1
|
Xi Y, Cai J, Peng Q, Li G, Zhu G. Chloroplastic Aspartyl-tRNA Synthetase Is Required for Chloroplast Development, Photosynthesis and Photorespiratory Metabolism. PLANT, CELL & ENVIRONMENT 2025; 48:2998-3011. [PMID: 39676495 DOI: 10.1111/pce.15330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/09/2024] [Accepted: 12/01/2024] [Indexed: 12/17/2024]
Abstract
Photorespiration is a complex metabolic process linked to primary plant metabolism and influenced by environmental factors, yet its regulation remains poorly understood. In this study, we identified the asprs3-1 mutant, which displays a photorespiratory phenotype with leaf chlorosis, stunted growth, and diminished photosynthesis under ambient CO2, but normal growth under elevated CO2 conditions. Map-based cloning and genetic complementation identified AspRS3 as the mutant gene, encoding an aspartyl-tRNA synthetase. AspRS3 is localised in both chloroplasts and mitochondria, with the chloroplast being the primary site of its physiological function. The AspRS3 mutation impacts the expression of plastid-encoded and photosynthesis-related genes, leading to decreased levels of chloroplast-encoded proteins such as ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit (RBCL) and ferredoxin-dependent glutamate synthase (Fd-GOGAT). Furthermore, we observed an accumulation of photorespiratory intermediates, including glycine and glycerate, and reactive oxygen species (ROS) in asprs3-1. However, under high CO2, the expression of these proteins, the accumulation of photorespiratory intermediates, and ROS levels in asprs3-1 did not significantly differ from those in the wild type. We propose that elevated CO2 mitigates the asprs3-1 phenotype by inhibiting Rubisco oxygenation and photorespiratory metabolism. This study highlights the role of aminoacyl-tRNA synthetases in regulating photorespiration and provides new insights into its metabolic control.
Collapse
Affiliation(s)
- Yue Xi
- Guangdong Provincial Key Laboratory for the Development Biology and Environmental Adaptation of Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Jiajia Cai
- Guangdong Provincial Key Laboratory for the Development Biology and Environmental Adaptation of Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Qiufei Peng
- Guangdong Provincial Key Laboratory for the Development Biology and Environmental Adaptation of Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Ganting Li
- Guangdong Provincial Key Laboratory for the Development Biology and Environmental Adaptation of Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Guohui Zhu
- Guangdong Provincial Key Laboratory for the Development Biology and Environmental Adaptation of Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, China
- State Key Laboratory for Conservation and Utilisation of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, China
| |
Collapse
|
2
|
Liu H, You H, Liu C, Zhao Y, Chen J, Chen Z, Li Y, Tang D, Shen Y, Cheng Z. GLUTAMYL-tRNA SYNTHETASE 1 deficiency confers thermosensitive male sterility in rice by affecting reactive oxygen species homeostasis. PLANT PHYSIOLOGY 2024; 196:1014-1028. [PMID: 38976569 DOI: 10.1093/plphys/kiae362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/07/2024] [Accepted: 06/07/2024] [Indexed: 07/10/2024]
Abstract
Temperature is one of the key environmental factors influencing crop fertility and yield. Understanding how plants sense and respond to temperature changes is, therefore, crucial for improving agricultural production. In this study, we characterized a temperature-sensitive male sterile mutant in rice (Oryza sativa), glutamyl-tRNA synthetase 1-2 (ers1-2), that shows reduced fertility at high temperatures and restored fertility at low temperatures. Mutation of ERS1 resulted in severely delayed pollen development and meiotic progression at high temperatures, eventually leading to male sterility. Moreover, meiosis-specific events, including synapsis and crossover formation, were also delayed in ers1-2 compared with the wild type. However, these defects were all mitigated by growing ers1-2 at low temperatures. Transcriptome analysis and measurement of ascorbate, glutathione, and hydrogen peroxide (H2O2) contents revealed that the delayed meiotic progression and male sterility in ers1-2 were strongly associated with changes in reactive oxygen species (ROS) homeostasis. At high temperatures, ers1-2 exhibited decreased accumulation of ROS scavengers and overaccumulation of ROS. In contrast, at low temperatures, the antioxidant system of ROS was more active, and ROS contents were lower. These data suggest that ROS homeostasis in ers1-2 is disrupted at high temperatures but restored at low temperatures. We speculate that ERS1 dysfunction leads to changes in ROS homeostasis under different conditions, resulting in delayed or rescued meiotic progression and thermosensitive male fertility. ers1-2 may hold great potential as a thermosensitive material for crop heterosis breeding.
Collapse
Affiliation(s)
- Huixin Liu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hanli You
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Changzhen Liu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Yangzi Zhao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiawei Chen
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhuoran Chen
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yafei Li
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Ding Tang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Yi Shen
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhukuan Cheng
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
3
|
Zhai R, Ye S, Ye J, Wu M, Zhu G, Yu F, Wang X, Feng Y, Zhang X. Glutaredoxin in Rice Growth, Development, and Stress Resistance: Mechanisms and Research Advances. Int J Mol Sci 2023; 24:16968. [PMID: 38069292 PMCID: PMC10707574 DOI: 10.3390/ijms242316968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/26/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
Rice (Oryza sativa L.) is a staple food for more than half of the global population. Various abiotic and biotic stresses lead to accumulation of reactive oxygen species in rice, which damage macromolecules and signaling pathways. Rice has evolved a variety of antioxidant systems, including glutaredoxin (GRX), that protect against various stressors. A total of 48 GRX gene loci have been identified on 11 of the 12 chromosomes of the rice genome; none were found on chromosome 9. GRX proteins were classified into four categories according to their active sites: CPYC, CGFS, CC, and GRL. In this paper, we summarized the recent research advances regarding the roles of GRX in rice development regulation and response to stresses, and discussed future research perspectives related to rice production. This review could provide information for rice researchers on the current status of the GRX and serve as guidance for breeding superior varieties.
Collapse
Affiliation(s)
- Rongrong Zhai
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Shenghai Ye
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Jing Ye
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Mingming Wu
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Guofu Zhu
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Faming Yu
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xingyu Wang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Yue Feng
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Xiaoming Zhang
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| |
Collapse
|
4
|
Selva C, Yang X, Shirley NJ, Whitford R, Baumann U, Tucker MR. HvSL1 and HvMADS16 promote stamen identity to restrict multiple ovary formation in barley. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:5039-5056. [PMID: 37279531 PMCID: PMC10498024 DOI: 10.1093/jxb/erad218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 06/01/2023] [Indexed: 06/08/2023]
Abstract
Correct floral development is the result of a sophisticated balance of molecular cues. Floral mutants provide insight into the main genetic determinants that integrate these cues, as well as providing opportunities to assess functional variation across species. In this study, we characterize the barley (Hordeum vulgare) multiovary mutants mov2.g and mov1, and propose causative gene sequences: a C2H2 zinc-finger gene HvSL1 and a B-class gene HvMADS16, respectively. In the absence of HvSL1, florets lack stamens but exhibit functional supernumerary carpels, resulting in multiple grains per floret. Deletion of HvMADS16 in mov1 causes homeotic conversion of lodicules and stamens into bract-like organs and carpels that contain non-functional ovules. Based on developmental, genetic, and molecular data, we propose a model by which stamen specification in barley is defined by HvSL1 acting upstream of HvMADS16. The present work identifies strong conservation of stamen formation pathways with other cereals, but also reveals intriguing species-specific differences. The findings lay the foundation for a better understanding of floral architecture in Triticeae, a key target for crop improvement.
Collapse
Affiliation(s)
- Caterina Selva
- Waite Research Institute, School of Agriculture Food and Wine, University of Adelaide, Waite Campus, Urrbrae 5064, South Australia, Australia
| | - Xiujuan Yang
- Waite Research Institute, School of Agriculture Food and Wine, University of Adelaide, Waite Campus, Urrbrae 5064, South Australia, Australia
| | - Neil J Shirley
- Waite Research Institute, School of Agriculture Food and Wine, University of Adelaide, Waite Campus, Urrbrae 5064, South Australia, Australia
| | - Ryan Whitford
- Waite Research Institute, School of Agriculture Food and Wine, University of Adelaide, Waite Campus, Urrbrae 5064, South Australia, Australia
| | - Ute Baumann
- Waite Research Institute, School of Agriculture Food and Wine, University of Adelaide, Waite Campus, Urrbrae 5064, South Australia, Australia
| | - Matthew R Tucker
- Waite Research Institute, School of Agriculture Food and Wine, University of Adelaide, Waite Campus, Urrbrae 5064, South Australia, Australia
| |
Collapse
|
5
|
Wu SY, Hou LL, Zhu J, Wang YC, Zheng YL, Hou JQ, Yang ZN, Lou Y. Ascorbic acid-mediated reactive oxygen species homeostasis modulates the switch from tapetal cell division to cell differentiation in Arabidopsis. THE PLANT CELL 2023; 35:1474-1495. [PMID: 36781400 PMCID: PMC10118275 DOI: 10.1093/plcell/koad037] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
The major antioxidant L-ascorbic acid (AsA) plays important roles in plant growth, development, and stress responses. However, the importance of AsA concentration and the regulation of AsA metabolism in plant reproduction remain unclear. In Arabidopsis (Arabidopsis thaliana) anthers, the tapetum monolayer undergoes cell differentiation to support pollen development. Here, we report that a transcription factor, DEFECTIVE IN TAPETAL DEVELOPMENT AND FUNCTION 1 (TDF1), inhibits tapetal cell division leading to cell differentiation. We identified SKEWED5-SIMILAR 18 (SKS18) as a downstream target of TDF1. Enzymatic assays showed that SKS18, annotated as a multicopper oxidase-like protein, has ascorbate oxidase activity, leading to AsA oxidation. We also show that VITAMIN C DEFECTIVE1 (VTC1), an AsA biosynthetic enzyme, is negatively controlled by TDF1 to maintain proper AsA contents. Consistently, either knockout of SKS18 or VTC1 overexpression raised AsA concentrations, resulting in extra tapetal cells, while SKS18 overexpression in tdf1 or the vtc1-3 tdf1 double mutant mitigated their defective tapetum. We observed that high AsA concentrations caused lower accumulation of reactive oxygen species (ROS) in tapetal cells. Overexpression of ROS scavenging genes in tapetum restored excess cell divisions. Thus, our findings demonstrate that TDF1-regulated AsA balances cell division and cell differentiation in the tapetum through governing ROS homeostasis.
Collapse
Affiliation(s)
| | | | - Jun Zhu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Yi-Chen Wang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Yu-Ling Zheng
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Jian-Qiao Hou
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Zhong-Nan Yang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | | |
Collapse
|
6
|
Yang X, Wilkinson LG, Aubert MK, Houston K, Shirley NJ, Tucker MR. Ovule cell wall composition is a maternal determinant of grain size in barley. THE NEW PHYTOLOGIST 2023; 237:2136-2147. [PMID: 36600397 DOI: 10.1111/nph.18714] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
In cereal species, grain size is influenced by growth of the ovule integuments (seed coat), the spikelet hull (lemma and palea) and the filial endosperm. Whether a highly conserved ovule tissue, the nucellus, has any impact on grain size has remained unclear. Immunolabelling revealed that the barley nucellus comprises two distinct cell types that differ in terms of cell wall homogalacturonan (HG) accumulation. Transcriptional profiling of the nucellus identified two pectin methylesterase (PME) genes, OVULE PECTIN MODIFIER 1 (OPM1) and OPM2, which are expressed in the unfertilized ovule but absent from the seed. Ovules from an opm1 opm2 mutant and plants expressing an ovule-specific pectin methylesterase inhibitor (PMEI), exhibit reduced HG accumulation. This results in changes to ovule cell size and shape and ovules that are longer than wild-type (WT) controls. At grain maturity, this is manifested as significantly longer grain. These findings indicate that cell wall composition during ovule development acts to limit ovule and seed growth. The investigation of ovule PME and PMEI activity reveals an unexpected role of maternal tissues in controlling grain growth before fertilization, one that has been lacking from models exploring improvements in grain size.
Collapse
Affiliation(s)
- Xiujuan Yang
- Waite Research Institute, School of Agriculture, Food and Wine, The University of Adelaide, Urrbrae, SA, 5064, Australia
| | - Laura G Wilkinson
- Waite Research Institute, School of Agriculture, Food and Wine, The University of Adelaide, Urrbrae, SA, 5064, Australia
| | - Matthew K Aubert
- Waite Research Institute, School of Agriculture, Food and Wine, The University of Adelaide, Urrbrae, SA, 5064, Australia
- Australian Grain Technologies, 100 Byfield Street, Northam, WA, 6401, Australia
| | - Kelly Houston
- The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
| | - Neil J Shirley
- Waite Research Institute, School of Agriculture, Food and Wine, The University of Adelaide, Urrbrae, SA, 5064, Australia
| | - Matthew R Tucker
- Waite Research Institute, School of Agriculture, Food and Wine, The University of Adelaide, Urrbrae, SA, 5064, Australia
| |
Collapse
|
7
|
Feng YX, Yang L, Lin YJ, Song Y, Yu XZ. Merging the occurrence possibility into gene co-expression network deciphers the importance of exogenous 2-oxoglutarate in improving the growth of rice seedlings under thiocyanate stress. FRONTIERS IN PLANT SCIENCE 2023; 14:1086098. [PMID: 36909427 PMCID: PMC9995760 DOI: 10.3389/fpls.2023.1086098] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 02/06/2023] [Indexed: 05/09/2023]
Abstract
Thiocyanate (SCN-) can find its way into cultivated fields, which might hamper the harmony in carbon and nitrogen metabolism (CNM) of plants, ebbing their quality and productivity. In the current study, we investigated the role of the exogenous application of 2-oxoglutarate (2-OG) in maintaining homeostasis of CNM in rice seedlings under SCN- stress. Results showed that SCN- exposure significantly repressed the gene expression and activities of CNM-related enzymes (e.g., phosphoenolpyruvate carboxylase, NADP-dependent isocitrate dehydrogenases, and isocitrate dehydrogenases) in rice seedlings, thereby reducing their relative growth rate (RGR). Exogenous application of 2-OG effectively mitigated the toxic effects of SCN- on rice seedlings, judged by the aforementioned parameters. The co-expression network analysis showed that genes activated in CNM pathways were categorized into four modules (Modules 1-4). In order to identify the key module activated in CNM in rice seedlings exposed to SCN-, the results from real-time quantitative PCR (RT-qPCR) tests were used to calculate the possibility of the occurrence of genes grouped in four different modules. Notably, Module 3 showed the highest occurrence probability, which is mainly related to N metabolism and 2-OG synthesis. We can conclude that exogenous application of 2-OG can modify the imbalance of CNM caused by SCN- exposure through regulating N metabolism and 2-OG synthesis in rice seedlings.
Collapse
|
8
|
Salazar‐Sarasua B, López‐Martín MJ, Roque E, Hamza R, Cañas LA, Beltrán JP, Gómez‐Mena C. The tapetal tissue is essential for the maintenance of redox homeostasis during microgametogenesis in tomato. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 112:1281-1297. [PMID: 36307971 PMCID: PMC10100220 DOI: 10.1111/tpj.16014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 10/21/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
The tapetum is a specialized layer of cells within the anther, adjacent to the sporogenous tissue. During its short life, it provides nutrients, molecules and materials to the pollen mother cells and microsporocytes, being essential during callose degradation and pollen wall formation. The interaction between the tapetum and sporogenous cells in Solanum lycopersicum (tomato) plants, despite its importance for breeding purposes, is poorly understood. To investigate this process, gene editing was used to generate loss-of-function mutants that showed the complete and specific absence of tapetal cells. These plants were obtained targeting the previously uncharacterized Solyc03g097530 (SlTPD1) gene, essential for tapetum specification in tomato plants. In the absence of tapetum, sporogenous cells developed and callose deposition was observed. However, sporocytes failed to undergo the process of meiosis and finally degenerated, leading to male sterility. Transcriptomic analysis conducted in mutant anthers lacking tapetum revealed the downregulation of a set of genes related to redox homeostasis. Indeed, mutant anthers showed a reduction in the accumulation of reactive oxygen species (ROS) at early stages and altered activity of ROS-scavenging enzymes. The results obtained highlight the importance of the tapetal tissue in maintaining redox homeostasis during male gametogenesis in tomato plants.
Collapse
Affiliation(s)
- Blanca Salazar‐Sarasua
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas‐Universitat Politècnica de Valencia)C/Ingeniero Fausto Elio s/n Edif. 8EValencia46022Spain
| | - María Jesús López‐Martín
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas‐Universitat Politècnica de Valencia)C/Ingeniero Fausto Elio s/n Edif. 8EValencia46022Spain
| | - Edelín Roque
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas‐Universitat Politècnica de Valencia)C/Ingeniero Fausto Elio s/n Edif. 8EValencia46022Spain
| | - Rim Hamza
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas‐Universitat Politècnica de Valencia)C/Ingeniero Fausto Elio s/n Edif. 8EValencia46022Spain
| | - Luis Antonio Cañas
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas‐Universitat Politècnica de Valencia)C/Ingeniero Fausto Elio s/n Edif. 8EValencia46022Spain
| | - José Pío Beltrán
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas‐Universitat Politècnica de Valencia)C/Ingeniero Fausto Elio s/n Edif. 8EValencia46022Spain
| | - Concepción Gómez‐Mena
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas‐Universitat Politècnica de Valencia)C/Ingeniero Fausto Elio s/n Edif. 8EValencia46022Spain
| |
Collapse
|
9
|
Lou H, Tucker MR, Shirley NJ, Lahnstein J, Yang X, Ma C, Schwerdt J, Fusi R, Burton RA, Band LR, Bennett MJ, Bulone V. The cellulose synthase-like F3 (CslF3) gene mediates cell wall polysaccharide synthesis and affects root growth and differentiation in barley. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 110:1681-1699. [PMID: 35395116 PMCID: PMC9324092 DOI: 10.1111/tpj.15764] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 04/04/2022] [Accepted: 04/05/2022] [Indexed: 06/14/2023]
Abstract
The barley cellulose synthase-like F (CslF) genes encode putative cell wall polysaccharide synthases. They are related to the cellulose synthase (CesA) genes involved in cellulose biosynthesis, and the CslD genes that influence root hair development. Although CslD genes are implicated in callose, mannan and cellulose biosynthesis, and are found in both monocots and eudicots, CslF genes are specific to the Poaceae. Recently the barley CslF3 (HvCslF3) gene was shown to be involved in the synthesis of a novel (1,4)-β-linked glucoxylan, but it remains unclear whether this gene contributes to plant growth and development. Here, expression profiling using qRT-PCR and mRNA in situ hybridization revealed that HvCslF3 accumulates in the root elongation zone. Silencing HvCslF3 by RNAi was accompanied by slower root growth, linked with a shorter elongation zone and a significant reduction in root system size. Polymer profiling of the RNAi lines revealed a significant reduction in (1,4)-β-linked glucoxylan levels. Remarkably, the heterologous expression of HvCslF3 in wild-type (Col-0) and root hair-deficient Arabidopsis mutants (csld3 and csld5) complemented the csld5 mutant phenotype, in addition to altering epidermal cell fate. Our results reveal a key role for HvCslF3 during barley root development and suggest that members of the CslD and CslF gene families have similar functions during root growth regulation.
Collapse
Affiliation(s)
- Haoyu Lou
- School of Agriculture, Food and WineUniversity of AdelaideWaite CampusUrrbraeSouth Australia5064Australia
- Division of Plant and Crop Sciences, School of BioscienceUniversity of NottinghamSutton Bonington Campus, LoughboroughLeicestershireLE12 5RDUK
| | - Matthew R. Tucker
- School of Agriculture, Food and WineUniversity of AdelaideWaite CampusUrrbraeSouth Australia5064Australia
| | - Neil J. Shirley
- School of Agriculture, Food and WineUniversity of AdelaideWaite CampusUrrbraeSouth Australia5064Australia
- ARC Centre of Excellence in Plant Cell Walls, School of Agriculture, Food and WineUniversity of AdelaideWaite CampusUrrbraeSouth Australia5064Australia
| | - Jelle Lahnstein
- School of Agriculture, Food and WineUniversity of AdelaideWaite CampusUrrbraeSouth Australia5064Australia
- ARC Centre of Excellence in Plant Cell Walls, School of Agriculture, Food and WineUniversity of AdelaideWaite CampusUrrbraeSouth Australia5064Australia
- Adelaide Glycomics, School of Agriculture, Food and WineUniversity of AdelaideWaite CampusUrrbraeSouth Australia5064Australia
| | - Xiujuan Yang
- School of Agriculture, Food and WineUniversity of AdelaideWaite CampusUrrbraeSouth Australia5064Australia
| | - Chao Ma
- School of Agriculture, Food and WineUniversity of AdelaideWaite CampusUrrbraeSouth Australia5064Australia
| | - Julian Schwerdt
- School of Agriculture, Food and WineUniversity of AdelaideWaite CampusUrrbraeSouth Australia5064Australia
- Adelaide Glycomics, School of Agriculture, Food and WineUniversity of AdelaideWaite CampusUrrbraeSouth Australia5064Australia
| | - Riccardo Fusi
- Division of Plant and Crop Sciences, School of BioscienceUniversity of NottinghamSutton Bonington Campus, LoughboroughLeicestershireLE12 5RDUK
| | - Rachel A. Burton
- School of Agriculture, Food and WineUniversity of AdelaideWaite CampusUrrbraeSouth Australia5064Australia
- ARC Centre of Excellence in Plant Cell Walls, School of Agriculture, Food and WineUniversity of AdelaideWaite CampusUrrbraeSouth Australia5064Australia
| | - Leah R. Band
- Division of Plant and Crop Sciences, School of BioscienceUniversity of NottinghamSutton Bonington Campus, LoughboroughLeicestershireLE12 5RDUK
- School of Mathematical SciencesUniversity of NottinghamNottinghamNG7 2RDUK
| | - Malcolm J. Bennett
- Division of Plant and Crop Sciences, School of BioscienceUniversity of NottinghamSutton Bonington Campus, LoughboroughLeicestershireLE12 5RDUK
| | - Vincent Bulone
- School of Agriculture, Food and WineUniversity of AdelaideWaite CampusUrrbraeSouth Australia5064Australia
- ARC Centre of Excellence in Plant Cell Walls, School of Agriculture, Food and WineUniversity of AdelaideWaite CampusUrrbraeSouth Australia5064Australia
- Adelaide Glycomics, School of Agriculture, Food and WineUniversity of AdelaideWaite CampusUrrbraeSouth Australia5064Australia
- Division of Glycoscience, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and HealthRoyal Institute of Technology (KTH), AlbaNova University CentreStockholmSweden
| |
Collapse
|
10
|
Liao HS, Chung YH, Hsieh MH. Glutamate: A multifunctional amino acid in plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 318:111238. [PMID: 35351313 DOI: 10.1016/j.plantsci.2022.111238] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/15/2022] [Accepted: 02/21/2022] [Indexed: 06/14/2023]
Abstract
Glutamate (Glu) is a versatile metabolite and a signaling molecule in plants. Glu biosynthesis is associated with the primary nitrogen assimilation pathway. The conversion between Glu and 2-oxoglutarate connects Glu metabolism to the tricarboxylic acid cycle, carbon metabolism, and energy production. Glu is the predominant amino donor for transamination reactions in the cell. In addition to protein synthesis, Glu is a building block for tetrapyrroles, glutathione, and folate. Glu is the precursor of γ-aminobutyric acid that plays an important role in balancing carbon/nitrogen metabolism and various cellular processes. Glu can conjugate to the major auxin indole 3-acetic acid (IAA), and IAA-Glu is destined for oxidative degradation. Glu also conjugates with isochorismate for the production of salicylic acid. Accumulating evidence indicates that Glu functions as a signaling molecule to regulate plant growth, development, and defense responses. The ligand-gated Glu receptor-like proteins (GLRs) mediate some of these responses. However, many of the Glu signaling events are GLR-independent. The receptor perceiving extracellular Glu as a danger signal is still unknown. In addition to GLRs, Glu may act on receptor-like kinases or receptor-like proteins to trigger immune responses. Glu metabolism and Glu signaling may entwine to regulate growth, development, and defense responses in plants.
Collapse
Affiliation(s)
- Hong-Sheng Liao
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Yi-Hsin Chung
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Ming-Hsiun Hsieh
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan; Department of Life Sciences, National Central University, Taoyuan 32001, Taiwan.
| |
Collapse
|
11
|
Liu H, Gong X, Deng H, Tan J, Sun Y, Wang F, Wu W, Zhou Z, Xu R, He H, Lo C. The Rice Aspartyl-tRNA Synthetase YLC3 Regulates Amino Acid Homeostasis and Chloroplast Development Under Low Temperature. FRONTIERS IN PLANT SCIENCE 2022; 13:847364. [PMID: 36340382 PMCID: PMC9635353 DOI: 10.3389/fpls.2022.847364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 01/31/2022] [Indexed: 05/17/2023]
Abstract
Aminoacyl tRNA synthetases primarily function to attach specific amino acids to the corresponding tRNAs during protein translation. However, their roles in regulating plant growth and development still remain elusive. Here we reported a rice thermo-sensitive mutant yellow leaf chlorosis3 (ylc3) with reduced chlorophyll content, altered thylakoid structure, and substantially elevated levels of free aspartate, asparagine and glutamine in leaves under low temperature condition. Map-based cloning identified that YLC3 encodes an aspartyl-tRNA synthetase which is localized in cytosol and mitochondria. In addition, quantitative proteomics analysis revealed that both nuclear and chloroplast-encoded thylakoid proteins were significantly down-regulated in the mutant. On the other hand, proteins involved in amino acid metabolism and the process of protein synthesis were up-regulated in ylc3, particularly for key enzymes that convert aspartate to asparagine. Moreover, uncharged tRNA-Asp accumulation and phosphorylation of the translation initiation factor eIF2α was detected in the mutant, suggesting that YLC3 regulates the homeostasis of amino acid metabolism and chloroplast thylakoid development through modulation of processes during protein synthesis.
Collapse
Affiliation(s)
- Hongjia Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- *Correspondence: Hongjia Liu,
| | - Xue Gong
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Hui Deng
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jinjuan Tan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yanqing Sun
- Institute of Crop Science and Institute of Bioinformatics, Zhejiang University, Hangzhou, China
| | - Fang Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Wenjuan Wu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Zhongjing Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Rumeng Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Haiyan He
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Clive Lo
- School of Biological Sciences, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| |
Collapse
|
12
|
Selva C, Shirley NJ, Houston K, Whitford R, Baumann U, Li G, Tucker MR. HvLEAFY controls the early stages of floral organ specification and inhibits the formation of multiple ovaries in barley. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 108:509-527. [PMID: 34382710 DOI: 10.1111/tpj.15457] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 08/04/2021] [Accepted: 08/06/2021] [Indexed: 06/13/2023]
Abstract
Transition to the reproductive phase, inflorescence formation and flower development are crucial elements that ensure maximum reproductive success in a plant's life cycle. To understand the regulatory mechanisms underlying correct flower development in barley (Hordeum vulgare), we characterized the multiovary 5 (mov5.o) mutant. This mutant develops abnormal flowers that exhibit mosaic floral organs typified by multiple carpels at the total or partial expense of stamens. Genetic mapping positioned mov5 on the long arm of chromosome 2H, incorporating a region that encodes HvLFY, the barley orthologue of LEAFY from Arabidopsis. Sequencing revealed that, in mov5.o plants, HvLFY contains a single amino acid substitution in a highly conserved proline residue. CRISPR-mediated knockout of HvLFY replicated the mov5.o phenotype, suggesting that HvLFYmov5 represents a loss of function allele. In heterologous assays, the HvLFYmov5 polymorphism influenced protein-protein interactions and affinity for a putative binding site in the promoter of HvMADS58, a C-class MADS-box gene. Moreover, molecular analysis indicated that HvLFY interacts with HvUFO and regulates the expression of floral homeotic genes including HvMADS2, HvMADS4 and HvMADS16. Other distinct changes in expression differ from those reported in the rice LFY mutants apo2/rfl, suggesting that LFY function in the grasses is modulated in a species-specific manner. This pathway provides a key entry point for the study of LFY function and multiple ovary formation in barley, as well as cereal species in general.
Collapse
Affiliation(s)
- Caterina Selva
- School of Agriculture Food and Wine, Waite Research Institute, University of Adelaide, Waite Campus, Urrbrae, SA, 5064, Australia
| | - Neil J Shirley
- School of Agriculture Food and Wine, Waite Research Institute, University of Adelaide, Waite Campus, Urrbrae, SA, 5064, Australia
| | - Kelly Houston
- James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
| | - Ryan Whitford
- School of Agriculture Food and Wine, Waite Research Institute, University of Adelaide, Waite Campus, Urrbrae, SA, 5064, Australia
| | - Ute Baumann
- School of Agriculture Food and Wine, Waite Research Institute, University of Adelaide, Waite Campus, Urrbrae, SA, 5064, Australia
| | - Gang Li
- School of Agriculture Food and Wine, Waite Research Institute, University of Adelaide, Waite Campus, Urrbrae, SA, 5064, Australia
- School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, China
| | - Matthew R Tucker
- School of Agriculture Food and Wine, Waite Research Institute, University of Adelaide, Waite Campus, Urrbrae, SA, 5064, Australia
| |
Collapse
|
13
|
Lin D, Zhou W, Wang Y, Sun J, Pan X, Dong Y. Rice TSV2 encoding threonyl-tRNA synthetase is needed for early chloroplast development and seedling growth under cold stress. G3-GENES GENOMES GENETICS 2021; 11:6332004. [PMID: 34544147 PMCID: PMC8661440 DOI: 10.1093/g3journal/jkab196] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 03/08/2021] [Indexed: 11/21/2022]
Abstract
Threonyl-tRNA synthetase (ThrRS), one of the aminoacyl-tRNA synthetases (AARSs), plays a crucial role in protein synthesis. However, the AARS functions on rice chloroplast development and growth were not fully appraised. In this study, a thermo-sensitive virescent mutant tsv2, which showed albino phenotype and lethal after the 4-leaf stage at 20°C but recovered to normal when the temperatures rose, was identified and characterized. Map-based cloning and complementation tests showed that TSV2 encoded a chloroplast-located ThrRS protein in rice. The Lys-to-Arg mutation in the anticodon-binding domain hampered chloroplast development under cold stress, while the loss of function of the ThrRS core domain in TSV2 fatally led to seedling death regardless of growing temperatures. In addition, TSV2 had a specific expression in early leaves. Its disruption obviously resulted in the downregulation of certain genes associated with chlorophyll biosynthesis, photosynthesis, and chloroplast development at cold conditions. Our observations revealed that rice nuclear-encoded TSV2 plays an important role in chloroplast development at the early leaf stage under cold stress.
Collapse
Affiliation(s)
- Dongzhi Lin
- College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Wenhao Zhou
- College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Yulu Wang
- College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Jia Sun
- College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Xiaobiao Pan
- Crop Institute, Taizhou Academy of Agricultural Sciences, Zhejiang Linhai 317000, China
| | - Yanjun Dong
- College of Life Sciences, Shanghai Normal University, Shanghai 200234, China.,Shanghai Key Laboratory of Plant Molecular Sciences, Shanghai 200234, China.,Institute of Genetics, Shanghai Normal University, Shanghai 200234, China
| |
Collapse
|
14
|
Li G, Kuijer HNJ, Yang X, Liu H, Shen C, Shi J, Betts N, Tucker MR, Liang W, Waugh R, Burton RA, Zhang D. MADS1 maintains barley spike morphology at high ambient temperatures. NATURE PLANTS 2021; 7:1093-1107. [PMID: 34183784 DOI: 10.1038/s41477-021-00957-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 06/02/2021] [Indexed: 05/05/2023]
Abstract
Temperature stresses affect plant phenotypic diversity. The developmental stability of the inflorescence, required for reproductive success, is tightly regulated by the interplay of genetic and environmental factors. However, the mechanisms underpinning how plant inflorescence architecture responds to temperature are largely unknown. We demonstrate that the barley SEPALLATA MADS-box protein HvMADS1 is responsible for maintaining an unbranched spike architecture at high temperatures, while the loss-of-function mutant forms a branched inflorescence-like structure. HvMADS1 exhibits increased binding to target promoters via A-tract CArG-box motifs, which change conformation with temperature. Target genes for high-temperature-dependent HvMADS1 activation are predominantly associated with inflorescence differentiation and phytohormone signalling. HvMADS1 directly regulates the cytokinin-degrading enzyme HvCKX3 to integrate temperature response and cytokinin homeostasis, which is required to repress meristem cell cycle/division. Our findings reveal a mechanism by which genetic factors direct plant thermomorphogenesis, extending the recognized role of plant MADS-box proteins in floral development.
Collapse
Affiliation(s)
- Gang Li
- School of Agriculture, Food and Wine, Waite Research Institute, The University of Adelaide, Waite Campus, Glen Osmond, South Australia, Australia.
- School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang, China.
| | - Hendrik N J Kuijer
- School of Agriculture, Food and Wine, Waite Research Institute, The University of Adelaide, Waite Campus, Glen Osmond, South Australia, Australia
| | - Xiujuan Yang
- School of Agriculture, Food and Wine, Waite Research Institute, The University of Adelaide, Waite Campus, Glen Osmond, South Australia, Australia
| | - Huiran Liu
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Chaoqun Shen
- School of Agriculture, Food and Wine, Waite Research Institute, The University of Adelaide, Waite Campus, Glen Osmond, South Australia, Australia
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Jin Shi
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Natalie Betts
- School of Agriculture, Food and Wine, Waite Research Institute, The University of Adelaide, Waite Campus, Glen Osmond, South Australia, Australia
| | - Matthew R Tucker
- School of Agriculture, Food and Wine, Waite Research Institute, The University of Adelaide, Waite Campus, Glen Osmond, South Australia, Australia
| | - Wanqi Liang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Robbie Waugh
- School of Agriculture, Food and Wine, Waite Research Institute, The University of Adelaide, Waite Campus, Glen Osmond, South Australia, Australia
- James Hutton Institute, Dundee, UK
- Division of Plant Sciences, School of Life Sciences, University of Dundee, Dundee, UK
| | - Rachel A Burton
- School of Agriculture, Food and Wine, Waite Research Institute, The University of Adelaide, Waite Campus, Glen Osmond, South Australia, Australia
| | - Dabing Zhang
- School of Agriculture, Food and Wine, Waite Research Institute, The University of Adelaide, Waite Campus, Glen Osmond, South Australia, Australia.
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
15
|
Dukowic-Schulze S, van der Linde K. Oxygen, secreted proteins and small RNAs: mobile elements that govern anther development. PLANT REPRODUCTION 2021; 34:1-19. [PMID: 33492519 PMCID: PMC7902584 DOI: 10.1007/s00497-020-00401-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 12/24/2020] [Indexed: 05/24/2023]
Abstract
Correct anther development is essential for male fertility and subsequently agricultural yield. Defects in anther development range from the early stage of stamen formation until the late stage of tapetum degeneration. In particular, the specification of the four distinct somatic layers and the inner sporogenous cells need perfect orchestration relying on precise cell-cell communication. Up to now, several signals, which coordinate the anther´s developmental program, have been identified. Among the known signals are phytohormones, environmental conditions sensed via glutaredoxins, several receptor-like kinases triggered by ligands like MAC1, and small RNAs such as miRNAs and the monocot-prevalent reproductive phasiRNAs. Rather than giving a full review on anther development, here we discuss anther development with an emphasis on mobile elements like ROS/oxygen, secreted proteins and small RNAs (only briefly touching on phytohormones), how they might act and interact, and what the future of this research area might reveal.
Collapse
Affiliation(s)
- Stefanie Dukowic-Schulze
- Department of Cell Biology and Plant Biochemistry, University of Regensburg, Regensburg, Germany.
| | - Karina van der Linde
- Department of Cell Biology and Plant Biochemistry, University of Regensburg, Regensburg, Germany.
| |
Collapse
|
16
|
Plant-Specific Domains and Fragmented Sequences Imply Non-Canonical Functions in Plant Aminoacyl-tRNA Synthetases. Genes (Basel) 2020; 11:genes11091056. [PMID: 32906706 PMCID: PMC7564348 DOI: 10.3390/genes11091056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/23/2020] [Accepted: 09/01/2020] [Indexed: 12/01/2022] Open
Abstract
Aminoacyl-tRNA synthetases (aaRSs) play essential roles in protein translation. In addition, numerous aaRSs (mostly in vertebrates) have also been discovered to possess a range of non-canonical functions. Very few studies have been conducted to elucidate or characterize non-canonical functions of plant aaRSs. A genome-wide search for aaRS genes in Arabidopsis thaliana revealed a total of 59 aaRS genes. Among them, asparaginyl-tRNA synthetase (AsnRS) was found to possess a WHEP domain inserted into the catalytic domain in a plant-specific manner. This insertion was observed only in the cytosolic isoform. In addition, a long stretch of sequence that exhibited weak homology with histidine ammonia lyase (HAL) was found at the N-terminus of histidyl-tRNA synthetase (HisRS). This HAL-like domain has only been seen in plant HisRS, and only in cytosolic isoforms. Additionally, a number of genes lacking minor or major portions of the full-length aaRS sequence were found. These genes encode 14 aaRS fragments that lack key active site sequences and are likely catalytically null. These identified genes that encode plant-specific additional domains or aaRS fragment sequences are candidates for aaRSs possessing non-canonical functions.
Collapse
|
17
|
Das S, Swetha C, Pachamuthu K, Nair A, Shivaprasad PV. Loss of function of Oryza sativa Argonaute 18 induces male sterility and reduction in phased small RNAs. PLANT REPRODUCTION 2020; 33:59-73. [PMID: 32157461 DOI: 10.1007/s00497-020-00386-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 03/03/2020] [Indexed: 05/14/2023]
Abstract
In this manuscript, we show that Oryza sativa indica Argonaute protein AGO18 is required for male gametophyte development likely to through a small RNA-mediated mechanism. Monocots have evolved unique gene silencing pathways due to the presence of unique members of Dicer-like and Argonaute (AGO) family members. Among the monocot AGO homologs, AGO18 occupies a unique position. Previous reports have implicated this protein in viral resistance as well as in gametogenesis, likely through its competition with AGO1 clade members for micro(mi)RNAs and other small (s)RNAs. Although expression of rice AGO18 in specific stages of male gametogenesis has been documented, its major functions in plant development remain poorly understood. Here, we show that Oryza sativa indica AGO18 is involved in male gametophyte development. Knockdown (KD) of AGO18 in transgenic rice lines resulted in stunted plants that are male sterile, whereas their carpels were functional. Transcriptome analysis revealed downregulation of several pollen development-associated genes in KD lines. sRNA sequencing in vegetative and reproductive tissues of KD lines indicated reduction of miRNAs and phased secondary sRNAs implicated in male gametophyte development. Our results indicate a distinct role for rice AGO18 in male fertility.
Collapse
Affiliation(s)
- Soumita Das
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bangalore, 560065, India
| | - Chenna Swetha
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bangalore, 560065, India
| | - Kannan Pachamuthu
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bangalore, 560065, India
| | - Ashwin Nair
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bangalore, 560065, India
| | - P V Shivaprasad
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bangalore, 560065, India.
| |
Collapse
|
18
|
Zafar SA, Patil SB, Uzair M, Fang J, Zhao J, Guo T, Yuan S, Uzair M, Luo Q, Shi J, Schreiber L, Li X. DEGENERATED PANICLE AND PARTIAL STERILITY 1 (DPS1) encodes a cystathionine β-synthase domain containing protein required for anther cuticle and panicle development in rice. THE NEW PHYTOLOGIST 2020; 225:356-375. [PMID: 31433495 DOI: 10.1111/nph.16133] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 08/13/2019] [Indexed: 05/25/2023]
Abstract
Degeneration of apical spikelets and reduced panicle fertility are common reasons for low seed-setting rate in rice (Oryza sativa). However, little is known about the underlying molecular mechanisms. Here, we report a novel degenerated panicle and partial sterility 1 (dps1) mutant that showed panicle apical degeneration and reduced fertility in middle spikelets. dps1 plants were characterized by small whitish anthers with altered cuticle morphology and absence of pollen grains. Amounts of cuticular wax and cutin were significantly reduced in dps1 anthers. Panicles of dps1 plants showed an accumulation of reactive oxygen species (ROS), lower antioxidant activity, and increased programmed cell death. Map-based cloning revealed that DPS1 encodes a mitochondrial-localized protein containing a cystathionine β-synthase domain that showed the highest expression in panicles and anthers. DPS1 physically interacted with mitochondrial thioredoxin proteins Trx1 and Trx20, and it participated in ROS scavenging. Global gene expression analysis in dps1 revealed that biological processes related to fatty acid metabolism and ROS homeostasis were significantly affected, and the expression of key genes involved in wax and cutin biosynthesis were downregulated. These results suggest that DPS1 plays a vital role in regulating ROS homeostasis, anther cuticle formation, and panicle development in rice.
Collapse
Affiliation(s)
- Syed Adeel Zafar
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Suyash B Patil
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Muhammad Uzair
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jingjing Fang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jinfeng Zhao
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Tingting Guo
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | | | - Muhammad Uzair
- Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Qian Luo
- Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jianxin Shi
- Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Lukas Schreiber
- Institute of Cellular and Molecular Botany, University of Bonn, Bonn, D-53115, Germany
| | - Xueyong Li
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| |
Collapse
|
19
|
Kitagawa M, Balkunde R, Bui H, Jackson D. An Aminoacyl tRNA Synthetase, OKI1, Is Required for Proper Shoot Meristem Size in Arabidopsis. PLANT & CELL PHYSIOLOGY 2019; 60:2597-2608. [PMID: 31393575 DOI: 10.1093/pcp/pcz153] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 07/29/2019] [Indexed: 06/10/2023]
Abstract
In plants, the stem cells that form the shoot system reside within the shoot apical meristem (SAM), which is regulated by feedback signaling between the WUSCHEL (WUS) homeobox protein and CLAVATA (CLV) peptides and receptors. WUS-CLV feedback signaling can be modulated by various endogenous or exogenous factors, such as chromatin state, hormone signaling, reactive oxygen species (ROS) signaling and nutrition, leading to a dynamic control of SAM size corresponding to meristem activity. Despite these insights, however, the knowledge of genes that control SAM size is still limited, and in particular, the regulation by ROS signaling is only beginning to be comprehended. In this study, we report a new function in maintenance of SAM size, encoded by the OKINA KUKI1 (OKI1) gene. OKI1 is expressed in the SAM and encodes a mitochondrial aspartyl tRNA synthetase (AspRS). oki1 mutants display enlarged SAMs with abnormal expression of WUS and CLV3 and overaccumulation of ROS in the meristem. Our findings support the importance of normal AspRS function in the maintenance of the WUS-CLV3 feedback loop and SAM size.
Collapse
Affiliation(s)
- Munenori Kitagawa
- Cold Spring Harbor Laboratory, 1 Bungtown road, Cold Spring Harbor, NY, USA
| | - Rachappa Balkunde
- Cold Spring Harbor Laboratory, 1 Bungtown road, Cold Spring Harbor, NY, USA
- Department of Biology, Washington University in St. Louis, 1 Brookings Drive, St. Louis, MO, USA
| | - Huyen Bui
- Cold Spring Harbor Laboratory, 1 Bungtown road, Cold Spring Harbor, NY, USA
- Center of Biofilm Engineering, Montana State University, 366 Barnard Hall, Bozeman, MT, USA
| | - David Jackson
- Cold Spring Harbor Laboratory, 1 Bungtown road, Cold Spring Harbor, NY, USA
| |
Collapse
|
20
|
Chang CL, Serapion JC, Hung HH, Lin YC, Tsai YC, Jane WN, Chang MC, Lai MH, Hsing YIC. Studies of a rice sterile mutant sstl from the TRIM collection. BOTANICAL STUDIES 2019; 60:12. [PMID: 31292815 PMCID: PMC6620220 DOI: 10.1186/s40529-019-0260-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 06/30/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Rice (Oryza sativa) is one of the main crops in the world, and more than 3.9 billion people will consume rice by 2025. Sterility significantly affects rice production and leads to yield defects. The undeveloped anthers or abnormal pollen represent serious defects in rice male sterility. Therefore, understanding the mechanism of male sterility is an important task. Here, we investigated a rice sterile mutant according to its developmental morphology and transcriptional profiles. RESULTS An untagged T-DNA insertional mutant showed defective pollen and abnormal anthers as compared with its semi-sterile mutant (sstl) progeny segregates. Transcriptomic analysis of sterile sstl-s revealed several biosynthesis pathways, such as downregulated cell wall, lipids, secondary metabolism, and starch synthesis. This downregulation is consistent with the morphological characterization of sstl-s anthers with irregular exine, absence of intine, no starch accumulation in pollen grains and no accumulated flavonoids in anthers. Moreover, defective microsporangia development led to abnormal anther locule and aborted microspores. The downregulated lipids, starch, and cell wall synthesis-related genes resulted in loss of fertility. CONCLUSIONS We illustrate the importance of microsporangia in the development of anthers and functional microspores. Abnormal development of pollen grains, pollen wall, anther locule, etc. result in severe yield reduction.
Collapse
Affiliation(s)
- Chia-Ling Chang
- Department of Agronomy, National Taiwan University, Taipei, 106 Taiwan
- Institute of Plant and Microbial Biology, Academia Sinica, Nankang, Taipei, 115 Taiwan
| | - Jerry C. Serapion
- Institute of Plant and Microbial Biology, Academia Sinica, Nankang, Taipei, 115 Taiwan
| | - Han-Hui Hung
- Crop Science Division, Taiwan Agricultural Research Institute, Taichung, 413 Taiwan
| | - Yan-Cheng Lin
- Department of Life Science, National Taiwan University, Taipei, 106 Taiwan
| | - Yuan-Ching Tsai
- Department of Agronomy, National Chiayi University, Chiayi, 600 Taiwan
| | - Wann-Neng Jane
- Institute of Plant and Microbial Biology, Academia Sinica, Nankang, Taipei, 115 Taiwan
| | - Men-Chi Chang
- Department of Agronomy, National Taiwan University, Taipei, 106 Taiwan
| | - Ming-Hsin Lai
- Crop Science Division, Taiwan Agricultural Research Institute, Taichung, 413 Taiwan
| | - Yue-ie C. Hsing
- Department of Agronomy, National Taiwan University, Taipei, 106 Taiwan
- Institute of Plant and Microbial Biology, Academia Sinica, Nankang, Taipei, 115 Taiwan
| |
Collapse
|
21
|
Yu J, Zhang D. Molecular Control of Redox Homoeostasis in Specifying the Cell Identity of Tapetal and Microsporocyte Cells in Rice. RICE (NEW YORK, N.Y.) 2019; 12:42. [PMID: 31214893 PMCID: PMC6582093 DOI: 10.1186/s12284-019-0300-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 05/24/2019] [Indexed: 05/18/2023]
Abstract
In flowering plants, male reproduction occurs within the male organ anther with a series of complex biological events including de novo specification of germinal cells and somatic cells, male meiosis, and pollen development and maturation. Particularly, unlike other tissue, anther lacks a meristem, therefore, both germinal and somatic cell types are derived from floral stem cells within anther lobes. Here, we review the molecular mechanism specifying the identity of somatic cells and reproductive microsporocytes by redox homoeostasis during rice anther development. Factors such as glutaredoxins (GRXs), TGA transcription factors, receptor-like protein kinase signaling pathway, and glutamyl-tRNA synthetase maintaining the redox status are discussed. We also conceive the conserved and divergent aspect of cell identity specification of anther cells in plants via changing redox status.
Collapse
Affiliation(s)
- Jing Yu
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Rd, Shanghai, 200240, People's Republic of China
| | - Dabing Zhang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Rd, Shanghai, 200240, People's Republic of China.
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA, 5064, Australia.
| |
Collapse
|
22
|
Kekez M, Zanki V, Kekez I, Baranasic J, Hodnik V, Duchêne A, Anderluh G, Gruic‐Sovulj I, Matković‐Čalogović D, Weygand‐Durasevic I, Rokov‐Plavec J. Arabidopsis
seryl‐
tRNA
synthetase: the first crystal structure and novel protein interactor of plant aminoacyl‐
tRNA
synthetase. FEBS J 2019; 286:536-554. [DOI: 10.1111/febs.14735] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Revised: 12/01/2018] [Accepted: 12/17/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Mario Kekez
- Division of Biochemistry Department of Chemistry Faculty of Science University of Zagreb Croatia
| | - Vladimir Zanki
- Division of Biochemistry Department of Chemistry Faculty of Science University of Zagreb Croatia
| | - Ivana Kekez
- Division of General and Inorganic Chemistry Department of Chemistry Faculty of Science University of Zagreb Croatia
| | - Jurica Baranasic
- Division of Biochemistry Department of Chemistry Faculty of Science University of Zagreb Croatia
| | - Vesna Hodnik
- National Institute of Chemistry Ljubljana Slovenia
- Biotechnical faculty University of Ljubljana Slovenia
| | - Anne‐Marie Duchêne
- Institut de biologie moléculaire des plantes CNRS, Université de Strasbourg Strasbourg Cedex France
| | | | - Ita Gruic‐Sovulj
- Division of Biochemistry Department of Chemistry Faculty of Science University of Zagreb Croatia
| | - Dubravka Matković‐Čalogović
- Division of General and Inorganic Chemistry Department of Chemistry Faculty of Science University of Zagreb Croatia
| | - Ivana Weygand‐Durasevic
- Division of Biochemistry Department of Chemistry Faculty of Science University of Zagreb Croatia
| | - Jasmina Rokov‐Plavec
- Division of Biochemistry Department of Chemistry Faculty of Science University of Zagreb Croatia
| |
Collapse
|