1
|
Agarwal Y, Gauba P, Rani V. Unravelling the interplay between plant miRNAs and plant secondary metabolites: A new frontier in cross- kingdom regulatory mechanisms. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 225:109965. [PMID: 40339325 DOI: 10.1016/j.plaphy.2025.109965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 04/22/2025] [Accepted: 04/27/2025] [Indexed: 05/10/2025]
Abstract
MicroRNAs (miRNAs) are also known as single-stranded RNAs with 18-24 nucleotides and exhibit substantial conservation. They represent a class of innate RNAs that are essential for plant cell development, division, differentiation, proliferation, and death. The reported pharmacological effects of plant-derived secondary metabolites contribute to their therapeutic potential. Plant-derived miRNAs have drawn considerable interest as a result of their active involvement in these plant secondary metabolites (PSM). PSMs can be absorbed via diet, and exert a wide range of their therapeutic potential, via exogenous and endogenous interactions. The recent identification of plant miRNAs in controlling the expression of certain genes in mammals has attracted a lot of attention and created new opportunities for studying cross-kingdom regulatory mechanisms in biological research. This review discusses the role of miRNAs in plants, with focus on PSMs via cross-kingdom. The aim is to provide a conceptual theoretical framework based on the involvement of plant miRNA with secondary metabolites and being used as a transfer molecule for cross-kingdom gene regulation. Plant miRNAs' diverse expression patterns and ability to affect several physiological and developmental processes make them promising candidates for advancing preclinical research.
Collapse
Affiliation(s)
- Yamini Agarwal
- Transcriptome Laboratory, Centre of Emerging Diseases, Department of Biotechnology, Jaypee Institute of Information Technology, A-10, Sector-62, Noida, U.P., India
| | - Pammi Gauba
- Technology Solutions for Soil and Water Remediation (TSSR), Department of Biotechnology, Jaypee Institute of Information Technology, A-10, Sector-62, Noida, U.P., India
| | - Vibha Rani
- Transcriptome Laboratory, Centre of Emerging Diseases, Department of Biotechnology, Jaypee Institute of Information Technology, A-10, Sector-62, Noida, U.P., India.
| |
Collapse
|
2
|
Zulfiqar S, Gu R, Liu Y, Zhang Y. From genes to traits: maximizing phosphorus utilization efficiency in crop plants. FRONTIERS IN PLANT SCIENCE 2025; 16:1527547. [PMID: 40265110 PMCID: PMC12011862 DOI: 10.3389/fpls.2025.1527547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 03/18/2025] [Indexed: 04/24/2025]
Abstract
Phosphorus (P) is a critical macronutrient for plant growth, but its limited availability requires efficient utilization strategies. The excessive use of P fertilizers leads to low phosphorus utilization efficiency (PUE), causing severe environmental impacts and speeding up the exhaustion of P mineral reserves. Plants respond to inorganic phosphate (Pi) deficiency through complex signaling pathways that trigger changes in gene expression, root architecture, and metabolic pathways to enhance P acquisition and utilization efficiency. By exploring the interplay between genetic regulators and microorganisms, cultivars with superior PUE traits can be developed, which will ensure agricultural resilience and productivity in the face of depleting global P reserves. We highlight the synergistic interaction between genetic regulators and microorganisms to boost PUE as well as recent advancements in unraveling molecular mechanisms governing P homeostasis in plants, emphasizing the urgency to improve plant traits for improved P utilization.
Collapse
Affiliation(s)
- Sumer Zulfiqar
- College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Harbin, China
| | - Ran Gu
- College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Harbin, China
| | - Yan Liu
- College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Harbin, China
| | - Yaowei Zhang
- College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Harbin, China
| |
Collapse
|
3
|
Sharma NK, Mishra DC, Kumar B, Srivastava S, Chaturvedi KK, Singh AK, Madival SD, Budhlakoti N, Jha GK. Beyond the genome: unveiling tissue-specific non-coding RNAs in clove ( Syzygium aromaticum L.). 3 Biotech 2025; 15:81. [PMID: 40071125 PMCID: PMC11891123 DOI: 10.1007/s13205-025-04251-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 02/19/2025] [Indexed: 03/14/2025] Open
Abstract
Clove (Syzygium aromaticum), valued for its role in food preservation and medicine, has recently drawn research interest for its noncoding RNAs (ncRNAs). This study discovers 3274 long noncoding RNAs (lncRNAs) and 2404 circular RNAs (circRNAs) from publicly available RNAseq data. We identified the regulation of 834 genes through miRNA-lncRNA-mRNA network interactions. Additionally, 35 lncRNAs were predicted as precursors for 17 microRNAs (miRNAs), highlighting their role in post-transcriptional regulation. Tissue-specific analysis of circRNAs revealed their interaction with 1047 miRNAs and competing for binding sites on 2382 messenger RNAs (mRNAs). These results underscore their involvement in complex regulatory networks. To support further research and development, we developed SaroNcRDb (http://backlin.cabgrid.res.in/saroncrdb/), a web resource providing detailed insights into the types, chromosomal locations, tissue distributions, and interactions of identified ncRNAs. The findings pave the way for future studies to harness the regulatory roles of ncRNAs in improving Clove's agronomic traits and secondary metabolite production.
Collapse
Affiliation(s)
- Nitesh Kumar Sharma
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012 India
- The Graduate School, ICAR-Indian Agricultural Research Institute, New Delhi, 110012 India
| | - Dwijesh Chandra Mishra
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012 India
- Department of Environmental and Public Health, College of Medicine, University of Cincinnati, Cincinnati, OH 45221 USA
| | - Baibhav Kumar
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012 India
- The Graduate School, ICAR-Indian Agricultural Research Institute, New Delhi, 110012 India
| | - Sudhir Srivastava
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012 India
| | - Krishna Kumar Chaturvedi
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012 India
| | - Awani Kumar Singh
- Centre for Protected Cultivation Technology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012 India
| | - Sharanbasappa D. Madival
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012 India
- The Graduate School, ICAR-Indian Agricultural Research Institute, New Delhi, 110012 India
| | - Neeraj Budhlakoti
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012 India
| | - Girish Kumar Jha
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012 India
| |
Collapse
|
4
|
Sun Y, Jiang T, Sun L, Qin Q, Yang S, Wang J, Sun S, Xue Y. Phosphorus and sulphur crosstalk in cereals: Unraveling the molecular interplay, agronomic impacts on yield and heavy metal tolerance. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 223:109838. [PMID: 40158480 DOI: 10.1016/j.plaphy.2025.109838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 03/13/2025] [Accepted: 03/25/2025] [Indexed: 04/02/2025]
Abstract
Phosphorus (P) and sulphur (S) are essential macronutrients for crop growth, playing critical roles in physiological and biochemical processes throughout the plant life cycle, as well as in mitigating heavy metal and metalloid toxicity. Therefore, the coordinated use of P and S is crucial for optimizing crop growth and reducing the accumulation of heavy metals and metalloids in plants. While P and S signaling pathways are often studied independently, our understanding of their interactions remains limited. A series of recent studies have revealed key components regulating P-S interactions in cereal crops such as rice, maize and wheat, providing new insights into the network that integrates the signaling pathways of P and S. However, the interaction between P and S in molecular regulatory pathways, crop yield improvement, and resistance to heavy metal stress has not yet been systematically summarized or hypothesized. Here, we summarize the latest advances in P-S interactions and propose potential working mechanisms that integrate these P-S interactive regulatory pathways in cereal crops. Furthermore, we discuss the regulatory mechanisms of P-S interactions in cereal crops that still need to be uncovered in the future.
Collapse
Affiliation(s)
- Yafei Sun
- ECO-Environment Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
| | - Tingting Jiang
- College of Resources and Environmental Sciences, Nanjing Agriculture University, Nanjing, 210095, China
| | - Lijuan Sun
- ECO-Environment Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
| | - Qin Qin
- ECO-Environment Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
| | - Shiyan Yang
- ECO-Environment Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
| | - Jun Wang
- ECO-Environment Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
| | - Shubin Sun
- College of Resources and Environmental Sciences, Nanjing Agriculture University, Nanjing, 210095, China.
| | - Yong Xue
- ECO-Environment Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China.
| |
Collapse
|
5
|
Xia C, Miranda J, Mendoza-Cozatl D, Ham BK, Ma J, Zhang C. Decoding Long-Distance Communication Under Mineral Stress: Advances in Vascular Signalling and Molecular Tools for Plant Resilience. PLANT, CELL & ENVIRONMENT 2025. [PMID: 40091594 DOI: 10.1111/pce.15475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 02/13/2025] [Accepted: 03/04/2025] [Indexed: 03/19/2025]
Abstract
Mineral nutrients are essential for plant growth, development and crop yield. Under mineral deficient conditions, plants rely on a sophisticated network of signalling pathways to coordinate their molecular, physiological, and morphological responses. Recent research has shown that long-distance signalling pathways play a pivotal role in maintaining mineral homeostasis and optimising growth. This review explores the intricate mechanisms of long-distance signalling under mineral deficiencies, emphasising its importance as a communication network between roots and shoots. Through the vascular tissues, plants transport an array of signalling molecules, including phytohormones, small RNAs, proteins, small peptides, and mobile mRNAs, to mediate systemic responses. Vascular tissues, particularly companion cells, are critical hubs for sensing and relaying mineral deficiency signals, leading to rapid changes in mineral uptake and optimised root morphology. We highlight the roles of key signalling molecules in regulating mineral acquisition and stress adaptation. Advances in molecular tools, including TRAP-Seq, heterografting, and single-cell RNA sequencing, have recently unveiled novel aspects of long-distance signalling and its regulatory components. These insights underscore the essential role of vascular-mediated communication in enabling plants to navigate heterogeneous mineral distribution environments and suggest new avenues for improving crop resilience and mineral use efficiency.
Collapse
Affiliation(s)
- Chao Xia
- Department of Agronomy and Center for Plant Biology, Purdue University, West Lafayette, Indiana, USA
- Maize Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Juliana Miranda
- Department of Agronomy and Center for Plant Biology, Purdue University, West Lafayette, Indiana, USA
| | | | - Byung-Koo Ham
- Department of Biology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Jianxin Ma
- Department of Agronomy and Center for Plant Biology, Purdue University, West Lafayette, Indiana, USA
| | - Cankui Zhang
- Department of Agronomy and Center for Plant Biology, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
6
|
Gahlaut V, Jaiswal V. The role of lncRNA in plant growth and domestication. Transcription 2025:1-7. [PMID: 40035392 DOI: 10.1080/21541264.2025.2473224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 02/21/2025] [Accepted: 02/24/2025] [Indexed: 03/05/2025] Open
Abstract
The lncRNAs have deepened our understanding of crop domestication and improvement. These regulators influence key traits like yield, germination, and stress response. Future research should identify functional lncRNAs, explore their interactions, and use CRISPR for targeted improvements. Understanding their roles in polyploid crops may enhance resilience and productivity.
Collapse
Affiliation(s)
- Vijay Gahlaut
- Department of Biotechnology, Chandigarh University, Mohali, India
- University Center for Research and Development, Chandigarh University, Mohali, India
| | - Vandana Jaiswal
- Biotechnology, Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
7
|
Guo HL, Tian MZ, Ri X, Chen YF. Phosphorus acquisition, translocation, and redistribution in maize. J Genet Genomics 2025; 52:287-296. [PMID: 39389460 DOI: 10.1016/j.jgg.2024.09.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/27/2024] [Accepted: 09/27/2024] [Indexed: 10/12/2024]
Abstract
Phosphorus (P) is an essential nutrient for crop growth, making it important for maintaining food security as the global population continues to increase. Plants acquire P primarily via the uptake of inorganic phosphate (Pi) in soil through their roots. Pi, which is usually sequestered in soils, is not easily absorbed by plants and represses plant growth. Plants have developed a series of mechanisms to cope with P deficiency. Moreover, P fertilizer applications are critical for maximizing crop yield. Maize is a major cereal crop cultivated worldwide. Increasing its P-use efficiency is important for optimizing maize production. Over the past two decades, considerable progresses have been achieved in studies aimed at adapting maize varieties to changes in environmental P supply. Here, we present an overview of the morphological, physiological, and molecular mechanisms involved in P acquisition, translocation, and redistribution in maize and combine the advances in Arabidopsis and rice, to better elucidate the progress of P nutrition. Additionally, we summarize the correlation between P and abiotic stress responses. Clarifying the mechanisms relevant to improving P absorption and use in maize can guide future research on sustainable agriculture.
Collapse
Affiliation(s)
- Hui-Ling Guo
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding (MOE), Center for Maize Functional Genomics and Molecular Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Meng-Zhi Tian
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding (MOE), Center for Maize Functional Genomics and Molecular Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xian Ri
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding (MOE), Center for Maize Functional Genomics and Molecular Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yi-Fang Chen
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding (MOE), Center for Maize Functional Genomics and Molecular Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
8
|
Zhang D, Gan Y, Le L, Pu L. Epigenetic variation in maize agronomical traits for breeding and trait improvement. J Genet Genomics 2025; 52:307-318. [PMID: 38310944 DOI: 10.1016/j.jgg.2024.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/28/2024] [Accepted: 01/29/2024] [Indexed: 02/06/2024]
Abstract
Epigenetics-mediated breeding (epibreeding) involves engineering crop traits and stress responses through the targeted manipulation of key epigenetic features to enhance agricultural productivity. While conventional breeding methods raise concerns about reduced genetic diversity, epibreeding propels crop improvement through epigenetic variations that regulate gene expression, ultimately impacting crop yield. Epigenetic regulation in crops encompasses various modes, including histone modification, DNA modification, RNA modification, non-coding RNA, and chromatin remodeling. This review summarizes the epigenetic mechanisms underlying major agronomic traits in maize and identifies candidate epigenetic landmarks in the maize breeding process. We propose a valuable strategy for improving maize yield through epibreeding, combining CRISPR/Cas-based epigenome editing technology and Synthetic Epigenetics (SynEpi). Finally, we discuss the challenges and opportunities associated with maize trait improvement through epibreeding.
Collapse
Affiliation(s)
- Daolei Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; School of Life Science, Inner Mongolia University, Hohhot, Inner Mongolia 010021, China
| | - Yujun Gan
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Liang Le
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Li Pu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
9
|
Fahad M, Tariq L, Li W, Wu L. MicroRNA gatekeepers: Orchestrating rhizospheric dynamics. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2025; 67:845-876. [PMID: 39981727 PMCID: PMC11951408 DOI: 10.1111/jipb.13860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 01/15/2025] [Indexed: 02/22/2025]
Abstract
The rhizosphere plays a crucial role in plant growth and resilience to biotic and abiotic stresses, highlighting the complex communication between plants and their dynamic rhizosphere environment. Plants produce a wide range of signaling molecules that facilitate communication with various rhizosphere factors, yet our understanding of these mechanisms remains elusive. In addition to protein-coding genes, increasing evidence underscores the critical role of microRNAs (miRNAs), a class of non-coding single-stranded RNA molecules, in regulating plant growth, development, and responses to rhizosphere stresses under diverse biotic and abiotic factors. In this review, we explore the crosstalk between miRNAs and their target mRNAs, which influence the development of key plant structures shaped by the belowground environment. Moving forward, more focused studies are needed to clarify the functions and expression patterns of miRNAs, to uncover the common regulatory mechanisms that mediate plant tolerance to rhizosphere dynamics. Beyond that, we propose that using artificial miRNAs and manipulating the expression of miRNAs and their targets through overexpression or knockout/knockdown approaches could effectively investigate their roles in plant responses to rhizosphere stresses, offering significant potential for advancing crop engineering.
Collapse
Affiliation(s)
- Muhammad Fahad
- Hainan Yazhou Bay Seed Laboratory, Hainan InstituteZhejiang UniversitySanya572000China
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and BiotechnologyZhejiang UniversityHangzhou310058China
| | - Leeza Tariq
- National Key Laboratory for Rice Biology, Institute of BiotechnologyZhejiang UniversityHangzhou310058China
| | - Wanchang Li
- Institute of Virology and BiotechnologyZhejiang Academy of Agricultural SciencesHangzhou310021China
| | - Liang Wu
- Hainan Yazhou Bay Seed Laboratory, Hainan InstituteZhejiang UniversitySanya572000China
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and BiotechnologyZhejiang UniversityHangzhou310058China
| |
Collapse
|
10
|
Xue Y, Cao X, Chen X, Deng X, Deng XW, Ding Y, Dong A, Duan CG, Fang X, Gong L, Gong Z, Gu X, He C, He H, He S, He XJ, He Y, He Y, Jia G, Jiang D, Jiang J, Lai J, Lang Z, Li C, Li Q, Li X, Liu B, Liu B, Luo X, Qi Y, Qian W, Ren G, Song Q, Song X, Tian Z, Wang JW, Wang Y, Wu L, Wu Z, Xia R, Xiao J, Xu L, Xu ZY, Yan W, Yang H, Zhai J, Zhang Y, Zhao Y, Zhong X, Zhou DX, Zhou M, Zhou Y, Zhu B, Zhu JK, Liu Q. Epigenetics in the modern era of crop improvements. SCIENCE CHINA. LIFE SCIENCES 2025:10.1007/s11427-024-2784-3. [PMID: 39808224 DOI: 10.1007/s11427-024-2784-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 11/15/2024] [Indexed: 01/16/2025]
Abstract
Epigenetic mechanisms are integral to plant growth, development, and adaptation to environmental stimuli. Over the past two decades, our comprehension of these complex regulatory processes has expanded remarkably, producing a substantial body of knowledge on both locus-specific mechanisms and genome-wide regulatory patterns. Studies initially grounded in the model plant Arabidopsis have been broadened to encompass a diverse array of crop species, revealing the multifaceted roles of epigenetics in physiological and agronomic traits. With recent technological advancements, epigenetic regulations at the single-cell level and at the large-scale population level are emerging as new focuses. This review offers an in-depth synthesis of the diverse epigenetic regulations, detailing the catalytic machinery and regulatory functions. It delves into the intricate interplay among various epigenetic elements and their collective influence on the modulation of crop traits. Furthermore, it examines recent breakthroughs in technologies for epigenetic modifications and their integration into strategies for crop improvement. The review underscores the transformative potential of epigenetic strategies in bolstering crop performance, advocating for the development of efficient tools to fully exploit the agricultural benefits of epigenetic insights.
Collapse
Affiliation(s)
- Yan Xue
- State Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, 261325, China.
| | - Xiaofeng Cao
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Xiangsong Chen
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| | - Xian Deng
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Xing Wang Deng
- State Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, 261325, China.
| | - Yong Ding
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China.
| | - Aiwu Dong
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry and Biophysics, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China.
| | - Cheng-Guo Duan
- Key Laboratory of Plant Design, National Key Laboratory of Plant Molecular Genetics, Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China.
| | - Xiaofeng Fang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| | - Lei Gong
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China.
| | - Zhizhong Gong
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China.
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China.
| | - Xiaofeng Gu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Chongsheng He
- College of Biology, Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan Engineering and Technology Research Center of Hybrid Rapeseed, Hunan University, Changsha, 410082, China.
| | - Hang He
- Institute of Advanced Agricultural Sciences, School of Advanced Agricultural Sciences, Peking University, Beijing, 100871, China.
| | - Shengbo He
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China.
| | - Xin-Jian He
- National Institute of Biological Sciences, Beijing, 102206, China.
| | - Yan He
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Yuehui He
- School of Advanced Agricultural Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China.
| | - Guifang Jia
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China.
| | - Danhua Jiang
- Key Laboratory of Seed Innovation, State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Jianjun Jiang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Zhengzhou, 450046, China.
| | - Jinsheng Lai
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, China.
- Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing, 100193, China.
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, China.
- Sanya Institute of China Agricultural University, Sanya, 572025, China.
- Hainan Yazhou Bay Seed Laboratory, Sanya, 572025, China.
| | - Zhaobo Lang
- Institute of Advanced Biotechnology and School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Chenlong Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China.
| | - Qing Li
- National Key Laboratory of Crop Genetic Improvement, Huebei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Xingwang Li
- National Key Laboratory of Crop Genetic Improvement, Huebei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China.
| | - Bing Liu
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry and Biophysics, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China.
| | - Xiao Luo
- Shandong Provincial Key Laboratory of Precision Molecular Crop Design and Breeding, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, 261325, China.
| | - Yijun Qi
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| | - Weiqiang Qian
- School of Advanced Agricultural Sciences, Peking University, Beijing, 100871, China.
| | - Guodong Ren
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry and Biophysics, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China.
| | - Qingxin Song
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Xianwei Song
- Key Laboratory of Seed Innovation, State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Zhixi Tian
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Jia-Wei Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China.
| | - Yuan Wang
- Key Laboratory of Seed Innovation, State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Liang Wu
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| | - Zhe Wu
- Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Rui Xia
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Horticulture, South China Agricultural University, Guangzhou, 510640, China.
| | - Jun Xiao
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Lin Xu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China.
| | - Zheng-Yi Xu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China.
| | - Wenhao Yan
- National Key Laboratory of Crop Genetic Improvement, Huebei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Hongchun Yang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| | - Jixian Zhai
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Yijing Zhang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry and Biophysics, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China.
| | - Yusheng Zhao
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Xuehua Zhong
- Department of Biology, Washington University in St. Louis, St. Louis, 63130, USA.
| | - Dao-Xiu Zhou
- National Key Laboratory of Crop Genetic Improvement, Huebei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China.
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRAE, University Paris-Saclay, Orsay, 91405, France.
| | - Ming Zhou
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Yue Zhou
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China.
| | - Bo Zhu
- Department of Biological Science, College of Life Sciences, Sichuan Normal University, Chengdu, 610101, China.
| | - Jian-Kang Zhu
- Institute of Advanced Biotechnology and School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Qikun Liu
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking University, Beijing, 100871, China.
| |
Collapse
|
11
|
Guo D, Li D, Liu F, Ma Y, Zhou J, Sheth S, Song B, Chen Z. LncRNA81246 regulates resistance against tea leaf spot by interrupting the miR164d-mediated degradation of NAC1. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e17173. [PMID: 39590921 PMCID: PMC11711933 DOI: 10.1111/tpj.17173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 10/21/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024]
Abstract
Non-coding RNAs play crucial roles in plant responses to viral stresses. However, their molecular mechanisms in tea leaf spot responses remain unclear. In this study, using Camellia sinensis, we identified lncRNA81246 as a long non-coding RNA that localizes to both the nucleus and cytoplasm. It functions as a competitive endogenous RNA, thereby disrupting CsNAC1 (encoding NAC domain-containing protein 1) degradation mediated by miR164d. Silencing lncRNA81246 increased the resistance of tea plants to presistanceathogens, whereas transient lncRNA81246-overexpression plants showed decreased resistance to pathogens. Co-expression assays in Nicotiana benthamiana revealed that lncRNA81246 affects the miR164d-CsNAC1 regulatory module. Transient miR164d-overexpression and silencing assays demonstrated its positive regulation of tea plant resistance. Specifically, silencing its target, CsNAC1, enhanced disease resistance, whereas transient overexpression reduced plant resistance. Yeast one-hybrid, dual-luciferase, and RT-qPCR assay results suggested that CsNAC1 alters the expression of CsEXLB1, whereas AsODN and tobacco transient overexpression assays showed that CsEXLB1 negatively regulated tea plant resistance. Thus, our research demonstrated that lncRNA81246 acts as a mediator to interfere with the miR164d-CsNAC1 regulatory module involved in the disease resistance of tea plants.
Collapse
Affiliation(s)
- Di Guo
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of EducationGuizhou UniversityGuiyangGuizhou550025China
- College of Tea ScienceGuizhou UniversityGuiyangGuizhou550025China
| | - Dongxue Li
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of EducationGuizhou UniversityGuiyangGuizhou550025China
| | - Fenghua Liu
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of EducationGuizhou UniversityGuiyangGuizhou550025China
| | - Yue Ma
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of EducationGuizhou UniversityGuiyangGuizhou550025China
- College of AgricultureGuizhou UniversityGuiyangGuizhou550025China
| | - Jing‐Jiang Zhou
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of EducationGuizhou UniversityGuiyangGuizhou550025China
- Medical Research Council Mitochondrial Biology UnitUniversity of CambridgeCambridgeCB2 0XYUK
| | - Sujitraj Sheth
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of EducationGuizhou UniversityGuiyangGuizhou550025China
| | - Baoan Song
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of EducationGuizhou UniversityGuiyangGuizhou550025China
| | - Zhuo Chen
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of EducationGuizhou UniversityGuiyangGuizhou550025China
| |
Collapse
|
12
|
Chen L, He J, Wang X, Zhang S, Pan J, Peng J, Mo B, Liu L. miR827 orchestrates the regulation of SPX-MFS1 and SPX-MFS5 with the assistance of lncRNA767 to enhance phosphate starvation tolerance and maize development. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:3489-3504. [PMID: 39284226 PMCID: PMC11606416 DOI: 10.1111/pbi.14469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 08/05/2024] [Accepted: 08/23/2024] [Indexed: 11/27/2024]
Abstract
MicroRNA827 (miR827) is functionally conserved among different plant species and displays species-specific characteristics, but the mechanisms by which miR827 regulates phosphate (Pi) starvation tolerance and maize development remain elusive. We found that miR827 selectively targets the Pi transporter genes SPX-MFS1 and SPX-MFS5. miR827 overexpression improved the Pi starvation tolerance, plant architecture and grain yield and quality, whereas miR827 suppression yielded a contrasting phenotype. In addition, we identified a specific long noncoding RNA (lncRNA767) that serves as a direct target and a facilitator of miR827 and can stabilize the SPX-MFS1 and SPX-MFS5 transcripts, leading to their translation inhibition. The orchestrated regulation of SPX-MFS1 and SPX-MFS5 modulates PHR1; 1 and PHR1; 2, which are critical transcription factors in Pi signalling, and thereby affects the expression of downstream Pi starvation-induced genes. Together, these findings demonstrate that miR827, assisted by lncRNA767, enhances SPX-MFS1 and SPX-MFS5 suppression and thus exerts a significant impact on Pi homeostasis and several essential agronomic traits of maize.
Collapse
Affiliation(s)
- Lei Chen
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Bioindustry and Innovation Research Institute, College of Life Sciences and OceanographyShenzhen UniversityShenzhenChina
- Key Laboratory of Optoelectronic Devices and Systems of the Ministry of Education and Guangdong Province, College of Optoelectronic EngineeringShenzhen UniversityShenzhenChina
| | - Juan He
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Bioindustry and Innovation Research Institute, College of Life Sciences and OceanographyShenzhen UniversityShenzhenChina
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Center for Excellence in Molecular Plant Sciences, School of Life Sciences, Division of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiChina
| | - Xufeng Wang
- School of Life Sciences, Peking‐Tsinghua Joint Center for Life SciencesPeking UniversityBeijingChina
| | - Shiru Zhang
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Bioindustry and Innovation Research Institute, College of Life Sciences and OceanographyShenzhen UniversityShenzhenChina
| | - Jinkang Pan
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Bioindustry and Innovation Research Institute, College of Life Sciences and OceanographyShenzhen UniversityShenzhenChina
| | | | - Beixin Mo
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Bioindustry and Innovation Research Institute, College of Life Sciences and OceanographyShenzhen UniversityShenzhenChina
| | - Lin Liu
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Bioindustry and Innovation Research Institute, College of Life Sciences and OceanographyShenzhen UniversityShenzhenChina
| |
Collapse
|
13
|
Ali F, Zhao Y, Ali A, Waseem M, Arif MAR, Shah OU, Liao L, Wang Z. Omics-Driven Strategies for Developing Saline-Smart Lentils: A Comprehensive Review. Int J Mol Sci 2024; 25:11360. [PMID: 39518913 PMCID: PMC11546581 DOI: 10.3390/ijms252111360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/18/2024] [Accepted: 10/20/2024] [Indexed: 11/16/2024] Open
Abstract
A number of consequences of climate change, notably salinity, put global food security at risk by impacting the development and production of lentils. Salinity-induced stress alters lentil genetics, resulting in severe developmental issues and eventual phenotypic damage. Lentils have evolved sophisticated signaling networks to combat salinity stress. Lentil genomics and transcriptomics have discovered key genes and pathways that play an important role in mitigating salinity stress. The development of saline-smart cultivars can be further revolutionized by implementing proteomics, metabolomics, miRNAomics, epigenomics, phenomics, ionomics, machine learning, and speed breeding approaches. All these cutting-edge approaches represent a viable path toward creating saline-tolerant lentil cultivars that can withstand climate change and meet the growing demand for high-quality food worldwide. The review emphasizes the gaps that must be filled for future food security in a changing climate while also highlighting the significant discoveries and insights made possible by omics and other state-of-the-art biotechnological techniques.
Collapse
Affiliation(s)
- Fawad Ali
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), School of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China; (F.A.); (Y.Z.); (M.W.); (O.U.S.)
| | - Yiren Zhao
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), School of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China; (F.A.); (Y.Z.); (M.W.); (O.U.S.)
| | - Arif Ali
- Department of Plant Sciences, Quaid-I-Azam University, Islamabad 45320, Pakistan;
| | - Muhammad Waseem
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), School of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China; (F.A.); (Y.Z.); (M.W.); (O.U.S.)
| | - Mian A. R. Arif
- Nuclear Institute for Agriculture and Biology College, Pakistan Institute of Engineering and Applied Sciences (NIAB-C, PIEAS), Jhang Road, Faisalabad 38000, Pakistan;
| | - Obaid Ullah Shah
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), School of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China; (F.A.); (Y.Z.); (M.W.); (O.U.S.)
| | - Li Liao
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), School of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China; (F.A.); (Y.Z.); (M.W.); (O.U.S.)
| | - Zhiyong Wang
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), School of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China; (F.A.); (Y.Z.); (M.W.); (O.U.S.)
| |
Collapse
|
14
|
Yang Y, Liang Y, Wang C, Wang Y. MicroRNAs as potent regulators in nitrogen and phosphorus signaling transduction and their applications. STRESS BIOLOGY 2024; 4:38. [PMID: 39264517 PMCID: PMC11393275 DOI: 10.1007/s44154-024-00181-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 06/18/2024] [Indexed: 09/13/2024]
Abstract
Nitrogen (N) and phosphorus (Pi) are essential macronutrients that affect plant growth and development by influencing the molecular, metabolic, biochemical, and physiological responses at the local and whole levels in plants. N and Pi stresses suppress the physiological activities of plants, resulting in agricultural productivity losses and severely threatening food security. Accordingly, plants have elaborated diverse strategies to cope with N and Pi stresses through maintaining N and Pi homeostasis. MicroRNAs (miRNAs) as potent regulators fine-tune N and Pi signaling transduction that are distinct and indivisible from each other. Specific signals, such as noncoding RNAs (ncRNAs), interact with miRNAs and add to the complexity of regulation. Elucidation of the mechanisms by which miRNAs regulate N and Pi signaling transduction aids in the breeding of plants with strong tolerance to N and Pi stresses and high N and Pi use efficiency by fine-tuning MIR genes or miRNAs. However, to date, there has been no detailed and systematic introduction and comparison of the functions of miRNAs in N and Pi signaling transduction from the perspective of miRNAs and their applications. Here, we summarized and discussed current advances in the involvement of miRNAs in N and Pi signaling transduction and highlighted that fine-tuning the MIR genes or miRNAs involved in maintaining N and Pi homeostasis might provide valuable sights for sustainable agriculture.
Collapse
Affiliation(s)
- Yuzhang Yang
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Yanting Liang
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Chun Wang
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Yanwei Wang
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
15
|
Luo B, Ma P, Zhang C, Zhang X, Li J, Ma J, Han Z, Zhang S, Yu T, Zhang G, Zhang H, Zhang H, Li B, Guo J, Ge P, Lan Y, Liu D, Wu L, Gao D, Gao S, Su S, Gao S. Mining for QTL controlling maize low-phosphorus response genes combined with deep resequencing of RIL parental genomes and in silico GWAS analysis. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:190. [PMID: 39043952 DOI: 10.1007/s00122-024-04696-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 07/17/2024] [Indexed: 07/25/2024]
Abstract
KEY MESSAGE Extensive and comprehensive phenotypic data from a maize RIL population under both low- and normal-Pi treatments were used to conduct QTL mapping. Additionally, we integrated parental resequencing data from the RIL population, GWAS results, and transcriptome data to identify candidate genes associated with low-Pi stress in maize. Phosphorus (Pi) is one of the essential nutrients that greatly affect the maize yield. However, the genes underlying the QTL controlling maize low-Pi response remain largely unknown. In this study, a total of 38 traits at both seedling and maturity stages were evaluated under low- and normal-Pi conditions using a RIL population constructed from X178 (tolerant) and 9782 (sensitive), and most traits varied significantly between low- and normal-Pi treatments. Twenty-nine QTLs specific to low-Pi conditions were identified after excluding those with common intervals under both low- and normal-Pi conditions. Furthermore, 45 additional QTLs were identified based on the index value ((Trait_under_LowPi-Trait_under_NormalPi)/Trait_under_NormalPi) of each trait. These 74 QTLs collectively were classified as Pi-dependent QTLs. Additionally, 39 Pi-dependent QTLs were clustered in nine HotspotQTLs. The Pi-dependent QTL interval contained 19,613 unique genes, 6,999 of which exhibited sequence differences with non-synonymous mutation sites between X178 and 9782. Combined with in silico GWAS results, 277 consistent candidate genes were identified, with 124 genes located within the HotspotQTL intervals. The transcriptome analysis revealed that 21 genes, including the Pi transporter ZmPT7 and the strigolactones pathway-related gene ZmPDR1, exhibited consistent low-Pi stress response patterns across various maize inbred lines or tissues. It is noteworthy that ZmPDR1 in maize roots can be sharply up-regulated by low-Pi stress, suggesting its potential importance as a candidate gene for responding to low-Pi stress through the strigolactones pathway.
Collapse
Affiliation(s)
- Bowen Luo
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, 611130, Sichuan, China
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Ministry of Agriculture, Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Chengdu, 611130, Sichuan, China
| | - Peng Ma
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Ministry of Agriculture, Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Chengdu, 611130, Sichuan, China
- Mianyang Academy of Agricultural Sciences, Mianyang, 621023, Sichuan, China
- Crop Characteristic Resources Creation and Utilization Key Laboratory of Sichuan Province, Chengdu, China
| | - Chong Zhang
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Ministry of Agriculture, Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Chengdu, 611130, Sichuan, China
| | - Xiao Zhang
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Ministry of Agriculture, Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Chengdu, 611130, Sichuan, China
| | - Jing Li
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Ministry of Agriculture, Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Chengdu, 611130, Sichuan, China
| | - Junchi Ma
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Ministry of Agriculture, Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Chengdu, 611130, Sichuan, China
| | - Zheng Han
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Ministry of Agriculture, Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Chengdu, 611130, Sichuan, China
| | - Shuhao Zhang
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Ministry of Agriculture, Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Chengdu, 611130, Sichuan, China
| | - Ting Yu
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Ministry of Agriculture, Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Chengdu, 611130, Sichuan, China
| | - Guidi Zhang
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Ministry of Agriculture, Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Chengdu, 611130, Sichuan, China
| | - Hongkai Zhang
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Ministry of Agriculture, Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Chengdu, 611130, Sichuan, China
| | - Haiying Zhang
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Ministry of Agriculture, Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Chengdu, 611130, Sichuan, China
| | - Binyang Li
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Ministry of Agriculture, Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Chengdu, 611130, Sichuan, China
| | - Jia Guo
- Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Ping Ge
- SaileGene Inc, Beijing, 100020, China
| | - Yuzhou Lan
- Department of Plant Breeding, The Swedish University of Agricultural Sciences, P.O. Box 190, 23422, Lomma, Sweden
| | - Dan Liu
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Ministry of Agriculture, Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Chengdu, 611130, Sichuan, China
| | - Ling Wu
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Ministry of Agriculture, Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Chengdu, 611130, Sichuan, China
| | - Duojiang Gao
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Ministry of Agriculture, Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Chengdu, 611130, Sichuan, China
| | - Shiqiang Gao
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Ministry of Agriculture, Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Chengdu, 611130, Sichuan, China
| | - Shunzong Su
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Shibin Gao
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, 611130, Sichuan, China.
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
- Ministry of Agriculture, Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Chengdu, 611130, Sichuan, China.
| |
Collapse
|
16
|
Luo B, Zhang G, Yu T, Zhang C, Yang G, Luo X, Zhang S, Guo J, Zhang H, Zheng H, Tang Z, Li Q, Lan Y, Ma P, Nie Z, Zhang X, Liu D, Wu L, Gao D, Gao S, Su S, Guo J, Gao S. Genome-wide association studies dissect low-phosphorus stress response genes underling field and seedling traits in maize. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:172. [PMID: 38935162 DOI: 10.1007/s00122-024-04681-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 06/19/2024] [Indexed: 06/28/2024]
Abstract
Phosphorus (P) is an essential element for plant growth, and its deficiency can cause decreased crop yield. This study systematically evaluated the low-phosphate (Pi) response traits in a large population at maturity and seedling stages, and explored candidate genes and their interrelationships with specific traits. The results revealed a greater sensitivity of seedling maize to low-Pi stress compared to that at maturity stage. The phenotypic response patterns to low-Pi stress at different stages were independent. Chlorophyll content was found to be a potential indicator for screening low-Pi-tolerant materials in the field. A total of 2900 and 1446 significantly associated genes at the maturity and seedling stages were identified, respectively. Among these genes, 972 were uniquely associated with maturity traits, while 330 were specifically detected at the seedling stage under low-Pi stress. Moreover, 768 and 733 genes were specifically associated with index values (low-Pi trait/normal-Pi trait) at maturity and seedling stage, respectively. Genetic network diagrams showed that the low-Pi response gene Zm00001d022226 was specifically associated with multiple primary P-related traits under low-Pi conditions. A total of 963 out of 2966 genes specifically associated with traits under low-Pi conditions or index values were found to be induced by low-Pi stress. Notably, ZmSPX4.1 and ZmSPX2 were sharply up-regulated in response to low-Pi stress across different lines or tissues. These findings advance our understanding of maize's response to low-Pi stress at different developmental stages, shedding light on the genes and pathways implicated in this response.
Collapse
Affiliation(s)
- Bowen Luo
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, 611130, Sichuan, China
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, 611130, Sichuan, China
| | - Guidi Zhang
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, 611130, Sichuan, China
| | - Ting Yu
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, 611130, Sichuan, China
| | - Chong Zhang
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, 611130, Sichuan, China
| | - Guohui Yang
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, 611130, Sichuan, China
| | - Xianfu Luo
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, 611130, Sichuan, China
| | - Shuhao Zhang
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, 611130, Sichuan, China
| | - Jianyong Guo
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, 611130, Sichuan, China
| | - Haiying Zhang
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, 611130, Sichuan, China
| | - Hao Zheng
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Zirui Tang
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Qile Li
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yuzhou Lan
- Department of Plant Breeding, The Swedish University of Agricultural Sciences, P.O. Box 190, 23422, Lomma, Sweden
| | - Peng Ma
- Mianyang Academy of Agricultural Sciences, Mianyang, 621023, Sichuan, China
- Crop Characteristic Resources Creation and Utilization Key Laboratory of Sichuan Province, Mianyang, China
| | - Zhi Nie
- Sichuan Academy of Agricultural Sciences, Biotechnology and Nuclear Technology Research Institute, Chengdu, China
| | - Xiao Zhang
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, 611130, Sichuan, China
| | - Dan Liu
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, 611130, Sichuan, China
| | - Ling Wu
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, 611130, Sichuan, China
| | - Duojiang Gao
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, 611130, Sichuan, China
| | - Shiqiang Gao
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, 611130, Sichuan, China
| | - Shunzong Su
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Jia Guo
- Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Shibin Gao
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, 611130, Sichuan, China.
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, 611130, Sichuan, China.
| |
Collapse
|
17
|
Luo B, Zhang H, Han Z, Zhang X, Guo J, Zhang S, Luo X, Zhao J, Wang W, Yang G, Zhang C, Li J, Ma J, Zheng H, Tang Z, Lan Y, Ma P, Nie Z, Li Y, Liu D, Wu L, Gao D, Gao S, Su S, Guo J, Gao S. Exploring the phosphorus-starch content balance mechanisms in maize grains using GWAS population and transcriptome data. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:158. [PMID: 38864891 DOI: 10.1007/s00122-024-04667-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 06/01/2024] [Indexed: 06/13/2024]
Abstract
Examining the connection between P and starch-related signals can help elucidate the balance between nutrients and yield. This study utilized 307 diverse maize inbred lines to conduct multi-year and multi-plot trials, aiming to explore the relationship among P content, starch content, and 100-kernel weight (HKW) of mature grains. A significant negative correlation was found between P content and both starch content and HKW, while starch content showed a positive correlation with HKW. The starch granules in grains with high-P and low-starch content (HPLS) were significantly smaller compared to grains with low-P high-starch content (LPHS). Additionally, mian04185-4 (HPLS) exhibited irregular and loosely packed starch granules. A significant decrease in ZmPHOs genes expression was detected in the HPLS line ZNC442 as compared to the LPHS line SCML0849, while no expression difference was observed in AGPase encoding genes between these two lines. The down-regulated genes in ZNC442 grains were enriched in nucleotide sugar and fatty acid anabolic pathways, while up-regulated genes were enriched in the ABC transporters pathway. An accelerated breakdown of fat as the P content increased was also observed. This implied that HPLS was resulted from elevated lipid decomposition and inadequate carbon sources. The GWAS analysis identified 514 significantly associated genes, out of which 248 were differentially expressed. Zm00001d052392 was found to be significantly associated with P content/HKW, exhibiting high expression in SCML0849 but almost no expression in ZNC442. Overall, these findings suggested new approaches for achieving a P-yield balance through the manipulation of lipid metabolic pathways in grains.
Collapse
Affiliation(s)
- Bowen Luo
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, 611130, Sichuan, China
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, 611130, Sichuan, China
| | - Haiying Zhang
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, 611130, Sichuan, China
| | - Zheng Han
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, 611130, Sichuan, China
| | - Xiao Zhang
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, 611130, Sichuan, China
| | - Jianyong Guo
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, 611130, Sichuan, China
| | - Shuhao Zhang
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, 611130, Sichuan, China
| | - Xianfu Luo
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, 611130, Sichuan, China
| | - Jin Zhao
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, 611130, Sichuan, China
| | - Wei Wang
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, 611130, Sichuan, China
| | - Guohui Yang
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, 611130, Sichuan, China
| | - Chong Zhang
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, 611130, Sichuan, China
| | - Jing Li
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, 611130, Sichuan, China
| | - Junchi Ma
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, 611130, Sichuan, China
| | - Hao Zheng
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Zirui Tang
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yuzhou Lan
- Department of Plant Breeding, The Swedish University of Agricultural Sciences, P.O. Box 190, 23422, Lomma, Sweden
| | - Peng Ma
- Mianyang Academy of Agricultural Sciences, Mianyang, 621023, Sichuan, China
- Crop Characteristic Resources Creation and Utilization Key Laboratory of Sichuan Province, Mianyang, China
| | - Zhi Nie
- Sichuan Academy of Agricultural Sciences, Biotechnology and Nuclear Technology Research Institute, Chengdu, China
| | - Yunjian Li
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, 611130, Sichuan, China
| | - Dan Liu
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, 611130, Sichuan, China
| | - Ling Wu
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, 611130, Sichuan, China
| | - Duojiang Gao
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, 611130, Sichuan, China
| | - Shiqiang Gao
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, 611130, Sichuan, China
| | - Shunzong Su
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Jia Guo
- Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Shibin Gao
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, 611130, Sichuan, China.
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, 611130, Sichuan, China.
| |
Collapse
|
18
|
Zhang A, Pi W, Wang Y, Li Y, Wang J, Liu S, Cui X, Liu H, Yao D, Zhao R. Update on functional analysis of long non-coding RNAs in common crops. FRONTIERS IN PLANT SCIENCE 2024; 15:1389154. [PMID: 38872885 PMCID: PMC11169716 DOI: 10.3389/fpls.2024.1389154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 05/08/2024] [Indexed: 06/15/2024]
Abstract
With the rapid advances in next-generation sequencing technology, numerous non-protein-coding transcripts have been identified, including long noncoding RNAs (lncRNAs), which are functional RNAs comprising more than 200 nucleotides. Although lncRNA-mediated regulatory processes have been extensively investigated in animals, there has been considerably less research on plant lncRNAs. Nevertheless, multiple studies on major crops showed lncRNAs are involved in crucial processes, including growth and development, reproduction, and stress responses. This review summarizes the progress in the research on lncRNA roles in several major crops, presents key strategies for exploring lncRNAs in crops, and discusses current challenges and future prospects. The insights provided in this review will enhance our comprehension of lncRNA functions in crops, with potential implications for improving crop genetics and breeding.
Collapse
Affiliation(s)
- Aijing Zhang
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, China
- College of Agronomy, Jilin Agricultural University, Changchun, China
| | - Wenxuan Pi
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, China
| | - Yashuo Wang
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, China
| | - Yuxin Li
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, China
| | - Jiaxin Wang
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, China
| | - Shuying Liu
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, China
| | - Xiyan Cui
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, China
| | - Huijing Liu
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, China
| | - Dan Yao
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, China
| | - Rengui Zhao
- College of Agronomy, Jilin Agricultural University, Changchun, China
| |
Collapse
|
19
|
Zheng Z, Li W, Ding Y, Wu Y, Jiang Q, Wang Y. Integrative transcriptome analysis uncovers common components containing CPS2 regulated by maize lncRNA GARR2 in gibberellin response. PLANTA 2024; 259:146. [PMID: 38713242 DOI: 10.1007/s00425-024-04425-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 04/26/2024] [Indexed: 05/08/2024]
Abstract
MAIN CONCLUSION The combined transcriptome outcome provides an important clue to the regulatory cascade centering on lncRNA GARR2 and CPS2 gene in GA response. Long non-coding RNAs (lncRNAs) serve as regulatory components in transcriptional hierarchy governing multiple aspects of biological processes. Dissecting regulatory mechanisms underpinning tetracyclic diterpenoid gibberellin (GA) cascade holds both theoretical and applied significance. However, roles of lncRNAs in transcriptional modulation of GA pathway remain largely elusive. Gypsy retrotransposon-derived GIBBERELLIN RESPONSIVE lncRNA2 (GARR2) has been reported as GA-responsive maize lncRNA. Here a novel GARR2-edited line garr2-1 was identified, characteristic of GA-induced phenotype of increased seedling height and elongated leaf sheath. Transcriptome analysis indicated that transcriptional abundance of five genes [ent-copalyl diphosphate synthase2 (CPS2), ent-kaurene synthase4 (KS4), ent-kaurene synthase6 (KS6), ent-kaurene oxidase2 (KO2), and ent-kaurenoic acid oxidase1/Dwarf3 (KAO1/D3)] was elevated in garr2-1 for early steps of GA biosynthesis. Five GA biosynthetic genes as hub regulators were interlaced to shape regulatory network of GA response. Different transcriptome resources were integrated to discover common differentially expressed genes (DEGs) in the independent GARR2-edited lines GARR2KO and garr2-1. A total of 320 common DEGs were retrieved. These common DEGs were enriched in diterpenoid biosynthetic pathway. Integrative transcriptome analysis revealed the common CPS2 encoding the CPS enzyme that catalyzes the conversion of the precursor trans-geranylgeranyl diphosphate to ent-copalyl diphosphate. The up-regulated CPS2 supported the GA-induced phenotype of slender seedlings observed in the independent GARR2-edited lines GARR2KO and garr2-1. Our integrative transcriptome analysis uncovers common components of the GA pathway regulated by lncRNA GARR2. These common components, especially for the GA biosynthetic gene CPS2, provide a valuable resource for further delineating the underlying mechanisms of lncRNA GARR2 in GA response.
Collapse
Affiliation(s)
- Zhongtian Zheng
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou, 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| | - Wei Li
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou, 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| | - Yuhang Ding
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou, 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| | - Yinting Wu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou, 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| | - Qinyue Jiang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou, 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| | - Yijun Wang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou, 225009, China.
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
20
|
Gao X, Du Z, Hao K, Zhang S, Li J, Guo J, Wang Z, Zhao S, Sang L, An M, Xia Z, Wu Y. ZmmiR398b negatively regulates maize resistance to sugarcane mosaic virus infection by targeting ZmCSD2/4/9. MOLECULAR PLANT PATHOLOGY 2024; 25:e13462. [PMID: 38695630 PMCID: PMC11064800 DOI: 10.1111/mpp.13462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/10/2024] [Accepted: 04/10/2024] [Indexed: 05/05/2024]
Abstract
MicroRNAs (miRNAs) are widely involved in various biological processes of plants and contribute to plant resistance against various pathogens. In this study, upon sugarcane mosaic virus (SCMV) infection, the accumulation of maize (Zea mays) miR398b (ZmmiR398b) was significantly reduced in resistant inbred line Chang7-2, while it was increased in susceptible inbred line Mo17. Degradome sequencing analysis coupled with transient co-expression assays revealed that ZmmiR398b can target Cu/Zn-superoxidase dismutase2 (ZmCSD2), ZmCSD4, and ZmCSD9 in vivo, of which the expression levels were all upregulated by SCMV infection in Chang7-2 and Mo17. Moreover, overexpressing ZmmiR398b (OE398b) exhibited increased susceptibility to SCMV infection, probably by increasing reactive oxygen species (ROS) accumulation, which were consistent with ZmCSD2/4/9-silenced maize plants. By contrast, silencing ZmmiR398b (STTM398b) through short tandem target mimic (STTM) technology enhanced maize resistance to SCMV infection and decreased ROS levels. Interestingly, copper (Cu)-gradient hydroponic experiments demonstrated that Cu deficiency promoted SCMV infection while Cu sufficiency inhibited SCMV infection by regulating accumulations of ZmmiR398b and ZmCSD2/4/9 in maize. These results revealed that manipulating the ZmmiR398b-ZmCSD2/4/9-ROS module provides a prospective strategy for developing SCMV-tolerant maize varieties.
Collapse
Affiliation(s)
- Xinran Gao
- Liaoning Key Laboratory of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Zhichao Du
- Liaoning Key Laboratory of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Kaiqiang Hao
- Liaoning Key Laboratory of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Sijia Zhang
- Liaoning Key Laboratory of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Jian Li
- Liaoning Key Laboratory of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Jinxiu Guo
- Liaoning Key Laboratory of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Zhiping Wang
- Liaoning Key Laboratory of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Shixue Zhao
- Liaoning Key Laboratory of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Lijun Sang
- Liaoning Key Laboratory of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Mengnan An
- Liaoning Key Laboratory of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Zihao Xia
- Liaoning Key Laboratory of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Yuanhua Wu
- Liaoning Key Laboratory of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, Shenyang, Liaoning, China
| |
Collapse
|
21
|
Wang X, Zhou Y, Chai X, Foster TM, Deng CH, Wu T, Zhang X, Han Z, Wang Y. miR164-MhNAC1 regulates apple root nitrogen uptake under low nitrogen stress. THE NEW PHYTOLOGIST 2024; 242:1218-1237. [PMID: 38481030 DOI: 10.1111/nph.19663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 02/22/2024] [Indexed: 04/12/2024]
Abstract
Nitrogen is an essential nutrient for plant growth and serves as a signaling molecule to regulate gene expression inducing physiological, growth and developmental responses. An excess or deficiency of nitrogen may have adverse effects on plants. Studying nitrogen uptake will help us understand the molecular mechanisms of utilization for targeted molecular breeding. Here, we identified and functionally validated an NAC (NAM-ATAF1/2-CUC2) transcription factor based on the transcriptomes of two apple rootstocks with different nitrogen uptake efficiency. NAC1, a target gene of miR164, directly regulates the expression of the high-affinity nitrate transporter (MhNRT2.4) and citric acid transporter (MhMATE), affecting root nitrogen uptake. To examine the role of MhNAC1 in nitrogen uptake, we produced transgenic lines that overexpressed or silenced MhNAC1. Silencing MhNAC1 promoted nitrogen uptake and citric acid secretion in roots, and enhanced plant tolerance to low nitrogen conditions, while overexpression of MhNAC1 or silencing miR164 had the opposite effect. This study not only revealed the role of the miR164-MhNAC1 module in nitrogen uptake in apple rootstocks but also confirmed that citric acid secretion in roots affected nitrogen uptake, which provides a research basis for efficient nitrogen utilization and molecular breeding in apple.
Collapse
Affiliation(s)
- Xiaona Wang
- College of Horticulture, China Agricultural University, Beijing, 100193, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural (Nutrition and Physiology), The Ministry of Agriculture and Rural Affairs, Beijing, 100193, China
| | - Yan Zhou
- College of Horticulture, China Agricultural University, Beijing, 100193, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural (Nutrition and Physiology), The Ministry of Agriculture and Rural Affairs, Beijing, 100193, China
| | - Xiaofen Chai
- College of Horticulture, China Agricultural University, Beijing, 100193, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural (Nutrition and Physiology), The Ministry of Agriculture and Rural Affairs, Beijing, 100193, China
| | - Toshi M Foster
- The New Zealand Institute for Plant and Food Research Limited (Plant & Food Research), Motueka, 7198, New Zealand
| | - Cecilia H Deng
- The New Zealand Institute for Plant and Food Research Limited (Plant & Food Research), Auckland, 1025, New Zealand
| | - Ting Wu
- College of Horticulture, China Agricultural University, Beijing, 100193, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural (Nutrition and Physiology), The Ministry of Agriculture and Rural Affairs, Beijing, 100193, China
| | - Xinzhong Zhang
- College of Horticulture, China Agricultural University, Beijing, 100193, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural (Nutrition and Physiology), The Ministry of Agriculture and Rural Affairs, Beijing, 100193, China
| | - Zhenhai Han
- College of Horticulture, China Agricultural University, Beijing, 100193, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural (Nutrition and Physiology), The Ministry of Agriculture and Rural Affairs, Beijing, 100193, China
| | - Yi Wang
- College of Horticulture, China Agricultural University, Beijing, 100193, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural (Nutrition and Physiology), The Ministry of Agriculture and Rural Affairs, Beijing, 100193, China
| |
Collapse
|
22
|
Traubenik S, Charon C, Blein T. From environmental responses to adaptation: the roles of plant lncRNAs. PLANT PHYSIOLOGY 2024; 195:232-244. [PMID: 38246143 DOI: 10.1093/plphys/kiae034] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/18/2023] [Accepted: 01/02/2024] [Indexed: 01/23/2024]
Abstract
As sessile organisms, plants are continuously exposed to heterogeneous and changing environments and constantly need to adapt their growth strategies. They have evolved complex mechanisms to recognize various stress factors, activate appropriate signaling pathways, and respond accordingly by reprogramming the expression of multiple genes at the transcriptional, post-transcriptional, and even epigenome levels to tolerate stressful conditions such as drought, high temperature, nutrient deficiency, and pathogenic interactions. Apart from protein-coding genes, long non-coding RNAs (lncRNAs) have emerged as key players in plant adaptation to environmental stresses. They are transcripts larger than 200 nucleotides without protein-coding potential. Still, they appear to regulate a wide range of processes, including epigenetic modifications and chromatin reorganization, as well as transcriptional and post-transcriptional modulation of gene expression, allowing plant adaptation to various environmental stresses. LncRNAs can positively or negatively modulate stress responses, affecting processes such as hormone signaling, temperature tolerance, and nutrient deficiency adaptation. Moreover, they also seem to play a role in stress memory, wherein prior exposure to mild stress enhances plant ability to adapt to subsequent stressful conditions. In this review, we summarize the contribution of lncRNAs in plant adaptation to biotic and abiotic stresses, as well as stress memory. The complex evolutionary conservation of lncRNAs is also discussed and provides insights into future research directions in this field.
Collapse
Affiliation(s)
- Soledad Traubenik
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif-sur-Yvette, France
- Université Paris Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif-sur-Yvette, France
| | - Céline Charon
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif-sur-Yvette, France
- Université Paris Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif-sur-Yvette, France
| | - Thomas Blein
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif-sur-Yvette, France
- Université Paris Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif-sur-Yvette, France
| |
Collapse
|
23
|
Shi D, Huang H, Zhang Y, Qian Z, Du J, Huang L, Yan X, Lin S. The roles of non-coding RNAs in male reproductive development and abiotic stress responses during this unique process in flowering plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 341:111995. [PMID: 38266717 DOI: 10.1016/j.plantsci.2024.111995] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 01/16/2024] [Accepted: 01/19/2024] [Indexed: 01/26/2024]
Abstract
Successful male reproductive development is the guarantee for sexual reproduction of flowering plants. Male reproductive development is a complicated and multi-stage process that integrates physiological processes and adaptation and tolerance to a myriad of environmental stresses. This well-coordinated process is governed by genetic and epigenetic machineries. Non-coding RNAs (ncRNAs) play pleiotropic roles in the plant growth and development. The identification, characterization and functional analysis of ncRNAs and their target genes have opened a new avenue for comprehensively revealing the regulatory network of male reproductive development and its response to environmental stresses in plants. This review briefly addresses the types, origin, biogenesis and mechanisms of ncRNAs in plants, highlights important updates on the roles of ncRNAs in regulating male reproductive development and emphasizes the contribution of ncRNAs, especially miRNAs and lncRNAs, in responses to abiotic stresses during this unique process in flowering plants.
Collapse
Affiliation(s)
- Dexi Shi
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Huiting Huang
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Yuting Zhang
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Zhihao Qian
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Jiao Du
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Li Huang
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Xiufeng Yan
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China.
| | - Sue Lin
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China.
| |
Collapse
|
24
|
Gao X, Hao K, Du Z, Zhang S, Guo J, Li J, Wang Z, An M, Xia Z, Wu Y. Whole-transcriptome characterization and functional analysis of lncRNA-miRNA-mRNA regulatory networks responsive to sugarcane mosaic virus in maize resistant and susceptible inbred lines. Int J Biol Macromol 2024; 257:128685. [PMID: 38096927 DOI: 10.1016/j.ijbiomac.2023.128685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 11/18/2023] [Accepted: 12/06/2023] [Indexed: 12/19/2023]
Abstract
Sugarcane mosaic virus (SCMV) is one of the most important pathogens causing maize dwarf mosaic disease, which seriously affects the yield and quality of maize. Currently, the molecular mechanism of non-coding RNAs (ncRNAs) responding to SCMV infection in maize is still uncovered. In this study, a total of 112 differentially expressed (DE)-long non-coding RNAs (lncRNAs), 24 DE-microRNAs (miRNAs), and 1822 DE-messenger RNAs (mRNAs), and 363 DE-lncRNAs, 230 DE-miRNAs, and 4376 DE-mRNAs were identified in maize resistant (Chang7-2) and susceptible (Mo17) inbred lines in response to SCMV infection through whole-transcriptome RNA sequencing, respectively. Moreover, 4874 mRNAs potentially targeted by 635 miRNAs were obtained by degradome sequencing. Subsequently, several crucial SCMV-responsive lncRNA-miRNA-mRNA networks were established, of which the expression levels of lncRNA10865-miR166j-3p-HDZ25/69 (class III homeodomain-leucine zipper 25/69) module, and lncRNA14234-miR394a-5p-SPL11 (squamosal promoter-binding protein-like 11) module were further verified. Additionally, silencing lncRNA10865 increased the accumulations of SCMV and miR166j-3p, while silencing lncRNA14234 decreased the accumulations of SCMV and SPL11 targeted by miR394a-5p. This study revealed the interactions of lncRNAs, miRNAs and mRNAs in maize resistant and susceptible materials, providing novel clues to reveal the mechanism of maize in resistance to SCMV from the perspective of competing endogenous RNA (ceRNA) regulatory networks.
Collapse
Affiliation(s)
- Xinran Gao
- Liaoning Key Laboratory of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Kaiqiang Hao
- Liaoning Key Laboratory of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Zhichao Du
- Liaoning Key Laboratory of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Sijia Zhang
- Liaoning Key Laboratory of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Jinxiu Guo
- Liaoning Key Laboratory of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Jian Li
- Liaoning Key Laboratory of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Zhiping Wang
- Liaoning Key Laboratory of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Mengnan An
- Liaoning Key Laboratory of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Zihao Xia
- Liaoning Key Laboratory of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, Shenyang, Liaoning 110866, China.
| | - Yuanhua Wu
- Liaoning Key Laboratory of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, Shenyang, Liaoning 110866, China.
| |
Collapse
|
25
|
Si X, Liu H, Cheng X, Xu C, Han Z, Dai Z, Wang R, Pan C, Lu G. Integrative transcriptomic analysis unveils lncRNA-miRNA-mRNA interplay in tomato plants responding to Ralstonia solanacearum. Int J Biol Macromol 2023; 253:126891. [PMID: 37709224 DOI: 10.1016/j.ijbiomac.2023.126891] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/26/2023] [Accepted: 09/11/2023] [Indexed: 09/16/2023]
Abstract
Ralstonia solanacearum, a bacterial plant pathogen, poses a significant threat to tomato (Solanum lycopersicum) production through destructive wilt disease. While noncoding RNA has emerged as a crucial regulator in plant disease, its specific involvement in tomato bacterial wilt remains limited. Here, we conducted a comprehensive analysis of the transcriptional landscape, encompassing both mRNAs and noncoding RNAs, in a tomato resistant line ('ZRS_7') and a susceptible line ('HTY_9') upon R. solanacearum inoculation using high-throughput RNA sequencing. Differential expression (DE) analysis revealed significant alterations in 7506 mRNAs, 997 lncRNAs, and 69 miRNAs between 'ZRS_7' and 'HTY_9' after pathogen exposure. Notably, 4548 mRNAs, 367 lncRNAs, and 26 miRNAs exhibited genotype-specific responses to R. solanacearum inoculation. GO and KEGG pathway analyses unveiled the potential involvement of noncoding RNAs in the response to bacterial wilt disease, targeting receptor-like kinases, cell wall-related genes, glutamate decarboxylases, and other key pathways. Furthermore, we constructed a comprehensive competing endogenous RNA (ceRNA) network incorporating 13 DE-miRNAs, 30 DE-lncRNAs, and 127 DEGs, providing insights into their potential contributions to the response against bacterial inoculation. Importantly, the characterization of possible endogenous target mimics (eTMs) of Sly-miR482e-3p via VIGS technology demonstrated the significant impact of eTM482e-3p-1 silencing on tomato's sensitivity to R. solanacearum. These findings support the existence of an eTM482e-3p-1-Sly-miR482e-3p-NBS-LRRs network in regulating tomato's response to the pathogen. Collectively, our findings shed light on the intricate interactions among lncRNAs, miRNAs, and mRNAs as underlying factors in conferring resistance to R. solanacearum in tomato.
Collapse
Affiliation(s)
- Xiuyang Si
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Hongyan Liu
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Xi Cheng
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Chengcui Xu
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Zhanghui Han
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Zhongren Dai
- Branch Academy of Horticultural Research, Harbin Academy of Agricultural Sciences, Harbin 150029, China
| | - Rongqing Wang
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310022, China
| | - Changtian Pan
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agricultural, Zhejiang University, Hangzhou 310058, China
| | - Gang Lu
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agricultural, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
26
|
Yan P, Du Q, Chen H, Guo Z, Wang Z, Tang J, Li WX. Biofortification of iron content by regulating a NAC transcription factor in maize. Science 2023; 382:1159-1165. [PMID: 38060668 DOI: 10.1126/science.adf3256] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 11/06/2023] [Indexed: 12/18/2023]
Abstract
Iron (Fe) deficiency remains widespread among people in developing countries. To help solve this problem, breeders have been attempting to develop maize cultivars with high yields and high Fe concentrations in the kernels. We conducted a genome-wide association study and identified a gene, ZmNAC78 (NAM/ATAF/CUC DOMAIN TRANSCRIPTION FACTOR 78), that regulates Fe concentrations in maize kernels. We cultivated maize varieties with both high yield and high Fe concentrations in their kernels by using a molecular marker developed from a 42-base pair insertion or deletion (indel) in the promoter of ZmNAC78. ZmNAC78 expression is enriched in the basal endosperm transfer layer of kernels, and the ZmNAC78 protein directly regulates messenger RNA abundance of Fe transporters. Our results thus provide an approach to develop maize varieties with Fe-enriched kernels.
Collapse
Affiliation(s)
- Pengshuai Yan
- State Key Laboratory of Crop Gene Resources and Breeding, National Engineering Laboratory for Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Qingguo Du
- State Key Laboratory of Crop Gene Resources and Breeding, National Engineering Laboratory for Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Huan Chen
- State Key Laboratory of Crop Gene Resources and Breeding, National Engineering Laboratory for Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zifeng Guo
- State Key Laboratory of Crop Gene Resources and Breeding, National Engineering Laboratory for Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhonghua Wang
- State Key Laboratory of Crop Gene Resources and Breeding, National Engineering Laboratory for Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jihua Tang
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
- Shennong Laboratory, Zhengzhou 450002, China
| | - Wen-Xue Li
- State Key Laboratory of Crop Gene Resources and Breeding, National Engineering Laboratory for Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
27
|
Yuan C, He RR, Zhao WL, Chen YQ, Zhang YC. Insights into the roles of long noncoding RNAs in the communication between plants and the environment. THE PLANT GENOME 2023; 16:e20277. [PMID: 36345558 DOI: 10.1002/tpg2.20277] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
In addition to coding proteins, RNA molecules, especially long noncoding RNAs (lncRNAs), have well-established functions in regulating gene expression. The number of studies focused on the roles played by different types of lncRNAs in a variety of plant biological processes has markedly increased. These lncRNA roles involve plant vegetative and reproductive growth and responses to biotic and abiotic stresses. In this review, we examine the classification, mechanisms, and functions of lncRNAs and then emphasize the roles played by these lncRNAs in the communication between plants and the environment mainly with respect to the following environmental factors: temperature, light, water, salt stress, and nutrient deficiencies. We also discuss the consensus among researchers and the remaining challenges and underscore the exciting ways lncRNAs may affect the biology of plants.
Collapse
Affiliation(s)
- Chao Yuan
- Guangdong Provincial Key Laboratory of Plant Resources, State Key Laboratory for Biocontrol, School of Life Science, Sun Yat-Sen Univ., Guangzhou, 510275, P. R. China
| | - Rui-Rui He
- Guangdong Provincial Key Laboratory of Plant Resources, State Key Laboratory for Biocontrol, School of Life Science, Sun Yat-Sen Univ., Guangzhou, 510275, P. R. China
| | - Wen-Long Zhao
- Guangdong Provincial Key Laboratory of Plant Resources, State Key Laboratory for Biocontrol, School of Life Science, Sun Yat-Sen Univ., Guangzhou, 510275, P. R. China
| | - Yue-Qin Chen
- Guangdong Provincial Key Laboratory of Plant Resources, State Key Laboratory for Biocontrol, School of Life Science, Sun Yat-Sen Univ., Guangzhou, 510275, P. R. China
- MOE Key Laboratory of Gene Function and Regulation, Sun Yat-sen Univ., Guangzhou, 510275, China
| | - Yu-Chan Zhang
- Guangdong Provincial Key Laboratory of Plant Resources, State Key Laboratory for Biocontrol, School of Life Science, Sun Yat-Sen Univ., Guangzhou, 510275, P. R. China
- MOE Key Laboratory of Gene Function and Regulation, Sun Yat-sen Univ., Guangzhou, 510275, China
| |
Collapse
|
28
|
Chorostecki U, Bologna NG, Ariel F. The plant noncoding transcriptome: a versatile environmental sensor. EMBO J 2023; 42:e114400. [PMID: 37735935 PMCID: PMC10577639 DOI: 10.15252/embj.2023114400] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 08/11/2023] [Accepted: 08/21/2023] [Indexed: 09/23/2023] Open
Abstract
Plant noncoding RNA transcripts have gained increasing attention in recent years due to growing evidence that they can regulate developmental plasticity. In this review article, we comprehensively analyze the relationship between noncoding RNA transcripts in plants and their response to environmental cues. We first provide an overview of the various noncoding transcript types, including long and small RNAs, and how the environment modulates their performance. We then highlight the importance of noncoding RNA secondary structure for their molecular and biological functions. Finally, we discuss recent studies that have unveiled the functional significance of specific long noncoding transcripts and their molecular partners within ribonucleoprotein complexes during development and in response to biotic and abiotic stress. Overall, this review sheds light on the fascinating and complex relationship between dynamic noncoding transcription and plant environmental responses, and highlights the need for further research to uncover the underlying molecular mechanisms and exploit the potential of noncoding transcripts for crop resilience in the context of global warming.
Collapse
Affiliation(s)
- Uciel Chorostecki
- Faculty of Medicine and Health SciencesUniversitat Internacional de CatalunyaBarcelonaSpain
| | - Nicolas G. Bologna
- Centre for Research in Agricultural Genomics (CRAG)CSIC‐IRTA‐UAB‐UBBarcelonaSpain
| | - Federico Ariel
- Instituto de Agrobiotecnologia del Litoral, CONICET, FBCBUniversidad Nacional del LitoralSanta FeArgentina
| |
Collapse
|
29
|
Xu Z, Zhou Z, Cheng Z, Zhou Y, Wang F, Li M, Li G, Li W, Du Q, Wang K, Lu X, Tai Y, Chen R, Hao Z, Han J, Chen Y, Meng Q, Kong X, Tie S, Mu C, Song W, Wang Z, Yong H, Zhang D, Wang H, Weng J, Li X. A transcription factor ZmGLK36 confers broad resistance to maize rough dwarf disease in cereal crops. NATURE PLANTS 2023; 9:1720-1733. [PMID: 37709955 DOI: 10.1038/s41477-023-01514-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 08/07/2023] [Indexed: 09/16/2023]
Abstract
Maize rough dwarf disease (MRDD), caused by maize rough dwarf virus (MRDV) or rice black-streaked dwarf virus (RBSDV), seriously threatens worldwide production of all major cereal crops, including maize, rice, wheat and barley. Here we report fine mapping and cloning of a previously reported major quantitative trait locus (QTL) (qMrdd2) for RBSDV resistance in maize. Subsequently, we show that qMrdd2 encodes a G2-like transcription factor named ZmGLK36 that promotes resistance to RBSDV by enhancing jasmonic acid (JA) biosynthesis and JA-mediated defence response. We identify a 26-bp indel located in the 5' UTR of ZmGLK36 that contributes to differential expression and resistance to RBSDV in maize inbred lines. Moreover, we show that ZmDBF2, an AP2/EREBP family transcription factor, directly binds to the 26-bp indel and represses ZmGLK36 expression. We further demonstrate that ZmGLK36 plays a conserved role in conferring resistance to RBSDV in rice and wheat using transgenic or marker-assisted breeding approaches. Our results provide insights into the molecular mechanisms of RBSDV resistance and effective strategies to breed RBSDV-resistant cereal crops.
Collapse
Affiliation(s)
- Zhennan Xu
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhiqiang Zhou
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zixiang Cheng
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yu Zhou
- Northeast Agricultural University, Harbin, China
| | - Feifei Wang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Mingshun Li
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Gongjian Li
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wenxue Li
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qingguo Du
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ke Wang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xin Lu
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuxin Tai
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Runyi Chen
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhuanfang Hao
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jienan Han
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yanping Chen
- Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Qingchang Meng
- Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Xiaomin Kong
- Jining Academy of Agricultural Sciences, Jining, China
| | - Shuanggui Tie
- Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Chunhua Mu
- Shandong Academy of Agricultural Sciences, Jinan, China
| | - Weibin Song
- China Agricultural University, Beijing, China
| | - Zhenhua Wang
- Northeast Agricultural University, Harbin, China
| | - Hongjun Yong
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Degui Zhang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Haiyang Wang
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China.
| | - Jianfeng Weng
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.
| | - Xinhai Li
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.
| |
Collapse
|
30
|
Hazra S, Moulick D, Mukherjee A, Sahib S, Chowardhara B, Majumdar A, Upadhyay MK, Yadav P, Roy P, Santra SC, Mandal S, Nandy S, Dey A. Evaluation of efficacy of non-coding RNA in abiotic stress management of field crops: Current status and future prospective. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 203:107940. [PMID: 37738864 DOI: 10.1016/j.plaphy.2023.107940] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 07/23/2023] [Accepted: 08/04/2023] [Indexed: 09/24/2023]
Abstract
Abiotic stresses are responsible for the major losses in crop yield all over the world. Stresses generate harmful ROS which can impair cellular processes in plants. Therefore, plants have evolved antioxidant systems in defence against the stress-induced damages. The frequency of occurrence of abiotic stressors has increased several-fold due to the climate change experienced in recent times and projected for the future. This had particularly aggravated the risk of yield losses and threatened global food security. Non-coding RNAs are the part of eukaryotic genome that does not code for any proteins. However, they have been recently found to have a crucial role in the responses of plants to both abiotic and biotic stresses. There are different types of ncRNAs, for example, miRNAs and lncRNAs, which have the potential to regulate the expression of stress-related genes at the levels of transcription, post-transcription, and translation of proteins. The lncRNAs are also able to impart their epigenetic effects on the target genes through the alteration of the status of histone modification and organization of the chromatins. The current review attempts to deliver a comprehensive account of the role of ncRNAs in the regulation of plants' abiotic stress responses through ROS homeostasis. The potential applications ncRNAs in amelioration of abiotic stresses in field crops also have been evaluated.
Collapse
Affiliation(s)
- Swati Hazra
- Sharda School of Agricultural Sciences, Sharda University, Greater Noida, Uttar Pradesh 201310, India.
| | - Debojyoti Moulick
- Department of Environmental Science, University of Kalyani, Nadia, West Bengal 741235, India.
| | | | - Synudeen Sahib
- S. S. Cottage, Njarackal, P.O.: Perinad, Kollam, 691601, Kerala, India.
| | - Bhaben Chowardhara
- Department of Botany, Faculty of Science and Technology, Arunachal University of Studies, Arunachal Pradesh 792103, India.
| | - Arnab Majumdar
- Department of Earth Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, West Bengal 741246, India.
| | - Munish Kumar Upadhyay
- Department of Civil Engineering, Indian Institute of Technology Kanpur, Uttar Pradesh 208016, India.
| | - Poonam Yadav
- Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India.
| | - Priyabrata Roy
- Department of Molecular Biology and Biotechnology, University of Kalyani, West Bengal 741235, India.
| | - Subhas Chandra Santra
- Department of Environmental Science, University of Kalyani, Nadia, West Bengal 741235, India.
| | - Sayanti Mandal
- Department of Biotechnology, Dr. D. Y. Patil Arts, Commerce & Science College (affiliated to Savitribai Phule Pune University), Sant Tukaram Nagar, Pimpri, Pune, Maharashtra-411018, India.
| | - Samapika Nandy
- School of Pharmacy, Graphic Era Hill University, Bell Road, Clement Town, Dehradun, 248002, Uttarakhand, India; Department of Botany, Vedanta College, 33A Shiv Krishna Daw Lane, Kolkata-700054, India.
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata, West Bengal 700073, India.
| |
Collapse
|
31
|
Madhawan A, Bhunia RK, Kumar P, Sharma V, Sinha K, Fandade V, Rahim MS, Parveen A, Mishra A, Roy J. Interaction between long noncoding RNA (lnc663) and microRNA (miR1128) regulates PDAT-like gene activity in bread wheat (Triticum aestivum L.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 203:108040. [PMID: 37738867 DOI: 10.1016/j.plaphy.2023.108040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/21/2023] [Accepted: 09/13/2023] [Indexed: 09/24/2023]
Abstract
Amylose, a starch subcomponent, can bind lipids within its helical groove and form an amylose-lipid complex, known as resistant starch type 5 (RS-5). RS contributes to lower glycaemic index of grain with health benefits. Unfortunately, genes involved in lipid biosynthesis in wheat grain remain elusive. Our study aims to characterize the lipid biosynthesis gene and its post-transcriptional regulation using the parent bread wheat variety 'C 306' and its EMS-induced mutant line 'TAC 75' varying in amylose content. Quantitative analyses of starch-bound lipids showed that 'TAC 75' has significantly higher lipid content in grains than 'C 306' variety. Furthermore, expression analyses revealed the higher expression of wheat phospholipid: diacylglycerol acyltransferase-like (PDAT-like) in the 'TAC 75' compared to the 'C 306'. Overexpression and ectopic expression of TaPDAT in yeast and tobacco leaf confirmed its ability to accumulate lipids in vivo. Enzyme activity assay showed that TaPDAT catalyzes the triacylglycerol synthesis by acylating 1,2-diacylglycerol. Interestingly, the long non-coding RNA, lnc663, was upregulated with the TaPDAT gene, while the miRNA, miR1128, downregulated in the 'TAC 75', indicating a regulatory relationship. The GFP reporter assay confirmed that the lnc663 acts as a positive regulator, and the miR1128 as a negative regulator of the TaPDAT gene, which controls lipid accumulation in wheat grain. Our findings outline TaPDAT-mediated biosynthesis of lipid accumulation and reveal the molecular mechanism of the lnc663 and miR1128 mediated regulation of the TaPDAT gene in wheat grain.
Collapse
Affiliation(s)
- Akansha Madhawan
- Agri-Food Biotechnology Division, National Agri-Food Biotechnology Institute, Mohali, 140306, Punjab, India; Regional Centre for Biotechnology (RCB), NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana, 121001, India.
| | - Rupam Kumar Bhunia
- Agri-Food Biotechnology Division, National Agri-Food Biotechnology Institute, Mohali, 140306, Punjab, India; Plant Biotechnology Department, Gujarat Biotechnology University, Near Gujarat International Finance Tec (GIFT)-City, Gandhinagar, Gujarat, India.
| | - Prashant Kumar
- Agri-Food Biotechnology Division, National Agri-Food Biotechnology Institute, Mohali, 140306, Punjab, India; Regional Centre for Biotechnology (RCB), NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana, 121001, India.
| | - Vinita Sharma
- Agri-Food Biotechnology Division, National Agri-Food Biotechnology Institute, Mohali, 140306, Punjab, India.
| | - Kshitija Sinha
- Agri-Food Biotechnology Division, National Agri-Food Biotechnology Institute, Mohali, 140306, Punjab, India.
| | - Vikas Fandade
- Agri-Food Biotechnology Division, National Agri-Food Biotechnology Institute, Mohali, 140306, Punjab, India; Regional Centre for Biotechnology (RCB), NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana, 121001, India.
| | - Mohammed Saba Rahim
- Agri-Food Biotechnology Division, National Agri-Food Biotechnology Institute, Mohali, 140306, Punjab, India.
| | - Afsana Parveen
- Agri-Food Biotechnology Division, National Agri-Food Biotechnology Institute, Mohali, 140306, Punjab, India.
| | - Ankita Mishra
- Agri-Food Biotechnology Division, National Agri-Food Biotechnology Institute, Mohali, 140306, Punjab, India.
| | - Joy Roy
- Agri-Food Biotechnology Division, National Agri-Food Biotechnology Institute, Mohali, 140306, Punjab, India.
| |
Collapse
|
32
|
Traubenik S, Crespi M. Spotlight: Antisense regulation of miRNA action during phosphate starvation. MOLECULAR PLANT 2023; 16:1249-1251. [PMID: 37528580 DOI: 10.1016/j.molp.2023.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 07/27/2023] [Accepted: 07/28/2023] [Indexed: 08/03/2023]
Affiliation(s)
- Soledad Traubenik
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, University Paris-Saclay - Bâtiment 630, 91192 Gif sur Yvette, France
| | - Martin Crespi
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, University Paris-Saclay - Bâtiment 630, 91192 Gif sur Yvette, France.
| |
Collapse
|
33
|
Panchal A, Maurya J, Seni S, Singh RK, Prasad M. An insight into the roles of regulatory ncRNAs in plants: An abiotic stress and developmental perspective. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 201:107823. [PMID: 37327647 DOI: 10.1016/j.plaphy.2023.107823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/29/2023] [Accepted: 06/04/2023] [Indexed: 06/18/2023]
Abstract
Different environmental cues lead to changes in physiology, biochemistry and molecular status of plant's growth. Till date, various genes have been accounted for their role in regulating plant development and response to abiotic stress. Excluding genes that code for a functional protein in a cell, a large chunk of the eukaryotic transcriptome consists of non-coding RNAs (ncRNAs) which lack protein coding capacity but are still functional. Recent advancements in Next Generation Sequencing (NGS) technology have led to the unearthing of different types of small and large non-coding RNAs in plants. Non-coding RNAs are broadly categorised into housekeeping ncRNAs and regulatory ncRNAs which work at transcriptional, post-transcriptional and epigenetic levels. Diverse ncRNAs play different regulatory roles in nearly all biological processes including growth, development and response to changing environments. This response can be perceived and counteracted by plants using diverse evolutionarily conserved ncRNAs like miRNAs, siRNAs and lncRNAs to participate in complex molecular regimes by activating gene-ncRNA-mRNA regulatory modules to perform the downstream function. Here, we review the current understanding with a focus on recent advancements in the functional studies of the regulatory ncRNAs at the nexus of abiotic stresses and development. Also, the potential roles of ncRNAs in imparting abiotic stress tolerance and yield improvement in crop plants are also discussed with their future prospects.
Collapse
Affiliation(s)
- Anurag Panchal
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India.
| | - Jyoti Maurya
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India.
| | - Sushmita Seni
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India.
| | - Roshan Kumar Singh
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India.
| | - Manoj Prasad
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India; Department of Plant Sciences, University of Hyderabad, Hyderabad, Telangana, 500046, India.
| |
Collapse
|
34
|
Upadhyay SK. Phosphate Deficiency: A Tale from the End of PILNCR2. Noncoding RNA 2023; 9:40. [PMID: 37624032 PMCID: PMC10457764 DOI: 10.3390/ncrna9040040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 07/18/2023] [Accepted: 07/24/2023] [Indexed: 08/26/2023] Open
Abstract
A deficiency in inorganic phosphate (Pi) induces the expression of miRNA399 and the accumulation of its target Pi transporters (PHT1s) mRNA, which is contrary to the goal of miRNA-mediated gene regulation. Recently, a novel mechanism of RNA/RNA-duplex formation between the transcripts of a Pi deficiency-induced long non-coding RNA (PILNCR2) and PHT1s has been reported, which prevents the binding and cleavage of miRNA399 to PHT1 mRNAs, thereby providing tolerance of Pi-deficient conditions. Moreover, the way in which ribosomes move through the RNA/RNA-duplex for the translation of PHT1 transporter proteins remains elusive.
Collapse
|
35
|
Ma Z, Hu L. MicroRNA: A Dynamic Player from Signalling to Abiotic Tolerance in Plants. Int J Mol Sci 2023; 24:11364. [PMID: 37511124 PMCID: PMC10379455 DOI: 10.3390/ijms241411364] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 07/06/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
MicroRNAs (miRNAs) are a class of non-coding single-stranded RNA molecules composed of approximately 20-24 nucleotides in plants. They play an important regulatory role in plant growth and development and as a signal in abiotic tolerance. Some abiotic stresses include drought, salt, cold, high temperature, heavy metals and nutritional elements. miRNAs affect gene expression by manipulating the cleavage, translational expression or DNA methylation of target messenger RNAs (mRNAs). This review describes the current progress in the field considering two aspects: (i) the way miRNAs are produced and regulated and (ii) the way miRNA/target genes are used in plant responses to various abiotic stresses. Studying the molecular mechanism of action of miRNAs' downstream target genes could optimize the genetic manipulation of crop growth and development conditions to provide a more theoretically optimized basis for improving crop production. MicroRNA is a novel signalling mechanism in interplant communication relating to abiotic tolerance.
Collapse
Affiliation(s)
- Ziming Ma
- Jilin Provincial Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun 130062, China
- Plant Genetics, TUM School of Life Sciences, Technical University of Munich (TUM), Emil Ramann Str. 4, 85354 Freising, Germany
- Max-Planck-Institute of Molecular Plant Physiology, Am Muehlenberg 1, 14476 Potsdam-Golm, Germany
| | - Lanjuan Hu
- Jilin Provincial Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun 130062, China
| |
Collapse
|
36
|
Qin R, Hu Y, Chen H, Du Q, Yang J, Li WX. MicroRNA408 negatively regulates salt tolerance by affecting secondary cell wall development in maize. PLANT PHYSIOLOGY 2023; 192:1569-1583. [PMID: 36864608 PMCID: PMC10231460 DOI: 10.1093/plphys/kiad135] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 02/09/2023] [Indexed: 06/01/2023]
Abstract
Although microRNA408 (miR408) is a highly conserved miRNA, the miR408 response to salt stress differs among plant species. Here, we show that miR408 transcripts are strongly repressed by salt stress and methyl viologen treatment in maize (Zea mays). Application of N, N1-dimethylthiourea partly relieved the NaCl-induced down-regulation of miR408. Transgenic maize overexpressing MIR408b is hypersensitive to salt stress. Overexpression of MIR408b enhanced the rate of net Na+ efflux, caused Na+ to locate in the inter-cellular space, reduced lignin accumulation, and reduced the number of cells in vascular bundles under salt stress. We further demonstrated that miR408 targets ZmLACCASE9 (ZmLAC9). Knockout of MIR408a or MIR408b or overexpression of ZmLAC9 increased the accumulation of lignin, thickened the walls of pavement cells, and improved salt tolerance of maize. Transcriptome profiles of the wild-type and MIR408b-overexpressing transgenic maize with or without salt stress indicated that miR408 negatively regulates the expression of cell wall biogenesis genes under salt conditions. These results indicate that miR408 negatively regulates salt tolerance by regulating secondary cell wall development in maize.
Collapse
Affiliation(s)
- Ruidong Qin
- National Engineering Laboratory for Crop Molecular Breeding, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yumei Hu
- National Engineering Laboratory for Crop Molecular Breeding, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Huan Chen
- National Engineering Laboratory for Crop Molecular Breeding, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Qingguo Du
- National Engineering Laboratory for Crop Molecular Breeding, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Juan Yang
- National Engineering Laboratory for Crop Molecular Breeding, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Wen-Xue Li
- National Engineering Laboratory for Crop Molecular Breeding, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
37
|
Wang X, Yuan D, Liu Y, Liang Y, He J, Yang X, Hang R, Jia H, Mo B, Tian F, Chen X, Liu L. INDETERMINATE1 autonomously regulates phosphate homeostasis upstream of the miR399-ZmPHO2 signaling module in maize. THE PLANT CELL 2023; 35:2208-2231. [PMID: 36943781 PMCID: PMC10226601 DOI: 10.1093/plcell/koad089] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/23/2023] [Accepted: 02/25/2023] [Indexed: 05/30/2023]
Abstract
The macronutrient phosphorus is essential for plant growth and development. Plants have evolved multiple strategies to increase the efficiency of phosphate (Pi) acquisition to protect themselves from Pi starvation. However, the crosstalk between Pi homeostasis and plant development remains to be explored. Here, we report that overexpressing microRNA399 (miR399) in maize (Zea mays) is associated with premature senescence after pollination. Knockout of ZmPHO2 (Phosphate 2), a miR399 target, resulted in a similar premature senescence phenotype. Strikingly, we discovered that INDETERMINATE1 (ID1), a floral transition regulator, inhibits the transcription of ZmMIR399 genes by directly binding to their promoters, alleviating the repression of ZmPHO2 by miR399 and ultimately contributing to the maintenance of Pi homeostasis in maize. Unlike ZmMIR399 genes, whose expression is induced by Pi deficiency, ID1 expression was independent of the external inorganic orthophosphate status, indicating that ID1 is an autonomous regulator of Pi homeostasis. Furthermore, we show that ZmPHO2 was under selection during maize domestication and cultivation, resulting in a more sensitive response to Pi starvation in temperate maize than in tropical maize. Our study reveals a direct functional link between Pi-deprivation sensing by the miR399-ZmPHO2 regulatory module and plant developmental regulation by ID1.
Collapse
Affiliation(s)
- Xufeng Wang
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Bioindustry and Innovation Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518060, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, CA 92521, USA
| | - Dan Yuan
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Bioindustry and Innovation Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518060, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Yanchun Liu
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Bioindustry and Innovation Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518060, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Yameng Liang
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Biology and Genetic Improvement of Maize (MOA), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Juan He
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Bioindustry and Innovation Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518060, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Xiaoyu Yang
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Bioindustry and Innovation Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518060, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian 271018, China
| | - Runlai Hang
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, CA 92521, USA
| | - Hong Jia
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Biology and Genetic Improvement of Maize (MOA), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Beixin Mo
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Bioindustry and Innovation Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Feng Tian
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Biology and Genetic Improvement of Maize (MOA), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Xuemei Chen
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, CA 92521, USA
| | - Lin Liu
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Bioindustry and Innovation Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518060, China
| |
Collapse
|
38
|
Zhang J, Xie Y, Zhang H, He C, Wang X, Cui Y, Heng Y, Lin Y, Gu R, Wang J, Fu J. Integrated Multi-Omics Reveals Significant Roles of Non-Additively Expressed Small RNAs in Heterosis for Maize Plant Height. Int J Mol Sci 2023; 24:ijms24119150. [PMID: 37298102 DOI: 10.3390/ijms24119150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/24/2023] [Accepted: 04/28/2023] [Indexed: 06/12/2023] Open
Abstract
Heterosis is a complex biological phenomenon regulated by genetic variations and epigenetic changes. However, the roles of small RNAs (sRNAs), an important epigenetic regulatory element, on plant heterosis are still poorly understood. Here, an integrative analysis was performed with sequencing data from multi-omics layers of maize hybrids and their two homologous parental lines to explore the potential underlying mechanisms of sRNAs in plant height (PH) heterosis. sRNAome analysis revealed that 59 (18.61%) microRNAs (miRNAs) and 64,534 (54.00%) 24-nt small interfering RNAs (siRNAs) clusters were non-additively expressed in hybrids. Transcriptome profiles showed that these non-additively expressed miRNAs regulated PH heterosis through activating genes involved in vegetative growth-related pathways while suppressing those related to reproductive and stress response pathways. DNA methylome profiles showed that non-additive methylation events were more likely to be induced by non-additively expressed siRNA clusters. Genes associated with low-parental expression (LPE) siRNAs and trans-chromosomal demethylation (TCdM) events were enriched in developmental processes as well as nutrients and energy metabolism, whereas genes associated with high-parental expression (HPE) siRNAs and trans-chromosomal methylation (TCM) events were gathered in stress response and organelle organization pathways. Our results provide insights into the expression and regulation patterns of sRNAs in hybrids and help to elucidate their potential targeting pathways contributing to PH heterosis.
Collapse
Affiliation(s)
- Jie Zhang
- Center of Seed Science and Technology, Beijing Innovation Center for Seed Technology (MOA), Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Key Laboratory of Molecular Genetics, Guizhou Institute of Tobacco Science, Guiyang 550081, China
| | - Yuxin Xie
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Hongwei Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Cheng He
- Department of Plant Pathology, Kansas State University, Manhattan, KS 66502, USA
| | - Xiaoli Wang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yu Cui
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yanfang Heng
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yingchao Lin
- Key Laboratory of Molecular Genetics, Guizhou Institute of Tobacco Science, Guiyang 550081, China
| | - Riliang Gu
- Center of Seed Science and Technology, Beijing Innovation Center for Seed Technology (MOA), Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Jianhua Wang
- Center of Seed Science and Technology, Beijing Innovation Center for Seed Technology (MOA), Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Junjie Fu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
39
|
Pazhamala LT, Giri J. Plant phosphate status influences root biotic interactions. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:2829-2844. [PMID: 36516418 DOI: 10.1093/jxb/erac491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 12/09/2022] [Indexed: 06/06/2023]
Abstract
Phosphorus (P) deficiency stress in combination with biotic stress(es) severely impacts crop yield. Plant responses to P deficiency overlapping with that of other stresses exhibit a high degree of complexity involving different signaling pathways. On the one hand, plants engage with rhizosphere microbiome/arbuscular mycorrhizal fungi for improved phosphate (Pi) acquisition and plant stress response upon Pi deficiency; on the other hand, this association is gets disturbed under Pi sufficiency. This nutrient-dependent response is highly regulated by the phosphate starvation response (PSR) mediated by the master regulator, PHR1, and its homolog, PHL. It is interesting to note that Pi status (deficiency/sufficiency) has a varying response (positive/negative) to different biotic encounters (beneficial microbes/opportunistic pathogens/insect herbivory) through a coupled PSR-PHR1 immune system. This also involves crosstalk among multiple players including transcription factors, defense hormones, miRNAs, and Pi transporters, among others influencing the plant-biotic-phosphate interactions. We provide a comprehensive view of these key players involved in maintaining a delicate balance between Pi homeostasis and plant immunity. Finally, we propose strategies to utilize this information to improve crop resilience to Pi deficiency in combination with biotic stresses.
Collapse
Affiliation(s)
- Lekha T Pazhamala
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi-110067, India
| | - Jitender Giri
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi-110067, India
| |
Collapse
|
40
|
Jin Y, Ivanov M, Dittrich AN, Nelson AD, Marquardt S. LncRNA FLAIL affects alternative splicing and represses flowering in Arabidopsis. EMBO J 2023:e110921. [PMID: 37051749 DOI: 10.15252/embj.2022110921] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/07/2023] [Accepted: 03/09/2023] [Indexed: 04/14/2023] Open
Abstract
How the noncoding genome affects cellular functions is a key biological question. A particular challenge is to distinguish the effects of noncoding DNA elements from long noncoding RNAs (lncRNAs) that coincide at the same loci. Here, we identified the flowering-associated intergenic lncRNA (FLAIL) in Arabidopsis through early flowering flail mutants. Expression of FLAIL RNA from a different chromosomal location in combination with strand-specific RNA knockdown characterized FLAIL as a trans-acting RNA molecule. FLAIL directly binds to differentially expressed target genes that control flowering via RNA-DNA interactions through conserved sequence motifs. FLAIL interacts with protein and RNA components of the spliceosome to affect target mRNA expression through co-transcriptional alternative splicing (AS) and linked chromatin regulation. In the absence of FLAIL, splicing defects at the direct FLAIL target flowering gene LACCASE 8 (LAC8) correlated with reduced mRNA expression. Double mutant analyses support a model where FLAIL-mediated splicing of LAC8 promotes its mRNA expression and represses flowering. Our study suggests lncRNAs as accessory components of the spliceosome that regulate AS and gene expression to impact organismal development.
Collapse
Affiliation(s)
- Yu Jin
- Department of Plant and Environmental Sciences, Copenhagen Plant Science Centre, University of Copenhagen, Frederiksberg, Denmark
| | - Maxim Ivanov
- Department of Plant and Environmental Sciences, Copenhagen Plant Science Centre, University of Copenhagen, Frederiksberg, Denmark
| | | | | | - Sebastian Marquardt
- Department of Plant and Environmental Sciences, Copenhagen Plant Science Centre, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
41
|
Wang X, Fan H, Wang B, Yuan F. Research progress on the roles of lncRNAs in plant development and stress responses. FRONTIERS IN PLANT SCIENCE 2023; 14:1138901. [PMID: 36959944 PMCID: PMC10028117 DOI: 10.3389/fpls.2023.1138901] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
Long non-coding RNAs (lncRNAs) are RNAs of more than 200 nucleotides in length that are not (or very rarely) translated into proteins. In eukaryotes, lncRNAs regulate gene expression at the transcriptional, post-transcriptional, and epigenetic levels. lncRNAs are categorized according to their genomic position and molecular mechanism. This review summarized the characteristics and mechanisms of plant lncRNAs involved in vegetative growth, reproduction, and stress responses. Our discussion and model provide a theoretical basis for further studies of lncRNAs in plant breeding.
Collapse
Affiliation(s)
| | | | - Baoshan Wang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji’nan, Shandong, China
| | - Fang Yuan
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji’nan, Shandong, China
| |
Collapse
|
42
|
Chen L, Sun ZL. PmliHFM: Predicting Plant miRNA-lncRNA Interactions with Hybrid Feature Mining Network. Interdiscip Sci 2023; 15:44-54. [PMID: 36223068 DOI: 10.1007/s12539-022-00540-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 09/27/2022] [Accepted: 09/27/2022] [Indexed: 11/07/2022]
Abstract
Due to the crucial role of interactions between microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) in biological processes, the study of their biological functions is necessary. So far, the various computational methods have been employed to make predictions of the miRNA-lncRNA interaction, which compensate for the inadequacy of biological experiments. However, the existing methods do not consider the differences between miRNA and lncRNA in feature extraction. In this paper, we propose a hybrid feature mining network, named PmliHFM, for predicting plant miRNA-lncRNA interactions. Firstly, miRNA and lncRNA with different sequence lengths are encoded by different encodings, which can reduce the loss of information caused by using the same coding approach. Then, a hybrid feature mining network is designed to adapt to different encoding methods and extract more useful feature information than a single network. Finally, an ensemble module is utilized to integrate the training results of the hybrid feature mining network, while a prediction module is employed to determine whether there are interactions. By testing on multiple test sets, PmliHFM outperforms several state-of-the-art approaches. The results show that the AUC of PmliHFM achieves 0.8[Formula: see text], 3.1[Formula: see text] and 0.4[Formula: see text] improvement respectively on three balanced datasets, and achieves 2.1[Formula: see text] and 1.8[Formula: see text] improvement respectively on two imbalanced datasets. These experiments demonstrate the feasibility of the proposed method.
Collapse
Affiliation(s)
- Lin Chen
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Anhui University, Hefei, 230601, Anhui, China
- School of Electrical Engineering and Automation, Anhui University, Hefei, 230601, Anhui, China
| | - Zhan-Li Sun
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Anhui University, Hefei, 230601, Anhui, China.
- School of Electrical Engineering and Automation, Anhui University, Hefei, 230601, Anhui, China.
| |
Collapse
|
43
|
Wang S, Wang X, Chen J. Identification of miRNAs Involved in Maize-Induced Systemic Resistance Primed by Trichoderma harzianum T28 against Cochliobolus heterostrophus. J Fungi (Basel) 2023; 9:278. [PMID: 36836392 PMCID: PMC9964586 DOI: 10.3390/jof9020278] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/25/2023] Open
Abstract
microRNAs (miRNAs) are known to play important roles in the immune response to pathogen infection in different plants. Further, Trichoderma strains are able to activate plant defense responses against pathogen attacks. However, little is known about the involvement of miRNAs in the defense response primed by Trichoderma strains. To explore the miRNAs sensitive to priming by Trichoderma, we studied the small RNAs and transcriptome changes in maize leaves that were systemically induced by seed treatment with Trichoderma harzianum (strain T28) against Cochliobolus heterostrophus (C. heterostrophus) infection in leaves. Through analysis of the sequencing data, 38 differentially expressed miRNAs (DEMs) and 824 differentially expressed genes (DEGs) were identified. GO and KEGG analyses of DEGs demonstrated that genes involved in the plant hormone signal transduction pathway and oxidation-reduction process were significantly enriched. In addition, 15 miRNA-mRNA interaction pairs were identified through the combined analysis of DEMs and DEGs. These pairs were supposed to play roles in the maize resistance primed by T. harzianum T28 to C. heterostrophus, in which miR390, miR169j, miR408b, miR395a/p, and novel miRNA (miRn5231) were more involved in the induction of maize resistance. This study provided valuable information for understanding the regulatory role of miRNA in the T. harzianum primed defense response.
Collapse
Affiliation(s)
- Shaoqing Wang
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- Ministry of Agriculture Key Laboratory of Urban Agriculture (South), Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Xinhua Wang
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- Ministry of Agriculture Key Laboratory of Urban Agriculture (South), Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Jie Chen
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- Ministry of Agriculture Key Laboratory of Urban Agriculture (South), Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|
44
|
Chen Y, Yang W, Gao R, Chen Y, Zhou Y, Xie J, Zhang F. Genome-Wide Analysis of microRNAs and Their Target Genes in Dongxiang Wild Rice ( Oryza rufipogon Griff.) Responding to Salt Stress. Int J Mol Sci 2023; 24:ijms24044069. [PMID: 36835475 PMCID: PMC9960954 DOI: 10.3390/ijms24044069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Rice (Oryza sativa) is a staple food for more than half of the world's population, and its production is critical for global food security. Moreover, rice yield decreases when exposed to abiotic stresses, such as salinity, which is one of the most detrimental factors for rice production. According to recent trends, as global temperatures continue to rise due to climate change, more rice fields may become saltier. Dongxiang wild rice (Oryza rufipogon Griff., DXWR) is a progenitor of cultivated rice and has a high tolerance to salt stress, making it useful for studying the regulatory mechanisms of salt stress tolerance. However, the regulatory mechanism of miRNA-mediated salt stress response in DXWR remains unclear. In this study, miRNA sequencing was performed to identify miRNAs and their putative target genes in response to salt stress in order to better understand the roles of miRNAs in DXWR salt stress tolerance. A total of 874 known and 476 novel miRNAs were identified, and the expression levels of 164 miRNAs were found to be significantly altered under salt stress. The stem-loop quantitative real-time PCR (qRT-PCR) expression levels of randomly selected miRNAs were largely consistent with the miRNA sequencing results, suggesting that the sequencing results were reliable. The gene ontology (GO) analysis indicated that the predicted target genes of salt-responsive miRNAs were involved in diverse biological pathways of stress tolerance. This study contributes to our understanding of DXWR salt tolerance mechanisms regulated by miRNAs and may ultimately improve salt tolerance in cultivated rice breeding using genetic methods in the future.
Collapse
Affiliation(s)
- Yong Chen
- College of Life Sciences, Jiangxi Normal University, Nanchang 330022, China
| | - Wanling Yang
- College of Life Sciences, Jiangxi Normal University, Nanchang 330022, China
| | - Rifang Gao
- College of Life Sciences, Jiangxi Normal University, Nanchang 330022, China
| | - Yaling Chen
- College of Life Sciences, Jiangxi Normal University, Nanchang 330022, China
| | - Yi Zhou
- College of Life Sciences, Jiangxi Normal University, Nanchang 330022, China
| | - Jiankun Xie
- College of Life Sciences, Jiangxi Normal University, Nanchang 330022, China
- Correspondence: (J.X.); (F.Z.)
| | - Fantao Zhang
- College of Life Sciences, Jiangxi Normal University, Nanchang 330022, China
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
- Correspondence: (J.X.); (F.Z.)
| |
Collapse
|
45
|
Crespi M. Long non-coding RNAs reveal new regulatory mechanisms controlling gene expression. C R Biol 2023; 345:15-39. [PMID: 36847118 DOI: 10.5802/crbiol.106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 12/12/2022] [Indexed: 01/11/2023]
Abstract
A plethora of non-coding RNAs have been found in eukaryotes, notably with the advent of modern sequencing technologies to analyze the transcriptome. Apart from the well-known housekeeping RNA genes (such as the ribosomal RNA or the transfer RNA), many thousands of transcripts detected are not evidently linked to a protein-coding gene. These, so called non-coding RNAs, may code for crucial regulators of gene expression, the small si/miRNAs, for small peptides (translated under specific conditions) or may act as long RNA molecules (antisense, intronic or intergenic long non-coding RNAs or lncRNAs). The lncRNAs interact with members of multiple machineries involved in gene regulation. In this review, we discussed about how plant lncRNAs permitted to discover new regulatory mechanisms acting in epigenetic control, chromatin 3D structure and alternative splicing. These novel regulations diversified the expression patterns and protein variants of target protein-coding genes and are an important element of the response of plants to environmental stresses and their adaptation to changing conditions.
Collapse
|
46
|
Zhu Z, Qu K, Li D, Zhang L, Wang C, Cong L, Bai C, Lu X. SbPHO2, a conserved Pi starvation signalling gene, is involved in the regulation of the uptake of multiple nutrients in sorghum. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 327:111556. [PMID: 36481362 DOI: 10.1016/j.plantsci.2022.111556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/24/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
Sorghum is one of the five most productive crops worldwide, but its yield is seriously limited by phosphate (Pi) availability. Although inorganic Pi signalling is well studied in Arabidopsis and rice, it remains largely unknown in sorghum. The sorghum sbpho2 mutant was identified, showing leaf necrosis and short roots. Map-based cloning identified SbPHO2 as Sobic.009G228100, an E2 conjugase gene that is a putative orthologue of the PHO2 genes in rice and Arabidopsis, which play important roles in Pi signalling. Pi starvation experiments and transformation of SbPHO2 into the rice ospho2 mutant further revealed that SbPHO2 is likely involved in Pi accumulation and root architecture alteration in sorghum. qRTPCR results showed that SbPHO2 was expressed in almost the entire plant, especially in the leaves. Furthermore, some typical Pi starvation-induced genes were induced in sbpho2 even under Pi-sufficient conditions, including Pi transporters, SPXs, phosphatases and lipid composition alteration-related genes. In addition to P accumulation in the shoots of sbpho2, concentrations of N, K, and other metal elements were also altered significantly in the sbpho2 plants. Nitrate uptake was also suppressed in the sbpho2 mutant. Consistent with this finding, the expression of several nitrate-, potassium- and other metal element-related genes was also altered in sbpho2. Furthermore, the results indicated that N-dependent control of the P starvation response is regulated via SbPHO2 in sorghum. Our results suggest that SbPHO2 participates in the regulation of the absorption of multiple nutrients, although PHO2 is a crucial and conserved component of Pi starvation signalling.
Collapse
Affiliation(s)
- Zhenxing Zhu
- Crop Molecular Improvement Lab, Liaoning Academy of Agricultural Sciences, Shenyang 110161, Liaoning, China
| | - Kuangzheng Qu
- Crop Molecular Improvement Lab, Liaoning Academy of Agricultural Sciences, Shenyang 110161, Liaoning, China
| | - Dan Li
- Crop Molecular Improvement Lab, Liaoning Academy of Agricultural Sciences, Shenyang 110161, Liaoning, China
| | - Lixia Zhang
- Crop Molecular Improvement Lab, Liaoning Academy of Agricultural Sciences, Shenyang 110161, Liaoning, China
| | - Chunyu Wang
- Crop Molecular Improvement Lab, Liaoning Academy of Agricultural Sciences, Shenyang 110161, Liaoning, China
| | - Ling Cong
- Crop Molecular Improvement Lab, Liaoning Academy of Agricultural Sciences, Shenyang 110161, Liaoning, China
| | - Chunming Bai
- Crop Molecular Improvement Lab, Liaoning Academy of Agricultural Sciences, Shenyang 110161, Liaoning, China
| | - Xiaochun Lu
- Crop Molecular Improvement Lab, Liaoning Academy of Agricultural Sciences, Shenyang 110161, Liaoning, China.
| |
Collapse
|
47
|
Du K, Yang Y, Li J, Wang M, Jiang J, Wu J, Fang Y, Xiang Y, Wang Y. Functional Analysis of Bna-miR399c- PHO2 Regulatory Module Involved in Phosphorus Stress in Brassica napus. Life (Basel) 2023; 13:life13020310. [PMID: 36836667 PMCID: PMC9965056 DOI: 10.3390/life13020310] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/12/2023] [Accepted: 01/19/2023] [Indexed: 01/24/2023] Open
Abstract
Phosphorus stress is one of the important factors restricting plant growth and development, and the microRNA (miRNA) family is involved in the regulation of the response to plant nutrient stress by repressing the expression of target genes at the post-transcriptional or translational level. miR399 is involved in the transportation of phosphate in multiple plants by improving tolerance to low Pi conditions. However, the effect of miR399 on the response of low Pi stress in rapeseed (Brassica napus L.) is unclear. The present study showed a significant increase in taproot length and lateral root number of plants overexpressing Bna-miR399c, while the biomass and Pi accumulation in shoots and roots increased, and the anthocyanin content decreased and chlorophyll content improved under low Pi stress. The results illustrate that Bna-miR399c could enhance the uptake and transportation of Pi in soil, thus making B. napus more tolerant to low Pi stress. Furthermore, we confirmed that BnPHO2 is one of the targets of Bna-miR399c, and the rejection of Pi in rapeseed seedlings increased due to the overexpression of BnPHO2. Hence, we suggest that miR399c-PHO2 module can effectively regulate the homeostasis of Pi in B. napus. Our study can also provide the theoretical basis for germplasm innovation and the design of intelligent crops with low nutrient input and high yield to achieve the dual objectives of income and yield increase and environmental protection in B. napus.
Collapse
Affiliation(s)
- Kun Du
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China
| | - Yang Yang
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China
| | - Jinping Li
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China
| | - Ming Wang
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China
| | - Jinjin Jiang
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China
| | - Jian Wu
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China
| | - Yujie Fang
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China
| | - Yang Xiang
- Guizhou Rapeseed Institute, Guizhou Academy of Agricultural Sciences, Guiyang 550008, China
| | - Youping Wang
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China
- Correspondence: ; Tel.: +86-514-87997303; Fax: +86-514-87991747
| |
Collapse
|
48
|
Guo Y, Wang Y, Chen H, Du Q, Wang Z, Gong X, Sun Q, Li WX. Nitrogen supply affects ion homeostasis by modifying root Casparian strip formation through the miR528-LAC3 module in maize. PLANT COMMUNICATIONS 2023:100553. [PMID: 36681862 PMCID: PMC10363476 DOI: 10.1016/j.xplc.2023.100553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 12/02/2022] [Accepted: 01/18/2023] [Indexed: 06/17/2023]
Abstract
Although nitrogen (N) is known to affect mineral element homeostasis in plants, the molecular mechanisms of interactions between N and other nutrients remain largely unclear. We report here that N supply affects ion homeostasis in maize. Berberine hemisulfate staining and a propidium iodide penetration assay showed that N luxury significantly delayed Casparian strip (CS) formation in maize roots. We further demonstrated that N-mediated CS formation in maize was independent of RBOHF-activated H2O2 production. N luxury induced the expression of ZmmiR528 in whole roots and root tips. Knockdown and loss-of-function of ZmmiR528 promoted CS formation under both N-luxury and N-deficient conditions. Both ZmMIR528a and ZmMIR528b contribute to early CS formation under different N conditions. RNA-seq and real-time RT-PCR analysis demonstrated that ZmLAC3, but not ZmLAC5, responded to N treatments. Consistent with results obtained with ZmmiR528 TM transgenic maize and mir528a/b loss-of-function mutants, transgenic maize overexpressing ZmLAC3 displayed early CS formation under different N conditions. Under field conditions, K, Ca, Mn, Cu, Mg, and Zn concentrations were greater in the ear leaf of ZmLAC3-overexpressing transgenic maize than in the wild type. These results indicate that ZmmiR528 affects CS formation in maize by regulating the expression of ZmLAC3, and modification of CS formation has the potential to improve maize quality.
Collapse
Affiliation(s)
- Yu Guo
- National Engineering Laboratory for Crop Molecular Breeding, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yafei Wang
- National Engineering Laboratory for Crop Molecular Breeding, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Huan Chen
- National Engineering Laboratory for Crop Molecular Breeding, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Qingguo Du
- National Engineering Laboratory for Crop Molecular Breeding, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhonghua Wang
- National Engineering Laboratory for Crop Molecular Breeding, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiaoping Gong
- National Engineering Laboratory for Crop Molecular Breeding, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Qing Sun
- National Engineering Laboratory for Crop Molecular Breeding, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Qingdao Agricultural University, Qingdao 266109, China
| | - Wen-Xue Li
- National Engineering Laboratory for Crop Molecular Breeding, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
49
|
Zeng Z, Liu Y, Feng XY, Li SX, Jiang XM, Chen JQ, Shao ZQ. The RNAome landscape of tomato during arbuscular mycorrhizal symbiosis reveals an evolving RNA layer symbiotic regulatory network. PLANT COMMUNICATIONS 2023; 4:100429. [PMID: 36071667 PMCID: PMC9860192 DOI: 10.1016/j.xplc.2022.100429] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 08/15/2022] [Accepted: 09/02/2022] [Indexed: 06/15/2023]
Abstract
Arbuscular mycorrhizal symbiosis (AMS) is an ancient plant-fungus relationship that is widely distributed in terrestrial plants. The formation of symbiotic structures and bidirectional nutrient exchange requires the regulation of numerous genes. However, the landscape of RNAome during plant AMS involving different types of regulatory RNA is poorly understood. In this study, a combinatorial strategy utilizing multiple sequencing approaches was used to decipher the landscape of RNAome in tomato, an emerging AMS model. The annotation of the tomato genome was improved by a multiple-platform sequencing strategy. A total of 3,174 protein-coding genes were upregulated during AMS, 42% of which were alternatively spliced. Comparative-transcriptome analysis revealed that genes from 24 orthogroups were consistently induced by AMS in eight phylogenetically distant angiosperms. Seven additional orthogroups were specifically induced by AMS in all surveyed dicot AMS host plants. However, these orthogroups were absent or not induced in monocots and/or non-AMS hosts, suggesting a continuously evolving AMS-responsive network in addition to a conserved core regulatory module. Additionally, we detected 587 lncRNAs, ten miRNAs, and 146 circRNAs that responded to AMS, which were incorporated to establish a tomato AMS-responsive, competing RNA-responsive endogenous RNA (ceRNA) network. Finally, a tomato symbiotic transcriptome database (TSTD, https://efg.nju.edu.cn/TSTD) was constructed to serve as a resource for deep deciphering of the AMS regulatory network. These results help elucidate the reconfiguration of the tomato RNAome during AMS and suggest a sophisticated and evolving RNA layer responsive network during AMS processes.
Collapse
Affiliation(s)
- Zhen Zeng
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Yang Liu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Xing-Yu Feng
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Sai-Xi Li
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Xing-Mei Jiang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Jian-Qun Chen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China.
| | - Zhu-Qing Shao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
50
|
Jamla M, Joshi S, Patil S, Tripathi BN, Kumar V. MicroRNAs modulating nutrient homeostasis: a sustainable approach for developing biofortified crops. PROTOPLASMA 2023; 260:5-19. [PMID: 35657503 DOI: 10.1007/s00709-022-01775-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 05/17/2022] [Indexed: 06/15/2023]
Abstract
During their lifespan, sessile plants have to cope with bioavailability of the suboptimal nutrient concentration and have to constantly sense/evolve the connecting web of signal cascades for efficient nutrient uptake, storage, and translocation for proper growth and metabolism. However, environmental fluctuations and escalating anthropogenic activities are making it a formidable challenge for plants. This is adding to (micro)nutrient-deficient crops and nutritional insecurity. Biofortification is emerging as a sustainable and efficacious approach which can be utilized to combat the micronutrient malnutrition. A biofortified crop has an enriched level of desired nutrients developed using conventional breeding, agronomic practices, or advanced biotechnological tools. Nutrient homeostasis gets hampered under nutrient stress, which involves disturbance in short-distance and long-distance cell-cell/cell-organ communications involving multiple cellular and molecular components. Advanced sequencing platforms coupled with bioinformatics pipelines and databases have suggested the potential roles of tiny signaling molecules and post-transcriptional regulators, the microRNAs (miRNAs) in key plant phenomena including nutrient homeostasis. miRNAs are seen as emerging targets for biotechnology-based biofortification programs. Thus, understanding the mechanistic insights and regulatory role of miRNAs could open new windows for exploring them in developing nutrient-efficient biofortified crops. This review discusses significance and roles of miRNAs in plant nutrition and nutrient homeostasis and how they play key roles in plant responses to nutrient imbalances/deficiencies/toxicities covering major nutrients-nitrogen (N), phosphorus (P), sulfur (S), magnesium (Mg), iron (Fe), and zinc (Zn). A perspective view has been given on developing miRNA-engineered biofortified crops with recent success stories. Current challenges and future strategies have also been discussed.
Collapse
Affiliation(s)
- Monica Jamla
- Department of Biotechnology, Modern College of Arts, Science and Commerce, Savitribai Phule Pune University, Ganeshkhind, Pune, 411016, India
| | - Shrushti Joshi
- Department of Biotechnology, Modern College of Arts, Science and Commerce, Savitribai Phule Pune University, Ganeshkhind, Pune, 411016, India
| | - Suraj Patil
- Department of Biotechnology, Modern College of Arts, Science and Commerce, Savitribai Phule Pune University, Ganeshkhind, Pune, 411016, India
| | - Bhumi Nath Tripathi
- Department of Biotechnology, Indira Gandhi National Tribal University, Amarkantak, 484887, India
| | - Vinay Kumar
- Department of Biotechnology, Modern College of Arts, Science and Commerce, Savitribai Phule Pune University, Ganeshkhind, Pune, 411016, India.
| |
Collapse
|