1
|
Liu F, Xiao J, Wang XF, Wang YX, Yang HH, Cai YB, Lai FX, Fu Q, Wan PJ. Role of carbohydrate-active enzymes in brown planthopper virulence and adaptability. FRONTIERS IN PLANT SCIENCE 2025; 16:1554498. [PMID: 40303855 PMCID: PMC12038449 DOI: 10.3389/fpls.2025.1554498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Accepted: 03/13/2025] [Indexed: 05/02/2025]
Abstract
Introduction Herbivorous insects, including the brown planthopper (BPH), Nilaparvata lugens, are among the most damaging pests to agricultural crops worldwide, particularly rice. These insects employ a variety of strategies to overcome plant defenses, including the secretion of carbohydrate-active enzymes (CAZymes) that degrade plant cell walls. While CAZymes are well-studied in other insect species, their role in BPH virulence remains largely unexplored. Methods This study aims to address this gap by analyzing CAZymes in 182 insect genomes, followed by a detailed genomic and transcriptomic analysis of BPH. Results We identified 644 CAZymes in BPH, including enzymes related to plant cell wall degradation. Through quantitative real-time PCR (RT-qPCR) and subcellular localization experiments, we found that 5 candidate genes exhibited increased expression during feeding on the susceptible rice variety TN1, a well-characterized variety highly susceptible to BPH and these genes were localized to the plasma membrane. Our results suggest that BPH CAZymes play a critical role in the insect's ability to feed and damage rice plants. Discussion This study provides valuable insights into the molecular mechanisms underlying insect adaptation and virulence in the co-evolutionary process between plants and herbivorous insects. By exploring the function of pest-related genes in the BPH and examining their differential responses in rice varieties with varying resistance to BPH, we aim to contribute to the development of targeted pest management strategies.
Collapse
Affiliation(s)
- Fang Liu
- The National Key Laboratory of Rice Biological Breeding, China National Rice Research Institute, Hangzhou, Zhejiang, China
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Jing Xiao
- The National Key Laboratory of Rice Biological Breeding, China National Rice Research Institute, Hangzhou, Zhejiang, China
| | - Xin-Feng Wang
- The National Key Laboratory of Rice Biological Breeding, China National Rice Research Institute, Hangzhou, Zhejiang, China
| | - Ya-Xuan Wang
- The National Key Laboratory of Rice Biological Breeding, China National Rice Research Institute, Hangzhou, Zhejiang, China
| | - Hou-Hong Yang
- The National Key Laboratory of Rice Biological Breeding, China National Rice Research Institute, Hangzhou, Zhejiang, China
| | - Yu-Biao Cai
- The National Key Laboratory of Rice Biological Breeding, China National Rice Research Institute, Hangzhou, Zhejiang, China
| | - Feng-Xiang Lai
- The National Key Laboratory of Rice Biological Breeding, China National Rice Research Institute, Hangzhou, Zhejiang, China
| | - Qiang Fu
- The National Key Laboratory of Rice Biological Breeding, China National Rice Research Institute, Hangzhou, Zhejiang, China
| | - Pin-Jun Wan
- The National Key Laboratory of Rice Biological Breeding, China National Rice Research Institute, Hangzhou, Zhejiang, China
| |
Collapse
|
2
|
Kuang Y, Shangguan C, Wang C, Gao L, Yu X. Salivary effector DcE1 suppresses plant defense and facilitates the successful feeding of Asian citrus psyllid, Diaphorina citri. PEST MANAGEMENT SCIENCE 2025; 81:1717-1726. [PMID: 39543447 DOI: 10.1002/ps.8536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 10/18/2024] [Accepted: 10/30/2024] [Indexed: 11/17/2024]
Abstract
BACKGROUND Piercing-sucking insects secrete diverse repertoires of effectors into their hosts to weaken host defenses and promote infestation. The Asian citrus psyllid, Diaphorina citri Kuwayama, is the most destructive insect pest in citrus orchards because of its role as a vector for the huanglongbing pathogen, Candidatus Liberibacter asiaticus (CLas). However, specific effector proteins and their functions in D. citri remain unclear. RESULTS We demonstrate that DcE1, a salivary protein gene from D. citri, is predominantly expressed in the salivary gland tissues and is delivered into host plants during feeding. Transient expression in tobacco leaves revealed that DcE1 was subcellularly localized in the cytoplasm and plasma membrane, where it inhibited BAX- and INF1-induced cell death, suppressed callose deposition, and activated the salicylic acid pathway by upregulating the expression of endo-β-1,3-glucanase NtBGL2 and regulatory protein NtNPR1. Further, DcE1 knockdown by double-stranded RNA (dsRNA) injection decreased the survival rates of D. citri and interrupted D. citri phloem-feeding on host plants. CONCLUSION These results indicate that DcE1 is a novel effector that promotes plant susceptibility and enables D. citri feeding. These findings enhance our understanding of D. citri-plant interactions and offer a potential new target gene for the development of citrus protection strategies. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yinhui Kuang
- Jiangxi Provincial Key Laboratory of Pest and Disease Control of Featured Horticultural Plants/National Navel Orange Engineering Research Center, College of Life Sciences, Gannan Normal University, Ganzhou, China
| | - Chaozhi Shangguan
- Jiangxi Provincial Key Laboratory of Pest and Disease Control of Featured Horticultural Plants/National Navel Orange Engineering Research Center, College of Life Sciences, Gannan Normal University, Ganzhou, China
| | - Chuyang Wang
- Jiangxi Provincial Key Laboratory of Pest and Disease Control of Featured Horticultural Plants/National Navel Orange Engineering Research Center, College of Life Sciences, Gannan Normal University, Ganzhou, China
| | - Liwei Gao
- Jiangxi Provincial Key Laboratory of Pest and Disease Control of Featured Horticultural Plants/National Navel Orange Engineering Research Center, College of Life Sciences, Gannan Normal University, Ganzhou, China
| | - Xiudao Yu
- Jiangxi Provincial Key Laboratory of Pest and Disease Control of Featured Horticultural Plants/National Navel Orange Engineering Research Center, College of Life Sciences, Gannan Normal University, Ganzhou, China
| |
Collapse
|
3
|
Wang G, Hu B, Yao X, Wei Z, Chen J, Sun Z. A Stinkbug Salivary Protein Is Indispensable for Insect Feeding and Activates Plant Immunity. PLANT, CELL & ENVIRONMENT 2025; 48:2329-2342. [PMID: 39593264 DOI: 10.1111/pce.15308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 11/05/2024] [Accepted: 11/11/2024] [Indexed: 11/28/2024]
Abstract
Salivary proteins secreted by phytophagous insects play pivotal roles in plant-insect interactions. A salivary protein RpSP27, from the stinkbug Riptortus pedestris, a devastating pest on soybean, was selected for studying due to its ability to induce cell death and activate immune responses in plants. RpSP27 localized to the endoplasmic reticulum and triggered reactive oxygen species burst. Virus-induced gene silencing assays showed RAR1 plays an essential role in RpSP27-induced cell death in Nicotiana benthamiana. Expression analyses revealed that RpSP27 is predominantly expressed in R. pedestris salivary glands. RNA interference-mediated silencing of RpSP27 in R. pedestris significantly reduced insect survival rates and altered feeding behavior by decreasing the formation of salivary sheaths on soybeans and reducing probing and feeding duration. Furthermore, the silencing of RpSP27 in R. pedestris mitigated the staygreen syndrome in soybeans, characterized by delayed senescence and pod abnormalities. This study elucidated the role of RpSP27 in the interaction between R. pedestris and soybean, presenting a potential target for pest management strategies to protect soybean crops from the detrimental effects of R. pedestris feeding.
Collapse
Affiliation(s)
- Guoyi Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, Zhejiang, China
| | - Biao Hu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, Zhejiang, China
| | - Xiang Yao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, Zhejiang, China
| | - Zhongyan Wei
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, Zhejiang, China
| | - Jianping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, Zhejiang, China
| | - Zongtao Sun
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|
4
|
Fu J, Li S, Li J, Zhao Z, Li J, Tan X, Yu S, Jing M, Zhu‐Salzman K, Fang J, Ji R. An Insect Effector Mimics Its Host Immune Regulator to Undermine Plant Immunity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2409186. [PMID: 39853648 PMCID: PMC11923970 DOI: 10.1002/advs.202409186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 12/19/2024] [Indexed: 01/26/2025]
Abstract
Plants activate defense machinery when infested by herbivorous insects but avoid such costs in the absence of herbivory. However, the key signaling pathway regulators underlying such flexibility and the mechanisms that insects exploit these components to disarm plant defense systems remain elusive. Here, it is reported that immune repressor 14-3-3e in rice Oryza sativa (OsGF14e) regulates immune homeostasis. Infestation with brown planthopper (BPH) Nilaparvata lugens decreased OsGF14e expression; however, the level of downregulation is limited both by the short duration and the specific feeding location. OsGF14e interacts with Enhanced Disease Resistance 1-like (OsEDR1l), a Raf-like MAP kinase kinase kinase (MAPKKK), and repressed jasmonic acid, jasmonic acid-isoleucine, and H2O2 accumulation by enhancing OsEDR1l abundance and signaling ability. OsGF14e and OsEDR1l overexpression renders rice susceptible to BPH, whereas their knockout increases plant resistance but compromises rice growth and grain yield. Intriguingly, BPH 14-3-3e protein (Nl14) that shares high sequence homology and structural similarity with OsGF14e is identified from BPH saliva and egg-associated secretions. Mediated through BPH feeding and oviposition, Nl14, similar to OsGF14e, interacts with OsEDR1l and triggers the OsEDR1l signaling, thereby suppressing plant defenses and facilitating BPH infestation. Apparently, structural and functional mimicry makes it possible for this newly discovered BPH effector to exploit rice OsGF14e-EDR1l immune suppression module. The results reveal a novel mechanism deployed by herbivorous insects, in a manner similar to certain pathogen effectors, to evade host plant defenses by mimicking host immune regulators.
Collapse
Affiliation(s)
- Jianmei Fu
- Institute of Plant ProtectionJiangsu Academy of Agricultural SciencesJiangsu Key Laboratory for Food and Safety‐State Key Laboratory Cultivation Base of Ministry of Science and TechnologyNanjing210014China
| | - Shuai Li
- Institute of Plant ProtectionJiangsu Academy of Agricultural SciencesJiangsu Key Laboratory for Food and Safety‐State Key Laboratory Cultivation Base of Ministry of Science and TechnologyNanjing210014China
| | - jing Li
- Institute of Plant ProtectionJiangsu Academy of Agricultural SciencesJiangsu Key Laboratory for Food and Safety‐State Key Laboratory Cultivation Base of Ministry of Science and TechnologyNanjing210014China
| | - Zhichang Zhao
- College of Plant ProtectionNanjing Agricultural UniversityNanjing210014China
| | - Jing Li
- College of Plant ProtectionNanjing Agricultural UniversityNanjing210014China
| | - Xinyang Tan
- College of Plant ProtectionNanjing Agricultural UniversityNanjing210014China
| | - Shan Yu
- Institute of Plant ProtectionJiangsu Academy of Agricultural SciencesJiangsu Key Laboratory for Food and Safety‐State Key Laboratory Cultivation Base of Ministry of Science and TechnologyNanjing210014China
| | - Maofeng Jing
- College of Plant ProtectionNanjing Agricultural UniversityNanjing210014China
| | - Keyan Zhu‐Salzman
- Department of EntomologyTexas A&M University, College StationAustinTX77843USA
| | - Jichao Fang
- Institute of Plant ProtectionJiangsu Academy of Agricultural SciencesJiangsu Key Laboratory for Food and Safety‐State Key Laboratory Cultivation Base of Ministry of Science and TechnologyNanjing210014China
| | - Rui Ji
- Institute of Plant ProtectionJiangsu Academy of Agricultural SciencesJiangsu Key Laboratory for Food and Safety‐State Key Laboratory Cultivation Base of Ministry of Science and TechnologyNanjing210014China
| |
Collapse
|
5
|
Fan BL, Chen LH, Chen LL, Guo H. Integrative Multi-Omics Approaches for Identifying and Characterizing Biological Elements in Crop Traits: Current Progress and Future Prospects. Int J Mol Sci 2025; 26:1466. [PMID: 40003933 PMCID: PMC11855028 DOI: 10.3390/ijms26041466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/21/2025] [Accepted: 01/21/2025] [Indexed: 02/27/2025] Open
Abstract
The advancement of multi-omics tools has revolutionized the study of complex biological systems, providing comprehensive insights into the molecular mechanisms underlying critical traits across various organisms. By integrating data from genomics, transcriptomics, metabolomics, and other omics platforms, researchers can systematically identify and characterize biological elements that contribute to phenotypic traits. This review delves into recent progress in applying multi-omics approaches to elucidate the genetic, epigenetic, and metabolic networks associated with key traits in plants. We emphasize the potential of these integrative strategies to enhance crop improvement, optimize agricultural practices, and promote sustainable environmental management. Furthermore, we explore future prospects in the field, underscoring the importance of cutting-edge technological advancements and the need for interdisciplinary collaboration to address ongoing challenges. By bridging various omics platforms, this review aims to provide a holistic framework for advancing research in plant biology and agriculture.
Collapse
Affiliation(s)
| | | | - Ling-Ling Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China; (B.-L.F.); (L.-H.C.)
| | - Hao Guo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China; (B.-L.F.); (L.-H.C.)
| |
Collapse
|
6
|
Li Y, Zhang R, Sun L, Cao C. Resistance of Populus davidiana × P. bolleana overexpressing cinnamoyl-CoA reductase gene to Lymantria dispar larvae. Transgenic Res 2025; 34:10. [PMID: 39786661 DOI: 10.1007/s11248-024-00426-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 10/28/2024] [Indexed: 01/12/2025]
Abstract
Lignin is a crucial defense phytochemical against phytophagous insects. Cinnamoyl-CoA reductase (CCR) is a key enzyme in lignin biosynthesis. In this study, transgenic Populus davidiana × P. bolleana overexpressing the PdbCCR gene were generated via Agrobacterium-mediated transformation. Successful integration of PdbCCR into the poplar genome was confirmed by PCR amplification and quantitative reverse transcription PCR (qRT-PCR). The lignin content in the transgenic poplar leaves was significantly higher than that in the wild poplar, and after L. dispar larvae fed on the transgenic poplar, the CCR activity was clearly induced. The L. dispar larvae grew slowly after feeding on transgenic poplar and the laccase, cellulase and three detoxifying enzymes were induced compared with larvae after feeding on wild-type poplar. The bioassay further revealed that transgenic poplar plants overexpressing PdbCCR showed a high level of resistance to L. dispar larvae. These results confirmed that PdbCCR is a candidate gene for breeding insect resistant poplar.
Collapse
Affiliation(s)
- Ye Li
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin, 150040, China
| | - Ruiqiong Zhang
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin, 150040, China
| | - Lili Sun
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin, 150040, China.
| | - Chuanwang Cao
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin, 150040, China.
| |
Collapse
|
7
|
Li J, Liu X, Xiao W, Huangfu J, Schuman MC, Baldwin IT, Lou Y. Nymphal feeding suppresses oviposition-induced indirect plant defense in rice. Nat Commun 2025; 16:508. [PMID: 39779696 PMCID: PMC11711504 DOI: 10.1038/s41467-025-55816-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 12/31/2024] [Indexed: 01/11/2025] Open
Abstract
Feeding and oviposition by phytophagous insects are both known to trigger defenses in plants. Whether these two defenses functionally interact remains poorly studied, although these interactions are likely important for pests with overlapping generations. Here we investigated the differences and interaction between feeding- and oviposition-induced plant defenses triggered by the brown planthopper (BPH, Nilaparvata lugens), which gregariously feeds and oviposits on rice. Analyses of host-plant transcriptomes, phytohormones, and direct and indirect defense compounds all show that BPH gravid females (GFs), but not nymphs and non-gravid females (NFs), strongly induce rice defenses. BPH nymphs and GFs prefer to feed on plants previously infested by nymphs over un-attacked plants, but are repelled by plants previously infested by GFs. Moreover, nymph feeding is found to reduce the attractiveness of rice plants to natural enemies and decrease egg parasitism by suppressing GF-induced volatiles that mediate indirect defenses in both growth chambers and paddies. Intergenerational interactions between oviposition- and feeding-induced plant defenses not only promote the development of the population of pest insects but may also contribute to the aggregation behavior of pest insects by suppressing oviposition-induced indirect plant defenses.
Collapse
Affiliation(s)
- Jiancai Li
- State key laboratory of rice biology and breeding & Ministry of Agriculture Key Lab of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou, China.
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou, China.
- Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.
| | - Xiaoli Liu
- State key laboratory of rice biology and breeding & Ministry of Agriculture Key Lab of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Wenhan Xiao
- State key laboratory of rice biology and breeding & Ministry of Agriculture Key Lab of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Jiayi Huangfu
- State key laboratory of rice biology and breeding & Ministry of Agriculture Key Lab of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Meredith C Schuman
- Departments of Geography and Chemistry, University of Zürich, Zürich, Switzerland
| | - Ian T Baldwin
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Yonggen Lou
- State key laboratory of rice biology and breeding & Ministry of Agriculture Key Lab of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou, China.
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou, China.
| |
Collapse
|
8
|
Gao H, Yuan X, Wang J, Yan Y, Zhang X, He T, Lin X, Zhang H, Liu Z. Knockdown of Fzr inhibited the growth of Nilaparvata lugens by blocking endocycle. PEST MANAGEMENT SCIENCE 2025; 81:36-43. [PMID: 39229824 DOI: 10.1002/ps.8403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/29/2024] [Accepted: 08/23/2024] [Indexed: 09/05/2024]
Abstract
BACKGROUND The endocycle can generate cells referred to as 'polyploid'. Fizzy-related protein (Fzr) plays an important role in driving the mitosis-to-endocycle transition. The brown planthopper (BPH), Nilaparvata lugens (Stål), a serious insect pest, feeds exclusively on rice. However, polyploidy and its regulatory mechanisms are poorly understood in BPH. RESULTS Here, we found that the ploidy levels of follicles H (FH) and accessory gland (AG) significantly increased with BPH age when examining the polyploidy of FH and AG of salivary glands. Fzr was identified as an important regulator for polyploidy in BPH salivary gland. Knockdown of Fzr resulted in a decrease in cell size and DNA content in nymph salivary glands. Fzr knockdown transcriptionally upregulated cyclin-dependent kinase 1 (CDK1), CDK2, cyclin A (CycA) and CycB, and downregulated CycD, CycE, Myc and mini-chromosome maintenance protein 2-7 (MCM2-7). Phenotypically, Fzr knockdown significantly suppressed salivary protein production, feeding and survival in BPH nymphs. CONCLUSION Our results show that BPH salivary glands exhibit obvious polyploidy, and Fzr positively regulates the endocycle in nymph salivary gland. These findings provide clues for the study of the regulatory mechanisms of insect polyploidy. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Haoli Gao
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Xiaowei Yuan
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Jingting Wang
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Yangyang Yan
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Xinyu Zhang
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Tianshun He
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- The Sanya Institute of the Nanjing Agricultural University, Sanya, China
| | - Xumin Lin
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Huihui Zhang
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Zewen Liu
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
9
|
Lin K, Yue L, Yuan L, Kang K, Zhang Y, Pang R, Zhang W. Alanine metabolism mediates energy allocation of the brown planthopper to adapt to resistant rice. J Adv Res 2025; 67:25-41. [PMID: 38246245 PMCID: PMC11725158 DOI: 10.1016/j.jare.2024.01.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/10/2024] [Accepted: 01/18/2024] [Indexed: 01/23/2024] Open
Abstract
INTRODUCTION During the adaptation to host plant resistance, herbivorous insects faced the challenge of overcoming plant defenses while ensuring their own development and reproductive success. To achieve this, a strategic allocation of energy resources for detoxification and ecological fitness maintenance became essential. OBJECTIVE This study aimed to elucidate the intricate energy allocation mechanisms involved in herbivore adaptation that are currently poorly understood. METHODS The rice Oryza sativa and its monophagous pest, the brown planthopper (BPH), Nilaparvata lugens were used as a model system. An integrated analysis of metabolomes and transcriptomes from different BPH populations were conducted to identify the biomarkers. RNA interference of key genes and exogenous injection of key metabolites were performed to validate the function of biomarkers. RESULTS We found that alanine was one of the key biomarkers of BPH adaptation to resistant rice variety IR36. We also found that alanine flow determined the adaptation of BPH to IR36 rice. The alanine aminotransferase (ALT)-mediated alanine transfer to pyruvate was necessary and sufficient for the adaptation. This pathway may be conserved, at least to some extent, in BPH adaptation to multiple rice cultivars with different resistance genes. More importantly, ALT-mediated alanine metabolism is the foundation of downstream energy resource allocation for the adaptation. The adapted BPH population exhibited a significantly higher level of energy reserves in the fat body and ovary when fed with IR36 rice, compared to the unadapted population. This rendered the elevated detoxification in the adapted BPH and their ecological fitness recovery. CONCLUSION Overall, our findings demonstrated the crucial role of ALT-mediated alanine metabolism in energy allocation during the adaptation to resistant rice in BPH. This will provide novel knowledge regarding the co-evolutionary mechanisms between herbivores and their host plants.
Collapse
Affiliation(s)
- Kai Lin
- State Key Laboratory of Biocontrol and School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Lei Yue
- State Key Laboratory of Biocontrol and School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; School of Life Sciences, Hebei University, Baoding 071002, China
| | - Longyu Yuan
- State Key Laboratory of Biocontrol and School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510642, China
| | - Kui Kang
- State Key Laboratory of Biocontrol and School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Yibing Zhang
- State Key Laboratory of Biocontrol and School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Rui Pang
- State Key Laboratory of Biocontrol and School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; College of Plant Protection, South China Agricultural University, Guangzhou 510642, China.
| | - Wenqing Zhang
- State Key Laboratory of Biocontrol and School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China.
| |
Collapse
|
10
|
Rao W, Ma T, Cao J, Zhang Y, Chen S, Lin S, Liu X, He G, Wan L. Recognition of a salivary effector by the TNL protein RCSP promotes effector-triggered immunity and systemic resistance in Nicotiana benthamiana. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2025; 67:150-168. [PMID: 39474762 DOI: 10.1111/jipb.13800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/16/2024] [Accepted: 10/09/2024] [Indexed: 01/16/2025]
Abstract
Insects secret chemosensory proteins (CSPs) into plant cells as potential effector proteins during feeding. The molecular mechanisms underlying how CSPs activate plant immunity remain largely unknown. We show that CSPs from six distinct insect orders induce dwarfism when overexpressed in Nicotiana benthamiana. Agrobacterium-mediated transient expression of Nilaparvata lugens CSP11 (NlCSP11) triggered cell death and plant dwarfism, both of which were dependent on ENHANCED DISEASE SUSCEPTIBILITY 1 (EDS1), N requirement gene 1 (NRG1) and SENESCENCE-ASSOCIATED GENE 101 (SAG101), indicating the activation of effector-triggered immunity (ETI) in N. benthamiana. Overexpression of NlCSP11 led to stronger systemic resistance against Pseudomonas syringae DC3000 lacking effector HopQ1-1 and tobacco mosaic virus, and induced higher accumulation of salicylic acid (SA) in uninfiltrated leaves compared to another effector XopQ that is recognized by a Toll-interleukin-1 receptor (TIR) domain nucleotide-binding leucine-rich repeat receptor (TNL) called ROQ1 in N. benthamiana. Consistently, NlCSP11-induced dwarfism and systemic resistance, but not cell death, were abolished in N. benthamiana transgenic line expressing the SA-degrading enzyme NahG. Through large-scale virus-induced gene silencing screening, we identified a TNL protein that mediates the recognition of CSPs (RCSP), including aphid effector MP10 that triggers resistance against aphids in N. benthamiana. Co-immunoprecipitation, bimolecular fluorescence complementation and AlphaFold2 prediction unveiled an interaction between NlCSP11 and RCSP. Interestingly, RCSP does not contain the conserved catalytic glutamic acid in the TIR domain, which is required for TNL function. Our findings point to enhanced ETI and systemic resistance by a TNL protein via hyperactivation of the SA pathway. Moreover, RCSP is the first TNL identified to recognize an insect effector.
Collapse
Affiliation(s)
- Weiwei Rao
- Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Tingting Ma
- Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Jiayuan Cao
- Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Yajun Zhang
- Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Sisi Chen
- Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Shu Lin
- Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Xiaoxiao Liu
- Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Guangcun He
- National Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Li Wan
- Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
11
|
Ye Y, Xiong S, Guan X, Tang T, Zhu Z, Zhu X, Hu J, Wu J, Zhang S. Insight into Rice Resistance to the Brown Planthopper: Gene Cloning, Functional Analysis, and Breeding Applications. Int J Mol Sci 2024; 25:13397. [PMID: 39769161 PMCID: PMC11678690 DOI: 10.3390/ijms252413397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/10/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025] Open
Abstract
This review provides a comprehensive overview of the current understanding of rice resistance to the brown planthopper (BPH), a major pest that poses significant threats to rice production through direct feeding damage and by transmitting viruses such as Rice grassy stunt virus (RGSV) and Rice ragged stunt virus (RRSV). We highlight the emergence of various BPH biotypes that have overcome specific resistance genes in rice. Advances in genetic mapping and cloning have identified 17 BPH resistance genes, classified into typical R genes encoding nucleotide-binding leucine-rich repeat (NLR) proteins and atypical R genes such as lectin receptor kinases and proteins affecting cell wall composition. The molecular mechanisms of these genes involve the activation of plant defense pathways mediated by phytohormones like jasmonic acid (JA), salicylic acid (SA), and ethylene, as well as the production of defensive metabolites. We also examine the complex interactions between BPH salivary proteins and rice defense responses, noting how salivary effectors can both suppress and trigger plant immunity. The development and improvement of BPH-resistant rice varieties through conventional breeding and molecular marker-assisted selection are discussed, including strategies like gene pyramiding to enhance resistance durability. Finally, we outline the challenges and future directions in breeding for durable BPH resistance, emphasizing the need for continued research on resistance mechanisms and the development of rice varieties with broad-spectrum and long-lasting resistance.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jianguo Wu
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.Y.); (S.X.); (X.G.); (T.T.); (Z.Z.); (X.Z.); (J.H.)
| | - Shuai Zhang
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.Y.); (S.X.); (X.G.); (T.T.); (Z.Z.); (X.Z.); (J.H.)
| |
Collapse
|
12
|
Yu S, Gong L, Han YC, Yang L, Li J, Hoffmann AA, Luo GH, Yuan GR, Fang JC, Ji R. Oral secretions from striped stem borer (Chilo suppressalis) induce defenses in rice. PEST MANAGEMENT SCIENCE 2024; 80:6437-6449. [PMID: 39152725 DOI: 10.1002/ps.8376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/25/2024] [Accepted: 08/02/2024] [Indexed: 08/19/2024]
Abstract
BACKGROUND The striped stem borer (SSB, Chilo suppressalis) is one of the most destructive insect pests on rice. As a chewing insect, SSB larval feeding causes a dramatic increase in rice defense responses. However, the effects of oral secretions (OSs) during SSB feeding on rice defense remain largely unexplored. RESULTS In this study, based on transcriptome analysis results, treatment with SSB OSs regulated the expression of genes involved in the plant defense-related pathways of calcium, mitogen-activated protein kinases, reactive oxygen species, jasmonic acid (JA), herbivore-induced plant volatiles (HIPVs), and protease inhibitors. Unsurprisingly, treatment with SSB OSs elicited the accumulation of JA and JA-isoleucine in rice. The defense mechanisms activated by the cascade not only induced the expression of trypsin inhibitors, inhibiting the normal growth of SSB larvae but also induced HIPVs emission, rendering rice attractive to a common larval parasitoid. High-throughput proteome sequencing of SSB OSs led to 534 proteins being identified and 343 proteins with two or more unique peptides being detected. CONCLUSION The study demonstrates that SSB OSs trigger both direct and indirect defense mechanisms in rice, akin to the effects of SSB feeding. It identifies specific proteins in SSB OSs that may influence the interactions between SSB and rice during feeding, providing valuable insights for effectors research. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Shan Yu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food and Safety (State Key Laboratory Cultivation Base of Ministry of Science and Technology), Nanjing, China
| | - Lei Gong
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food and Safety (State Key Laboratory Cultivation Base of Ministry of Science and Technology), Nanjing, China
| | - Yang-Chun Han
- Laboratory for Quarantine of Alien Species, Integrated Technical Service Center of Jiangyin Customs, Jiangyin, China
| | - Lei Yang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food and Safety (State Key Laboratory Cultivation Base of Ministry of Science and Technology), Nanjing, China
| | - Jing Li
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food and Safety (State Key Laboratory Cultivation Base of Ministry of Science and Technology), Nanjing, China
| | - Ary A Hoffmann
- School of BioSciences, Bio21 Institute, The University of Melbourne, Parkville, Australia
| | - Guang-Hua Luo
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food and Safety (State Key Laboratory Cultivation Base of Ministry of Science and Technology), Nanjing, China
| | - Guo-Rui Yuan
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
| | - Ji-Chao Fang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food and Safety (State Key Laboratory Cultivation Base of Ministry of Science and Technology), Nanjing, China
| | - Rui Ji
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food and Safety (State Key Laboratory Cultivation Base of Ministry of Science and Technology), Nanjing, China
| |
Collapse
|
13
|
Zhu K, Zhang N, Zhang D, Cai N, Liu R, Dong H, Zhang Z, Tu X. Saliva of Therioaphis trifolii (Drepanosiphidae) Activates the SA Plant Hormone Pathway, Inhibits the JA Plant Hormone Pathway, and Improves Aphid Survival Rate. Int J Mol Sci 2024; 25:12488. [PMID: 39684200 DOI: 10.3390/ijms252312488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/12/2024] [Accepted: 11/16/2024] [Indexed: 12/18/2024] Open
Abstract
The spotted alfalfa aphid (Therioaphis trifolii) is a kind of destructive pest of cultivated alfalfa (Medicago sativa) that results in significant financial losses for the livestock sector. To understand how T. trifolii navigates the biochemical defenses of its host, we investigated the effects of susceptible and resistant aphid strains on two alfalfa cultivars. T. trifolii was reared for over 50 generations on two cultivars-WL343, which is susceptible to T. trifolii, and Zhongmu No. 1, which is resistant-resulting in the development of a resistant aphid strain (R-aphid) and a susceptible aphid strain (S-aphid). The results showed that the survival rate of R-aphids was significantly higher than that of S-aphids (p = 0.039) on the resistant cultivar Zhongmu No. 1, while there was no significant difference in survival rates between the two aphid strains on WL343 (p = 0.139). This suggests that S- and R-aphids differ in their ability to modulate plant defense mechanisms, influencing their survival rates. The application of saliva from R-aphids reared on Zhongmu No. 1 (R-saliva) reduced the repellency and toxicity of treated plants, improving aphid survival. Furthermore, R-aphid infestation and R-saliva application activated the salicylic acid (SA) signaling pathway while suppressing the jasmonic acid (JA) pathway, enhancing the host plant's suitability for aphid colonization. We propose that R-aphids may use their saliva to activate the SA pathway, which in turn inhibits JA synthesis, weakening the plant's defenses. These findings provide valuable insights into how T. trifolii interacts with host plant defense systems.
Collapse
Affiliation(s)
- Kaihui Zhu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Key Laboratory of Economical and Applied Entomology of Liaoning Province, College of Plant Protection, Shenyang Agriculture University, Shenyang 110866, China
| | - Neng Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Daogang Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Ni Cai
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Rong Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Hui Dong
- Key Laboratory of Economical and Applied Entomology of Liaoning Province, College of Plant Protection, Shenyang Agriculture University, Shenyang 110866, China
| | - Zehua Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiongbing Tu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
14
|
Jiang Y, Zhang XY, Li S, Xie YC, Luo XM, Yang Y, Pu Z, Zhang L, Lu JB, Huang HJ, Zhang CX, He SY. Rapid intracellular acidification is a plant defense response countered by the brown planthopper. Curr Biol 2024; 34:5017-5027.e4. [PMID: 39406243 DOI: 10.1016/j.cub.2024.09.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 08/12/2024] [Accepted: 09/16/2024] [Indexed: 10/25/2024]
Abstract
The brown planthopper (BPH) is the most destructive insect pest in rice. Through a stylet, BPH secretes a plethora of salivary proteins into rice phloem cells as a crucial step of infestation. However, how various salivary proteins function in rice cells to promote insect infestation is poorly understood. Among them, one of the salivary proteins is predicted to be a carbonic anhydrase (Nilaparvata lugens carbonic anhydrase [NlCA]). The survival rate of the NlCA-RNA interference (RNAi) BPH insects was extremely low on rice, indicating a vital role of this salivary protein in BPH infestation. We generated NlCA transgenic rice plants and found that NlCA expressed in rice plants could restore the ability of NlCA-RNAi BPH to survive on rice. Next, we produced rice plants expressing the ratiometric pH sensor pHusion and found that NlCA-RNAi BPH induced rapid intracellular acidification of rice cells during feeding. Further analysis revealed that both NlCA-RNAi BPH feeding and artificial lowering of intracellular pH activated plant defense responses and that NlCA-mediated intracellular pH stabilization is linked to diminished defense responses, including reduced callose deposition at the phloem sieve plates and suppressed defense gene expression. Given the importance of pH homeostasis across the kingdoms of life, discovery of NlCA-mediated intracellular pH modulation uncovered a new dimension in the interaction between plants and piercing/sucking insect pests. The crucial role of NlCA for BPH infestation of rice suggests that NlCA is a promising target for chemical or trans-kingdom RNAi-based inactivation for BPH control strategies in plants.
Collapse
Affiliation(s)
- Yanjuan Jiang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, China; DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA; CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, Yunnan, China.
| | - Xiao-Ya Zhang
- Institute of Insect Science, Zhejiang University, Hangzhou 310058, China; DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
| | - Shaoqin Li
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, Yunnan, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu-Cheng Xie
- Institute of Insect Science, Zhejiang University, Hangzhou 310058, China
| | - Xu-Mei Luo
- Institute of Insect Science, Zhejiang University, Hangzhou 310058, China
| | - Yongping Yang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, Yunnan, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhengyan Pu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, China
| | - Li Zhang
- Howard Hughes Medical Institute, Duke University, Durham, NC 27708, USA; Department of Biology, Duke University, Durham, NC 27708, USA
| | - Jia-Bao Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, China
| | - Hai-Jian Huang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, China
| | - Chuan-Xi Zhang
- Institute of Insect Science, Zhejiang University, Hangzhou 310058, China; State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, China.
| | - Sheng Yang He
- DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA; Howard Hughes Medical Institute, Duke University, Durham, NC 27708, USA; Department of Biology, Duke University, Durham, NC 27708, USA.
| |
Collapse
|
15
|
Zhao M, Huang S, Zhang Q, Wei Y, Tao Z, Wang C, Zhao Y, Zhang X, Dong J, Wang L, Chen C, Wang T, Li P. The plant terpenes DMNT and TMTT function as signaling compounds that attract Asian corn borer (Ostrinia furnacalis) to maize plants. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:2528-2542. [PMID: 39171839 PMCID: PMC11583840 DOI: 10.1111/jipb.13763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 08/23/2024]
Abstract
During their co-evolution with herbivorous insects, plants have developed multiple defense strategies that resist pests, such as releasing a blend of herbivory-induced plant volatiles (HIPVs) that repel pests or recruit their natural enemies. However, the responses of insects to HIPVs in maize (Zea mays L.) are not well understood. Here, we demonstrate that the Asian corn borer (ACB, Ostrinia furnacalis), a major insect pest of maize, shows a preference for maize pre-infested with ACB larvae rather than being repelled by these plants. Through combined transcriptomic and metabolomics analysis of ACB-infested maize seedlings, we identified two substances that explain this behavior: (E)-4,8-dimethylnona-1,3,7-triene (DMNT) and (3E,7E)-4,8,12-trimethyltrideca-1,3,7,11-tetraene (TMTT). DMNT and TMTT attracted ACB larvae, and knocking out the maize genes responsible for their biosynthesis via gene editing impaired this attraction. External supplementation with DMNT/TMTT hampered the larvae's ability to locate pre-infested maize. These findings uncover a novel role for DMNT and TMTT in driving the behavior of ACB. Genetic modification of maize to make it less detectable by ACB might be an effective strategy for developing maize germplasm resistant to ACB and for managing this pest effectively in the field.
Collapse
Affiliation(s)
- Mengjie Zhao
- The National Key Engineering Laboratory of Crop Stress Resistance Breeding, The School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
- Center for Crop Pest Detection and Control, Anhui Agricultural University, Hefei, 230036, China
| | - Shijie Huang
- The National Key Engineering Laboratory of Crop Stress Resistance Breeding, The School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
- Center for Crop Pest Detection and Control, Anhui Agricultural University, Hefei, 230036, China
| | - Qingyang Zhang
- The National Key Engineering Laboratory of Crop Stress Resistance Breeding, The School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
- Center for Crop Pest Detection and Control, Anhui Agricultural University, Hefei, 230036, China
| | - Yuming Wei
- The School of Tea and Food Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Zhen Tao
- The National Key Engineering Laboratory of Crop Stress Resistance Breeding, The School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
- Center for Crop Pest Detection and Control, Anhui Agricultural University, Hefei, 230036, China
| | - Chuanhong Wang
- The National Key Engineering Laboratory of Crop Stress Resistance Breeding, The School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
- Center for Crop Pest Detection and Control, Anhui Agricultural University, Hefei, 230036, China
| | - Yibing Zhao
- The National Key Engineering Laboratory of Crop Stress Resistance Breeding, The School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
- Center for Crop Pest Detection and Control, Anhui Agricultural University, Hefei, 230036, China
| | - Xinqiao Zhang
- The National Key Engineering Laboratory of Crop Stress Resistance Breeding, The School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
- Center for Crop Pest Detection and Control, Anhui Agricultural University, Hefei, 230036, China
| | - Jinghui Dong
- The National Key Engineering Laboratory of Crop Stress Resistance Breeding, The School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
- Center for Crop Pest Detection and Control, Anhui Agricultural University, Hefei, 230036, China
| | - Ling Wang
- The National Key Engineering Laboratory of Crop Stress Resistance Breeding, The School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
- Center for Crop Pest Detection and Control, Anhui Agricultural University, Hefei, 230036, China
| | - Chen Chen
- The National Key Engineering Laboratory of Crop Stress Resistance Breeding, The School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
- Department of Microbiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Tengyue Wang
- The National Key Engineering Laboratory of Crop Stress Resistance Breeding, The School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
- Center for Crop Pest Detection and Control, Anhui Agricultural University, Hefei, 230036, China
| | - Peijin Li
- The National Key Engineering Laboratory of Crop Stress Resistance Breeding, The School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
- Center for Crop Pest Detection and Control, Anhui Agricultural University, Hefei, 230036, China
| |
Collapse
|
16
|
Wang Y, Zhu C, Chen G, Li X, Zhu M, Alariqi M, Hussian A, Ma W, Lindsey K, Zhang X, Nie X, Jin S. Cotton Bollworm (H. armigera) Effector PPI5 Targets FKBP17-2 to Inhibit ER Immunity and JA/SA Responses, Enhancing Insect Feeding. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2407826. [PMID: 39352314 PMCID: PMC11600268 DOI: 10.1002/advs.202407826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/09/2024] [Indexed: 11/28/2024]
Abstract
The cotton bollworm causes severe mechanical damage to plants during feeding and leaves oral secretions (OSs) at the mechanical wounds. The role these OSs play in the invasion of plants is still largely unknown. Here, a novel H. armigera effector peptidyl prolyl trans-isomerase 5 (PPI5) was isolated and characterized. PPI5 induces the programmed cell death (PCD) due to the unfolded protein response (UPR) in tobacco leaf. We reveal that PPI5 is important for the growth and development of cotton bollworm on plants, as it renders plants more susceptible to feeding. The GhFKBP17-2, was identified as a host target for PPI5 with peptidyl-prolyl isomerase (PPIase) activity. CRISPR/Cas9 knock-out cotton mutant (CR-GhFKBP17-1/3), VIGS (TRV: GhFKBP17-2) and overexpression lines (OE-GhFKBP17-1/3) were created and the data indicate that GhFKBP17-2 positively regulates endoplasmic reticulum (ER) stress-mediated plant immunity in response to cotton bollworm infestation. We further confirm that PPI5 represses JA and SA levels by downregulating the expression of JA- and SA-associated genes, including JAZ3/9, MYC2/3, JAR4, PR4, LSD1, PAD4, ICS1 and PR1/5. Taken together, our results reveal that PPI5 reduces plant defense responses and makes plants more susceptible to cotton bollworm infection by targeting and suppressing GhFKBP17-2 -mediated plant immunity.
Collapse
Affiliation(s)
- Yaxin Wang
- Hubei Hongshan LaboratoryNational Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubei430070P. R. China
| | - Chuanying Zhu
- Hubei Hongshan LaboratoryNational Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubei430070P. R. China
| | - Gefei Chen
- Hubei Hongshan LaboratoryNational Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubei430070P. R. China
| | - Xuke Li
- Hubei Hongshan LaboratoryNational Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubei430070P. R. China
| | - Mingjv Zhu
- Hubei Hongshan LaboratoryNational Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubei430070P. R. China
| | - Muna Alariqi
- Hubei Hongshan LaboratoryNational Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubei430070P. R. China
| | - Amjad Hussian
- Hubei Hongshan LaboratoryNational Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubei430070P. R. China
| | - Weihua Ma
- Hubei Hongshan LaboratoryNational Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubei430070P. R. China
| | - Keith Lindsey
- Department of BiosciencesDurham UniversityDurhamDH1 3LEUK
| | - Xianlong Zhang
- Hubei Hongshan LaboratoryNational Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubei430070P. R. China
| | - Xinhui Nie
- Key Laboratory of Oasis Ecology Agricultural of Xinjiang Production and Construction CorpsAgricultural CollegeShihezi UniversityShiheziXinjiang832003P. R. China
| | - Shuangxia Jin
- Hubei Hongshan LaboratoryNational Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubei430070P. R. China
| |
Collapse
|
17
|
Li S, Tan X, He Z, Jiang L, Li Y, Yang L, Hoffmann AA, Zhao C, Fang J, Ji R. Transcriptome-wide N 6-methyladenosine profiling reveals growth-defense trade-offs in the response of rice to brown planthopper (Nilaparvata lugens) infestation. PEST MANAGEMENT SCIENCE 2024; 80:5364-5376. [PMID: 39031631 DOI: 10.1002/ps.8265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/08/2024] [Accepted: 06/06/2024] [Indexed: 07/22/2024]
Abstract
BACKGROUND N6-Methyladenosine (m6A) is a common messenger RNA (mRNA) modification that affects various physiological processes in stress responses. However, the role of m6A modifications in plants responses to herbivore stress remains unclear. RESULTS Here, we found that an infestation of brown planthopper (Nilaparvata lugens) female adults enhanced the resistance of rice to N. lugens. The m6A methylome analysis of N. lugens-infested and uninfested rice samples was performed to explore the interaction between rice and N. lugens. The m6A methylation mainly occurred in genes that were actively expressed in rice following N. lugens infestation, while an analysis of the whole-genomic mRNA distribution of m6A showed that N. lugens infestation caused an overall decrease in the number of m6A methylation sites across the chromosomes. The m6A methylation of genes involved in the m6A modification machinery and several defense-related phytohormones (jasmonic acid and salicylic acid) pathways was increased in N. lugens-infested rice compared to that in uninfested rice. In contrast, m6A modification levels of growth-related phytohormone (auxin and gibberellin) biosynthesis-related genes were significantly attenuated during N. lugens infestation, accompanied by the down-regulated expression of these transcripts, indicating that rice growth was restricted during N. lugens attack to rapidly optimize resource allocation for plant defense. Integrative analysis of the differential patterns of m6A methylation and the corresponding transcripts showed a positive correlation between m6A methylation and transcriptional regulation. CONCLUSION The m6A modification is an important strategy for regulating the expression of genes involved in rice defense and growth during rice-N. lugens interactions. These findings provide new ideas for formulating strategies to control herbivorous pests. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Shuai Li
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food and Safety, State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
| | - Xinyang Tan
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Zhen He
- School of Plant Protection, Yangzhou University, Yangzhou, China
| | - Lei Jiang
- School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Yali Li
- Wuhan Benagen Technology Company Limited, Wuhan, China
| | - Liu Yang
- Wuhan Benagen Technology Company Limited, Wuhan, China
| | - Ary A Hoffmann
- School of BioSciences, Bio21 Institute, University of Melbourne, Parkville, Australia
| | - Chunqing Zhao
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Jichao Fang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food and Safety, State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Rui Ji
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food and Safety, State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
- School of Life Sciences, Anhui Normal University/Key Laboratory for Conservation and Use of Important Biological Resources of Anhui Province, Anhui, China
| |
Collapse
|
18
|
Kuai P, Lin N, Ye M, Ye M, Chen L, Chen S, Zu H, Hu L, Gatehouse AMR, Lou Y. Identification and knockout of a herbivore susceptibility gene enhances planthopper resistance and increases rice yield. NATURE FOOD 2024; 5:846-859. [PMID: 39251763 DOI: 10.1038/s43016-024-01044-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 08/13/2024] [Indexed: 09/11/2024]
Abstract
Brown planthoppers (Nilaparvata lugens) and white-backed planthoppers (Sogatella furcifera) are among the most destructive pests on rice. However, plant susceptibility genes have not yet been exploited for crop protection. Here we identified a leucine-rich repeat protein, OsLRR2, from susceptible rice varieties that facilitates infestation by brown planthopper N. lugens. Field trials showed that knockout of OsLRR2 significantly reduced BPH infestation and enhanced natural biological control by attracting natural enemies. Yield of a susceptible variety was increased by 18% in insecticide-treated plots that eliminated planthoppers and by 25% in untreated plots. These findings underscore the pivotal role of OsLRR2, offering a promising pathway for pest population suppression and rice yield increase.
Collapse
Affiliation(s)
- Peng Kuai
- State Key Laboratory of Rice Breeding and Biology and Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Na Lin
- State Key Laboratory of Rice Breeding and Biology and Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Miaofen Ye
- State Key Laboratory of Rice Breeding and Biology and Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Meng Ye
- State Key Laboratory of Rice Breeding and Biology and Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Lin Chen
- State Key Laboratory of Rice Breeding and Biology and Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Shuting Chen
- State Key Laboratory of Rice Breeding and Biology and Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Hongyue Zu
- State Key Laboratory of Rice Breeding and Biology and Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Lingfei Hu
- State Key Laboratory of Rice Breeding and Biology and Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | | | - Yonggen Lou
- State Key Laboratory of Rice Breeding and Biology and Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou, China.
- Hainan Institute, Zhejiang University, Sanya, China.
| |
Collapse
|
19
|
Prajapati VK, Vijayan V, Vadassery J. Secret Weapon of Insects: The Oral Secretion Cocktail and Its Modulation of Host Immunity. PLANT & CELL PHYSIOLOGY 2024; 65:1213-1223. [PMID: 38877965 DOI: 10.1093/pcp/pcae059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 05/11/2024] [Accepted: 05/27/2024] [Indexed: 09/04/2024]
Abstract
Plants and insects have co-existed for almost 400 million years and their interactions can be beneficial or harmful, thus reflecting their intricate co-evolutionary dynamics. Many herbivorous arthropods cause tremendous crop loss, impacting the agro-economy worldwide. Plants possess an arsenal of chemical defenses that comprise diverse secondary metabolites that help protect against harmful herbivorous arthropods. In response, the strategies that herbivores use to cope with plant defenses can be behavioral, or molecular and/or biochemical of which salivary secretions are a key determinant. Insect salivary secretions/oral secretions (OSs) play a crucial role in plant immunity as they contain several biologically active elicitors and effector proteins that modulate plants' defense responses. Using this oral secretion cocktail, insects overcome plant natural defenses to allow successful feeding. However, a lack of knowledge of the nature of the signals present in oral secretion cocktails has resulted in reduced mechanistic knowledge of their cellular perception. In this review, we discuss the latest knowledge on herbivore oral secretion derived elicitors and effectors and various mechanisms involved in plant defense modulation. Identification of novel herbivore-released molecules and their plant targets should pave the way for understanding the intricate strategies employed by both herbivorous arthropods and plants in their interactions.
Collapse
Affiliation(s)
| | - Vishakh Vijayan
- National Institute of Plant Genome Research, New Delhi 110067, India
| | | |
Collapse
|
20
|
Liu XY, Cai XY, Wu HJ, Wan Y, Wei SF, Xu HJ. Salivary proteins NlSP5 and NlSP7 are required for optimal feeding and fitness of the brown planthopper, Nilaparvata lugens. PEST MANAGEMENT SCIENCE 2024; 80:4297-4305. [PMID: 38629775 DOI: 10.1002/ps.8134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 03/15/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024]
Abstract
BACKGROUND Saliva has a crucial role in determining the compatibility between piercing-sucking insects and their hosts. The brown planthopper (BPH) Nilaparvata lugens, a notorious pest of rice in East and Southeast Asia, secretes gelling and watery saliva when feeding on rice sap. Nlsalivap-5 (NlSP5) and Nlsalivap-7 (NlSP7) were identified as potential planthopper-specific gelling saliva components, but their biological functions remain unknown. RESULTS Here, we showed by transcriptomic analyses that NlSP5 and NlSP7 were biasedly expressed in the salivary glands of BPHs. Using the clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9-mediated genome-editing system, we constructed NlSP5 and NlSP7 homozygous mutants (NlSP5-/- and NlSP7-/-). Electrical penetration graph assay showed that NlSP5-/- and NlSP7-/- mutants exhibited abnormal probing and feeding behaviors. Bioassays revealed that the loss-of-function of NlSP5 and NlSP7 significantly reduced the fitness of BPHs, with extended developmental duration, shortened lifespan, reduced weight, and impaired fecundity and hatching rates. CONCLUSION These findings deepen our understanding of the BPH-host interaction and may provide potential targets for the management of rice planthoppers. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xin-Yang Liu
- State Key Laboratory of Rice Biology and Breeding, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Xin-Yu Cai
- State Key Laboratory of Rice Biology and Breeding, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Hui-Jie Wu
- State Key Laboratory of Rice Biology and Breeding, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Yi Wan
- State Key Laboratory of Rice Biology and Breeding, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Sheng-Fei Wei
- State Key Laboratory of Rice Biology and Breeding, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Hai-Jun Xu
- State Key Laboratory of Rice Biology and Breeding, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
21
|
Li J, Li S, Li J, Tan X, Zhao Z, Jiang L, Hoffmann AA, Fang J, Ji R. Egg-associated secretions from the brown planthopper (Nilaparvata lugens) activate rice immune responses. INSECT SCIENCE 2024; 31:1135-1149. [PMID: 38010047 DOI: 10.1111/1744-7917.13303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/06/2023] [Accepted: 10/24/2023] [Indexed: 11/29/2023]
Abstract
The brown planthopper (BPH, Nilaparvata lugens) is a notorious sap-sucking insect pest that damages rice (Oryza sativa) plants throughout Asia. During BPH feeding, saliva enters rice plant tissues, whereas during oviposition egg-associated secretions (EAS) are deposited in damaged plant tissue. Dynamic changes in rice to planthopper salivary effectors have been widely reported. However, the effects of EAS from planthopper on rice immunity remains largely unexplored. In this study, we found that both infestation of rice by gravid BPH female adults and treatment with the EAS elicited a strong and rapid accumulation of jasmonic acid (JA), JA-isoleucine, and hydrogen peroxide in rice. EAS enhanced plant defenses not only in rice but also in tobacco, and these impaired the performance of BPH on rice, as well as the performance of aphids and whiteflies on tobacco. High-throughput proteome sequencing of EAS led to 110 proteins being identified and 53 proteins with 2 or more unique peptides being detected. Some proteins from BPH EAS were also found in the salivary proteome from herbivores, suggesting potential evolutionary conservation of effector functions across feeding and oviposition; however, others were only identified in EAS, and these are likely specifically related to oviposition. These findings point to novel proteins affecting interactions between planthoppers and rice during oviposition, providing an additional source of information for effector studies.
Collapse
Affiliation(s)
- Jing Li
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Shuai Li
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
| | - Jing Li
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
| | - Xinyang Tan
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Zhichang Zhao
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Lei Jiang
- School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Ary A Hoffmann
- School of BioSciences, Bio21 Institute, University of Melbourne, Parkville, VIC, Australia
| | - Jichao Fang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Rui Ji
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huaian, Jiangsu Province, China
| |
Collapse
|
22
|
Yu L, Chen Y, Zeng X, Lou Y, Baldwin IT, Li R. Brown planthoppers manipulate rice sugar transporters to benefit their own feeding. Curr Biol 2024; 34:2990-2996.e4. [PMID: 38870934 DOI: 10.1016/j.cub.2024.05.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/29/2024] [Accepted: 05/14/2024] [Indexed: 06/15/2024]
Abstract
The feeding of piercing-sucking insect herbivores often elicits changes in their host plants that benefit the insect.1 In addition to thwarting a host's defense responses, these phloem-feeding insects may manipulate source-sink signaling so as to increase resources consumed.2,3 To date, the molecular mechanisms underlying herbivore-induced resource reallocation remain less investigated. Brown planthopper (BPH), an important rice pest, feeds on the phloem and oviposits into leaf sheaths. BPH herbivory increases sugar accumulations 5-fold in the phloem sap of leaf sheaths and concurrently induces the expression of two clade III SWEET genes, SWEET13 and SWEET14, in leaf tissues, but not in leaf sheaths of attacked rice plants. Mutations of both genes by genome editing attenuate resistance to BPH without alterations of known chemical and physical defense responses. Moreover, BPH-elicited sugar levels in the phloem sap were significantly reduced in sweet13/14 mutants, which is likely to attenuate BPH feeding behavior on sweet13/14 mutants. In one of the two field seasons tested, the sweet13/14 mutants showed comparable yield to wild types, and in the other season, the mutants demonstrated stronger BPH resistance. These preliminary results suggested that the mutations in these SWEET transporters could enhance BPH resistance without yield penalties. Given that sweet13/14 mutants also exhibit resistance to bacterial blight pathogen, Xanthomonas oryzae pv. oryzae, these SWEET genes could serve as excellent molecular targets for the breeding of resistant rice cultivars.
Collapse
Affiliation(s)
- Lingyuan Yu
- State Key Laboratory of Rice Biology and Breeding, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yumeng Chen
- State Key Laboratory of Rice Biology and Breeding, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xuan Zeng
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Yonggen Lou
- State Key Laboratory of Rice Biology and Breeding, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ian T Baldwin
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Ran Li
- State Key Laboratory of Rice Biology and Breeding, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
23
|
Pan C, He X, Xia L, Wei K, Niu Y, Han B. Proteomic Analysis of Salivary Secretions from the Tea Green Leafhopper, Empoasca flavescens Fabrecius. INSECTS 2024; 15:296. [PMID: 38667426 PMCID: PMC11050670 DOI: 10.3390/insects15040296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 03/24/2024] [Accepted: 04/20/2024] [Indexed: 04/28/2024]
Abstract
Saliva plays a crucial role in shaping the compatibility of piercing-sucking insects with their host plants. Understanding the complex composition of leafhopper saliva is important for developing effective and eco-friendly control strategies for the tea green leafhopper, Empoasca flavescens Fabrecius, a major piercing-sucking pest in Chinese tea plantations. This study explored the saliva proteins of tea green leafhopper adults using a custom collection device, consisting of two layers of Parafilm stretched over a sucrose diet. A total of 152 proteins were identified using liquid chromatography-tandem mass spectrometry (LC-MS/MS) following the filter-aided sample preparation (FASP). These proteins were categorized into six groups based on their functions, including enzymes, transport proteins, regulatory proteins, cell structure proteins, other proteins, and unknown proteins. Bioinformatics analyses predicted 16 secreted proteins, which were successfully cloned and transcriptionally analyzed across various tissues and developmental stages. Genes encoding putative salivary secretory proteins, including Efmucin1, EfOBP1, EfOBP2, EfOBP3, Efmucin2, low-density lipoprotein receptor-related protein (EfLRP), EFVg1, and EFVg2, exhibited high expressions in salivary gland (SG) tissues and feeding-associated expressions at different developmental stages. These findings shed light on the potential elicitors or effectors mediating the leafhopper feeding and defense responses in tea plants, providing insights into the coevolution of tea plants and leafhoppers. The study's conclusions open avenues for the development of innovative leafhopper control technologies that reduce the reliance on pesticides in the tea industry.
Collapse
Affiliation(s)
| | | | | | | | - Yuqun Niu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, China Jiliang University, Hangzhou 310018, China; (C.P.); (X.H.); (L.X.); (K.W.); (B.H.)
| | | |
Collapse
|
24
|
Gupta A, Nair S. Epigenetic Diversity Underlying Seasonal and Annual Variations in Brown Planthopper (BPH) Populations as Revealed by Methylation- sensitive Restriction Assay. Curr Genomics 2023; 24:354-367. [PMID: 38327650 PMCID: PMC10845068 DOI: 10.2174/0113892029276542231205065843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 11/10/2023] [Indexed: 02/09/2024] Open
Abstract
Background The brown planthopper (BPH) is a monophagous sap-sucking insect pest of rice that is responsible for massive yield loss. BPH populations, even when genetically homogenous, can display a vast range of phenotypes, and the development of effective pest-management strategies requires a good understanding of what generates this phenotypic variation. One potential source could be epigenetic differences. Methods With this premise, we explored epigenetic diversity, structure and differentiation in field populations of BPH collected across the rice-growing seasons over a period of two consecutive years. Using a modified methylation-sensitive restriction assay (MSRA) and CpG island amplification-representational difference analysis, site-specific cytosine methylation of five stress-responsive genes (CYP6AY1, CYP6ER1, Carboxylesterase, Endoglucanase, Tf2-transposon) was estimated, for identifying methylation-based epiallelic markers and epigenetic variation across BPH populations. Results Using a cost-effective and rapid protocol, our study, for the first time, revealed the epigenetic component of phenotypic variations in the wild populations of BPH. Besides, results showed that morphologically indistinguishable populations of BPH can be epigenetically distinct. Conclusion Screening field-collected BPH populations revealed the presence of previously unreported epigenetic polymorphisms and provided a platform for future studies aimed at investigating their significance for BPH. Furthermore, these findings can form the basis for understanding the contribution(s) of DNA methylation in providing phenotypic plasticity to BPH.
Collapse
Affiliation(s)
- Ayushi Gupta
- Plant-Insect Interaction Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi, 110067, India
- Current Address: Institute of Molecular Plant Sciences, University of Edinburgh, Edinburgh EH 93BF, UK
| | - Suresh Nair
- Plant-Insect Interaction Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi, 110067, India
| |
Collapse
|
25
|
Zhou H, Zhang J, Bai L, Liu J, Li H, Hua J, Luo S. Chemical Structure Diversity and Extensive Biological Functions of Specialized Metabolites in Rice. Int J Mol Sci 2023; 24:17053. [PMID: 38069376 PMCID: PMC10707428 DOI: 10.3390/ijms242317053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/25/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023] Open
Abstract
Rice (Oryza sativa L.) is thought to have been domesticated many times independently in China and India, and many modern cultivars are available. All rice tissues are rich in specialized metabolites (SPMs). To date, a total of 181 terpenoids, 199 phenolics, 41 alkaloids, and 26 other types of compounds have been detected in rice. Some volatile sesquiterpenoids released by rice are known to attract the natural enemies of rice herbivores, and play an indirect role in defense. Momilactone, phytocassane, and oryzalic acid are the most common diterpenoids found in rice, and are found at all growth stages. Indolamides, including serotonin, tryptamine, and N-benzoylserotonin, are the main rice alkaloids. The SPMs mainly exhibit defense functions with direct roles in resisting herbivory and pathogenic infections. In addition, phenolics are also important in indirect defense, and enhance wax deposition in leaves and promote the lignification of stems. Meanwhile, rice SPMs also have allelopathic effects and are crucial in the regulation of the relationships between different plants or between plants and microorganisms. In this study, we reviewed the various structures and functions of rice SPMs. This paper will provide useful information and methodological resources to inform the improvement of rice resistance and the promotion of the rice industry.
Collapse
Affiliation(s)
| | | | | | | | | | - Juan Hua
- Research Center of Protection and Utilization of Plant Resources, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China (J.L.)
| | - Shihong Luo
- Research Center of Protection and Utilization of Plant Resources, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China (J.L.)
| |
Collapse
|
26
|
Shi S, Wang H, Zha W, Wu Y, Liu K, Xu D, He G, Zhou L, You A. Recent Advances in the Genetic and Biochemical Mechanisms of Rice Resistance to Brown Planthoppers ( Nilaparvata lugens Stål). Int J Mol Sci 2023; 24:16959. [PMID: 38069282 PMCID: PMC10707318 DOI: 10.3390/ijms242316959] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 11/26/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
Rice (Oryza sativa L.) is the staple food of more than half of Earth's population. Brown planthopper (Nilaparvata lugens Stål, BPH) is a host-specific pest of rice responsible for inducing major losses in rice production. Utilizing host resistance to control N. lugens is considered to be the most cost-effective method. Therefore, the exploration of resistance genes and resistance mechanisms has become the focus of breeders' attention. During the long-term co-evolution process, rice has evolved multiple mechanisms to defend against BPH infection, and BPHs have evolved various mechanisms to overcome the defenses of rice plants. More than 49 BPH-resistance genes/QTLs have been reported to date, and the responses of rice to BPH feeding activity involve various processes, including MAPK activation, plant hormone production, Ca2+ flux, etc. Several secretory proteins of BPHs have been identified and are involved in activating or suppressing a series of defense responses in rice. Here, we review some recent advances in our understanding of rice-BPH interactions. We also discuss research progress in controlling methods of brown planthoppers, including cultural management, trap cropping, and biological control. These studies contribute to the establishment of green integrated management systems for brown planthoppers.
Collapse
Affiliation(s)
- Shaojie Shi
- Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (S.S.); (H.W.)
| | - Huiying Wang
- Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (S.S.); (H.W.)
| | - Wenjun Zha
- Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (S.S.); (H.W.)
| | - Yan Wu
- Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (S.S.); (H.W.)
| | - Kai Liu
- Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (S.S.); (H.W.)
| | - Deze Xu
- Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (S.S.); (H.W.)
| | - Guangcun He
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Lei Zhou
- Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (S.S.); (H.W.)
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Aiqing You
- Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (S.S.); (H.W.)
- Hubei Hongshan Laboratory, Wuhan 430070, China
| |
Collapse
|
27
|
Gao H, Lin X, Yuan X, Zou J, Zhang H, Zhang Y, Liu Z. The salivary chaperone protein NlDNAJB9 of Nilaparvata lugens activates plant immune responses. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:6874-6888. [PMID: 37103882 DOI: 10.1093/jxb/erad154] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 04/25/2023] [Indexed: 06/19/2023]
Abstract
The brown planthopper (BPH) Nilaparvata lugens (Stål) is a main pest on rice. It secretes saliva to regulate plant defense responses, when penetrating rice plant and sucking phloem sap through its stylet. However, the molecular mechanisms of BPH salivary proteins regulating plant defense responses remain poorly understood. A N. lugens DNAJ protein (NlDNAJB9) gene was highly expressed in salivary glands, and the knock down of NlDNAJB9 significantly enhanced honeydew excretion and fecundity of the BPH. NlDNAJB9 could induce plant cell death, and the overexpression of NlDNAJB9 gene in Nicotiana benthamiana induced calcium signaling, mitogen-activated protein kinase (MAPK) cascades, reactive oxygen species (ROS) accumulation, jasmonic acid (JA) hormone signaling and callose deposition. The results from different NlDNAJB9 deletion mutants indicated that the nuclear localization of NlDNAJB9 was not necessary to induce cell death. The DNAJ domain was the key region to induce cell death, and the overexpression of DNAJ domain in N. benthamiana significantly inhibited insect feeding and pathogenic infection. NlDNAJB9 might interact indirectly with NlHSC70-3 to regulate plant defense responses. NlDNAJB9 and its orthologs were highly conserved in three planthopper species, and could induce ROS burst and cell death in plants. Our study provides new insights into the molecular mechanisms of insect-plant interactions.
Collapse
Affiliation(s)
- Haoli Gao
- Key laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China
| | - Xumin Lin
- Key laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China
| | - Xiaowei Yuan
- Key laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China
| | - Jianzheng Zou
- Key laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China
| | - Huihui Zhang
- Key laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China
| | - Yixi Zhang
- Key laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China
| | - Zewen Liu
- Key laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China
| |
Collapse
|
28
|
Anand R, Divya D, Mazumdar-Leighton S, Bentur JS, Nair S. Expression Analysis Reveals Differentially Expressed Genes in BPH and WBPH Associated with Resistance in Rice RILs Derived from a Cross between RP2068 and TN1. Int J Mol Sci 2023; 24:13982. [PMID: 37762286 PMCID: PMC10531025 DOI: 10.3390/ijms241813982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/31/2023] [Accepted: 09/03/2023] [Indexed: 09/29/2023] Open
Abstract
BPH (brown planthopper) and WBPH (white backed planthopper) are significant rice pests that often co-occur as sympatric species and cause substantial yield loss. Despite their genetic similarities, different host-resistance genes confer resistance against these two hoppers. The defense mechanisms in rice against these pests are complex, and the molecular processes regulating their responses remain largely unknown. This study used specific recombinant inbred lines (RILs) derived from a cross between rice varieties RP2068-18-3-5 (BPH- and WBPH-resistant) and TN1 (BPH- and WBPH-susceptible) to investigate the mechanisms of interaction between these planthoppers and their rice hosts. WBPH and BPH were allowed to feed on specific RILs, and RNA-Seq was carried out on WBPH insects. Transcriptome profiling and qRT-PCR results revealed differential expression of genes involved in detoxification, digestion, transportation, cuticle formation, splicing, and RNA processing. A higher expression of sugar transporters was observed in both hoppers feeding on rice with resistance against either hopper. This is the first comparative analysis of gene expressions in these insects fed on genetically similar hosts but with differential resistance to BPH and WBPH. These results complement our earlier findings on the differential gene expression of the same RILs (BPH- or WBPH-infested) utilized in this study. Moreover, identifying insect genes and pathways responsible for countering host defense would augment our understanding of BPH and WBPH interaction with their rice hosts and enable us to develop lasting strategies to control these significant pests.
Collapse
Affiliation(s)
- Rashi Anand
- Plant-Insect Interaction Group, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India;
- Plant Biotic Interaction Lab, Department of Botany, University of Delhi, Delhi 110007, India;
| | - Dhanasekar Divya
- Agri Biotech Foundation, Rajendranagar, Hyderabad 500030, India; (D.D.); (J.S.B.)
| | | | - Jagadish S. Bentur
- Agri Biotech Foundation, Rajendranagar, Hyderabad 500030, India; (D.D.); (J.S.B.)
| | - Suresh Nair
- Plant-Insect Interaction Group, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India;
| |
Collapse
|
29
|
Wang H, Shi S, Hua W. Advances of herbivore-secreted elicitors and effectors in plant-insect interactions. FRONTIERS IN PLANT SCIENCE 2023; 14:1176048. [PMID: 37404545 PMCID: PMC10317074 DOI: 10.3389/fpls.2023.1176048] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 03/31/2023] [Indexed: 07/06/2023]
Abstract
Diverse molecular processes regulate the interactions between insect herbivores and their host plants. When plants are exposed to insects, elicitors induce plant defenses, and complex physiological and biochemical processes are triggered, such as the activation of the jasmonic acid (JA) and salicylic acid (SA) pathways, Ca2+ flux, reactive oxygen species (ROS) burst, mitogen-activated protein kinase (MAPK) activation, and other responses. For better adaptation, insects secrete a large number of effectors to interfere with plant defenses on multiple levels. In plants, resistance (R) proteins have evolved to recognize effectors and trigger stronger defense responses. However, only a few effectors recognized by R proteins have been identified until now. Multi-omics approaches for high-throughput elicitor/effector identification and functional characterization have been developed. In this review, we mainly highlight the recent advances in the identification of the elicitors and effectors secreted by insects and their target proteins in plants and discuss their underlying molecular mechanisms, which will provide new inspiration for controlling these insect pests.
Collapse
Affiliation(s)
- Huiying Wang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Shaojie Shi
- Hubei Hongshan Laboratory, Wuhan, China
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Key Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Institute of Food Crops, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Wei Hua
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| |
Collapse
|
30
|
Zeng J, Ye W, Hu W, Jin X, Kuai P, Xiao W, Jian Y, Turlings TCJ, Lou Y. The N-terminal subunit of vitellogenin in planthopper eggs and saliva acts as a reliable elicitor that induces defenses in rice. THE NEW PHYTOLOGIST 2023; 238:1230-1244. [PMID: 36740568 DOI: 10.1111/nph.18791] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 01/29/2023] [Indexed: 06/18/2023]
Abstract
Vitellogenins (Vgs) are critical for the development and fecundity of insects. As such, these essential proteins can be used by plants to reliably sense the presence of insects. We addressed this with a combination of molecular and chemical analyses, genetic transformation, bioactivity tests, and insect performance assays. The small N-terminal subunit of Vgs of the planthopper Nilaparvata lugens (NlVgN) was found to trigger strong defense responses in rice when it enters the plants during feeding or oviposition by the insect. The defenses induced by NlVgN not only decreased the hatching rate of N. lugens eggs, but also induced volatile emissions in plants, which rendered them attractive to a common egg parasitoid. VgN of other planthoppers triggered the same defenses in rice. We further show that VgN deposited during planthopper feeding compared with during oviposition induces a somewhat different response, probably to target the appropriate developmental stage of the insect. We also confirm that NlVgN is essential for planthopper growth, development, and fecundity. This study demonstrates that VgN in planthopper eggs and saliva acts as a reliable and unavoidable elicitor of plant defenses. Its importance for insect performance precludes evolutionary adaptions to prevent detection by rice plants.
Collapse
Affiliation(s)
- Jiamei Zeng
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Wenfeng Ye
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China
- Laboratory of Fundamental and Applied Research in Chemical Ecology, Institute of Biology, University of Neuchâtel, Neuchâtel, 2000, Switzerland
| | - Wenhui Hu
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xiaochen Jin
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Peng Kuai
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Wenhan Xiao
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yukun Jian
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Ted C J Turlings
- Laboratory of Fundamental and Applied Research in Chemical Ecology, Institute of Biology, University of Neuchâtel, Neuchâtel, 2000, Switzerland
| | - Yonggen Lou
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
31
|
Gao H, Yuan X, Lin X, Zhang H, Zou J, Liu Z. Reducing Expression of Salivary Protein Genes by Flonicamid Partially Contributed to Its Feeding Inhibition of the Brown Planthopper on Rice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37027537 DOI: 10.1021/acs.jafc.3c00895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Flonicamid inhibits the feeding of piercing-sucking pests as a selective systemic insecticide. The brown planthopper (BPH), Nilaparvata lugens (Stål), is one of the most serious pests on rice. During feeding, it uses its stylet to collect sap by penetrating the phloem, and at the same time, it delivers saliva into the rice plant. Insect salivary proteins play important roles in feeding and interacting with plants. Whether flonicamid affects the expression of salivary protein genes and then inhibits the feeding of BPH is not clear. Here, from 20 functionally characterized salivary proteins, we screened five salivary proteins (NlShp, NlAnnix5, Nl16, Nl32, and NlSP7) whose gene expressions were significantly inhibited by flonicamid. We performed experimental analysis on two of them (Nl16 and Nl32). RNA interference of Nl32 significantly reduced the survival rate of BPH. Electrical penetration graph (EPG) experiments showed that both flonicamid treatment and knockdown of Nl16 and Nl32 genes significantly reduced the feeding activity of N. lugens in the phloem and also reduced the honeydew excretion and fecundity. These results suggested that the inhibition of flonicamid on the feeding behavior in N. lugens might be partially attributed to its effect on the expression of salivary protein genes. This study provides a new insight into the mechanism of action of flonicamid on insect pests.
Collapse
Affiliation(s)
- Haoli Gao
- Key laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China
| | - Xiaowei Yuan
- Key laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China
| | - Xumin Lin
- Key laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China
| | - Huihui Zhang
- Key laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China
| | - Jianzheng Zou
- Key laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China
| | - Zewen Liu
- Key laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China
| |
Collapse
|
32
|
Dong Y, Zhang W, Jin Y, Shen D, Xia A. Apolygus lucorum effector Al6 promotes insect feeding performance on soybean plants: RNAi analysis and feeding behaviour study with electrical penetration graph. INSECT MOLECULAR BIOLOGY 2023; 32:1-10. [PMID: 35986559 DOI: 10.1111/imb.12808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 08/14/2022] [Indexed: 06/15/2023]
Abstract
The mirid bug Apolygus lucorum, a dominant mirid species in northern China, is a notorious polyphagous pest with more than 200 hosts, including several major crops such as cotton and soybean, resulting in massive economic loss. Studies of insect salivary effectors may provide a novel control strategy for A. lucorum. An A. lucorum effector, that is, Al6, that inhibits plant immunity by using glutathione peroxidase to repress reactive oxidase accumulation was previously identified. In this study, we further explored the molecular functions of Al6 associated with feeding behaviour and insect survival on soybean, a major host of A. lucorum, using RNA interference and electrical penetration graph (EPG) techniques. We initially observed the injury symptom of this mirid bug and characterized feeding behaviour on soybean leaves using EPG. Our results revealed that A. lucorum preferred to feed on young plant organs such as tender leaves, shoots and buds. This mirid bug used cell rupture as a feeding strategy to ingest cell contents from plant tissues. Subsequently, we silenced the Al6 gene using RNAi and investigated the feeding behaviour, honeydew excretion, body weight, and survival rates of A. lucorum on soybean after Al6 knockdown. Our results demonstrated that silencing of Al6 significantly reduced feeding duration, amount of honeydew secretion, body weight, and survival rates of A. lucorum. Thus, our findings provide a novel molecular target of plant-mediated RNAi for the control of A. lucorum.
Collapse
Affiliation(s)
- Yumei Dong
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Wendan Zhang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Yan Jin
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Danyu Shen
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Ai Xia
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
33
|
Zhang H, Lin R, Liu Q, Lu J, Qiao G, Huang X. Transcriptomic and proteomic analyses provide insights into host adaptation of a bamboo-feeding aphid. FRONTIERS IN PLANT SCIENCE 2023; 13:1098751. [PMID: 36714746 PMCID: PMC9874943 DOI: 10.3389/fpls.2022.1098751] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 12/19/2022] [Indexed: 06/18/2023]
Abstract
INTRODUCTION Salivary glands and their secreted proteins play an important role in the feeding process of sap-sucking aphids. The determination of saliva composition is an important step in understanding host plant adaptation of aphids. Pseudoregma bambucicola is a severe bamboo pest in subtropical areas and the only aphid species that can exclusively feed on hard stalks of bamboos. How this species can penetrate and degrade hard bamboo cell walls and utilize a very specialized niche are important unanswered questions. METHODS In this study, comprehensive analyses based on transcriptome sequencing, RT-qPCR, liquid chromatography-tandem spectrometry (LC-MS/MS) and bioinformatics were conducted on dissected salivary glands and secreted saliva of P. bambucicola to characterize the overall gene expression and salivary protein composition, and to identify putative effector proteins important for aphid-plant interactions. RESULTS AND DISCUSSION Some secretory proteins homologous to known aphid effectors important for aphid-plant interactions, such as digestive enzymes, detoxifying and antioxidant enzymes and some effectors modulating plant defenses, are also detected in salivary gland transcriptome and salivary gland and/or saliva secretomes in P. bambucicola. This indicates that these effectors are probably be essential for enabling P. bambucicola feeding on bamboo host. Although several plant cell wall degrading enzymes (PCWDEs) can be identified from transcriptome, most of the enzymes identified in salivary glands showed low expression levels and they only represent a small fraction of the complete set of enzymes for degrading cellulose and hemicellulose. In addition, our data show that P. bambucicola has no its own ability to produce pectinases. Overall, our analyses indicate that P. bambucicola may lose its own ability to express and secrete key PCWDEs, and its adaptation to unique feeding habit may depend on its symbiotic bacteria.
Collapse
Affiliation(s)
- Hui Zhang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Ruixun Lin
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qian Liu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jianjun Lu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Gexia Qiao
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Xiaolei Huang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Provincial Key Laboratory of Insect Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
34
|
Gao H, Zou J, Lin X, Zhang H, Yu N, Liu Z. Nilaparvata lugens salivary protein NlG14 triggers defense response in plants. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:7477-7487. [PMID: 36056768 DOI: 10.1093/jxb/erac354] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 09/02/2022] [Indexed: 06/15/2023]
Abstract
The brown planthopper (BPH), Nilaparvata lugens (Stål) (Hemiptera: Delphacidae), is a serious insect pest on rice. It uses its stylet to collect sap by penetrating the phloem and at the same time it delivers saliva into the host plant, which can trigger a reaction. The molecular mechanisms by which BPH salivary proteins result in plant responses are poorly understood. In this study, we screened transcriptomic data from different BPH tissues and found a protein specific to the salivary gland, NlG14, that could induce cell death in plants. We determined that NlG14 is uniquely found in the insect family Delphacidae. Detailed examination of N. lugens showed that NlG14 was mainly localized in the A-follicle of the principal gland of the salivary gland, and that it was secreted into rice plants during feeding. Knockdown of NlG14 resulted in significant nymph mortality when BPH was fed on either rice plants or on an artificial diet. Further analysis showed that NlG14 triggered accumulation of reactive oxygen species, cell death, callose deposition, and activation of jasmonic acid signaling pathways in plants. Transient expression of NlG14 in Nicotiana benthamiana decreased insect feeding and suppressed plant pathogen infection. Thus, NlG14, an essential salivary protein of N. lugens, acted as a potential herbivore-associated molecular pattern to enhance plant resistance to both insects and plant pathogens by inducing multiple plant defense responses. Our findings provide new insights into the molecular mechanisms of insect-plant interactions and offer a potential target for pest management.
Collapse
Affiliation(s)
- Haoli Gao
- Key laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China
| | - Jianzheng Zou
- Key laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China
| | - Xumin Lin
- Key laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China
| | - Huihui Zhang
- Key laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China
| | - Na Yu
- Key laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China
| | - Zewen Liu
- Key laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China
| |
Collapse
|
35
|
Li C, Xiong Z, Fang C, Liu K. Transcriptome and metabolome analyses reveal the responses of brown planthoppers to RH resistant rice cultivar. Front Physiol 2022; 13:1018470. [PMID: 36187783 PMCID: PMC9523508 DOI: 10.3389/fphys.2022.1018470] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 09/05/2022] [Indexed: 11/16/2022] Open
Abstract
The brown planthopper (BPH) Nilaparvata lugens (Stål) (Hemiptera: Delphacidae) is one of the most destructive rice pests in Asia. The application of insect-resistant rice cultivars is currently one of the principal means of controlling BPH. Understanding the physiological response mechanisms of BPH feeding on insect-resistant rice is the key for maintaining rice yield. Here, we measured the ecological fitness and analyzed the whole-body transcriptome and metabolome of BPH reared on susceptible cultivar Taichung Native 1 (TN1) and resistant cultivar Rathu Heenati (RH). Our results showed that RH significantly decreased the survival rate, female adult weight, honeydew secretion, the number of eggs laid per female and fat content of BPH. We identified 333 upregulated and 486 downregulated genes in BPH feeding on RH. These genes were mainly involved in energy metabolism, amino acid metabolism, hormone synthesis and vitamin metabolism pathways. We also detected 145 differentially accumulated metabolites in BPH reared on RH plants compared to BPH reared on TN1 plants, including multiple carbohydrates, amino acids, lipids, and some nucleosides. Combined analyses of transcriptome and metabolome showed that five pathways, including starch, sucrose, and galactose metabolism, were altered. The network for these pathways was subsequently visualized. Our results provide insights into the mechanisms of metabolite accumulation in BPH feeding on the RH rice variety. The results could help us better understand how insect-resistant rice cultivars combat BPH infestation, which is important for the comprehensive management of BPH.
Collapse
|
36
|
Gupta A, Nair S. Heritable Epigenomic Modifications Influence Stress Resilience and Rapid Adaptations in the Brown Planthopper ( Nilaparvata lugens). Int J Mol Sci 2022; 23:8728. [PMID: 35955860 PMCID: PMC9368798 DOI: 10.3390/ijms23158728] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/22/2022] [Accepted: 07/23/2022] [Indexed: 11/25/2022] Open
Abstract
DNA methylation in insects is integral to cellular differentiation, development, gene regulation, genome integrity, and phenotypic plasticity. However, its evolutionary potential and involvement in facilitating rapid adaptations in insects are enigmatic. Moreover, our understanding of these mechanisms is limited to a few insect species, of which none are pests of crops. Hence, we studied methylation patterns in the brown planthopper (BPH), a major rice pest, under pesticide and nutritional stress, across its life stages. Moreover, as the inheritance of epigenetic changes is fundamentally essential for acclimation, adaptability, and evolution, we determined the heritability and persistence of stress-induced methylation marks in BPH across generations. Our results revealed that DNA methylation pattern(s) in BPH varies/vary with environmental cues and is/are insect life-stage specific. Further, our findings provide novel insights into the heritability of stress-induced methylation marks in BPH. However, it was observed that, though heritable, these marks eventually fade in the absence of the stressors, thereby suggesting the existence of fitness cost(s) associated with the maintenance of the stressed epigenotype. Furthermore, we demonstrate how 5-azacytidine-mediated disruption of BPH methylome influences expression levels of stress-responsive genes and, thereby, highlight demethylation/methylation as a phenomenon underlying stress resilience of BPH.
Collapse
Affiliation(s)
| | - Suresh Nair
- Plant-Insect Interaction Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi 110067, India
| |
Collapse
|
37
|
Sogatella furcifera Saliva Mucin-like Protein Is Required for Feeding and Induces Rice Defences. Int J Mol Sci 2022; 23:ijms23158239. [PMID: 35897828 PMCID: PMC9332473 DOI: 10.3390/ijms23158239] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/21/2022] [Accepted: 07/23/2022] [Indexed: 11/16/2022] Open
Abstract
The white-backed planthopper (WBPH), Sogatella furcifera, is one of the most important piercing-sucking pests of rice (Oryza sativa) in Asia. Mucin-like salivary protein (SFMLP) is highly expressed in the salivary glands of WBPH, which plays an important role in WBPH feeding. In this study, WBPH injected with dsSFMLP had difficulty in sucking phloem sap from rice plants, which significantly reduced their food intake, weight, and survival. In contrast, the knockdown of the SFMLP gene had only a marginal effect on the survival of WBPH fed an artificial diet. Further studies showed that silencing SFMLP resulted in the short and single-branched salivary sheaths secretion and less formation of salivary flanges in rice. These data suggest that SFMLP is involved in the formation of the salivary sheath and is essential for feeding in WBPH. Overexpression of the SFMLP gene in rice plants promoted the feeding of WBPH, whereas silencing the gene in rice plants significantly decreased WBPH performance. Additionally, it was found that overexpression of SFMLP in rice plants elicited the signalling pathway of SA (salicylic acid) while suppressing JA (jasmonic acid); in contrast, silencing of the SFMLP gene in rice plants showed the opposite results. This study clarified the function of SFMLP in WBPH feeding as well as mediating rice defences.
Collapse
|
38
|
Yang H, Zhang X, Li H, Ye Y, Li Z, Han X, Hu Y, Zhang C, Jiang Y. Heat Shock 70 kDa Protein Cognate 3 of Brown Planthopper Is Required for Survival and Suppresses Immune Response in Plants. INSECTS 2022; 13:insects13030299. [PMID: 35323596 PMCID: PMC8949815 DOI: 10.3390/insects13030299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/09/2022] [Accepted: 03/15/2022] [Indexed: 12/10/2022]
Abstract
The brown planthopper (Nilaparvata lugens) is a monophagous pest of rice (Oryza sativa), which threatens food security around the world. Insect Heat shock proteins 70 kDa (Hsp70s) play a key role in insect growth and development, however, if they also modulate the plant physiological processes is still unclear. In this study, we identified the Heat shock 70 kDa protein cognate 3 (NlHSC70-3) of BPH from compared protein profiles of Nipponbare tissues after BPH infestation via LC/MS. NlHSC70-3 has a predicted signal peptide and displays high transcription levels in the salivary glands, which further supported that it is secreted into plants by BPH during the feeding process. Using RNA interference (RNAi), we showed that NlHSC70-3 is indispensable for the survival of BPH on rice. Most importantly, NlHSC70-3 mediates the plant immune responses including cell death, flg22-induced ROS burst and defense-related gene expression in N. benthamiana. These results demonstrate that NlHSC70-3 may function as an effector manipulating plant physiological processes to facilitate pest survival on rice, which provides a new potential target for future pest control.
Collapse
Affiliation(s)
- Houhong Yang
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, China; (H.Y.); (Z.L.); (X.H.); (Y.H.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoya Zhang
- Institute of Insect Science, Zhejiang University, Hangzhou 310058, China; (X.Z.); (H.L.); (Y.Y.)
| | - Hanjing Li
- Institute of Insect Science, Zhejiang University, Hangzhou 310058, China; (X.Z.); (H.L.); (Y.Y.)
| | - Yuxuan Ye
- Institute of Insect Science, Zhejiang University, Hangzhou 310058, China; (X.Z.); (H.L.); (Y.Y.)
| | - Zhipeng Li
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, China; (H.Y.); (Z.L.); (X.H.); (Y.H.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao Han
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, China; (H.Y.); (Z.L.); (X.H.); (Y.H.)
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Mengla 666303, China
| | - Yanru Hu
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, China; (H.Y.); (Z.L.); (X.H.); (Y.H.)
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Mengla 666303, China
| | - Chuanxi Zhang
- Institute of Insect Science, Zhejiang University, Hangzhou 310058, China; (X.Z.); (H.L.); (Y.Y.)
- Institute of Plant Virology, Ningbo University, Ningbo 315000, China
- Correspondence: (C.Z.); (Y.J.)
| | - Yanjuan Jiang
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, China; (H.Y.); (Z.L.); (X.H.); (Y.H.)
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Mengla 666303, China
- Correspondence: (C.Z.); (Y.J.)
| |
Collapse
|
39
|
Fu J, Shi Y, Wang L, Tian T, Li J, Gong L, Zheng Z, Jing M, Fang J, Ji R. Planthopper-Secreted Salivary Calmodulin Acts as an Effector for Defense Responses in Rice. FRONTIERS IN PLANT SCIENCE 2022; 13:841378. [PMID: 35295635 PMCID: PMC8918949 DOI: 10.3389/fpls.2022.841378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/07/2022] [Indexed: 06/14/2023]
Abstract
The brown planthopper (Nilaparvata lugens, BPH) and small brown planthopper (Laodelphax striatellus, SBPH) are major pests of rice (Oryza sativa) in Asia. These piercing-sucking insects secrete saliva into the host during feeding. Nevertheless, it is largely unknown how planthoppers use salivary effectors to enable continuous feeding on rice. Here, we screened their salivary proteomes and selected eight salivary proteins conserved between SBPH and BPH as candidate effectors. Silencing calmodulin (CaM) impeded BPH and SBPH from penetrating the phloem. Hence, their food intake, survival, and fecundity on rice plants were reduced. By contrast, CaM silencing had a small effect on the survival rate of BPH and SBPH raised on artificial diet. The CaM amino acid sequences were the same for both BPH and SBPH. CaM was highly expressed in their salivary glands and secreted into the rice plants during feeding. Bacterially expressed recombinant CaM protein exhibited calcium-binding activity. In planta expression disclosed that CaM was localized to the plant cytoplasms and nuclei and suppressed plant defenses such as hydrogen peroxide (H2O2) accumulation and callose deposition. CaM-silenced BPH and SBPH nymphs elicited relatively high levels of H2O2 and callose accumulation in rice plants. The foregoing results reveal that CaM is an effector as it enables the planthopper to reach the phloem by suppressing callose deposition and H2O2 accumulation in rice.
Collapse
Affiliation(s)
- Jianmei Fu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
| | - Yu Shi
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Lihua Wang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
| | - Tian Tian
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
| | - Jing Li
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
| | - Lei Gong
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
| | - Zhouting Zheng
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
| | - Maofeng Jing
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Jichao Fang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environmental Protection, Huaiyin Normal University, Huai’an, China
| | - Rui Ji
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environmental Protection, Huaiyin Normal University, Huai’an, China
| |
Collapse
|
40
|
Salivary protein 7 of the brown planthopper functions as an effector for mediating tricin metabolism in rice plants. Sci Rep 2022; 12:3205. [PMID: 35217680 PMCID: PMC8881502 DOI: 10.1038/s41598-022-07106-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 02/04/2022] [Indexed: 11/08/2022] Open
Abstract
The brown planthopper (BPH), Nilaparvata lugens, is an important pest that affects rice (Oryza sativa) production in Asia. The flavone tricin (5,7,4'-trihydroxy-3',5'-dimethoxy flavone) is a valuable secondary metabolite commonly found in rice plants that can defend rice plants against infestation by BPH. BPH damage can reduce the metabolic level of tricin in rice. Our preliminary transcriptome research results showed that BPH salivary protein 7 (NlSP7), is highly responsive to tricin stimuli. However, the function of NlSP7 in mediating the interaction between the rice plant and the BPH is unknown. In this study, we cloned the NlSP7 gene in N. lugens and found that its mRNA level was greater in the presence of high tricin content than low tricin content, regardless of whether the BPHs were fed a rice plant diet or an artificial diet containing 100 mg/L tricin. Knocking down NlSP7 resulted in BPH individuals spending more time in the non-penetration and pathway phase, and less time feeding on the phloem of rice plants. These changes decreased BPH food intake, feeding behavior, and fitness, as well as the tricin content of the rice plants. These findings demonstrate that the salivary protein 7 of BPH functions as an effector for tricin metabolism in rice.
Collapse
|
41
|
Chen R, Deng Y, Ding Y, Guo J, Qiu J, Wang B, Wang C, Xie Y, Zhang Z, Chen J, Chen L, Chu C, He G, He Z, Huang X, Xing Y, Yang S, Xie D, Liu Y, Li J. Rice functional genomics: decades' efforts and roads ahead. SCIENCE CHINA. LIFE SCIENCES 2022. [PMID: 34881420 DOI: 10.1007/s11427-021-2024-2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
Rice (Oryza sativa L.) is one of the most important crops in the world. Since the completion of rice reference genome sequences, tremendous progress has been achieved in understanding the molecular mechanisms on various rice traits and dissecting the underlying regulatory networks. In this review, we summarize the research progress of rice biology over past decades, including omics, genome-wide association study, phytohormone action, nutrient use, biotic and abiotic responses, photoperiodic flowering, and reproductive development (fertility and sterility). For the roads ahead, cutting-edge technologies such as new genomics methods, high-throughput phenotyping platforms, precise genome-editing tools, environmental microbiome optimization, and synthetic methods will further extend our understanding of unsolved molecular biology questions in rice, and facilitate integrations of the knowledge for agricultural applications.
Collapse
Affiliation(s)
- Rongzhi Chen
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Yiwen Deng
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Yanglin Ding
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Jingxin Guo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
| | - Jie Qiu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Bing Wang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Changsheng Wang
- National Center for Gene Research, Center of Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200233, China
| | - Yongyao Xie
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
| | - Zhihua Zhang
- College of Plant Science, Jilin University, Changchun, 130062, China
| | - Jiaxin Chen
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Letian Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
| | - Chengcai Chu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Guangcun He
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Zuhua He
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Xuehui Huang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Yongzhong Xing
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shuhua Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Daoxin Xie
- MOE Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| | - Yaoguang Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China.
| | - Jiayang Li
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
42
|
Rice functional genomics: decades' efforts and roads ahead. SCIENCE CHINA. LIFE SCIENCES 2021; 65:33-92. [PMID: 34881420 DOI: 10.1007/s11427-021-2024-0] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/01/2021] [Indexed: 12/16/2022]
Abstract
Rice (Oryza sativa L.) is one of the most important crops in the world. Since the completion of rice reference genome sequences, tremendous progress has been achieved in understanding the molecular mechanisms on various rice traits and dissecting the underlying regulatory networks. In this review, we summarize the research progress of rice biology over past decades, including omics, genome-wide association study, phytohormone action, nutrient use, biotic and abiotic responses, photoperiodic flowering, and reproductive development (fertility and sterility). For the roads ahead, cutting-edge technologies such as new genomics methods, high-throughput phenotyping platforms, precise genome-editing tools, environmental microbiome optimization, and synthetic methods will further extend our understanding of unsolved molecular biology questions in rice, and facilitate integrations of the knowledge for agricultural applications.
Collapse
|
43
|
Deb S, Madhavan VN, Gokulan CG, Patel HK, Sonti RV. Arms and ammunitions: effectors at the interface of rice and it's pathogens and pests. RICE (NEW YORK, N.Y.) 2021; 14:94. [PMID: 34792681 PMCID: PMC8602583 DOI: 10.1186/s12284-021-00534-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 11/06/2021] [Indexed: 06/13/2023]
Abstract
The plant immune system has evolved to resist attack by pathogens and pests. However, successful phytopathogens deliver effector proteins into plant cells where they hijack the host cellular machinery to suppress the plant immune responses and promote infection. This manipulation of the host cellular pathways is done by the pathogen using various enzymatic activities, protein- DNA or protein- protein interactions. Rice is one the major economically important crops and its yield is affected by several pathogens and pests. In this review, we summarize the various effectors at the plant- pathogen/ pest interface for the major pathogens and pests of rice, specifically, on the mode of action and target genes of the effector proteins. We then compare this across the major rice pathogens and pests in a bid to understand probable conserved pathways which are under attack from pathogens and pests in rice. This analysis highlights conserved patterns of effector action, as well as unique host pathways targeted by the pathogens and pests.
Collapse
Affiliation(s)
- Sohini Deb
- CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB), Hyderabad, 500007 India
- Present Address: Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg C, Denmark
| | | | - C. G. Gokulan
- CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB), Hyderabad, 500007 India
| | - Hitendra K. Patel
- CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB), Hyderabad, 500007 India
| | - Ramesh V. Sonti
- CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB), Hyderabad, 500007 India
- Present Address: Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, 517507 India
| |
Collapse
|
44
|
Ji R, Fu J, Shi Y, Li J, Jing M, Wang L, Yang S, Tian T, Wang L, Ju J, Guo H, Liu B, Dou D, Hoffmann AA, Zhu-Salzman K, Fang J. Vitellogenin from planthopper oral secretion acts as a novel effector to impair plant defenses. THE NEW PHYTOLOGIST 2021; 232:802-817. [PMID: 34260062 DOI: 10.1111/nph.17620] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/08/2021] [Indexed: 06/13/2023]
Abstract
Vitellogenin (Vg) is a well-known nutritious protein involved in reproduction in nearly all oviparous animals, including insects. Recently, Vg has been detected in saliva proteomes of several piercing-sucking herbivorous arthropods, including the small brown planthopper (Laodelphax striatellus, SBPH). Its function, however, remains unexplored. We investigated the molecular mechanism underlying SBPH orally secreted Vg-mediated manipulation of plant-insect interaction by RNA interference, phytohormone and H2 O2 profiling, protein-protein interaction studies and herbivore bioassays. A C-terminal polypeptide of Vg (VgC) in SBPH, when secreted into rice plants, acted as a novel effector to attenuate host rice defenses, which in turn improved insect feeding performance. Silencing Vg reduced insect feeding and survival on rice. Vg-silenced SBPH nymphs consistently elicited higher H2 O2 production, a well-established defense mechanism in rice, whereas expression of VgC in planta significantly hindered hydrogen peroxide (H2 O2 ) accumulation and promoted insect performance. VgC interacted directly with the rice transcription factor OsWRKY71, a protein which is involved in induction of H2 O2 accumulation and plant resistance to SBPH. These findings indicate a novel effector function of Vg: when secreted into host rice plants, this protein effectively weakened H2 O2 -mediated plant defense through its association with a plant immunity regulator.
Collapse
Affiliation(s)
- Rui Ji
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, 210014, China
| | - Jianmei Fu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, 210014, China
| | - Yu Shi
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210014, China
| | - Jing Li
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, 210014, China
| | - Maofeng Jing
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210014, China
| | - Lu Wang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, 210014, China
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210014, China
| | - Shiying Yang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, 210014, China
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210014, China
| | - Tian Tian
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, 210014, China
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210014, China
| | - Lihua Wang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, 210014, China
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210014, China
| | - Jiafei Ju
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, 210014, China
| | - Huifang Guo
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, 210014, China
| | - Bin Liu
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, 510640, China
| | - Daolong Dou
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210014, China
| | - Ary A Hoffmann
- School of BioSciences, Bio21 Institute, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Keyan Zhu-Salzman
- Department of Entomology, Texas A&M University, College Station, TX, 77843, USA
| | - Jichao Fang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, 210014, China
| |
Collapse
|
45
|
Zheng X, Zhu L, He G. Genetic and molecular understanding of host rice resistance and Nilaparvata lugens adaptation. CURRENT OPINION IN INSECT SCIENCE 2021; 45:14-20. [PMID: 33227482 DOI: 10.1016/j.cois.2020.11.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 11/08/2020] [Accepted: 11/11/2020] [Indexed: 06/11/2023]
Abstract
The variability of brown planthopper (BPH) populations and diversity of the host rice germplasm provide an ideal model for exploring the genetic and molecular basis of insect-plant interactions. During the long-term evolutionary arms race, complicated feeding and defense strategies have developed in BPH and rice. Nine major BPH resistance genes have been cloned and the exploration of BPH resistance genes medicated mechanism against BPH shed a light on the molecular basis of the rice-BPH interaction. This short review provides an update on our current understanding of the genetic and molecular mechanism for rice resistance and BPH adaptation. Understanding the interactions between BPH and rice will provide novel insights for sustainable control of this pest.
Collapse
Affiliation(s)
- Xiaohong Zheng
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Lili Zhu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Guangcun He
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
46
|
Liu H, Wang C, Qiu CL, Shi JH, Sun Z, Hu XJ, Liu L, Wang MQ. A Salivary Odorant-Binding Protein Mediates Nilaparvata lugens Feeding and Host Plant Phytohormone Suppression. Int J Mol Sci 2021; 22:4988. [PMID: 34066665 PMCID: PMC8125829 DOI: 10.3390/ijms22094988] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/05/2021] [Accepted: 05/06/2021] [Indexed: 11/16/2022] Open
Abstract
Odorant-binding proteins (OBPs) typically act as transporters of odor molecules and play an important role in insect host location. Here, we identified an OBP in brown planthopper (BPH) Nilaparvata lugens salivary glands via transcriptome sequencing. Real-time quantitative PCR and Western blotting analysis results showed that NlugOBP11 was highly expressed in salivary glands and secreted into rice plant during feeding, suggesting that it assists in BPH feeding on rice. Functional analysis in N. lugens saliva revealed that silencing this gene by RNA interference decreased the BPH stylet performance in the phloem of rice plants, reduced sap sucking, and ultimately led to insect death. Moreover, overexpression of NlugOBP11 in rice protoplasts or Nicotiana benthamiana leaves inhibited the production of defense-related signaling molecule salicylic acid in rice plant. The results demonstrate that NlugOBP11 is not only essential for BPH feeding, but also acts as an effector that inhibits plant defense.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Man-Qun Wang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (H.L.); (C.W.); (C.-L.Q.); (J.-H.S.); (Z.S.); (X.-J.H.); (L.L.)
| |
Collapse
|
47
|
Tian T, Ji R, Fu J, Li J, Wang L, Zhang H, Yang S, Ye W, Fang J, Zhu-Salzman K. A salivary calcium-binding protein from Laodelphax striatellus acts as an effector that suppresses defense in rice. PEST MANAGEMENT SCIENCE 2021; 77:2272-2281. [PMID: 33421243 DOI: 10.1002/ps.6252] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 12/06/2020] [Accepted: 01/09/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Calcium (Ca2+ )-binding proteins in the saliva of herbivorous insects function as effectors to attenuate host plant defenses and thus improve insect feeding performance. Silencing these genes via transgenic plant-mediated RNAi is thus a promising pest control strategy. However, their sequences and functions in the small brown planthopper Laodelphax striatellus (SBPH) remain to be investigated. RESULTS We identified a putative EF-hand Ca2+ -binding protein (LsECP1) in SBPH watery saliva. LsECP1 was expressed extremely high in the salivary glands but at a low level during the egg stage. Transient LsECP1 expression in rice cells indicated its cytoplasm and nucleus localization. The bacterially expressed recombinant LsECP1 protein exhibited Ca2+ -binding activity. Rice plants fed by SBPH nymphs with knocked down LsECP1 exhibited higher levels of cytosolic Ca2+ , jasmonic acid (JA), jasmonoyl-isoleucine (JA-Ile) and hydrogen peroxide (H2 O2 ). Consistently, application of heterogeneously expressed LsECP1 protein suppressed wound-induced JA, JA-Ile and H2 O2 accumulation in rice. Thus, LsECP1 knockdown by dsRNA injection resulted in reduced feeding, fecundity and survival rates of SBPH reared on rice plants. Transgenic rice plants constitutively expressing LsECP1 dsRNA were produced, and plant-mediated LsECP1 knockdown enhanced rice resistance to SBPH. CONCLUSION SBPH LsECP1 acts as an effector to impair host rice defense responses and promotes SBPH performance. This discovery provides a potential gene target for plant-mediated RNAi-based pest management. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Tian Tian
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
| | - Rui Ji
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
| | - Jianmei Fu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
| | - Jing Li
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
| | - Lu Wang
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
| | - Hao Zhang
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
| | - Shiying Yang
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
| | - Wenfeng Ye
- Laboratory of Fundamental and Applied Research in Chemical Ecology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Jichao Fang
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
| | - Keyan Zhu-Salzman
- Department of Entomology, Texas A&M University, College Station, TX, USA
| |
Collapse
|
48
|
Ye J, Zhang L, Zhang X, Wu X, Fang R. Plant Defense Networks against Insect-Borne Pathogens. TRENDS IN PLANT SCIENCE 2021; 26:272-287. [PMID: 33277186 DOI: 10.1016/j.tplants.2020.10.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 09/19/2020] [Accepted: 10/26/2020] [Indexed: 06/12/2023]
Abstract
Upon infection with insect-borne microbial pathogens, plants are exposed to two types of damage simultaneously. Over the past decade, numerous molecular studies have been conducted to understand how plants respond to pathogens or herbivores. However, investigations of host responses typically focus on a single stress and are performed under static laboratory conditions. In this review, we highlight research that sheds light on how plants deploy broad-spectrum mechanisms against both vector-borne pathogens and insect vectors. Among the host genes involved in multistress resistance, many are involved in innate immunity and phytohormone signaling (especially jasmonate and salicylic acid). The potential for genome editing or chemical modulators to fine-tune crop defensive signaling, to develop sustainable methods to control insect-borne diseases, is discussed.
Collapse
Affiliation(s)
- Jian Ye
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Lili Zhang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuan Zhang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiujuan Wu
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rongxiang Fang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
49
|
Wu ZZ, Qu MQ, Chen MS, Lin JT. Proteomic and transcriptomic analyses of saliva and salivary glands from the Asian citrus psyllid, Diaphorina citri. J Proteomics 2021; 238:104136. [PMID: 33631367 DOI: 10.1016/j.jprot.2021.104136] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 01/18/2021] [Accepted: 01/27/2021] [Indexed: 02/06/2023]
Abstract
Salivary secretions play critical roles in interactions among insects, insect-vectored pathogens, and host plants. The Asian citrus psyllid Diaphorina citri is a sap-sucking Hemipteran that serves as a vector for Candidatus Liberibacter asiaticus, the causal agent of citrus greening disease ("Huanglongbing" or HLB). D. citri continuously injects saliva into host plants using specialized stylets so as to feed and transmit the HLB pathogen. Knowledge on the composition and function of salivary proteins of this pest is very limited. In this study, proteomic and transcriptomic approaches were adopted to characterize the protein composition of the saliva and salivary glands in D. citri. A total of 246 and 483 proteins were identified in saliva and dissected salivary glands, respectively, via LC-MS/MS analyses. Comparative analyses of the identified proteins were performed between D. citri and other reported Hemipteran insect species. Transcription levels of the genes coding for the identified proteins were determined via RNA-sequencing among different tissues including salivary glands and other digestive tissues. Identification of putative effectors that are expressed exclusively or abundantly in salivary glands provides the foundation for future functional studies towards the understanding of their roles in interactions among D. citri, HLB pathogen, and their citrus host. BIOLOGICAL SIGNIFICANCE: This is a systematic analysis on proteins in saliva and dissected salivary glands. A high percentage of novel proteins have been identified due to the large amounts of samples collected. This report gives a more comprehensive repertoire of potential effector proteins that may be possibly involved in modulating host defense, altering nutrient metabolism, and facilitating Ca. L. asiaticus transmission.
Collapse
Affiliation(s)
- Zhong-Zhen Wu
- Guangzhou City Key Laboratory of Subtropical Fruit Tree Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, People's Republic of China.
| | - Meng-Qiu Qu
- Guangzhou City Key Laboratory of Subtropical Fruit Tree Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, People's Republic of China.
| | - Ming-Shun Chen
- Department of Entomology, Kansas State University, Manhattan, KS 66506, USA.
| | - Jin-Tian Lin
- Guangzhou City Key Laboratory of Subtropical Fruit Tree Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, People's Republic of China.
| |
Collapse
|
50
|
Elevated temperatures diminish the effects of a highly resistant rice variety on the brown planthopper. Sci Rep 2021; 11:262. [PMID: 33420350 PMCID: PMC7794346 DOI: 10.1038/s41598-020-80704-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 12/22/2020] [Indexed: 12/14/2022] Open
Abstract
This study compares the effects of temperature (constant at 15, 20, 25, 30 and 35 °C) on adult longevity, oviposition, and nymph development of the brown planthopper, Nilaparvata lugens, on susceptible and resistant rice varieties. The resistant variety contained the BPH32 gene. In our experiments, nymphs failed to develop to adults at 15, 20 and 35 °C on either variety. Host resistance had its greatest effect in reducing adult survival at 20–25 °C and its greatest effect in reducing nymph weight gain at 25 °C. This corresponded with optimal temperatures for adult survival (20–25 °C) and nymph development (25–30 °C). At 25 and 30 °C, adult females achieved up to three oviposition cycles on the susceptible variety, but only one cycle on the resistant variety. Maximum egg-laying occurred at 30 °C due to larger numbers of egg batches produced during the first oviposition cycle on both the susceptible and resistant varieties, and larger batches during the second and third oviposition cycles on the susceptible variety; however, resistance had its greatest effect in reducing fecundity at 25 °C. This revealed a mismatch between the optimal temperatures for resistance and for egg production in immigrating females. Increasing global temperatures could reduce the effectiveness of anti-herbivore resistance in rice and other crops where such mismatches occur.
Collapse
|