1
|
Verde LA, Musimwa TR, Lee M. Chronic water-deficit stress may increase meiotic recombination in maize. THE PLANT GENOME 2025; 18:e70015. [PMID: 40119660 PMCID: PMC11929038 DOI: 10.1002/tpg2.70015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 02/13/2025] [Accepted: 02/16/2025] [Indexed: 03/24/2025]
Abstract
Meiosis and recombination lead to gametes with novel combinations of genes as key processes in evolution and plant breeding. Numerous extrinsic factors have been reported to affect meiotic recombination of plants. The goal of this research was to identify simple, low-cost, and effective treatments that affect recombination in maize (Zea mays L.). The treatments, water-deficit stress and defoliation, were separately applied to two F1-generation genotypes, B73/Mo17 and Mo17/H99. The F1 plants were backcrossed to an inbred line to produce the backcross populations that were genotyped at microsatellite loci on chromosomes 1 and 10. Overall, 1271 crossovers were observed in the progeny of the water-stressed plants while 1092 were observed in the progeny of the non-stressed plants. The water-deficit treatment may have increased the rates of recombination in both F1 genotypes while the defoliation treatment was ineffective.
Collapse
Affiliation(s)
- Luis A. Verde
- Corteva Global Business Center, Resource ConnectionJohnstonIowaUSA
| | | | - Michael Lee
- Department of AgronomyIowa State UniversityAmesIowaUSA
| |
Collapse
|
2
|
Zhao Q, Xiong Z, Cheng C, Wang Y, Feng X, Yu X, Lou Q, Chen J. Meiotic crossovers revealed by differential visualization of homologous chromosomes using enhanced haplotype oligo-painting in cucumber. PLANT BIOTECHNOLOGY JOURNAL 2025; 23:887-899. [PMID: 39661709 PMCID: PMC11869176 DOI: 10.1111/pbi.14546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/22/2024] [Accepted: 11/23/2024] [Indexed: 12/13/2024]
Abstract
The interaction dynamics of homologous chromosomes during meiosis, such as recognition, pairing, synapsis, recombination, and segregation are vital for species fertility and genetic diversity within populations. Meiotic crossover (CO), a prominent feature of meiosis, ensures the faithful segregation of homologous chromosomes and enriches genetic diversity within a population. Nevertheless, visually distinguishing homologous chromosomes and COs remains an intractable challenge in cytological studies, particularly in non-model or plants with small genomes, limiting insights into meiotic dynamics. In the present study, we developed a robust and reliable enhanced haplotype oligo-painting (EHOP) technique to image small amounts of oligos, enabling visual discrimination of homologous chromosomes. Using EHOP developed based on sequence polymorphisms and reconstructed oligonucleotides, we visually distinguished parental and most recombinant chromosomes in cucumber F1 hybrids and F2 populations. Results from EHOP revealed that meiotic CO events preferentially occur in the 30-60% intervals of chromosome arms with lower sequence polymorphisms and significant recombination bias exists between cultivated and ancestral chromosomes. Due to the occupation of extensive heterochromatin occupancy, it is not yet possible to precisely identify the meiotic COs present in the central portion of chr2 and chr4. Notably, CO accessibility was universally detected in the cytological centromere region in F2 populations, a feature rarely observed in crops with large genomes. EHOP demonstrated exceptional performance in distinguishing homologous chromosomes and holds significant potential for broad application in studying homologous chromosome interactions.
Collapse
Affiliation(s)
- Qinzheng Zhao
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of HorticultureNanjing Agricultural UniversityNanjing210095China
| | - Zhenhui Xiong
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of HorticultureNanjing Agricultural UniversityNanjing210095China
| | - Chunyan Cheng
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of HorticultureNanjing Agricultural UniversityNanjing210095China
| | - Yuhui Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of HorticultureNanjing Agricultural UniversityNanjing210095China
| | - Xianbo Feng
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of HorticultureNanjing Agricultural UniversityNanjing210095China
| | - Xiaqing Yu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of HorticultureNanjing Agricultural UniversityNanjing210095China
| | - Qunfeng Lou
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of HorticultureNanjing Agricultural UniversityNanjing210095China
| | - Jinfeng Chen
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of HorticultureNanjing Agricultural UniversityNanjing210095China
| |
Collapse
|
3
|
Wang C, Chen Z, Copenhaver GP, Wang Y. Heterochromatin in plant meiosis. Nucleus 2024; 15:2328719. [PMID: 38488152 PMCID: PMC10950279 DOI: 10.1080/19491034.2024.2328719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 03/05/2024] [Indexed: 03/19/2024] Open
Abstract
Heterochromatin is an organizational property of eukaryotic chromosomes, characterized by extensive DNA and histone modifications, that is associated with the silencing of transposable elements and repetitive sequences. Maintaining heterochromatin is crucial for ensuring genomic integrity and stability during the cell cycle. During meiosis, heterochromatin is important for homologous chromosome synapsis, recombination, and segregation, but our understanding of meiotic heterochromatin formation and condensation is limited. In this review, we focus on the dynamics and features of heterochromatin and how it condenses during meiosis in plants. We also discuss how meiotic heterochromatin influences the interaction and recombination of homologous chromosomes during prophase I.
Collapse
Affiliation(s)
- Cong Wang
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Zhiyu Chen
- State Key Laboratory of Genetic Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Gregory P. Copenhaver
- Department of Biology and the Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Yingxiang Wang
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, China
- State Key Laboratory of Genetic Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| |
Collapse
|
4
|
Abdollahi Sisi N, Herzog E, Abbadi A, Snowdon RJ, Golicz AA. Analysis of the winter oilseed rape recombination landscape suggests maternal-paternal bias. Genome 2024; 67:445-453. [PMID: 39431738 DOI: 10.1139/gen-2023-0110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Recombination, the reciprocal exchange of DNA between homologous chromosomes, is a mandatory step necessary for meiosis progression. Crossovers between homologous chromosomes generate new combinations of alleles and maintain genetic diversity. Due to genetic, epigenetic, and environmental factors, the recombination landscape is highly heterogeneous along the chromosomes and it also differs between populations and between sexes. Here, we investigated recombination characteristics across the 19 chromosomes of the model allopolyploid crop species oilseed rape (Brassica napus L.), using two unique multiparental populations derived from two genetically divergent founder pools, each of which comprised 50 genetically diverse founder accessions. A fully balanced, pairwise chain-crossing scheme was utilized to create each of the two populations. A total of 3213 individuals, spanning five successive generations, were genotyped using a 15K SNP array. We observed uneven distribution of recombination along chromosomes, with some genomic regions undergoing substantially more frequent recombination in both populations. In both populations, maternal recombination events were more frequent than paternal recombination. This study provides unique insight into the recombination landscape at chromosomal level and reveals a maternal-paternal bias for recombination number with implications for breeding.
Collapse
Affiliation(s)
- Nayyer Abdollahi Sisi
- Department of Plant Breeding, IFZ Research Centre for Biosystems, Land Use and Nutrition, Justus Liebig University, Giessen, 35392 Giessen, Germany
| | - Eva Herzog
- Department of Biometry and Population Genetics, Justus Liebig University, Giessen, 35392 Giessen, Germany
| | - Amine Abbadi
- NPZ Innovation GmbH, Hohenlieth-Hof, 24363 Holtsee, Germany
| | - Rod J Snowdon
- Department of Plant Breeding, IFZ Research Centre for Biosystems, Land Use and Nutrition, Justus Liebig University, Giessen, 35392 Giessen, Germany
| | - Agnieszka A Golicz
- Department of Agrobioinformatics, IFZ Research Centre for Biosystems, Land Use and Nutrition, Justus Liebig University, Giessen, 35392 Giessen, Germany
| |
Collapse
|
5
|
Chu L, Zhuang J, Geng M, Zhang Y, Zhu J, Zhang C, Schnittger A, Yi B, Yang C. ASYNAPSIS3 has diverse dosage-dependent effects on meiotic crossover formation in Brassica napus. THE PLANT CELL 2024; 36:3838-3856. [PMID: 39047149 PMCID: PMC11371185 DOI: 10.1093/plcell/koae207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/24/2024] [Accepted: 07/16/2024] [Indexed: 07/27/2024]
Abstract
Crossovers create genetic diversity and are required for equal chromosome segregation during meiosis. Crossover number and distribution are highly regulated by different mechanisms that are not yet fully understood, including crossover interference. The chromosome axis is crucial for crossover formation. Here, we explore the function of the axis protein ASYNAPSIS3. To this end, we use the allotetraploid species Brassica napus; due to its polyploid nature, this system allows a fine-grained dissection of the dosage of meiotic regulators. The simultaneous mutation of all 4 ASY3 alleles results in defective synapsis and drastic reduction of crossovers, which is largely rescued by the presence of only one functional ASY3 allele. Crucially, while the number of class I crossovers in mutants with 2 functional ASY3 alleles is comparable to that in wild type, this number is significantly increased in mutants with only one functional ASY3 allele, indicating that reducing ASY3 dosage increases crossover formation. Moreover, the class I crossovers on each bivalent in mutants with 1 functional ASY3 allele follow a random distribution, indicating compromised crossover interference. These results reveal the distinct dosage-dependent effects of ASY3 on crossover formation and provide insights into the role of the chromosome axis in patterning recombination.
Collapse
Affiliation(s)
- Lei Chu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Jixin Zhuang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Miaowei Geng
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Yashi Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Jing Zhu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Chunyu Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Arp Schnittger
- Department of Developmental Biology, Institute of Plant Science and Microbiology, University of Hamburg, Hamburg 22609, Germany
| | - Bin Yi
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Chao Yang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
6
|
Montero-Tena JA, Abdollahi Sisi N, Kox T, Abbadi A, Snowdon RJ, Golicz AA. haploMAGIC: accurate phasing and detection of recombination in multiparental populations despite genotyping errors. G3 (BETHESDA, MD.) 2024; 14:jkae109. [PMID: 38808682 PMCID: PMC11304941 DOI: 10.1093/g3journal/jkae109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 02/12/2024] [Accepted: 05/08/2024] [Indexed: 05/30/2024]
Abstract
Recombination is a key mechanism in breeding for promoting genetic variability. Multiparental populations (MPPs) constitute an excellent platform for precise genotype phasing, identification of genome-wide crossovers (COs), estimation of recombination frequencies, and construction of recombination maps. Here, we introduce haploMAGIC, a pipeline to detect COs in MPPs with single-nucleotide polymorphism (SNP) data by exploiting the pedigree relationships for accurate genotype phasing and inference of grandparental haplotypes. haploMAGIC applies filtering to prevent false-positive COs due to genotyping errors (GEs), a common problem in high-throughput SNP analysis of complex plant genomes. Hence, it discards haploblocks not reaching a specified minimum number of informative alleles. A performance analysis using populations simulated with AlphaSimR revealed that haploMAGIC improves upon existing methods of CO detection in terms of recall and precision, most notably when GE rates are high. Furthermore, we constructed recombination maps using haploMAGIC with high-resolution genotype data from 2 large multiparental populations of winter rapeseed (Brassica napus). The results demonstrate the applicability of the pipeline in real-world scenarios and showed good correlations in recombination frequency compared with alternative software. Therefore, we propose haploMAGIC as an accurate tool at CO detection with MPPs that shows robustness against GEs.
Collapse
Affiliation(s)
- Jose A Montero-Tena
- Department of Agrobioinformatics, IFZ Research Center for Biosystems, Land Use and Nutrition, Justus Liebig University, Heinrich Buff Ring 26, 35392 Giessen, Germany
| | - Nayyer Abdollahi Sisi
- Department of Plant Breeding, IFZ Research Center for Biosystems, Land Use and Nutrition, Justus Liebig University, Heinrich Buff Ring 26, 35392 Giessen, Germany
| | - Tobias Kox
- NPZ Innovation GmbH, Hohenlieth-Hof, 24363 Holtsee, Germany
| | - Amine Abbadi
- NPZ Innovation GmbH, Hohenlieth-Hof, 24363 Holtsee, Germany
| | - Rod J Snowdon
- Department of Plant Breeding, IFZ Research Center for Biosystems, Land Use and Nutrition, Justus Liebig University, Heinrich Buff Ring 26, 35392 Giessen, Germany
| | - Agnieszka A Golicz
- Department of Agrobioinformatics, IFZ Research Center for Biosystems, Land Use and Nutrition, Justus Liebig University, Heinrich Buff Ring 26, 35392 Giessen, Germany
| |
Collapse
|
7
|
Fuentes RR, Nieuwenhuis R, Chouaref J, Hesselink T, van Dooijeweert W, van den Broeck HC, Schijlen E, Schouten HJ, Bai Y, Fransz P, Stam M, de Jong H, Trivino SD, de Ridder D, van Dijk ADJ, Peters SA. A catalogue of recombination coldspots in interspecific tomato hybrids. PLoS Genet 2024; 20:e1011336. [PMID: 38950081 PMCID: PMC11244794 DOI: 10.1371/journal.pgen.1011336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 07/12/2024] [Accepted: 06/09/2024] [Indexed: 07/03/2024] Open
Abstract
Increasing natural resistance and resilience in plants is key for ensuring food security within a changing climate. Breeders improve these traits by crossing cultivars with their wild relatives and introgressing specific alleles through meiotic recombination. However, some genomic regions are devoid of recombination especially in crosses between divergent genomes, limiting the combinations of desirable alleles. Here, we used pooled-pollen sequencing to build a map of recombinant and non-recombinant regions between tomato and five wild relatives commonly used for introgressive tomato breeding. We detected hybrid-specific recombination coldspots that underscore the role of structural variations in modifying recombination patterns and maintaining genetic linkage in interspecific crosses. Crossover regions and coldspots show strong association with specific TE superfamilies exhibiting differentially accessible chromatin between somatic and meiotic cells. About two-thirds of the genome are conserved coldspots, located mostly in the pericentromeres and enriched with retrotransposons. The coldspots also harbor genes associated with agronomic traits and stress resistance, revealing undesired consequences of linkage drag and possible barriers to breeding. We presented examples of linkage drag that can potentially be resolved by pairing tomato with other wild species. Overall, this catalogue will help breeders better understand crossover localization and make informed decisions on generating new tomato varieties.
Collapse
Affiliation(s)
- Roven Rommel Fuentes
- Bioinformatics Group, Wageningen University and Research, Wageningen, The Netherlands
- Chromosome Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Ronald Nieuwenhuis
- Business Unit of Bioscience, Cluster Applied Bioinformatics, Wageningen University and Research, Wageningen, The Netherlands
| | - Jihed Chouaref
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Thamara Hesselink
- Business Unit of Bioscience, Cluster Applied Bioinformatics, Wageningen University and Research, Wageningen, The Netherlands
| | - Willem van Dooijeweert
- Centre for Genetic Resources, Wageningen University and Research, Wageningen, The Netherlands
| | - Hetty C van den Broeck
- Business Unit of Bioscience, Cluster Applied Bioinformatics, Wageningen University and Research, Wageningen, The Netherlands
| | - Elio Schijlen
- Business Unit of Bioscience, Cluster Applied Bioinformatics, Wageningen University and Research, Wageningen, The Netherlands
| | - Henk J Schouten
- Plant Breeding, Wageningen University and Research, Wageningen, The Netherlands
| | - Yuling Bai
- Plant Breeding, Wageningen University and Research, Wageningen, The Netherlands
| | - Paul Fransz
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Maike Stam
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Hans de Jong
- Laboratory of Genetics, Wageningen University and Research, Wageningen, The Netherlands
| | - Sara Diaz Trivino
- Business Unit of Bioscience, Cluster Applied Bioinformatics, Wageningen University and Research, Wageningen, The Netherlands
| | - Dick de Ridder
- Bioinformatics Group, Wageningen University and Research, Wageningen, The Netherlands
| | - Aalt D J van Dijk
- Bioinformatics Group, Wageningen University and Research, Wageningen, The Netherlands
| | - Sander A Peters
- Business Unit of Bioscience, Cluster Applied Bioinformatics, Wageningen University and Research, Wageningen, The Netherlands
| |
Collapse
|
8
|
Zhang Z, Guo YY, Wang YC, Zhou L, Fan J, Mao YC, Yang YM, Zhang YF, Huang XH, Zhu J, Zhang C, Yang ZN. A point mutation in the meiotic crossover formation gene HEI10/TFS2 leads to thermosensitive genic sterility in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:506-518. [PMID: 38169508 DOI: 10.1111/tpj.16621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/18/2023] [Accepted: 12/21/2023] [Indexed: 01/05/2024]
Abstract
Thermosensitive genic female sterility (TGFS) is a promising property to be utilized for hybrid breeding. Here, we identified a rice TGFS line, tfs2, through an ethyl methyl sulfone (EMS) mutagenesis strategy. This line showed sterility under high temperature and became fertile under low temperature. Few seeds were produced when the tfs2 stigma was pollinated, indicating that tfs2 is female sterile. Gene cloning and genetic complementation showed that a point mutation from leucine to phenylalanine in HEI10 (HEI10tfs2), a crossover formation protein, caused the TGFS trait of tfs2. Under high temperature, abnormal univalents were formed, and the chromosomes were unequally segregated during meiosis, similar to the reported meiotic defects in oshei10. Under low temperature, the number of univalents was largely reduced, and the chromosomes segregated equally, suggesting that crossover formation was restored in tfs2. Yeast two-hybrid assays showed that HEI10 interacted with two putative protein degradation-related proteins, RPT4 and SRFP1. Through transient expression in tobacco leaves, HEI10 were found to spontaneously aggregate into dot-like foci in the nucleus under high temperature, but HEI10tfs2 failed to aggregate. In contrast, low temperature promoted HEI10tfs2 aggregation. This result suggests that protein aggregation at the crossover position contributes to the fertility restoration of tfs2 under low temperature. In addition, RPT4 and SRFP1 also aggregated into dot-like foci, and these aggregations depend on the presence of HEI10. These findings reveal a novel mechanism of fertility restoration and facilitate further understanding of HEI10 in meiotic crossover formation.
Collapse
Affiliation(s)
- Zheng Zhang
- Shanghai Engineering Research Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
- Shanghai Key Laboratory of Plant Molecular Sciences, Shanghai Collaborative Innovation Center of Plant Germplasm Resources Development, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Yu-Yi Guo
- Shanghai Key Laboratory of Plant Molecular Sciences, Shanghai Collaborative Innovation Center of Plant Germplasm Resources Development, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Yi-Chen Wang
- Shanghai Engineering Research Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
- Shanghai Key Laboratory of Plant Molecular Sciences, Shanghai Collaborative Innovation Center of Plant Germplasm Resources Development, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Lei Zhou
- Shanghai Engineering Research Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
- Shanghai Key Laboratory of Plant Molecular Sciences, Shanghai Collaborative Innovation Center of Plant Germplasm Resources Development, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Jing Fan
- Shanghai Key Laboratory of Plant Molecular Sciences, Shanghai Collaborative Innovation Center of Plant Germplasm Resources Development, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Yi-Chen Mao
- Shanghai Key Laboratory of Plant Molecular Sciences, Shanghai Collaborative Innovation Center of Plant Germplasm Resources Development, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Yan-Ming Yang
- Shanghai Key Laboratory of Plant Molecular Sciences, Shanghai Collaborative Innovation Center of Plant Germplasm Resources Development, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Yan-Fei Zhang
- Shanghai Engineering Research Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
- Shanghai Key Laboratory of Plant Molecular Sciences, Shanghai Collaborative Innovation Center of Plant Germplasm Resources Development, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Xue-Hui Huang
- Shanghai Key Laboratory of Plant Molecular Sciences, Shanghai Collaborative Innovation Center of Plant Germplasm Resources Development, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Jun Zhu
- Shanghai Key Laboratory of Plant Molecular Sciences, Shanghai Collaborative Innovation Center of Plant Germplasm Resources Development, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Cheng Zhang
- Shanghai Key Laboratory of Plant Molecular Sciences, Shanghai Collaborative Innovation Center of Plant Germplasm Resources Development, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Zhong-Nan Yang
- Shanghai Engineering Research Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
- Shanghai Key Laboratory of Plant Molecular Sciences, Shanghai Collaborative Innovation Center of Plant Germplasm Resources Development, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| |
Collapse
|
9
|
Atia M, Jiang W, Sedeek K, Butt H, Mahfouz M. Crop bioengineering via gene editing: reshaping the future of agriculture. PLANT CELL REPORTS 2024; 43:98. [PMID: 38494539 PMCID: PMC10944814 DOI: 10.1007/s00299-024-03183-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 02/23/2024] [Indexed: 03/19/2024]
Abstract
Genome-editing technologies have revolutionized research in plant biology, with major implications for agriculture and worldwide food security, particularly in the face of challenges such as climate change and increasing human populations. Among these technologies, clustered regularly interspaced short palindromic repeats [CRISPR]-CRISPR-associated protein [Cas] systems are now widely used for editing crop plant genomes. In this review, we provide an overview of CRISPR-Cas technology and its most significant applications for improving crop sustainability. We also review current and potential technological advances that will aid in the future breeding of crops to enhance food security worldwide. Finally, we discuss the obstacles and challenges that must be overcome to realize the maximum potential of genome-editing technologies for future crop and food production.
Collapse
Affiliation(s)
- Mohamed Atia
- Laboratory for Genome Engineering and Synthetic Biology, Division of Biological Sciences, 4700 King Abdullah University of Science and Technology (KAUST), 23955-6900, Thuwal, Saudi Arabia
| | - Wenjun Jiang
- Laboratory for Genome Engineering and Synthetic Biology, Division of Biological Sciences, 4700 King Abdullah University of Science and Technology (KAUST), 23955-6900, Thuwal, Saudi Arabia
| | - Khalid Sedeek
- Laboratory for Genome Engineering and Synthetic Biology, Division of Biological Sciences, 4700 King Abdullah University of Science and Technology (KAUST), 23955-6900, Thuwal, Saudi Arabia
| | - Haroon Butt
- Laboratory for Genome Engineering and Synthetic Biology, Division of Biological Sciences, 4700 King Abdullah University of Science and Technology (KAUST), 23955-6900, Thuwal, Saudi Arabia
| | - Magdy Mahfouz
- Laboratory for Genome Engineering and Synthetic Biology, Division of Biological Sciences, 4700 King Abdullah University of Science and Technology (KAUST), 23955-6900, Thuwal, Saudi Arabia.
| |
Collapse
|
10
|
Fu L, Gu C, Mochizuki K, Xiong J, Miao W, Wang G. The genome-wide meiotic recombination landscape in ciliates and its implications for crossover regulation and genome evolution. J Genet Genomics 2024; 51:302-312. [PMID: 37797835 DOI: 10.1016/j.jgg.2023.09.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 10/07/2023]
Abstract
Meiotic recombination is essential for sexual reproduction and its regulation has been extensively studied in many taxa. However, genome-wide recombination landscape has not been reported in ciliates and it remains unknown how it is affected by the unique features of ciliates: the synaptonemal complex (SC)-independent meiosis and the nuclear dimorphism. Here, we show the recombination landscape in the model ciliate Tetrahymena thermophila by analyzing single-nucleotide polymorphism datasets from 38 hybrid progeny. We detect 1021 crossover (CO) events (35.8 per meiosis), corresponding to an overall CO rate of 9.9 cM/Mb. However, gene conversion by non-crossover is rare (1.03 per meiosis) and not biased towards G or C alleles. Consistent with the reported roles of SC in CO interference, we find no obvious sign of CO interference. CO tends to occur within germ-soma common genomic regions and many of the 44 identified CO hotspots localize at the centromeric or subtelomeric regions. Gene ontology analyses show that CO hotspots are strongly associated with genes responding to environmental changes. We discuss these results with respect to how nuclear dimorphism has potentially driven the formation of the observed recombination landscape to facilitate environmental adaptation and the sharing of machinery among meiotic and somatic recombination.
Collapse
Affiliation(s)
- Lu Fu
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chen Gu
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kazufumi Mochizuki
- Institute of Human Genetics (IGH), CNRS, University of Montpellier, 34396 Montpellier, France
| | - Jie Xiong
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China; Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Chinese Academy of Sciences, Wuhan, Hubei 430072, China
| | - Wei Miao
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of Lake and Watershed Science for Water Security, Chinese Academy of Sciences, Nanjing, Jiangsu 210008, China.
| | - Guangying Wang
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China.
| |
Collapse
|
11
|
Castellani M, Zhang M, Thangavel G, Mata-Sucre Y, Lux T, Campoy JA, Marek M, Huettel B, Sun H, Mayer KFX, Schneeberger K, Marques A. Meiotic recombination dynamics in plants with repeat-based holocentromeres shed light on the primary drivers of crossover patterning. NATURE PLANTS 2024; 10:423-438. [PMID: 38337039 PMCID: PMC10954556 DOI: 10.1038/s41477-024-01625-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 01/15/2024] [Indexed: 02/12/2024]
Abstract
Centromeres strongly affect (epi)genomic architecture and meiotic recombination dynamics, influencing the overall distribution and frequency of crossovers. Here we show how recombination is regulated and distributed in the holocentric plant Rhynchospora breviuscula, a species with diffused centromeres. Combining immunocytochemistry, chromatin analysis and high-throughput single-pollen sequencing, we discovered that crossover frequency is distally biased, in sharp contrast to the diffused distribution of hundreds of centromeric units and (epi)genomic features. Remarkably, we found that crossovers were abolished inside centromeric units but not in their proximity, indicating the absence of a canonical centromere effect. We further propose that telomere-led synapsis of homologues is the feature that best explains the observed recombination landscape. Our results hint at the primary influence of mechanistic features of meiotic pairing and synapsis rather than (epi)genomic features and centromere organization in determining the distally biased crossover distribution in R. breviuscula, whereas centromeres and (epi)genetic properties only affect crossover positioning locally.
Collapse
Affiliation(s)
- Marco Castellani
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Meng Zhang
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Gokilavani Thangavel
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Yennifer Mata-Sucre
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
- Laboratory of Plant Cytogenetics and Evolution, Department of Botany, Centre of Biosciences, Federal University of Pernambuco, Recife, Brazil
| | - Thomas Lux
- Plant Genome and Systems Biology, German Research Centre for Environmental Health, Helmholtz Zentrum München, Neuherberg, Germany
| | - José A Campoy
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
- Department of Pomology, Estación Experimental de Aula Dei (EEAD), Consejo Superior de Investigaciones Científicas, Zaragoza, Spain
| | - Magdalena Marek
- Max Planck Genome-Centre Cologne, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Bruno Huettel
- Max Planck Genome-Centre Cologne, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Hequan Sun
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
- Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
- School of Automation Science and Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Klaus F X Mayer
- Plant Genome and Systems Biology, German Research Centre for Environmental Health, Helmholtz Zentrum München, Neuherberg, Germany
- School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Korbinian Schneeberger
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
- Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich-Heine University, Düsseldorf, Germany
| | - André Marques
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany.
- Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich-Heine University, Düsseldorf, Germany.
| |
Collapse
|
12
|
Cseh A, Lenykó-Thegze A, Makai D, Szabados F, Hamow KÁ, Gulyás Z, Kiss T, Karsai I, Moncsek B, Mihók E, Sepsi A. Meiotic instability and irregular chromosome pairing underpin heat-induced infertility in bread wheat carrying the Rht-B1b or Rht-D1b Green Revolution genes. THE NEW PHYTOLOGIST 2024; 241:180-196. [PMID: 37691304 DOI: 10.1111/nph.19256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 08/12/2023] [Indexed: 09/12/2023]
Abstract
Mutations in the Rht-B1a and Rht-D1a genes of wheat (Triticum aestivum; resulting in Rht-B1b and Rht-D1b alleles) cause gibberellin-insensitive dwarfism and are one of the most important elements of increased yield introduced during the 'Green Revolution'. We measured the effects of a short period of heat imposed during the early reproductive stage on near-isogenic lines carrying Rht-B1b or Rht-D1b alleles, with respect to the wild-type (WT). The temperature shift caused a significant fertility loss within the ears of Rht-B1b and Rht-D1b wheats, greater than that observed for the WT. Defects in chromosome synapsis, reduced homologous recombination and a high frequency of chromosome mis-segregation were associated with reduced fertility. The transcription of TaGA3ox gene involved in the final stage of gibberellic acid (GA) biosynthesis was activated and ultra-performance liquid chromatography-tandem mass spectrometry identified GA1 as the dominant bioactive GA in developing ears, but levels were unaffected by the elevated temperature. Rht-B1b and Rht-D1b mutants were inclined to meiotic errors under optimal temperatures and showed a higher susceptibility to heat than their tall counterparts. Identification and introduction of new dwarfing alleles into modern breeding programmes is invaluable in the development of climate-resilient wheat varieties.
Collapse
Affiliation(s)
- András Cseh
- HUN-REN, Centre for Agricultural Research, 2462, Martonvásár, Brunszvik u. 2, Hungary
| | - Andrea Lenykó-Thegze
- HUN-REN, Centre for Agricultural Research, 2462, Martonvásár, Brunszvik u. 2, Hungary
- Doctoral School of Biology, Institute of Biology, ELTE Eötvös Loránd University, Egyetem tér 1-3, Budapest, 1053, Hungary
| | - Diána Makai
- HUN-REN, Centre for Agricultural Research, 2462, Martonvásár, Brunszvik u. 2, Hungary
| | - Fanni Szabados
- HUN-REN, Centre for Agricultural Research, 2462, Martonvásár, Brunszvik u. 2, Hungary
| | - Kamirán Áron Hamow
- HUN-REN, Centre for Agricultural Research, 2462, Martonvásár, Brunszvik u. 2, Hungary
| | - Zsolt Gulyás
- HUN-REN, Centre for Agricultural Research, 2462, Martonvásár, Brunszvik u. 2, Hungary
| | - Tibor Kiss
- HUN-REN, Centre for Agricultural Research, 2462, Martonvásár, Brunszvik u. 2, Hungary
- Food and Wine Research Institute, Eszterházy Károly Catholic University, Eszterházy tér 1, Eger, 3300, Hungary
| | - Ildikó Karsai
- HUN-REN, Centre for Agricultural Research, 2462, Martonvásár, Brunszvik u. 2, Hungary
| | - Blanka Moncsek
- HUN-REN, Centre for Agricultural Research, 2462, Martonvásár, Brunszvik u. 2, Hungary
| | - Edit Mihók
- HUN-REN, Centre for Agricultural Research, 2462, Martonvásár, Brunszvik u. 2, Hungary
| | - Adél Sepsi
- HUN-REN, Centre for Agricultural Research, 2462, Martonvásár, Brunszvik u. 2, Hungary
| |
Collapse
|
13
|
Li Y, Zhou Y, Wang B, Mu N, Miao Y, Tang D, Shen Y, Cheng Z. FANCM interacts with the MHF1-MHF2 complex to limit crossover frequency during rice meiosis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:717-727. [PMID: 37632767 DOI: 10.1111/tpj.16399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 07/11/2023] [Indexed: 08/28/2023]
Abstract
Crossovers (COs) are necessary for generating genetic diversity that breeders can select, but there are conserved mechanisms that regulate their frequency and distribution. Increasing CO frequency may raise the efficiency of selection by increasing the chance of integrating more desirable traits. In this study, we characterize rice FANCM and explore its functions in meiotic CO control. FANCM mutations do not affect fertility in rice, but they cause a great boost in the overall frequency of COs in both inbred and hybrid rice, according to genetic analysis of the complete set of fancm zmm (hei10, ptd, shoc1, mer3, zip4, msh4, msh5, and heip1) mutants. Although the early homologous recombination events proceed normally in fancm, the meiotic extra COs are not marked with HEI10 and require MUS81 resolvase for resolution. FANCM depends on PAIR1, COM1, DMC1, and HUS1 to perform its functions. Simultaneous disruption of FANCM and MEICA1 synergistically increases CO frequency, but it is accompanied by nonhomologous chromosome associations and fragmentations. FANCM interacts with the MHF complex, and ablation of rice MHF1 or MHF2 could restore the formation of 12 bivalents in the absence of the ZMM gene ZIP4. Our data indicate that unleashing meiotic COs by mutating any member of the FANCM-MHF complex could be an effective procedure to accelerate the efficiency of rice breeding.
Collapse
Affiliation(s)
- Yafei Li
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China
| | - Yue Zhou
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bingxin Wang
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Na Mu
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yongjie Miao
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China
| | - Ding Tang
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China
| | - Yi Shen
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China
| | - Zhukuan Cheng
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| |
Collapse
|
14
|
Serrano-León IM, Prieto P, Aguilar M. Telomere and subtelomere high polymorphism might contribute to the specificity of homologous recognition and pairing during meiosis in barley in the context of breeding. BMC Genomics 2023; 24:642. [PMID: 37884878 PMCID: PMC10601145 DOI: 10.1186/s12864-023-09738-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 10/12/2023] [Indexed: 10/28/2023] Open
Abstract
Barley (Hordeum vulgare) is one of the most popular cereal crops globally. Although it is a diploid species, (2n = 2x = 14) the study of its genome organization is necessary in the framework of plant breeding since barley is often used in crosses with other cereals like wheat to provide them with advantageous characters. We already have an extensive knowledge on different stages of the meiosis, the cell division to generate the gametes in species with sexual reproduction, such as the formation of the synaptonemal complex, recombination, and chromosome segregation. But meiosis really starts with the identification of homologous chromosomes and pairing initiation, and it is still unclear how chromosomes exactly choose a partner to appropriately pair for additional recombination and segregation. In this work we present an exhaustive molecular analysis of both telomeres and subtelomeres of barley chromosome arms 2H-L, 3H-L and 5H-L. As expected, the analysis of multiple features, including transposable elements, repeats, GC content, predicted CpG islands, recombination hotspots, G4 quadruplexes, genes and targeted sequence motifs for key DNA-binding proteins, revealed a high degree of variability both in telomeres and subtelomeres. The molecular basis for the specificity of homologous recognition and pairing occurring in the early chromosomal interactions at the start of meiosis in barley may be provided by these polymorphisms. A more relevant role of telomeres and most distal part of subtelomeres is suggested.
Collapse
Affiliation(s)
- I M Serrano-León
- Plant Breeding Department, Institute for Sustainable Agriculture, Agencia Estatal Consejo Superior de Investigaciones Científicas (CSIC), Avenida Menéndez Pidal S/N., Campus Alameda del Obispo, 14004, Córdoba, Spain
| | - P Prieto
- Plant Breeding Department, Institute for Sustainable Agriculture, Agencia Estatal Consejo Superior de Investigaciones Científicas (CSIC), Avenida Menéndez Pidal S/N., Campus Alameda del Obispo, 14004, Córdoba, Spain.
| | - M Aguilar
- Área de Fisiología Vegetal, Universidad de Córdoba, Campus de Rabanales, Edif. C4, 3ª Planta, Córdoba, Spain
| |
Collapse
|
15
|
Zhang C, Johnson NA, Hall N, Tian X, Yu Q, Patterson EL. Subtelomeric 5-enolpyruvylshikimate-3-phosphate synthase copy number variation confers glyphosate resistance in Eleusine indica. Nat Commun 2023; 14:4865. [PMID: 37567866 PMCID: PMC10421919 DOI: 10.1038/s41467-023-40407-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
Genomic structural variation (SV) has profound effects on organismal evolution; often serving as a source of novel genetic variation. Gene copy number variation (CNV), one type of SV, has repeatedly been associated with adaptive evolution in eukaryotes, especially with environmental stress. Resistance to the widely used herbicide, glyphosate, has evolved through target-site CNV in many weedy plant species, including the economically important grass, Eleusine indica (goosegrass); however, the origin and mechanism of these CNVs remain elusive in many weed species due to limited genetic and genomic resources. To study this CNV in goosegrass, we present high-quality reference genomes for glyphosate-susceptible and -resistant goosegrass lines and fine-assembles of the duplication of glyphosate's target site gene 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS). We reveal a unique rearrangement of EPSPS involving chromosome subtelomeres. This discovery adds to the limited knowledge of the importance of subtelomeres as genetic variation generators and provides another unique example for herbicide resistance evolution.
Collapse
Affiliation(s)
- Chun Zhang
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong, P.R. China
| | - Nicholas A Johnson
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI, USA
| | - Nathan Hall
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI, USA
| | - Xingshan Tian
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong, P.R. China.
| | - Qin Yu
- Australian Herbicide Resistance Initiative (AHRI), School of Agriculture and Environment, University of Western Australia (UWA), Perth, Australia.
| | - Eric L Patterson
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
16
|
Draeger TN, Rey MD, Hayta S, Smedley M, Martin AC, Moore G. DMC1 stabilizes crossovers at high and low temperatures during wheat meiosis. FRONTIERS IN PLANT SCIENCE 2023; 14:1208285. [PMID: 37615022 PMCID: PMC10442654 DOI: 10.3389/fpls.2023.1208285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 07/17/2023] [Indexed: 08/25/2023]
Abstract
Effective chromosome synapsis and crossover formation during meiosis are essential for fertility, especially in grain crops such as wheat. These processes function most efficiently in wheat at temperatures between 17-23 °C, although the genetic mechanisms for such temperature dependence are unknown. In a previously identified mutant of the hexaploid wheat reference variety 'Chinese Spring' lacking the long arm of chromosome 5D, exposure to low temperatures during meiosis resulted in asynapsis and crossover failure. In a second mutant (ttmei1), containing a 4 Mb deletion in chromosome 5DL, exposure to 13 °C led to similarly high levels of asynapsis and univalence. Moreover, exposure to 30 °C led to a significant, but less extreme effect on crossovers. Previously, we proposed that, of 41 genes deleted in this 4 Mb region, the major meiotic gene TaDMC1-D1 was the most likely candidate for preservation of synapsis and crossovers at low (and possibly high) temperatures. In the current study, using RNA-guided Cas9, we developed a new Chinese Spring CRISPR mutant, containing a 39 bp deletion in the 5D copy of DMC1, representing the first reported CRISPR-Cas9 targeted mutagenesis in Chinese Spring, and the first CRISPR mutant for DMC1 in wheat. In controlled environment experiments, wild-type Chinese Spring, CRISPR dmc1-D1 and backcrossed ttmei1 mutants were exposed to either high or low temperatures during the temperature-sensitive period from premeiotic interphase to early meiosis I. After 6-7 days at 13 °C, crossovers decreased by over 95% in the dmc1-D1 mutants, when compared with wild-type plants grown under the same conditions. After 24 hours at 30 °C, dmc1-D1 mutants exhibited a reduced number of crossovers and increased univalence, although these differences were less marked than at 13 °C. Similar results were obtained for ttmei1 mutants, although their scores were more variable, possibly reflecting higher levels of background mutation. These experiments confirm our previous hypothesis that DMC1-D1 is responsible for preservation of normal crossover formation at low and, to a certain extent, high temperatures. Given that reductions in crossovers have significant effects on grain yield, these results have important implications for wheat breeding, particularly in the face of climate change.
Collapse
Affiliation(s)
| | - María-Dolores Rey
- Agroforestry and Plant Biochemistry, Proteomics and Systems Biology, Department of Biochemistry and Molecular Biology, University of Córdoba, Córdoba, Spain
| | - Sadiye Hayta
- John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Mark Smedley
- John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Azahara C. Martin
- Department of Plant Genetic Improvement, Institute for Sustainable Agriculture, Spanish National Research Council (CSIC), Córdoba, Spain
| | - Graham Moore
- John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| |
Collapse
|
17
|
Schindfessel C, De Storme N, Trinh HK, Geelen D. Asynapsis and meiotic restitution in tomato male meiosis induced by heat stress. FRONTIERS IN PLANT SCIENCE 2023; 14:1210092. [PMID: 37521921 PMCID: PMC10373595 DOI: 10.3389/fpls.2023.1210092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 06/26/2023] [Indexed: 08/01/2023]
Abstract
Susceptibility of the reproductive system to temperature fluctuations is a recurrent problem for crop production under a changing climate. The damage is complex as multiple processes in male and female gamete formation are affected, but in general, particularly pollen production is impaired. Here, the impact of short periods of elevated temperature on male meiosis of tomato (Solanum lycopersicon L.) is reported. Meiocytes in early stage flower buds exposed to heat stress (>35°C) exhibit impaired homolog synapsis resulting in partial to complete omission of chiasmata formation. In the absence of chiasmata, univalents segregate randomly developing unbalanced tetrads and polyads resulting in aneuploid spores. However, most heat-stressed meiotic buds primarily contain balanced dyads, indicating a propensity to execute meiotic restitution. With most meiocytes exhibiting a complete loss of chiasma formation and concomitantly showing a mitotic-like division, heat stress triggers first division restitution resulting in clonal spores. These findings corroborate with the plasticity of male meiosis under heat and establish a natural route for the induction of sexual polyploidization in plants and the engineering of clonal seed.
Collapse
Affiliation(s)
- Cédric Schindfessel
- Horticell Lab, Faculty of Bioscience Engineering, Department of Plants and Crops, Ghent University, Ghent, Belgium
| | - Nico De Storme
- Horticell Lab, Faculty of Bioscience Engineering, Department of Plants and Crops, Ghent University, Ghent, Belgium
| | - Hoang Khai Trinh
- Horticell Lab, Faculty of Bioscience Engineering, Department of Plants and Crops, Ghent University, Ghent, Belgium
- Institute of Food and Biotechnology, Can Tho University, Can Tho, Vietnam
| | - Danny Geelen
- Horticell Lab, Faculty of Bioscience Engineering, Department of Plants and Crops, Ghent University, Ghent, Belgium
| |
Collapse
|
18
|
Di Dio C, Serra H, Sourdille P, Higgins JD. ASYNAPSIS 1 ensures crossover fidelity in polyploid wheat by promoting homologous recombination and suppressing non-homologous recombination. FRONTIERS IN PLANT SCIENCE 2023; 14:1188347. [PMID: 37284727 PMCID: PMC10239940 DOI: 10.3389/fpls.2023.1188347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 04/17/2023] [Indexed: 06/08/2023]
Abstract
During meiosis, the chromosome axes and synaptonemal complex mediate chromosome pairing and homologous recombination to maintain genomic stability and accurate chromosome segregation. In plants, ASYNAPSIS 1 (ASY1) is a key component of the chromosome axis that promotes inter-homolog recombination, synapsis and crossover formation. Here, the function of ASY1 has been cytologically characterized in a series of hypomorphic wheat mutants. In tetraploid wheat, asy1 hypomorphic mutants experience a reduction in chiasmata (crossovers) in a dosage-specific manner, resulting in failure to maintain crossover (CO) assurance. In mutants with only one functional copy of ASY1, distal chiasmata are maintained at the expense of proximal and interstitial chiasmata, indicating that ASY1 is required to promote chiasma formation away from the chromosome ends. Meiotic prophase I progression is delayed in asy1 hypomorphic mutants and is arrested in asy1 null mutants. In both tetraploid and hexaploid wheat, single asy1 mutants exhibit a high degree of ectopic recombination between multiple chromosomes at metaphase I. To explore the nature of the ectopic recombination, Triticum turgidum asy1b-2 was crossed with wheat-wild relative Aegilops variabilis. Homoeologous chiasmata increased 3.75-fold in Ttasy1b-2/Ae. variabilis compared to wild type/Ae. variabilis, indicating that ASY1 suppresses chiasma formation between divergent, but related chromosomes. These data suggest that ASY1 promotes recombination along the chromosome arms of homologous chromosomes whilst suppressing recombination between non-homologous chromosomes. Therefore, asy1 mutants could be utilized to increase recombination between wheat wild relatives and elite varieties for expediting introgression of important agronomic traits.
Collapse
Affiliation(s)
- Chiara Di Dio
- Department of Genetics and Genome Biology, Adrian Building, University of Leicester, Leicester, United Kingdom
| | - Heïdi Serra
- Genetics, Diversity and Ecophysiology of Cereals, Unité Mixte de Recherche (UMR) 1095, The Institut National de la Recherche Agronomique (INRAE), Université Clermont Auvergne, Clermont-Ferrand, France
| | - Pierre Sourdille
- Genetics, Diversity and Ecophysiology of Cereals, Unité Mixte de Recherche (UMR) 1095, The Institut National de la Recherche Agronomique (INRAE), Université Clermont Auvergne, Clermont-Ferrand, France
| | - James D. Higgins
- Department of Genetics and Genome Biology, Adrian Building, University of Leicester, Leicester, United Kingdom
| |
Collapse
|
19
|
Strelnikova SR, Komakhin RA. Control of meiotic crossing over in plant breeding. Vavilovskii Zhurnal Genet Selektsii 2023; 27:99-110. [PMID: 37063511 PMCID: PMC10090103 DOI: 10.18699/vjgb-23-15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 09/11/2022] [Accepted: 09/26/2022] [Indexed: 04/18/2023] Open
Abstract
Meiotic crossing over is the main mechanism for constructing a new allelic composition of individual chromosomes and is necessary for the proper distribution of homologous chromosomes between gametes. The parameters of meiotic crossing over that have developed in the course of evolution are determined by natural selection and do not fully suit the tasks of selective breeding research. This review summarizes the results of experimental studies aimed at increasing the frequency of crossovers and redistributing their positions along chromosomes using genetic manipulations at different stages of meiotic recombination. The consequences of inactivation and/or overexpression of the SPO11 genes, the products of which generate meiotic double-strand breaks in DNA, for the redistribution of crossover positions in the genome of various organisms are discussed. The results of studies concerning the effect of inactivation or overexpression of genes encoding RecA-like recombinases on meiotic crossing over, including those in cultivated tomato (Solanum lycopersicum L.) and its interspecific hybrids, are summarized. The consequences of inactivation of key genes of the mismatch repair system are discussed. Their suppression made it possible to significantly increase the frequency of meiotic recombination between homeologues in the interspecific hybrid yeast Saccharomyces cerevisiae × S. paradoxus and between homologues in arabidopsis plants (Arabidopsis thaliana L.). Also discussed are attempts to extrapolate these results to other plant species, in which a decrease in reproductive properties and microsatellite instability in the genome have been noted. The most significant results on the meiotic recombination frequency increase upon inactivation of the FANCM, TOP3α, RECQ4, FIGL1 crossover repressor genes and upon overexpression of the HEI10 crossover enhancer gene are separately described. In some experiments, the increase of meiotic recombination frequency by almost an order of magnitude and partial redistribution of the crossover positions along chromosomes were achieved in arabidopsis while fully preserving fecundity. Similar results have been obtained for some crops.
Collapse
Affiliation(s)
- S R Strelnikova
- All-Russia Research Institute of Agricultural Biotechnology, Moscow, Russia
| | - R A Komakhin
- All-Russia Research Institute of Agricultural Biotechnology, Moscow, Russia
| |
Collapse
|
20
|
Ma X, Fan L, Zhang Z, Yang X, Liu Y, Ma Y, Pan Y, Zhou G, Zhang M, Ning H, Kong F, Ma J, Liu S, Tian Z. Global dissection of the recombination landscape in soybean using a high-density 600K SoySNP array. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:606-620. [PMID: 36458856 PMCID: PMC9946146 DOI: 10.1111/pbi.13975] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 12/09/2022] [Accepted: 11/27/2022] [Indexed: 05/17/2023]
Abstract
Recombination is crucial for crop breeding because it can break linkage drag and generate novel allele combinations. However, the high-resolution recombination landscape and its driving forces in soybean are largely unknown. Here, we constructed eight recombinant inbred line (RIL) populations and genotyped individual lines using the high-density 600K SoySNP array, which yielded a high-resolution recombination map with 5636 recombination sites at a resolution of 1.37 kb. The recombination rate was negatively correlated with transposable element density and GC content but positively correlated with gene density. Interestingly, we found that meiotic recombination was enriched at the promoters of active genes. Further investigations revealed that chromatin accessibility and active epigenetic modifications promoted recombination. Our findings provide important insights into the control of homologous recombination and thus will increase our ability to accelerate soybean breeding by manipulating meiotic recombination rate.
Collapse
Affiliation(s)
- Xin Ma
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
| | - Lei Fan
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
| | - Zhifang Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
| | - Xia Yang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yucheng Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
| | - Yanming Ma
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
| | - Yi Pan
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
| | - Guoan Zhou
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
| | - Min Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
| | - Hailong Ning
- Key Laboratory of Soybean Biology, Chinese Ministry of EducationNortheast Agricultural UniversityHarbinChina
| | - Fanjiang Kong
- Innovative Center of Molecular Genetics and Evolution, School of Life SciencesGuangzhou UniversityGuangzhouChina
| | - Junkui Ma
- The Industrial Crop InstituteShanxi Agricultural UniversityTaiyuanChina
| | - Shulin Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
| | - Zhixi Tian
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
21
|
Zhang C, Johnson NA, Hall N, Tian X, Yu Q, Patterson E. Subtelomeric 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) copy number variation confers glyphosate resistance in Eleusine indica. RESEARCH SQUARE 2023:rs.3.rs-2587355. [PMID: 36865158 PMCID: PMC9980225 DOI: 10.21203/rs.3.rs-2587355/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Genomic structural variation (SV) can have profound effects on an organism’s evolution, often serving as a novel source of genetic variation. Gene copy number variation (CNV), a specific form of SV, has repeatedly been associated with adaptive evolution in eukaryotes, especially to biotic and abiotic stresses. Resistance to the most widely used herbicide, glyphosate, has evolved through target-site CNV in many weedy plant species, including the economically important cosmopolitan grass, Eleusine indica (goosegrass); however, the origin and mechanisms of these resistance CNVs remain elusive in many weed species due to limited genetic and genomics resources. In order to study the target site CNV in goosegrass, we generated high-quality reference genomes for both glyphosate-susceptible and -resistant individuals, fine assembled the duplication of glyphosate's target site gene enolpyruvylshikimate-3-phosphate synthase (EPSPS), and revealed a novel rearrangement of EPSPS into the subtelomeric region of the chromosomes, ultimately leading to herbicide resistance evolution. This discovery adds to the limited knowledge of the importance of subtelomeres as rearrangement hotspots and novel variation generators as well as provides an example of yet another unique pathway for the formation of CNVs in plants.
Collapse
Affiliation(s)
- Chun Zhang
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Guangzhou, P.R. China
| | - Nicholas A. Johnson
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI, USA
| | - Nathan Hall
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI, USA
| | - Xingshan Tian
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Guangzhou, P.R. China
| | - Qin Yu
- Australian Herbicide Resistance Initiative (AHRI), School of Agriculture and Environment, University of Western Australia (UWA), Perth, Australia
| | - Eric Patterson
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
22
|
Hyde L, Osman K, Winfield M, Sanchez‐Moran E, Higgins JD, Henderson IR, Sparks C, Franklin FCH, Edwards KJ. Identification, characterization, and rescue of CRISPR/Cas9 generated wheat SPO11-1 mutants. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:405-418. [PMID: 36373224 PMCID: PMC9884015 DOI: 10.1111/pbi.13961] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 10/31/2022] [Accepted: 11/07/2022] [Indexed: 05/29/2023]
Abstract
Increasing crop yields through plant breeding is time consuming and laborious, with the generation of novel combinations of alleles being limited by chromosomal linkage blocks and linkage-drag. Meiotic recombination is essential to create novel genetic variation via the reshuffling of parental alleles. The exchange of genetic information between homologous chromosomes occurs at crossover (CO) sites but CO frequency is often low and unevenly distributed. This bias creates the problem of linkage-drag in recombination 'cold' regions, where undesirable variation remains linked to useful traits. In plants, programmed meiosis-specific DNA double-strand breaks, catalysed by the SPO11 complex, initiate the recombination pathway, although only ~5% result in the formation of COs. To study the role of SPO11-1 in wheat meiosis, and as a prelude to manipulation, we used CRISPR/Cas9 to generate edits in all three SPO11-1 homoeologues of hexaploid wheat. Characterization of progeny lines shows plants deficient in all six SPO11-1 copies fail to undergo chromosome synapsis, lack COs and are sterile. In contrast, lines carrying a single copy of any one of the three wild-type homoeologues are phenotypically indistinguishable from unedited plants both in terms of vegetative growth and fertility. However, cytogenetic analysis of the edited plants suggests that homoeologues differ in their ability to generate COs and in the dynamics of synapsis. In addition, we show that the transformation of wheat mutants carrying six edited copies of SPO11-1 with the TaSPO11-1B gene, restores synapsis, CO formation, and fertility and hence opens a route to modifying recombination in this agronomically important crop.
Collapse
Affiliation(s)
- Lucy Hyde
- School of Biological Sciences, Life SciencesUniversity of BristolBristolUK
| | - Kim Osman
- School of BiosciencesUniversity of BirminghamBirminghamUK
| | - Mark Winfield
- School of Biological Sciences, Life SciencesUniversity of BristolBristolUK
| | | | - James D. Higgins
- Department of Genetics and Genome BiologyUniversity of LeicesterLeicesterUK
| | | | | | | | - Keith J. Edwards
- School of Biological Sciences, Life SciencesUniversity of BristolBristolUK
| |
Collapse
|
23
|
Abeyratne CR, Macaya-Sanz D, Zhou R, Barry KW, Daum C, Haiby K, Lipzen A, Stanton B, Yoshinaga Y, Zane M, Tuskan GA, DiFazio SP. High-resolution mapping reveals hotspots and sex-biased recombination in Populus trichocarpa. G3 (BETHESDA, MD.) 2023; 13:jkac269. [PMID: 36250890 PMCID: PMC9836356 DOI: 10.1093/g3journal/jkac269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 09/28/2022] [Indexed: 12/14/2022]
Abstract
Fine-scale meiotic recombination is fundamental to the outcome of natural and artificial selection. Here, dense genetic mapping and haplotype reconstruction were used to estimate recombination for a full factorial Populus trichocarpa cross of 7 males and 7 females. Genomes of the resulting 49 full-sib families (N = 829 offspring) were resequenced, and high-fidelity biallelic SNP/INDELs and pedigree information were used to ascertain allelic phase and impute progeny genotypes to recover gametic haplotypes. The 14 parental genetic maps contained 1,820 SNP/INDELs on average that covered 376.7 Mb of physical length across 19 chromosomes. Comparison of parental and progeny haplotypes allowed fine-scale demarcation of cross-over regions, where 38,846 cross-over events in 1,658 gametes were observed. Cross-over events were positively associated with gene density and negatively associated with GC content and long-terminal repeats. One of the most striking findings was higher rates of cross-overs in males in 8 out of 19 chromosomes. Regions with elevated male cross-over rates had lower gene density and GC content than windows showing no sex bias. High-resolution analysis identified 67 candidate cross-over hotspots spread throughout the genome. DNA sequence motifs enriched in these regions showed striking similarity to those of maize, Arabidopsis, and wheat. These findings, and recombination estimates, will be useful for ongoing efforts to accelerate domestication of this and other biomass feedstocks, as well as future studies investigating broader questions related to evolutionary history, perennial development, phenology, wood formation, vegetative propagation, and dioecy that cannot be studied using annual plant model systems.
Collapse
Affiliation(s)
| | - David Macaya-Sanz
- Department of Forest Ecology & Genetics, CIFOR-INIA, CSIC, Madrid 28040, Spain
| | - Ran Zhou
- Warnell School of Forestry and Natural Resources, Department of Genetics, and Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
| | - Kerrie W Barry
- Department of Energy Joint Genome Institute, Berkeley, CA 94720, USA
| | - Christopher Daum
- Department of Energy Joint Genome Institute, Berkeley, CA 94720, USA
| | | | - Anna Lipzen
- Department of Energy Joint Genome Institute, Berkeley, CA 94720, USA
| | | | - Yuko Yoshinaga
- Department of Energy Joint Genome Institute, Berkeley, CA 94720, USA
| | - Matthew Zane
- Department of Energy Joint Genome Institute, Berkeley, CA 94720, USA
| | - Gerald A Tuskan
- Biosciences Division, Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| | - Stephen P DiFazio
- Department of Biology, West Virginia University, Morgantown, WV 26506, USA
| |
Collapse
|
24
|
Wang C, Li X, Huang J, Ma H, Wang CJR, Wang Y. Isolation of Meiocytes and Cytological Analyses of Male Meiotic Chromosomes in Soybean, Lettuce, and Maize. Methods Mol Biol 2023; 2686:219-239. [PMID: 37540360 DOI: 10.1007/978-1-0716-3299-4_9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Meiosis is a specialized cell division that halves the number of chromosomes following a single round of DNA replication, thus leading to the generation of haploid gametes. It is essential for sexual reproduction in eukaryotes. Over the past several decades, with the well-developed molecular and cytogenetic methods, there have been great advances in understanding meiosis in plants such as Arabidopsis thaliana and maize, providing excellent references to study meiosis in other plants. A chapter in the previous edition described molecular cytological methods for studying Arabidopsis meiosis in detail. In this chapter, we focus on methods for studying meiosis in soybean (Glycine max), lettuce (Lactuca sativa), and maize (Zea mays). Moreover, we include the method that was recently developed for examination of epigenetic modifications, such as DNA methylation and histone modifications on meiotic chromosomes in plants.
Collapse
Affiliation(s)
- Cong Wang
- College of Life Sciences, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Xiang Li
- College of Horticulture, Henan Agricultural University, Zhengzhou, China
| | - Jiyue Huang
- College of Life Sciences, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Hong Ma
- Department of Biology and the Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
| | | | - Yingxiang Wang
- College of Life Sciences, South China Agricultural University, Guangzhou, China.
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.
| |
Collapse
|
25
|
Zhang X, Zhang S, Liu Z, Zhao W, Zhang X, Song J, Jia H, Yang W, Ma Y, Wang Y, Xie K, Budahn H, Wang H. Characterization and acceleration of genome shuffling and ploidy reduction in synthetic allopolyploids by genome sequencing and editing. Nucleic Acids Res 2022; 51:198-217. [PMID: 36583364 PMCID: PMC9841408 DOI: 10.1093/nar/gkac1209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 12/04/2022] [Accepted: 12/06/2022] [Indexed: 12/31/2022] Open
Abstract
Polyploidy and the subsequent ploidy reduction and genome shuffling are the major driving forces of genome evolution. Here, we revealed short-term allopolyploid genome evolution by sequencing a synthetic intergeneric hybrid (Raphanobrassica, RRCC). In this allotetraploid, the genome deletion was quick, while rearrangement was slow. The core and high-frequency genes tended to be retained while the specific and low-frequency genes tended to be deleted in the hybrid. The large-fragment deletions were enriched in the heterochromatin region and probably derived from chromosome breaks. The intergeneric translocations were primarily of short fragments dependent on homoeology, indicating a gene conversion origin. To accelerate genome shuffling, we developed an efficient genome editing platform for Raphanobrassica. By editing Fanconi Anemia Complementation Group M (FANCM) genes, homoeologous recombination, chromosome deletion and secondary meiosis with additional ploidy reduction were accelerated. FANCM was shown to be a checkpoint of meiosis and controller of ploidy stability. By simultaneously editing FLIP genes, gene conversion was precisely introduced, and mosaic genes were produced around the target site. This intergeneric hybrid and genome editing platform not only provides models that facilitate experimental evolution research by speeding up genome shuffling and conversion but also accelerates plant breeding by enhancing intergeneric genetic exchange and creating new genes.
Collapse
Affiliation(s)
- Xiaohui Zhang
- To whom correspondence should be addressed. Tel: +86 10 82105947; Fax: +86 10 62174123;
| | | | | | - Wei Zhao
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs; Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xiaoxue Zhang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs; Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jiangping Song
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs; Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Huixia Jia
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs; Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Wenlong Yang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs; Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yang Ma
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs; Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yang Wang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs; Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Kabin Xie
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan); College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Holger Budahn
- Institute for Breeding Research on Horticultural Crops, Julius-Kuehn-Institute, Federal Research Centre for Cultivated Plants, D-06484 Quedlinburg, Germany
| | - Haiping Wang
- Correspondence may also be addressed to Haiping Wang. Tel: +86 10 82105942; Fax: +86 10 62174123;
| |
Collapse
|
26
|
Methylation in the CHH Context Allows to Predict Recombination in Rice. Int J Mol Sci 2022; 23:ijms232012505. [PMID: 36293364 PMCID: PMC9604423 DOI: 10.3390/ijms232012505] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/27/2022] [Accepted: 09/27/2022] [Indexed: 11/17/2022] Open
Abstract
DNA methylation is the most studied epigenetic trait. It is considered a key factor in regulating plant development and physiology, and has been associated with the regulation of several genomic features, including transposon silencing, regulation of gene expression, and recombination rates. Nonetheless, understanding the relation between DNA methylation and recombination rates remains a challenge. This work explores the association between recombination rates and DNA methylation for two commercial rice varieties. The results show negative correlations between recombination rates and methylated cytosine counts for all contexts tested at the same time, and for CG and CHG contexts independently. In contrast, a positive correlation between recombination rates and methylated cytosine count is reported in CHH contexts. Similar behavior is observed when considering only methylated cytosines within genes, transposons, and retrotransposons. Moreover, it is shown that the centromere region strongly affects the relationship between recombination rates and methylation. Finally, machine learning regression models are applied to predict recombination using the count of methylated cytosines in the CHH context as the entrance feature. These findings shed light on the understanding of the recombination landscape of rice and represent a reference framework for future studies in rice breeding, genetics, and epigenetics.
Collapse
|
27
|
Calvo‐Baltanás V, De Jaeger‐Braet J, Cher WY, Schönbeck N, Chae E, Schnittger A, Wijnker E. Knock-down of gene expression throughout meiosis and pollen formation by virus-induced gene silencing in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:19-37. [PMID: 35340073 PMCID: PMC9543169 DOI: 10.1111/tpj.15733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 02/16/2022] [Accepted: 02/18/2022] [Indexed: 06/14/2023]
Abstract
Through the inactivation of genes that act during meiosis it is possible to direct the genetic make-up of plants in subsequent generations and optimize breeding schemes. Offspring may show higher recombination of parental alleles resulting from elevated crossover (CO) incidence, or by omission of meiotic divisions, offspring may become polyploid. However, stable mutations in genes essential for recombination, or for either one of the two meiotic divisions, can have pleiotropic effects on plant morphology and line stability, for instance by causing lower fertility. Therefore, it is often favorable to temporarily change gene expression during meiosis rather than relying on stable null mutants. It was previously shown that virus-induced gene silencing (VIGS) can be used to transiently reduce CO frequencies. We asked if VIGS could also be used to modify other processes throughout meiosis and during pollen formation in Arabidopsis thaliana. Here, we show that VIGS-mediated knock-down of FIGL1, RECQ4A/B, OSD1 and QRT2 can induce (i) an increase in chiasma numbers, (ii) unreduced gametes and (iii) pollen tetrads. We further show that VIGS can target both sexes and different genetic backgrounds and can simultaneously silence different gene copies. The successful knock-down of these genes in A. thaliana suggests that VIGS can be exploited to manipulate any process during or shortly after meiosis. Hence, the transient induction of changes in inheritance patterns can be used as a powerful tool for applied research and biotechnological applications.
Collapse
Affiliation(s)
- Vanesa Calvo‐Baltanás
- Laboratory of GeneticsWageningen University & ResearchDroevendaalsesteeg 1Wageningen6700 AAthe Netherlands
- Department of Developmental Biology, Institut für Pflanzenwissenschaften und MikrobiologieUniversity of HamburgOhnhorststrasse 18Hamburg22609Germany
- Department of Biological SciencesNational University of Singapore14 Science Drive 4Singapore117543Singapore
| | - Joke De Jaeger‐Braet
- Department of Developmental Biology, Institut für Pflanzenwissenschaften und MikrobiologieUniversity of HamburgOhnhorststrasse 18Hamburg22609Germany
| | - Wei Yuan Cher
- A*STAR, Institute of Molecular and Cell Biology (IMCB)61 Biopolis DriveProteos138673Singapore
| | - Nils Schönbeck
- Department of Developmental Biology, Institut für Pflanzenwissenschaften und MikrobiologieUniversity of HamburgOhnhorststrasse 18Hamburg22609Germany
- UKEMartinistrasse 5220251HamburgGermany
| | - Eunyoung Chae
- Department of Biological SciencesNational University of Singapore14 Science Drive 4Singapore117543Singapore
| | - Arp Schnittger
- Department of Developmental Biology, Institut für Pflanzenwissenschaften und MikrobiologieUniversity of HamburgOhnhorststrasse 18Hamburg22609Germany
| | - Erik Wijnker
- Laboratory of GeneticsWageningen University & ResearchDroevendaalsesteeg 1Wageningen6700 AAthe Netherlands
| |
Collapse
|
28
|
Desjardins SD, Simmonds J, Guterman I, Kanyuka K, Burridge AJ, Tock AJ, Sanchez-Moran E, Franklin FCH, Henderson IR, Edwards KJ, Uauy C, Higgins JD. FANCM promotes class I interfering crossovers and suppresses class II non-interfering crossovers in wheat meiosis. Nat Commun 2022; 13:3644. [PMID: 35752733 PMCID: PMC9233680 DOI: 10.1038/s41467-022-31438-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 06/17/2022] [Indexed: 11/09/2022] Open
Abstract
FANCM suppresses crossovers in plants by unwinding recombination intermediates. In wheat, crossovers are skewed toward the chromosome ends, thus limiting generation of novel allelic combinations. Here, we observe that FANCM maintains the obligate crossover in tetraploid and hexaploid wheat, thus ensuring that every chromosome pair exhibits at least one crossover, by localizing class I crossover protein HEI10 at pachytene. FANCM also suppresses class II crossovers that increased 2.6-fold in fancm msh5 quadruple mutants. These data are consistent with a role for FANCM in second-end capture of class I designated crossover sites, whilst FANCM is also required to promote formation of non-crossovers. In hexaploid wheat, genetic mapping reveals that crossovers increase by 31% in fancm compared to wild type, indicating that fancm could be an effective tool to accelerate breeding. Crossover rate differences in fancm correlate with wild type crossover distributions, suggesting that chromatin may influence the recombination landscape in similar ways in both wild type and fancm. The FANCM helicase functions in limiting crossovers (COs) by unwinding inter-homolog repair intermediates. Here, the authors generate null mutants of fancm in tetraploid and hexaploid wheat and show that FANCM promotes class I interfering COs and suppresses class II noninterfering COs in wheat meiosis.
Collapse
Affiliation(s)
- Stuart D Desjardins
- Department of Genetics and Genome Biology, Adrian Building, University of Leicester, University Road, Leicester, LE1 7RH, UK
| | - James Simmonds
- Department of Crop Genetics, John Innes Centre, Norwich, NR4 7UH, UK
| | - Inna Guterman
- Department of Genetics and Genome Biology, Adrian Building, University of Leicester, University Road, Leicester, LE1 7RH, UK
| | - Kostya Kanyuka
- NIAB, 93 Lawrence Weaver Road, Cambridge, CB3 0LE, UK.,Biointeractions and Crop Protection, Rothamsted Research, Harpenden, AL5 2JQ, UK
| | - Amanda J Burridge
- Life Sciences Building, University of Bristol, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK
| | - Andrew J Tock
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK
| | | | - F Chris H Franklin
- School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Ian R Henderson
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK
| | - Keith J Edwards
- Life Sciences Building, University of Bristol, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK
| | - Cristobal Uauy
- Department of Crop Genetics, John Innes Centre, Norwich, NR4 7UH, UK
| | - James D Higgins
- Department of Genetics and Genome Biology, Adrian Building, University of Leicester, University Road, Leicester, LE1 7RH, UK.
| |
Collapse
|
29
|
Das D, Singha DL, Paswan RR, Chowdhury N, Sharma M, Reddy PS, Chikkaputtaiah C. Recent advancements in CRISPR/Cas technology for accelerated crop improvement. PLANTA 2022; 255:109. [PMID: 35460444 DOI: 10.1007/s00425-022-03894-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/29/2022] [Indexed: 06/14/2023]
Abstract
Precise genome engineering approaches could be perceived as a second paradigm for targeted trait improvement in crop plants, with the potential to overcome the constraints imposed by conventional CRISPR/Cas technology. The likelihood of reduced agricultural production due to highly turbulent climatic conditions increases as the global population expands. The second paradigm of stress-resilient crops with enhanced tolerance and increased productivity against various stresses is paramount to support global production and consumption equilibrium. Although traditional breeding approaches have substantially increased crop production and yield, effective strategies are anticipated to restore crop productivity even further in meeting the world's increasing food demands. CRISPR/Cas, which originated in prokaryotes, has surfaced as a coveted genome editing tool in recent decades, reshaping plant molecular biology in unprecedented ways and paving the way for engineering stress-tolerant crops. CRISPR/Cas is distinguished by its efficiency, high target specificity, and modularity, enables precise genetic modification of crop plants, allowing for the creation of allelic variations in the germplasm and the development of novel and more productive agricultural practices. Additionally, a slew of advanced biotechnologies premised on the CRISPR/Cas methodologies have augmented fundamental research and plant synthetic biology toolkits. Here, we describe gene editing tools, including CRISPR/Cas and its imitative tools, such as base and prime editing, multiplex genome editing, chromosome engineering followed by their implications in crop genetic improvement. Further, we comprehensively discuss the latest developments of CRISPR/Cas technology including CRISPR-mediated gene drive, tissue-specific genome editing, dCas9 mediated epigenetic modification and programmed self-elimination of transgenes in plants. Finally, we highlight the applicability and scope of advanced CRISPR-based techniques in crop genetic improvement.
Collapse
Affiliation(s)
- Debajit Das
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat, Assam, 785006, India
| | - Dhanawantari L Singha
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat, Assam, 785006, India
| | - Ricky Raj Paswan
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, 785013, India
| | - Naimisha Chowdhury
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat, Assam, 785006, India
| | - Monica Sharma
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat, Assam, 785006, India
| | - Palakolanu Sudhakar Reddy
- International Crop Research Institute for the Semi Arid Tropics (ICRISAT), Patancheru, Hyderabad, 502 324, India
| | - Channakeshavaiah Chikkaputtaiah
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat, Assam, 785006, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India.
| |
Collapse
|
30
|
Fayos I, Frouin J, Meynard D, Vernet A, Herbert L, Guiderdoni E. Manipulation of Meiotic Recombination to Hasten Crop Improvement. BIOLOGY 2022; 11:369. [PMID: 35336743 PMCID: PMC8945028 DOI: 10.3390/biology11030369] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 01/15/2023]
Abstract
Reciprocal (cross-overs = COs) and non-reciprocal (gene conversion) DNA exchanges between the parental chromosomes (the homologs) during meiotic recombination are, together with mutation, the drivers for the evolution and adaptation of species. In plant breeding, recombination combines alleles from genetically diverse accessions to generate new haplotypes on which selection can act. In recent years, a spectacular progress has been accomplished in the understanding of the mechanisms underlying meiotic recombination in both model and crop plants as well as in the modulation of meiotic recombination using different strategies. The latter includes the stimulation and redistribution of COs by either modifying environmental conditions (e.g., T°), harnessing particular genomic situations (e.g., triploidy in Brassicaceae), or inactivating/over-expressing meiotic genes, notably some involved in the DNA double-strand break (DSB) repair pathways. These tools could be particularly useful for shuffling diversity in pre-breeding generations. Furthermore, thanks to the site-specific properties of genome editing technologies the targeting of meiotic recombination at specific chromosomal regions nowadays appears an attainable goal. Directing COs at desired chromosomal positions would allow breaking linkage situations existing between favorable and unfavorable alleles, the so-called linkage drag, and accelerate genetic gain. This review surveys the recent achievements in the manipulation of meiotic recombination in plants that could be integrated into breeding schemes to meet the challenges of deploying crops that are more resilient to climate instability, resistant to pathogens and pests, and sparing in their input requirements.
Collapse
Affiliation(s)
- Ian Fayos
- Meiogenix, 38 rue Sevran, 75011 Paris, France; (I.F.); (L.H.)
| | - Julien Frouin
- CIRAD, UMR AGAP Institut, F-34398 Montpellier, France; (J.F.); (D.M.); (A.V.)
- UMR AGAP Institut, Université de Montpellier, CIRAD, INRAE, Institut Agro, F-34398 Montpellier, France
| | - Donaldo Meynard
- CIRAD, UMR AGAP Institut, F-34398 Montpellier, France; (J.F.); (D.M.); (A.V.)
- UMR AGAP Institut, Université de Montpellier, CIRAD, INRAE, Institut Agro, F-34398 Montpellier, France
| | - Aurore Vernet
- CIRAD, UMR AGAP Institut, F-34398 Montpellier, France; (J.F.); (D.M.); (A.V.)
- UMR AGAP Institut, Université de Montpellier, CIRAD, INRAE, Institut Agro, F-34398 Montpellier, France
| | - Léo Herbert
- Meiogenix, 38 rue Sevran, 75011 Paris, France; (I.F.); (L.H.)
| | - Emmanuel Guiderdoni
- CIRAD, UMR AGAP Institut, F-34398 Montpellier, France; (J.F.); (D.M.); (A.V.)
- UMR AGAP Institut, Université de Montpellier, CIRAD, INRAE, Institut Agro, F-34398 Montpellier, France
| |
Collapse
|
31
|
Da Ines O, Choi K, Pradillo M, Lambing C. Editorial: Meiotic Recombination and DNA Repair: New Approaches to Solve Old Questions in Model and Non-model Plant Species. FRONTIERS IN PLANT SCIENCE 2022; 13:841402. [PMID: 35222496 PMCID: PMC8864129 DOI: 10.3389/fpls.2022.841402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Affiliation(s)
- Olivier Da Ines
- Institut Génétique Reproduction et Développement (iGReD), Université Clermont Auvergne, Centre National de la Recherche Scientifique (CNRS), Institut national de la santé et de la recherche médicale (INSERM), Clermont-Ferrand, France
| | - Kyuha Choi
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, South Korea
| | - Mónica Pradillo
- Department of Genetics, Faculty of Biology, Physiology and Microbiology, Universidad Complutense de Madrid, Madrid, Spain
| | | |
Collapse
|
32
|
Kuo P, Darbyshire A, Lambing C. Super-resolution Chromatin Visualization Using a Combined Method of Fluorescence In Situ Hybridization and Structured Illumination Microscopy in Solanum lycopersicum. Methods Mol Biol 2022; 2484:85-92. [PMID: 35461446 DOI: 10.1007/978-1-0716-2253-7_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Chromatin organization influences gene and transposon expression, and regulates various cellular processes. Higher order chromatin structure has been widely studied using genomic approaches and microscopy image analyses. Chromosome conformation capture and sequencing the junction of DNA fragments enables the study of both chromatin interaction and chromosome folding. However, certain cell types are embedded in other cell types which complicate the process of studying them using high-throughput genomic approaches. To overcome this limitation, high-resolution microscopy techniques are now available to investigate chromatin organization in single cells. In this chapter, we provide a detailed protocol to prepare chromosome spreading from tomato nuclei, to label genomic loci by fluorescence in situ hybridization, and to visualize these locations at high resolution with Structured Illumination microscopy.
Collapse
Affiliation(s)
- Pallas Kuo
- Department of Plant Sciences, University of Cambridge, Cambridge, UK.
| | | | | |
Collapse
|
33
|
Prusicki MA, Balboni M, Sofroni K, Hamamura Y, Schnittger A. Caught in the Act: Live-Cell Imaging of Plant Meiosis. FRONTIERS IN PLANT SCIENCE 2021; 12:718346. [PMID: 34992616 PMCID: PMC8724559 DOI: 10.3389/fpls.2021.718346] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 11/29/2021] [Indexed: 06/14/2023]
Abstract
Live-cell imaging is a powerful method to obtain insights into cellular processes, particularly with respect to their dynamics. This is especially true for meiosis, where chromosomes and other cellular components such as the cytoskeleton follow an elaborate choreography over a relatively short period of time. Making these dynamics visible expands understanding of the regulation of meiosis and its underlying molecular forces. However, the analysis of meiosis by live-cell imaging is challenging; specifically in plants, a temporally resolved understanding of chromosome segregation and recombination events is lacking. Recent advances in live-cell imaging now allow the analysis of meiotic events in plants in real time. These new microscopy methods rely on the generation of reporter lines for meiotic regulators and on the establishment of ex vivo culture and imaging conditions, which stabilize the specimen and keep it alive for several hours or even days. In this review, we combine an overview of the technical aspects of live-cell imaging in plants with a summary of outstanding questions that can now be addressed to promote live-cell imaging in Arabidopsis and other plant species and stimulate ideas on the topics that can be addressed in the context of plant meiotic recombination.
Collapse
Affiliation(s)
| | | | | | | | - Arp Schnittger
- Department of Developmental Biology, Institute for Plant Science and Microbiology, University of Hamburg, Hamburg, Germany
| |
Collapse
|
34
|
Martinez-Garcia M, White CI, Franklin FCH, Sanchez-Moran E. The Role of Topoisomerase II in DNA Repair and Recombination in Arabidopsis thaliana. Int J Mol Sci 2021; 22:13115. [PMID: 34884922 PMCID: PMC8658145 DOI: 10.3390/ijms222313115] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 11/30/2021] [Accepted: 12/01/2021] [Indexed: 11/25/2022] Open
Abstract
DNA entanglements and supercoiling arise frequently during normal DNA metabolism. DNA topoisomerases are highly conserved enzymes that resolve the topological problems that these structures create. Topoisomerase II (TOPII) releases topological stress in DNA by removing DNA supercoils through breaking the two DNA strands, passing a DNA duplex through the break and religating the broken strands. TOPII performs key DNA metabolic roles essential for DNA replication, chromosome condensation, heterochromatin metabolism, telomere disentanglement, centromere decatenation, transmission of crossover (CO) interference, interlock resolution and chromosome segregation in several model organisms. In this study, we reveal the endogenous role of Arabidopsis thaliana TOPII in normal root growth and cell cycle, and mitotic DNA repair via homologous recombination. Additionally, we show that the protein is required for meiotic DSB repair progression, but not for CO formation. We propose that TOPII might promote mitotic HR DNA repair by relieving stress needed for HR strand invasion and D-loop formation.
Collapse
Affiliation(s)
| | - Charles I. White
- Génétique, Reproduction et Développement, Faculté de Médecine, UMR CNRS 6293—INSERM U1103—Université Clermont Auvergne, 28 Place Henri Dunant, 63001 Clermont-Ferrand, France;
| | | | | |
Collapse
|
35
|
Addo Nyarko C, Mason AS. Non-homologous chromosome pairing: sequence similarity or genetic control? Trends Genet 2021; 38:419-421. [PMID: 34776276 DOI: 10.1016/j.tig.2021.10.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/19/2021] [Accepted: 10/21/2021] [Indexed: 10/19/2022]
Abstract
Polyploids must correctly segregate homologous chromosomes. We propose that this process is dictated not just by sequence similarity, but is also under strong genetic control that may vary between lineages. We also highlight how factors like partner availability and genome structure may influence sequence similarity needed for crossover formation.
Collapse
Affiliation(s)
- Charles Addo Nyarko
- Plant Breeding Department, The University of Bonn, Katzenburgweg 5, 53115 Bonn, Germany
| | - Annaliese S Mason
- Plant Breeding Department, The University of Bonn, Katzenburgweg 5, 53115 Bonn, Germany.
| |
Collapse
|
36
|
Ali S, Zhang T, Lambing C, Wang W, Zhang P, Xie L, Wang J, Khan N, Zhang Q. Loss of chromatin remodeler DDM1 causes segregation distortion in Arabidopsis thaliana. PLANTA 2021; 254:107. [PMID: 34694462 DOI: 10.1007/s00425-021-03763-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 10/18/2021] [Indexed: 06/13/2023]
Abstract
In ddm1 mutants, the DNA methylation is primarily affected in the heterochromatic region of the chromosomes, which is associated with the segregation distortion of SNPs in the F2 progenies. Segregation distortion (SD) is common in most genetic mapping experiments and a valuable resource to determine how gene loci induce deviation. Meiotic DNA crossing over and SD are under the control of several types of epigenetic modifications. DNA methylation is an important regulatory epigenetic modification that is inherited across generations. In the present study, we investigated the relationship between SD and DNA methylation. The ecotypes Col-0/C24 and chromatin remodeler mutants ddm1-10/Col and ddm1-15/C24 were reciprocally crossed to obtain F2 generations. A total of 300 plants for each reciprocally crossed plant in the F2 generations were subjected to next-generation sequencing to detect the single-nucleotide polymorphisms (SNPs) as DNA markers. All SNPs were analyzed using the Chi-square test method to determine their segregation ratio in F2 generations. Through the segregation ratio, whole-genome SNPs were classified into 16 classes. In class 10, the SNPs in the reciprocal crosses of wild type showed the expected Mendelian ratio of 1:2:1, while those in the reciprocal crosses of ddm1 mutants showed distortion. In contrast, all SNPs in class 16 displayed a normal 1:2:1 ratio, and class 1 showed SD, regardless of wild type or mutants, as assessed using CAPS (cleaved amplified polymorphic sequences) marker analysis to confirm the next-generation sequencing. In ddm1 mutants, the DNA methylation is highly reduced throughout the whole genome and more significantly in the heterochromatic regions of chromosomes. Our results showed that the ddm1 mutants exhibit low levels of DNA methylation, which facilitates the SD of SNPs primarily located in the heterochromatic region of chromosomes by reducing the heterozygous ratio. The present study will provide a strong base for future research focusing on the impact of DNA methylation on trait segregation and plant evolution.
Collapse
Affiliation(s)
- Shahid Ali
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Tianxu Zhang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
- College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | | | - Wanpeng Wang
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Peng Zhang
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Linan Xie
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin, 150040, China
- College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Jiang Wang
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin, 150040, China
- College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Naeem Khan
- Department of Agronomy, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, 32611, USA
| | - Qingzhu Zhang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China.
- College of Life Sciences, Northeast Forestry University, Harbin, 150040, China.
| |
Collapse
|
37
|
Fuentes RR, de Ridder D, van Dijk ADJ, Peters SA. Domestication shapes recombination patterns in tomato. Mol Biol Evol 2021; 39:6379725. [PMID: 34597400 PMCID: PMC8763028 DOI: 10.1093/molbev/msab287] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Meiotic recombination is a biological process of key importance in breeding, to generate genetic diversity and develop novel or agronomically relevant haplotypes. In crop tomato, recombination is curtailed as manifested by linkage disequilibrium decay over a longer distance and reduced diversity compared with wild relatives. Here, we compared domesticated and wild populations of tomato and found an overall conserved recombination landscape, with local changes in effective recombination rate in specific genomic regions. We also studied the dynamics of recombination hotspots resulting from domestication and found that loss of such hotspots is associated with selective sweeps, most notably in the pericentromeric heterochromatin. We detected footprints of genetic changes and structural variants, among them associated with transposable elements, linked with hotspot divergence during domestication, likely causing fine-scale alterations to recombination patterns and resulting in linkage drag.
Collapse
Affiliation(s)
- Roven Rommel Fuentes
- Bioinformatics Group, Wageningen University and Research, Droevendaalsesteeg 1, Wageningen, 6708 PB The Netherlands
| | - Dick de Ridder
- Bioinformatics Group, Wageningen University and Research, Droevendaalsesteeg 1, Wageningen, 6708 PB The Netherlands
| | - Aalt D J van Dijk
- Bioinformatics Group, Wageningen University and Research, Droevendaalsesteeg 1, Wageningen, 6708 PB The Netherlands
| | - Sander A Peters
- Applied Bioinformatics, Wageningen Plant Research, Wageningen University and Research, Droevendaalsesteeg 1, Wageningen, 6708 PB, The Netherlands
| |
Collapse
|
38
|
Geng X, Xia Y, Chen H, Du K, Yang J, Kang X. High-Frequency Homologous Recombination Occurred Preferentially in Populus. Front Genet 2021; 12:703077. [PMID: 34490036 PMCID: PMC8417060 DOI: 10.3389/fgene.2021.703077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/14/2021] [Indexed: 11/13/2022] Open
Abstract
Homologous recombination (HR), the most significant event in meiosis, has important implications for genetic diversity and evolution in organisms. Heteroduplex DNA (hDNA), the product of HR, can be captured by artificially induced chromosome doubling during the development of the embryo sac to inhibit postmeiotic segregation, subsequently, and hDNAs are directly detected using codominant simple sequence repeat (SSR) markers. In the present study, two hybrid triploid populations derived from doubling the chromosomes of the embryo sac induced by high temperature in Populus tomentosa served as starting materials. Eighty-seven, 62, and 79 SSR markers on chromosomes 01, 04, and 19, respectively, that were heterozygous in the maternal parent and different from the paternal parent were screened to detect and characterize the hDNA in P. tomentosa. The results showed that the hDNA frequency patterns on chromosomes changed slightly when the number of SSR primers increased. The highest hDNA frequency occurred at the adjacent terminal on chromosomes, which was slightly higher than those at the terminals in the two genotypic individuals, and the hDNA frequency gradually decreased as the locus-centromere distance decreased. With the increase in the number of SSR markers employed for detection, the number of recombination events (REs) detected significantly increased. In regions with high methylation or long terminal repeat (LTR) retrotransposon enrichment, the frequency of hDNA was low, and high frequencies were observed in regions with low sequence complexity and high gene density. High-frequency recombination occurring at high gene density regions strongly affected the association between molecular markers and quantitative trait loci (QTLs), which was an important factor contributing to the difficulty encountered by MAS in achieving the expected breeding results.
Collapse
Affiliation(s)
- Xining Geng
- Henan Province Key Laboratory of Germplasm Innovation and Utilization of Eco-Economic Woody Plant, Pingdingshan University, Pingdingshan, China.,Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China.,National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, China.,Beijing Laboratory of Urban and Rural Ecological Environment, Beijing Forestry University, Beijing, China
| | - Yufei Xia
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China.,National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, China.,Beijing Laboratory of Urban and Rural Ecological Environment, Beijing Forestry University, Beijing, China
| | - Hao Chen
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China.,National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, China.,Beijing Laboratory of Urban and Rural Ecological Environment, Beijing Forestry University, Beijing, China
| | - Kang Du
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China.,National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, China.,Beijing Laboratory of Urban and Rural Ecological Environment, Beijing Forestry University, Beijing, China
| | - Jun Yang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China.,National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, China.,Beijing Laboratory of Urban and Rural Ecological Environment, Beijing Forestry University, Beijing, China
| | - Xiangyang Kang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China.,National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, China.,Beijing Laboratory of Urban and Rural Ecological Environment, Beijing Forestry University, Beijing, China
| |
Collapse
|
39
|
Gutiérrez Pinzón Y, González Kise JK, Rueda P, Ronceret A. The Formation of Bivalents and the Control of Plant Meiotic Recombination. FRONTIERS IN PLANT SCIENCE 2021; 12:717423. [PMID: 34557215 PMCID: PMC8453087 DOI: 10.3389/fpls.2021.717423] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 08/13/2021] [Indexed: 06/06/2023]
Abstract
During the first meiotic division, the segregation of homologous chromosomes depends on the physical association of the recombined homologous DNA molecules. The physical tension due to the sites of crossing-overs (COs) is essential for the meiotic spindle to segregate the connected homologous chromosomes to the opposite poles of the cell. This equilibrated partition of homologous chromosomes allows the first meiotic reductional division. Thus, the segregation of homologous chromosomes is dependent on their recombination. In this review, we will detail the recent advances in the knowledge of the mechanisms of recombination and bivalent formation in plants. In plants, the absence of meiotic checkpoints allows observation of subsequent meiotic events in absence of meiotic recombination or defective meiotic chromosomal axis formation such as univalent formation instead of bivalents. Recent discoveries, mainly made in Arabidopsis, rice, and maize, have highlighted the link between the machinery of double-strand break (DSB) formation and elements of the chromosomal axis. We will also discuss the implications of what we know about the mechanisms regulating the number and spacing of COs (obligate CO, CO homeostasis, and interference) in model and crop plants.
Collapse
|
40
|
The synaptonemal complex imposes crossover interference and heterochiasmy in Arabidopsis. Proc Natl Acad Sci U S A 2021; 118:2023613118. [PMID: 33723072 PMCID: PMC8000504 DOI: 10.1073/pnas.2023613118] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Meiotic recombination promotes genetic diversity by shuffling parental chromosomes. As observed by the very first geneticists, crossovers inhibit the formation of another crossover nearby, an elusive phenomenon called crossover interference. Another intriguing observation is heterochiasmy, the marked difference in male and female crossover rates observed in many species. Here, we show that the synaptonemal complex, a structure that zips homologous chromosomes together during meiosis, is essential for crossover interference in Arabidopsis. This suggests that a signal that inhibits crossover formation nearby a first crossover propagates along this specific structure. Furthermore, in the absence of the synaptonemal complex, crossover frequencies become identical in both sexes, suggesting that heterochiasmy is due to variation of crossover interference imposed by the synaptonemal complex. Meiotic crossovers (COs) have intriguing patterning properties, including CO interference, the tendency of COs to be well-spaced along chromosomes, and heterochiasmy, the marked difference in male and female CO rates. During meiosis, transverse filaments transiently associate the axes of homologous chromosomes, a process called synapsis that is essential for CO formation in many eukaryotes. Here, we describe the spatial organization of the transverse filaments in Arabidopsis (ZYP1) and show it to be evolutionary conserved. We show that in the absence of ZYP1 (zyp1a zyp1b null mutants), chromosomes associate in pairs but do not synapse. Unexpectedly, in absence of ZYP1, CO formation is not prevented but increased. Furthermore, genome-wide analysis of recombination revealed that CO interference is abolished, with the frequent observation of close COs. In addition, heterochiasmy was erased, with identical CO rates in males and females. This shows that the tripartite synaptonemal complex is dispensable for CO formation and has a key role in regulating their number and distribution, imposing CO interference and heterochiasmy.
Collapse
|
41
|
Schindfessel C, Drozdowska Z, De Mooij L, Geelen D. Loss of obligate crossovers, defective cytokinesis and male sterility in barley caused by short-term heat stress. PLANT REPRODUCTION 2021; 34:243-253. [PMID: 34021795 DOI: 10.1007/s00497-021-00415-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 05/14/2021] [Indexed: 05/16/2023]
Abstract
Short-term heat stress during male meiosis causes defects in crossover formation, meiotic progression and cell wall formation in the monocot barley, ultimately leading to pollen abortion. High temperature conditions cause a reduction of fertility due to alterations in meiotic processes and gametogenesis. The male gametophyte development has been shown to be particularly sensitive to heat stress, and even short-term and modest temperature shifts cause alterations in crossover formation. In line with previous reports, we observed that male meiosis in the monocot barley exposed for 24-45 h to heat stress (32-42 °C) partially or completely eliminates obligate crossover formation and causes unbalanced chromosome segregation and meiotic abortion. Depending on the severity of heat stress, the structure and organization of the chromosomes were altered. In addition to alterations in chromosome structure and dynamics, heat treatment abolished or reduced the formation of a callose wall surrounding the meiocytes and interrupted the cell cycle progression leading to cytokinesis defects and microspore cell death.
Collapse
Affiliation(s)
- Cédric Schindfessel
- Department of Plants and Crops, Unit HortiCell, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Zofia Drozdowska
- Department of Plants and Crops, Unit HortiCell, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Len De Mooij
- Department of Plants and Crops, Unit HortiCell, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Danny Geelen
- Department of Plants and Crops, Unit HortiCell, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium.
| |
Collapse
|
42
|
Sprink T, Hartung F. Heterologous Complementation of SPO11-1 and -2 Depends on the Splicing Pattern. Int J Mol Sci 2021; 22:ijms22179346. [PMID: 34502253 PMCID: PMC8430568 DOI: 10.3390/ijms22179346] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/20/2021] [Accepted: 08/23/2021] [Indexed: 11/16/2022] Open
Abstract
In the past, major findings in meiosis have been achieved, but questions towards the global understanding of meiosis remain concealed. In plants, one of these questions covers the need for two diverse meiotic active SPO11 proteins. In Arabidopsis and other plants, both meiotic SPO11 are indispensable in a functional form for double strand break induction during meiotic prophase I. This stands in contrast to mammals and fungi, where a single SPO11 is present and sufficient. We aimed to investigate the specific function and evolution of both meiotic SPO11 paralogs in land plants. By performing immunostaining of both SPO11-1 and -2, an investigation of the spatiotemporal localization of each SPO11 during meiosis was achieved. We further exchanged SPO11-1 and -2 in Arabidopsis and could show a species-specific function of the respective SPO11. By additional changes of regions between SPO11-1 and -2, a sequence-specific function for both the SPO11 proteins was revealed. Furthermore, the previous findings about the aberrant splicing of each SPO11 were refined by narrowing them down to a specific developmental phase. These findings let us suggest that the function of both SPO11 paralogs is highly sequence specific and that the orthologs are species specific.
Collapse
|
43
|
Strelnikova SR, Krinitsina AA, Komakhin RA. Effective RNAi-Mediated Silencing of the Mismatch Repair MSH2 Gene Induces Sterility of Tomato Plants but Not an Increase in Meiotic Recombination. Genes (Basel) 2021; 12:1167. [PMID: 34440341 PMCID: PMC8394773 DOI: 10.3390/genes12081167] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/20/2021] [Accepted: 07/26/2021] [Indexed: 11/16/2022] Open
Abstract
In plant breeding, the ability to manipulate meiotic recombination aids in the efficient construction of new allelic compositions of chromosomes and facilitates gene transfer from wild relatives of crop plants. The DNA mismatch repair system antagonizes meiotic recombination. In this research, a trial was conducted to evaluate transgenic tomato plants carrying an RNA interference (RNAi) construct designed to inhibit the expression of the mismatch repair MSH2 gene. To drive the RNAi construct, we used either a pro-SmAMP2 promoter from Stellaria media ANTIMICROBIAL PEPTIDE2 or a Cauliflower mosaic virus 35S promoter (CaMV35S). The results of real-time PCR showed that, with a 16 h light/8 h dark photoperiod, MSH2-RNAi tomato transgenic plants exhibited MSH2 gene transcript contents ranging from 0% to 3% in the leaves, relative to untransformed controls. However, with this lighting mode, the MSH2-RNAi transgenic plants grew slowly, flowered poorly, and did not form seed sets. During cultivation with a 12 h light/12 h dark photoperiod, MSH2-RNAi transgenic plants exhibited MSH2 gene transcript contents ranging from 3% to 42%, relative to untransformed controls. Under these conditions, F1 hybrid seed sets formed for most of the MSH2-RNAi transgenic plants with the RNAi construct driven by the CaMV35S promoter, and for one transformant with the RNAi construct driven by the pro-SmAMP2 promoter. Under conditions of a 12 h light/12 h dark photoperiod, most of the F1 transgenic hybrids showed MSH2 gene transcript contents ranging from 3% to 34% and formed F2 offspring sets, which made it possible to assess the meiotic recombination frequency. We showed that the effective inhibition of MSH2 in MSH2-RNAi tomato transgenic plants is not associated with an increase in meiotic recombination compared to the control, but it stimulates the sterility of plants. It was established that the expression of the MSH2 gene in tomato plants is about 50 times higher with a 12 h light/12 h dark than with a 16 h light/8 h dark photoperiod. It is discussed that, in Solanum lycopersicum tomato plants, which are not sensitive to the day length for flowering, changing the lighting time may be a means of controlling the meiotic recombination frequency within certain limits.
Collapse
Affiliation(s)
- Svetlana R. Strelnikova
- All-Russia Research Institute of Agricultural Biotechnology, 127550 Moscow, Russia; (A.A.K.); (R.A.K.)
| | - Anastasiya A. Krinitsina
- All-Russia Research Institute of Agricultural Biotechnology, 127550 Moscow, Russia; (A.A.K.); (R.A.K.)
- Biological Faculty, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Roman A. Komakhin
- All-Russia Research Institute of Agricultural Biotechnology, 127550 Moscow, Russia; (A.A.K.); (R.A.K.)
| |
Collapse
|
44
|
Abstract
Meiotic recombination is a fundamental process that generates genetic diversity and ensures the accurate segregation of homologous chromosomes. While a great deal is known about genetic factors that regulate recombination, relatively little is known about epigenetic factors, such as DNA methylation. In maize, we examined the effects on meiotic recombination of a mutation in a component of the RNA-directed DNA methylation pathway, Mop1 (Mediator of paramutation1), as well as a mutation in a component of the trans-acting small interference RNA biogenesis pathway, Lbl1 (Leafbladeless1). MOP1 is of particular interest with respect to recombination because it is responsible for methylation of transposable elements that are immediately adjacent to transcriptionally active genes. In the mop1 mutant, we found that meiotic recombination is uniformly decreased in pericentromeric regions but is generally increased in gene rich chromosomal arms. This observation was further confirmed by cytogenetic analysis showing that although overall crossover numbers are unchanged, they occur more frequently in chromosomal arms in mop1 mutants. Using whole genome bisulfite sequencing, our data show that crossover redistribution is driven by loss of CHH (where H = A, T, or C) methylation within regions near genes. In contrast to what we observed in mop1 mutants, no significant changes were observed in the frequency of meiotic recombination in lbl1 mutants. Our data demonstrate that CHH methylation has a significant impact on the overall recombination landscape in maize despite its low frequency relative to CG and CHG methylation.
Collapse
|
45
|
Kuo P, Da Ines O, Lambing C. Rewiring Meiosis for Crop Improvement. FRONTIERS IN PLANT SCIENCE 2021; 12:708948. [PMID: 34349775 PMCID: PMC8328115 DOI: 10.3389/fpls.2021.708948] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 06/17/2021] [Indexed: 05/10/2023]
Abstract
Meiosis is a specialized cell division that contributes to halve the genome content and reshuffle allelic combinations between generations in sexually reproducing eukaryotes. During meiosis, a large number of programmed DNA double-strand breaks (DSBs) are formed throughout the genome. Repair of meiotic DSBs facilitates the pairing of homologs and forms crossovers which are the reciprocal exchange of genetic information between chromosomes. Meiotic recombination also influences centromere organization and is essential for proper chromosome segregation. Accordingly, meiotic recombination drives genome evolution and is a powerful tool for breeders to create new varieties important to food security. Modifying meiotic recombination has the potential to accelerate plant breeding but it can also have detrimental effects on plant performance by breaking beneficial genetic linkages. Therefore, it is essential to gain a better understanding of these processes in order to develop novel strategies to facilitate plant breeding. Recent progress in targeted recombination technologies, chromosome engineering, and an increasing knowledge in the control of meiotic chromosome segregation has significantly increased our ability to manipulate meiosis. In this review, we summarize the latest findings and technologies on meiosis in plants. We also highlight recent attempts and future directions to manipulate crossover events and control the meiotic division process in a breeding perspective.
Collapse
Affiliation(s)
- Pallas Kuo
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Olivier Da Ines
- Institut Génétique Reproduction et Développement (iGReD), Université Clermont Auvergne, UMR 6293 CNRS, U1103 INSERM, Clermont-Ferrand, France
| | - Christophe Lambing
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
46
|
Ahn YJ, Fuchs J, Houben A, Heckmann S. High-throughput measuring of meiotic recombination rates in barley pollen nuclei using Crystal Digital PCR TM. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:649-661. [PMID: 33949030 DOI: 10.1111/tpj.15305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 06/12/2023]
Abstract
Breeding exploits novel allelic combinations assured by meiotic recombination. Barley (Hordeum vulgare) single pollen nucleus genotyping enables measurement of meiotic recombination rates in gametes before fertilization without the need for segregating populations. However, so far, established methods rely on whole-genome amplification of every single pollen nucleus due to their limited DNA content, thus restricting the number of analyzed samples. In this study, high-throughput measurements of meiotic recombination rates in barley pollen nuclei without whole-genome amplification were performed through a Crystal Digital PCRTM -based genotyping assay. Meiotic recombination rates within two centromeric and two distal chromosomal intervals were measured in hybrid plants by genotyping a total of >42 000 individual pollen nuclei (up to 4900 nuclei analyzed per plant). Determined recombination frequencies in pollen nuclei were similar to frequencies in segregating populations. We improved the efficiency of the genotyping by pretreating the pollen nuclei with a thermostable restriction enzyme. Additional opportunities for a higher sample throughput and a further increase of the genotyping efficiency are presented and discussed. Taken together, single barley pollen nucleus genotyping based on Crystal Digital PCRTM enables reliable, rapid and high-throughput meiotic recombination measurements within defined chromosomal intervals of intraspecific hybrid plants. The successful encapsulation of nuclei from a range of species with different nuclear and genome sizes suggests that the proposed method is broadly applicable to genotyping single nuclei.
Collapse
Affiliation(s)
- Yun-Jae Ahn
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), OT Gatersleben, Corrensstraße 3, Stadt Seeland, 06466, Germany
| | - Joerg Fuchs
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), OT Gatersleben, Corrensstraße 3, Stadt Seeland, 06466, Germany
| | - Andreas Houben
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), OT Gatersleben, Corrensstraße 3, Stadt Seeland, 06466, Germany
| | - Stefan Heckmann
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), OT Gatersleben, Corrensstraße 3, Stadt Seeland, 06466, Germany
| |
Collapse
|
47
|
Mao B, Zheng W, Huang Z, Peng Y, Shao Y, Liu C, Tang L, Hu Y, Li Y, Hu L, Zhang D, Yuan Z, Luo W, Yuan L, Liu Y, Zhao B. Rice MutLγ, the MLH1-MLH3 heterodimer, participates in the formation of type I crossovers and regulation of embryo sac fertility. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:1443-1455. [PMID: 33544956 PMCID: PMC8313138 DOI: 10.1111/pbi.13563] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/19/2021] [Accepted: 01/25/2021] [Indexed: 05/23/2023]
Abstract
The development of embryo sacs is crucial for seed production in plants, but the genetic basis regulating the meiotic crossover formation in the macrospore and microspore mother cells remains largely unclear. Here, we report the characterization of a spontaneous rice female sterile variation 1 mutant (fsv1) that showed severe embryo sacs abortion with low seed-setting rate. Through map-based cloning and functional analyses, we isolated the causal gene of fsv1, OsMLH3 encoding a MutL-homolog 3 protein, an ortholog of HvMLH3 in barley and AtMLH3 in Arabidopsis. OsMLH3 and OsMLH1 (MutL-homolog 1) interact to form a heterodimer (MutLγ) to promote crossover formation in the macrospore and microspore mother cells and development of functional megaspore during meiosis, defective OsMLH3 or OsMLH1 in fsv1 and CRISPR/Cas9-based knockout lines results in reduced type I crossover and bivalent frequency. The fsv1 and OsMLH3-knockout lines are valuable germplasms for development of female sterile restorer lines for mechanized seed production of hybrid rice.
Collapse
Affiliation(s)
- Bigang Mao
- State Key Laboratory of Hybrid RiceHunan Hybrid Rice Research CenterChangshaChina
- Long Ping BranchGraduate School of Hunan UniversityChangshaChina
| | - Wenjie Zheng
- Long Ping BranchGraduate School of Hunan UniversityChangshaChina
| | - Zhen Huang
- State Key Laboratory of Hybrid RiceHunan Hybrid Rice Research CenterChangshaChina
| | - Yan Peng
- State Key Laboratory of Hybrid RiceHunan Hybrid Rice Research CenterChangshaChina
| | - Ye Shao
- State Key Laboratory of Hybrid RiceHunan Hybrid Rice Research CenterChangshaChina
| | - Citao Liu
- College of AgriculturalHunan Agricultural UniversityChangshaChina
| | - Li Tang
- State Key Laboratory of Hybrid RiceHunan Hybrid Rice Research CenterChangshaChina
- Long Ping BranchGraduate School of Hunan UniversityChangshaChina
| | - Yuanyi Hu
- State Key Laboratory of Hybrid RiceHunan Hybrid Rice Research CenterChangshaChina
| | - Yaokui Li
- State Key Laboratory of Hybrid RiceHunan Hybrid Rice Research CenterChangshaChina
| | - Liming Hu
- Long Ping BranchGraduate School of Hunan UniversityChangshaChina
| | - Dan Zhang
- State Key Laboratory of Hybrid RiceHunan Hybrid Rice Research CenterChangshaChina
| | - Zhicheng Yuan
- State Key Laboratory of Hybrid RiceHunan Hybrid Rice Research CenterChangshaChina
| | - Wuzhong Luo
- State Key Laboratory of Hybrid RiceHunan Hybrid Rice Research CenterChangshaChina
| | - Longping Yuan
- State Key Laboratory of Hybrid RiceHunan Hybrid Rice Research CenterChangshaChina
| | - Yaoguang Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesSouth China Agricultural UniversityGuangzhouChina
| | - Bingran Zhao
- State Key Laboratory of Hybrid RiceHunan Hybrid Rice Research CenterChangshaChina
- Long Ping BranchGraduate School of Hunan UniversityChangshaChina
- College of AgriculturalHunan Agricultural UniversityChangshaChina
| |
Collapse
|
48
|
OsMLH1 interacts with OsMLH3 to regulate synapsis and interference-sensitive crossover formation during meiosis in rice. J Genet Genomics 2021; 48:485-496. [PMID: 34257043 DOI: 10.1016/j.jgg.2021.04.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 04/25/2021] [Accepted: 04/27/2021] [Indexed: 11/20/2022]
Abstract
Meiotic recombination is essential for reciprocal exchange of genetic information between homologous chromosomes and their subsequent proper segregation in sexually reproducing organisms. MLH1 and MLH3 belong to meiosis-specific members of the MutL-homolog family, which are required for normal level of crossovers (COs) in some eukaryotes. However, their functions in plants need to be further elucidated. Here, we report the identification of OsMLH1 and reveal its functions during meiosis in rice. Using CRISPR-Cas9 approach, two independent mutants, Osmlh1-1 and Osmlh1-2, are generated and exhibited significantly reduced male fertility. In Osmlh1-1, the clearance of PAIR2 is delayed and partial ZEP1 proteins are not loaded into the chromosomes, which might be due to the deficient in resolution of interlocks at late zygotene. Thus, OsMLH1 is required for the assembly of synapsis complex. In Osmlh1-1, CO number is dropped by ~53% and the distribution of residual COs is consistent with predicted Poisson distribution, indicating that OsMLH1 is essential for the formation of interference-sensitive COs (class I COs). OsMLH1 interacts with OsMLH3 through their C-terminal domains. Mutation in OsMLH3 also affects the pollen fertility. Thus, our experiments reveal that the conserved heterodimer MutLγ (OsMLH1-OsMLH3) is essential for the formation of class I COs in rice.
Collapse
|
49
|
Rönspies M, Dorn A, Schindele P, Puchta H. CRISPR-Cas-mediated chromosome engineering for crop improvement and synthetic biology. NATURE PLANTS 2021; 7:566-573. [PMID: 33958776 DOI: 10.1038/s41477-021-00910-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 03/31/2021] [Indexed: 05/20/2023]
Abstract
Plant breeding relies on the presence of genetic variation, as well as on the ability to break or stabilize genetic linkages between traits. The development of the genome-editing tool clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein (Cas) has allowed breeders to induce genetic variability in a controlled and site-specific manner, and to improve traits with high efficiency. However, the presence of genetic linkages is a major obstacle to the transfer of desirable traits from wild species to their cultivated relatives. One way to address this issue is to create mutants with deficiencies in the meiotic recombination machinery, thereby enhancing global crossover frequencies between homologous parental chromosomes. Although this seemed to be a promising approach at first, thus far, no crossover frequencies could be enhanced in recombination-cold regions of the genome. Additionally, this approach can lead to unintended genomic instabilities due to DNA repair defects. Therefore, efforts have been undertaken to obtain predefined crossovers between homologues by inducing site-specific double-strand breaks (DSBs) in meiotic, as well as in somatic plant cells using CRISPR-Cas tools. However, this strategy has not been able to produce a substantial number of heritable homologous recombination-based crossovers. Most recently, heritable chromosomal rearrangements, such as inversions and translocations, have been obtained in a controlled way using CRISPR-Cas in plants. This approach unlocks a completely new way of manipulating genetic linkages, one in which the DSBs are induced in somatic cells, enabling the formation of chromosomal rearrangements in the megabase range, by DSB repair via non-homologous end-joining. This technology might also enable the restructuring of genomes more globally, resulting in not only the obtainment of synthetic plant chromosome, but also of novel plant species.
Collapse
Affiliation(s)
- Michelle Rönspies
- Botanical Institute, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Annika Dorn
- Botanical Institute, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Patrick Schindele
- Botanical Institute, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Holger Puchta
- Botanical Institute, Karlsruhe Institute of Technology, Karlsruhe, Germany.
| |
Collapse
|
50
|
Zou Y, Wan L, Luo J, Tang Z, Fu S. FISH landmarks reflecting meiotic recombination and structural alterations of chromosomes in wheat (Triticum aestivum L.). BMC PLANT BIOLOGY 2021; 21:167. [PMID: 33823797 PMCID: PMC8025513 DOI: 10.1186/s12870-021-02947-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 03/29/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND DNA sequence composition affects meiotic recombination. However, the correlation between tandem repeat composition and meiotic recombination in common wheat (Triticum aestivum L.) is unclear. RESULTS Non-denaturing fluorescent in situ hybridization (ND-FISH) with oligonucleotide (oligo) probes derived from tandem repeats and single-copy FISH were used to investigate recombination in three kinds of the long arm of wheat 5A chromosome (5AL). 5AL535-18/275 arm carries the tandem repeats pTa-535, Oligo-18, and pTa-275, 5AL119.2-18/275 arm carries the tandem repeats pSc119.2, Oligo-18 and pTa-275, and 5AL119.2 arm carries the tandem repeats pSc119.2. In the progeny of 5AL535-18/275 × 5AL119.2, double recombination occurred between pSc119.2 and pTa-535 clusters (119-535 interval), and between pTa-535 and Oligo-18/pTa-275 clusters (535-18 interval). The recombination rate in the 119-535 interval in the progeny of 5AL535-18/275 × 5AL119.2-18/275 was higher than that in the progeny of 5AL535-18/275 × 5AL119.2. Recombination in the 119-535 interval produced 5AL119 + 535 segments with pTa-535 and pSc119.2 tandem repeats and 5ALNo segments without these repeats. The 5AL119 + 535 and 5ALNo segments were localized between the signal sites of the single-copy probes SC5A-479 and SC5A-527. The segment between SC5A-479 and SC5A-527 in the metaphase 5ALNo was significantly longer than that in the metaphase 5AL119 + 535. CONCLUSION The structural variations caused by tandem repeats might be one of the factors affecting meiotic recombination in wheat. Meiotic recombination aggregated two kinds of tandemly repeated clusters into the same chromosome, making the metaphase chromosome more condensed. To conclude, our study provides a robust tool to measure meiotic recombination and select parents for wheat breeding programs.
Collapse
Affiliation(s)
- Yang Zou
- College of Agronomy, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
- Institute of Ecological Agriculture, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
- Provincial Key Laboratory for Plant Genetics and Breeding, Wenjiang, 611130, Sichuan, China
| | - Linrong Wan
- College of Agronomy, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
- Provincial Key Laboratory for Plant Genetics and Breeding, Wenjiang, 611130, Sichuan, China
| | - Jie Luo
- College of Agronomy, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
- Institute of Ecological Agriculture, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
- Provincial Key Laboratory for Plant Genetics and Breeding, Wenjiang, 611130, Sichuan, China
| | - Zongxiang Tang
- College of Agronomy, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China.
- Institute of Ecological Agriculture, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China.
- Provincial Key Laboratory for Plant Genetics and Breeding, Wenjiang, 611130, Sichuan, China.
| | - Shulan Fu
- College of Agronomy, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China.
- Provincial Key Laboratory for Plant Genetics and Breeding, Wenjiang, 611130, Sichuan, China.
| |
Collapse
|