1
|
Shim Y, Kim B, Choi Y, Cho SH, Kim Y, Kim SH, Yim Y, Kang K, Paek NC. Rice OsDof12 enhances tolerance to drought stress by activating the phenylpropanoid pathway. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e17175. [PMID: 39615028 DOI: 10.1111/tpj.17175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 11/01/2024] [Accepted: 11/13/2024] [Indexed: 01/11/2025]
Abstract
Drought is a major abiotic stress that severely affects cereal production worldwide. Although several genes have been identified that enhance the ability of rice to withstand drought stress, further research is needed to fully understand the molecular mechanisms underlying the response to drought stress. Our study showed that overexpression of rice DNA binding with one finger 12 (OsDof12) enhances tolerance to drought stress. Rice plants overexpressing OsDof12 (OsDof12-OE) displayed significantly higher tolerance to drought stress than the parental japonica rice "Dongjin". Transcriptome analysis revealed that many genes involved in phenylpropanoid biosynthesis were upregulated in OsDof12-OE plants, including phenylalanine ammonia-lyase 4 (OsPAL4), OsPAL6, cinnamyl alcohol dehydrogenase 6 (CAD6), and 4-coumarate-coA ligase like 6 (4CLL6). Accordingly, this transcriptional alteration led to the substantial accumulation of phenolic compounds, such as sinapic acids, in the leaves of OsDof12-OE plants, effectively lowering the levels of reactive oxygen species. Notably, OsDof12 bound to the AAAG-rich core sequence of the OsPAL4 promoter and promoted transcription. In addition, GIGANTEA (OsGI) interacts with OsDof12 in the nucleus and attenuates the transactivation activity of OsDof12 on OsPAL4. Our findings reveal a novel role for OsDof12 in promoting phenylpropanoid-mediated tolerance to drought stress.
Collapse
Affiliation(s)
- Yejin Shim
- Department of Agriculture, Forestry and Bioresources, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, Republic of Korea
| | - Boyeong Kim
- Department of Agriculture, Forestry and Bioresources, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Yumin Choi
- Department of Agriculture, Forestry and Bioresources, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Sung-Hwan Cho
- Department of Agriculture, Forestry and Bioresources, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, Republic of Korea
| | - Yeonjoon Kim
- Department of Agriculture, Forestry and Bioresources, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Suk-Hwan Kim
- Department of Agriculture, Forestry and Bioresources, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, Republic of Korea
| | - Yehyun Yim
- Department of Agriculture, Forestry and Bioresources, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Kiyoon Kang
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, Republic of Korea
- Division of Life Sciences, Incheon National University, Incheon, Republic of Korea
| | - Nam-Chon Paek
- Department of Agriculture, Forestry and Bioresources, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
2
|
Kim YK. Knockout of OsWOX13 moderately delays flowering in rice under natural long-day conditions. Biosci Biotechnol Biochem 2024; 88:1307-1315. [PMID: 39164217 DOI: 10.1093/bbb/zbae115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 08/17/2024] [Indexed: 08/22/2024]
Abstract
Plants are sensitive to photoperiods and are also equipped with systems to adjust their flowering time in response to various changes in the environment and developmental hormones. In the present study, previously generated rice OsWOX13 overexpression and newly generated OsWOX13 knockout lines constructed via CRISPR/Cas9 technology flowered 10 days earlier and 4-6 days later than the wild type, respectively. Quantitative real-time polymerase chain reaction analyses revealed that OsWOX13 might be involved in drought escape responses through the b-ZIP TRANSCRIPTION FACTOR 23 signaling pathway during rice flowering via photoperiod signaling genes such as Grain number, plant height and heading date 7, Early heading date 1, RICE FLOWERING LOCUS T1, Heading date 3a, and MADS14. Future investigations of OsWOX13 may provide insight into how plants adjust their flowering under stress conditions and how OsWOX13 could be precisely controlled to achieve maximum productivity in rice breeding.
Collapse
Affiliation(s)
- Yeon-Ki Kim
- Department of Biosciences and Bioinformatics, Myongji University, Yongin, Gyeonggi-do, Republic of Korea
| |
Collapse
|
3
|
Song J, Tang L, Cui Y, Fan H, Zhen X, Wang J. Research Progress on Photoperiod Gene Regulation of Heading Date in Rice. Curr Issues Mol Biol 2024; 46:10299-10311. [PMID: 39329965 PMCID: PMC11430500 DOI: 10.3390/cimb46090613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 09/28/2024] Open
Abstract
Heading date is a critical physiological process in rice that is influenced by both genetic and environmental factors. The photoperiodic pathway is a primary regulatory mechanism for rice heading, with key florigen genes Hd3a (Heading date 3a) and RFT1 (RICE FLOWERING LOCUS T1) playing central roles. Upstream regulatory pathways, including Hd1 and Ehd1, also significantly impact this process. This review aims to provide a comprehensive examination of the localization, cloning, and functional roles of photoperiodic pathway-related genes in rice, and to explore the interactions among these genes as well as their pleiotropic effects on heading date. We systematically review recent advancements in the identification and functional analysis of genes involved in the photoperiodic pathway. We also discuss the molecular mechanisms underlying rice heading date variation and highlight the intricate interactions between key regulatory genes. Significant progress has been made in understanding the molecular mechanisms of heading date regulation through the cloning and functional analysis of photoperiod-regulating genes. However, the regulation of heading date remains complex, and many underlying mechanisms are not yet fully elucidated. This review consolidates current knowledge on the photoperiodic regulation of heading date in rice, emphasizing novel findings and gaps in the research. It highlights the need for further exploration of the interactions among flowering-related genes and their response to environmental signals. Despite advances, the full regulatory network of heading date remains unclear. Further research is needed to elucidate the intricate gene interactions, transcriptional and post-transcriptional regulatory mechanisms, and the role of epigenetic factors such as histone methylation in flowering time regulation. This review provides a detailed overview of the current understanding of photoperiodic pathway genes in rice, setting the stage for future research to address existing gaps and improve our knowledge of rice flowering regulation.
Collapse
Affiliation(s)
- Jian Song
- Institute of Crops and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Liqun Tang
- Institute of Crops and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Yongtao Cui
- Institute of Crops and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Honghuan Fan
- Institute of Crops and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xueqiang Zhen
- Institute of Crops and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Jianjun Wang
- Institute of Crops and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| |
Collapse
|
4
|
Zhang Z, Qu Y, Ma F, Lv Q, Zhu X, Guo G, Li M, Yang W, Que B, Zhang Y, He T, Qiu X, Deng H, Song J, Liu Q, Wang B, Ke Y, Bai S, Li J, Lv L, Li R, Wang K, Li H, Feng H, Huang J, Yang W, Zhou Y, Song CP. Integrating high-throughput phenotyping and genome-wide association studies for enhanced drought resistance and yield prediction in wheat. THE NEW PHYTOLOGIST 2024; 243:1758-1775. [PMID: 38992951 DOI: 10.1111/nph.19942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 04/19/2024] [Indexed: 07/13/2024]
Abstract
Drought, especially terminal drought, severely limits wheat growth and yield. Understanding the complex mechanisms behind the drought response in wheat is essential for developing drought-resistant varieties. This study aimed to dissect the genetic architecture and high-yielding wheat ideotypes under terminal drought. An automated high-throughput phenotyping platform was used to examine 28 392 image-based digital traits (i-traits) under different drought conditions during the flowering stage of a natural wheat population. Of the i-traits examined, 17 073 were identified as drought-related. A genome-wide association study (GWAS) identified 5320 drought-related significant single-nucleotide polymorphisms (SNPs) and 27 SNP clusters. A notable hotspot region controlling wheat drought tolerance was discovered, in which TaPP2C6 was shown to be an important negative regulator of the drought response. The tapp2c6 knockout lines exhibited enhanced drought resistance without a yield penalty. A haplotype analysis revealed a favored allele of TaPP2C6 that was significantly correlated with drought resistance, affirming its potential value in wheat breeding programs. We developed an advanced prediction model for wheat yield and drought resistance using 24 i-traits analyzed by machine learning. In summary, this study provides comprehensive insights into the high-yielding ideotype and an approach for the rapid breeding of drought-resistant wheat.
Collapse
Affiliation(s)
- Zhen Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, School of Life Sciences, Henan University, Jinming Ave 1, Kaifeng, 475004, China
| | - Yunfeng Qu
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, School of Life Sciences, Henan University, Jinming Ave 1, Kaifeng, 475004, China
| | - Feifei Ma
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, School of Life Sciences, Henan University, Jinming Ave 1, Kaifeng, 475004, China
| | - Qian Lv
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, School of Life Sciences, Henan University, Jinming Ave 1, Kaifeng, 475004, China
| | - Xiaojing Zhu
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, School of Life Sciences, Henan University, Jinming Ave 1, Kaifeng, 475004, China
| | - Guanghui Guo
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, School of Life Sciences, Henan University, Jinming Ave 1, Kaifeng, 475004, China
| | - Mengmeng Li
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, School of Life Sciences, Henan University, Jinming Ave 1, Kaifeng, 475004, China
| | - Wei Yang
- School of Computer and Information Engineering, Henan University, Jinming Ave 1, Kaifeng, 475004, China
| | - Beibei Que
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, School of Life Sciences, Henan University, Jinming Ave 1, Kaifeng, 475004, China
| | - Yun Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, School of Life Sciences, Henan University, Jinming Ave 1, Kaifeng, 475004, China
| | - Tiantian He
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, School of Life Sciences, Henan University, Jinming Ave 1, Kaifeng, 475004, China
| | - Xiaolong Qiu
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, School of Life Sciences, Henan University, Jinming Ave 1, Kaifeng, 475004, China
| | - Hui Deng
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, School of Life Sciences, Henan University, Jinming Ave 1, Kaifeng, 475004, China
| | - Jingyan Song
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qian Liu
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, School of Life Sciences, Henan University, Jinming Ave 1, Kaifeng, 475004, China
| | - Baoqi Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, School of Life Sciences, Henan University, Jinming Ave 1, Kaifeng, 475004, China
| | - Youlong Ke
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, School of Life Sciences, Henan University, Jinming Ave 1, Kaifeng, 475004, China
| | - Shenglong Bai
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, School of Life Sciences, Henan University, Jinming Ave 1, Kaifeng, 475004, China
| | - Jingyao Li
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, School of Life Sciences, Henan University, Jinming Ave 1, Kaifeng, 475004, China
| | - Linlin Lv
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, School of Life Sciences, Henan University, Jinming Ave 1, Kaifeng, 475004, China
| | - Ranzhe Li
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, School of Life Sciences, Henan University, Jinming Ave 1, Kaifeng, 475004, China
| | - Kai Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, School of Life Sciences, Henan University, Jinming Ave 1, Kaifeng, 475004, China
| | - Hao Li
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, School of Life Sciences, Henan University, Jinming Ave 1, Kaifeng, 475004, China
| | - Hui Feng
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jinling Huang
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, School of Life Sciences, Henan University, Jinming Ave 1, Kaifeng, 475004, China
- Department of Biology, East Carolina University, Greenville, NC, 27858, USA
| | - Wanneng Yang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yun Zhou
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, School of Life Sciences, Henan University, Jinming Ave 1, Kaifeng, 475004, China
- Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng, 475004, China
| | - Chun-Peng Song
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, School of Life Sciences, Henan University, Jinming Ave 1, Kaifeng, 475004, China
| |
Collapse
|
5
|
Zhao L, Liu Y, Zhu Y, Chen S, Du Y, Deng L, Liu L, Li X, Chen W, Xu Z, Xiong Y, Ming Y, Fang S, Chen L, Wang H, Yu D. Transcription factor OsWRKY11 induces rice heading at low concentrations but inhibits rice heading at high concentrations. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:1385-1407. [PMID: 38818952 DOI: 10.1111/jipb.13679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 04/26/2024] [Indexed: 06/01/2024]
Abstract
The heading date of rice is a crucial agronomic characteristic that influences its adaptability to different regions and its productivity potential. Despite the involvement of WRKY transcription factors in various biological processes related to development, the precise mechanisms through which these transcription factors regulate the heading date in rice have not been well elucidated. The present study identified OsWRKY11 as a WRKY transcription factor which exhibits a pivotal function in the regulation of the heading date in rice through a comprehensive screening of a clustered regularly interspaced palindromic repeats (CRISPR) ‒ CRISPR-associated nuclease 9 mutant library that specifically targets the WRKY genes in rice. The heading date of oswrky11 mutant plants and OsWRKY11-overexpressing plants was delayed compared with that of the wild-type plants under short-day and long-day conditions. Mechanistic investigation revealed that OsWRKY11 exerts dual effects on transcriptional promotion and suppression through direct and indirect DNA binding, respectively. Under normal conditions, OsWRKY11 facilitates flowering by directly inducing the expression of OsMADS14 and OsMADS15. The presence of elevated levels of OsWRKY11 protein promote formation of a ternary protein complex involving OsWRKY11, Heading date 1 (Hd1), and Days to heading date 8 (DTH8), and this complex then suppresses the expression of Ehd1, which leads to a delay in the heading date. Subsequent investigation revealed that a mild drought condition resulted in a modest increase in OsWRKY11 expression, promoting heading. Conversely, under severe drought conditions, a significant upregulation of OsWRKY11 led to the suppression of Ehd1 expression, ultimately causing a delay in heading date. Our findings uncover a previously unacknowledged mechanism through which the transcription factor OsWRKY11 exerts a dual impact on the heading date by directly and indirectly binding to the promoters of target genes.
Collapse
Affiliation(s)
- Lirong Zhao
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, The Chinese Academy of Sciences, Mengla, 666303, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Yunwei Liu
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan University, Kunming, 650500, China
| | - Yi Zhu
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan University, Kunming, 650500, China
- School of Life Sciences, Yunnan University, Kunming, 650500, China
| | - Shidie Chen
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan University, Kunming, 650500, China
- Southwest United Graduate School, Yunnan University, Kunming, 650092, China
| | - Yang Du
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan University, Kunming, 650500, China
| | - Luyao Deng
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan University, Kunming, 650500, China
| | - Lei Liu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, The Chinese Academy of Sciences, Mengla, 666303, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Xia Li
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan University, Kunming, 650500, China
- Southwest United Graduate School, Yunnan University, Kunming, 650092, China
| | - Wanqin Chen
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan University, Kunming, 650500, China
| | - Zhiyu Xu
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan University, Kunming, 650500, China
| | - Yangyang Xiong
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan University, Kunming, 650500, China
- School of Life Sciences, Yunnan University, Kunming, 650500, China
| | - You Ming
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan University, Kunming, 650500, China
- School of Life Sciences, Yunnan University, Kunming, 650500, China
| | - Siyu Fang
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan University, Kunming, 650500, China
| | - Ligang Chen
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, The Chinese Academy of Sciences, Mengla, 666303, China
| | - Houping Wang
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan University, Kunming, 650500, China
- School of Life Sciences, Yunnan University, Kunming, 650500, China
| | - Diqiu Yu
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan University, Kunming, 650500, China
- School of Life Sciences, Yunnan University, Kunming, 650500, China
- Southwest United Graduate School, Yunnan University, Kunming, 650092, China
| |
Collapse
|
6
|
Wang WN, Wei YT, Zhao ST, Yu FH, Wang JW, Gu CY, Liu XR, Sai N, Zhu JL, Wang QM, Bao QX, Mu XR, Liu YX, Loake GJ, Jiang JH, Meng LS. ABSCISIC ACID-INSENSITIVE 5-KIP-RELATED PROTEIN 1-SHOOT MERISTEMLESS modulates reproductive development of Arabidopsis. PLANT PHYSIOLOGY 2024; 195:2309-2322. [PMID: 38466216 DOI: 10.1093/plphys/kiae146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/16/2024] [Accepted: 02/16/2024] [Indexed: 03/12/2024]
Abstract
Soil (or plant) water deficit accelerates plant reproduction. However, the underpinning molecular mechanisms remain unknown. By modulating cell division/number, ABSCISIC ACID-INSENSITIVE 5 (ABI5), a key bZIP (basic (region) leucine zippers) transcription factor, regulates both seed development and abiotic stress responses. The KIP-RELATED PROTEIN (KRP) cyclin-dependent kinases (CDKs) play an essential role in controlling cell division, and SHOOT MERISTEMLESS (STM) plays a key role in the specification of flower meristem identity. Here, our findings show that abscisic acid (ABA) signaling and/or metabolism in adjust reproductive outputs (such as rosette leaf number and open flower number) under water-deficient conditions in Arabidopsis (Arabidopsis thaliana) plants. Reproductive outputs increased under water-sufficient conditions but decreased under water-deficient conditions in the ABA signaling/metabolism mutants abscisic acid2-1 (aba2-1), aba2-11, abscisic acid insensitive3-1 (abi3-1), abi4-1, abi5-7, and abi5-8. Further, under water-deficient conditions, ABA induced-ABI5 directly bound to the promoter of KRP1, which encodes a CDK that plays an essential role in controlling cell division, and this binding subsequently activated KRP1 expression. In turn, KRP1 physically interacted with STM, which functions in the specification of flower meristem identity, promoting STM degradation. We further demonstrate that reproductive outputs are adjusted by the ABI5-KRP1-STM molecular module under water-deficient conditions. Together, our findings reveal the molecular mechanism by which ABA signaling and/or metabolism regulate reproductive development under water-deficient conditions. These findings provide insights that may help guide crop yield improvement under water deficiency.
Collapse
Affiliation(s)
- Wan-Ni Wang
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| | - Yu-Ting Wei
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| | - Sheng-Ting Zhao
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| | - Fu-Huan Yu
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| | - Jing-Wen Wang
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| | - Cheng-Yue Gu
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| | - Xin-Ran Liu
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| | - Na Sai
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| | - Jin-Lei Zhu
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| | - Qi-Meng Wang
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| | - Qin-Xin Bao
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| | - Xin-Rong Mu
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| | - Yu-Xin Liu
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| | - Gary J Loake
- Centre for Transformative Biotechnology of Medicinal and Food Plants, Jiangsu Normal University, Edinburgh University, Jiangsu Normal University, 101 Shanghai Road, Xuzhou 221116, China
- Institute of Molecular Plant Sciences, School of Biological Sciences, Edinburgh University, King's Buildings, Mayfield Road, Edinburgh EH9 3BF, UK
| | - Ji-Hong Jiang
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
- Centre for Transformative Biotechnology of Medicinal and Food Plants, Jiangsu Normal University, Edinburgh University, Jiangsu Normal University, 101 Shanghai Road, Xuzhou 221116, China
| | - Lai-Sheng Meng
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
- Centre for Transformative Biotechnology of Medicinal and Food Plants, Jiangsu Normal University, Edinburgh University, Jiangsu Normal University, 101 Shanghai Road, Xuzhou 221116, China
| |
Collapse
|
7
|
Ganie SA, McMulkin N, Devoto A. The role of priming and memory in rice environmental stress adaptation: Current knowledge and perspectives. PLANT, CELL & ENVIRONMENT 2024; 47:1895-1915. [PMID: 38358119 DOI: 10.1111/pce.14855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/21/2023] [Accepted: 01/31/2024] [Indexed: 02/16/2024]
Abstract
Plant responses to abiotic stresses are dynamic, following the unpredictable changes of physical environmental parameters such as temperature, water and nutrients. Physiological and phenotypical responses to stress are intercalated by periods of recovery. An earlier stress can be remembered as 'stress memory' to mount a response within a generation or transgenerationally. The 'stress priming' phenomenon allows plants to respond quickly and more robustly to stressors to increase survival, and therefore has significant implications for agriculture. Although evidence for stress memory in various plant species is accumulating, understanding of the mechanisms implicated, especially for crops of agricultural interest, is in its infancy. Rice is a major food crop which is susceptible to abiotic stresses causing constraints on its cultivation and yield globally. Advancing the understanding of the stress response network will thus have a significant impact on rice sustainable production and global food security in the face of climate change. Therefore, this review highlights the effects of priming on rice abiotic stress tolerance and focuses on specific aspects of stress memory, its perpetuation and its regulation at epigenetic, transcriptional, metabolic as well as physiological levels. The open questions and future directions in this exciting research field are also laid out.
Collapse
Affiliation(s)
- Showkat Ahmad Ganie
- Department of Biological Sciences, Plant Molecular Science and Centre of Systems and Synthetic Biology, Royal Holloway University of London, Egham, Surrey, UK
| | - Nancy McMulkin
- Department of Biological Sciences, Plant Molecular Science and Centre of Systems and Synthetic Biology, Royal Holloway University of London, Egham, Surrey, UK
| | - Alessandra Devoto
- Department of Biological Sciences, Plant Molecular Science and Centre of Systems and Synthetic Biology, Royal Holloway University of London, Egham, Surrey, UK
| |
Collapse
|
8
|
Tang L, Li G, Wang H, Zhao J, Li Z, Liu X, Shu Y, Liu W, Wang S, Huang J, Ying J, Tong X, Yuan W, Wei X, Tang S, Wang Y, Bu Q, Zhang J. Exogenous abscisic acid represses rice flowering via SAPK8-ABF1-Ehd1/Ehd2 pathway. J Adv Res 2024; 59:35-47. [PMID: 37399924 PMCID: PMC11081964 DOI: 10.1016/j.jare.2023.06.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 06/24/2023] [Accepted: 06/25/2023] [Indexed: 07/05/2023] Open
Abstract
INTRODUCTION Rice flowering is a major agronomic trait, determining yield and ecological adaptability in particular regions. ABA plays an essential role in rice flowering, but the underlying molecular mechanism remains largely elusive. OBJECTIVES In this study, we demonstrated a "SAPK8-ABF1-Ehd1/Ehd2" pathway, through which exogenous ABA represses rice flowering in a photoperiod-independent manner. METHODS We generated abf1 and sapk8 mutants using the CRISPR-Cas9 method. Using yeast two-hybrid, Pull down, BiFC and kinase assays, SAPK8 interacted and phosphorylated ABF1. ABF1 directly bound to the promoters of Ehd1 and Ehd2 using ChIP-qPCR, EMSA, and LUC transient transcriptional activity assay, and suppressed the transcription of these genes. RESULTS Under both long day and short day conditions, simultaneous knock-out of ABF1 and its homolog bZIP40 accelerated flowering, while SAPK8 and ABF1 over-expression lines exhibited delayed flowering and hypersensitivity to ABA-mediated flowering repression. After perceiving the ABA signal, SAPK8 physically binds to and phosphorylates ABF1 to enhance its binding to the promoters of master positive flowering regulators Ehd1 and Ehd2. Upon interacting with FIE2, ABF1 recruited PRC2 complex to deposit H3K27me3 suppressive histone modification on Ehd1 and Ehd2 to suppress these genes transcription, thereby leading to later flowering. CONCLUSION Our work highlighted the biological functions of SAPK8 and ABF1 in ABA signaling, flowering control and the involvement of a PRC2-mediated epigenetic repression mechanism in the transcription regulation governed by ABF1 on ABA-mediated rice flowering repression.
Collapse
Affiliation(s)
- Liqun Tang
- State key laboratory of rice biology and breeding, China National Rice Research Institute, Hangzhou 311400, China
| | - Guanghao Li
- State key laboratory of rice biology and breeding, China National Rice Research Institute, Hangzhou 311400, China
| | - Huimei Wang
- State key laboratory of rice biology and breeding, China National Rice Research Institute, Hangzhou 311400, China
| | - Juan Zhao
- State key laboratory of rice biology and breeding, China National Rice Research Institute, Hangzhou 311400, China
| | - Zhiyong Li
- State key laboratory of rice biology and breeding, China National Rice Research Institute, Hangzhou 311400, China
| | - Xixi Liu
- State key laboratory of rice biology and breeding, China National Rice Research Institute, Hangzhou 311400, China
| | - Yazhou Shu
- State key laboratory of rice biology and breeding, China National Rice Research Institute, Hangzhou 311400, China
| | - Wanning Liu
- State key laboratory of rice biology and breeding, China National Rice Research Institute, Hangzhou 311400, China
| | - Shuang Wang
- State key laboratory of rice biology and breeding, China National Rice Research Institute, Hangzhou 311400, China
| | - Jie Huang
- State key laboratory of rice biology and breeding, China National Rice Research Institute, Hangzhou 311400, China
| | - Jiezheng Ying
- State key laboratory of rice biology and breeding, China National Rice Research Institute, Hangzhou 311400, China
| | - Xiaohong Tong
- State key laboratory of rice biology and breeding, China National Rice Research Institute, Hangzhou 311400, China
| | - Wenya Yuan
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan 430062, China
| | - Xiangjin Wei
- State key laboratory of rice biology and breeding, China National Rice Research Institute, Hangzhou 311400, China
| | - Shaoqing Tang
- State key laboratory of rice biology and breeding, China National Rice Research Institute, Hangzhou 311400, China
| | - Yifeng Wang
- State key laboratory of rice biology and breeding, China National Rice Research Institute, Hangzhou 311400, China.
| | - Qingyun Bu
- Northeast Institute of Geography and Agroecology, Key Laboratory of Soybean Molecular Design Breeding, the Chinese Academy of Sciences, Harbin 150081, China; The Innovative Academy of Seed Design, the Chinese Academy of Sciences, Beijing 100101, China.
| | - Jian Zhang
- State key laboratory of rice biology and breeding, China National Rice Research Institute, Hangzhou 311400, China.
| |
Collapse
|
9
|
Kumar S, Sharma N, Sopory SK, Sanan-Mishra N. miRNAs and genes as molecular regulators of rice grain morphology and yield. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 207:108363. [PMID: 38281341 DOI: 10.1016/j.plaphy.2024.108363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 12/07/2023] [Accepted: 01/10/2024] [Indexed: 01/30/2024]
Abstract
Rice is one of the most consumed crops worldwide and the genetic and molecular basis of its grain yield attributes are well understood. Various studies have identified different yield-related parameters in rice that are regulated by the microRNAs (miRNAs). MiRNAs are endogenous small non-coding RNAs that silence gene expression during or after transcription. They control a variety of biological or genetic activities in plants including growth, development and response to stress. In this review, we have summarized the available information on the genetic control of panicle architecture and grain yield (number and morphology) in rice. The miRNA nodes that are associated with their regulation are also described while focussing on the central role of miR156-SPL node to highlight the co-regulation of two master regulators that determine the fate of panicle development. Since abiotic stresses are known to negatively affect yield, the impact of abiotic stress induced alterations on the levels of these miRNAs are also discussed to highlight the potential of miRNAs for regulating crop yields.
Collapse
Affiliation(s)
- Sudhir Kumar
- Plant RNAi Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India.
| | - Neha Sharma
- Plant RNAi Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India.
| | - Sudhir K Sopory
- Plant RNAi Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India.
| | - Neeti Sanan-Mishra
- Plant RNAi Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India.
| |
Collapse
|
10
|
Soma F, Kitomi Y, Kawakatsu T, Uga Y. Life-Cycle Multiomics of Rice Shoots Reveals Growth Stage-Specific Effects of Drought Stress and Time-Lag Drought Responses. PLANT & CELL PHYSIOLOGY 2024; 65:156-168. [PMID: 37929886 DOI: 10.1093/pcp/pcad135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 10/24/2023] [Accepted: 10/30/2023] [Indexed: 11/07/2023]
Abstract
Field-grown rice plants are exposed to various stresses at different stages of their life cycle, but little is known about the effects of stage-specific stresses on phenomes and transcriptomes. In this study, we performed integrated time-course multiomics on rice at 3-d intervals from seedling to heading stage under six drought conditions in a well-controlled growth chamber. Drought stress at seedling and reproductive stages reduced yield performance by reducing seed number and setting rate, respectively. High temporal resolution analysis revealed that drought response occurred in two steps: a rapid response via the abscisic acid (ABA) signaling pathway and a slightly delayed DEHYDRATION-RESPONSIVE ELEMENT-BINDING PROTEIN (DREB) pathway, allowing plants to respond flexibly to deteriorating soil water conditions. Our long-term time-course multiomics showed that temporary drought stress delayed flowering due to prolonged expression of the flowering repressor gene GRAIN NUMBER, PLANT HEIGHT AND HEADING DATE 7 (Ghd7) and delayed expression of the florigen genes HEADING DATE 3a (Hd3a) and RICE FLOWERING LOCUS T 1 (RFT1). Our life-cycle multiomics dataset on rice shoots under drought conditions provides a valuable resource for further functional genomic studies to improve crop resilience to drought stress.
Collapse
Affiliation(s)
- Fumiyuki Soma
- Institute of Crop Science, National Agriculture and Food Research Organization, 2-1-2 Kan-non-dai, Tsukuba, Ibaraki, 305-8518 Japan
| | - Yuka Kitomi
- Institute of Crop Science, National Agriculture and Food Research Organization, 2-1-2 Kan-non-dai, Tsukuba, Ibaraki, 305-8518 Japan
| | - Taiji Kawakatsu
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, 3-1-3 Kan-non-dai, Tsukuba, Ibaraki, 305-8604 Japan
| | - Yusaku Uga
- Institute of Crop Science, National Agriculture and Food Research Organization, 2-1-2 Kan-non-dai, Tsukuba, Ibaraki, 305-8518 Japan
| |
Collapse
|
11
|
Teng S, Liu Q, Chen G, Chang Y, Cui X, Wu J, Ai P, Sun X, Zhang Z, Lu T. OsbHLH92, in the noncanonical brassinosteroid signaling pathway, positively regulates leaf angle and grain weight in rice. THE NEW PHYTOLOGIST 2023; 240:1066-1081. [PMID: 37574840 DOI: 10.1111/nph.19204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 07/19/2023] [Indexed: 08/15/2023]
Abstract
Modifications of plant architecture can increase planting density, regulate photosynthesis, and improve crop yields. Many basic helix-loop-helix (bHLH) transcription factors participate in the brassinosteroid (BR) signaling pathway and are critical for plant architecture morphogenesis in rice. However, the number of identified bHLH genes suitable for improving production value is still limited. In this study, we cloned Lam1, encoding the typical bHLH transcription factor OsbHLH92. OsbHLH92 knockout (KO) lines exhibit erect leaves. Decreases in the number and size of parenchyma cell layers on the adaxial side of the lamina joint in KO lines were the main reason for the decreased leaf angle. Genetic experiments verify that OsBU1 and its homologs are downstream of OsbHLH92, which is involved in the noncanonical RGA1-mediated BR signaling pathway. OsbHLH91, an OsbHLH92 homolog, plays both conserved and differentiated roles relative to OsbHLH92. Notably, OsbHLH92-KO lines show erect leaves without the acquisition of adverse agronomic traits. Moreover, by driving a specific panicle promoter, OsbHLH92 can greatly increase productivity by at least 10%. This study identifies new components of the BR signaling pathway, demonstrates the importance of OsbHLH92 in improving planting density and crop productivity, and broadens our knowledge of typical and atypical bHLH family members in rice.
Collapse
Affiliation(s)
- Shouzhen Teng
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Qiming Liu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Guoxin Chen
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yuan Chang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xuean Cui
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jinxia Wu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Pengfei Ai
- College of Bioscience and Bioengineering, Hebei University of Science and Technology, Hebei, 050000, China
| | - Xuehui Sun
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zhiguo Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Tiegang Lu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| |
Collapse
|
12
|
Vicentini G, Biancucci M, Mineri L, Chirivì D, Giaume F, Miao Y, Kyozuka J, Brambilla V, Betti C, Fornara F. Environmental control of rice flowering time. PLANT COMMUNICATIONS 2023; 4:100610. [PMID: 37147799 PMCID: PMC10504588 DOI: 10.1016/j.xplc.2023.100610] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 04/14/2023] [Accepted: 04/30/2023] [Indexed: 05/07/2023]
Abstract
Correct measurement of environmental parameters is fundamental for plant fitness and survival, as well as for timing developmental transitions, including the switch from vegetative to reproductive growth. Important parameters that affect flowering time include day length (photoperiod) and temperature. Their response pathways have been best described in Arabidopsis, which currently offers a detailed conceptual framework and serves as a comparison for other species. Rice, the focus of this review, also possesses a photoperiodic flowering pathway, but 150 million years of divergent evolution in very different environments have diversified its molecular architecture. The ambient temperature perception pathway is strongly intertwined with the photoperiod pathway and essentially converges on the same genes to modify flowering time. When observing network topologies, it is evident that the rice flowering network is centered on EARLY HEADING DATE 1, a rice-specific transcriptional regulator. Here, we summarize the most important features of the rice photoperiodic flowering network, with an emphasis on its uniqueness, and discuss its connections with hormonal, temperature perception, and stress pathways.
Collapse
Affiliation(s)
- Giulio Vicentini
- Department of Agricultural and Environmental Sciences, University of Milan, via Celoria 2, 20133 Milan, Italy
| | - Marco Biancucci
- Department of Biosciences, University of Milan, via Celoria 26, 20133 Milan, Italy
| | - Lorenzo Mineri
- Department of Biosciences, University of Milan, via Celoria 26, 20133 Milan, Italy
| | - Daniele Chirivì
- Department of Biosciences, University of Milan, via Celoria 26, 20133 Milan, Italy
| | - Francesca Giaume
- Department of Agricultural and Environmental Sciences, University of Milan, via Celoria 2, 20133 Milan, Italy
| | - Yiling Miao
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Junko Kyozuka
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Vittoria Brambilla
- Department of Agricultural and Environmental Sciences, University of Milan, via Celoria 2, 20133 Milan, Italy
| | - Camilla Betti
- Department of Biosciences, University of Milan, via Celoria 26, 20133 Milan, Italy
| | - Fabio Fornara
- Department of Biosciences, University of Milan, via Celoria 26, 20133 Milan, Italy.
| |
Collapse
|
13
|
Li C, Zhang L, Wang X, Yu C, Zhao T, Liu B, Li H, Liu J, Zhang C. The transcription factor HBF1 directly activates expression of multiple flowering time repressors to delay rice flowering. ABIOTECH 2023; 4:213-223. [PMID: 37970466 PMCID: PMC10638126 DOI: 10.1007/s42994-023-00107-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 05/25/2023] [Indexed: 11/17/2023]
Abstract
Flowering time (or heading date) is an important agronomic trait that determines the environmental adaptability and yield of many crops, including rice (Oryza sativa L.). Hd3a BINDING REPRESSOR FACTOR 1 (HBF1), a basic leucine zipper transcription factor, delays flowering by decreasing the expression of Early heading date 1 (Ehd1), Heading date 3a (Hd3a), and RICE FLOWERING LOCUS T 1 (RFT1), but the underlying molecular mechanisms have not been fully elucidated. Here, we employed the hybrid transcriptional factor (HTF) strategy to enhance the transcriptional activity of HBF1 by fusing it to four copies of the activation domain from Herpes simplex virus VP16. We discovered that transgenic rice lines overexpressing HBF1-VP64 (HBF1V) show significant delays in time to flower, compared to lines overexpressing HBF1-MYC or wild-type plants, via the Ehd1-Hd3a/RFT1 pathway, under both long-day and short-day conditions. Transcriptome deep sequencing analysis indicated that 19 WRKY family genes are upregulated in the HBF1V overexpression line. We demonstrate that the previously unknown gene, OsWRKY64, is a direct downstream target of HBF1 and represses flowering in rice, whereas three known flowering repressor genes, Days to heading 7 (DTH7), CONSTANS 3 (OsCO3), and OsWRKY104, are also direct target genes of HBF1 in flowering regulation. Taking these results together, we propose detailed molecular mechanisms by which HBF1 regulates the time to flower in rice. Supplementary Information The online version contains supplementary material available at 10.1007/s42994-023-00107-7.
Collapse
Affiliation(s)
- Cong Li
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
- Institute of Nanfan and Seed Industry, Guangdong Academy of Sciences, Guangzhou, 510316 China
| | - Liya Zhang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Xin Wang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Chunsheng Yu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Tao Zhao
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Bin Liu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Hongyu Li
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Jun Liu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Chunyu Zhang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement and Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650 China
| |
Collapse
|
14
|
Shu Y, Zhang W, Tang L, Li Z, Liu X, Liu X, Liu W, Li G, Ying J, Huang J, Tong X, Hu H, Zhang J, Wang Y. ABF1 Positively Regulates Rice Chilling Tolerance via Inducing Trehalose Biosynthesis. Int J Mol Sci 2023; 24:11082. [PMID: 37446259 DOI: 10.3390/ijms241311082] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 07/15/2023] Open
Abstract
Chilling stress seriously limits grain yield and quality worldwide. However, the genes and the underlying mechanisms that respond to chilling stress remain elusive. This study identified ABF1, a cold-induced transcription factor of the bZIP family. Disruption of ABF1 impaired chilling tolerance with increased ion leakage and reduced proline contents, while ABF1 over-expression lines exhibited the opposite tendency, suggesting that ABF1 positively regulated chilling tolerance in rice. Moreover, SnRK2 protein kinase SAPK10 could phosphorylate ABF1, and strengthen the DNA-binding ability of ABF1 to the G-box cis-element of the promoter of TPS2, a positive regulator of trehalose biosynthesis, consequently elevating the TPS2 transcription and the endogenous trehalose contents. Meanwhile, applying exogenous trehalose enhanced the chilling tolerance of abf1 mutant lines. In summary, this study provides a novel pathway 'SAPK10-ABF1-TPS2' involved in rice chilling tolerance through regulating trehalose homeostasis.
Collapse
Affiliation(s)
- Yazhou Shu
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 311400, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Wensheng Zhang
- School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Liqun Tang
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 311400, China
| | - Zhiyong Li
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 311400, China
| | - Xinyong Liu
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 311400, China
| | - Xixi Liu
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 311400, China
| | - Wanning Liu
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 311400, China
| | - Guanghao Li
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 311400, China
| | - Jiezheng Ying
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 311400, China
| | - Jie Huang
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 311400, China
| | - Xiaohong Tong
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 311400, China
| | - Honghong Hu
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jian Zhang
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 311400, China
| | - Yifeng Wang
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 311400, China
| |
Collapse
|
15
|
Osnato M. Evolution of flowering time genes in rice: From the paleolithic to the anthropocene. PLANT, CELL & ENVIRONMENT 2023; 46:1046-1059. [PMID: 36411270 DOI: 10.1111/pce.14495] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 11/08/2022] [Accepted: 11/12/2022] [Indexed: 06/16/2023]
Abstract
The evolutionary paths of humans and plants have crossed more than once throughout millennia. While agriculture contributed to the evolution of societies in prehistory, human selection of desirable traits contributed to the evolution of crops during centuries of cultivation. Among cereal crops, rice is currently grown around the globe and represents staple food for almost half of the world population. Over time, rice cultivation has expanded from subtropical to temperate regions thanks to artificial selection of mutants with impaired response to photoperiod. Additional regulatory mechanisms control flowering in response to diverse environmental cues, anticipating or delaying the floral transition to produce seeds in more favourable conditions. Nevertheless, the changing climate is threatening grain production because modern cultivars are sensitive to external fluctuations that go beyond their physiological range. One possibility to guarantee food production could be the exploitation of novel varieties obtained by crossing highly productive Asian rice with stress tolerant African rice. This review explores the genetic basis of the key traits that marked the long journey of rice cultivation from the end of the paleolithic to the anthropocene, with a focus on heading date. By 2050, will rice plants of the future flower in the outer space?
Collapse
Affiliation(s)
- Michela Osnato
- Institut de Ciència i Tecnologia Ambientals, Universitat Autónoma de Barcelona (ICTA-UAB), Bellaterra, Spain
| |
Collapse
|
16
|
Yang Z, Qin F. The battle of crops against drought: Genetic dissection and improvement. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:496-525. [PMID: 36639908 DOI: 10.1111/jipb.13451] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 01/12/2023] [Indexed: 06/17/2023]
Abstract
With ongoing global climate change, water scarcity-induced drought stress remains a major threat to agricultural productivity. Plants undergo a series of physiological and morphological changes to cope with drought stress, including stomatal closure to reduce transpiration and changes in root architecture to optimize water uptake. Combined phenotypic and multi-omics studies have recently identified a number of drought-related genetic resources in different crop species. The functional dissection of these genes using molecular techniques has enriched our understanding of drought responses in crops and has provided genetic targets for enhancing resistance to drought. Here, we review recent advances in the cloning and functional analysis of drought resistance genes and the development of technologies to mitigate the threat of drought to crop production.
Collapse
Affiliation(s)
- Zhirui Yang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Feng Qin
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
17
|
Zhang M, Zhao R, Wang H, Ren S, Shi L, Huang S, Wei Z, Guo B, Jin J, Zhong Y, Chen M, Jiang W, Wu T, Du X. OsWRKY28 positively regulates salinity tolerance by directly activating OsDREB1B expression in rice. PLANT CELL REPORTS 2023; 42:223-234. [PMID: 36350394 DOI: 10.1007/s00299-022-02950-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 11/01/2022] [Indexed: 06/16/2023]
Abstract
OsWRKY28 confers salinity tolerance by directly binding to OsDREB1B promoter and increasing its transcriptional activity, and negatively regulates abscisic acid mediated seedling establishment in rice. WRKY transcription factors have been reported to play a vital role in plants growth, development, abiotic and biotic stress responses. In this study, we explored the functions of a transcription factor OsWRKY28 in rice. The transcript level of OsWRKY28 was strikingly increased under drought, chilling, salt and abscisic acid treatments. The OsWRKY28 overexpression lines showed enhanced salinity stress tolerance, whereas the oswrky28 mutants displayed salt sensitivity compared to wild-type plants. Under salt stress treatment, the expression levels of OsbZIP05, OsHKT1;1 and OsDREB1B were significantly lower yet the level of OsHKT2;1 was significantly higher in oswrky28 mutants than those in wide type plants. Our data of yeast one-hybrid assay and dual-luciferase assay supported that OsWRKY28 could directly bind to the promoter of OsDREB1B to enhance salinity tolerance in rice. In addition, OsWRKY28 overexpression lines displayed hyposensitivity and the oswrky28 mutants showed hypersensitivity compared to wild-type plants under exogenous abscisic acid treatment. Based on the results of yeast two-hybrid assay and GAL4-dependent chimeric transactivation assay, OsWRKY28 physically interacts with OsMPK11 and its transcriptional activity could be regulated by OsMPK11. Together, OsWRKY28 confers salinity tolerance through directly targeting OsDREB1B promoter and further activating its transcription in rice.
Collapse
Affiliation(s)
- Mingxing Zhang
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun, 130062, People's Republic of China
| | - Ranran Zhao
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun, 130062, People's Republic of China
| | - Haitao Wang
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun, 130062, People's Republic of China
| | - Shule Ren
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun, 130062, People's Republic of China
| | - Liyuan Shi
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun, 130062, People's Republic of China
| | - Shuangzhan Huang
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun, 130062, People's Republic of China
| | - Zhiqi Wei
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun, 130062, People's Republic of China
| | - Boya Guo
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun, 130062, People's Republic of China
| | - Jiuyan Jin
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun, 130062, People's Republic of China
| | - Yu Zhong
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun, 130062, People's Republic of China
| | - Mojun Chen
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun, 130062, People's Republic of China
| | - Wenzhu Jiang
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun, 130062, People's Republic of China.
| | - Tao Wu
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun, 130062, People's Republic of China.
| | - Xinglin Du
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun, 130062, People's Republic of China.
| |
Collapse
|
18
|
Wang A, Shu X, Xu D, Jiang Y, Liang J, Yi X, Zhu J, Yang F, Jiao C, Zheng A, Yin D, Li P. Understanding the Rice Fungal Pathogen Tilletia horrida from Multiple Perspectives. RICE (NEW YORK, N.Y.) 2022; 15:64. [PMID: 36522490 PMCID: PMC9755434 DOI: 10.1186/s12284-022-00612-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
Rice kernel smut (RKS), caused by the fungus Tilletia horrida, has become a major disease in rice-growing areas worldwide, especially since the widespread cultivation of high-yielding hybrid rice varieties. The disease causes a significant yield loss during the production of rice male sterile lines by producing masses of dark powdery teliospores. This review mainly summarizes the pathogenic differentiation, disease cycle, and infection process of the T. horrida, as well as the decoding of the T. horrida genome, functional genomics, and effector identification. We highlight the identification and characterization of virulence-related pathways and effectors of T. horrida, which could foster a better understanding of the rice-T. horrida interaction and help to elucidate its pathogenicity molecular mechanisms. The multiple effective disease control methods for RKS are also discussed, included chemical fungicides, the mining of resistant rice germplasms/genes, and the monitoring and early warning signs of this disease in field settings.
Collapse
Affiliation(s)
- Aijun Wang
- College of Agronomy, Sichuan Agricultural University, Chengdu, China.
| | - Xinyue Shu
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Deze Xu
- Food Crop Research Institute, Hubei Academy of Agriculture Sciences, Wuhan, China
| | - Yuqi Jiang
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Juan Liang
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Xiaoqun Yi
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Jianqing Zhu
- Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Feng Yang
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Chunhai Jiao
- Food Crop Research Institute, Hubei Academy of Agriculture Sciences, Wuhan, China
| | - Aiping Zheng
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Desuo Yin
- Food Crop Research Institute, Hubei Academy of Agriculture Sciences, Wuhan, China.
| | - Ping Li
- Rice Research Institute, Sichuan Agricultural University, Chengdu, China.
| |
Collapse
|
19
|
Zhang B, Feng C, Chen L, Li B, Zhang X, Yang X. Identification and Functional Analysis of bZIP Genes in Cotton Response to Drought Stress. Int J Mol Sci 2022; 23:ijms232314894. [PMID: 36499218 PMCID: PMC9736030 DOI: 10.3390/ijms232314894] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/11/2022] [Accepted: 11/17/2022] [Indexed: 11/29/2022] Open
Abstract
The basic leucine zipper (bZIP) transcription factors, which harbor a conserved bZIP domain composed of two regions, a DNA-binding basic region and a Leu Zipper region, operate as important switches of transcription networks in eukaryotes. However, this gene family has not been systematically characterized in cotton (Gossypium hirsutum). Here, we identified 197 bZIP family members in cotton. The chromosome distribution pattern indicates that the GhbZIP genes have undergone 53 genome-wide segmental and 7 tandem duplication events which contribute to the expansion of the cotton bZIP family. Phylogenetic analysis showed that cotton GhbZIP proteins cluster into 13 subfamilies, and homologous protein pairs showed similar characteristics. Inspection of the DNA-binding basic region and leucine repeat heptads within the bZIP domains indicated different DNA-binding site specificities as well as dimerization properties among different groups. Comprehensive expression analysis indicated the most highly and differentially expressed genes in root and leaf that might play significant roles in cotton response to drought stress. GhABF3D was identified as a highly and differentially expressed bZIP family gene in cotton leaf and root under drought stress treatments that likely controls drought stress responses in cotton. These data provide useful information for further functional analysis of the GhbZIP gene family and its potential application in crop improvement.
Collapse
|
20
|
Wang X, Zhao Y, Jiang C, Wang L, Chen L, Li F, Zhang Y, Pan Y, Zhang T. Evolution of different rice ecotypes and genetic basis of flooding adaptability in Deepwater rice by GWAS. BMC PLANT BIOLOGY 2022; 22:526. [PMID: 36376791 PMCID: PMC9661789 DOI: 10.1186/s12870-022-03924-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 11/04/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Rice is the world's second largest food crop and accelerated global climate change due to the intensification of human activities has a huge impact on rice. Research on the evolution of different rice ecotypes is essential for enhancing the adaptation of rice to the unpredictable environments. RESULTS The sequencing data of 868 cultivated and 140 wild rice accessions were used to study the domestication history and signatures of adaptation in the distinct rice ecotypes genome. The different populations had formed distinct rice ecotypes by phylogenetic analyses and were domesticated independently in the two subspecies of rice, especially deepwater and upland rice. The domestication history of distinct rice ecotypes was confirmed and the four predicted admixture events mainly involved gene flow between wild rice and cultivated rice. Importantly, we identified numerous selective sweeps that have occurred during the domestication of different rice ecotypes and one candidate gene (LOC_Os11g21804) for deepwater based on transcriptomic evidence. In addition, many regions of genomic differentiation between the different rice ecotypes were identified. Furthermore, the main reason for the increase in genetic diversity in the ecotypes of xian (indica) rice was the high proportion of alternative allele frequency in new mutations. Genome-wide association analysis revealed 28 QTLs associated with flood tolerance which contained 12 related cloned genes, and 20 candidate genes within 13 deepwater QTLs were identified by transcriptomic and haplotype analyses. CONCLUSIONS These results enhanced our understanding of domestication history in different rice ecotypes and provided valuable insights for genetic improvement and breeding of rice in the current changing environments.
Collapse
Affiliation(s)
- Xueqiang Wang
- Agronomy Department, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, People's Republic of China
- Hainan Yazhou Bay Seed Laboratory, Sanya, Hainan, 572025, People's Republic of China
- Hainan Institute of Zhejiang University, Sanya, Hainan, 572025, People's Republic of China
| | - Yan Zhao
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, Shandong, 271018, People's Republic of China
| | - Conghui Jiang
- Shandong Rice Research Institute, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Libing Wang
- Hainan Yazhou Bay Seed Laboratory, Sanya, Hainan, 572025, People's Republic of China
| | - Lei Chen
- Rice Research Institute, Guangxi Academy of Agricultural Sciences/Guangxi Key Laboratory of Rice Genetics and Breeding, Nanning, 530007, Guangxi, China
| | - Fengmei Li
- Hainan Yazhou Bay Seed Laboratory, Sanya, Hainan, 572025, People's Republic of China
| | - Yanhong Zhang
- Institute of Nuclear and Biological Technologies, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, China
| | - Yinghua Pan
- Rice Research Institute, Guangxi Academy of Agricultural Sciences/Guangxi Key Laboratory of Rice Genetics and Breeding, Nanning, 530007, Guangxi, China.
| | - Tianzhen Zhang
- Agronomy Department, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, People's Republic of China.
| |
Collapse
|
21
|
Wang R, Mao C, Ming F. PeMYB4L interacts with PeMYC4 to regulate anthocyanin biosynthesis in Phalaenopsis orchid. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 324:111423. [PMID: 35995112 DOI: 10.1016/j.plantsci.2022.111423] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 08/07/2022] [Accepted: 08/14/2022] [Indexed: 06/15/2023]
Abstract
Phalaenopsis spp., one genus of Orchidaceae, have become very popular worldwide for their fascinating flowers with various colors and pigmentation patterns. Several R2R3-MYB transcription factors have been reported to function in anthocyanin accumulation in Phalaenopsis spp. However, its molecular mechanism underlying the detailed regulatory pathway remains poorly understood. In this study, we identified a novel subgroup 2 R2R3-MYB transcription factor PeMYB4L, the expression profile of which was concomitant with red color formation in Phalaenopsis spp. flowers. Virus-induced gene silencing (VIGS) and transient overexpression assay verified that PeMYB4L promotes anthocyanin accumulation in flower tissues. In addition, PeMYB4L could directly regulates the expression of Phalaenopsis spp. chalcone synthase gene (PeCHS) through MYBST1 (GGATA) binding site. It's interesting that the basic-helix-loop-helix (bHLH) protein PeMYC4 shows opposite expression pattern from PeMYB4L in anthocyanin accumulation. Furthermore, PeMYC4 was verified to form MYB-bHLH complex with PeMYB4L, and attenuated the expression of PeCHS and weakened anthocyanin production, indicating a novel regulatory model of MYB-bHLH complex. Our findings uncover the detailed regulatory pathway of MYB-bHLH, and might provide a new insight into the complicated anthocyanin pigmentation in Phalaenopsis spp.
Collapse
Affiliation(s)
- Rui Wang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China; The Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
| | - Chanjuan Mao
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China; The Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
| | - Feng Ming
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China; The Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China.
| |
Collapse
|
22
|
Weng W, Lu X, Zhou M, Gao A, Yao X, Tang Y, Wu W, Ma C, Bai Q, Xiong R, Ruan J. FtbZIP12 Positively Regulates Responses to Osmotic Stress in Tartary Buckwheat. Int J Mol Sci 2022; 23:ijms232113072. [PMID: 36361858 PMCID: PMC9658761 DOI: 10.3390/ijms232113072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 10/21/2022] [Accepted: 10/24/2022] [Indexed: 11/16/2022] Open
Abstract
ABFs play a key role in regulating plant osmotic stress. However, in Tartary buckwheat, data on the role of ABF genes in osmotic stress remain limited and its associated mechanism in osmoregulation remain nebulous. Herein, a novel ABF family in Tartary buckwheat, FtbZIP12, was cloned and characterized. FtbZIP12 is a transcriptional activator located in the nucleus; its expression is induced by NaCl, mannitol, and abscisic acid (ABA). Atopic expression of FtbZIP12 in Arabidopsis promoted seed germination, reduced damage to primary roots, and improved the tolerance of seedlings to osmotic stress. The quantitative realtime polymerase chain reaction (RT-qPCR) results showed that the expressions of the typical genes related to stress, the SOS pathway, and the proline synthesis pathway in Arabidopsis were significantly (p < 0.05) upregulated under osmotic stress. FtbZIP12 improved the osmotic pressure resistance by reducing the damage caused by reactive oxygen species to plants and maintained plant homeostasis by upregulating the expression of genes related to stress, osmotic regulation, and ion homeostasis. This study identified a key candidate gene for understanding the mechanism underlying osmotic-stress-regulated function in Tartary buckwheat, thereby providing a theoretical basis for improving its yield and quality.
Collapse
Affiliation(s)
- Wenfeng Weng
- College of Agronomy, Guizhou University, Guiyang 550025, China
| | - Xiang Lu
- College of Agronomy, Guizhou University, Guiyang 550025, China
| | - Meiliang Zhou
- Institute of Crop Science, Chinese Academy of Agriculture Science, Beijing 100081, China
| | - Anjing Gao
- College of Agronomy, Guizhou University, Guiyang 550025, China
| | - Xin Yao
- College of Agronomy, Guizhou University, Guiyang 550025, China
| | - Yong Tang
- College of Agronomy, Guizhou University, Guiyang 550025, China
| | - Weijiao Wu
- College of Agronomy, Guizhou University, Guiyang 550025, China
| | - Chao Ma
- College of Agronomy, Guizhou University, Guiyang 550025, China
| | - Qing Bai
- College of Agronomy, Guizhou University, Guiyang 550025, China
| | - Ruiqi Xiong
- College of Agronomy, Guizhou University, Guiyang 550025, China
| | - Jingjun Ruan
- College of Agronomy, Guizhou University, Guiyang 550025, China
- Correspondence:
| |
Collapse
|
23
|
Pan T, He M, Liu H, Tian X, Wang Z, Yu X, Miao X, Li X. Transcription factor bZIP65 delays flowering via suppressing Ehd1 expression in rice. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2022; 42:63. [PMID: 37313010 PMCID: PMC10248685 DOI: 10.1007/s11032-022-01334-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 09/27/2022] [Indexed: 06/15/2023]
Abstract
Flowering time is one of the most fundamental factors that determine the distribution and final yield of rice. Ehd1 (Early heading date 1) is a B-type response regulator which functions as a flowering time activator. Although diverse flowering time genes have been reported as regulatory factors of Ehd1 expression, the potential regulators of Ehd1 largely remain to be identified. Here, we identified a basic leucine zipper transcription factor bZIP65, a homolog of bZIP71, as a new negative regulator of Ehd1. The overexpression of bZIP65 delays flowering, while bzip65 mutants have similar flowering time to SJ2 (Songjing2) in both long-day and short-day conditions. Biochemically, bZIP65 associates with Ehd1 promoter and transcriptionally represses the expression of Ehd1. Moreover, we found that bZIP65 enhances H3K27me3 level of Ehd1. Taken together, we cloned a new gene, bZIP65, regulating rice heading date, and uncovered the mechanism of bZIP65 delaying flowering time, where bZIP65 increases the H3K27me3 level of Ehd1 and transcriptionally represses the expression of Ehd1, similar to its homolog bZIP71. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-022-01334-4.
Collapse
Affiliation(s)
- Tingting Pan
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, 163319 China
| | - Mingliang He
- Northeast Institute of Geography and Agroecology, Key Laboratory of Soybean Molecular Design Breeding, Chinese Academy of Sciences, Harbin, 150081 China
- Graduate University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Hualong Liu
- College of Agriculture, Rice Research Institute, Northeast Agricultural University, Harbin, 150030 China
| | - Xiaojie Tian
- Northeast Institute of Geography and Agroecology, Key Laboratory of Soybean Molecular Design Breeding, Chinese Academy of Sciences, Harbin, 150081 China
| | - Zhenyu Wang
- Northeast Institute of Geography and Agroecology, Key Laboratory of Soybean Molecular Design Breeding, Chinese Academy of Sciences, Harbin, 150081 China
| | - Xinglong Yu
- Beidahuang Group Erdaohe Farm Co., Ltd, Harbin, China
| | - Xingfen Miao
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, 163319 China
| | - Xiufeng Li
- Northeast Institute of Geography and Agroecology, Key Laboratory of Soybean Molecular Design Breeding, Chinese Academy of Sciences, Harbin, 150081 China
| |
Collapse
|
24
|
Gu H, Zhang K, Chen J, Gull S, Chen C, Hou Y, Li X, Miao J, Zhou Y, Liang G. OsFTL4, an FT-like Gene, Regulates Flowering Time and Drought Tolerance in Rice (Oryza sativa L.). RICE (NEW YORK, N.Y.) 2022; 15:47. [PMID: 36068333 PMCID: PMC9448835 DOI: 10.1186/s12284-022-00593-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 09/01/2022] [Indexed: 05/27/2023]
Abstract
The initiation of flowering in cereals is a critical process influenced by environmental and endogenous signals. Flowering Locus T-like (FT-like) genes encode the main signals for flowering. Of the 13 FT-like genes in the rice genome, Hd3a/OsFTL2 and RFT1/OsFTL3 have been extensively studied and revealed to be critical for flowering. In this study, a rice FT-like gene, OsFTL4, was functionally characterized. Specifically, osftl4 mutants were generated using a CRISPR/Cas9 system. Compared with the wild-type control (Guangluai 4), the osftl4-1 and osftl4-2 mutants flowered 9.6 and 5.8 days earlier under natural long-day and short-day conditions, respectively. Additionally, OsFTL4 was mainly expressed in the vascular tissue, with the resulting OsFTL4 protein localized in both the nucleus and cytoplasm. Furthermore, OsFTL4 was observed to compete with Hd3a for the interaction with multiple 14-3-3 proteins. An analysis of the effects of simulated drought stress suggested that silencing OsFTL4 enhances drought tolerance by decreasing stomatal conductance and water loss. These results indicate that OsFTL4 helps integrate the flowering process and the drought response in rice.
Collapse
Affiliation(s)
- Houwen Gu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
| | - Kunming Zhang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
| | - Jie Chen
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
| | - Sadia Gull
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
| | - Chuyan Chen
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
| | - Yafei Hou
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
| | - Xiangbo Li
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
| | - Jun Miao
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Yong Zhou
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China.
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
| | - Guohua Liang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China.
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
25
|
Wyrzykowska A, Bielewicz D, Plewka P, Sołtys‐Kalina D, Wasilewicz‐Flis I, Marczewski W, Jarmolowski A, Szweykowska‐Kulinska Z. The MYB33, MYB65, and MYB101 transcription factors affect Arabidopsis and potato responses to drought by regulating the ABA signaling pathway. PHYSIOLOGIA PLANTARUM 2022; 174:e13775. [PMID: 36050907 PMCID: PMC9828139 DOI: 10.1111/ppl.13775] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/18/2022] [Accepted: 08/30/2022] [Indexed: 06/15/2023]
Abstract
Drought is one of the main climate threats limiting crop production. Potato is one of the four most important food crop species worldwide and is sensitive to water shortage. The CBP80 gene was shown to affect Arabidopsis and potato responses to drought by regulating the level of microRNA159 and, consequently, the levels of the MYB33 and MYB101 transcription factors (TFs). Here, we show that three MYB TFs, MYB33, MYB65, and MYB101, are involved in plant responses to water shortage. Their downregulation in Arabidopsis causes stomatal hyposensitivity to abscisic acid (ABA), leading to reduced tolerance to drought. Transgenic Arabidopsis and potato plants overexpressing these genes, with a mutated recognition site in miR159, show hypersensitivity to ABA and relatively high tolerance to drought conditions. Thus, the MYB33, MYB65, and MYB101 genes may be potential targets for innovative breeding to obtain crops with relatively high tolerance to drought.
Collapse
Affiliation(s)
- Anna Wyrzykowska
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of BiologyAdam Mickiewicz UniversityPoznańWielkopolskiePoland
| | - Dawid Bielewicz
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of BiologyAdam Mickiewicz UniversityPoznańWielkopolskiePoland
| | - Patrycja Plewka
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of BiologyAdam Mickiewicz UniversityPoznańWielkopolskiePoland
| | - Dorota Sołtys‐Kalina
- Plant Breeding and Acclimatization Institute – National Research InstituteMłochówMasovian VoivodeshipPoland
| | - Iwona Wasilewicz‐Flis
- Plant Breeding and Acclimatization Institute – National Research InstituteMłochówMasovian VoivodeshipPoland
| | - Waldemar Marczewski
- Plant Breeding and Acclimatization Institute – National Research InstituteMłochówMasovian VoivodeshipPoland
| | - Artur Jarmolowski
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of BiologyAdam Mickiewicz UniversityPoznańWielkopolskiePoland
| | - Zofia Szweykowska‐Kulinska
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of BiologyAdam Mickiewicz UniversityPoznańWielkopolskiePoland
| |
Collapse
|
26
|
Gong L, Liao S, Duan W, Liu Y, Zhu D, Zhou X, Xue B, Chu C, Liang YK. OsCPL3 is involved in brassinosteroid signaling by regulating OsGSK2 stability. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:1560-1574. [PMID: 35665602 DOI: 10.1111/jipb.13311] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 06/04/2022] [Indexed: 06/15/2023]
Abstract
Glycogen synthase kinase 3 (GSK3) proteins play key roles in brassinosteroid (BR) signaling during plant growth and development by phosphorylating various substrates. However, how GSK3 protein stability and activity are themselves modulated is not well understood. Here, we demonstrate in vitro and in vivo that C-TERMINAL DOMAIN PHOSPHATASE-LIKE 3 (OsCPL3), a member of the RNA Pol II CTD phosphatase-like family, physically interacts with OsGSK2 in rice (Oryza sativa). OsCPL3 expression was widely detected in various tissues and organs including roots, leaves and lamina joints, and was induced by exogenous BR treatment. OsCPL3 localized to the nucleus, where it dephosphorylated OsGSK2 at the Ser-222 and Thr-284 residues to modulate its protein turnover and kinase activity, in turn affecting the degradation of BRASSINAZOLE-RESISTANT 1 (BZR1) and BR signaling. Loss of OsCPL3 function resulted in higher OsGSK2 abundance and lower OsBZR1 levels, leading to decreased BR responsiveness and alterations in plant morphology including semi-dwarfism, leaf erectness and grain size, which are of fundamental importance to crop productivity. These results reveal a previously unrecognized role for OsCPL3 and add another layer of complexity to the tightly controlled BR signaling pathway in plants.
Collapse
Affiliation(s)
- Luping Gong
- State Key Laboratory of Hybrid Rice, Department of Plant Sciences, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Shenghao Liao
- State Key Laboratory of Hybrid Rice, Department of Plant Sciences, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Wen Duan
- State Key Laboratory of Hybrid Rice, Department of Plant Sciences, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Yongqiang Liu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, the Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Dongmei Zhu
- State Key Laboratory of Hybrid Rice, Department of Plant Sciences, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Xiaosheng Zhou
- State Key Laboratory of Hybrid Rice, Department of Plant Sciences, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Baoping Xue
- State Key Laboratory of Hybrid Rice, Department of Plant Sciences, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Chengcai Chu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, the Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yun-Kuan Liang
- State Key Laboratory of Hybrid Rice, Department of Plant Sciences, College of Life Sciences, Wuhan University, Wuhan, 430072, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| |
Collapse
|
27
|
Zhang C, Zhou Q, Liu W, Wu X, Li Z, Xu Y, Li Y, Imaizumi T, Hou X, Liu T. BrABF3 promotes flowering through the direct activation of CONSTANS transcription in pak choi. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:134-148. [PMID: 35442527 DOI: 10.1111/tpj.15783] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 04/15/2022] [Indexed: 06/14/2023]
Abstract
Drought stress triggers the accumulation of the phytohormone abscisic acid (ABA), which in turn activates the expression of the floral integrator gene CONSTANS (CO), accelerating flowering. However, the molecular mechanism of ABA-induced CO activation remains elusive. Here, we conducted a yeast one-hybrid assay using the CO promoter from Brassica campestris (syn. Brassica rapa) ssp. chinensis (pak choi) to screen the ABA-induced pak choi library and identified the transcription activator ABF3 (BrABF3). BrABF3, the expression of which was induced by ABA in pak choi, directly bound to the CO promoter from both pak choi and Arabidopsis. The BrABF3 promoter is specifically active in the Arabidopsis leaf vascular tissue, where CO is mainly expressed. Impaired BrABF3 expression in pak choi decreased BrCO expression levels and delayed flowering, whereas ectopic expression of BrABF3 in Arabidopsis increased CO expression and induced earlier flowering under the long-day conditions. Electrophoretic mobility shift assay analysis showed that BrABF3 was enriched at the canonical ABA-responsive element-ABRE binding factor (ABRE-ABF) binding motifs of the BrCO promoter. The direct binding of BrABF3 to the ABRE elements of CO was further confirmed by chromatin immunoprecipitation quantitative PCR. In addition, the induction of BrCO transcription by BrABF3 could be repressed by BrCDF1 in the morning. Thus, our results suggest that ABA could accelerate the floral transition by directly activating BrCO transcription through BrABF3 in pak choi.
Collapse
Affiliation(s)
- Changwei Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qian Zhou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wusheng Liu
- Department of Horticultural Science, North Carolina State University, Raleigh, North Carolina, 27607, USA
| | - Xiaoting Wu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhubo Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yuanyuan Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ying Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Takato Imaizumi
- Department of Biology, University of Washington, Seattle, Washington, 98195-1800, USA
| | - Xilin Hou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Tongkun Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
28
|
Wu Z, Huang L, Huang F, Lu G, Wei S, Liu C, Deng H, Liang G. Temporal transcriptome analysis provides molecular insights into flower development in red-flesh pitaya. ELECTRON J BIOTECHN 2022. [DOI: 10.1016/j.ejbt.2022.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
|
29
|
Wang X, Liu H, Zhang D, Zou D, Wang J, Zheng H, Jia Y, Qu Z, Sun B, Zhao H. Photosynthetic Carbon Fixation and Sucrose Metabolism Supplemented by Weighted Gene Co-expression Network Analysis in Response to Water Stress in Rice With Overlapping Growth Stages. FRONTIERS IN PLANT SCIENCE 2022; 13:864605. [PMID: 35528941 PMCID: PMC9069116 DOI: 10.3389/fpls.2022.864605] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/14/2022] [Indexed: 05/26/2023]
Abstract
Drought stress at jointing and booting phases of plant development directly affects plant growth and productivity in rice. Limited by natural factors, the jointing and booting stages in rice varieties are known to overlap in high-latitude areas that are more sensitive to water deficit. However, the regulation of photosynthetic carbon fixation and sucrose metabolism in rice leaves under different degrees of drought stress remains unclear. In this study, rice plants were subjected to three degrees of drought stress (-10, -25, -and 40 kPa) for 15 days during the jointing-booting stage, we investigated photosynthetic carbon sequestration and sucrose metabolism pathways in rice leaves and analyzed key genes and regulatory networks using transcriptome sequencing in 2016. And we investigated the effects of drought stress on the growth periods of rice with overlapping growth periods in 2016 and 2017. The results showed that short-term drought stress promoted photosynthetic carbon fixation. However, ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) activity significantly decreased, resulting in a significant decrease in photosynthetic rate. Drought stress increased the maximum activity of fructose-1,6-bisphosphate aldolase (FBA). FBA maintains the necessary photosynthetic rate during drought stress and provides a material base after the resumption of irrigation in the form of controlling the content of its reaction product triose phosphate. Drought stress significantly affected the activities of sucrose synthase (SuSase) and sucrose phosphate synthase (SPS). Vacuoles invertase (VIN) activity increased significantly, and the more severe the drought, the higher the VIN activity. Severe drought stress at the jointing-booting stage severely restricted the growth process of rice with overlapping growth stages and significantly delayed heading and anthesis stages. Transcriptome analysis showed that the number of differentially expressed genes was highest at 6-9 days after drought stress. Two invertase and four β-amylase genes with time-specific expression were involved in sucrose-starch metabolism in rice under drought stress. Combined with weighted gene co-expression network analysis, VIN and β-amylase genes up-regulated throughout drought stress were regulated by OsbZIP04 and OsWRKY62 transcription factors under drought stress. This study showed that any water deficit at the jointing-booting stage would have a serious effect on sucrose metabolism in leaves of rice with overlapping growth stages.
Collapse
|
30
|
OsABF1 Represses Gibberellin Biosynthesis to Regulate Plant Height and Seed Germination in Rice ( Oryza sativa L.). Int J Mol Sci 2021; 22:ijms222212220. [PMID: 34830102 PMCID: PMC8622533 DOI: 10.3390/ijms222212220] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/04/2021] [Accepted: 08/12/2021] [Indexed: 11/17/2022] Open
Abstract
Gibberellins (GAs) are diterpenoid phytohormones regulating various aspects of plant growth and development, such as internode elongation and seed germination. Although the GA biosynthesis pathways have been identified, the transcriptional regulatory network of GA homeostasis still remains elusive. Here, we report the functional characterization of a GA-inducible OsABF1 in GA biosynthesis underpinning plant height and seed germination. Overexpression of OsABF1 produced a typical GA-deficient phenotype with semi-dwarf and retarded seed germination. Meanwhile, the phenotypes could be rescued by exogenous GA3, suggesting that OsABF1 is a key regulator of GA homeostasis. OsABF1 could directly suppress the transcription of green revolution gene SD1, thus reducing the endogenous GA level in rice. Moreover, OsABF1 interacts with and transcriptionally antagonizes to the polycomb repression complex component OsEMF2b, whose mutant showed as similar but more severe phenotype to OsABF1 overexpression lines. It is suggested that OsABF1 recruits RRC2-mediated H3K27me3 deposition on the SD1 promoter, thus epigenetically silencing SD1 to maintain the GA homeostasis for growth and seed germination. These findings shed new insight into the functions of OsABF1 and regulatory mechanism underlying GA homeostasis in rice.
Collapse
|
31
|
Wen J, Zeng Y, Chen Y, Fan F, Li S. Genic male sterility increases rice drought tolerance. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 312:111057. [PMID: 34620451 DOI: 10.1016/j.plantsci.2021.111057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/31/2021] [Accepted: 09/13/2021] [Indexed: 06/13/2023]
Abstract
Plant fertility and resistance to stress environments are antagonistic to each other. At booting stage, fertility is often sacrificed for survive in rice under abiotic stress. However, the relationship between fertility and resistance at molecular level remains elusive. Here, we identified a transcription factor, OsAlfin like 5, which regulates the OsTMS5 and links both the drought stress response and thermosensitive genic male sterility. The OsAL5 overexpression plants (OE-OsAL5) became sensitive to temperature owning to the OsTMS5 that the OE-OsAL5 plants were fertile under low temperature (23 °C) and sterile under high temperature (28 °C). Significantly, the survival rate of OE-OsAL5 lines was higher than that of the wide-type (WT) under drought stress. Further experiments confirmed that the OsAL5 regulated both of the OsTMS5 and the down-stream drought-related genes by binding to the 'GTGGAG' element in vivo, revealing that the OsAL5 participated both in the drought stress response and thermosensitive genic male sterility in rice. These findings open up the possibility of breeding elite TGMS lines with strong drought tolerance by manipulating the expression of OsAL5.
Collapse
Affiliation(s)
- Jianyu Wen
- State Key Laboratory of Hybrid Rice, Hongshan Laboratory of Hubei Province, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Science, Wuhan University, Wuhan, 430072, China
| | - Yafei Zeng
- State Key Laboratory of Hybrid Rice, Hongshan Laboratory of Hubei Province, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Science, Wuhan University, Wuhan, 430072, China
| | - Yunping Chen
- State Key Laboratory of Hybrid Rice, Hongshan Laboratory of Hubei Province, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Science, Wuhan University, Wuhan, 430072, China
| | - Fengfeng Fan
- State Key Laboratory of Hybrid Rice, Hongshan Laboratory of Hubei Province, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Science, Wuhan University, Wuhan, 430072, China
| | - Shaoqing Li
- State Key Laboratory of Hybrid Rice, Hongshan Laboratory of Hubei Province, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Science, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
32
|
Transcriptome analysis of flowering regulation by sowing date in Japonica Rice (Oryza sativa L.). Sci Rep 2021; 11:15026. [PMID: 34294838 PMCID: PMC8298600 DOI: 10.1038/s41598-021-94552-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 07/12/2021] [Indexed: 11/08/2022] Open
Abstract
Hybrid japonica cultivars, such as the Yongyou series, have shown high yield potential in the field in both the early and late growing seasons. Moreover, understanding the responses of rice flowering dates to temperature and light is critical for improving yield performance. However, few studies have analyzed flowering genes in high-yielding japonica cultivars. Based on the five sowing date experiments from 2019 to 2020, select the sensitive cultivar Yongyou 538 and the insensitive cultivar Ninggeng 4 and take their flag leaves and panicles for transcriptome analysis. The results showed that compared with sowing date 1 (6/16), after the sowing date was postponed (sowing date 5, 7/9), 4480 and 890 differentially expressed genes (DEGs) were detected in the leaves and panicles in Ninggeng 4, 9275 and 2475 DEGs were detected in the leaves and panicles in Yongyou 538, respectively. KEGG pathway analysis showed that both Ninggeng 4 and Yongyou 538 regulated rice flowering through the plant circadian rhythm and plant hormone signal transduction pathways. Gene expression analysis showed that Os01g0566050 (OsELF3-2), Os01g0182600 (OsGI), Os11g0547000 (OsFKF1), Os06g0275000 (Hd1), and Os09g0513500 (FT-1) were expressed higher and Os02g0771100 (COP1-1) was expressed lower in Yongyou 538 compared with Ninggeng 4 as the climate conditions changed, which may be the key genes that regulate the flowering process with the change of temperature and light resources in sensitive cultivar Yongyou 538 in the late season.
Collapse
|
33
|
Chai J, Zhu S, Li C, Wang C, Cai M, Zheng X, Zhou L, Zhang H, Sheng P, Wu M, Jin X, Cheng Z, Zhang X, Lei C, Ren Y, Lin Q, Zhou S, Guo X, Wang J, Zhao Z, Wan J. OsRE1 interacts with OsRIP1 to regulate rice heading date by finely modulating Ehd1 expression. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:300-310. [PMID: 32757315 PMCID: PMC7868965 DOI: 10.1111/pbi.13462] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 07/24/2020] [Indexed: 05/06/2023]
Abstract
Heading date is a key agronomic trait affecting crop yield. In rice, Early heading date 1 (Ehd1) is an important B-type response regulator in determination of heading date. Although many regulatory factors of Ehd1 expression have been functionally characterized, the direct regulators of Ehd1 largely remain to be identified. Here, we identified a new regulator of Ehd1, OsRE1, that directly binds to the A-box motif in the Ehd1 promoter. Osre1 confers an early heading phenotype due to elevated expression levels of Ehd1. OsRE1 is a nucleus-localized bZIP transcription factor with a diurnal rhythmic expression pattern. Furthermore, we identified an OsRE1-interacting protein, OsRIP1, and demonstrated that OsRIP1 can repress the transcript expression of Ehd1 in an OsRE1-dependent manner. Our genetic data showed that OsRE1 and OsRIP1 may function upstream of Ehd1 in regulating heading date. Together, our results suggest that OsRE1 functions cooperatively with OsRIP1 to regulate heading date through finely modulating the expression of Ehd1. In addition, OsRE1 and OsRIP1 are two minor heading date regulators, which are more desirable for fine-tuning heading date to improve rice regional adaptability.
Collapse
Affiliation(s)
- Juntao Chai
- National Key Laboratory for Crop Genetics and Germplasm EnhancementNanjing Agricultural UniversityNanjingChina
| | - Shanshan Zhu
- National Key Facility for Crop Gene Resources and Genetic ImprovementInstitute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Chaonan Li
- National Key Facility for Crop Gene Resources and Genetic ImprovementInstitute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Chunming Wang
- National Key Laboratory for Crop Genetics and Germplasm EnhancementNanjing Agricultural UniversityNanjingChina
| | - Maohong Cai
- National Key Laboratory for Crop Genetics and Germplasm EnhancementNanjing Agricultural UniversityNanjingChina
| | - Xiaoming Zheng
- National Key Facility for Crop Gene Resources and Genetic ImprovementInstitute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Liang Zhou
- National Key Laboratory for Crop Genetics and Germplasm EnhancementNanjing Agricultural UniversityNanjingChina
| | - Huan Zhang
- National Key Laboratory for Crop Genetics and Germplasm EnhancementNanjing Agricultural UniversityNanjingChina
| | - Peike Sheng
- National Key Facility for Crop Gene Resources and Genetic ImprovementInstitute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Mingming Wu
- National Key Laboratory for Crop Genetics and Germplasm EnhancementNanjing Agricultural UniversityNanjingChina
| | - Xin Jin
- National Key Facility for Crop Gene Resources and Genetic ImprovementInstitute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Zhijun Cheng
- National Key Facility for Crop Gene Resources and Genetic ImprovementInstitute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Xin Zhang
- National Key Facility for Crop Gene Resources and Genetic ImprovementInstitute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Cailin Lei
- National Key Facility for Crop Gene Resources and Genetic ImprovementInstitute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Yulong Ren
- National Key Facility for Crop Gene Resources and Genetic ImprovementInstitute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Qibing Lin
- National Key Facility for Crop Gene Resources and Genetic ImprovementInstitute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Shirong Zhou
- National Key Laboratory for Crop Genetics and Germplasm EnhancementNanjing Agricultural UniversityNanjingChina
| | - Xiuping Guo
- National Key Facility for Crop Gene Resources and Genetic ImprovementInstitute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Jie Wang
- National Key Facility for Crop Gene Resources and Genetic ImprovementInstitute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Zhichao Zhao
- National Key Facility for Crop Gene Resources and Genetic ImprovementInstitute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Jianmin Wan
- National Key Laboratory for Crop Genetics and Germplasm EnhancementNanjing Agricultural UniversityNanjingChina
- National Key Facility for Crop Gene Resources and Genetic ImprovementInstitute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| |
Collapse
|
34
|
Gol L, Haraldsson EB, von Korff M. Ppd-H1 integrates drought stress signals to control spike development and flowering time in barley. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:122-136. [PMID: 32459309 PMCID: PMC7816852 DOI: 10.1093/jxb/eraa261] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 05/21/2020] [Indexed: 05/10/2023]
Abstract
Drought impairs growth and spike development, and is therefore a major cause of yield losses in the temperate cereals barley and wheat. Here, we show that the photoperiod response gene PHOTOPERIOD-H1 (Ppd-H1) interacts with drought stress signals to modulate spike development. We tested the effects of a continuous mild and a transient severe drought stress on developmental timing and spike development in spring barley cultivars with a natural mutation in ppd-H1 and derived introgression lines carrying the wild-type Ppd-H1 allele from wild barley. Mild drought reduced the spikelet number and delayed floral development in spring cultivars but not in the introgression lines with a wild-type Ppd-H1 allele. Similarly, drought-triggered reductions in plant height, and tiller and spike number were more pronounced in the parental lines compared with the introgression lines. Transient severe stress halted growth and floral development; upon rewatering, introgression lines, but not the spring cultivars, accelerated development so that control and stressed plants flowered almost simultaneously. These genetic differences in development were correlated with a differential down-regulation of the flowering promotors FLOWERING LOCUS T1 and the BARLEY MADS-box genes BM3 and BM8. Our findings therefore demonstrate that Ppd-H1 affects developmental plasticity in response to drought in barley.
Collapse
Affiliation(s)
- Leonard Gol
- Institute for Plant Genetics, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
- Max-Planck-Institute for Plant Breeding Research, Cologne, Germany
| | - Einar B Haraldsson
- Institute for Plant Genetics, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Maria von Korff
- Institute for Plant Genetics, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
- Max-Planck-Institute for Plant Breeding Research, Cologne, Germany
- Cluster of Excellence on Plant Sciences, ‘SMART Plants for Tomorrows Needs’, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
- Correspondence:
| |
Collapse
|
35
|
Yoshida T, Fernie AR, Shinozaki K, Takahashi F. Long-distance stress and developmental signals associated with abscisic acid signaling in environmental responses. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 105:477-488. [PMID: 33249671 DOI: 10.1111/tpj.15101] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 11/20/2020] [Accepted: 11/23/2020] [Indexed: 05/03/2023]
Abstract
Flowering plants consist of highly differentiated organs, including roots, leaves, shoots and flowers, which have specific roles: root system for water and nutrient uptake, leaves for photosynthesis and gas exchange and reproductive organs for seed production. The communication between organs through the vascular system, by which water, nutrient and signaling molecules are transported, is essential for coordinated growth and development of the whole plant, particularly under adverse conditions. Here, we highlight recent progress in understanding how signaling pathways of plant hormones are associated with long-distance stress and developmental signals, with particular focus on environmental stress responses. In addition to the root-to-shoot peptide signal that induces abscisic acid accumulation in leaves under drought stress conditions, we summarize the diverse stress-responsive peptide signals reported to date to play a role in environmental responses.
Collapse
Affiliation(s)
- Takuya Yoshida
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm, Germany
| | - Alisdair R Fernie
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm, Germany
| | - Kazuo Shinozaki
- Gene Discovery Research Group, RIKEN Center for Sustainable Resource Science, Tsukuba, Japan
| | - Fuminori Takahashi
- Gene Discovery Research Group, RIKEN Center for Sustainable Resource Science, Tsukuba, Japan
| |
Collapse
|
36
|
Zhang F, Zhang F, Huang L, Zeng D, Cruz CV, Li Z, Zhou Y. Comparative proteomic analysis reveals novel insights into the interaction between rice and Xanthomonas oryzae pv. oryzae. BMC PLANT BIOLOGY 2020; 20:563. [PMID: 33317452 PMCID: PMC7734852 DOI: 10.1186/s12870-020-02769-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 12/02/2020] [Indexed: 05/21/2023]
Abstract
BACKGROUND Bacterial blight, which is caused by Xanthomonas oryzae pv. oryzae (Xoo), is a devastating rice disease worldwide. Rice introgression line H471, derived from the recurrent parent Huang-Hua-Zhan (HHZ) and the donor parent PSBRC28, exhibits broad-spectrum resistance to Xoo, including to the highly virulent Xoo strain PXO99A, whereas its parents are susceptible to PXO99A. To characterize the responses to Xoo, we compared the proteome profiles of the host and pathogen in the incompatible interaction (H471 inoculated with PXO99A) and the compatible interaction (HHZ inoculated with PXO99A). RESULTS In this study, a total of 374 rice differentially abundant proteins (DAPs) and 117 Xoo DAPs were detected in the comparison between H471 + PXO99A and HHZ + PXO99A. Most of the Xoo DAPs related to pathogen virulence, including the outer member proteins, type III secretion system proteins, TonB-dependent receptors, and transcription activator-like effectors, were less abundant in the incompatible interaction than in the compatible interaction. The rice DAPs were mainly involved in secondary metabolic processes, including phenylalanine metabolism and the biosynthesis of flavonoids and phenylpropanoids. Additionally, some DAPs involved in the phenolic phytoalexin and salicylic acid (SA) biosynthetic pathways accumulated much more in H471 than in HHZ after the inoculation with PXO99A, suggesting that phytoalexin and SA productions were induced faster in H471 than in HHZ. Further analyses revealed that the SA content increased much more rapidly in H471 than in HHZ after the inoculation, suggesting that the SA signaling pathway was activated faster in the incompatible interaction than in the compatible interaction. CONCLUSIONS Overall, our results indicate that during an incompatible interaction between H471 and PXO99A, rice plants prevent pathogen invasion and also initiate multi-component defense responses that inhibit disease development.
Collapse
Affiliation(s)
- Fan Zhang
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, 12 South Zhong-Guan-Cun Street, Beijing, 100081, China
- Graduate School of Chinese Academy of Agricultural Sciences, 12 Zhong-Guan-Cun Street, Beijing, 100081, China
| | - Fan Zhang
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, 12 South Zhong-Guan-Cun Street, Beijing, 100081, China
| | - Liyu Huang
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, 12 South Zhong-Guan-Cun Street, Beijing, 100081, China
- School of Agriculture, Yunnan University, Kunming, 650091, China
| | - Dan Zeng
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, 12 South Zhong-Guan-Cun Street, Beijing, 100081, China
| | - Casiana Vera Cruz
- International Rice Research Institute, DAPO Box 7777, Metro Manila, The Philippines
| | - Zhikang Li
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, 12 South Zhong-Guan-Cun Street, Beijing, 100081, China
| | - Yongli Zhou
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, 12 South Zhong-Guan-Cun Street, Beijing, 100081, China.
| |
Collapse
|
37
|
Xia H, Ma X, Xu K, Wang L, Liu H, Chen L, Luo L. Temporal transcriptomic differences between tolerant and susceptible genotypes contribute to rice drought tolerance. BMC Genomics 2020; 21:776. [PMID: 33167867 PMCID: PMC7654621 DOI: 10.1186/s12864-020-07193-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 10/26/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Drought-tolerance ensures a crop to maintain life activities and protect cell from damages under dehydration. It refers to diverse mechanisms temporally activated when the crop adapts to drought. However, knowledge about the temporal dynamics of rice transcriptome under drought is limited. RESULTS Here, we investigated temporal transcriptomic dynamics in 12 rice genotypes, which varied in drought tolerance (DT), under a naturally occurred drought in fields. The tolerant genotypes possess less differentially expressed genes (DEGs) while they have higher proportions of upregulated DEGs. Tolerant and susceptible genotypes have great differences in temporally activated biological processes (BPs) during the drought period and at the recovery stage based on their DEGs. The DT-featured BPs, which are activated specially (e.g. raffinose, fucose, and trehalose metabolic processes, etc.) or earlier in the tolerant genotypes (e.g. protein and histone deacetylation, protein peptidyl-prolyl isomerization, transcriptional attenuation, ferric iron transport, etc.) shall contribute to DT. Meanwhile, the tolerant genotypes and the susceptible genotypes also present great differences in photosynthesis and cross-talks among phytohormones under drought. A certain transcriptomic tradeoff between DT and productivity is observed. Tolerant genotypes have a better balance between DT and productivity under drought by activating drought-responsive genes appropriately. Twenty hub genes in the gene coexpression network, which are correlated with DT but without potential penalties in productivity, are recommended as good candidates for DT. CONCLUSIONS Findings of this study provide us informative cues about rice temporal transcriptomic dynamics under drought and strengthen our system-level understandings in rice DT.
Collapse
Affiliation(s)
- Hui Xia
- Shanghai Agrobiological Gene Center, Shanghai, China.
| | - Xiaosong Ma
- Shanghai Agrobiological Gene Center, Shanghai, China
| | - Kai Xu
- Shanghai Agrobiological Gene Center, Shanghai, China
| | - Lei Wang
- Shanghai Agrobiological Gene Center, Shanghai, China.,School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Hongyan Liu
- Shanghai Agrobiological Gene Center, Shanghai, China
| | - Liang Chen
- Shanghai Agrobiological Gene Center, Shanghai, China
| | - Lijun Luo
- Shanghai Agrobiological Gene Center, Shanghai, China.
| |
Collapse
|
38
|
Luo Z, Xiong J, Xia H, Ma X, Gao M, Wang L, Liu G, Yu X, Luo L. Transcriptomic divergence between upland and lowland ecotypes contributes to rice adaptation to a drought-prone agroecosystem. Evol Appl 2020; 13:2484-2496. [PMID: 33005236 PMCID: PMC7513727 DOI: 10.1111/eva.13054] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 06/04/2020] [Accepted: 06/09/2020] [Indexed: 12/11/2022] Open
Abstract
INTRODUCTION Transcriptomic divergence drives plant ecological adaptation. Upland rice is differentiated in drought tolerance from lowland rice during its adaptation to the drought-prone environment. They provide a good system to learn the evolution of drought tolerance in rice. METHODS AND RESULTS We estimate morphological differences between the two rice ecotypes under well-watered and drought conditions, as well as their genetic and transcriptomic divergences by the high-throughput sequencing. Upland rice possesses higher expression diversity than lowland rice does. Thousands of genes exhibit expression divergences between the two rice ecotypes, which contributes to their morphological differences in drought tolerance. These transcriptomic divergences contribute to drought adaptation of upland rice during its domestication. Mutations in transcriptional regulatory regions, which cause presence and absence of cis-elements, are the cause of expression divergence. About 15.3% transcriptionally selected genes also receive sequence-based selection in upland or lowland ecotype. Some highly differentiated genes promote the transcriptomic divergence between rice ecotypes via gene co-expression network. In addition, we also detected transcriptomic trade-offs between drought tolerance and productivity. DISCUSSION Many key genes, which promote transcriptomic adaptation to drought in upland rice, have great prospective in breeding water-saving and drought-resistant rice. Meanwhile, appropriate strategies are required in breeding to overcome the potential transcriptomic trade-off.
Collapse
Affiliation(s)
- Zhi Luo
- College of Plant Sciences & Technology Huazhong Agricultural University Wuhan China
- Shanghai Agrobiological Gene Center Shanghai China
| | - Jie Xiong
- College of Plant Sciences & Technology Huazhong Agricultural University Wuhan China
- Shanghai Agrobiological Gene Center Shanghai China
| | - Hui Xia
- College of Plant Sciences & Technology Huazhong Agricultural University Wuhan China
- Shanghai Agrobiological Gene Center Shanghai China
| | - Xiaosong Ma
- Shanghai Agrobiological Gene Center Shanghai China
| | - Min Gao
- College of Plant Sciences & Technology Huazhong Agricultural University Wuhan China
- Shanghai Agrobiological Gene Center Shanghai China
| | - Lei Wang
- Shanghai Agrobiological Gene Center Shanghai China
| | - Guolan Liu
- Shanghai Agrobiological Gene Center Shanghai China
| | - Xinqiao Yu
- Shanghai Agrobiological Gene Center Shanghai China
| | - Lijun Luo
- College of Plant Sciences & Technology Huazhong Agricultural University Wuhan China
- Shanghai Agrobiological Gene Center Shanghai China
| |
Collapse
|
39
|
Wei H, Wang X, Xu H, Wang L. Molecular basis of heading date control in rice. ABIOTECH 2020; 1:219-232. [PMID: 36304129 PMCID: PMC9590479 DOI: 10.1007/s42994-020-00019-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 04/06/2020] [Indexed: 01/25/2023]
Abstract
Flowering time is of great significance for crop reproduction, yield, and regional adaptability, which is intricately regulated by various environmental cues and endogenous signals. Genetic approaches in Arabidopsis have revealed the elaborate underlying mechanisms of sensing the dynamic change of photoperiod via a coincidence between light signaling and circadian clock, the cellular time keeping system, to precisely control photoperiodic flowering time, and many other signaling pathways including internal hormones and external temperature cues. Extensive studies in rice (Oryza sativa.), one of the short-day plants (SDP), have uncovered the multiple major genetic components in regulating heading date, and revealed the underlying mechanisms for regulating heading date. Here we summarize the current progresses on the molecular basis for rice heading date control, especially focusing on the integration mechanism between photoperiod and circadian clock, and epigenetic regulation and heading procedures in response to abiotic stresses.
Collapse
Affiliation(s)
- Hua Wei
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093 China.,University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Xiling Wang
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093 China.,University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Hang Xu
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093 China.,University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Lei Wang
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093 China.,University of Chinese Academy of Sciences, Beijing, 100049 China
| |
Collapse
|
40
|
Comparative transcriptome analysis of Tilletia horrida infection in resistant and susceptible rice (Oryza sativa L.) male sterile lines reveals potential candidate genes and resistance mechanisms. Genomics 2020; 112:5214-5226. [PMID: 32966859 DOI: 10.1016/j.ygeno.2020.09.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 07/21/2020] [Accepted: 09/16/2020] [Indexed: 11/20/2022]
Abstract
Rice kernel smut (RKS), caused by the basidiomycete fungus Tilletia horrida, is one of the most devastating diseases affecting the production of male sterile lines of rice (Oryza sativa) worldwide. However, the molecular mechanisms of resistance to T. horrida have not yet been explored. In the present study, RNA sequencing analysis of rice male sterile lines, that are resistant and susceptible to RKS (Jiangcheng 3A and 9311A, respectively) was conducted after T. horrida infection. Transcriptomic analysis showed that a greater number of differentially expressed gene (DEGs) was observed in Jiangcheng 3A compared with 9311A after T. horrida inoculation. Furthermore, 4, 425 DEGs were uniquely detected in Jiangcheng 3A, and Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses of these DEGs revealed that oxidoreductase activity, peroxidase activity, cutin, suberine and wax biosynthesis, and flavonoid biosynthesis were key pathways for T. horrida resistance. In summary and based on transcriptome analysis, we suggest a preliminary regulatory mechanism for Jiangcheng 3A cultivar resistance response to T. horrida inoculation.
Collapse
|
41
|
Wang Y, Lu Y, Guo Z, Ding Y, Ding C. RICE CENTRORADIALIS 1, a TFL1-like Gene, Responses to Drought Stress and Regulates Rice Flowering Transition. RICE (NEW YORK, N.Y.) 2020; 13:70. [PMID: 32970268 PMCID: PMC7516004 DOI: 10.1186/s12284-020-00430-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 09/17/2020] [Indexed: 05/11/2023]
Abstract
BACKGROUND The initiation of flowering transition in rice (Oryza sativa) is a complex process regulated by genes and environment. In particular, drought can interfere with flowering; therefore, many plants hasten this process to shorten their life cycle under water scarcity, and this is known as drought-escape response. However, rice has other strategies; for example, drought stress can delay flowering instead of accelerating it. RICE CENTRORADIALIS 1 (RCN1) is a TERMINAL FLOWER-like gene that influences rice flowering transition and spike differentiation. It interacts with 14-3-3 proteins and transcription factor OsFD1 to form a florigen repression complex that suppresses flowering transition in rice. RESULTS In this study, we explored the role of RCN1 in the molecular pathway of drought-regulated flowering transition. The rcn1 mutant plants displayed early heading under both normal water and drought stress conditions, and they were more insensitive to drought stress than the wild-type plants. Abscisic acid (ABA) signaling-mediated drought-induced RCN1 is involved in this process. CONCLUSIONS Thus, RCN1 plays an important role in the process of drought stress inhibiting flowering transition. It may worked by suppressing the protein function rather than transcription of HEADING DATE 3a.
Collapse
Affiliation(s)
- Yan Wang
- College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
- College of Biology and Environmental Sciences, Jishou University, Jishou, 416000, People's Republic of China
| | - Yuyang Lu
- College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Ziyu Guo
- College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Yanfeng Ding
- College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
- Key Laboratory of Crop Physiology Ecology and Production Management, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Chengqiang Ding
- College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.
- Key Laboratory of Crop Physiology Ecology and Production Management, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.
| |
Collapse
|
42
|
Shim JS, Jang G. Environmental Signal-Dependent Regulation of Flowering Time in Rice. Int J Mol Sci 2020; 21:ijms21176155. [PMID: 32858992 PMCID: PMC7504671 DOI: 10.3390/ijms21176155] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 08/23/2020] [Accepted: 08/24/2020] [Indexed: 01/11/2023] Open
Abstract
The transition from the vegetative to the reproductive stage of growth is a critical event in the lifecycle of a plant and is required for the plant’s reproductive success. Flowering time is tightly regulated by an internal time-keeping system and external light conditions, including photoperiod, light quality, and light quantity. Other environmental factors, such as drought and temperature, also participate in the regulation of flowering time. Thus, flexibility in flowering time in response to environmental factors is required for the successful adaptation of plants to the environment. In this review, we summarize our current understanding of the molecular mechanisms by which internal and environmental signals are integrated to regulate flowering time in Arabidopsis thaliana and rice (Oryza sativa).
Collapse
|
43
|
Genome-Wide Analysis, Characterization, and Expression Profile of the Basic Leucine Zipper Transcription Factor Family in Pineapple. Int J Genomics 2020; 2020:3165958. [PMID: 32455125 PMCID: PMC7238347 DOI: 10.1155/2020/3165958] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 03/25/2020] [Accepted: 03/31/2020] [Indexed: 11/18/2022] Open
Abstract
This study identified 57 basic leucine zipper (bZIP) genes from the pineapple genome, and the analysis of these bZIP genes was focused on the evolution and divergence after multiple duplication events in relation to the pineapple genome fusion. According to bioinformatics analysis of a phylogenetic tree, the bZIP gene family was divided into 11 subgroups in pineapple, Arabidopsis, and rice; gene structure and conserved motif analyses showed that bZIP genes within the same subgroup shared similar intron-exon organizations and motif composition. Further synteny analysis showed 17 segmental duplication events with 27 bZIP genes. The study also analyzed the pineapple gene expression of bZIP genes in different tissues, organs, and developmental stages, as well as in abiotic stress responses. The RNA-sequencing data showed that AcobZIP57 was upregulated in all tissues, including vegetative and reproductive tissues. AcobZIP28 and AcobZIP43 together with the other 25 bZIP genes did not show high expression levels in any tissue. Six bZIP genes were exposed to abiotic stress, and the relative expression levels were detected by quantitative real-time PCR. A significant response was observed for AcobZIP24 against all kinds of abiotic stresses at 24 and 48 h in pineapple root tissues. Our study provides a perspective for the evolutionary history and general biological involvement of the bZIP gene family of pineapple, which laid the foundation for future functional characterization of the bZIP genes in pineapple.
Collapse
|
44
|
Li C, Li YH, Li Y, Lu H, Hong H, Tian Y, Li H, Zhao T, Zhou X, Liu J, Zhou X, Jackson SA, Liu B, Qiu LJ. A Domestication-Associated Gene GmPRR3b Regulates the Circadian Clock and Flowering Time in Soybean. MOLECULAR PLANT 2020; 13:745-759. [PMID: 32017998 DOI: 10.1016/j.molp.2020.01.014] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 12/28/2019] [Accepted: 01/29/2020] [Indexed: 05/24/2023]
Abstract
Improved soybean cultivars have been adapted to grow at a wide range of latitudes, enabling expansion of cultivation worldwide. However, the genetic basis of this broad adaptation is still not clear. Here, we report the identification of GmPRR3b as a major flowering time regulatory gene that has been selected during domestication and genetic improvement for geographic expansion. Through a genome-wide association study of a diverse soybean landrace panel consisting of 279 accessions, we identified 16 candidate quantitative loci associated with flowering time and maturity time. The strongest signal resides in the known flowering gene E2, verifying the effectiveness of our approach. We detected strong signals associated with both flowering and maturity time in a genomic region containing GmPRR3b. Haplotype analysis revealed that GmPRR3bH6 is the major form of GmPRR3b that has been utilized during recent breeding of modern cultivars. mRNA profiling analysis showed that GmPRR3bH6 displays rhythmic and photoperiod-dependent expression and is preferentially induced under long-day conditions. Overexpression of GmPRR3bH6 increased main stem node number and yield, while knockout of GmPRR3bH6 using CRISPR/Cas9 technology delayed growth and the floral transition. GmPRR3bH6 appears to act as a transcriptional repressor of multiple predicted circadian clock genes, including GmCCA1a, which directly upregulates J/GmELF3a to modulate flowering time. The causal SNP (Chr12:5520945) likely endows GmPRR3bH6 a moderate but appropriate level of activity, leading to early flowering and vigorous growth traits preferentially selected during broad adaptation of landraces and improvement of cultivars.
Collapse
Affiliation(s)
- Cong Li
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, P.R. China
| | - Ying-Hui Li
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, P.R. China
| | - Yanfei Li
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, P.R. China
| | - Hongfeng Lu
- Novogene Bioinformatics Institute, Beijing, P.R. China
| | - Huilong Hong
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, P.R. China
| | - Yu Tian
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, P.R. China
| | - Hongyu Li
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, P.R. China
| | - Tao Zhao
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, P.R. China
| | - Xiaowei Zhou
- Novogene Bioinformatics Institute, Beijing, P.R. China
| | - Jun Liu
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, P.R. China
| | - Xinan Zhou
- Key Laboratory of Oil Crop Biology (MOA), Oil Crops Research Institute of Chinese Academy of Agriculture Sciences, Wuhan, China
| | - Scott A Jackson
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA, USA
| | - Bin Liu
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, P.R. China.
| | - Li-Juan Qiu
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, P.R. China.
| |
Collapse
|
45
|
Zheng Y, Ge J, Bao C, Chang W, Liu J, Shao J, Liu X, Su L, Pan L, Zhou DX. Histone Deacetylase HDA9 and WRKY53 Transcription Factor Are Mutual Antagonists in Regulation of Plant Stress Response. MOLECULAR PLANT 2020; 12:1090-1102. [PMID: 31048024 DOI: 10.1016/j.molp.2019.04.008] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 04/24/2019] [Accepted: 04/25/2019] [Indexed: 05/06/2023]
Abstract
Epigenetic regulation of gene expression is important for plant adaptation to environmental changes. Previous results showed that Arabidopsis RPD3-like histone deacetylase HDA9 is known to function in repressing plant response to stress in Arabidopsis. However, how HDA9 targets to specific chromatin loci and controls gene expression networks involved in plant response to stress remains largely unclear. Here, we show that HDA9 represses stress tolerance response by interacting with and regulating the DNA binding and transcriptional activity of WRKY53, which functions as a high-hierarchy positive regulator of stress response. We found that WRKY53 is post-translationally modified by lysine acetylation at multiple sites, some of which are removed by HDA9, resulting in inhibition of WRKY53 transcription activity. Conversely, WRKY53 negatively regulates HDA9 histone deacetylase activity. Collectively, our results indicate that HDA9 and WRK53 are reciprocal negative regulators of each other's activities, illustrating how the functional interplay between a chromatin regulator and a transcription factor regulates stress tolerance in plants.
Collapse
Affiliation(s)
- Yu Zheng
- Institute for Interdisciplinary Research and Hubei Province Engineering Research Center of Legume Plants, Jianghan University, Wuhan 430056, China.
| | - Jingyu Ge
- Institute for Interdisciplinary Research and Hubei Province Engineering Research Center of Legume Plants, Jianghan University, Wuhan 430056, China
| | - Chun Bao
- Institute for Interdisciplinary Research and Hubei Province Engineering Research Center of Legume Plants, Jianghan University, Wuhan 430056, China
| | - Wenwen Chang
- Institute for Interdisciplinary Research and Hubei Province Engineering Research Center of Legume Plants, Jianghan University, Wuhan 430056, China
| | - Jingjing Liu
- Institute for Interdisciplinary Research and Hubei Province Engineering Research Center of Legume Plants, Jianghan University, Wuhan 430056, China
| | - Jingjie Shao
- Institute for Interdisciplinary Research and Hubei Province Engineering Research Center of Legume Plants, Jianghan University, Wuhan 430056, China
| | - Xiaoyun Liu
- Institute for Interdisciplinary Research and Hubei Province Engineering Research Center of Legume Plants, Jianghan University, Wuhan 430056, China
| | - Lufang Su
- Institute for Interdisciplinary Research and Hubei Province Engineering Research Center of Legume Plants, Jianghan University, Wuhan 430056, China
| | - Lei Pan
- Institute for Interdisciplinary Research and Hubei Province Engineering Research Center of Legume Plants, Jianghan University, Wuhan 430056, China
| | - Dao-Xiu Zhou
- Institute of Plant Sciences Paris-Saclay, CNRS, INRAE, Université Paris-Saclay, Orsay 91405, France.
| |
Collapse
|
46
|
Li P, Su T, Zhang B, Li P, Xin X, Yue X, Cao Y, Wang W, Zhao X, Yu Y, Zhang D, Yu S, Zhang F. Identification and fine mapping of qSB.A09, a major QTL that controls shoot branching in Brassica rapa ssp. chinensis Makino. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:1055-1068. [PMID: 31919538 DOI: 10.1007/s00122-020-03531-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 01/02/2020] [Indexed: 06/10/2023]
Abstract
QTL mapping plus bulked segregant analysis revealed a major QTL for shoot branching in non-heading Chinese cabbage. The candidate gene was then identified using sequence alignment and expression analysis. Shoot branching is a complex quantitative trait that contributes to plant architecture and ultimately yield. Although many studies have examined branching in grain crops, the genetic control of shoot branching in vegetable crops such as Brassica rapa L. ssp. chinensis remains poorly understood. In this study, we used bulked segregant analysis (BSA) of an F2 population to detect a major quantitative trait locus (QTL) for shoot branching, designated shoot branching 9 (qSB.A09) on the long arm of chromosome A09 in Brassica rapa L. ssp. chinensis. In addition, traditional QTL mapping of the F2 population revealed six QTLs in different regions. Of these, the mapping region on chromosome A09 was consistent with the results of BSA-seq analysis, as well as being stable over the 2-year study period, explaining 19.37% and 22.18% of the phenotypic variation across multiple genetic backgrounds. Using extreme recombinants, qSB.A09 was further delimited to a 127-kb genomic region harboring 28 annotated genes. We subsequently identified the GRAS transcription factor gene Bra007056 as a potential candidate gene; Bra007056 is an ortholog of MONOCULM 1 (MOC1), the key gene that controls tillering in rice. Quantitative RT-PCR further revealed that expression of Bra007056 was positively correlated with the shoot branching phenotype. Furthermore, an insertion/deletion marker specific to Bra007056 co-segregated with the shoot branching trait in the F2 populations. Overall, these results provide the basis for elucidating the molecular mechanism of shoot branching in Brassica rapa ssp. chinensis Makino.
Collapse
Affiliation(s)
- Pan Li
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Science (BAAFS), Beijing, 100097, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, 100097, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, 100097, China
| | - Tongbing Su
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Science (BAAFS), Beijing, 100097, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, 100097, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, 100097, China
| | - Bin Zhang
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Science (BAAFS), Beijing, 100097, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, 100097, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, 100097, China
| | - Peirong Li
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Science (BAAFS), Beijing, 100097, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, 100097, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, 100097, China
| | - Xiaoyun Xin
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Science (BAAFS), Beijing, 100097, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, 100097, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, 100097, China
| | - Xiaozhen Yue
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Science (BAAFS), Beijing, 100097, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, 100097, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, 100097, China
| | - Yunyun Cao
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Science (BAAFS), Beijing, 100097, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, 100097, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, 100097, China
| | - Weihong Wang
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Science (BAAFS), Beijing, 100097, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, 100097, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, 100097, China
| | - Xiuyun Zhao
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Science (BAAFS), Beijing, 100097, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, 100097, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, 100097, China
| | - Yangjun Yu
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Science (BAAFS), Beijing, 100097, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, 100097, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, 100097, China
| | - Deshuang Zhang
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Science (BAAFS), Beijing, 100097, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, 100097, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, 100097, China
| | - Shuancang Yu
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Science (BAAFS), Beijing, 100097, China.
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, 100097, China.
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, 100097, China.
| | - Fenglan Zhang
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Science (BAAFS), Beijing, 100097, China.
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, 100097, China.
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, 100097, China.
| |
Collapse
|
47
|
Melandri G, Prashar A, McCouch SR, van der Linden G, Jones HG, Kadam N, Jagadish K, Bouwmeester H, Ruyter-Spira C. Association mapping and genetic dissection of drought-induced canopy temperature differences in rice. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:1614-1627. [PMID: 31846000 PMCID: PMC7031080 DOI: 10.1093/jxb/erz527] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 12/16/2019] [Indexed: 05/07/2023]
Abstract
Drought-stressed plants display reduced stomatal conductance, which results in increased leaf temperature by limiting transpiration. In this study, thermal imaging was used to quantify the differences in canopy temperature under drought in a rice diversity panel consisting of 293 indica accessions. The population was grown under paddy field conditions and drought stress was imposed for 2 weeks at flowering. The canopy temperature of the accessions during stress negatively correlated with grain yield (r= -0.48) and positively with plant height (r=0.56). Temperature values were used to perform a genome-wide association (GWA) analysis using a 45K single nucleotide polynmorphism (SNP) map. A quantitative trait locus (QTL) for canopy temperature under drought was detected on chromosome 3 and fine-mapped using a high-density imputed SNP map. The candidate genes underlying the QTL point towards differences in the regulation of guard cell solute intake for stomatal opening as the possible source of temperature variation. Genetic variation for the significant markers of the QTL was present only within the tall, low-yielding landraces adapted to drought-prone environments. The absence of variation in the shorter genotypes, which showed lower leaf temperature and higher grain yield, suggests that breeding for high grain yield in rice under paddy conditions has reduced genetic variation for stomatal response under drought.
Collapse
Affiliation(s)
- Giovanni Melandri
- Laboratory of Plant Physiology, Wageningen University and Research, Wageningen, The Netherlands
- Plant Breeding and Genetics, Cornell University, Ithaca, NY, USA
| | - Ankush Prashar
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Susan R McCouch
- Plant Breeding and Genetics, Cornell University, Ithaca, NY, USA
| | - Gerard van der Linden
- Wageningen UR Plant Breeding, Wageningen University and Research, Wageningen, The Netherlands
| | - Hamlyn G Jones
- Plant Science Division, University of Dundee at The James Hutton Institute, Invergowrie, Dundee, UK
- School of Plant Biology, University of Western Australia, Perth, Australia
| | - Niteen Kadam
- Centre for Crop Systems Analysis, Wageningen University and Research, Wageningen, The Netherlands
- International Rice Research Institute, Los Baños, Philippines
- Department of Plant Biology and Institute of Genomic Biology, University of Illinois, Urbana, IL, USA
| | - Krishna Jagadish
- International Rice Research Institute, Los Baños, Philippines
- Department of Agronomy, Kansas State University, Manhattan, KS, USA
| | - Harro Bouwmeester
- Laboratory of Plant Physiology, Wageningen University and Research, Wageningen, The Netherlands
- Plant Hormone Biology group, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Carolien Ruyter-Spira
- Laboratory of Plant Physiology, Wageningen University and Research, Wageningen, The Netherlands
| |
Collapse
|
48
|
Zhou C, Lin Q, Lan J, Zhang T, Liu X, Miao R, Mou C, Nguyen T, Wang J, Zhang X, Zhou L, Zhu X, Wang Q, Zhang X, Guo X, Liu S, Jiang L, Wan J. WRKY Transcription Factor OsWRKY29 Represses Seed Dormancy in Rice by Weakening Abscisic Acid Response. FRONTIERS IN PLANT SCIENCE 2020; 11:691. [PMID: 32536934 PMCID: PMC7268104 DOI: 10.3389/fpls.2020.00691] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 05/01/2020] [Indexed: 05/22/2023]
Abstract
For efficient plant reproduction, seed dormancy delays seed germination until the environment is suitable for the next generation growth and development. The phytohormone abscisic acid (ABA) plays important role in the induction and maintenance of seed dormancy. Previous studies have identified that WRKY transcription factors can regulate ABA signaling pathway. Here, we identified an Oswrky29 mutant with enhanced dormancy in a screen of T-DNA insertion population. OsWRKY29 is a member of WRKY transcription factor family which located in the nuclear. The genetic analyses showed that both knockout and RNAi lines of OsWRKY29 had enhanced seed dormancy whereas its overexpression lines displayed reduced seed dormancy. When treated with ABA, OsWRKY29 knockout and RNAi lines showed greater sensitivity than its overexpression lines. In addition, the expression levels of ABA positive response factors OsVP1 and OsABF1 were higher in the OsWRKY29 mutants but were lower in its overexpression lines. Further assays showed that OsWRKY29 could bind to the promoters of OsABF1 and OsVP1 to inhibit their expression. In summary, we identified a new ABA signaling repressor OsWRKY29 that represses seed dormancy by directly downregulating the expression of OsABF1 and OsVP1.
Collapse
Affiliation(s)
- Chunlei Zhou
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Qibing Lin
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jie Lan
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Tianyu Zhang
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Xi Liu
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Rong Miao
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Changling Mou
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Thanhliem Nguyen
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
- Department of Biology and Agricultural Engineering, Quynhon University, Quynhon, Vietnam
| | - Jiachang Wang
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Xiao Zhang
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Liang Zhou
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Xingjie Zhu
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Qian Wang
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Xin Zhang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiuping Guo
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shijia Liu
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Ling Jiang
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
- *Correspondence: Ling Jiang,
| | - Jianmin Wan
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
- Jianmin Wan, ;
| |
Collapse
|
49
|
Chen X, Li C, Wang H, Guo Z. WRKY transcription factors: evolution, binding, and action. PHYTOPATHOLOGY RESEARCH 2019; 1:13. [PMID: 0 DOI: 10.1186/s42483-019-0022-x] [Citation(s) in RCA: 140] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 03/28/2019] [Indexed: 05/25/2023]
|
50
|
Meng Y, Wang Z, Wang Y, Wang C, Zhu B, Liu H, Ji W, Wen J, Chu C, Tadege M, Niu L, Lin H. The MYB Activator WHITE PETAL1 Associates with MtTT8 and MtWD40-1 to Regulate Carotenoid-Derived Flower Pigmentation in Medicago truncatula. THE PLANT CELL 2019; 31:2751-2767. [PMID: 31530734 PMCID: PMC6881138 DOI: 10.1105/tpc.19.00480] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 08/26/2019] [Accepted: 09/13/2019] [Indexed: 05/19/2023]
Abstract
Carotenoids are a group of natural tetraterpenoid pigments with indispensable roles in the plant life cycle and the human diet. Although the carotenoid biosynthetic pathway has been well characterized, the regulatory mechanisms that control carotenoid metabolism, especially in floral organs, remain poorly understood. In this study, we identified an anthocyanin-related R2R3-MYB protein, WHITE PETAL1 (WP1), that plays a critical role in regulating floral carotenoid pigmentation in Medicago truncatula Carotenoid analyses showed that the yellow petals of the wild-type M. truncatula contained high concentrations of carotenoids that largely consisted of esterified lutein and that disruption of WP1 function via Tnt1 insertion led to substantially reduced lutein accumulation. WP1 mainly functions as a transcriptional activator and directly regulates the expression of carotenoid biosynthetic genes including MtLYCe and MtLYCb through its C-terminal acidic activation motif. Further molecular and genetic analyses revealed that WP1 physically interacts with MtTT8 and MtWD40-1 proteins and that this interaction facilitates WP1's function in the transcriptional activation of both carotenoid and anthocyanin biosynthetic genes. Our findings demonstrate the molecular mechanism of WP1-mediated regulation of floral carotenoid pigmentation and suggest that the conserved MYB-basic-helix-loop-helix-WD40 regulatory module functions in carotenoid biosynthesis in M. truncatula, with specificity imposed by the MYB partner.
Collapse
Affiliation(s)
- Yingying Meng
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zuoyi Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yiqin Wang
- The State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Chongnan Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Butuo Zhu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Huan Liu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Wenkai Ji
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jiangqi Wen
- Noble Research Institute, Ardmore, Oklahoma 73401
| | - Chengcai Chu
- The State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Million Tadege
- Department of Plant and Soil Sciences, Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, Oklahoma 73401
| | - Lifang Niu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Hao Lin
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|