhongzhi International Institute of Agricultural Biosciences, Research Center of Biology and Agriculture, University of Science and Technology Beijing, Beijing 100024, China; (Z.L.); (S.L.); (T.Z.); (X.A.); (X.W.); (J.Z.); (S.W.); (Z.D.)
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co., Ltd., Beijing 100192, China
| | - Xun Wei
- Shunde Graduate School, Zhongzhi International Institute of Agricultural Biosciences, Research Center of Biology and Agriculture, University of Science and Technology Beijing, Beijing 100024, China; (Z.L.); (S.L.); (T.Z.); (X.A.); (X.W.); (J.Z.); (S.W.); (Z.D.)
| | - Juan Zhang
- Shunde Graduate School, Zhongzhi International Institute of Agricultural Biosciences, Research Center of Biology and Agriculture, University of Science and Technology Beijing, Beijing 100024, China; (Z.L.); (S.L.); (T.Z.); (X.A.); (X.W.); (J.Z.); (S.W.); (Z.D.)
| | - Suowei Wu
- Shunde Graduate School, Zhongzhi International Institute of Agricultural Biosciences, Research Center of Biology and Agriculture, University of Science and Technology Beijing, Beijing 100024, China; (Z.L.); (S.L.); (T.Z.); (X.A.); (X.W.); (J.Z.); (S.W.); (Z.D.)
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co., Ltd., Beijing 100192, China
| | - Zhenying Dong
- Shunde Graduate School, Zhongzhi International Institute of Agricultural Biosciences, Research Center of Biology and Agriculture, University of Science and Technology Beijing, Beijing 100024, China; (Z.L.); (S.L.); (T.Z.); (X.A.); (X.W.); (J.Z.); (S.W.); (Z.D.)
| | - Yan Long
- Shunde Graduate School, Zhongzhi International Institute of Agricultural Biosciences, Research Center of Biology and Agriculture, University of Science and Technology Beijing, Beijing 100024, China; (Z.L.); (S.L.); (T.Z.); (X.A.); (X.W.); (J.Z.); (S.W.); (Z.D.)
- Correspondence: (Y.L.); (X.W.); Tel.: +86-158-1133-2686 (Y.L.); +86-186-0056-1850 (X.W.)
| | - Xiangyuan Wan
- Shunde Graduate School, Zhongzhi International Institute of Agricultural Biosciences, Research Center of Biology and Agriculture, University of Science and Technology Beijing, Beijing 100024, China; (Z.L.); (S.L.); (T.Z.); (X.A.); (X.W.); (J.Z.); (S.W.); (Z.D.)
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co., Ltd., Beijing 100192, China
- Correspondence: (Y.L.); (X.W.); Tel.: +86-158-1133-2686 (Y.L.); +86-186-0056-1850 (X.W.)
| |
Collapse
|
22
|
Han Y, Hu M, Ma X, Yan G, Wang C, Jiang S, Lai J, Zhang M. Exploring key developmental phases and phase-specific genes across the entirety of anther development in maize. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:1394-1410. [PMID: 35607822 PMCID: PMC10360140 DOI: 10.1111/jipb.13276] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
Anther development from stamen primordium to pollen dispersal is complex and essential to sexual reproduction. How this highly dynamic and complex developmental process is controlled genetically is not well understood, especially for genes involved in specific key developmental phases. Here we generated RNA sequencing libraries spanning 10 key stages across the entirety of anther development in maize (Zea mays). Global transcriptome analyses revealed distinct phases of cell division and expansion, meiosis, pollen maturation, and mature pollen, for which we detected 50, 245, 42, and 414 phase-specific marker genes, respectively. Phase-specific transcription factor genes were significantly enriched in the phase of meiosis. The phase-specific expression of these marker genes was highly conserved among the maize lines Chang7-2 and W23, indicating they might have important roles in anther development. We explored a desiccation-related protein gene, ZmDRP1, which was exclusively expressed in the tapetum from the tetrad to the uninucleate microspore stage, by generating knockout mutants. Notably, mutants in ZmDRP1 were completely male-sterile, with abnormal Ubisch bodies and defective pollen exine. Our work provides a glimpse into the gene expression dynamics and a valuable resource for exploring the roles of key phase-specific genes that regulate anther development.
Collapse
Affiliation(s)
- Yingjia Han
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
| | - Mingjian Hu
- State Key Laboratory of Plant Physiology and Biochemistry & National Maize Improvement Center of China Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, China
| | - Xuxu Ma
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
| | - Ge Yan
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chunyu Wang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Siqi Jiang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jinsheng Lai
- State Key Laboratory of Plant Physiology and Biochemistry & National Maize Improvement Center of China Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, China
| | - Mei Zhang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
| |
Collapse
|
23
|
Awan MJA, Pervaiz K, Rasheed A, Amin I, Saeed NA, Dhugga KS, Mansoor S. Genome edited wheat- current advances for the second green revolution. Biotechnol Adv 2022; 60:108006. [PMID: 35732256 DOI: 10.1016/j.biotechadv.2022.108006] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 05/21/2022] [Accepted: 06/15/2022] [Indexed: 11/15/2022]
Abstract
Common wheat is a major source of nutrition around the globe, but unlike maize and rice hybrids, no breakthrough has been made to enhance wheat yield since Green Revolution. With the availability of reference genome sequence of wheat and advancement of allied genomics technologies, understanding of genes involved in grain yield components and disease resistance/susceptibility has opened new avenues for crop improvement. Wheat has a huge hexaploidy genome of approximately 17 GB with 85% repetition, and it is a daunting task to induce any mutation across three homeologues that can be helpful for the enhancement of agronomic traits. The CRISPR-Cas9 system provides a promising platform for genome editing in a site-specific manner. In wheat, CRISPR-Cas9 is being used in the improvement of yield, grain quality, biofortification, resistance against diseases, and tolerance against abiotic factors. The promising outcomes of the CRISPR-based multiplexing approach circumvent the constraint of targeting merely one gene at a time. Deployment of clustered regularly interspaced short palindromic repeats (CRISPR)-associated (Cas) 9 endonuclease (CRISPR-Cas9) and Cas9 variant systems such as cytidine base editing, adenosine base editing, and prime editing in wheat has been used to induce point mutations more precisely. Scientists have acquired major events such as induction of male sterility, fertility restoration, and alteration of seed dormancy through Cas9 in wheat that can facilitate breeding programs for elite variety development. Furthermore, a recent discovery in tissue culturing enables scientists to significantly enhance regeneration efficiency in wheat by transforming the GRF4-GIF1 cassette. Rapid generation advancement by speed breeding technology provides the opportunity for the generation advancement of the desired plants to segregate out unwanted transgenes and allows rapid integration of gene-edited wheat into the breeding pipeline. The combination of these novel technologies addresses some of the most important limiting factors for sustainable and climate-smart wheat that should lead to the second "Green Revolution" for global food security.
Collapse
Affiliation(s)
- Muhammad Jawad Akbar Awan
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Constituent College of Pakistan Institute of Engineering and Applied Sciences, Jhang Road, Faisalabad, Pakistan
| | - Komal Pervaiz
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Constituent College of Pakistan Institute of Engineering and Applied Sciences, Jhang Road, Faisalabad, Pakistan
| | - Awais Rasheed
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan; Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS) & CIMMYT-China office, 12 Zhongguanccun South Street, Beijing 100081, China
| | - Imran Amin
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Constituent College of Pakistan Institute of Engineering and Applied Sciences, Jhang Road, Faisalabad, Pakistan
| | - Nasir A Saeed
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Constituent College of Pakistan Institute of Engineering and Applied Sciences, Jhang Road, Faisalabad, Pakistan
| | - Kanwarpal S Dhugga
- Corteva Agriscience, Johnston, IA, USA; International Maize and Wheat Improvement Center (CIMMYT), El Batan, Mexico
| | - Shahid Mansoor
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Constituent College of Pakistan Institute of Engineering and Applied Sciences, Jhang Road, Faisalabad, Pakistan.
| |
Collapse
|
24
|
Wang Y, Bao J, Wei X, Wu S, Fang C, Li Z, Qi Y, Gao Y, Dong Z, Wan X. Genetic Structure and Molecular Mechanisms Underlying the Formation of Tassel, Anther, and Pollen in the Male Inflorescence of Maize ( Zea mays L.). Cells 2022; 11:1753. [PMID: 35681448 PMCID: PMC9179574 DOI: 10.3390/cells11111753] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/24/2022] [Accepted: 05/24/2022] [Indexed: 02/08/2023] Open
Abstract
Maize tassel is the male reproductive organ which is located at the plant's apex; both its morphological structure and fertility have a profound impact on maize grain yield. More than 40 functional genes regulating the complex tassel traits have been cloned up to now. However, the detailed molecular mechanisms underlying the whole process, from male inflorescence meristem initiation to tassel morphogenesis, are seldom discussed. Here, we summarize the male inflorescence developmental genes and construct a molecular regulatory network to further reveal the molecular mechanisms underlying tassel-trait formation in maize. Meanwhile, as one of the most frequently studied quantitative traits, hundreds of quantitative trait loci (QTLs) and thousands of quantitative trait nucleotides (QTNs) related to tassel morphology have been identified so far. To reveal the genetic structure of tassel traits, we constructed a consensus physical map for tassel traits by summarizing the genetic studies conducted over the past 20 years, and identified 97 hotspot intervals (HSIs) that can be repeatedly mapped in different labs, which will be helpful for marker-assisted selection (MAS) in improving maize yield as well as for providing theoretical guidance in the subsequent identification of the functional genes modulating tassel morphology. In addition, maize is one of the most successful crops in utilizing heterosis; mining of the genic male sterility (GMS) genes is crucial in developing biotechnology-based male-sterility (BMS) systems for seed production and hybrid breeding. In maize, more than 30 GMS genes have been isolated and characterized, and at least 15 GMS genes have been promptly validated by CRISPR/Cas9 mutagenesis within the past two years. We thus summarize the maize GMS genes and further update the molecular regulatory networks underlying male fertility in maize. Taken together, the identified HSIs, genes and molecular mechanisms underlying tassel morphological structure and male fertility are useful for guiding the subsequent cloning of functional genes and for molecular design breeding in maize. Finally, the strategies concerning efficient and rapid isolation of genes controlling tassel morphological structure and male fertility and their application in maize molecular breeding are also discussed.
Collapse
Affiliation(s)
- Yanbo Wang
- Zhongzhi International Institute of Agricultural Biosciences, Shunde Graduate School, Research Center of Biology and Agriculture, University of Science and Technology Beijing, Beijing 100024, China; (Y.W.); (J.B.); (X.W.); (S.W.); (C.F.); (Y.Q.); (Y.G.)
| | - Jianxi Bao
- Zhongzhi International Institute of Agricultural Biosciences, Shunde Graduate School, Research Center of Biology and Agriculture, University of Science and Technology Beijing, Beijing 100024, China; (Y.W.); (J.B.); (X.W.); (S.W.); (C.F.); (Y.Q.); (Y.G.)
| | - Xun Wei
- Zhongzhi International Institute of Agricultural Biosciences, Shunde Graduate School, Research Center of Biology and Agriculture, University of Science and Technology Beijing, Beijing 100024, China; (Y.W.); (J.B.); (X.W.); (S.W.); (C.F.); (Y.Q.); (Y.G.)
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co., Ltd., Beijing 100192, China;
| | - Suowei Wu
- Zhongzhi International Institute of Agricultural Biosciences, Shunde Graduate School, Research Center of Biology and Agriculture, University of Science and Technology Beijing, Beijing 100024, China; (Y.W.); (J.B.); (X.W.); (S.W.); (C.F.); (Y.Q.); (Y.G.)
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co., Ltd., Beijing 100192, China;
| | - Chaowei Fang
- Zhongzhi International Institute of Agricultural Biosciences, Shunde Graduate School, Research Center of Biology and Agriculture, University of Science and Technology Beijing, Beijing 100024, China; (Y.W.); (J.B.); (X.W.); (S.W.); (C.F.); (Y.Q.); (Y.G.)
| | - Ziwen Li
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co., Ltd., Beijing 100192, China;
| | - Yuchen Qi
- Zhongzhi International Institute of Agricultural Biosciences, Shunde Graduate School, Research Center of Biology and Agriculture, University of Science and Technology Beijing, Beijing 100024, China; (Y.W.); (J.B.); (X.W.); (S.W.); (C.F.); (Y.Q.); (Y.G.)
| | - Yuexin Gao
- Zhongzhi International Institute of Agricultural Biosciences, Shunde Graduate School, Research Center of Biology and Agriculture, University of Science and Technology Beijing, Beijing 100024, China; (Y.W.); (J.B.); (X.W.); (S.W.); (C.F.); (Y.Q.); (Y.G.)
| | - Zhenying Dong
- Zhongzhi International Institute of Agricultural Biosciences, Shunde Graduate School, Research Center of Biology and Agriculture, University of Science and Technology Beijing, Beijing 100024, China; (Y.W.); (J.B.); (X.W.); (S.W.); (C.F.); (Y.Q.); (Y.G.)
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co., Ltd., Beijing 100192, China;
| | - Xiangyuan Wan
- Zhongzhi International Institute of Agricultural Biosciences, Shunde Graduate School, Research Center of Biology and Agriculture, University of Science and Technology Beijing, Beijing 100024, China; (Y.W.); (J.B.); (X.W.); (S.W.); (C.F.); (Y.Q.); (Y.G.)
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co., Ltd., Beijing 100192, China;
| |
Collapse
|
25
|
Ye Q, Meng X, Chen H, Wu J, Zheng L, Shen C, Guo D, Zhao Y, Liu J, Xue Q, Dong J, Wang T. Construction of genic male sterility system by CRISPR/Cas9 editing from model legume to alfalfa. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:613-615. [PMID: 34962045 PMCID: PMC8989503 DOI: 10.1111/pbi.13770] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 12/14/2021] [Accepted: 12/21/2021] [Indexed: 06/14/2023]
Affiliation(s)
- Qinyi Ye
- State Key Laboratory of AgrobiotechnologyCollege of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Xiangzhao Meng
- State Key Laboratory of AgrobiotechnologyCollege of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Hong Chen
- State Key Laboratory of AgrobiotechnologyCollege of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Jiale Wu
- State Key Laboratory of AgrobiotechnologyCollege of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Lihua Zheng
- State Key Laboratory of AgrobiotechnologyCollege of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Chen Shen
- State Key Laboratory of AgrobiotechnologyCollege of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Da Guo
- State Key Laboratory of AgrobiotechnologyCollege of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Yafei Zhao
- State Key Laboratory of AgrobiotechnologyCollege of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Jinling Liu
- State Key Laboratory of AgrobiotechnologyCollege of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Qixia Xue
- State Key Laboratory of AgrobiotechnologyCollege of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Jiangli Dong
- State Key Laboratory of AgrobiotechnologyCollege of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Tao Wang
- State Key Laboratory of AgrobiotechnologyCollege of Biological SciencesChina Agricultural UniversityBeijingChina
| |
Collapse
|
26
|
iTRAQ and PRM -based proteomics analysis for the identification of differentially abundant proteins related to male sterility in ms-7 mutant tomato (Solanum lycoperscium) plants. J Proteomics 2022; 261:104557. [DOI: 10.1016/j.jprot.2022.104557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/28/2022] [Accepted: 02/28/2022] [Indexed: 11/20/2022]
|
27
|
A putative SUBTILISIN-LIKE SERINE PROTEASE 1 (SUBSrP1) regulates anther cuticle biosynthesis and panicle development in rice. J Adv Res 2022; 42:273-287. [PMID: 36513418 PMCID: PMC9788943 DOI: 10.1016/j.jare.2022.01.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/24/2021] [Accepted: 01/04/2022] [Indexed: 02/06/2023] Open
Abstract
INTRODUCTION Panicle abortion is a severe physiological defect and causes a reduction in grain yield. OBJECTIVES In this study, we aim to provide the characterization and functional analysis of a mutant apa1331 (apical panicle abortion1331). METHODS The isolated mutant from an EMS-mutagenized population was subjected to SSR analysis and Mutmap assay for candidate gene mapping. We performed phenotypic analysis, anthers cross-sections morphology, wax and cutin profiling, biochemical assays and phylogenetic analysis for characterization and evaluation of apa1331. We used CRISPR/Cas9 disruption for functional validation of its candidate gene. Furthermore, comparative RNA-seq and relative expression analysis were performed to get further insights into mechanistic role of the candidate gene. RESULTS The anthers from the apical spikelets of apa1331 were degenerated, pollen-less and showed defects in cuticle formation. Transverse sections of apa1331 anthers showed defects in post-meiotic microspore development at stage 8-9. Gas Chromatography showed a significant reduction of wax and cutin in anthers of apa1331 compared to Wildtype (WT). Quantification of H2O2 and MDA has indicated the excessive ROS (reactive oxygen species) in apa1331. Trypan blue staining and TUNEL assay revealed cell death and excessive DNA fragmentation in apa1331. Map-based cloning and Mutmap analysis revealed that LOC_Os04g40720, encoding a putative SUBTILISIN-LIKE SERINE PROTEASE (OsSUBSrP1), harbored an SNP (A > G) in apa1331. Phenotypic defects were only seen in apical spikelets due to highest expression of OsSUBSrP1 in upper panicle portion. CRISPR-mediated knock-out lines of OsSUBSrP1 displayed spikelet abortion comparable to apa1331. Global gene expression analysis revealed a significant downregulation of wax and cutin biosynthesis genes. CONCLUSIONS Our study reports the novel role of SUBSrP1 in anther cuticle biosynthesis by ROS-mediated programmed cell death in rice.
Collapse
|
28
|
Liu X, Yue Y, Gu Z, Huang Q, Pan Z, Zhao Z, Zheng M, Zhang Z, Li C, Yi H, Yu T, Cao M. The characterization and candidate gene isolation for a novel male-sterile mutant ms40 in maize. PLANT CELL REPORTS 2021; 40:1957-1970. [PMID: 34319484 DOI: 10.1007/s00299-021-02762-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 07/22/2021] [Indexed: 06/13/2023]
Abstract
A novel genic male-sterile mutant ms40 was obtained from EMS treated RP125. The key candidate gene ZmbHLH51 located on chromosome 4 was identified by map-based cloning. This study further enriched the male sterile gene resources for both production applications and theoretical studies of abortion mechanisms. Maize male-sterile mutant 40 (ms40) was obtained from the progeny of the ethyl methanesulfonate (EMS) treated inbred line RP125. Genetic analysis indicated that the sterility was controlled by a single recessive nuclear gene. Cytological observation of anthers revealed that the cuticles of ms40 anthers were abnormal, and no Ubisch bodies were observed on the inner surface of ms40 anthers through scanning electron microscopy(SEM). Moreover, its tapetum exhibited delayed degradation and then blocked the formation of normal microspores. Using map-based cloning strategy, the ms40 locus was found to locate in a 282-kb interval on chromosome 4, and five annotated genes were predicted within this region. PCR-based sequencing detected a single non-synonymous SNP (G > A) that changed glycine (G) to arginine (A) in the seventh exon of Zm00001d053895, while no sequence difference between ms40 and RP125 was found for the other four genes. Zm00001d053895 encodes the bHLH transcription factor ZmbHLH51 which is localized in the nucleus. Phylogenetic analysis showed that ZmbHLH51 had the highest homology with Sb04g001650, a tapetum degeneration retardation (TDR) bHLH transcription factor in Sorghum bicolor. Co-expression analysis revealed a total of 1192 genes co-expressed with ZmbHLH51 in maize, 647 of which were anther-specific genes. qRT-PCR results suggested the expression levels of some known genes related to anther development were affected in ms40. In summary, these findings revealed the abortion characteristics of ms40 anthers and lay a foundation for further studies on the mechanisms of male fertility.
Collapse
Affiliation(s)
- Xiaowei Liu
- Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yujing Yue
- Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Zicheng Gu
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Qiang Huang
- Maize Research Institute, Sichuan Agricultural University, Chengdu, China
- Sichuan Institute of Atomic Energy, Chengdu, China
| | - Zijin Pan
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Zhuofan Zhao
- Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Mingmin Zheng
- Maize Research Institute, Sichuan Agricultural University, Chengdu, China
- College of Chemistry and Life Sciences, Chengdu Normal University, Chengdu, China
| | - Zhiming Zhang
- College of Life Sciences, Shandong Agricultural University, Tai'an, China
| | - Chuan Li
- Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Hongyang Yi
- Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Tao Yu
- Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Moju Cao
- Maize Research Institute, Sichuan Agricultural University, Chengdu, China.
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, China.
| |
Collapse
|
29
|
Yang Q, Nong X, Xu J, Huang F, Wang F, Wu J, Zhang C, Liu C. Unraveling the Genetic Basis of Fertility Restoration for Cytoplasmic Male Sterile Line WNJ01A Originated From Brassica juncea in Brassica napus. FRONTIERS IN PLANT SCIENCE 2021; 12:721980. [PMID: 34531887 PMCID: PMC8438535 DOI: 10.3389/fpls.2021.721980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 08/05/2021] [Indexed: 06/13/2023]
Abstract
Crosses that lead to heterosis have been widely used in the rapeseed (Brassica napus L.) industry. Cytoplasmic male sterility (CMS)/restorer-of-fertility (Rf) systems represent one of the most useful tools for rapeseed production. Several CMS types and their restorer lines have been identified in rapeseed, but there are few studies on the mechanisms underlying fertility restoration. Here, we performed morphological observation, map-based cloning, and transcriptomic analysis of the F2 population developed by crossing the CMS line WNJ01A with its restorer line Hui01. Paraffin-embedded sections showed that the sporogenous cell stage was the critical pollen degeneration period, with major sporogenous cells displaying loose and irregular arrangement in sterile anthers. Most mitochondrial electron transport chain (mtETC) complex genes were upregulated in fertile compared to sterile buds. Using bulked segregant analysis (BSA)-seq to analyze mixed DNA pools from sterile and fertile F2 buds, respectively, we identified a 6.25 Mb candidate interval where Rfw is located. Using map-based cloning experiments combined with bacterial artificial chromosome (BAC) clone sequencing, the candidate interval was reduced to 99.75 kb and two pentatricopeptide repeat (PPR) genes were found among 28 predicted genes in this interval. Transcriptome sequencing showed that there were 1679 DEGs (1023 upregulated and 656 downregulated) in fertile compared to sterile F2 buds. The upregulated differentially expressed genes (DEGs) were enriched in the Kyoto Encyclopedia of Genes and Genomes (KEGG) lysine degradation pathway and phenylalanine metabolism, and the downregulated DEGs were enriched in cutin, suberine, and wax biosynthesis. Furthermore, 44 DEGs were involved in pollen and anther development, such as tapetum, microspores, and pollen wall development. All of them were upregulated except a few such as POE1 genes (which encode Pollen Ole e I allergen and extensin family proteins). There were 261 specifically expressed DEGs (9 and 252 in sterile and fertile buds, respectively). Regarding the fertile bud-specific upregulated DEGs, the ubiquitin-proteasome pathway was enriched. The top four hub genes in the protein-protein interaction network (BnaA09g56400D, BnaA10g18210D, BnaA10g18220D, and BnaC09g41740D) encode RAD23d proteins, which deliver ubiquitinated substrates to the 26S proteasome. These findings provide evidence on the pathways regulated by Rfw and improve our understanding of fertility restoration.
Collapse
|
30
|
ZmFAR1 and ZmABCG26 Regulated by microRNA Are Essential for Lipid Metabolism in Maize Anther. Int J Mol Sci 2021; 22:ijms22157916. [PMID: 34360681 PMCID: PMC8348775 DOI: 10.3390/ijms22157916] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/18/2021] [Accepted: 07/21/2021] [Indexed: 12/12/2022] Open
Abstract
The function and regulation of lipid metabolic genes are essential for plant male reproduction. However, expression regulation of lipid metabolic genic male sterility (GMS) genes by noncoding RNAs is largely unclear. Here, we systematically predicted the microRNA regulators of 34 maize white brown complex members in ATP-binding cassette transporter G subfamily (WBC/ABCG) genes using transcriptome analysis. Results indicate that the ZmABCG26 transcript was predicted to be targeted by zma-miR164h-5p, and their expression levels were negatively correlated in maize B73 and Oh43 genetic backgrounds based on both transcriptome data and qRT-PCR experiments. CRISPR/Cas9-induced gene mutagenesis was performed on ZmABCG26 and another lipid metabolic gene, ZmFAR1. DNA sequencing, phenotypic, and cytological observations demonstrated that both ZmABCG26 and ZmFAR1 are GMS genes in maize. Notably, ZmABCG26 proteins are localized in the endoplasmic reticulum (ER), chloroplast/plastid, and plasma membrane. Furthermore, ZmFAR1 shows catalytic activities to three CoA substrates in vitro with the activity order of C12:0-CoA > C16:0-CoA > C18:0-CoA, and its four key amino acid sites were critical to its catalytic activities. Lipidomics analysis revealed decreased cutin amounts and increased wax contents in anthers of both zmabcg26 and zmfar1 GMS mutants. A more detailed analysis exhibited differential changes in 54 monomer contents between wild type and mutants, as well as between zmabcg26 and zmfar1. These findings will promote a deeper understanding of miRNA-regulated lipid metabolic genes and the functional diversity of lipid metabolic genes, contributing to lipid biosynthesis in maize anthers. Additionally, cosegregating molecular markers for ZmABCG26 and ZmFAR1 were developed to facilitate the breeding of male sterile lines.
Collapse
|
31
|
Nadeem M, Chen A, Hong H, Li D, Li J, Zhao D, Wang W, Wang X, Qiu L. GmMs1 encodes a kinesin-like protein essential for male fertility in soybean (Glycine max L.). JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:1054-1064. [PMID: 33963661 DOI: 10.1111/jipb.13110] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 05/05/2021] [Indexed: 05/27/2023]
Abstract
The application of heterosis is a promising approach for greatly increasing yield in soybean (Glycine max L.). Nuclear male sterility is essential for hybrid seed production and the utilization of heterosis. Here we report the cloning of the gene underlying the soybean male-sterile mutant ms-1, which has been widely used for recurrent selection in soybean breeding programs. We initially delimited the ms1 locus to a 16.15 kb region on chromosome 13, based on SLAF_BSA sequencing followed by genotyping of an F2 population segregating for the locus. Compared with the same region in fertile plants, the mutant region lacks a sequence of approximately 38.7 kb containing five protein-coding genes, including an ortholog of the kinesin-like protein gene NACK2, named GmMs1. The GmMs1 knockout plants generated via CRISPR/Cas-mediated gene editing displayed a complete male-sterile phenotype. Metabolic profiling showed that fertile anthers accumulated starch and sucrose normally, whereas sterile anthers had higher anthocyanin levels and lower flavonoid levels and lower antioxidant enzyme activities. These results provide insights into the molecular mechanisms governing male sterility and demonstrate that GmMs1 could be used to create male-sterile lines through targeted mutagenesis. These findings pave the way for designing seed production technology and an intelligent male-sterile line system to utilize heterosis in soybean.
Collapse
Affiliation(s)
- Muhammad Nadeem
- School of Agronomy, Anhui Agricultural University, Hefei, 230036, China
| | - Andong Chen
- School of Agronomy, Anhui Agricultural University, Hefei, 230036, China
| | - Huilong Hong
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI)/Key Laboratory of Crop Gene Resource and Germplasm Enhancement (MOA), Institute of Crop Sciences, The Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Dongdong Li
- School of Agronomy, Anhui Agricultural University, Hefei, 230036, China
| | - Jiajia Li
- School of Agronomy, Anhui Agricultural University, Hefei, 230036, China
| | - Duo Zhao
- School of Agronomy, Anhui Agricultural University, Hefei, 230036, China
| | - Wei Wang
- School of Agronomy, Anhui Agricultural University, Hefei, 230036, China
| | - Xiaobo Wang
- School of Agronomy, Anhui Agricultural University, Hefei, 230036, China
| | - Lijuan Qiu
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI)/Key Laboratory of Crop Gene Resource and Germplasm Enhancement (MOA), Institute of Crop Sciences, The Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| |
Collapse
|
32
|
Zhang S, Wu S, Niu C, Liu D, Yan T, Tian Y, Liu S, Xie K, Li Z, Wang Y, Zhao W, Dong Z, Zhu T, Hou Q, Ma B, An X, Li J, Wan X. ZmMs25 encoding a plastid-localized fatty acyl reductase is critical for anther and pollen development in maize. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:4298-4318. [PMID: 33822021 DOI: 10.1093/jxb/erab142] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 03/25/2021] [Indexed: 06/12/2023]
Abstract
Fatty acyl reductases (FARs) catalyse the reduction of fatty acyl-coenzyme A (CoA) or -acyl carrier protein (ACP) substrates to primary fatty alcohols, which play essential roles in lipid metabolism in plants. However, the mechanism by which FARs are involved in male reproduction is poorly defined. Here, we found that two maize allelic mutants, ms25-6065 and ms25-6057, displayed defective anther cuticles, abnormal Ubisch body formation, impaired pollen exine formation and complete male sterility. Based on map-based cloning and CRISPR/Cas9 mutagenesis, Zm00001d048337 was identified as ZmMs25, encoding a plastid-localized FAR with catalytic activities to multiple acyl-CoA substrates in vitro. Four conserved residues (G101, G104, Y327 and K331) of ZmMs25 were critical for its activity. ZmMs25 was predominantly expressed in anther, and was directly regulated by transcription factor ZmMYB84. Lipidomics analysis revealed that ms25 mutation had significant effects on reducing cutin monomers and internal lipids, and altering the composition of cuticular wax in anthers. Moreover, loss of function of ZmMs25 significantly affected the expression of its four paralogous genes and five cloned lipid metabolic male-sterility genes in maize. These data suggest that ZmMs25 is required for anther development and male fertility, indicating its application potential in maize and other crops.
Collapse
Affiliation(s)
- Simiao Zhang
- Zhongzhi International Institute of Agricultural Biosciences, Biology and Agriculture Research Center of USTB, University of Science and Technology Beijing (USTB), Beijing 100024, China
| | - Suowei Wu
- Zhongzhi International Institute of Agricultural Biosciences, Biology and Agriculture Research Center of USTB, University of Science and Technology Beijing (USTB), Beijing 100024, China
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing 100192, China
| | - Canfang Niu
- Zhongzhi International Institute of Agricultural Biosciences, Biology and Agriculture Research Center of USTB, University of Science and Technology Beijing (USTB), Beijing 100024, China
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing 100192, China
| | - Dongcheng Liu
- Zhongzhi International Institute of Agricultural Biosciences, Biology and Agriculture Research Center of USTB, University of Science and Technology Beijing (USTB), Beijing 100024, China
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing 100192, China
| | - Tingwei Yan
- Zhongzhi International Institute of Agricultural Biosciences, Biology and Agriculture Research Center of USTB, University of Science and Technology Beijing (USTB), Beijing 100024, China
| | - Youhui Tian
- Zhongzhi International Institute of Agricultural Biosciences, Biology and Agriculture Research Center of USTB, University of Science and Technology Beijing (USTB), Beijing 100024, China
| | - Shuangshuang Liu
- Zhongzhi International Institute of Agricultural Biosciences, Biology and Agriculture Research Center of USTB, University of Science and Technology Beijing (USTB), Beijing 100024, China
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing 100192, China
| | - Ke Xie
- Zhongzhi International Institute of Agricultural Biosciences, Biology and Agriculture Research Center of USTB, University of Science and Technology Beijing (USTB), Beijing 100024, China
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing 100192, China
| | - Ziwen Li
- Zhongzhi International Institute of Agricultural Biosciences, Biology and Agriculture Research Center of USTB, University of Science and Technology Beijing (USTB), Beijing 100024, China
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing 100192, China
| | - Yanbo Wang
- Zhongzhi International Institute of Agricultural Biosciences, Biology and Agriculture Research Center of USTB, University of Science and Technology Beijing (USTB), Beijing 100024, China
| | - Wei Zhao
- Zhongzhi International Institute of Agricultural Biosciences, Biology and Agriculture Research Center of USTB, University of Science and Technology Beijing (USTB), Beijing 100024, China
| | - Zhenying Dong
- Zhongzhi International Institute of Agricultural Biosciences, Biology and Agriculture Research Center of USTB, University of Science and Technology Beijing (USTB), Beijing 100024, China
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing 100192, China
| | - Taotao Zhu
- Zhongzhi International Institute of Agricultural Biosciences, Biology and Agriculture Research Center of USTB, University of Science and Technology Beijing (USTB), Beijing 100024, China
| | - Quancan Hou
- Zhongzhi International Institute of Agricultural Biosciences, Biology and Agriculture Research Center of USTB, University of Science and Technology Beijing (USTB), Beijing 100024, China
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing 100192, China
| | - Biao Ma
- Zhongzhi International Institute of Agricultural Biosciences, Biology and Agriculture Research Center of USTB, University of Science and Technology Beijing (USTB), Beijing 100024, China
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing 100192, China
| | - Xueli An
- Zhongzhi International Institute of Agricultural Biosciences, Biology and Agriculture Research Center of USTB, University of Science and Technology Beijing (USTB), Beijing 100024, China
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing 100192, China
| | - Jinping Li
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing 100192, China
| | - Xiangyuan Wan
- Zhongzhi International Institute of Agricultural Biosciences, Biology and Agriculture Research Center of USTB, University of Science and Technology Beijing (USTB), Beijing 100024, China
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing 100192, China
| |
Collapse
|
33
|
Li Y, Huang Y, Pan L, Zhao Y, Huang W, Jin W. Male sterile 28 encodes an ARGONAUTE family protein essential for male fertility in maize. Chromosome Res 2021; 29:189-201. [PMID: 33651229 DOI: 10.1007/s10577-021-09653-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 01/31/2021] [Accepted: 02/02/2021] [Indexed: 12/01/2022]
Abstract
Male sterility is a common biological phenomenon in plants and is a useful trait for hybrid seed production. Normal tapetum development is essential for viable pollen generation. Although many genes involved in tapetum differentiation and degradation have been isolated in maize, elements that regulate tapetum development during pollen mother cell (PMC) meiosis are less studied. Here, we characterized a classical male-sterile mutant male sterile 28 (ms28) in maize. The ms28 mutant had a regular male meiosis process, while its tapetum cells showed premature vacuolation at the early meiotic prophase stage. Using map-based cloning, we cloned the Ms28 gene and confirmed its role in male fertility in maize together with two allelic mutants. Ms28 encodes the ARGONAUTE (AGO) family protein ZmAGO5c, and its transcripts primarily accumulate in premeiosis anthers, with more intense signals in PMCs. Transcriptomic analysis revealed that genes related to anther development, cell division, and reproductive structure development processes were differentially expressed between the ms28 mutant and its fertile siblings. Moreover, small RNA (sRNA) sequencing revealed that the small interfering RNA (siRNA) and microRNA (miRNA) abundances were obviously changed in ms28 meiotic anthers, which indicated that Ms28 may regulate tapetal cell development through small RNA-mediated epigenetic regulatory pathways. Taken together, our results shed more light on the functional mechanisms of the early development of the tapetum for male fertility in maize.
Collapse
Affiliation(s)
- Yunfei Li
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, Key Laboratory of Crop Heterosis and Utilization, Ministry of Education (MOE), China Agricultural University, Beijing, 100193, China
| | - Yumin Huang
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, Key Laboratory of Crop Heterosis and Utilization, Ministry of Education (MOE), China Agricultural University, Beijing, 100193, China
| | - Lingling Pan
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, Key Laboratory of Crop Heterosis and Utilization, Ministry of Education (MOE), China Agricultural University, Beijing, 100193, China
| | - Yue Zhao
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, Key Laboratory of Crop Heterosis and Utilization, Ministry of Education (MOE), China Agricultural University, Beijing, 100193, China
| | - Wei Huang
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, Key Laboratory of Crop Heterosis and Utilization, Ministry of Education (MOE), China Agricultural University, Beijing, 100193, China.
| | - Weiwei Jin
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, Key Laboratory of Crop Heterosis and Utilization, Ministry of Education (MOE), China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
34
|
Chen G, Zhou Y, Kishchenko O, Stepanenko A, Jatayev S, Zhang D, Borisjuk N. Gene editing to facilitate hybrid crop production. Biotechnol Adv 2020; 46:107676. [PMID: 33285253 DOI: 10.1016/j.biotechadv.2020.107676] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 11/23/2020] [Accepted: 11/28/2020] [Indexed: 11/18/2022]
Abstract
Capturing heterosis (hybrid vigor) is a promising way to increase productivity in many crops; hybrid crops often have superior yields, disease resistance, and stress tolerance compared with their parental inbred lines. The full utilization of heterosis faces a number of technical problems related to the specifics of crop reproductive biology, such as difficulties with generating and maintaining male-sterile lines and the low efficiency of natural cross-pollination for some genetic combinations. Innovative technologies, such as development of artificial in vitro systems for hybrid production and apomixis-based systems for maintenance of the resulting heterotic progeny, may substantially facilitate the production of hybrids. Genome editing using specifically targeted nucleases, such as clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated nuclease 9 (CRISPR/Cas9) systems, which recognize targets by RNA:DNA complementarity, has recently become an integral part of research and development in life science. In this review, we summarize the progress of genome editing technologies for facilitating the generation of mutant male sterile lines, applications of haploids for hybrid production, and the use of apomixis for the clonal propagation of elite hybrid lines.
Collapse
Affiliation(s)
- Guimin Chen
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, School of Life Sciences, Huaiyin Normal University, Huai'an, China; Jiangsu Collaborative Innovation Centre of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huai'an, China
| | - Yuzhen Zhou
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, School of Life Sciences, Huaiyin Normal University, Huai'an, China; Jiangsu Collaborative Innovation Centre of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huai'an, China.
| | - Olena Kishchenko
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, School of Life Sciences, Huaiyin Normal University, Huai'an, China; Jiangsu Collaborative Innovation Centre of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huai'an, China; Institute of Cell Biology & Genetic Engineering, National Academy of Science of Ukraine, Kyiv, Ukraine.
| | - Anton Stepanenko
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, School of Life Sciences, Huaiyin Normal University, Huai'an, China; Jiangsu Collaborative Innovation Centre of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huai'an, China; Institute of Cell Biology & Genetic Engineering, National Academy of Science of Ukraine, Kyiv, Ukraine.
| | - Satyvaldy Jatayev
- Faculty of Agronomy, S. Seifullin Kazakh AgroTechnical University, Nur-Sultan, Kazakhstan
| | - Dabing Zhang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China; School of Agriculture, Food and Wine, University of Adelaide, Glen Osmond, SA, Australia.
| | - Nikolai Borisjuk
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, School of Life Sciences, Huaiyin Normal University, Huai'an, China; Jiangsu Collaborative Innovation Centre of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huai'an, China.
| |
Collapse
|
35
|
Zhu T, Li Z, An X, Long Y, Xue X, Xie K, Ma B, Zhang D, Guan Y, Niu C, Dong Z, Hou Q, Zhao L, Wu S, Li J, Jin W, Wan X. Normal Structure and Function of Endothecium Chloroplasts Maintained by ZmMs33-Mediated Lipid Biosynthesis in Tapetal Cells Are Critical for Anther Development in Maize. MOLECULAR PLANT 2020; 13:1624-1643. [PMID: 32956899 DOI: 10.1016/j.molp.2020.09.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/19/2020] [Accepted: 09/15/2020] [Indexed: 05/06/2023]
Abstract
Genic male sterility (GMS) is critical for heterosis utilization and hybrid seed production. Although GMS mutants and genes have been studied extensively in plants, it has remained unclear whether chloroplast-associated photosynthetic and metabolic activities are involved in the regulation of anther development. In this study, we characterized the function of ZmMs33/ZmGPAT6, which encodes a member of the glycerol-3-phosphate acyltransferase (GPAT) family that catalyzes the first step of the glycerolipid synthetic pathway. We found that normal structure and function of endothecium (En) chloroplasts maintained by ZmMs33-mediated lipid biosynthesis in tapetal cells are crucial for maize anther development. ZmMs33 is expressed mainly in the tapetum at early anther developmental stages and critical for cell proliferation and expansion at late stages. Chloroplasts in En cells of wild-type anthers function as starch storage sites before stage 10 but as photosynthetic factories since stage 10 to enable starch metabolism and carbohydrate supply. Loss of ZmMs33 function inhibits the biosynthesis of glycolipids and phospholipids, which are major components of En chloroplast membranes, and disrupts the development and function of En chloroplasts, resulting in the formation of abnormal En chloroplasts containing numerous starch granules. Further analyses reveal that starch synthesis during the day and starch degradation at night are greatly suppressed in the mutant anthers, leading to carbon starvation and low energy status, as evidenced by low trehalose-6-phosphate content and a reduced ATP/AMP ratio. The energy sensor and inducer of autophagy, SnRK1, was activated to induce early and excessive autophagy, premature PCD, and metabolic reprogramming in tapetal cells, finally arresting the elongation and development of mutant anthers. Taken together, our results not only show that ZmMs33 is required for normal structure and function of En chloroplasts but also reveal that starch metabolism and photosynthetic activities of En chloroplasts at different developmental stages are essential for normal anther development. These findings provide novel insights for understanding how lipid biosynthesis in the tapetum, the structure and function of En chloroplasts, and energy and substance metabolism are coordinated to maintain maize anther development.
Collapse
Affiliation(s)
- Taotao Zhu
- Zhongzhi International Institute of Agricultural Biosciences, Biology and Agriculture Research Center of USTB, University of Science and Technology Beijing (USTB), Beijing 100024, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing 100192, China
| | - Ziwen Li
- Zhongzhi International Institute of Agricultural Biosciences, Biology and Agriculture Research Center of USTB, University of Science and Technology Beijing (USTB), Beijing 100024, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing 100192, China
| | - Xueli An
- Zhongzhi International Institute of Agricultural Biosciences, Biology and Agriculture Research Center of USTB, University of Science and Technology Beijing (USTB), Beijing 100024, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing 100192, China
| | - Yan Long
- Zhongzhi International Institute of Agricultural Biosciences, Biology and Agriculture Research Center of USTB, University of Science and Technology Beijing (USTB), Beijing 100024, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing 100192, China
| | - Xiaofeng Xue
- Risk Assessment Laboratory for Bee Products Quality and Safety of Ministry of Agriculture, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Ke Xie
- Zhongzhi International Institute of Agricultural Biosciences, Biology and Agriculture Research Center of USTB, University of Science and Technology Beijing (USTB), Beijing 100024, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing 100192, China
| | - Biao Ma
- Zhongzhi International Institute of Agricultural Biosciences, Biology and Agriculture Research Center of USTB, University of Science and Technology Beijing (USTB), Beijing 100024, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing 100192, China
| | - Danfeng Zhang
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing 100192, China
| | - Yijian Guan
- Zhongzhi International Institute of Agricultural Biosciences, Biology and Agriculture Research Center of USTB, University of Science and Technology Beijing (USTB), Beijing 100024, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing 100192, China
| | - Canfang Niu
- Zhongzhi International Institute of Agricultural Biosciences, Biology and Agriculture Research Center of USTB, University of Science and Technology Beijing (USTB), Beijing 100024, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing 100192, China
| | - Zhenying Dong
- Zhongzhi International Institute of Agricultural Biosciences, Biology and Agriculture Research Center of USTB, University of Science and Technology Beijing (USTB), Beijing 100024, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing 100192, China
| | - Quancan Hou
- Zhongzhi International Institute of Agricultural Biosciences, Biology and Agriculture Research Center of USTB, University of Science and Technology Beijing (USTB), Beijing 100024, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing 100192, China
| | - Lina Zhao
- Zhongzhi International Institute of Agricultural Biosciences, Biology and Agriculture Research Center of USTB, University of Science and Technology Beijing (USTB), Beijing 100024, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing 100192, China
| | - Suowei Wu
- Zhongzhi International Institute of Agricultural Biosciences, Biology and Agriculture Research Center of USTB, University of Science and Technology Beijing (USTB), Beijing 100024, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing 100192, China
| | - Jinping Li
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing 100192, China
| | - Weiwei Jin
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Biology and Genetic Improvement of Maize (MOA), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Xiangyuan Wan
- Zhongzhi International Institute of Agricultural Biosciences, Biology and Agriculture Research Center of USTB, University of Science and Technology Beijing (USTB), Beijing 100024, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing 100192, China.
| |
Collapse
|
36
|
Huo Y, Pei Y, Tian Y, Zhang Z, Li K, Liu J, Xiao S, Chen H, Liu J. IRREGULAR POLLEN EXINE2 Encodes a GDSL Lipase Essential for Male Fertility in Maize. PLANT PHYSIOLOGY 2020; 184:1438-1454. [PMID: 32913046 PMCID: PMC7608179 DOI: 10.1104/pp.20.00105] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 09/02/2020] [Indexed: 05/19/2023]
Abstract
Anther cuticle and pollen exine are two physical barriers protecting plant reproductive cells against environmental stresses; defects in either often cause male sterility. Here, we report the characterization of a male-sterile mutant irregular pollen exine2 (ipe2) of maize (Zea mays), which displays shrunken anthers and no starch accumulation in mature pollen grains. We cloned the causal gene IPE2 and confirmed its role in male fertility in maize with a set of complementary experiments. IPE2 is specifically expressed in maize developing anthers during stages 8 to 9 and encodes an endoplasmic-reticulum-localized GDSL lipase. Dysfunction of IPE2 resulted in delayed degeneration of tapetum and middle layer, leading to defective formation of anther cuticle and pollen exine, and complete male sterility. Aliphatic metabolism was greatly altered, with the contents of lipid constituents, especially C16/C18 fatty acids and their derivatives, significantly reduced in ipe2 developing anthers. Our study elucidates GDSL function in anther and pollen development and provides a promising genetic resource for breeding hybrid maize.
Collapse
Affiliation(s)
- Yanqing Huo
- State Key Laboratory of Plant Cell and Chromosome Engineering, Innovative Academy of Seed Design, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, 100864 Beijing, China
| | - Yuanrong Pei
- State Key Laboratory of Plant Cell and Chromosome Engineering, Innovative Academy of Seed Design, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, 100864 Beijing, China
| | - Youhui Tian
- State Key Laboratory of Plant Cell and Chromosome Engineering, Innovative Academy of Seed Design, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhaogui Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Innovative Academy of Seed Design, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, 100864 Beijing, China
| | - Kai Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, Innovative Academy of Seed Design, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, 100864 Beijing, China
| | - Jie Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Innovative Academy of Seed Design, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, 100864 Beijing, China
| | - Senlin Xiao
- State Key Laboratory of Plant Cell and Chromosome Engineering, Innovative Academy of Seed Design, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Huabang Chen
- State Key Laboratory of Plant Cell and Chromosome Engineering, Innovative Academy of Seed Design, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Juan Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Innovative Academy of Seed Design, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
37
|
Zhu L, Chen Z, Li H, Sun Y, Wang L, Zeng H, He Y. Lipid metabolism is involved in male fertility regulation of the photoperiod- and thermo sensitive genic male sterile rice line Peiai 64S. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 299:110581. [PMID: 32900435 DOI: 10.1016/j.plantsci.2020.110581] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 06/03/2020] [Accepted: 06/23/2020] [Indexed: 05/28/2023]
Abstract
Peiai 64S (PA64S) is a photoperiod- and thermo sensitive genic male sterile (PTGMS) rice line that has been widely applied in two-line hybrid rice breeding. The male fertility mechanism of PTGMS has always been the research focus. We obtained fertile PA64S (F) and sterile fertile PA64S (S) plants at 21℃ and 28℃, respectively. Here, we analyzed the development of anthers and pollen grains of PA64S (S) and found that the degradation of tapetum and sporopollenin accumulation of pollen exine was abnormal. The content of lipid components in PA64S (F) and PA64S (S) were different by LC-MS, among which sterols, (O-acyl) ω-hydroxy fatty acids, ceramide, and other lipid components were upregulated in PA64S (F). The results of transcriptome showed that many significantly different genes were enriched in the lipid metabolism pathways. Additionally, lipid synthesis and transport genes were downregulated in PA64S (S). In summary, the differences of the PA64S fertility under different temperatures were analyzed through multi-levels comparison. These results suggest that lipid synthesis and transport during PA64S anther development affects the lipid accumulation of pollen exine, and ultimately affected fertility. The differences in lipids content may also be a factor affecting PA64S pollen fertility.
Collapse
Affiliation(s)
- Lan Zhu
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, China.
| | - Zhen Chen
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, China.
| | - Haixia Li
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, China.
| | - Yujun Sun
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, China.
| | - Lei Wang
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, China.
| | - Hanlai Zeng
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, China.
| | - Ying He
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, China.
| |
Collapse
|
38
|
Wan X, Wu S, Li Z, An X, Tian Y. Lipid Metabolism: Critical Roles in Male Fertility and Other Aspects of Reproductive Development in Plants. MOLECULAR PLANT 2020; 13:955-983. [PMID: 32434071 DOI: 10.1016/j.molp.2020.05.009] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 01/20/2020] [Accepted: 05/14/2020] [Indexed: 05/18/2023]
Abstract
Fatty acids and their derivatives are essential building blocks for anther cuticle and pollen wall formation. Disruption of lipid metabolism during anther and pollen development often leads to genic male sterility (GMS). To date, many lipid metabolism-related GMS genes that are involved in the formation of anther cuticle, pollen wall, and subcellular organelle membranes in anther wall layers have been identified and characterized. In this review, we summarize recent progress on characterizing lipid metabolism-related genes and their roles in male fertility and other aspects of reproductive development in plants. On the basis of cloned GMS genes controlling biosynthesis and transport of anther cutin, wax, sporopollenin, and tryphine in Arabidopsis, rice, and maize as well as other plant species, updated lipid metabolic networks underlying anther cuticle development and pollen wall formation were proposed. Through bioinformatics analysis of anther RNA-sequencing datasets from three maize inbred lines (Oh43, W23, and B73), a total of 125 novel lipid metabolism-related genes putatively involved in male fertility in maize were deduced. More, we discuss the pathways regulating lipid metabolism-related GMS genes at the transcriptional and post-transcriptional levels. Finally, we highlight recent findings on lipid metabolism-related genes and their roles in other aspects of plant reproductive development. A comprehensive understanding of lipid metabolism, genes involved, and their roles in plant reproductive development will facilitate the application of lipid metabolism-related genes in gene editing, haploid and callus induction, molecular breeding and hybrid seed production in crops.
Collapse
Affiliation(s)
- Xiangyuan Wan
- Zhongzhi International Institute of Agricultural Biosciences, Biology and Agriculture Research Center, University of Science and Technology Beijing, Beijing 100024, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing 100192, China.
| | - Suowei Wu
- Zhongzhi International Institute of Agricultural Biosciences, Biology and Agriculture Research Center, University of Science and Technology Beijing, Beijing 100024, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing 100192, China
| | - Ziwen Li
- Zhongzhi International Institute of Agricultural Biosciences, Biology and Agriculture Research Center, University of Science and Technology Beijing, Beijing 100024, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing 100192, China
| | - Xueli An
- Zhongzhi International Institute of Agricultural Biosciences, Biology and Agriculture Research Center, University of Science and Technology Beijing, Beijing 100024, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing 100192, China
| | - Youhui Tian
- Zhongzhi International Institute of Agricultural Biosciences, Biology and Agriculture Research Center, University of Science and Technology Beijing, Beijing 100024, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing 100192, China
| |
Collapse
|
39
|
Li J, Wang Z, He G, Ma L, Deng XW. CRISPR/Cas9-mediated disruption of TaNP1 genes results in complete male sterility in bread wheat. J Genet Genomics 2020; 47:263-272. [PMID: 32694014 DOI: 10.1016/j.jgg.2020.05.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/03/2020] [Accepted: 05/06/2020] [Indexed: 02/04/2023]
Abstract
Male sterile genes and mutants are valuable resources in hybrid seed production for monoclinous crops. High genetic redundancy due to allohexaploidy makes it difficult to obtain the nuclear recessive male sterile mutants through spontaneous mutation or chemical or physical mutagenesis methods in wheat. The emerging effective genome editing tool, CRISPR/Cas9 system, makes it possible to achieve simultaneous mutagenesis in multiple homoeoalleles. To improve the genome modification efficiency of the CRISPR/Cas9 system in wheat, we compared four different RNA polymerase (Pol) III promoters (TaU3p, TaU6p, OsU3p, and OsU6p) and three types of sgRNA scaffold in the protoplast system. We show that the TaU3 promoter-driven optimized sgRNA scaffold was most effective. The optimized CRISPR/Cas9 system was used to edit three TaNP1 homoeoalleles, whose orthologs, OsNP1 in rice and ZmIPE1 in maize, encode a putative glucose-methanol-choline oxidoreductase and are required for male sterility. Triple homozygous mutations in TaNP1 genes result in complete male sterility. We further demonstrated that any one wild-type copy of the three TaNP1 genes is sufficient for maintenance of male fertility. Taken together, this study provides an optimized CRISPR/Cas9 vector for wheat genome editing and a complete male sterile mutant for development of a commercially viable hybrid wheat seed production system.
Collapse
Affiliation(s)
- Jian Li
- Peking University Institute of Advanced Agricultural Sciences, Weifang, Shandong, 261325, China
| | - Zheng Wang
- Peking University Institute of Advanced Agricultural Sciences, Weifang, Shandong, 261325, China
| | - Guangming He
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Advanced Agriculture Sciences and School of Life Sciences, Peking University, Beijing, 100871, China
| | - Ligeng Ma
- College of Life Sciences, Capital Normal University, Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing, 100048, China.
| | - Xing Wang Deng
- Peking University Institute of Advanced Agricultural Sciences, Weifang, Shandong, 261325, China; State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Advanced Agriculture Sciences and School of Life Sciences, Peking University, Beijing, 100871, China.
| |
Collapse
|
40
|
Shi H, Yu Y, Gu R, Feng C, Fu Y, Yu X, Yuan J, Sun Q, Ke Y. Male sterile 305 Mutation Leads the Misregulation of Anther Cuticle Formation by Disrupting Lipid Metabolism in Maize. Int J Mol Sci 2020; 21:ijms21072500. [PMID: 32260292 PMCID: PMC7177535 DOI: 10.3390/ijms21072500] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 03/22/2020] [Accepted: 04/01/2020] [Indexed: 01/24/2023] Open
Abstract
The anther cuticle, which is mainly composed of lipid polymers, functions as physical barriers to protect genetic material intact; however, the mechanism of lipid biosynthesis in maize (Zea mays. L.) anther remains unclear. Herein, we report a male sterile mutant, male sterile 305 (ms305), in maize. It was shown that the mutant displayed a defective anther tapetum development and premature microspore degradation. Three pathways that are associated with the development of male sterile, including phenylpropanoid biosynthesis, biosynthesis of secondary metabolites, as well as cutin, suberine, and wax biosynthesis, were identified by transcriptome analysis. Gas chromatography-mass spectrometry disclosed that the content of cutin in ms305 anther was significantly lower than that of fertile siblings during the abortion stage, so did the total fatty acids, which indicated that ms305 mutation might lead to blocked synthesis of cutin and fatty acids in anther. Lipidome analysis uncovered that the content of phosphatidylcholine, phosphatidylserine, diacylglycerol, monogalactosyldiacylglycerol, and digalactosyldiacylglycerol in ms305 anther was significantly lower when compared with its fertile siblings, which suggested that ms305 mutation disrupted lipid synthesis. In conclusion, our findings indicated that ms305 might affect anther cuticle and microspore development by regulating the temporal progression of the lipidome in maize.
Collapse
Affiliation(s)
- Haichun Shi
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China; (H.S.); (R.G.); (X.Y.); (J.Y.)
- Sichuan Nongda Zhenghong Bio. Co., Ltd., Chengdu 610213, China
| | - Yang Yu
- Key Laboratory of Bio-resources and Eco-environment, Ministry of Education; College of Life Sciences, Sichuan University, Chengdu 610064, China; (Y.Y.); (C.F.); (Y.F.); (Q.S.)
| | - Ronghuan Gu
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China; (H.S.); (R.G.); (X.Y.); (J.Y.)
| | - Chenxi Feng
- Key Laboratory of Bio-resources and Eco-environment, Ministry of Education; College of Life Sciences, Sichuan University, Chengdu 610064, China; (Y.Y.); (C.F.); (Y.F.); (Q.S.)
| | - Yu Fu
- Key Laboratory of Bio-resources and Eco-environment, Ministry of Education; College of Life Sciences, Sichuan University, Chengdu 610064, China; (Y.Y.); (C.F.); (Y.F.); (Q.S.)
| | - Xuejie Yu
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China; (H.S.); (R.G.); (X.Y.); (J.Y.)
- Sichuan Nongda Zhenghong Bio. Co., Ltd., Chengdu 610213, China
| | - Jichao Yuan
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China; (H.S.); (R.G.); (X.Y.); (J.Y.)
- Sichuan Nongda Zhenghong Bio. Co., Ltd., Chengdu 610213, China
| | - Qun Sun
- Key Laboratory of Bio-resources and Eco-environment, Ministry of Education; College of Life Sciences, Sichuan University, Chengdu 610064, China; (Y.Y.); (C.F.); (Y.F.); (Q.S.)
| | - Yongpei Ke
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China; (H.S.); (R.G.); (X.Y.); (J.Y.)
- Sichuan Nongda Zhenghong Bio. Co., Ltd., Chengdu 610213, China
- Correspondence:
| |
Collapse
|
41
|
Wang B, Li N, Wang J, Huang S, Tang Y, Yang S, Yang T, Wang Q, Yu Q, Gao J. iTRAQ-Based Proteomics Reveals that the Tomato ms10 35 Gene Causes Male Sterility through Compromising Fat Acid Metabolism. Proteomics 2020; 20:e1900213. [PMID: 32104964 DOI: 10.1002/pmic.201900213] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 02/16/2020] [Indexed: 11/11/2022]
Abstract
So far, over 50 spontaneous male sterile mutants of tomato have been described and most of them are categorized as genetic male sterility. To date, the mechanism of tomato genetic male sterility remained unclear. In this study, differential proteomic analysis is performed between genetic male sterile line (2-517), which carries the male sterility (ms1035 ) gene, and its wild-type (VF-11) using isobaric tags for relative and absolute quantification-based strategy. A total of 8272 proteins are quantified in the 2-517 and VF-11 lines at the floral bud and florescence stages. These proteins are involved in different cellular and metabolic processes, which express obvious functional tendencies toward the hydroxylation of the ω-carbon in fatty acids, the tricarboxylic acid cycle, the glycolytic, and pentose phosphate pathways. Based on the results, a protein network explaining the mechanisms of tomato genetic male sterility is proposed, finding the compromising fat acid metabolism may cause the male sterility. These results are confirmed by parallel reaction monitoring, quantitative Real-time PCR (qRT-PCR), and physiological assays. Taken together, these results provide new insights into the metabolic pathway of anther abortion induced by ms1035 and offer useful clues to identify the crucial proteins involved in genetic male sterility in tomato.
Collapse
Affiliation(s)
- Baike Wang
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, P. R. China.,College of Forestry and Horticulture, Xinjiang Agricultural University, Urumqi, 830052, P. R. China
| | - Ning Li
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, P. R. China.,College of Forestry and Horticulture, Xinjiang Agricultural University, Urumqi, 830052, P. R. China
| | - Juan Wang
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, P. R. China
| | - Shaoyong Huang
- College of Forestry and Horticulture, Xinjiang Agricultural University, Urumqi, 830052, P. R. China
| | - Yaping Tang
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, P. R. China
| | - Shengbao Yang
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, P. R. China
| | - Tao Yang
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, P. R. China
| | - Qiang Wang
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, P. R. China.,College of Forestry and Horticulture, Xinjiang Agricultural University, Urumqi, 830052, P. R. China
| | - Qinghui Yu
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, P. R. China
| | - Jie Gao
- College of Forestry and Horticulture, Xinjiang Agricultural University, Urumqi, 830052, P. R. China
| |
Collapse
|
42
|
Chang CL, Serapion JC, Hung HH, Lin YC, Tsai YC, Jane WN, Chang MC, Lai MH, Hsing YIC. Studies of a rice sterile mutant sstl from the TRIM collection. BOTANICAL STUDIES 2019; 60:12. [PMID: 31292815 PMCID: PMC6620220 DOI: 10.1186/s40529-019-0260-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 06/30/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Rice (Oryza sativa) is one of the main crops in the world, and more than 3.9 billion people will consume rice by 2025. Sterility significantly affects rice production and leads to yield defects. The undeveloped anthers or abnormal pollen represent serious defects in rice male sterility. Therefore, understanding the mechanism of male sterility is an important task. Here, we investigated a rice sterile mutant according to its developmental morphology and transcriptional profiles. RESULTS An untagged T-DNA insertional mutant showed defective pollen and abnormal anthers as compared with its semi-sterile mutant (sstl) progeny segregates. Transcriptomic analysis of sterile sstl-s revealed several biosynthesis pathways, such as downregulated cell wall, lipids, secondary metabolism, and starch synthesis. This downregulation is consistent with the morphological characterization of sstl-s anthers with irregular exine, absence of intine, no starch accumulation in pollen grains and no accumulated flavonoids in anthers. Moreover, defective microsporangia development led to abnormal anther locule and aborted microspores. The downregulated lipids, starch, and cell wall synthesis-related genes resulted in loss of fertility. CONCLUSIONS We illustrate the importance of microsporangia in the development of anthers and functional microspores. Abnormal development of pollen grains, pollen wall, anther locule, etc. result in severe yield reduction.
Collapse
Affiliation(s)
- Chia-Ling Chang
- Department of Agronomy, National Taiwan University, Taipei, 106 Taiwan
- Institute of Plant and Microbial Biology, Academia Sinica, Nankang, Taipei, 115 Taiwan
| | - Jerry C. Serapion
- Institute of Plant and Microbial Biology, Academia Sinica, Nankang, Taipei, 115 Taiwan
| | - Han-Hui Hung
- Crop Science Division, Taiwan Agricultural Research Institute, Taichung, 413 Taiwan
| | - Yan-Cheng Lin
- Department of Life Science, National Taiwan University, Taipei, 106 Taiwan
| | - Yuan-Ching Tsai
- Department of Agronomy, National Chiayi University, Chiayi, 600 Taiwan
| | - Wann-Neng Jane
- Institute of Plant and Microbial Biology, Academia Sinica, Nankang, Taipei, 115 Taiwan
| | - Men-Chi Chang
- Department of Agronomy, National Taiwan University, Taipei, 106 Taiwan
| | - Ming-Hsin Lai
- Crop Science Division, Taiwan Agricultural Research Institute, Taichung, 413 Taiwan
| | - Yue-ie C. Hsing
- Department of Agronomy, National Taiwan University, Taipei, 106 Taiwan
- Institute of Plant and Microbial Biology, Academia Sinica, Nankang, Taipei, 115 Taiwan
| |
Collapse
|
43
|
Chen PY, Wu CC, Lin CC, Jane WN, Suen DF. 3D Imaging of Tapetal Mitochondria Suggests the Importance of Mitochondrial Fission in Pollen Growth. PLANT PHYSIOLOGY 2019; 180:813-826. [PMID: 30898971 PMCID: PMC6548257 DOI: 10.1104/pp.19.00183] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 02/27/2019] [Indexed: 05/12/2023]
Abstract
Mitochondrial fission occurs frequently in plant cells, but its biological significance is poorly understood because mutants specifically impaired in mitochondrial fission do not show obvious defects in vegetative growth. Here, we revealed that the production of viable pollen was reduced in mutants lacking one of the three main proteins involved in mitochondrial fission in Arabidopsis (Arabidopsis thaliana), DYNAMIN-RELATED PROTEIN3A (DRP3A)/Arabidopsis DYNAMIN-LIKE PROTEIN2A, DRP3B, and ELONGATED MITOCHONDRIA1 (ELM1). In drp3b and elm1, young microspores contained an abnormal number of nuclei, and mature pollen had aberrant accumulation of lipids in their coat and an irregular pollen outer wall. Because the formation of the pollen wall and coat is mainly associated with tapetal function, we used 3D imaging to quantify geometric and textural features of cells and mitochondria in the tapetum at different stages, using isolated single tapetal cells in which the in vivo morphology and volume of cells and mitochondria were preserved. Tapetal cells and their mitochondria changed in the volume and morphology at different developmental stages. Defective mitochondrial fission in the elm1 and drp3b mutants caused changes in mitochondrial status, including mitochondrial elongation, abnormal mitochondrial ultrastructure, a decrease in cross-sectional area, and a slight alteration of mitochondrial distribution, as well as a large reduction in mitochondrial density. Our studies suggest that mitochondrial fission is required for proper mitochondrial status in the tapetum and possibly in pollen as well and therefore plays an important role for the production of viable pollen.
Collapse
Affiliation(s)
- Pei-Ying Chen
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 11529, Taiwan
| | - Chia-Chen Wu
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 11529, Taiwan
| | - Chung-Chih Lin
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei 11221, Taiwan
| | - Wann-Neng Jane
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Der-Fen Suen
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 11529, Taiwan
- Biotechnology Center, National Chung-Hsing University, Taichung 40227, Taiwan
| |
Collapse
|
44
|
Wang Y, Liu D, Tian Y, Wu S, An X, Dong Z, Zhang S, Bao J, Li Z, Li J, Wan X. Map-Based Cloning, Phylogenetic, and Microsynteny Analyses of ZmMs20 Gene Regulating Male Fertility in Maize. Int J Mol Sci 2019; 20:E1411. [PMID: 30897816 PMCID: PMC6470574 DOI: 10.3390/ijms20061411] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 03/14/2019] [Accepted: 03/19/2019] [Indexed: 01/22/2023] Open
Abstract
Genic male sterility (GMS) mutant is a useful germplasm resource for both theory research and production practice. The identification and characterization of GMS genes, and assessment of male-sterility stability of GMS mutant under different genetic backgrounds in Zea may (maize) have (1) deepened our understanding of the molecular mechanisms controlling anther and pollen development, and (2) enabled the development and efficient use of many biotechnology-based male-sterility (BMS) systems for hybrid breeding. Here, we reported a complete GMS mutant (ms20), which displays abnormal anther cuticle and pollen development. Its fertility restorer gene ZmMs20 was found to be a new allele of IPE1 encoding a glucose methanol choline (GMC) oxidoreductase involved in lipid metabolism in anther. Phylogenetic and microsynteny analyses showed that ZmMs20 was conserved among gramineous species, which provide clues for creating GMS materials in other crops. Additionally, among the 17 maize cloned GMS genes, ZmMs20 was found to be similar to the expression patterns of Ms7, Ms26, Ms6021, APV1, and IG1 genes, which will give some clues for deciphering their functional relationships in regulating male fertility. Finally, two functional markers of ZmMs20/ms20 were developed and tested for creating maize ms20 male-sterility lines in 353 genetic backgrounds, and then an artificial maintainer line of ms20 GMS mutation was created by using ZmMs20 gene, ms20 mutant, and BMS system. This work will promote our understanding of functional mechanisms of male fertility and facilitate molecular breeding of ms20 male-sterility lines for hybrid seed production in maize.
Collapse
Affiliation(s)
- Yanbo Wang
- Biology and Agriculture Research Center, University of Science and Technology Beijing, Beijing 100024, China.
| | - Dongcheng Liu
- Biology and Agriculture Research Center, University of Science and Technology Beijing, Beijing 100024, China.
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing 100192, China.
| | - Youhui Tian
- Biology and Agriculture Research Center, University of Science and Technology Beijing, Beijing 100024, China.
| | - Suowei Wu
- Biology and Agriculture Research Center, University of Science and Technology Beijing, Beijing 100024, China.
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing 100192, China.
| | - Xueli An
- Biology and Agriculture Research Center, University of Science and Technology Beijing, Beijing 100024, China.
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing 100192, China.
| | - Zhenying Dong
- Biology and Agriculture Research Center, University of Science and Technology Beijing, Beijing 100024, China.
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing 100192, China.
| | - Simiao Zhang
- Biology and Agriculture Research Center, University of Science and Technology Beijing, Beijing 100024, China.
| | - Jianxi Bao
- Biology and Agriculture Research Center, University of Science and Technology Beijing, Beijing 100024, China.
| | - Ziwen Li
- Biology and Agriculture Research Center, University of Science and Technology Beijing, Beijing 100024, China.
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing 100192, China.
| | - Jinping Li
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing 100192, China.
| | - Xiangyuan Wan
- Biology and Agriculture Research Center, University of Science and Technology Beijing, Beijing 100024, China.
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing 100192, China.
| |
Collapse
|
45
|
Wan X, Wu S, Li Z, Dong Z, An X, Ma B, Tian Y, Li J. Maize Genic Male-Sterility Genes and Their Applications in Hybrid Breeding: Progress and Perspectives. MOLECULAR PLANT 2019; 12:321-342. [PMID: 30690174 DOI: 10.1016/j.molp.2019.01.014] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 01/10/2019] [Accepted: 01/10/2019] [Indexed: 05/06/2023]
Abstract
As one of the most important crops, maize not only has been a source of the food, feed, and industrial feedstock for biofuel and bioproducts, but also became a model plant system for addressing fundamental questions in genetics. Male sterility is a very useful trait for hybrid vigor utilization and hybrid seed production. The identification and characterization of genic male-sterility (GMS) genes in maize and other plants have deepened our understanding of the molecular mechanisms controlling anther and pollen development, and enabled the development and efficient use of many biotechnology-based male-sterility (BMS) systems for crop hybrid breeding. In this review, we summarize main advances on the identification and characterization of GMS genes in maize, and construct a putative regulatory network controlling maize anther and pollen development by comparative genomic analysis of GMS genes in maize, Arabidopsis, and rice. Furthermore, we discuss and appraise the features of more than a dozen BMS systems for propagating male-sterile lines and producing hybrid seeds in maize and other plants. Finally, we provide our perspectives on the studies of GMS genes and the development of novel BMS systems in maize and other plants. The continuous exploration of GMS genes and BMS systems will enhance our understanding of molecular regulatory networks controlling male fertility and greatly facilitate hybrid vigor utilization in breeding and field production of maize and other crops.
Collapse
Affiliation(s)
- Xiangyuan Wan
- Biology and Agriculture Research Center, University of Science and Technology Beijing, Beijing 100024, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing 100192, China.
| | - Suowei Wu
- Biology and Agriculture Research Center, University of Science and Technology Beijing, Beijing 100024, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing 100192, China
| | - Ziwen Li
- Biology and Agriculture Research Center, University of Science and Technology Beijing, Beijing 100024, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing 100192, China
| | - Zhenying Dong
- Biology and Agriculture Research Center, University of Science and Technology Beijing, Beijing 100024, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing 100192, China
| | - Xueli An
- Biology and Agriculture Research Center, University of Science and Technology Beijing, Beijing 100024, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing 100192, China
| | - Biao Ma
- Biology and Agriculture Research Center, University of Science and Technology Beijing, Beijing 100024, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing 100192, China
| | - Youhui Tian
- Biology and Agriculture Research Center, University of Science and Technology Beijing, Beijing 100024, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing 100192, China
| | - Jinping Li
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing 100192, China
| |
Collapse
|
46
|
An X, Dong Z, Tian Y, Xie K, Wu S, Zhu T, Zhang D, Zhou Y, Niu C, Ma B, Hou Q, Bao J, Zhang S, Li Z, Wang Y, Yan T, Sun X, Zhang Y, Li J, Wan X. ZmMs30 Encoding a Novel GDSL Lipase Is Essential for Male Fertility and Valuable for Hybrid Breeding in Maize. MOLECULAR PLANT 2019; 12:343-359. [PMID: 30684599 DOI: 10.1016/j.molp.2019.01.011] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 01/05/2019] [Accepted: 01/18/2019] [Indexed: 05/19/2023]
Abstract
Genic male sterility (GMS) is very useful for hybrid vigor utilization and hybrid seed production. Although a large number of GMS genes have been identified in plants, little is known about the roles of GDSL lipase members in anther and pollen development. Here, we report a maize GMS gene, ZmMs30, which encodes a novel type of GDSL lipase with diverged catalytic residues. Enzyme kinetics and activity assays show that ZmMs30 has lipase activity and prefers to substrates with a short carbon chain. ZmMs30 is specifically expressed in maize anthers during stages 7-9. Loss of ZmMs30 function resulted in defective anther cuticle, irregular foot layer of pollen exine, and complete male sterility. Cytological and lipidomics analyses demonstrate that ZmMs30 is crucial for the aliphatic metabolic pathway required for pollen exine formation and anther cuticle development. Furthermore, we found that male sterility caused by loss of ZmMs30 function was stable in various inbred lines with different genetic background, and that it didn't show any negative effect on maize heterosis and production, suggesting that ZmMs30 is valuable for cross-breeding and hybrid seed production. We then developed a new multi-control sterility system using ZmMs30 and its mutant line, and demonstrated it is feasible for generating desirable GMS lines and valuable for hybrid maize seed production. Taken together, our study sheds new light on the mechanisms of anther and pollen development, and provides a valuable male-sterility system for hybrid breeding maize.
Collapse
Affiliation(s)
- Xueli An
- Biology and Agriculture Research Center, University of Science and Technology Beijing, Beijing 100024, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing 100192, China
| | - Zhenying Dong
- Biology and Agriculture Research Center, University of Science and Technology Beijing, Beijing 100024, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing 100192, China
| | - Youhui Tian
- Biology and Agriculture Research Center, University of Science and Technology Beijing, Beijing 100024, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing 100192, China
| | - Ke Xie
- Biology and Agriculture Research Center, University of Science and Technology Beijing, Beijing 100024, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing 100192, China
| | - Suowei Wu
- Biology and Agriculture Research Center, University of Science and Technology Beijing, Beijing 100024, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing 100192, China
| | - Taotao Zhu
- Biology and Agriculture Research Center, University of Science and Technology Beijing, Beijing 100024, China
| | - Danfeng Zhang
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing 100192, China
| | - Yan Zhou
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing 100192, China
| | - Canfang Niu
- Biology and Agriculture Research Center, University of Science and Technology Beijing, Beijing 100024, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing 100192, China
| | - Biao Ma
- Biology and Agriculture Research Center, University of Science and Technology Beijing, Beijing 100024, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing 100192, China
| | - Quancan Hou
- Biology and Agriculture Research Center, University of Science and Technology Beijing, Beijing 100024, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing 100192, China
| | - Jianxi Bao
- Biology and Agriculture Research Center, University of Science and Technology Beijing, Beijing 100024, China
| | - Simiao Zhang
- Biology and Agriculture Research Center, University of Science and Technology Beijing, Beijing 100024, China
| | - Ziwen Li
- Biology and Agriculture Research Center, University of Science and Technology Beijing, Beijing 100024, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing 100192, China
| | - Yanbo Wang
- Biology and Agriculture Research Center, University of Science and Technology Beijing, Beijing 100024, China
| | - Tingwei Yan
- Biology and Agriculture Research Center, University of Science and Technology Beijing, Beijing 100024, China
| | - Xiaojing Sun
- Biology and Agriculture Research Center, University of Science and Technology Beijing, Beijing 100024, China
| | - Yuwen Zhang
- Biology and Agriculture Research Center, University of Science and Technology Beijing, Beijing 100024, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing 100192, China
| | - Jinping Li
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing 100192, China
| | - Xiangyuan Wan
- Biology and Agriculture Research Center, University of Science and Technology Beijing, Beijing 100024, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing 100192, China.
| |
Collapse
|
47
|
Tan C, Liu Z, Huang S, Feng H. Mapping of the male sterile mutant gene ftms in Brassica rapa L. ssp. pekinensis via BSR-Seq combined with whole-genome resequencing. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2019; 132:355-370. [PMID: 30382313 DOI: 10.1007/s00122-018-3223-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 10/25/2018] [Indexed: 05/19/2023]
Abstract
A male sterile mutant was created by 60Co γ-rays of microspores isolated from Chinese cabbage DH line 'FT'. A candidate gene for the male sterile trait was identified as Bra010198. Male sterility is used for hybrid seed production in Chinese cabbage. In this study, we derived a male sterile mutant (ftms) from Chinese cabbage DH line 'FT' by irradiating microspores with 60Co γ-rays and realized the rapid trait transformation from male fertility to sterility for creating valuable breeding materials. Genetic analysis indicated that the male sterile trait is controlled by a single recessive nuclear gene, ftms. Microspore development in mutant ftms was aborted at the tetrad stage and associated with severely retarded degeneration and vacuolation of tapetum. Using BSR-seq analysis, the candidate region for ftms was mapped on chromosome A05. A large F2 population was created, and the region was narrowed to approximately 1.7-Mb between markers Indel20 and Indel14 via linkage analysis. The recombination frequency was extremely suppressed because the region was located on the chromosome A05 centromere. Whole-genome resequencing of mutant ftms and wild-type 'FT' aligned only one nonsynonymous SNP to Bra010198; this gene is a homolog of Arabidopsis KNS4/UPEX1, which encodes a putative β-(1,3)-galactosyltransferase that controls pollen exine development. Comparative sequencing verified the SNP position on the fifth exon of Bra010198 in mutant ftms. Further genotyping revealed that the male sterile phenotype was fully co-segregated with this SNP. Quantitative real-time PCR indicated that Bra0101918 specifically expressed in stamen. The data presented herein suggested that Bra010198 is a strong candidate gene for ftms. Hence, we developed a male sterile line for potential application in breeding and expanded the knowledge about the molecular mechanism underlying male sterility in Chinese cabbage.
Collapse
Affiliation(s)
- Chong Tan
- Liaoning Key Laboratory of Genetics and Breeding for Cruciferous Vegetable Crops, College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China
| | - Zhiyong Liu
- Liaoning Key Laboratory of Genetics and Breeding for Cruciferous Vegetable Crops, College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China
| | - Shengnan Huang
- Liaoning Key Laboratory of Genetics and Breeding for Cruciferous Vegetable Crops, College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China
| | - Hui Feng
- Liaoning Key Laboratory of Genetics and Breeding for Cruciferous Vegetable Crops, College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China.
| |
Collapse
|
48
|
Zhang L, Luo H, Zhao Y, Chen X, Huang Y, Yan S, Li S, Liu M, Huang W, Zhang X, Jin W. Maize male sterile 33 encodes a putative glycerol-3-phosphate acyltransferase that mediates anther cuticle formation and microspore development. BMC PLANT BIOLOGY 2018. [PMID: 30509161 DOI: 10.1186/s12870-018-1543-1547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
BACKGROUND The anther cuticle, which is primarily composed of lipid polymers, is crucial for pollen development and plays important roles in sexual reproduction in higher plants. However, the mechanism underlying the biosynthesis of lipid polymers in maize (Zea mays. L.) remains unclear. RESULTS Here, we report that the maize male-sterile mutant shrinking anther 1 (sa1), which is allelic to the classic mutant male sterile 33 (ms33), displays defective anther cuticle development and premature microspore degradation. We isolated MS33 via map-based cloning. MS33 encodes a putative glycerol-3-phosphate acyltransferase and is preferentially expressed in tapetal cells during anther development. Gas chromatography-mass spectrometry revealed a substantial reduction in wax and cutin in ms33 anthers compared to wild type. Accordingly, RNA-sequencing analysis showed that many genes involved in wax and cutin biosynthesis are differentially expressed in ms33 compared to wild type. CONCLUSIONS Our findings suggest that MS33 may contribute to anther cuticle and microspore development by affecting lipid polyester biosynthesis in maize.
Collapse
Affiliation(s)
- Lei Zhang
- National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, Key Laboratory of Crop Heterosis and Utilization, Ministry of Education (MOE), Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Hongbing Luo
- College of Agronomy, Southern Regional Collaborative Innovation Center for Grain and Oil Crops, Hunan Agricultural University, Changsha, 410128, China
| | - Yue Zhao
- National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, Key Laboratory of Crop Heterosis and Utilization, Ministry of Education (MOE), Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Xiaoyang Chen
- National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, Key Laboratory of Crop Heterosis and Utilization, Ministry of Education (MOE), Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Yumin Huang
- National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, Key Laboratory of Crop Heterosis and Utilization, Ministry of Education (MOE), Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Shuangshuang Yan
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, 100193, China
| | - Suxing Li
- National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, Key Laboratory of Crop Heterosis and Utilization, Ministry of Education (MOE), Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Meishan Liu
- National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, Key Laboratory of Crop Heterosis and Utilization, Ministry of Education (MOE), Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Wei Huang
- National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, Key Laboratory of Crop Heterosis and Utilization, Ministry of Education (MOE), Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Xiaolan Zhang
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, 100193, China
| | - Weiwei Jin
- National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, Key Laboratory of Crop Heterosis and Utilization, Ministry of Education (MOE), Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
49
|
Zhang L, Luo H, Zhao Y, Chen X, Huang Y, Yan S, Li S, Liu M, Huang W, Zhang X, Jin W. Maize male sterile 33 encodes a putative glycerol-3-phosphate acyltransferase that mediates anther cuticle formation and microspore development. BMC PLANT BIOLOGY 2018; 18:318. [PMID: 30509161 PMCID: PMC6276174 DOI: 10.1186/s12870-018-1543-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Accepted: 11/20/2018] [Indexed: 05/28/2023]
Abstract
BACKGROUND The anther cuticle, which is primarily composed of lipid polymers, is crucial for pollen development and plays important roles in sexual reproduction in higher plants. However, the mechanism underlying the biosynthesis of lipid polymers in maize (Zea mays. L.) remains unclear. RESULTS Here, we report that the maize male-sterile mutant shrinking anther 1 (sa1), which is allelic to the classic mutant male sterile 33 (ms33), displays defective anther cuticle development and premature microspore degradation. We isolated MS33 via map-based cloning. MS33 encodes a putative glycerol-3-phosphate acyltransferase and is preferentially expressed in tapetal cells during anther development. Gas chromatography-mass spectrometry revealed a substantial reduction in wax and cutin in ms33 anthers compared to wild type. Accordingly, RNA-sequencing analysis showed that many genes involved in wax and cutin biosynthesis are differentially expressed in ms33 compared to wild type. CONCLUSIONS Our findings suggest that MS33 may contribute to anther cuticle and microspore development by affecting lipid polyester biosynthesis in maize.
Collapse
Affiliation(s)
- Lei Zhang
- National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, Key Laboratory of Crop Heterosis and Utilization, Ministry of Education (MOE), Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193 China
| | - Hongbing Luo
- College of Agronomy, Southern Regional Collaborative Innovation Center for Grain and Oil Crops, Hunan Agricultural University, Changsha, 410128 China
| | - Yue Zhao
- National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, Key Laboratory of Crop Heterosis and Utilization, Ministry of Education (MOE), Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193 China
| | - Xiaoyang Chen
- National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, Key Laboratory of Crop Heterosis and Utilization, Ministry of Education (MOE), Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193 China
| | - Yumin Huang
- National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, Key Laboratory of Crop Heterosis and Utilization, Ministry of Education (MOE), Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193 China
| | - Shuangshuang Yan
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, 100193 China
| | - Suxing Li
- National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, Key Laboratory of Crop Heterosis and Utilization, Ministry of Education (MOE), Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193 China
| | - Meishan Liu
- National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, Key Laboratory of Crop Heterosis and Utilization, Ministry of Education (MOE), Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193 China
| | - Wei Huang
- National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, Key Laboratory of Crop Heterosis and Utilization, Ministry of Education (MOE), Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193 China
| | - Xiaolan Zhang
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, 100193 China
| | - Weiwei Jin
- National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, Key Laboratory of Crop Heterosis and Utilization, Ministry of Education (MOE), Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193 China
| |
Collapse
|
50
|
Xie K, Wu S, Li Z, Zhou Y, Zhang D, Dong Z, An X, Zhu T, Zhang S, Liu S, Li J, Wan X. Map-based cloning and characterization of Zea mays male sterility33 (ZmMs33) gene, encoding a glycerol-3-phosphate acyltransferase. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2018; 131:1363-1378. [PMID: 29546443 PMCID: PMC5945757 DOI: 10.1007/s00122-018-3083-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Accepted: 03/06/2018] [Indexed: 05/05/2023]
Abstract
Map-based cloning of maize ms33 gene showed that ZmMs33 encodes a sn-2 glycerol-3-phosphate acyltransferase, the ortholog of rice OsGPAT3, and it is essential for male fertility in maize. Genetic male sterility has been widely studied for its biological significance and commercial value in hybrid seed production. Although many male-sterile mutants have been identified in maize (Zea mays L.), it is likely that most genes that cause male sterility are unknown. Here, we report a recessive genetic male-sterile mutant, male sterility33 (ms33), which displays small, pale yellow anthers, and complete male sterility. Using a map-based cloning approach, maize GRMZM2G070304 was identified as the ms33 gene (ZmMs33). ZmMs33 encodes a novel sn-2 glycerol-3-phosphate acyltransferase (GPAT) in maize. A functional complementation experiment showed that GRMZM2G070304 can rescue the male-sterile phenotype of the ms33-6029 mutant. GRMZM2G070304 was further confirmed to be the ms33 gene via targeted knockouts induced by the clustered regularly interspersed short palindromic repeats (CRISPR)/Cas9 system. ZmMs33 is preferentially expressed in the immature anther from the quartet to early-vacuolate microspore stages and in root tissues at the fifth leaf growth stage. Phylogenetic analysis indicated that ZmMs33 and OsGPAT3 are evolutionarily conserved for anther and pollen development in monocot species. This study reveals that the monocot-specific GPAT3 protein plays an important role in male fertility in maize, and ZmMs33 and mutants in this gene may have value in maize male-sterile line breeding and hybrid seed production.
Collapse
Affiliation(s)
- Ke Xie
- Advanced Biotechnology and Application Research Center, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100024, China
- Beijing Engineering Laboratory of Main Crop Biotechnology Breeding, Beijing Solidwill Sci-Tech Co. Ltd, Beijing, 100192, China
| | - Suowei Wu
- Advanced Biotechnology and Application Research Center, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100024, China
- Beijing Engineering Laboratory of Main Crop Biotechnology Breeding, Beijing Solidwill Sci-Tech Co. Ltd, Beijing, 100192, China
| | - Ziwen Li
- Advanced Biotechnology and Application Research Center, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100024, China
- Beijing Engineering Laboratory of Main Crop Biotechnology Breeding, Beijing Solidwill Sci-Tech Co. Ltd, Beijing, 100192, China
| | - Yan Zhou
- Beijing Engineering Laboratory of Main Crop Biotechnology Breeding, Beijing Solidwill Sci-Tech Co. Ltd, Beijing, 100192, China
| | - Danfeng Zhang
- Beijing Engineering Laboratory of Main Crop Biotechnology Breeding, Beijing Solidwill Sci-Tech Co. Ltd, Beijing, 100192, China
| | - Zhenying Dong
- Advanced Biotechnology and Application Research Center, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100024, China
| | - Xueli An
- Advanced Biotechnology and Application Research Center, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100024, China
- Beijing Engineering Laboratory of Main Crop Biotechnology Breeding, Beijing Solidwill Sci-Tech Co. Ltd, Beijing, 100192, China
| | - Taotao Zhu
- Advanced Biotechnology and Application Research Center, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100024, China
| | - Simiao Zhang
- Advanced Biotechnology and Application Research Center, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100024, China
| | - Shuangshuang Liu
- Beijing Engineering Laboratory of Main Crop Biotechnology Breeding, Beijing Solidwill Sci-Tech Co. Ltd, Beijing, 100192, China
| | - Jinping Li
- Beijing Engineering Laboratory of Main Crop Biotechnology Breeding, Beijing Solidwill Sci-Tech Co. Ltd, Beijing, 100192, China
| | - Xiangyuan Wan
- Advanced Biotechnology and Application Research Center, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100024, China.
- Beijing Engineering Laboratory of Main Crop Biotechnology Breeding, Beijing Solidwill Sci-Tech Co. Ltd, Beijing, 100192, China.
| |
Collapse
|