1
|
Taylor LJ, Steed G, Pingarron-Cardenas G, Wittern L, Hannah MA, Webb AAR. GIGANTEA Is Required for Robust Circadian Rhythms in Wheat. PLANT, CELL & ENVIRONMENT 2025; 48:4492-4504. [PMID: 40007327 DOI: 10.1111/pce.15447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 02/07/2025] [Accepted: 02/14/2025] [Indexed: 02/27/2025]
Abstract
GIGANTEA (GI) is a plant-specific protein that functions in many physiological processes and signalling networks. In Arabidopsis, GI has a central role in circadian oscillators regulating the abundance of ZEITLUPE and TIMING OF CAB EXPRESSION 1 proteins and is essential for photoperiodic regulation of flowering. We have investigated how ortholgues of this component of Arabidopsis circadian oscillators contribute to circadian rhythms and yield traits, including heading (flowering) in wheat. We find that GI is a core component of wheat circadian oscillators that is necessary to maintain robust oscillations in chlorophyll fluorescence and circadian oscillator transcript abundance. The predicted lack of functional GI results in later flowering of wheat in both long days and short days in controlled environment conditions. Our results support and extend previous work, which suggests that the pathways by which photoperiodism regulates flowering are not fully conserved between Arabidopsis and wheat. Understanding the molecular basis for photoperiodism in wheat is important for breeders looking to manipulate flowering time and develop new elite, high-yielding cultivars.
Collapse
Affiliation(s)
- Laura J Taylor
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
| | - Gareth Steed
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
| | | | - Lukas Wittern
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
| | | | - Alex A R Webb
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
| |
Collapse
|
2
|
Chen H, Chen J, Zhai R, Lavelle D, Jia Y, Tang Q, Zhu T, Wang M, Geng Z, Zhu J, Feng H, An J, Liu J, Li W, Deng S, Wang W, Zhang W, Zhang X, Luo G, Wang X, Sahu SK, Liu H, Michelmore R, Yang W, Wei T, Kuang H. Dissecting the genetic architecture of key agronomic traits in lettuce using a MAGIC population. Genome Biol 2025; 26:67. [PMID: 40122830 PMCID: PMC11930014 DOI: 10.1186/s13059-025-03541-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 03/11/2025] [Indexed: 03/25/2025] Open
Abstract
BACKGROUND Lettuce is a globally important leafy vegetable that exhibits diverse horticultural types and strong population structure, which complicates genetic analyses. To address this challenge, we develop the first multi-parent, advanced generation inter-cross (MAGIC) population for lettuce using 16 diverse founder lines. RESULTS Whole-genome sequencing of the 16 founder lines and 381 inbred progeny reveal minimal population structure, enabling informative genome-wide association studies (GWAS). GWAS of the lettuce MAGIC population identifies numerous loci associated with key agricultural traits, including 51 for flowering time, 11 for leaf color, and 5 for leaf shape. Notably, loss-of-function mutations in the LsphyB and LsphyC genes, encoding phytochromes B and C, dramatically delay flowering in lettuce, which is in striking contrast to many other plant species. This unexpected finding highlights the unique genetic architecture controlling flowering time in lettuce. The wild-type LsTCP4 gene plays critical roles in leaf flatness and its expression level is negatively correlated with leaf curvature. Additionally, a novel zinc finger protein (ZFP) gene is required for the development of lobed leaves; a point mutation leads to its loss of function and consequently converted lobed leaves to non-lobed leaves, as exhibited by most lettuce cultivars. CONCLUSIONS The MAGIC population's lack of structure and high mapping resolution enables the efficient dissection of complex traits. The identified loci and candidate genes provide significant genetic resources for improving agronomic performance and leaf quality in lettuce.
Collapse
Affiliation(s)
- Hongyun Chen
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops; Hubei Hongshan Laboratory, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
- BGI Research, Wuhan, 430074, China
- State Key Laboratory of Genome and Multi-Omics Technologies, BGI Research, Shenzhen, 518083, China
| | - Jiongjiong Chen
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops; Hubei Hongshan Laboratory, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ruifang Zhai
- College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China
| | - Dean Lavelle
- Genome Center and Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| | - Yue Jia
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops; Hubei Hongshan Laboratory, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qiwei Tang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops; Hubei Hongshan Laboratory, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ting Zhu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops; Hubei Hongshan Laboratory, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Menglu Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops; Hubei Hongshan Laboratory, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zedong Geng
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jianzhong Zhu
- College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China
| | - Hui Feng
- College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China
| | - Junru An
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops; Hubei Hongshan Laboratory, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jiansheng Liu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops; Hubei Hongshan Laboratory, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Weibo Li
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops; Hubei Hongshan Laboratory, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | | | | | - Weiyi Zhang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops; Hubei Hongshan Laboratory, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiaoyan Zhang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops; Hubei Hongshan Laboratory, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Guangbao Luo
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops; Hubei Hongshan Laboratory, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xin Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops; Hubei Hongshan Laboratory, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Sunil Kumar Sahu
- BGI Research, Wuhan, 430074, China
- State Key Laboratory of Genome and Multi-Omics Technologies, BGI Research, Shenzhen, 518083, China
| | - Huan Liu
- State Key Laboratory of Genome and Multi-Omics Technologies, BGI Research, Shenzhen, 518083, China
| | - Richard Michelmore
- Genome Center and Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| | - Wanneng Yang
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Tong Wei
- BGI Research, Wuhan, 430074, China.
- State Key Laboratory of Genome and Multi-Omics Technologies, BGI Research, Shenzhen, 518083, China.
- Key Laboratory of Genomics, Ministry of Agriculture, BGI Research, Shenzhen, 518083, China.
- Guangdong Provincial Key Laboratory of Core Collection of Crop Genetic Resources Research and Application, BGI Research, Shenzhen, 518083, China.
| | - Hanhui Kuang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops; Hubei Hongshan Laboratory, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
3
|
Liu B, Li C, Li X, Wang J, Xie W, Woods DP, Li W, Zhu X, Yang S, Dong A, Amasino RM. The H3K4 demethylase JMJ1 is required for proper timing of flowering in Brachypodium distachyon. THE PLANT CELL 2024; 36:2729-2745. [PMID: 38652680 PMCID: PMC11218787 DOI: 10.1093/plcell/koae124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/29/2024] [Accepted: 03/30/2024] [Indexed: 04/25/2024]
Abstract
Flowering is a key developmental transition in the plant life cycle. In temperate climates, flowering often occurs in response to the perception of seasonal cues such as changes in day-length and temperature. However, the mechanisms that have evolved to control the timing of flowering in temperate grasses are not fully understood. We identified a Brachypodium distachyon mutant whose flowering is delayed under inductive long-day conditions due to a mutation in the JMJ1 gene, which encodes a Jumonji domain-containing protein. JMJ1 is a histone demethylase that mainly demethylates H3K4me2 and H3K4me3 in vitro and in vivo. Analysis of the genome-wide distribution of H3K4me1, H3K4me2, and H3K4me3 in wild-type plants by chromatin immunoprecipitation and sequencing combined with RNA sequencing revealed that H3K4m1 and H3K4me3 are positively associated with gene transcript levels, whereas H3K4me2 is negatively correlated with transcript levels. Furthermore, JMJ1 directly binds to the chromatin of the flowering regulator genes VRN1 and ID1 and affects their transcription by modifying their H3K4me2 and H3K4me3 levels. Genetic analyses indicated that JMJ1 promotes flowering by activating VRN1 expression. Our study reveals a role for JMJ1-mediated chromatin modification in the proper timing of flowering in B. distachyon.
Collapse
Affiliation(s)
- Bing Liu
- Department of Biochemistry, University of Wisconsin–Madison, Madison, WI 53706, USA
| | - Chengzhang Li
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, PR China
| | - Xiang Li
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, PR China
| | - Jiachen Wang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, PR China
| | - Wenhao Xie
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, PR China
| | - Daniel P Woods
- Department of Biochemistry, University of Wisconsin–Madison, Madison, WI 53706, USA
| | - Weiya Li
- Department of Biochemistry, University of Wisconsin–Madison, Madison, WI 53706, USA
| | - Xiaoyu Zhu
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, PR China
| | - Shuoming Yang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, PR China
| | - Aiwu Dong
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, PR China
| | - Richard M Amasino
- Department of Biochemistry, University of Wisconsin–Madison, Madison, WI 53706, USA
| |
Collapse
|
4
|
Li C, Lin H, Debernardi JM, Zhang C, Dubcovsky J. GIGANTEA accelerates wheat heading time through gene interactions converging on FLOWERING LOCUS T1. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:519-533. [PMID: 38184778 DOI: 10.1111/tpj.16622] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 12/20/2023] [Accepted: 12/22/2023] [Indexed: 01/08/2024]
Abstract
Precise regulation of flowering time is critical for cereal crops to synchronize reproductive development with optimum environmental conditions, thereby maximizing grain yield. The plant-specific gene GIGANTEA (GI) plays an important role in the control of flowering time, with additional functions on the circadian clock and plant stress responses. In this study, we show that GI loss-of-function mutants in a photoperiod-sensitive tetraploid wheat background exhibit significant delays in heading time under both long-day (LD) and short-day photoperiods, with stronger effects under LD. However, this interaction between GI and photoperiod is no longer observed in isogenic lines carrying either a photoperiod-insensitive allele in the PHOTOPERIOD1 (PPD1) gene or a loss-of-function allele in EARLY FLOWERING 3 (ELF3), a known repressor of PPD1. These results suggest that the normal circadian regulation of PPD1 is required for the differential effect of GI on heading time in different photoperiods. Using crosses between mutant or transgenic plants of GI and those of critical genes in the flowering regulation pathway, we show that GI accelerates wheat heading time by promoting FLOWERING LOCUS T1 (FT1) expression via interactions with ELF3, VERNALIZATION 2 (VRN2), CONSTANS (CO), and the age-dependent microRNA172-APETALA2 (AP2) pathway, at both transcriptional and protein levels. Our study reveals conserved GI mechanisms between wheat and Arabidopsis but also identifies specific interactions of GI with the distinctive photoperiod and vernalization pathways of the temperate grasses. These results provide valuable knowledge for modulating wheat heading time and engineering new varieties better adapted to a changing environment.
Collapse
Affiliation(s)
- Chengxia Li
- Department of Plant Sciences, University of California, Davis, California, 95616, USA
- Howard Hughes Medical Institute, Chevy Chase, Maryland, 20815, USA
| | - Huiqiong Lin
- Department of Plant Sciences, University of California, Davis, California, 95616, USA
- Howard Hughes Medical Institute, Chevy Chase, Maryland, 20815, USA
| | - Juan M Debernardi
- Department of Plant Sciences, University of California, Davis, California, 95616, USA
- Howard Hughes Medical Institute, Chevy Chase, Maryland, 20815, USA
| | - Chaozhong Zhang
- Department of Plant Sciences, University of California, Davis, California, 95616, USA
- Howard Hughes Medical Institute, Chevy Chase, Maryland, 20815, USA
| | - Jorge Dubcovsky
- Department of Plant Sciences, University of California, Davis, California, 95616, USA
- Howard Hughes Medical Institute, Chevy Chase, Maryland, 20815, USA
| |
Collapse
|
5
|
Nie M, Li L, He C, Lu J, Guo H, Li X, Jiang M, Zhan R, Sun W, Yin J, Wu Q. Genome-wide identification, subcellular localization, and expression analysis of the phosphatidyl ethanolamine-binding protein family reveals the candidates involved in flowering and yield regulation of Tartary buckwheat ( Fagopyrum tataricum). PeerJ 2024; 12:e17183. [PMID: 38560476 PMCID: PMC10979741 DOI: 10.7717/peerj.17183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 03/11/2024] [Indexed: 04/04/2024] Open
Abstract
Background PEBP (phosphatidyl ethanolamine-binding protein) is widely found in eukaryotes including plants, animals and microorganisms. In plants, the PEBP family plays vital roles in regulating flowering time and morphogenesis and is highly associated to agronomic traits and yields of crops, which has been identified and characterized in many plant species but not well studied in Tartary buckwheat (Fagopyrum tataricum Gaertn.), an important coarse food grain with medicinal value. Methods Genome-wide analysis of FtPEBP gene family members in Tartary buckwheat was performed using bioinformatic tools. Subcellular localization analysis was performed by confocal microscopy. The expression levels of these genes in leaf and inflorescence samples were analyzed using qRT-PCR. Results Fourteen Fagopyrum tataricum PEBP (FtPEBP) genes were identified and divided into three sub-clades according to their phylogenetic relationships. Subcellular localization analysis of the FtPEBP proteins in tobacco leaves indicated that FT- and TFL-GFP fusion proteins were localized in both the nucleus and cytoplasm. Gene structure analysis showed that most FtPEBP genes contain four exons and three introns. FtPEBP genes are unevenly distributed in Tartary buckwheat chromosomes. Three tandem repeats were found among FtFT5/FtFT6, FtMFT1/FtMFT2 and FtTFL4/FtTFL5. Five orthologous gene pairs were detected between F. tataricum and F. esculentum. Seven light-responsive, nine hormone-related and four stress-responsive elements were detected in FtPEBPs promoters. We used real-time PCR to investigate the expression levels of FtPEBPs among two flowering-type cultivars at floral transition time. We found FtFT1/FtFT3 were highly expressed in leaf and young inflorescence of early-flowering type, whereas they were expressed at very low levels in late-flowering type cultivars. Thus, we deduced that FtFT1/FtFT3 may be positive regulators for flowering and yield of Tartary buckwheat. These results lay an important foundation for further studies on the functions of FtPEBP genes which may be utilized for yield improvement.
Collapse
Affiliation(s)
- Mengping Nie
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, College of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Li Li
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, College of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Cailin He
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, College of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Jing Lu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, College of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Huihui Guo
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, College of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Xiao'an Li
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, College of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Mi Jiang
- Key Laboratory of Wheat Crop Research in Ganzi Academy of Agricultural Sciences, Ganzi Academy of Agricultural Sciences, Ganzi, Sichuan, China
| | - Ruiling Zhan
- Key Laboratory of Wheat Crop Research in Ganzi Academy of Agricultural Sciences, Ganzi Academy of Agricultural Sciences, Ganzi, Sichuan, China
| | - Wenjun Sun
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, College of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Junjie Yin
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Qi Wu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, College of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| |
Collapse
|
6
|
Helmsorig G, Walla A, Rütjes T, Buchmann G, Schüller R, Hensel G, von Korff M. early maturity 7 promotes early flowering by controlling the light input into the circadian clock in barley. PLANT PHYSIOLOGY 2024; 194:849-866. [PMID: 37951242 PMCID: PMC10828213 DOI: 10.1093/plphys/kiad551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 09/26/2023] [Indexed: 11/13/2023]
Abstract
Breeding for variation in photoperiod response is crucial to adapt crop plants to various environments. Plants measure changes in day length by the circadian clock, an endogenous timekeeper that allows plants to anticipate changes in diurnal and seasonal light-dark cycles. Here, we describe the early maturity 7 (eam7) locus in barley (Hordeum vulgare), which interacts with PHOTOPERIOD 1 (Ppd-H1) to cause early flowering under non-inductive short days. We identify LIGHT-REGULATED WD 1 (LWD1) as a putative candidate to underlie the eam7 locus in barley as supported by genetic mapping and CRISPR-Cas9-generated lwd1 mutants. Mutations in eam7 cause a significant phase advance and a misregulation of core clock and clock output genes under diurnal conditions. Early flowering was linked to an upregulation of Ppd-H1 during the night and consequent induction of the florigen FLOWERING LOCUS T1 under short days. We propose that EAM7 controls photoperiodic flowering in barley by controlling the light input into the clock and diurnal expression patterns of the major photoperiod response gene Ppd-H1.
Collapse
Affiliation(s)
- Gesa Helmsorig
- Institute of Plant Genetics, Heinrich-Heine-Universität Düsseldorf, 40223 Düsseldorf, Germany
| | - Agatha Walla
- Institute of Plant Genetics, Heinrich-Heine-Universität Düsseldorf, 40223 Düsseldorf, Germany
| | - Thea Rütjes
- Institute of Plant Genetics, Heinrich-Heine-Universität Düsseldorf, 40223 Düsseldorf, Germany
| | - Gabriele Buchmann
- Institute of Plant Genetics, Heinrich-Heine-Universität Düsseldorf, 40223 Düsseldorf, Germany
| | - Rebekka Schüller
- Institute of Plant Genetics, Heinrich-Heine-Universität Düsseldorf, 40223 Düsseldorf, Germany
| | - Götz Hensel
- Cluster of Excellence on Plant Sciences “SMART Plants for Tomorrow's Needs”, 40223 Düsseldorf, Germany
- Centre for Plant Genome Engineering, Institute of Plant Biochemistry, Heinrich-Heine-Universität Düsseldorf, 40223 Düsseldorf, Germany
- Division of Molecular Biology, Centre of the Region Hana for Biotechnological and Agriculture Research, Faculty of Science, Palacký University, CZ-779 00 Olomouc, Czech
| | - Maria von Korff
- Institute of Plant Genetics, Heinrich-Heine-Universität Düsseldorf, 40223 Düsseldorf, Germany
- Cluster of Excellence on Plant Sciences “SMART Plants for Tomorrow's Needs”, 40223 Düsseldorf, Germany
| |
Collapse
|
7
|
Gao M, Lu Y, Geng F, Klose C, Staudt AM, Huang H, Nguyen D, Lan H, Lu H, Mockler TC, Nusinow DA, Hiltbrunner A, Schäfer E, Wigge PA, Jaeger KE. Phytochromes transmit photoperiod information via the evening complex in Brachypodium. Genome Biol 2023; 24:256. [PMID: 37936225 PMCID: PMC10631206 DOI: 10.1186/s13059-023-03082-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 10/04/2023] [Indexed: 11/09/2023] Open
Abstract
BACKGROUND Daylength is a key seasonal cue for animals and plants. In cereals, photoperiodic responses are a major adaptive trait, and alleles of clock genes such as PHOTOPERIOD1 (PPD1) and EARLY FLOWERING3 (ELF3) have been selected for in adapting barley and wheat to northern latitudes. How monocot plants sense photoperiod and integrate this information into growth and development is not well understood. RESULTS We find that phytochrome C (PHYC) is essential for flowering in Brachypodium distachyon. Conversely, ELF3 acts as a floral repressor and elf3 mutants display a constitutive long day phenotype and transcriptome. We find that ELF3 and PHYC occur in a common complex. ELF3 associates with the promoters of a number of conserved regulators of flowering, including PPD1 and VRN1. Consistent with observations in barley, we are able to show that PPD1 overexpression accelerates flowering in short days and is necessary for rapid flowering in response to long days. PHYC is in the active Pfr state at the end of the day, but we observe it undergoes dark reversion over the course of the night. CONCLUSIONS We propose that PHYC acts as a molecular timer and communicates information on night-length to the circadian clock via ELF3.
Collapse
Affiliation(s)
- Mingjun Gao
- Sainsbury Laboratory, University of Cambridge, 47 Bateman St., Cambridge, CB2 1LR, UK
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Institute of Biodiversity Science and Institute of Eco-Chongming, School of Life Sciences, Fudan University, Shanghai, China
| | - Yunlong Lu
- Leibniz-Institut für Gemüse- und Zierpflanzenbau, Theodor-Echtermeyer-Weg 1, Großbeeren, 14979, Germany
| | - Feng Geng
- Sainsbury Laboratory, University of Cambridge, 47 Bateman St., Cambridge, CB2 1LR, UK
| | - Cornelia Klose
- Institut für Biologie II, University of Freiburg, Schaenzlestr. 1, Freiburg, 79104, Germany
| | - Anne-Marie Staudt
- Institut für Biologie II, University of Freiburg, Schaenzlestr. 1, Freiburg, 79104, Germany
| | - He Huang
- Donald Danforth Plant Science Center, St. Louis, MO, 63132, USA
| | - Duy Nguyen
- Sainsbury Laboratory, University of Cambridge, 47 Bateman St., Cambridge, CB2 1LR, UK
| | - Hui Lan
- Sainsbury Laboratory, University of Cambridge, 47 Bateman St., Cambridge, CB2 1LR, UK
| | - Han Lu
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Institute of Biodiversity Science and Institute of Eco-Chongming, School of Life Sciences, Fudan University, Shanghai, China
| | - Todd C Mockler
- Donald Danforth Plant Science Center, St. Louis, MO, 63132, USA
| | | | - Andreas Hiltbrunner
- Institut für Biologie II, University of Freiburg, Schaenzlestr. 1, Freiburg, 79104, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, 79104, Germany
| | - Eberhard Schäfer
- Institut für Biologie II, University of Freiburg, Schaenzlestr. 1, Freiburg, 79104, Germany
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, Schaenzlestr. 18, Freiburg, 79104, Germany
| | - Philip A Wigge
- Sainsbury Laboratory, University of Cambridge, 47 Bateman St., Cambridge, CB2 1LR, UK.
- Leibniz-Institut für Gemüse- und Zierpflanzenbau, Theodor-Echtermeyer-Weg 1, Großbeeren, 14979, Germany.
- Institute of Biochemistry and Biology, University of Potsdam, Potsdam, 14476, Germany.
| | - Katja E Jaeger
- Sainsbury Laboratory, University of Cambridge, 47 Bateman St., Cambridge, CB2 1LR, UK.
- Leibniz-Institut für Gemüse- und Zierpflanzenbau, Theodor-Echtermeyer-Weg 1, Großbeeren, 14979, Germany.
| |
Collapse
|
8
|
Zhang M, Jiang Y, Dong H, Shan X, Tian J, Sun M, Ma F, Ren C, Yuan Y. Transcriptomic response for revealing the molecular mechanism of oat flowering under different photoperiods. FRONTIERS IN PLANT SCIENCE 2023; 14:1279107. [PMID: 38023932 PMCID: PMC10644674 DOI: 10.3389/fpls.2023.1279107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 10/19/2023] [Indexed: 12/01/2023]
Abstract
Proper flowering is essential for the reproduction of all kinds of plants. Oat is an important cereal and forage crop; however, its cultivation is limited because it is a long-day plant. The molecular mechanism by which oats respond to different photoperiods is still unclear. In this study, oat plants were treated under long-day and short-day photoperiods for 10 days, 15 days, 20 days, 25 days, 30 days, 40 days and 50 days, respectively. Under the long-day treatment, oats entered the reproductive stage, while oats remained vegetative under the short-day treatment. Forty-two samples were subjected to RNA-Seq to compare the gene expression patterns of oat under long- and short-day photoperiods. A total of 634-5,974 differentially expressed genes (DEGs) were identified for each time point, while the floral organ primordium differentiation stage showed the largest number of DEGs, and the spikelet differentiation stage showed the smallest number. Gene Ontology (GO) analysis showed that the plant hormone signaling transduction and hormone metabolism processes significantly changed in the photoperiod regulation of flowering time in oat. Moreover, Kyoto Encyclopedia of Genes and Genomes (KEGG) and Mapman analysis revealed that the DEGs were mainly concentrated in the circadian rhythm, protein antenna pathways and sucrose metabolism process. Additionally, transcription factors (TFs) involved in various flowering pathways were explored. Combining all this information, we established a molecular model of oat flowering induced by a long-day photoperiod. Taken together, the long-day photoperiod has a large effect at both the morphological and transcriptomic levels, and these responses ultimately promote flowering in oat. Our findings expand the understanding of oat as a long-day plant, and the explored genes could be used in molecular breeding to help break its cultivation limitations in the future.
Collapse
Affiliation(s)
- Man Zhang
- Jilin Engineering Research Center for Crop Biotechnology Breeding, College of Plant Science, Jilin University, Changchun, China
- Key Laboratory of Biotechnology of Jinlin Province, Baicheng Academy of Agricultural Science, Baicheng, China
| | - Yuan Jiang
- Jilin Engineering Research Center for Crop Biotechnology Breeding, College of Plant Science, Jilin University, Changchun, China
| | - Haixiao Dong
- Jilin Engineering Research Center for Crop Biotechnology Breeding, College of Plant Science, Jilin University, Changchun, China
| | - Xiaohui Shan
- Jilin Engineering Research Center for Crop Biotechnology Breeding, College of Plant Science, Jilin University, Changchun, China
| | - Juan Tian
- Key Laboratory of Biotechnology of Jinlin Province, Baicheng Academy of Agricultural Science, Baicheng, China
| | - Moke Sun
- Key Laboratory of Biotechnology of Jinlin Province, Baicheng Academy of Agricultural Science, Baicheng, China
| | - Feiyue Ma
- Key Laboratory of Biotechnology of Jinlin Province, Baicheng Academy of Agricultural Science, Baicheng, China
| | - Changzhong Ren
- Key Laboratory of Biotechnology of Jinlin Province, Baicheng Academy of Agricultural Science, Baicheng, China
| | - Yaping Yuan
- Jilin Engineering Research Center for Crop Biotechnology Breeding, College of Plant Science, Jilin University, Changchun, China
| |
Collapse
|
9
|
Alvarez MA, Li C, Lin H, Joe A, Padilla M, Woods DP, Dubcovsky J. EARLY FLOWERING 3 interactions with PHYTOCHROME B and PHOTOPERIOD1 are critical for the photoperiodic regulation of wheat heading time. PLoS Genet 2023; 19:e1010655. [PMID: 37163495 PMCID: PMC10171656 DOI: 10.1371/journal.pgen.1010655] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 02/04/2023] [Indexed: 05/12/2023] Open
Abstract
The photoperiodic response is critical for plants to adjust their reproductive phase to the most favorable season. Wheat heads earlier under long days (LD) than under short days (SD) and this difference is mainly regulated by the PHOTOPERIOD1 (PPD1) gene. Tetraploid wheat plants carrying the Ppd-A1a allele with a large deletion in the promoter head earlier under SD than plants carrying the wildtype Ppd-A1b allele with an intact promoter. Phytochromes PHYB and PHYC are necessary for the light activation of PPD1, and mutations in either of these genes result in the downregulation of PPD1 and very late heading time. We show here that both effects are reverted when the phyB mutant is combined with loss-of-function mutations in EARLY FLOWERING 3 (ELF3), a component of the Evening Complex (EC) in the circadian clock. We also show that the wheat ELF3 protein interacts with PHYB and PHYC, is rapidly modified by light, and binds to the PPD1 promoter in planta (likely as part of the EC). Deletion of the ELF3 binding region in the Ppd-A1a promoter results in PPD1 upregulation at dawn, similar to PPD1 alleles with intact promoters in the elf3 mutant background. The upregulation of PPD1 is correlated with the upregulation of the florigen gene FLOWERING LOCUS T1 (FT1) and early heading time. Loss-of-function mutations in PPD1 result in the downregulation of FT1 and delayed heading, even when combined with the elf3 mutation. Taken together, these results indicate that ELF3 operates downstream of PHYB as a direct transcriptional repressor of PPD1, and that this repression is relaxed both by light and by the deletion of the ELF3 binding region in the Ppd-A1a promoter. In summary, the regulation of the light mediated activation of PPD1 by ELF3 is critical for the photoperiodic regulation of wheat heading time.
Collapse
Affiliation(s)
- Maria Alejandra Alvarez
- Department of Plant Sciences, University of California, Davis, California, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| | - Chengxia Li
- Department of Plant Sciences, University of California, Davis, California, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| | - Huiqiong Lin
- Department of Plant Sciences, University of California, Davis, California, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| | - Anna Joe
- Department of Plant Sciences, University of California, Davis, California, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| | - Mariana Padilla
- Department of Plant Sciences, University of California, Davis, California, United States of America
| | - Daniel P Woods
- Department of Plant Sciences, University of California, Davis, California, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| | - Jorge Dubcovsky
- Department of Plant Sciences, University of California, Davis, California, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| |
Collapse
|
10
|
Wittern L, Steed G, Taylor LJ, Ramirez DC, Pingarron-Cardenas G, Gardner K, Greenland A, Hannah MA, Webb AAR. Wheat EARLY FLOWERING 3 affects heading date without disrupting circadian oscillations. PLANT PHYSIOLOGY 2023; 191:1383-1403. [PMID: 36454669 PMCID: PMC9922389 DOI: 10.1093/plphys/kiac544] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 09/23/2022] [Accepted: 11/29/2022] [Indexed: 05/26/2023]
Abstract
Plant breeders have indirectly selected for variation at circadian-associated loci in many of the world's major crops, when breeding to increase yield and improve crop performance. Using an eight-parent Multiparent Advanced Generation Inter-Cross (MAGIC) population, we investigated how variation in circadian clock-associated genes contributes to the regulation of heading date in UK and European winter wheat (Triticum aestivum) varieties. We identified homoeologues of EARLY FLOWERING 3 (ELF3) as candidates for the Earliness per se (Eps) D1 and B1 loci under field conditions. We then confirmed a single-nucleotide polymorphism within the coding region of TaELF3-B1 as a candidate polymorphism underlying the Eps-B1 locus. We found that a reported deletion at the Eps-D1 locus encompassing TaELF3-D1 is, instead, an allele that lies within an introgression region containing an inversion relative to the Chinese Spring D genome. Using Triticum turgidum cv. Kronos carrying loss-of-function alleles of TtELF3, we showed that ELF3 regulates heading, with loss of a single ELF3 homoeologue sufficient to alter heading date. These studies demonstrated that ELF3 forms part of the circadian oscillator; however, the loss of all homoeologues was required to affect circadian rhythms. Similarly, loss of functional LUX ARRHYTHMO (LUX) in T. aestivum, an orthologue of a protein partner of Arabidopsis (Arabidopsis thaliana) ELF3, severely disrupted circadian rhythms. ELF3 and LUX transcripts are not co-expressed at dusk, suggesting that the structure of the wheat circadian oscillator might differ from that of Arabidopsis. Our demonstration that alterations to ELF3 homoeologues can affect heading date separately from effects on the circadian oscillator suggests a role for ELF3 in cereal photoperiodic responses that could be selected for without pleiotropic deleterious alterations to circadian rhythms.
Collapse
Affiliation(s)
- Lukas Wittern
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | - Gareth Steed
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | - Laura J Taylor
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | - Dora Cano Ramirez
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | | | - Keith Gardner
- The John Bingham Laboratory, NIAB, 93 Lawrence Weaver Road, Cambridge, CB3 0LE, UK
| | - Andy Greenland
- The John Bingham Laboratory, NIAB, 93 Lawrence Weaver Road, Cambridge, CB3 0LE, UK
| | - Matthew A Hannah
- BASF, BBCC – Innovation Center Gent, Technologiepark-Zwijnaarde 101, 9052 Gent, Belgium
| | - Alex A R Webb
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| |
Collapse
|
11
|
Plants change their clocks to flower at the right time. Proc Natl Acad Sci U S A 2022; 119:e2208745119. [PMID: 35858367 PMCID: PMC9304005 DOI: 10.1073/pnas.2208745119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
12
|
The evening complex integrates photoperiod signals to control flowering in rice. Proc Natl Acad Sci U S A 2022; 119:e2122582119. [PMID: 35733265 DOI: 10.1073/pnas.2122582119] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Plants use photoperiodism to activate flowering in response to a particular daylength. In rice, flowering is accelerated in short-day conditions, and even a brief exposure to light during the dark period (night-break) is sufficient to delay flowering. Although many of the genes involved in controlling flowering in rice have been uncovered, how the long- and short-day flowering pathways are integrated, and the mechanism of photoperiod perception is not understood. While many of the signaling components controlling photoperiod-activated flowering are conserved between Arabidopsis and rice, flowering in these two systems is activated by opposite photoperiods. Here we establish that photoperiodism in rice is controlled by the evening complex (EC). We show that mutants in the EC genes LUX ARRYTHMO (LUX) and EARLY FLOWERING3 (ELF3) paralogs abolish rice flowering. We also show that the EC directly binds and suppresses the expression of flowering repressors, including PRR37 and Ghd7. We further demonstrate that light acts via phyB to cause a rapid and sustained posttranslational modification of ELF3-1. Our results suggest a mechanism by which the EC is able to control both long- and short-day flowering pathways.
Collapse
|
13
|
Fjellheim S, Young DA, Paliocha M, Johnsen SS, Schubert M, Preston JC. Major niche transitions in Pooideae correlate with variation in photoperiodic flowering and evolution of CCT domain genes. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:4079-4093. [PMID: 35394528 PMCID: PMC9232202 DOI: 10.1093/jxb/erac149] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 04/07/2022] [Indexed: 06/14/2023]
Abstract
The external cues that trigger timely flowering vary greatly across tropical and temperate plant taxa, the latter relying on predictable seasonal fluctuations in temperature and photoperiod. In the grass family (Poaceae) for example, species of the subfamily Pooideae have become specialists of the northern temperate hemisphere, generating the hypothesis that their progenitor evolved a flowering response to long days from a short-day or day-neutral ancestor. Sampling across the Pooideae, we found support for this hypothesis, and identified several secondary shifts to day-neutral flowering and one to short-day flowering in a tropical highland clade. To explain the proximate mechanisms for the secondary transition back to short-day-regulated flowering, we investigated the expression of CCT domain genes, some of which are known to repress flowering in cereal grasses under specific photoperiods. We found a shift in CONSTANS 1 and CONSTANS 9 expression that coincides with the derived short-day photoperiodism of our exemplar species Nassella pubiflora. This sets up the testable hypothesis that trans- or cis-regulatory elements of these CCT domain genes were the targets of selection for major niche shifts in Pooideae grasses.
Collapse
Affiliation(s)
| | - Darshan A Young
- Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, 1432 Ås, Norway
| | - Martin Paliocha
- Department of Plant Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, 1432 Ås, Norway
| | - Sylvia Sagen Johnsen
- Department of Plant Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, 1432 Ås, Norway
| | - Marian Schubert
- Department of Plant Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, 1432 Ås, Norway
| | - Jill C Preston
- Department of Plant Biology, The University of Vermont, Burlington, VT 05405, USA
| |
Collapse
|
14
|
Debernardi JM, Woods DP, Li K, Li C, Dubcovsky J. MiR172-APETALA2-like genes integrate vernalization and plant age to control flowering time in wheat. PLoS Genet 2022; 18:e1010157. [PMID: 35468125 PMCID: PMC9037917 DOI: 10.1371/journal.pgen.1010157] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 03/20/2022] [Indexed: 11/28/2022] Open
Abstract
Plants possess regulatory mechanisms that allow them to flower under conditions that maximize reproductive success. Selection of natural variants affecting those mechanisms has been critical in agriculture to modulate the flowering response of crops to specific environments and to increase yield. In the temperate cereals, wheat and barley, the photoperiod and vernalization pathways explain most of the natural variation in flowering time. However, other pathways also participate in fine-tuning the flowering response. In this work, we integrate the conserved microRNA miR172 and its targets APETALA2-like (AP2L) genes into the temperate grass flowering network involving VERNALIZATION 1 (VRN1), VRN2 and FLOWERING LOCUS T 1 (FT1 = VRN3) genes. Using mutants, transgenics and different growing conditions, we show that miR172 promotes flowering in wheat, while its target genes AP2L1 (TaTOE1) and AP2L5 (Q) act as flowering repressors. Moreover, we reveal that the miR172-AP2L pathway regulates FT1 expression in the leaves, and that this regulation is independent of VRN2 and VRN1. In addition, we show that the miR172-AP2L module and flowering are both controlled by plant age through miR156 in spring cultivars. However, in winter cultivars, flowering and the regulation of AP2L1 expression are decoupled from miR156 downregulation with age, and induction of VRN1 by vernalization is required to repress AP2L1 in the leaves and promote flowering. Interestingly, the levels of miR172 and both AP2L genes modulate the flowering response to different vernalization treatments in winter cultivars. In summary, our results show that conserved and grass specific gene networks interact to modulate the flowering response, and that natural or induced mutations in AP2L genes are useful tools for fine-tuning wheat flowering time in a changing environment.
Collapse
Affiliation(s)
- Juan M. Debernardi
- Department of Plant Sciences, University of California, Davis, California, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| | - Daniel P. Woods
- Department of Plant Sciences, University of California, Davis, California, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| | - Kun Li
- Department of Plant Sciences, University of California, Davis, California, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| | - Chengxia Li
- Department of Plant Sciences, University of California, Davis, California, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| | - Jorge Dubcovsky
- Department of Plant Sciences, University of California, Davis, California, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| |
Collapse
|
15
|
Proietti S, Scariot V, De Pascale S, Paradiso R. Flowering Mechanisms and Environmental Stimuli for Flower Transition: Bases for Production Scheduling in Greenhouse Floriculture. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11030432. [PMID: 35161415 PMCID: PMC8839403 DOI: 10.3390/plants11030432] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/01/2022] [Accepted: 02/02/2022] [Indexed: 05/14/2023]
Abstract
The scheduling of plant production is a critical aspect in modern floriculture since nowadays, sales are not oriented toward the recurring holidays as in the past, but always more toward impulse buying, implying a more diverse and constant demand on the market. This requires continuous production, often regulated by precise commercial agreements between growers and buyers, and between buyers and dealers, particularly in large-scale retail trade. In this scenario, diverse techniques to modulate the duration of the growing cycle, by hastening or slowing down plant growth and development, have been developed to match plant flowering to the market demand. Among the numerous approaches, the manipulation of climatic parameters in the growth environment is one of the most common in greenhouse floriculture. In this review, we summarize the physiological and biochemical bases underlying the main mechanisms of flowering, depending on the plant reaction to endogenous signals or environmental stimuli. In addition, the strategies based on the control of temperature (before or after planting) and light environment (as light intensity and spectrum, and the photoperiod) in the scheduling of flower and ornamental crop production are briefly described.
Collapse
Affiliation(s)
- Simona Proietti
- Research Institute on Terrestrial Ecosystems (IRET), National Research Council of Italy (CNR), Porano, 05010 Terni, Italy;
| | - Valentina Scariot
- Department of Agricultural, Forest and Food Sciences, University of Turin, Grugliasco, 10095 Torino, Italy;
| | - Stefania De Pascale
- Department of Agricultural Sciences, University of Naples Federico II, 80138 Napoli, Italy;
| | - Roberta Paradiso
- Department of Agricultural Sciences, University of Naples Federico II, 80138 Napoli, Italy;
- Correspondence: ; Tel.: +39-(081)-253-9135
| |
Collapse
|
16
|
Bouché F, Woods DP, Linden J, Li W, Mayer KS, Amasino RM, Périlleux C. EARLY FLOWERING 3 and Photoperiod Sensing in Brachypodium distachyon. FRONTIERS IN PLANT SCIENCE 2022; 12:769194. [PMID: 35069625 PMCID: PMC8770904 DOI: 10.3389/fpls.2021.769194] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 12/13/2021] [Indexed: 05/26/2023]
Abstract
The proper timing of flowering, which is key to maximize reproductive success and yield, relies in many plant species on the coordination between environmental cues and endogenous developmental programs. The perception of changes in day length is one of the most reliable cues of seasonal change, and this involves the interplay between the sensing of light signals and the circadian clock. Here, we describe a Brachypodium distachyon mutant allele of the evening complex protein EARLY FLOWERING 3 (ELF3). We show that the elf3 mutant flowers more rapidly than wild type plants in short days as well as under longer photoperiods but, in very long (20 h) days, flowering is equally rapid in elf3 and wild type. Furthermore, flowering in the elf3 mutant is still sensitive to vernalization, but not to ambient temperature changes. Molecular analyses revealed that the expression of a short-day marker gene is suppressed in elf3 grown in short days, and the expression patterns of clock genes and flowering time regulators are altered. We also explored the mechanisms of photoperiodic perception in temperate grasses by exposing B. distachyon plants grown under a 12 h photoperiod to a daily night break consisting of a mixture of red and far-red light. We showed that 2 h breaks are sufficient to accelerate flowering in B. distachyon under non-inductive photoperiods and that this acceleration of flowering is mediated by red light. Finally, we discuss advances and perspectives for research on the perception of photoperiod in temperate grasses.
Collapse
Affiliation(s)
- Frédéric Bouché
- Laboratory of Plant Physiology, InBioS-PhytoSYSTEMS, Department of Life Sciences, University of Liège, Liège, Belgium
| | - Daniel P. Woods
- Plant Sciences Department, University of California, Davis, Davis, CA, United States
- Laboratory of Genetics, University of Wisconsin, Madison, WI, United States
- Department of Biochemistry, University of Wisconsin, Madison, WI, United States
- United States Department of Energy Great Lakes Bioenergy Research Center, University of Wisconsin, Madison, WI, United States
- Howard Hughes Medical Institute, Chevy Chase, MD, United States
| | - Julie Linden
- Laboratory of Plant Physiology, InBioS-PhytoSYSTEMS, Department of Life Sciences, University of Liège, Liège, Belgium
| | - Weiya Li
- Department of Biochemistry, University of Wisconsin, Madison, WI, United States
| | - Kevin S. Mayer
- Laboratory of Genetics, University of Wisconsin, Madison, WI, United States
| | - Richard M. Amasino
- Laboratory of Genetics, University of Wisconsin, Madison, WI, United States
- Department of Biochemistry, University of Wisconsin, Madison, WI, United States
- United States Department of Energy Great Lakes Bioenergy Research Center, University of Wisconsin, Madison, WI, United States
| | - Claire Périlleux
- Laboratory of Plant Physiology, InBioS-PhytoSYSTEMS, Department of Life Sciences, University of Liège, Liège, Belgium
| |
Collapse
|
17
|
Wu Q, Luo Y, Wu X, Bai X, Ye X, Liu C, Wan Y, Xiang D, Li Q, Zou L, Zhao G. Identification of the specific long-noncoding RNAs involved in night-break mediated flowering retardation in Chenopodium quinoa. BMC Genomics 2021; 22:284. [PMID: 33874907 PMCID: PMC8056640 DOI: 10.1186/s12864-021-07605-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 04/08/2021] [Indexed: 11/10/2022] Open
Abstract
Background Night-break (NB) has been proven to repress flowering of short-day plants (SDPs). Long-noncoding RNAs (lncRNAs) play key roles in plant flowering. However, investigation of the relationship between lncRNAs and NB responses is still limited, especially in Chenopodium quinoa, an important short-day coarse cereal. Results In this study, we performed strand-specific RNA-seq of leaf samples collected from quinoa seedlings treated by SD and NB. A total of 4914 high-confidence lncRNAs were identified, out of which 91 lncRNAs showed specific responses to SD and NB. Based on the expression profiles, we identified 17 positive- and 7 negative-flowering lncRNAs. Co-expression network analysis indicated that 1653 mRNAs were the common targets of both types of flowering lncRNAs. By mapping these targets to the known flowering pathways in model plants, we found some pivotal flowering homologs, including 2 florigen encoding genes (FT (FLOWERING LOCUS T) and TSF (TWIN SISTER of FT) homologs), 3 circadian clock related genes (EARLY FLOWERING 3 (ELF3), LATE ELONGATED HYPOCOTYL (LHY) and ELONGATED HYPOCOTYL 5 (HY5) homologs), 2 photoreceptor genes (PHYTOCHROME A (PHYA) and CRYPTOCHROME1 (CRY1) homologs), 1 B-BOX type CONSTANS (CO) homolog and 1 RELATED TO ABI3/VP1 (RAV1) homolog, were specifically affected by NB and competed by the positive and negative-flowering lncRNAs. We speculated that these potential flowering lncRNAs may mediate quinoa NB responses by modifying the expression of the floral homologous genes. Conclusions Together, the findings in this study will deepen our understanding of the roles of lncRNAs in NB responses, and provide valuable information for functional characterization in future. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07605-2.
Collapse
Affiliation(s)
- Qi Wu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengluo road 2025, Shiling town, Longquanyi District, Chengdu, 610106, Sichuan Province, P.R. China.
| | - Yiming Luo
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengluo road 2025, Shiling town, Longquanyi District, Chengdu, 610106, Sichuan Province, P.R. China
| | - Xiaoyong Wu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengluo road 2025, Shiling town, Longquanyi District, Chengdu, 610106, Sichuan Province, P.R. China
| | - Xue Bai
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengluo road 2025, Shiling town, Longquanyi District, Chengdu, 610106, Sichuan Province, P.R. China
| | - Xueling Ye
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengluo road 2025, Shiling town, Longquanyi District, Chengdu, 610106, Sichuan Province, P.R. China
| | - Changying Liu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengluo road 2025, Shiling town, Longquanyi District, Chengdu, 610106, Sichuan Province, P.R. China
| | - Yan Wan
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengluo road 2025, Shiling town, Longquanyi District, Chengdu, 610106, Sichuan Province, P.R. China
| | - Dabing Xiang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengluo road 2025, Shiling town, Longquanyi District, Chengdu, 610106, Sichuan Province, P.R. China
| | - Qiang Li
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengluo road 2025, Shiling town, Longquanyi District, Chengdu, 610106, Sichuan Province, P.R. China
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengluo road 2025, Shiling town, Longquanyi District, Chengdu, 610106, Sichuan Province, P.R. China
| | - Gang Zhao
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengluo road 2025, Shiling town, Longquanyi District, Chengdu, 610106, Sichuan Province, P.R. China
| |
Collapse
|
18
|
Deepika, Ankit, Sagar S, Singh A. Dark-Induced Hormonal Regulation of Plant Growth and Development. FRONTIERS IN PLANT SCIENCE 2020; 11:581666. [PMID: 33117413 PMCID: PMC7575791 DOI: 10.3389/fpls.2020.581666] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 09/16/2020] [Indexed: 05/04/2023]
Abstract
The sessile nature of plants has made them extremely sensitive and flexible toward the constant flux of the surrounding environment, particularly light and dark. The light is perceived as a signal by specific receptors which further transduce the information through the signaling intermediates and effector proteins to modulate gene expression. Signal transduction induces changes in hormone levels that alters developmental, physiological and morphological processes. Importance of light for plants growth is well recognized, but a holistic understanding of key molecular and physiological changes governing plants development under dark is awaited. Here, we describe how darkness acts as a signal causing alteration in hormone levels and subsequent modulation of the gene regulatory network throughout plant life. The emphasis of this review is on dark mediated changes in plant hormones, regulation of signaling complex COP/DET/FUS and the transcription factors PIFs which affects developmental events such as apical hook development, elongated hypocotyls, photoperiodic flowering, shortened roots, and plastid development. Furthermore, the role of darkness in shade avoidance and senescence is discussed.
Collapse
Affiliation(s)
| | | | | | - Amarjeet Singh
- National Institute of Plant Genome Research, New Delhi, India
| |
Collapse
|
19
|
Shaw LM, Li C, Woods DP, Alvarez MA, Lin H, Lau MY, Chen A, Dubcovsky J. Epistatic interactions between PHOTOPERIOD1, CONSTANS1 and CONSTANS2 modulate the photoperiodic response in wheat. PLoS Genet 2020; 16:e1008812. [PMID: 32658893 PMCID: PMC7394450 DOI: 10.1371/journal.pgen.1008812] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/31/2020] [Accepted: 06/12/2020] [Indexed: 02/06/2023] Open
Abstract
In Arabidopsis, CONSTANS (CO) integrates light and circadian clock signals to promote flowering under long days (LD). In the grasses, a duplication generated two paralogs designated as CONSTANS1 (CO1) and CONSTANS2 (CO2). Here we show that in tetraploid wheat plants grown under LD, combined loss-of-function mutations in the A and B-genome homeologs of CO1 and CO2 (co1 co2) result in a small (3 d) but significant (P<0.0001) acceleration of heading time both in PHOTOPERIOD1 (PPD1) sensitive (Ppd-A1b, functional ancestral allele) and insensitive (Ppd-A1a, functional dominant allele) backgrounds. Under short days (SD), co1 co2 mutants headed 13 d earlier than the wild type (P<0.0001) in the presence of Ppd-A1a. However, in the presence of Ppd-A1b, spikes from both genotypes failed to emerge by 180 d. These results indicate that CO1 and CO2 operate mainly as weak heading time repressors in both LD and SD. By contrast, in ppd1 mutants with loss-of-function mutations in both PPD1 homeologs, the wild type Co1 allele accelerated heading time >60 d relative to the co1 mutant allele under LD. We detected significant genetic interactions among CO1, CO2 and PPD1 genes on heading time, which were reflected in complex interactions at the transcriptional and protein levels. Loss-of-function mutations in PPD1 delayed heading more than combined co1 co2 mutations and, more importantly, PPD1 was able to perceive and respond to differences in photoperiod in the absence of functional CO1 and CO2 genes. Similarly, CO1 was able to accelerate heading time in response to LD in the absence of a functional PPD1. Taken together, these results indicate that PPD1 and CO1 are able to respond to photoperiod in the absence of each other, and that interactions between these two photoperiod pathways at the transcriptional and protein levels are important to fine-tune the flowering response in wheat.
Collapse
Affiliation(s)
- Lindsay M. Shaw
- Department of Plant Sciences, University of California, Davis, California, United States of America
- Currently at Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD, Australia
| | - Chengxia Li
- Department of Plant Sciences, University of California, Davis, California, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| | - Daniel P. Woods
- Department of Plant Sciences, University of California, Davis, California, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| | - Maria A. Alvarez
- Department of Plant Sciences, University of California, Davis, California, United States of America
| | - Huiqiong Lin
- Department of Plant Sciences, University of California, Davis, California, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| | - Mei Y. Lau
- Department of Plant Sciences, University of California, Davis, California, United States of America
| | - Andrew Chen
- Department of Plant Sciences, University of California, Davis, California, United States of America
| | - Jorge Dubcovsky
- Department of Plant Sciences, University of California, Davis, California, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| |
Collapse
|
20
|
Kippes N, VanGessel C, Hamilton J, Akpinar A, Budak H, Dubcovsky J, Pearce S. Effect of phyB and phyC loss-of-function mutations on the wheat transcriptome under short and long day photoperiods. BMC PLANT BIOLOGY 2020; 20:297. [PMID: 32600268 PMCID: PMC7325275 DOI: 10.1186/s12870-020-02506-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 06/18/2020] [Indexed: 05/26/2023]
Abstract
BACKGROUND Photoperiod signals provide important cues by which plants regulate their growth and development in response to predictable seasonal changes. Phytochromes, a family of red and far-red light receptors, play critical roles in regulating flowering time in response to changing photoperiods. A previous study showed that loss-of-function mutations in either PHYB or PHYC result in large delays in heading time and in the differential regulation of a large number of genes in wheat plants grown in an inductive long day (LD) photoperiod. RESULTS We found that under non-inductive short-day (SD) photoperiods, phyB-null and phyC-null mutants were taller, had a reduced number of tillers, longer and wider leaves, and headed later than wild-type (WT) plants. The delay in heading between WT and phy mutants was greater in LD than in SD, confirming the importance of PHYB and PHYC in accelerating heading date in LDs. Both mutants flowered earlier in SD than LD, the inverse response to that of WT plants. In both SD and LD photoperiods, PHYB regulated more genes than PHYC. We identified subsets of differentially expressed and alternatively spliced genes that were specifically regulated by PHYB and PHYC in either SD or LD photoperiods, and a smaller set of genes that were regulated in both photoperiods. We found that photoperiod had a contrasting effect on transcript levels of the flowering promoting genes VRN-A1 and PPD-B1 in phyB and phyC mutants compared to the WT. CONCLUSIONS Our study confirms the major role of both PHYB and PHYC in flowering promotion in LD conditions. Transcriptome characterization revealed an unexpected reversion of the wheat LD plants into SD plants in the phyB-null and phyC-null mutants and identified flowering genes showing significant interactions between phytochromes and photoperiod that may be involved in this phenomenon. Our RNA-seq data provides insight into light signaling pathways in inductive and non-inductive photoperiods and a set of candidate genes to dissect the underlying developmental regulatory networks in wheat.
Collapse
Affiliation(s)
- Nestor Kippes
- Department of Plant Sciences, University of California, Davis, CA 95616 USA
- Current address: Department of Plant Biology, UC Davis Genome Center, University of California, Davis, CA 95616 USA
| | - Carl VanGessel
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO 80523 USA
| | - James Hamilton
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO 80523 USA
| | | | | | - Jorge Dubcovsky
- Department of Plant Sciences, University of California, Davis, CA 95616 USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815 USA
| | - Stephen Pearce
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO 80523 USA
| |
Collapse
|
21
|
Plantenga FDM, Heuvelink E, Rienstra JA, Visser RGF, Bachem CWB, Marcelis LFM. Coincidence of potato CONSTANS (StCOL1) expression and light cannot explain night-break repression of tuberization. PHYSIOLOGIA PLANTARUM 2019; 167:250-263. [PMID: 30478903 PMCID: PMC7379991 DOI: 10.1111/ppl.12885] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 11/19/2018] [Accepted: 11/20/2018] [Indexed: 06/09/2023]
Abstract
In the obligate short-day potato Solanum tuberosum group Andigena (Solanum andigena), short days, or actually long nights, induce tuberization. Applying a night break in the middle of this long night represses tuberization. However, it is not yet understood how this repression takes place. We suggest a coincidence model, similar to the model explaining photoperiodic flowering in Arabidopsis. We hypothesize that potato CONSTANS (StCOL1), expressed in the night of a short day, is stabilized by the light of the night break. This allows for StCOL1 to repress tuberization through induction of StSP5G, which represses the tuberization signal StSP6A. We grew S. andigena plants in short days, with night breaks applied at different time points during the dark period, either coinciding with StCOL1 expression or not. StCOL1 protein presence, StCOL1 expression and expression of downstream targets StSP5G and StSP6A were measured during a 24-h time course. Our results show that a night break applied during peak StCOL1 expression is unable to delay tuberization, while coincidence with low or no StCOL1 expression leads to severely repressed tuberization. These results imply that coincidence between StCOL1 expression and light does not explain why a night break represses tuberization in short days. Furthermore, stable StCOL1 did not always induce StSP5G, and upregulated StSP5G did not always lead to fully repressed StSP6A. Our findings suggest there is a yet unknown level of control between StCOL1, StSP5G and StSP6A expression, which determines whether a plant tuberizes.
Collapse
Affiliation(s)
- Faline D. M. Plantenga
- Horticulture and Product PhysiologyWageningen University & ResearchWageningenThe Netherlands
| | - Ep Heuvelink
- Horticulture and Product PhysiologyWageningen University & ResearchWageningenThe Netherlands
| | - Juriaan A. Rienstra
- Horticulture and Product PhysiologyWageningen University & ResearchWageningenThe Netherlands
| | | | | | - Leo F. M. Marcelis
- Horticulture and Product PhysiologyWageningen University & ResearchWageningenThe Netherlands
| |
Collapse
|
22
|
Thomson G, Taylor J, Putterill J. The transcriptomic response to a short day to long day shift in leaves of the reference legume Medicago truncatula. PeerJ 2019; 7:e6626. [PMID: 30923654 PMCID: PMC6432905 DOI: 10.7717/peerj.6626] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 02/15/2019] [Indexed: 02/04/2023] Open
Abstract
Photoperiodic flowering aligns plant reproduction to favourable seasons of the year to maximise successful production of seeds and grains. However understanding of this process in the temperate legumes of the Fabaceae family, which are important both agriculturally and ecologically, is incomplete. Previous work in the reference legume Medicago truncatula has shown that the FT-like gene MtFTa1 is a potent floral activator. While MtFTa1 is upregulated by long-day photoperiods (LD) and vernalisation, the molecular basis of this is unknown as functional homologues of key regulatory genes present in other species, notably CONSTANS in A. thaliana, have not been identified. In LD MtFTa1 maintains a near constant diurnal pattern of expression unlike its homologue FT in A. thaliana, which has a notable peak in expression at dusk. This suggests a different manner of regulation. Furthermore, M. truncatula possesses other FT-like genes such as two LD induced MtFTb genes which may also act in the regulation of flowering time. MtFTb genes have a diurnal pattern of expression with peaks at both four and sixteen hours after dawn. This study utilises RNA-Seq to analyse the transcriptome of M. truncatula leaves to identify genes which may regulate or be co-expressed with these FT-like genes following a shift from short-day photoperiods to inductive long-days. Specifically this study focuses on the first four hours of the day in the young leaves, which coincides with the first diurnal peak of the FTb genes. Following differential expression analysis at each timepoint, genes which alter their pattern of expression are distinguished from those which just alter their magnitude of expression (and those that do neither). It goes on to categorise these genes into groups with similar patterns of expression using c-means clustering and identifies a number of potential candidate photoperiod flowering time genes for future studies to consider.
Collapse
Affiliation(s)
- Geoffrey Thomson
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - James Taylor
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Joanna Putterill
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
23
|
Shaw LM, Lyu B, Turner R, Li C, Chen F, Han X, Fu D, Dubcovsky J. FLOWERING LOCUS T2 regulates spike development and fertility in temperate cereals. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:193-204. [PMID: 30295847 PMCID: PMC6305198 DOI: 10.1093/jxb/ery350] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 09/28/2018] [Indexed: 05/20/2023]
Abstract
FLOWERING LOCUS T2 (FT2) is the closest paralog of the FT1 flowering gene in the temperate grasses. Here we show that overexpression of FT2 in Brachypodium distachyon and barley results in precocious flowering and reduced spikelet number, while down-regulation by RNA interference results in delayed flowering and a reduced percentage of filled florets. Similarly, truncation mutations of FT2 homeologs in tetraploid wheat delayed flowering (2-4 d) and reduced fertility. The wheat ft2 mutants also showed a significant increase in the number of spikelets per spike, with a longer spike development period potentially contributing to the delayed heading time. In the wheat leaves, FT2 was expressed later than FT1, suggesting a relatively smaller role for FT2 in the initiation of the reproductive phase. FT2 transcripts were detected in the shoot apical meristem and increased during early spike development. Transversal sections of the developing spike showed the highest FT2 transcript levels in the distal part, where new spikelets are formed. Our results suggest that, in wheat, FT2 plays an important role in spike development and fertility and a limited role in the timing of the transition between the vegetative and reproductive shoot apical meristem.
Collapse
Affiliation(s)
- Lindsay M Shaw
- Department of Plant Sciences, University of California Davis, Davis, CA, USA
| | - Bo Lyu
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, Shandong, China
- Department of Plant Sciences, University of Idaho, Moscow, ID, USA
| | - Rebecca Turner
- Department of Plant Sciences, University of California Davis, Davis, CA, USA
| | - Chengxia Li
- Department of Plant Sciences, University of California Davis, Davis, CA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Fengjuan Chen
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, Shandong, China
| | - Xiuli Han
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, Shandong, China
| | - Daolin Fu
- Department of Plant Sciences, University of Idaho, Moscow, ID, USA
| | - Jorge Dubcovsky
- Department of Plant Sciences, University of California Davis, Davis, CA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
- Correspondence:
| |
Collapse
|
24
|
Shen Y, Xiang Y, Xu E, Ge X, Li Z. Major Co-localized QTL for Plant Height, Branch Initiation Height, Stem Diameter, and Flowering Time in an Alien Introgression Derived Brassica napus DH Population. FRONTIERS IN PLANT SCIENCE 2018; 9:390. [PMID: 29643859 PMCID: PMC5883169 DOI: 10.3389/fpls.2018.00390] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 03/12/2018] [Indexed: 05/18/2023]
Abstract
Plant height (PH), branch initiation height (BIH), and stem diameter (SD) are three stem-related traits that play crucial roles in plant architecture and lodging resistance. Herein, we show one doubled haploid (DH) population obtained from a cross between Y689 (one Capsella bursa-pastoris derived Brassica napus intertribal introgression) and Westar (B. napus cultivar) that these traits were significantly positively correlated with one another and with flowering time (FT). Based on a high-density SNP map, a total of 102 additive quantitative trait loci (QTL) were identified across six environments. Seventy-two consensus QTL and 49 unique QTL were identified using a two-round strategy of QTL meta-analysis. Notably, a total of 19 major QTL, including 11 novel ones, were detected for these traits, which comprised two QTL clusters on chromosomes A02 and A07. Conditional QTL mapping was performed to preliminarily evaluate the genetic basis (pleiotropy or tight linkage) of the co-localized QTL. In addition, QTL by environment interactions (QEI) mapping was performed to verify the additive QTL and estimate the QEI effect. In the genomic regions of all major QTL, orthologs of the genes involved in phytohormone biosynthesis, phytohormone signaling, flower development, and cell differentiation in Arabidopsis were proposed as candidate genes. Of these, BnaA02g02560, an ortholog of Arabidopsis GASA4, was suggested as a candidate gene for PH, SD, and FT; and BnaA02g08490, an ortholog of Arabidopsis GNL, was associated with PH, BIH and FT. These results provide useful information for further genetic studies on stem-related traits and plant growth adaptation.
Collapse
Affiliation(s)
- Yusen Shen
- National Key Laboratory of Crop Genetic Improvement, National Center of Oil Crop Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- *Correspondence: Yusen Shen
| | - Yang Xiang
- Guizhou Rapeseed Institute, Guizhou Academy of Agricultural Sciences, Guiyang, China
| | - Ensheng Xu
- National Key Laboratory of Crop Genetic Improvement, National Center of Oil Crop Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xianhong Ge
- National Key Laboratory of Crop Genetic Improvement, National Center of Oil Crop Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zaiyun Li
- National Key Laboratory of Crop Genetic Improvement, National Center of Oil Crop Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Zaiyun Li
| |
Collapse
|
25
|
Uauy C, Wulff BB, Dubcovsky J. Combining Traditional Mutagenesis with New High-Throughput Sequencing and Genome Editing to Reveal Hidden Variation in Polyploid Wheat. Annu Rev Genet 2017; 51:435-454. [DOI: 10.1146/annurev-genet-120116-024533] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Cristobal Uauy
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| | - Brande B.H. Wulff
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| | - Jorge Dubcovsky
- Howard Hughes Medical Institute and Department of Plant Sciences, University of California, Davis, California 95616, USA
| |
Collapse
|