1
|
Luhua Y, Yu N, Chunjie C, Wangdan X, Qiaoqiao G, Xinfeng J, Shurong J, Jianfeng Y, Yanjun G. Unlocking the Synergy: ABA Seed Priming Enhances Drought Tolerance in Seedlings of Sweet Sorghum Through ABA-IAA Crosstalk. PLANT, CELL & ENVIRONMENT 2025. [PMID: 40269610 DOI: 10.1111/pce.15575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 03/10/2025] [Accepted: 04/12/2025] [Indexed: 04/25/2025]
Abstract
Abscisic acid (ABA) seed priming impacts plant growth and stress resistance, yet its precise physiological and molecular mechanisms remain elusive. This study explored the role of ABA-priming in enhancing drought acclimation in sweet sorghum (Sorghum bicolor Moench) using physiological assessments and comparative transcriptomics. Under drought stress, ABA-primed seedlings exhibited increased plant height, larger leaves, and higher leaf water content compared to non-primed plants. While drought negatively affected photosynthesis through the regulation of photosystem I and II, ABA-priming improved photosynthesis and WUE by involving in differential expression of photosystem II genes. ABA-priming promoted the accumulation of cuticular wax and cutin, effectively reducing leaf water loss. Drought triggered endogenous ABA production via ABA inactivation genes (UGT, BGLU), while ABA-priming activated auxin (IAA) biosynthesis via YUCCA, enhancing auxin-mediated responses and gibberellic acid (GA) signalling. The synergistic action of ABA and IAA culminated in enhanced drought tolerance. Additionally, ABA-priming and drought stress regulated NAC transcription factors, with SbNAC21-1 emerging as a pivotal transcriptional activator intricately linked to auxin signalling. Overexpression of SbNAC21-1 in Arabidopsis effectively enhanced drought tolerance. These findings offer valuable insights into the intricate mechanisms underpinning the beneficial effects of ABA-priming, ultimately enhancing plant adaptability to environmental stressors.
Collapse
Affiliation(s)
- Yao Luhua
- College of Grassland Science, Qingdao Agricultural University, Qingdao, China
- Department of Agriculture and Forestry, Hainan Tropical Ocean University, Sanya, China
| | - Ni Yu
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
| | - Chen Chunjie
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Xiong Wangdan
- College of Grassland Science, Qingdao Agricultural University, Qingdao, China
- Qingdao Key Laboratory of Specialty Plant Germplasm Innovation and Utilization in Saline Soils of Coastal Beach, Qingdao Agricultural University, Qingdao, China
| | - Gan Qiaoqiao
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Jia Xinfeng
- College of Grassland Science, Qingdao Agricultural University, Qingdao, China
- Qingdao Key Laboratory of Specialty Plant Germplasm Innovation and Utilization in Saline Soils of Coastal Beach, Qingdao Agricultural University, Qingdao, China
| | - Jin Shurong
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Yang Jianfeng
- Qingdao Key Laboratory of Specialty Plant Germplasm Innovation and Utilization in Saline Soils of Coastal Beach, Qingdao Agricultural University, Qingdao, China
| | - Guo Yanjun
- College of Grassland Science, Qingdao Agricultural University, Qingdao, China
- Qingdao Key Laboratory of Specialty Plant Germplasm Innovation and Utilization in Saline Soils of Coastal Beach, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
2
|
Wang Y, Lei J, Liu J, Gao M, Cheng J, Chang J, Zhang R, Ren C, Wang D, Wang M, Song Y, Zeng R, Qin Y, Zhang H. Dual Localization and Functional Divergence of V-ATPase Subunit A: Nuclear Shuttling Mediates Distinct Roles in Dark- and MeJA-Induced Leaf Senescence. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025. [PMID: 40241244 DOI: 10.1021/acs.jafc.5c00903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
Retrograde signaling regulates plant senescence, but the role of vacuoles in this process remains unclear. Here, we demonstrate that rice vacuolar H+-ATPase subunit A (OsVHA-A) localizes to both the cytoplasm and nucleus. Sucrose treatment increased OsVHA-A expression and nuclear accumulation, while darkness reduced it. Methyl jasmonate (MeJA) initially promoted OsVHA-A nuclear translocation but decreased it upon prolonged exposure. Downregulation of OsVHA-A expression accelerated MeJA-induced rice leaf senescence but delayed darkness-induced senescence. MeJA treatment also significantly upregulated the expression of OsMYC2 and OsMAPK6 in OsVHA-A-RNAi plants compared to wild-type plants. Moreover, OsVHA-A downregulation notably increased the level of expression of genes associated with sugar signaling and transport under dark conditions. Immunoprecipitation-mass spectrometry and molecular docking analyses identified interactions between OsVHA-A and OsTPR1, OsMed14, sucrose transporters, and enzymes involved in sucrose metabolism. The binding of OsVHA-A with OsTPR1 and OsSUS1 was confirmed by BiFC. These findings highlight the multifunctional role of OsVHA-A in coordinating organelles and nuclear signaling, providing new insights and potential strategies for manipulating senescence to improve rice yield and quality.
Collapse
Affiliation(s)
- Yifan Wang
- College of Agriculture, Key Laboratory of Biological Breeding for Fujian and Taiwan Crops, Ministry of Agriculture and Rural Affairs, Key Laboratory of Crop Biotechnology of Fujian Higher Education Institutes, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Life Sciences, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jianhui Lei
- College of Agriculture, Key Laboratory of Biological Breeding for Fujian and Taiwan Crops, Ministry of Agriculture and Rural Affairs, Key Laboratory of Crop Biotechnology of Fujian Higher Education Institutes, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jian Liu
- College of Agriculture, Key Laboratory of Biological Breeding for Fujian and Taiwan Crops, Ministry of Agriculture and Rural Affairs, Key Laboratory of Crop Biotechnology of Fujian Higher Education Institutes, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Mengyu Gao
- College of Agriculture, Key Laboratory of Biological Breeding for Fujian and Taiwan Crops, Ministry of Agriculture and Rural Affairs, Key Laboratory of Crop Biotechnology of Fujian Higher Education Institutes, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Junyi Cheng
- College of Life Sciences, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jun Chang
- College of Life Sciences, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ruxuan Zhang
- College of Agriculture, Key Laboratory of Biological Breeding for Fujian and Taiwan Crops, Ministry of Agriculture and Rural Affairs, Key Laboratory of Crop Biotechnology of Fujian Higher Education Institutes, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Caihui Ren
- College of Agriculture, Key Laboratory of Biological Breeding for Fujian and Taiwan Crops, Ministry of Agriculture and Rural Affairs, Key Laboratory of Crop Biotechnology of Fujian Higher Education Institutes, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Dong Wang
- College of Agriculture, Key Laboratory of Biological Breeding for Fujian and Taiwan Crops, Ministry of Agriculture and Rural Affairs, Key Laboratory of Crop Biotechnology of Fujian Higher Education Institutes, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Minzhu Wang
- College of Agriculture, Key Laboratory of Biological Breeding for Fujian and Taiwan Crops, Ministry of Agriculture and Rural Affairs, Key Laboratory of Crop Biotechnology of Fujian Higher Education Institutes, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuanyuan Song
- College of Agriculture, Key Laboratory of Biological Breeding for Fujian and Taiwan Crops, Ministry of Agriculture and Rural Affairs, Key Laboratory of Crop Biotechnology of Fujian Higher Education Institutes, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Rensen Zeng
- College of Agriculture, Key Laboratory of Biological Breeding for Fujian and Taiwan Crops, Ministry of Agriculture and Rural Affairs, Key Laboratory of Crop Biotechnology of Fujian Higher Education Institutes, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuan Qin
- College of Life Sciences, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Huiying Zhang
- College of Agriculture, Key Laboratory of Biological Breeding for Fujian and Taiwan Crops, Ministry of Agriculture and Rural Affairs, Key Laboratory of Crop Biotechnology of Fujian Higher Education Institutes, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Life Sciences, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
3
|
Liu Y, Zhao X, Fan Y, Huo P, Huang S, Wang H, Lu Z, Luo Z, Zhang Y. Transcriptome analysis of Beauveria bassiana interaction with Nicotiana benthamiana reveals signatures of N. Benthamiana growth promotion and enhanced defense responses. J Invertebr Pathol 2025; 211:108334. [PMID: 40204265 DOI: 10.1016/j.jip.2025.108334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 03/30/2025] [Accepted: 04/06/2025] [Indexed: 04/11/2025]
Abstract
Many entomopathogenic fungi form intimate (epi- and endo-phytic) associations with that plant that can stimulate plant growth and /or improve resistance to pathogens and insect pests. However, little is known concerning global gene networks that mediate such responses. Nicotiana benthamiana seedlings were artificially colonized by the entomogenous fungus, Beauveria bassiana, and the root tissues were examined via comparative transcriptome analyses performed versus fungal cells grown in vitro on dried root biomass. Plant hormone pathways, and genes involved in photosynthesis, immune defense response, and nutrient metabolism were triggered in roots after fungal colonization. Fungal differentially expressed genes during plant colonization included plant cell wall-degrading enzymes, and those involved in lipid metabolism, detoxification, and fungal cell wall remodeling, the latter suggesting reduction in the exposure of pathogen related molecular patterns to avoid perception by the plant immune system. Fungal metabolic genes involved in amino acid, nitrogen, sulfur and carbohydrate assimilation were activated, nutrient exchange with the plant host. Exchange was confirmed by detection of sulfur in the seedling that was increased by the fungal colonization. A set of fungal secondary metabolism-associated genes were also upregulated during the plant interaction, which might contribute to plant resistance against pathogens or/and insect pest. In addition, B. bassiana expressed a suite of effector/elicitor genes consistent with triggering plant growth and/or immune defense response pathways. These results revealed global gene networks active in both the plants and the fungus as a consequence of their symbiotic interaction, and provides insights into the molecular determinants and physiological responses affected.
Collapse
Affiliation(s)
- Yunxia Liu
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Plant Protection, Southwest University, Chongqing 400715, China; Key Laboratory of Entomology and Pest Control Engineering, Southwest University, Chongqing 400715, China
| | - Xin Zhao
- School of Basic Medicine Science, Chongqing University of Chinese Medicine, Chongqing 402760, China
| | - Yongxiong Fan
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Plant Protection, Southwest University, Chongqing 400715, China; Key Laboratory of Entomology and Pest Control Engineering, Southwest University, Chongqing 400715, China
| | - Pengxia Huo
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Plant Protection, Southwest University, Chongqing 400715, China; Key Laboratory of Entomology and Pest Control Engineering, Southwest University, Chongqing 400715, China
| | - Shuaishuai Huang
- School of Ecology and Environment, Tibet University, Tibet 850000, China
| | - Huifang Wang
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Plant Protection, Southwest University, Chongqing 400715, China; Key Laboratory of Entomology and Pest Control Engineering, Southwest University, Chongqing 400715, China
| | - Zhuoyue Lu
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Plant Protection, Southwest University, Chongqing 400715, China; Key Laboratory of Entomology and Pest Control Engineering, Southwest University, Chongqing 400715, China
| | - Zhibing Luo
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Plant Protection, Southwest University, Chongqing 400715, China; Key Laboratory of Entomology and Pest Control Engineering, Southwest University, Chongqing 400715, China
| | - Yongjun Zhang
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Plant Protection, Southwest University, Chongqing 400715, China; Key Laboratory of Entomology and Pest Control Engineering, Southwest University, Chongqing 400715, China.
| |
Collapse
|
4
|
Xiao Y, Zourelidou M, Bassukas AEL, Weller B, Janacek DP, Šimura J, Ljung K, Hammes UZ, Li J, Schwechheimer C. The protein kinases KIPK and KIPK-LIKE1 suppress overbending during negative hypocotyl gravitropic growth in Arabidopsis. THE PLANT CELL 2025; 37:koaf056. [PMID: 40261964 PMCID: PMC12013712 DOI: 10.1093/plcell/koaf056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Accepted: 02/14/2025] [Indexed: 04/24/2025]
Abstract
Plants use environmental cues to orient organ and plant growth, such as the direction of gravity or the direction, quantity, and quality of light. During the germination of Arabidopsis thaliana seeds in soil, negative gravitropism responses direct hypocotyl elongation such that the seedling can reach the light for photosynthesis and autotrophic growth. Similarly, hypocotyl elongation in the soil also requires mechanisms to efficiently grow around obstacles such as soil particles. Here, we identify KIPK (KINESIN-LIKE CALMODULIN-BINDING PROTEIN-INTERACTING PROTEIN KINASE) and the paralogous KIPKL1 (KIPK-LIKE1) as genetically redundant regulators of gravitropic hypocotyl bending. Moreover, we demonstrate that the homologous KIPKL2 (KIPK-LIKE2), which shows strong sequence similarity, must be functionally distinct. KIPK and KIPKL1 are polarly localized plasma membrane-associated proteins that can activate PIN-FORMED auxin transporters. KIPK and KIPKL1 are required to efficiently align hypocotyl growth with the gravity vector when seedling hypocotyls are grown on media plates or in soil, where contact with soil particles and obstacle avoidance impede direct negative gravitropic growth. Therefore, the polar KIPK and KIPKL1 kinases have different biological functions from the related AGC1 family kinases D6PK (D6 PROTEIN KINASE) or PAX (PROTEIN KINASE ASSOCIATED WITH BRX).
Collapse
Affiliation(s)
- Yao Xiao
- Plant Systems Biology, School of Life Sciences, Technical University of Munich, Emil-Ramann-Strasse 8, Freising 85354, Germany
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Melina Zourelidou
- Plant Systems Biology, School of Life Sciences, Technical University of Munich, Emil-Ramann-Strasse 8, Freising 85354, Germany
| | - Alkistis E Lanassa Bassukas
- Plant Systems Biology, School of Life Sciences, Technical University of Munich, Emil-Ramann-Strasse 8, Freising 85354, Germany
| | - Benjamin Weller
- Plant Systems Biology, School of Life Sciences, Technical University of Munich, Emil-Ramann-Strasse 8, Freising 85354, Germany
| | - Dorina P Janacek
- Plant Systems Biology, School of Life Sciences, Technical University of Munich, Emil-Ramann-Strasse 8, Freising 85354, Germany
| | - Jan Šimura
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, 90736 Umeå, Sweden
| | - Karin Ljung
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, 90736 Umeå, Sweden
| | - Ulrich Z Hammes
- Plant Systems Biology, School of Life Sciences, Technical University of Munich, Emil-Ramann-Strasse 8, Freising 85354, Germany
| | - Jia Li
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Claus Schwechheimer
- Plant Systems Biology, School of Life Sciences, Technical University of Munich, Emil-Ramann-Strasse 8, Freising 85354, Germany
| |
Collapse
|
5
|
Aardening Z, Khandal H, Erlichman OA, Savaldi-Goldstein S. The whole and its parts: cell-specific functions of brassinosteroids. TRENDS IN PLANT SCIENCE 2025; 30:389-408. [PMID: 39562236 DOI: 10.1016/j.tplants.2024.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 10/16/2024] [Accepted: 10/21/2024] [Indexed: 11/21/2024]
Abstract
Brassinosteroid (BR) phytohormones operate at both the cellular and organ levels, and impart distinct transcriptional responses in different cell types and developmental zones, with distinct effects on organ size and shape. Here, we review recent advances implementing high-resolution and modeling tools that have provided new insights into the role of BR signaling in growth coordination across cell layers. We discuss recently gained knowledge on BR movement and its relevance for intercellular communication, as well as how local protein environments enable cell- and stage-specific BR regulation. We also explore how tissue-specific alterations in BR signaling enhance crop yield. Together, we offer a comprehensive view of how BR signaling shapes the whole (overall growth dynamics) through its parts (intricate cellular interactions).
Collapse
Affiliation(s)
- Ziv Aardening
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Hitaishi Khandal
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | | | | |
Collapse
|
6
|
Cheng S, Xu J, Wu S, Li Q, Mi J. Plant chloroplast stress response: insights from mass spectrometry metabolites analysis. FRONTIERS IN PLANT SCIENCE 2025; 16:1549156. [PMID: 40177010 PMCID: PMC11962030 DOI: 10.3389/fpls.2025.1549156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 03/03/2025] [Indexed: 04/05/2025]
Abstract
Plant chloroplasts produce excess reactive oxygen species (ROS) during photosynthesis, particularly under biotic and abiotic stress conditions. These adverse environmental stresses lead to significant alterations in various cellular components, especially within the chloroplast, which serves as a key stress-sensor organelle. The stress response of chloroplasts can trigger plastid-to-nucleus retrograde signaling and enhance the biosynthesis of biologically active compounds and phytohormones, which are mechanisms that aid plants in acclimating to environmental stress. While ROS act as signaling molecules to help re-adjust cellular metabolic homeostasis, they also risk damaging chloroplasts' structural and functional integrity. Recent research on stress-induced plant metabolism has provided new insights into the chloroplast's stress response. In particular, advancements in mass spectrometry (MS) techniques have expanded our understanding of how oxidative stress affects plants through metabolomics analyses of metabolites involved in this process. Here, we emphasize the MS-based profiling of lipids, apocarotenoids, and phytohormones linked to ROS-triggered processes in plants. Moreover, we discuss the plants' metabolic responses to abiotic stress. Finally, we outline future directions for chloroplast stress research. We advocate for integrating MS-based metabolomics with biochemical and molecular genetic approaches to discover new signaling molecules and identify interconnected signaling components that function across multiple chloroplast signaling pathways.
Collapse
Affiliation(s)
- Si Cheng
- Chinese Medicine Guangdong Laboratory, Guangdong-Macao In-Depth Cooperation Zone in Hengqin, Zhuhai, China
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
| | - Jiawei Xu
- Chinese Medicine Guangdong Laboratory, Guangdong-Macao In-Depth Cooperation Zone in Hengqin, Zhuhai, China
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
| | - Siqi Wu
- Chinese Medicine Guangdong Laboratory, Guangdong-Macao In-Depth Cooperation Zone in Hengqin, Zhuhai, China
| | - Qun Li
- Chinese Medicine Guangdong Laboratory, Guangdong-Macao In-Depth Cooperation Zone in Hengqin, Zhuhai, China
| | - Jianing Mi
- Chinese Medicine Guangdong Laboratory, Guangdong-Macao In-Depth Cooperation Zone in Hengqin, Zhuhai, China
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
| |
Collapse
|
7
|
Korek M, Mehta D, Uhrig GR, Daszkowska-Golec A, Novak O, Buchcik W, Marzec M. Strigolactone insensitivity affects the hormonal homeostasis in barley. Sci Rep 2025; 15:9375. [PMID: 40102576 PMCID: PMC11920428 DOI: 10.1038/s41598-025-94430-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 03/13/2025] [Indexed: 03/20/2025] Open
Abstract
In response to environmental changes, plants continuously make architectural changes in order to optimize their growth and development. The regulation of plant branching, influenced by environmental conditions and affecting hormone balance and gene expression, is crucial for agronomic purposes due to its direct correlation with yield. Strigolactones (SL), the youngest class of phytohormones, function to shape the architecture of plants by inhibiting axillary outgrowth. Barley plants harboring the mutation in the HvDWARF14 (HvD14) gene, which encodes the SL-specific receptor, produce almost twice as many tillers as wild-type (WT) Sebastian plants. Here, through hormone profiling and comparison of transcriptomic and proteomic changes between 2- and 4-week-old plants of WT and hvd14 genotypes, we elucidate a regulatory mechanism that might affect the tillering of SL-insensitive plants. The analysis showed statistically significant increased cytokinin content and decreased auxin and abscisic acid content in 'bushy' hvd14 compared to WT, which aligns with the commonly known actions of these hormones regarding branching regulation. Further, transcriptomic and proteomic analysis revealed a set of differentially expressed genes (DEG) and abundant proteins (DAP), among which 11.6% and 14.6% were associated with phytohormone-related processes, respectively. Bioinformatics analyses then identified a series of potential SL-dependent transcription factors (TF), which may control the differences observed in the hvd14 transcriptome and proteome. Comparison to available Arabidopsis thaliana data implicates a sub-selection of these TF as being involved in the transduction of SL signal in both monocotyledonous and dicotyledonous plants.
Collapse
Affiliation(s)
- Magdalena Korek
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Jagiellonska 28, 40-032, Katowice, Poland.
| | - Devang Mehta
- Department of Biological Sciences, University of Alberta, 11455 Saskatchewan Drive, Edmonton, AB, T6G 2E9, Canada
| | - Glen R Uhrig
- Department of Biological Sciences, University of Alberta, 11455 Saskatchewan Drive, Edmonton, AB, T6G 2E9, Canada
| | - Agata Daszkowska-Golec
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Jagiellonska 28, 40-032, Katowice, Poland
| | - Ondrej Novak
- Laboratory of Growth Regulators, Faculty of Science, Palacký University and Institute of Experimental Botany, The Czech Academy of Sciences, Olomouc, Czech Republic
| | - Weronika Buchcik
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Jagiellonska 28, 40-032, Katowice, Poland
| | - Marek Marzec
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Jagiellonska 28, 40-032, Katowice, Poland
| |
Collapse
|
8
|
Zheng J, Huang X, Wei Y, Li W, Chen B, Li W. Identification of functional pathways and hub genes associated with the heterochronic development of sugarcane axillary buds and sett roots through multi-omics analysis. FRONTIERS IN PLANT SCIENCE 2025; 16:1551783. [PMID: 40161227 PMCID: PMC11949976 DOI: 10.3389/fpls.2025.1551783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Accepted: 02/19/2025] [Indexed: 04/02/2025]
Abstract
Introduction Sugarcane is primarily propagated for large-scale agricultural production through vegetative reproduction by planting stem cuttings. Development of sprout and sett root from the cuttings is essential for sugarcane plant to adapt to the field environment. We observed asynchronous development during the sprouting of stem cuttings in two sibling sugarcane cultivars sharing the same parent in cross breeding: the axillary buds of cultivar ZZ2 (ZZ2B) sprout earlier, while the sett roots of ZZ9 (ZZ9R) emerge sooner. Methods Comparison of the sett root architecture, soluble sugar content, plant hormone levels and gene expression profiles during sprouting. Results We found that ZZ9 has a lower root cortex thickness ratio and a higher vascular cylinder thickness ratio. We also identified significant differences in the levels of soluble sugars, 3-Indolebutyric acid (IBA), N6-isopentenyladenosine (IPA), cis-Zeatin (cZ), Abscisic Acid (ABA), Gibberellin A3 (GA3), Gibberellin A7 (GA7), (±)-Jasmonic acid (JA), and N-((-)-jasmonoyl)-Sisoleucine (JA-Ile) between these cultivars. cuttings. In addition, we identified differentially expressed genes through transcriptomic analysis and discovered, via GO and KEGG enrichment analyses, that negative regulation of external stimulus response is a key to the preference of ZZ2 for early bud sprouting. The Twin-arginine translocation complex (Tat) significantly influences the preference of ZZ9's root emergence. Furthermore, weighted gene co-expression network analysis (WGCNA) revealed that specific metabolic processes in seed coat mucilage uniquely determine the asynchronous development of sett roots and axillary buds. Discussion These findings provide a theoretical foundation and new perspective for understand asynchronous development in sugarcane production, offering novel insights for breeding high-quality varieties.
Collapse
Affiliation(s)
- Jiabao Zheng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Xiaoyu Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Yanli Wei
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Wenyan Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Baoshan Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, China
- Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning, China
| | - Wenlan Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, China
- Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning, China
| |
Collapse
|
9
|
Persaud M, Lewis A, Kisiala A, Smith E, Azimychetabi Z, Sultana T, Narine SS, Emery RJN. Untargeted Metabolomics and Targeted Phytohormone Profiling of Sweet Aloes ( Euphorbia neriifolia) from Guyana: An Assessment of Asthma Therapy Potential in Leaf Extracts and Latex. Metabolites 2025; 15:177. [PMID: 40137143 PMCID: PMC11943701 DOI: 10.3390/metabo15030177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 02/16/2025] [Accepted: 02/25/2025] [Indexed: 03/27/2025] Open
Abstract
Background/Objectives:Euphorbia neriifolia is a succulent plant from the therapeutically rich family of Euphorbia comprising 2000 species globally. E. neriifolia is used in Indigenous Guyanese asthma therapy. Methods: To investigate E. neriifolia's therapeutic potential, traditionally heated leaf, simple leaf, and latex extracts were evaluated for phytohormones and therapeutic compounds. Full scan, data-dependent acquisition, and parallel reaction monitoring modes via liquid chromatography Orbitrap mass spectrometry were used for screening. Results: Pathway analysis of putative features from all extracts revealed a bias towards the phenylpropanoid, terpenoid, and flavonoid biosynthetic pathways. A total of 850 compounds were annotated using various bioinformatics tools, ranging from confidence levels 1 to 3. Lipids and lipid-like molecules (34.35%), benzenoids (10.24%), organic acids and derivatives (12%), organoheterocyclic compounds (12%), and phenylpropanoids and polyketides (10.35%) dominated the contribution of compounds among the 13 superclasses. Semi-targeted screening revealed 14 out of 16 literature-relevant therapeutic metabolites detected, with greater upregulation in traditional heated extracts. Targeted screening of 39 phytohormones resulted in 25 being detected and quantified. Simple leaf extract displayed 4.4 and 45 times greater phytohormone levels than traditional heated leaf and latex extracts, respectively. Simple leaf extracts had the greatest nucleotide and riboside cytokinin and acidic phytohormone levels. In contrast, traditional heated extracts exhibited the highest free base and glucoside cytokinin levels and uniquely contained methylthiolated and aromatic cytokinins while lacking acidic phytohormones. Latex samples had trace gibberellic acid levels, the lowest free base, riboside, and nucleotide levels, with absences of aromatic, glucoside, or methylthiolated cytokinin forms. Conclusions: In addition to metabolites with possible therapeutic value for asthma treatment, we present the first look at cytokinin phytohormones in the species and Euphorbia genus alongside metabolite screening to present a comprehensive assessment of heated leaf extract used in Indigenous Guyanese asthma therapy.
Collapse
Affiliation(s)
- Malaika Persaud
- Sustainability Studies Graduate Program, Faculty of Arts and Science, Trent University, Peterborough, ON K9J 0G2, Canada;
| | - Ainsely Lewis
- Department of Biology, Trent University, Peterborough, ON K9J 0G2, Canada; (A.K.); (R.J.N.E.)
- Department of Biology, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada
| | - Anna Kisiala
- Department of Biology, Trent University, Peterborough, ON K9J 0G2, Canada; (A.K.); (R.J.N.E.)
| | - Ewart Smith
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, ON K9J 0G2, Canada; (E.S.); (Z.A.)
| | - Zeynab Azimychetabi
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, ON K9J 0G2, Canada; (E.S.); (Z.A.)
| | - Tamanna Sultana
- Department of Chemistry, Trent University, Peterborough, ON K9J 0G2, Canada;
| | - Suresh S. Narine
- Trent Centre for Biomaterials Research, Trent University, Peterborough, ON K9J 0G2, Canada;
- Departments of Physics & Astronomy and Chemistry, Trent University, Peterborough, ON K9J 0G2, Canada
| | - R. J. Neil Emery
- Department of Biology, Trent University, Peterborough, ON K9J 0G2, Canada; (A.K.); (R.J.N.E.)
| |
Collapse
|
10
|
Perera I, Kisiala A, Thompson KA, Emery RJN. Soil health improvements under cover crops are associated with enhanced soil content of cytokinins. PLANT BIOLOGY (STUTTGART, GERMANY) 2025; 27:265-278. [PMID: 39642005 PMCID: PMC11846634 DOI: 10.1111/plb.13743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 09/25/2024] [Indexed: 12/08/2024]
Abstract
Cytokinins (CKs) are phytohormones produced by plants and other soil life. including bacteria, fungi, insects, and earthworms. These organisms can release CKs to the soil, which may have positive implications for soil health and plant growth. However, no studies have examined phytohormones as soil health indicators. In custom-designed rhizo-pots that separated rhizosphere and bulk soils, the cover crops tillage radish and cereal rye were used to manipulate soil health parameters: soil pH, soil organic matter, soil active carbon, soil microbial community diversity, and extracellular enzyme activities involved in C, N and P cycling. Data were compared to impacts of cover crops on CKs that were purified from the complex soil and measured with HPLC-HRMS/MS. From soil we detected free base-CKs (trans-zeatin (tZ), isopentenyladenine (iP)), riboside-CKs (RB-CKs), cis-zeatin riboside (cZR), isopentenyladenosine (iPR) and four methylthiolated CKs: 2-methylthio-zeatin (2MeSZ), 2-methylthio-zeatin ribosides (2MeSZR), 2-methylthio-isopentenyladenine (2MeSiP), and 2-methylthio-isopentenyladenine riboside (2MeSiPR). These CK levels were significantly enhanced in cover cropped soil compared to uncultivated soil, and reflect a positive relationship between soil CK profiles and other soil health parameters - notably, between total CK and active C levels and soil microbial community diversity. This is the first detailed soil CK analysis and assessment of its potential use as a novel, reliable, short-term soil health parameter. The increased CK concentrations in cover cropped soils likely reflects the activity levels of soil life (plants, microbes, animals) and provides a rationale to use CKs as tools to evaluate soil health as influenced by agricultural management strategies.
Collapse
Affiliation(s)
- I. Perera
- Department of Environmental and Life SciencesTrent UniversityPeterboroughOntarioCanada
| | - A. Kisiala
- Department of BiologyTrent UniversityPeterboroughOntarioCanada
| | - K. A. Thompson
- Department of Environmental and Life SciencesTrent UniversityPeterboroughOntarioCanada
- Trent School of EnvironmentTrent UniversityPeterboroughOntarioCanada
| | - R. J. N. Emery
- Department of Environmental and Life SciencesTrent UniversityPeterboroughOntarioCanada
- Department of BiologyTrent UniversityPeterboroughOntarioCanada
| |
Collapse
|
11
|
Roig‐Villanova I, Torres‐Montilla S, López‐Ortiz E, Di Marzo M, Sánchez‐García Á, Esteve‐Codina A, Gómez‐Cadenas A, Martínez‐García JF. Plant proximity reduces seed yield in Arabidopsis plants by decreasing the number of ovule primordia. PHYSIOLOGIA PLANTARUM 2025; 177:e70220. [PMID: 40241247 PMCID: PMC12003759 DOI: 10.1111/ppl.70220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 02/17/2025] [Indexed: 04/18/2025]
Abstract
Proximity of vegetation, which is influenced by planting density, significantly impacts plant development. In Arabidopsis thaliana, it is well established that simulated shade, which mimics the proximity of other plants, triggers hypocotyl and petiole elongation, accelerates flowering and suppresses axillary bud growth. Although there is evidence that simulated shade affects reproduction beyond accelerating flowering, its impact on the development of reproductive tissues after plant architecture establishment (i.e., once flowering has begun) remains poorly explored. Here, we report that simulated shade promotes silique and pedicel elongation while reducing seed production, primarily by decreasing ovule number formation. Shade perception triggers rapid changes in gene expression in reproductive tissues, with some genes showing tissue-specific responses and others being induced in both seedlings and reproductive tissues, highlighting a conserved core of shade-responsive genes associated with light perception, photosynthesis and hormone regulation. However, while shade-induced elongation responses occur rapidly, reduction in ovule number requires prolonged shade exposure, suggesting distinct regulatory pathways for these responses. These findings shed light on the complex interplay between common (e.g., elongation and core gene expression) and tissue-specific responses (e.g., ovule formation and specialized gene expression) to shade, contributing to the developmental plasticity of Arabidopsis. Furthermore, they enhance our understanding of how external signals, indicative of vegetation proximity, can modulate seed production, a genetically determined process.
Collapse
Affiliation(s)
- Irma Roig‐Villanova
- Centre for Research in Agricultural Genomics (CRAG), CSIC‐IRTA‐UAB‐UBCerdanyola del VallèsBarcelonaSpain
- Serra Húnter Fellow. Department of Agri‐Food Engineering and BiotechnologyBarcelona School of Agri‐Food and Biosystems EngineeringCastelldefelsSpain
| | - Salvador Torres‐Montilla
- Institute for Plant Molecular and Cell Biology (IBMCP)CSIC ‐ Universitat Politècnica de ValènciaValènciaSpain
- Present address:
Plant Molecular Genetics Department, Centro Nacional de Biotecnologia‐CSIC (CNB‐CSIC)MadridSpain
| | - Estefanía López‐Ortiz
- Centre for Research in Agricultural Genomics (CRAG), CSIC‐IRTA‐UAB‐UBCerdanyola del VallèsBarcelonaSpain
- Present address:
Molecular Plant BreedingInstitute of Agricultural SciencesZürichZurichSwitzerland
| | - Maurizio Di Marzo
- Centre for Research in Agricultural Genomics (CRAG), CSIC‐IRTA‐UAB‐UBCerdanyola del VallèsBarcelonaSpain
- Dipartimento di BioscienzeUniversità degli Studi di MilanoMilanItaly
| | - Ángela Sánchez‐García
- Institute for Plant Molecular and Cell Biology (IBMCP)CSIC ‐ Universitat Politècnica de ValènciaValènciaSpain
| | - Anna Esteve‐Codina
- Centro Nacional de Análisis Genómico (CNAG)Barcelona, Spain, and Universitat de Barcelona (UB)BarcelonaSpain
| | - Aurelio Gómez‐Cadenas
- Departament de Biologia, Bioquimica i Ciències NaturalsUniversitat Jaume I (UJI)Castelló de la PlanaSpain
| | - Jaume F. Martínez‐García
- Centre for Research in Agricultural Genomics (CRAG), CSIC‐IRTA‐UAB‐UBCerdanyola del VallèsBarcelonaSpain
- Institute for Plant Molecular and Cell Biology (IBMCP)CSIC ‐ Universitat Politècnica de ValènciaValènciaSpain
| |
Collapse
|
12
|
Sun S, Hao S, Liu Y, Gao X, Mu T, Zhang X, Luo Y, Li Z. Integrative Profiling of Phytohormones, Metabolomics, and Transcriptomics Reveals Key Regulators of Cold Tolerance in Cucumber Leaves. Food Sci Nutr 2025; 13:e70027. [PMID: 40034224 PMCID: PMC11873373 DOI: 10.1002/fsn3.70027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 01/21/2025] [Accepted: 01/22/2025] [Indexed: 03/05/2025] Open
Abstract
A low-temperature condition in a root zone is a major abiotic stress that threatens cucumber (Cucumis sativus L.) growth and development, yet the molecular mechanism by which the leaf reacts to root zone chilling stress remains largely unknown. In this study, we applied three temperature treatments, including room temperature (20°C-22°C), suboptimal temperature (13°C-15°C), and low temperature (8°C-10°C), to investigate how root zone chilling affects hormone dynamics, metabolomics, and transcriptomics in the leaves of the cucumber variety "Jinyou 35", the main cultivar in northwest and southwest China. Through integrative physiological and biochemical analysis, auxin emerges as the most significant accumulated hormone, accounting for 88% in room temperature-treated leaves (RL), 99% in suboptimal temperature-treated leaves (SL), and 94% in low-temperature-treated leaves (LL). Under chilling stress, flavanones were the most abundant metabolite in cucumber leaves, constituting over 50% of total metabolites, while phenolic acids showed a marked decrease. Several differentially expressed transcription factors (DETFs), such as LOB (CsaV3_3G020650), MYB (CsaV3_3G043510), and bHLH (CsaV3_2G005070 and CsaV3_4G029740), were upregulated in SL and LL, potentially enhancing cucumber's defense against chilling injury. Additionally, terminal flower formation was observed under suboptimal and low-temperature conditions, with CsFT expression in SL and LL lower than in RL, and a significant negative correlation observed between CsFT and CsNAC6. These findings deepen our understanding of cucumber's resilience mechanisms to root zone chilling stress, shedding light on its cold tolerance strategies.
Collapse
Affiliation(s)
- Shijun Sun
- Hetao CollegeBayannurInner MongoliaChina
- Key Laboratory of Urban AgricultureMinistry of Agriculture and Rural AffairsShanghaiChina
- Hetao Green Agricultural Product Safety Production and Warning Control LaboratoryHetao CollegeBayannurInner MongoliaChina
| | - Shuiyuan Hao
- Hetao CollegeBayannurInner MongoliaChina
- Hetao Green Agricultural Product Safety Production and Warning Control LaboratoryHetao CollegeBayannurInner MongoliaChina
| | - Ye Liu
- Hetao CollegeBayannurInner MongoliaChina
- Hetao Green Agricultural Product Safety Production and Warning Control LaboratoryHetao CollegeBayannurInner MongoliaChina
| | - Xiaoni Gao
- Hetao CollegeBayannurInner MongoliaChina
- Hetao Green Agricultural Product Safety Production and Warning Control LaboratoryHetao CollegeBayannurInner MongoliaChina
| | - Tianlei Mu
- Hetao CollegeBayannurInner MongoliaChina
- Hetao Green Agricultural Product Safety Production and Warning Control LaboratoryHetao CollegeBayannurInner MongoliaChina
| | - Xu Zhang
- Hetao CollegeBayannurInner MongoliaChina
- Hetao Green Agricultural Product Safety Production and Warning Control LaboratoryHetao CollegeBayannurInner MongoliaChina
| | - Yusong Luo
- Department of HorticultureHunan Agricultural UniversityChangshaHunanChina
| | - Zhengnan Li
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural UniversityHohhotInner MongoliaChina
| |
Collapse
|
13
|
Kokla A, Leso M, Šimura J, Wärdig C, Hayashi M, Nishii N, Tsuchiya Y, Ljung K, Melnyk CW. A long-distance inhibitory system regulates haustoria numbers in parasitic plants. Proc Natl Acad Sci U S A 2025; 122:e2424557122. [PMID: 39964721 PMCID: PMC11874510 DOI: 10.1073/pnas.2424557122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 01/07/2025] [Indexed: 02/20/2025] Open
Abstract
The ability of parasitic plants to withdraw nutrients from their hosts depends on the formation of an infective structure known as the haustorium. How parasites regulate their haustoria numbers is poorly understood, and here, we uncovered that existing haustoria in the facultative parasitic plants Phtheirospermum japonicum and Parentucellia viscosa suppressed the formation of new haustoria located on distant roots. Using Phtheirospermum, we found that this effect depended on the formation of mature haustoria and could be induced through the application of external nutrients. To understand the molecular basis of this root plasticity, we analyzed hormone response and found that existing infections upregulated cytokinin-responsive genes first at the haustoria and then more distantly in Phtheirospermum shoots. We observed that infections increased endogenous cytokinin levels in Phtheirospermum roots and shoots, and this increase appeared relevant since local treatments with exogenous cytokinins blocked the formation of both locally and distantly formed haustoria. In addition, local overexpression of a cytokinin-degrading enzyme in Phtheirospermum prevented this systemic interhaustoria repression and increased haustoria numbers locally. We propose that a long-distance signal produced by haustoria negatively regulates future haustoria, and in Phtheirospermum, such a signaling system is mediated by a local increase in cytokinin to regulate haustoria numbers and balance nutrient acquisition.
Collapse
Affiliation(s)
- Anna Kokla
- Department of Plant Biology, Linnean Center for Plant Biology, Swedish University of Agricultural Sciences, Uppsala756 51, Sweden
| | - Martina Leso
- Department of Plant Biology, Linnean Center for Plant Biology, Swedish University of Agricultural Sciences, Uppsala756 51, Sweden
| | - Jan Šimura
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå90183, Sweden
| | - Cecilia Wärdig
- Department of Plant Biology, Linnean Center for Plant Biology, Swedish University of Agricultural Sciences, Uppsala756 51, Sweden
| | - Marina Hayashi
- Department of Biological Science, Graduate School of Science, Nagoya University, Nagoya464-8601, Japan
| | - Naoshi Nishii
- Department of Biological Science, Graduate School of Science, Nagoya University, Nagoya464-8601, Japan
| | - Yuichiro Tsuchiya
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya464-8601, Japan
| | - Karin Ljung
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå90183, Sweden
| | - Charles W. Melnyk
- Department of Plant Biology, Linnean Center for Plant Biology, Swedish University of Agricultural Sciences, Uppsala756 51, Sweden
| |
Collapse
|
14
|
Zhao L, Hu W, Liu Y, Liu D, Kuang L, Song J, Xiong Z, Liao X, Wu X, Yang L. Decoding xenia effects on 'Jinsha' pomelo: Insights from physiological, transcriptomics and metabolomics analyses. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 222:109654. [PMID: 40022882 DOI: 10.1016/j.plaphy.2025.109654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 01/26/2025] [Accepted: 02/13/2025] [Indexed: 03/04/2025]
Abstract
'Xenia' is the terminology and biology of direct, or immediate, pollen effects on seeds and fruits. In this study, we found that the pollination of 'Jinsha' pomelo (JS) with pollen from Grapefruit (GR) and 'Majia' pomelo (MJ) led to significant differences in the seed numbers and primary metabolite (soluble sugar and amino acid). In pollinated pistils, the differences in the number of pollen tubes entering the embryo sac and the content of cytokinin components at 5 d post-pollination between the two pollen sources might be the important factor contributing to the discrepancies of seed trait and further affected fruit quality. In addition, joint analysis result of metabolomics and transcriptomics showed that the down-regulated expression of genes in the sucrose and starch metabolism pathways, glycolysis pathway and amino acid metabolism pathway of JS × MJ fruit compared to those of JS × GR fruit might also be resulted in an increase in the content of fructose and glucose and a decrease in the content of a large number of free amino acid components. This study revealed the reasons for the changes in seed and fruit characteristics induced by the xenia effect under two different pollen sources, and the hub genes novel.155 (HK), Cg2g040280 (bglX), Cg4g020710 (ISA), and Cg3g021210 (P4HA) were obtained by co-expression network analysis.
Collapse
Affiliation(s)
- Lingji Zhao
- Department of Pomology, College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi, 330045, China
| | - Wei Hu
- Department of Pomology, College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi, 330045, China
| | - Yong Liu
- Department of Pomology, College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi, 330045, China
| | - Dechun Liu
- Department of Pomology, College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi, 330045, China
| | - Liuqing Kuang
- Department of Pomology, College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi, 330045, China
| | - Jie Song
- Department of Pomology, College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi, 330045, China
| | - Zhonghua Xiong
- Department of Pomology, College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi, 330045, China
| | - Xiangjiao Liao
- Department of Pomology, College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi, 330045, China
| | - Xia Wu
- Department of Pomology, College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi, 330045, China
| | - Li Yang
- Department of Pomology, College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi, 330045, China.
| |
Collapse
|
15
|
Fu D, Qi J, Su L, Wang X, Wang M, Chen B, Yu X, Zhao X, Gao W, Guo X, Zhang F, Ma C. Chalcone synthase 2 (BpCHS2), a structural gene, was activated by low temperature to promote anthocyanin synthesis in Broussonetia papyrifera to improve its cold tolerance. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 222:109656. [PMID: 40020598 DOI: 10.1016/j.plaphy.2025.109656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 02/11/2025] [Accepted: 02/14/2025] [Indexed: 03/03/2025]
Abstract
Broussonetia papyrifera is an important source of unconventional feed. However, freezing injuries in winter are a considerable threat to the popularization and application of B. papyrifera. Notably, the use of anthocyanins is a promising approach for enhancing plant stress resistance. However, B. papyrifera contains low levels of anthocyanins, and the anthocyanin synthesis process in this plant remains unclear. In this study, the one-month-old cuttings of B. papyrifera were grown at low (4 °C) and average (25 °C) temperatures. After 3 weeks, petioles and veins from different growth environments were harvested for transcriptome and anthocyanin-targeted metabolome analyses. The targeted metabolome analysis revealed that following cold treatment, the levels of cyanidin-3-O-galactoside, cyanidin-3-O-rutinoside, cyanidin-3-O-(6-O-p-coumaroyl)-glucoside and cyanidin chloride increased by 756.22, 306.87, 222.28, and 776.67 times, respectively. Transcriptome analysis revealed 17 pivotal anthocyanin-related differentially expressing genes (DEGs), among which chalcone synthase 2 (BpCHS2) was significantly upregulated at low temperatures. The combined transcriptome and metabolome disclosed an apparent positive correlation between BpCHS2 and cyanidin derivatives (R2 ≥ 0.99). Transgenic experiments demonstrated that overexpression of BpCHS2 in tobacco markedly increased the expression of anthocyanin-related genes, promoted anthocyanin accumulation, and enhanced the activities of peroxidase, superoxide dismutase, and catalase. These results suggest that the expression of BpCHS2 is markedly increased in B. papyrifera under low-temperature stress, improving anthocyanin accumulation and cold tolerance.
Collapse
Affiliation(s)
- Dongqing Fu
- College of Animal Science & Technology, Shihezi University, Shihezi, 832000, Xinjiang, China
| | - Jiangjiao Qi
- College of Grassland Science, Xinjiang Agricultural University, Urumqi, 830000, Xinjiang, China
| | - Lihe Su
- College of Animal Science & Technology, Shihezi University, Shihezi, 832000, Xinjiang, China
| | - Xuzhe Wang
- College of Animal Science & Technology, Shihezi University, Shihezi, 832000, Xinjiang, China
| | - Mei Wang
- College of Life Science, Shihezi University, Shihezi, 832000, Xinjiang, China
| | - Bo Chen
- College of Life Science, Shihezi University, Shihezi, 832000, Xinjiang, China
| | - Xiangxue Yu
- College of Life Science, Shihezi University, Shihezi, 832000, Xinjiang, China
| | - Xuheng Zhao
- College of Animal Science & Technology, Shihezi University, Shihezi, 832000, Xinjiang, China
| | - Wanshun Gao
- College of Animal Science & Technology, Shihezi University, Shihezi, 832000, Xinjiang, China
| | - Xinyong Guo
- College of Life Science, Shihezi University, Shihezi, 832000, Xinjiang, China.
| | - Fanfan Zhang
- College of Animal Science & Technology, Shihezi University, Shihezi, 832000, Xinjiang, China.
| | - Chunhui Ma
- College of Animal Science & Technology, Shihezi University, Shihezi, 832000, Xinjiang, China.
| |
Collapse
|
16
|
Chen S, Hua Y, Song Q, Yuan X, Yang J, Zhang Y, Dai X. Sewage sludge valorization via phytohormones production: Parameter regulation and process evaluation. WATER RESEARCH 2025; 270:122813. [PMID: 39580943 DOI: 10.1016/j.watres.2024.122813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/26/2024] [Accepted: 11/17/2024] [Indexed: 11/26/2024]
Abstract
Sludge treatment is of great significance for environmental protection and sustainable development. Existing treatment technologies fall short in terms of carbon emissions, process efficiency, and resource recovery. This study focuses on alkaline hydrothermal treatment, proposing a short-cycle, low-energy, high-value management process for sludge valorization. Here, we investigate the impact of treatment duration, temperature, and solid content on the synthesis of high-value products and their effects on both solid and liquid phases. Based on the comprehensive results, 2 h, 160 °C, and 14 % solid content can be regarded as the optimized treatment condition. The resulting products, including phytohormones, humic substances, and essential nutrients (C, N, P and K), exhibit substantial potential for high-value agricultural utilization. In the unconcentrated solution, a single phytohormone can reach a concentration of 104 μg/L. Heavy metal content is well below standard limits, simultaneously achieving biological stability, and the volume can be reduced to 60 %. This process is 42.12 times more energy-efficient than conventional anaerobic digestion. This novel approach promotes waste resource recycling and sustainable urban management.
Collapse
Affiliation(s)
- Shuxian Chen
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China; Shanghai Urban Pollution Control Engineering Research Center Co., Ltd., 588 Miyun Road, Shanghai 200092, PR China.
| | - Yu Hua
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China; Shanghai Urban Pollution Control Engineering Research Center Co., Ltd., 588 Miyun Road, Shanghai 200092, PR China.
| | - Qi Song
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China.
| | - Xin Yuan
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China.
| | - Junwei Yang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China.
| | - Yue Zhang
- China Civil Engineering Society Water Industry Association, Beijing 100082, PR China.
| | - Xiaohu Dai
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China; Shanghai Urban Pollution Control Engineering Research Center Co., Ltd., 588 Miyun Road, Shanghai 200092, PR China.
| |
Collapse
|
17
|
Yin H, Liu W, Hu X, Jia J, Liu M, Wei J, Cheng Y, Gong X, Li Q, Yan W, Jia J, Gao L, Fernie AR, Chen W. A wheat phytohormone atlas spanning major tissues across the entire life cycle provides novel insights into cytokinin and jasmonic acid interplay. MOLECULAR PLANT 2025; 18:366-382. [PMID: 39827367 DOI: 10.1016/j.molp.2025.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 01/13/2025] [Accepted: 01/14/2025] [Indexed: 01/22/2025]
Abstract
Although numerous studies have focused on phytohormones in specific organs or tissues at different development stages or under various abiotic and biotic stress conditions, our understanding of the distribution and relative abundance of phytohormones throughout the entire life cycle of plants remains insufficient. Here, we present a phytohormone atlas resource obtained from the quantitative analysis of eight major classes of phytohormones, comprising a total of 40 hormone-related compounds, throughout the complete life cycle of wheat. In combination with transcriptome analysis, we established a wheat phytohormone metabolic regulatory network (WPMRN). Using the WPMRN dataset and Gene Ontology enrichment analysis, we swiftly characterized the function of TaLOG5-B1 in cytokinin biosynthesis. Furthermore, a detailed investigation of the WPMRN dataset uncovered transcription factor-mediated co-regulatory mechanisms among different classes of phytohormones. We focused specifically on the metabolic regulation of cytokinin and jasmonic acid, and functionally characterized the genes TaLOG3-D1 and TaAOS-D1 that are involved in the biosynthesis of these phytohormones, respectively, along with their regulatory transcription factor genes TaDOF3A and TaDOF5.6B. The functions of these genes were validated in transgenic plants, revealing their ability to co-regulate radicle length. These findings serve as a case study that highlights the utility of this resource for studying phytohormone metabolic regulatory networks in cereal crops and for gaining insights into the roles of phytohormones in enhancing agronomic traits.
Collapse
Affiliation(s)
- Huanran Yin
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Wei Liu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Xin Hu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Jingqi Jia
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Mengmeng Liu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiaqi Wei
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Yikeng Cheng
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Xin Gong
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiang Li
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Wenhao Yan
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Jizeng Jia
- State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Lifeng Gao
- State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany.
| | - Wei Chen
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
18
|
Guo H, Li J, Liu Y, Fernández-Pascual E. Lipid metabolism during seed germination of Pistacia chinensis and its response to gibberellic acid. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 219:109371. [PMID: 39667083 DOI: 10.1016/j.plaphy.2024.109371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 11/27/2024] [Accepted: 11/29/2024] [Indexed: 12/14/2024]
Abstract
Lipid metabolism may play a critical role in fueling seed germination, but the knowledge of lipid metabolism during germination is still ambiguous. Here, we hypothesize that gibberellic acid (GA) promotes germination by means of enhancing lipid mobilization in Chinese pistachio (Pistacia chinensis Bunge), a species belonging to Anacardiaceae with high oil content in its seeds. A multi-omics approach has been applied to measure lipid mobilization during seed germination, and to identify the key regulators involved in GA-mediated lipid metabolism. The results indicated that GA contents increased, while IAA, ABA and JA contents decreased during seed germination. GA3 increased significantly in the two germination stages (i.e. imbibition and radicle protrusion), and it was more abundant than GA1 and GA4. In addition, the relative content of most lipids decreased during germination, and the differentially changed metabolites were significantly enriched in lipid metabolic pathways based on KEGG analysis. WGCNA indicated that GA3 was correlated with more genes in lipid metabolic pathways. Transcriptomic analysis further revealed that differentially expressed genes (DEGs) related to fatty acid biosynthesis, glycerolipid metabolism, glycerophospholipid metabolism and starch and sucrose metabolism were upregulated under GA3 application, such as the acetyl-CoA carboxylase biotin carboxyl carrier protein (ACCB), fatty acyl-ACP thioesterase B (FATB), diacylglycerol acyltransferase (DGAT) and DEFECTIVE IN ANTHER DEHISCENCE 1 (DAD1). Therefore, our study supports the hypothesis that GA promotes seed germination in P. chinensis by enhancing lipid mobilization. This study proposes a novel mechanism of lipid responses to exogenous GA, which contributes to a deep understanding of germination of oleaginous seeds.
Collapse
Affiliation(s)
- Huanhuan Guo
- Key Laboratory for Silviculture and Conservation, Ministry of Education, Beijing Forestry University, Beijing, 100083, China; State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Haidian District, Beijing, 100083, China
| | - Jinjin Li
- Key Laboratory for Silviculture and Conservation, Ministry of Education, Beijing Forestry University, Beijing, 100083, China; State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Haidian District, Beijing, 100083, China
| | - Yong Liu
- Key Laboratory for Silviculture and Conservation, Ministry of Education, Beijing Forestry University, Beijing, 100083, China; State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Haidian District, Beijing, 100083, China.
| | - Eduardo Fernández-Pascual
- Biodiversity Research Institute (IMIB), University of Oviedo - CSIC - Principality of Asturias, E-33600, Mieres, Spain
| |
Collapse
|
19
|
Li Y, Ma Y, Gong H, Cui X, Wang X, Dong Y, Chen Y, Zhao J. Genome-wide investigation of ABCB, PIN, and AUX/LAX gene families and their involvement in the formation of leaf protrusions in Sesamum indicum. FRONTIERS IN PLANT SCIENCE 2025; 15:1526321. [PMID: 39958584 PMCID: PMC11825473 DOI: 10.3389/fpls.2024.1526321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 12/31/2024] [Indexed: 02/18/2025]
Abstract
Sesamum indicum, a highly esteemed oil crop, has exhibited remarkable value and potential in diverse areas encompassing the economy, food industry, and health. We have observed that there are small protrusions on the leaves of the indehiscent capsule material G1358. No obvious difference was detected on overall auxin content between the leaves of G1358 and LZ1 from metabolomic analysis. However, auxin levels at the base of G1358 leaves were notably higher than in LZ1, suggesting a correlation between the small protrusions at the base and polar auxin transport (PAT). PAT is essential for regulating growth and development across different plant tissues. PAT primarily relies on three families of transporter proteins: ABCB, PIN, and AUX/LAX. However, the ABCB, PIN, and AUX/LAX protein families in Sesamum indicum have not been systematically characterized. Herein, we identified 21 SiABCBs, 11 SiPINs, and 5 SiLAXs in S. indicum. Our analysis indicated that tandem duplications have facilitated the expansion of SiLAX, SiPIN, and SiABCB gene families, which have undergone purifying selection throughout their evolutionary history. Transcriptome screening and RT-qPCR analysis revealed that SiABCB3, SiABCB6, and SiPIN10 positively regulate PAT, whereas SiABCB7 and SiABCB9 negatively regulate PAT in G1358. These regulatory interactions contribute to the formation of small protrusions in G1358 leaves and enhance the rate of photosynthesis. Our findings provide a theoretical foundation for understanding PAT genes and their roles in the environmental adaptation of sesame.
Collapse
Affiliation(s)
- Yanli Li
- Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan, Shandong, China
| | - Yujia Ma
- College of Life Sciences, Shandong Normal University, Jinan, Shandong, China
| | - Huihui Gong
- Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan, Shandong, China
| | - Xinxiao Cui
- Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan, Shandong, China
| | - Xin Wang
- Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan, Shandong, China
| | - Yuling Dong
- Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan, Shandong, China
| | - Ying Chen
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, Shandong, China
| | - Junsheng Zhao
- Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan, Shandong, China
| |
Collapse
|
20
|
Chmur M, Bajguz A. Comparative Efficacy of Melatonin and Brassinolide in Mitigating the Adverse Effects of Cadmium on Wolffia arrhiza. Int J Mol Sci 2025; 26:692. [PMID: 39859406 PMCID: PMC11765764 DOI: 10.3390/ijms26020692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 12/30/2024] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
Melatonin (MT) and brassinolide (BL) are phytohormones that regulate various physiological processes in plants. This study investigates their effects on Wolffia arrhiza when exposed to cadmium (Cd). Plant hormones were quantified using liquid chromatography-mass spectrometry, while photosynthetic pigments and phytochelatins (PCs) were analyzed through high-performance liquid chromatography. Protein, monosaccharide levels, and antioxidant activities were also spectrophotometrically measured. The findings reveal that MT and BL treatment decreased Cd accumulation in W. arrhiza compared to plants only exposed to Cd. MT was particularly effective in reversing Cd-induced growth inhibition and reducing stress markers more significantly than BL. It also enhanced antioxidant activity and maintained higher levels of photosynthetic pigments, proteins, and sugars. Although BL was less effective in these aspects, it promoted greater synthesis of glutathione and PCs in Cd-exposed duckweed. Overall, both MT and BL alleviate the negative impact of Cd on W. arrhiza, confirming their crucial role in supporting plant health under metal stress conditions.
Collapse
Affiliation(s)
| | - Andrzej Bajguz
- Department of Biology and Plant Ecology, Faculty of Biology, University of Bialystok, Ciolkowskiego 1J, 15-245 Bialystok, Poland;
| |
Collapse
|
21
|
Sivan P, Urbancsok J, Donev EN, Derba‐Maceluch M, Barbut FR, Yassin Z, Gandla ML, Mitra M, Heinonen SE, Šimura J, Cermanová K, Karady M, Scheepers G, Jönsson LJ, Master ER, Vilaplana F, Mellerowicz EJ. Modification of xylan in secondary walls alters cell wall biosynthesis and wood formation programs and improves saccharification. PLANT BIOTECHNOLOGY JOURNAL 2025; 23:174-197. [PMID: 39436777 PMCID: PMC11672743 DOI: 10.1111/pbi.14487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 09/09/2024] [Accepted: 09/25/2024] [Indexed: 10/25/2024]
Abstract
Wood of broad-leaf tree species is a valued source of renewable biomass for biorefinery and a target for genetic improvement efforts to reduce its recalcitrance. Glucuronoxylan (GX) plays a key role in recalcitrance through its interactions with cellulose and lignin. To reduce recalcitrance, we modified wood GX by expressing GH10 and GH11 endoxylanases from Aspergillus nidulans in hybrid aspen (Populus tremula L. × tremuloides Michx.) and targeting the enzymes to cell wall. The xylanases reduced tree height, modified cambial activity by increasing phloem and reducing xylem production, and reduced secondary wall deposition. Xylan molecular weight was decreased, and the spacing between acetyl and MeGlcA side chains was reduced in transgenic lines. The transgenic trees produced hypolignified xylem having thin secondary walls and deformed vessels. Glucose yields of enzymatic saccharification without pretreatment almost doubled indicating decreased recalcitrance. The transcriptomics, hormonomics and metabolomics data provided evidence for activation of cytokinin and ethylene signalling pathways, decrease in ABA levels, transcriptional suppression of lignification and a subset of secondary wall biosynthetic program, including xylan glucuronidation and acetylation machinery. Several candidate genes for perception of impairment in xylan integrity were detected. These candidates could provide a new target for uncoupling negative growth effects from reduced recalcitrance. In conclusion, our study supports the hypothesis that xylan modification generates intrinsic signals and evokes novel pathways regulating tree growth and secondary wall biosynthesis.
Collapse
Affiliation(s)
- Pramod Sivan
- Umeå Plant Science Centre, Department of Forest Genetics and Plant PhysiologySwedish University of Agricultural SciencesUmeåSweden
- Division of Glycoscience, Department of ChemistryKTH Royal Institute of Technology, AlbaNova University CentreStockholmSweden
| | - János Urbancsok
- Umeå Plant Science Centre, Department of Forest Genetics and Plant PhysiologySwedish University of Agricultural SciencesUmeåSweden
| | - Evgeniy N. Donev
- Umeå Plant Science Centre, Department of Forest Genetics and Plant PhysiologySwedish University of Agricultural SciencesUmeåSweden
| | - Marta Derba‐Maceluch
- Umeå Plant Science Centre, Department of Forest Genetics and Plant PhysiologySwedish University of Agricultural SciencesUmeåSweden
| | - Félix R. Barbut
- Umeå Plant Science Centre, Department of Forest Genetics and Plant PhysiologySwedish University of Agricultural SciencesUmeåSweden
| | | | | | - Madhusree Mitra
- Umeå Plant Science Centre, Department of Forest Genetics and Plant PhysiologySwedish University of Agricultural SciencesUmeåSweden
| | - Saara E. Heinonen
- Division of Glycoscience, Department of ChemistryKTH Royal Institute of Technology, AlbaNova University CentreStockholmSweden
- Wallenberg Wood Science Centre (WWSC)KTH Royal Institute of TechnologyStockholmSweden
| | - Jan Šimura
- Umeå Plant Science Centre, Department of Forest Genetics and Plant PhysiologySwedish University of Agricultural SciencesUmeåSweden
| | - Kateřina Cermanová
- Laboratory of Growth Regulators, The Czech Academy of Sciences & Faculty of ScienceInstitute of Experimental Botany, Palacký UniversityOlomoucCzechia
| | - Michal Karady
- Laboratory of Growth Regulators, The Czech Academy of Sciences & Faculty of ScienceInstitute of Experimental Botany, Palacký UniversityOlomoucCzechia
| | | | | | - Emma R. Master
- Department of Chemical Engineering and Applied ChemistryUniversity of TorontoTorontoOntarioCanada
| | - Francisco Vilaplana
- Division of Glycoscience, Department of ChemistryKTH Royal Institute of Technology, AlbaNova University CentreStockholmSweden
- Wallenberg Wood Science Centre (WWSC)KTH Royal Institute of TechnologyStockholmSweden
| | - Ewa J. Mellerowicz
- Umeå Plant Science Centre, Department of Forest Genetics and Plant PhysiologySwedish University of Agricultural SciencesUmeåSweden
| |
Collapse
|
22
|
Hua Y, Chen S, Tong T, Li X, Ji R, Xu Q, Zhang Y, Dai X. Elucidating the Molecular Mechanisms and Comprehensive Effects of Sludge-Derived Plant Biostimulants on Crop Growth: Insights from Metabolomic Analysis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2404210. [PMID: 39540297 PMCID: PMC11727372 DOI: 10.1002/advs.202404210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 10/25/2024] [Indexed: 11/16/2024]
Abstract
The utilization of urban waste for land management plays a crucial role in reshaping material flows between human activities and the environment. Sewage sludge alkaline thermal hydrolysis (ATH) produces sludge-derived plant biostimulants (SPB), which have garnered attention due to the presence of indole-3-acetic acid. However, there remains a gap in understanding SPB's molecular-level effects and its comprehensive impact on crops throughout their growth cycle. In this study, non-targeted and targeted metabolomic approaches are employed to analyze 51 plant hormones and 1,177 metabolites, revealing novel insights. The findings demonstrate that low concentrations of SPB exerted multiple beneficial effects on rice roots, leaves, and the root-soil system, facilitating rapid cell division and enhancing antioxidant defense mechanisms. These results provide a vital foundation for understanding ATH metabolic pathways and advocating for widespread SPB application, offering significant implications for sustainable land management.
Collapse
Affiliation(s)
- Yu Hua
- State Key Laboratory of Pollution Control and Resources ReuseCollege of Environmental Science and EngineeringTongji UniversityShanghai200092China
| | - Shuxian Chen
- State Key Laboratory of Pollution Control and Resources ReuseCollege of Environmental Science and EngineeringTongji UniversityShanghai200092China
| | - Tong Tong
- State Key Laboratory of Environmental Criteria and Risk AssessmentChinese Research Academy of Environmental SciencesBeijing100012China
| | - Xiaoou Li
- Nantong Yuezichun Biological Agriculture Technology Co., LtdNantong226000China
| | - Rongting Ji
- Nanjing Institute of Environmental ScienceMinistry of Ecology and Environment of the People's Republic of ChinaNanjing210042China
| | - Qiujin Xu
- State Key Laboratory of Environmental Criteria and Risk AssessmentChinese Research Academy of Environmental SciencesBeijing100012China
| | - Yue Zhang
- China Civil Engineering Society Water Industry AssociationBeijing100082China
| | - Xiaohu Dai
- State Key Laboratory of Pollution Control and Resources ReuseCollege of Environmental Science and EngineeringTongji UniversityShanghai200092China
| |
Collapse
|
23
|
Chen JQ, Ma YS, Zhou H, Yu RX, Xiong M, Yang N, Wang JQ, Tian Y, Su LY. Myrica rubra Preharvest Treatment with Melatonin Improves Antioxidant and Phenylpropanoid Pathways During Postharvest Storage. Foods 2024; 14:64. [PMID: 39796354 PMCID: PMC11719693 DOI: 10.3390/foods14010064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 12/21/2024] [Accepted: 12/27/2024] [Indexed: 01/13/2025] Open
Abstract
Myrica rubra is known for its popularity and robust nutritional value. While fresh Myrica rubra fruit is a perishable commodity, it has a short post-harvest life and is susceptible to fungal decay after harvest. Melatonin has been reported to delay the aging and quality decline of various fruits and vegetables after harvest. However, the effects of pre-harvest melatonin treatment on the maintenance of post-harvest quality and storage extension of fresh Myrica rubra fruit are still unclear. The impact of pre-harvest spraying of melatonin at different concentrations (100 μM, 300 μM, and 500 μM) on the fruit quality of Myrica rubra during storage at room temperature or 4 °C was investigated. The results indicated that in the final stage of storage, compared with the control group, different concentrations of melatonin reduced the decay index by 13.0-47.1% and also decreased the weight loss, the content of O2-•, and the content of malondialdehyde (MDA), respectively. Meanwhile, melatonin increased the content of antioxidants such as superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT), as well as the total polyphenols and flavonoids content. Finally, RNA transcriptome sequencing revealed that melatonin enhanced the antioxidant capacity by increasing the expression of both antioxidant enzymes and changing phenylpropanoid pathway-related genes, therefore maintaining the fresh Myrica rubra quality. Our findings uncovered a potent role and mechanism of melatonin in maintaining Myrica rubra fruit quality during storage and suggest that pre-harvest melatonin spraying may be a convenient and effective method for prolonging storage and maintaining quality of fruits after picking.
Collapse
Affiliation(s)
- Jun-Quan Chen
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (J.-Q.C.); (Y.-S.M.); (H.Z.); (R.-X.Y.); (M.X.); (N.Y.); (J.-Q.W.)
- Yunnan Provincial Laboratory of Precision Nutrition and Personalized Manufacturing, Yunnan Agricultural University, Kunming 650201, China
| | - Yun-Shuang Ma
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (J.-Q.C.); (Y.-S.M.); (H.Z.); (R.-X.Y.); (M.X.); (N.Y.); (J.-Q.W.)
- Yunnan Provincial Laboratory of Precision Nutrition and Personalized Manufacturing, Yunnan Agricultural University, Kunming 650201, China
| | - Hejiang Zhou
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (J.-Q.C.); (Y.-S.M.); (H.Z.); (R.-X.Y.); (M.X.); (N.Y.); (J.-Q.W.)
- Yunnan Provincial Laboratory of Precision Nutrition and Personalized Manufacturing, Yunnan Agricultural University, Kunming 650201, China
| | - Rui-Xue Yu
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (J.-Q.C.); (Y.-S.M.); (H.Z.); (R.-X.Y.); (M.X.); (N.Y.); (J.-Q.W.)
- Yunnan Provincial Laboratory of Precision Nutrition and Personalized Manufacturing, Yunnan Agricultural University, Kunming 650201, China
| | - Miao Xiong
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (J.-Q.C.); (Y.-S.M.); (H.Z.); (R.-X.Y.); (M.X.); (N.Y.); (J.-Q.W.)
- Yunnan Provincial Laboratory of Precision Nutrition and Personalized Manufacturing, Yunnan Agricultural University, Kunming 650201, China
| | - Na Yang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (J.-Q.C.); (Y.-S.M.); (H.Z.); (R.-X.Y.); (M.X.); (N.Y.); (J.-Q.W.)
- Yunnan Provincial Laboratory of Precision Nutrition and Personalized Manufacturing, Yunnan Agricultural University, Kunming 650201, China
| | - Ji-Qiu Wang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (J.-Q.C.); (Y.-S.M.); (H.Z.); (R.-X.Y.); (M.X.); (N.Y.); (J.-Q.W.)
- Yunnan Provincial Laboratory of Precision Nutrition and Personalized Manufacturing, Yunnan Agricultural University, Kunming 650201, China
| | - Yang Tian
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (J.-Q.C.); (Y.-S.M.); (H.Z.); (R.-X.Y.); (M.X.); (N.Y.); (J.-Q.W.)
- Yunnan Provincial Laboratory of Precision Nutrition and Personalized Manufacturing, Yunnan Agricultural University, Kunming 650201, China
- National Research and Development Professional Center for Moringa Processing Technology, Yunnan Agricultural University, Kunming 650201, China
- School of Tea and Coffee, Puer University, Puer 665000, China
| | - Ling-Yan Su
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (J.-Q.C.); (Y.-S.M.); (H.Z.); (R.-X.Y.); (M.X.); (N.Y.); (J.-Q.W.)
- Yunnan Provincial Laboratory of Precision Nutrition and Personalized Manufacturing, Yunnan Agricultural University, Kunming 650201, China
| |
Collapse
|
24
|
Wang X, Chai H, Li S, Xu Y, Wu Y, Wang J, Yang Z. Physiological characteristics and transcriptomic analyses of alfalfa root crown in wintering. FRONTIERS IN PLANT SCIENCE 2024; 15:1486564. [PMID: 39717732 PMCID: PMC11663680 DOI: 10.3389/fpls.2024.1486564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 11/22/2024] [Indexed: 12/25/2024]
Abstract
Background Alfalfa, scientifically identified as Medicago sativa, is repeatedly referred to as the "king of forages". Because of its tight relationship to winter hardiness, the alfalfa's root crown plays a significant role as a storage organ over the winter. At present, it is still unknown what molecular process makes the alfalfa root crown resistant to cold. This study was aimed to study these knowledge gaps. Using RNA sequencing (RNA-Seq) technology, significant genes associated with cold hardiness were found. Methods According to the random block design, Longmu 806 alfalfa and Sardi alfalfa were planted in regional experiments. Under the condition of low-temperature treatment in winter, the differentially expressed genes (DEGs), winter survival rate (WSR), and physiological characteristics were, in turn, calculated by RNA-Seq, chemical analysis, and field investigation. Results The WSR of the Longmu 806 alfalfa was 3.68-fold greater than that of the Sardi alfalfa. The jasmonic acid (JA), soluble sugar (SS), proline (Pro), and glutathione (GSH) concentration in the roots of Longmu 806 alfalfa was more than the same amount in Sardi alfalfa in other words P is less than 0.05. An entire set of 878 DEGs related to winter hardiness was found by statistical analysis. Among them, 463 DEGs showed an increase in expression, whereas 415 DEGs showed a decrease in expression. The metabolic pathways' examination presented that the DEGs (MsERF1, MsCHIB, MsJAZ, MsAOC, MsGST, MsINV, MsTPS, and MsOAT) were linked to the pathways of "plant hormone signaling transduction", "Amino sugar and nucleotide sugar metabolism", and "glutathione metabolism". Furthermore, the physiological changes in JA, SS, Pro content, and GSH were influenced by the dynamic transcription profile of LT (low- temperature) resistance-related genes.
Collapse
Affiliation(s)
- Xiaolong Wang
- Branch of Animal Husbandry and Veterinary of Heilongjiang Academy of Agricultural Sciences, Qiqihar, Heilongjiang, China
| | - Hua Chai
- Branch of Animal Husbandry and Veterinary of Heilongjiang Academy of Agricultural Sciences, Qiqihar, Heilongjiang, China
| | - Shasha Li
- Branch of Animal Husbandry and Veterinary of Heilongjiang Academy of Agricultural Sciences, Qiqihar, Heilongjiang, China
| | - Yanxia Xu
- Branch of Animal Husbandry and Veterinary of Heilongjiang Academy of Agricultural Sciences, Qiqihar, Heilongjiang, China
| | - Yue Wu
- Branch of Animal Husbandry and Veterinary of Heilongjiang Academy of Agricultural Sciences, Qiqihar, Heilongjiang, China
| | - Jianli Wang
- Institute of Grass Science of Heilongjiang Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Zhao Yang
- Branch of Animal Husbandry and Veterinary of Heilongjiang Academy of Agricultural Sciences, Qiqihar, Heilongjiang, China
| |
Collapse
|
25
|
Zhou X, Cao K, Meng J, Xu H, Zhou X. Strigolactone modulates phenolic acid accumulation and thereby improves tolerance to UV-B stress in Rhododendron chrysanthum Pall. PLANT CELL REPORTS 2024; 44:1. [PMID: 39643793 DOI: 10.1007/s00299-024-03393-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 11/27/2024] [Indexed: 12/09/2024]
Abstract
KEY MESSAGE Multi-omics studies have shown that strigolactone modulates phenolic acid accumulation in the leaves of R. chrysanthum and can enable it to cope with UV-B stress. UV-B stress is an abiotic stress that plants will inevitably suffer during growth and can seriously affect the normal physiological state of plants. Strigolactone, a phytohormone, has been less studied and it is important to investigate its regulation of plant growth under UV-B radiation. In the present study, we investigated the changes in leaves of Rhododendron chrysanthum Pall. (R. chrysanthum) under UV-B radiation. The leaves of R. chrysanthum were collected for widely targeted metabolomics, hormonomics, transcriptomics, proteomics and acetylated proteomics assays. The results showed that the leaves of R. chrysanthum were able to produce a large amount of differential phenolic acids with antioxidant effects under UV-B stress, the content of strigolactone was significantly elevated, and the genes and proteins involved in phenolic acid biosynthesis and strigolactone biosynthesis were significantly altered, and some of the proteins (ASP1, 4CLL7, and CCD1) underwent acetylation modification. Meanwhile, correlation analysis showed that strigolactone was strongly correlated with differential phenolic acids, which might regulate the adaptive responses of the R. chrysanthum under UV-B stress. In this paper, we investigated the effects of strigolactone on the accumulation of phenolic acid compounds and found a strong correlation between strigolactone and elevated phenolic acid levels, which provided insights into the molecular mechanism of plant regulation of phenolic acid accumulation, and facilitated the adoption of measures to mitigate the adverse effects of UV-B stress on plant growth, and to achieve the purpose of protecting plant germplasm resources.
Collapse
Affiliation(s)
- Xiangru Zhou
- Jilin Provincial Key Laboratory of Plant Resource Science and Green Production, Jilin Normal University, Siping, 136000, China
| | - Kun Cao
- Jilin Provincial Key Laboratory of Plant Resource Science and Green Production, Jilin Normal University, Siping, 136000, China
| | - Jinhao Meng
- Jilin Provincial Key Laboratory of Plant Resource Science and Green Production, Jilin Normal University, Siping, 136000, China
| | - Hongwei Xu
- Jilin Provincial Key Laboratory of Plant Resource Science and Green Production, Jilin Normal University, Siping, 136000, China
| | - Xiaofu Zhou
- Jilin Provincial Key Laboratory of Plant Resource Science and Green Production, Jilin Normal University, Siping, 136000, China.
| |
Collapse
|
26
|
Wang J, Shen C, Zhao G, Hanigan MD, Li M. Dietary protein re-alimentation following restriction improves protein deposition via changing amino acid metabolism and transcriptional profiling of muscle tissue in growing beef bulls. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 19:117-130. [PMID: 39659991 PMCID: PMC11630643 DOI: 10.1016/j.aninu.2024.04.028] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 12/12/2024]
Abstract
This study aimed to develop a compensatory growth model using growing beef cattle by changing dietary protein and to investigate the underlying mechanisms of compensatory protein deposition in muscle tissue. Twelve Charolais bulls were randomly assigned to one of two groups with two periods: 1) a control group (CON) fed a 13% crude protein (CP) diet for 6 weeks; 2) a treatment group (REC) fed a 7% CP diet for 4 weeks (restriction period) and fed a 13% CP diet in the following 2 weeks (re-alimentation period). Growth performance, digestibility, nitrogen balance, targeted metabolomics of amino acids (AA) in plasma, and transcriptional profiling in muscle tissue were analyzed. Protein restriction decreased average daily gain (ADG; P < 0.05), while protein re-alimentation increased ADG relative to the CON (P < 0.05). Compared to the CON, REC reduced retained N (P < 0.05), and protein re-alimentation increased retained N and N utilization efficiency (P < 0.05), due to reduced urinary urea, hippuric acid, and creatinine excretions (P < 0.05). Ruminal NH3-N in the REC was lower than that in the CON in the protein re-alimentation period (P < 0.05). However, there was no difference in microbial protein and plasma urea nitrogen concentrations. Dietary protein restriction decreased plasma valine and aspartic acid concentrations relative to the CON (P < 0.05), and increased proline and 3-methyl-L-histidine concentrations (P < 0.05). After dietary protein re-alimentation, REC increased plasma citrulline concentrations (P < 0.05). The transcriptional profiling revealed that REC upregulated the AA transporter SLC3A1, and protein re-alimentation downregulated SLC7A8 in the muscle cell membrane. Within the muscle cell, upregulated cytosolic arginine sensor for mTORC1 subunit 2 (CASTOR2) inhibited protein synthesis by inhibiting the mammalian target of rapamycin complex 1 phosphorylation in the protein restriction period, while DNA-damage-inducible transcript 4 (DDIT4) activated the mTOR signaling pathway and promoted protein synthesis in the protein re-alimentation period. In summary, the targeted metabolomics and transcriptomics analyses demonstrated that protein re-alimentation following restriction can promote protein synthesis and reduce muscle breakdown by regulating AA metabolism and functional transcripts related to AA transporters and the mTOR signaling pathway.
Collapse
Affiliation(s)
- Jiaqi Wang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Chun Shen
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Guangyong Zhao
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Mark D. Hanigan
- School of Animal Sciences, Virginia Tech, Blacksburg, VA 24060, USA
| | - Mengmeng Li
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
27
|
Ding Y, Miao Y, Huang L, Zhu H, Li W, Zou W, Yu S, Dong B, Zhong S. Functional Divergence of the Closely Related Genes PhARF5 and PhARF19a in Petunia hybrida Flower Formation and Hormone Signaling. Int J Mol Sci 2024; 25:12249. [PMID: 39596314 PMCID: PMC11594976 DOI: 10.3390/ijms252212249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/08/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
The ARF gene family plays a vital role in regulating multiple aspects of plant growth and development. However, detailed research on the role of the ARF family in regulating flower development in petunia and other plants remains limited. This study investigates the distinct roles of PhARF5 and PhARF19a in Petunia hybrida flower development. Phylogenetic analysis identified 29 PhARFs, which were grouped into four clades. VIGS-mediated silencing of PhARF5 and PhARF19a led to notable phenotypic changes, highlighting their non-redundant functions. PhARF5 silencing resulted in reduced petal number and limb abnormalities, while PhARF19a silencing disrupted corolla tube formation and orientation. Both genes showed high expression in the roots, leaves, and corollas, with nuclear localization. The transcriptomic analysis revealed significant overlaps in DEGs between PhARF5 and PhARF19a silencing, indicating shared pathways in hormone metabolism, signal transduction, and stress responses. Phytohormone analysis confirmed their broad impact on phytohormone biosynthesis, suggesting involvement in complex feedback mechanisms. Silencing PhARF5 and PhARF19a led to differential transcription of numerous genes related to hormone signaling pathways beyond auxin signaling, indicating their direct or indirect crosstalk with other phytohormones. However, significant differences in the regulation of these signaling pathways were observed between PhARF5 and PhARF19a. These findings reveal the roles of ARF genes in regulating petunia flower development, as well as the phylogenetic distribution of the PhARFs involved in this process. This study provides a valuable reference for molecular breeding aimed at improving floral traits in the petunia genus and related species.
Collapse
Affiliation(s)
- Yiqing Ding
- School of Landscape Architecture, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China; (Y.D.); (Y.M.); (L.H.); (H.Z.); (W.L.); (W.Z.); (S.Y.)
| | - Yunfeng Miao
- School of Landscape Architecture, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China; (Y.D.); (Y.M.); (L.H.); (H.Z.); (W.L.); (W.Z.); (S.Y.)
| | - Lingxuan Huang
- School of Landscape Architecture, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China; (Y.D.); (Y.M.); (L.H.); (H.Z.); (W.L.); (W.Z.); (S.Y.)
| | - Huijun Zhu
- School of Landscape Architecture, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China; (Y.D.); (Y.M.); (L.H.); (H.Z.); (W.L.); (W.Z.); (S.Y.)
| | - Wenle Li
- School of Landscape Architecture, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China; (Y.D.); (Y.M.); (L.H.); (H.Z.); (W.L.); (W.Z.); (S.Y.)
| | - Wei Zou
- School of Landscape Architecture, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China; (Y.D.); (Y.M.); (L.H.); (H.Z.); (W.L.); (W.Z.); (S.Y.)
| | - Shumin Yu
- School of Landscape Architecture, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China; (Y.D.); (Y.M.); (L.H.); (H.Z.); (W.L.); (W.Z.); (S.Y.)
| | - Bin Dong
- School of Landscape Architecture, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China; (Y.D.); (Y.M.); (L.H.); (H.Z.); (W.L.); (W.Z.); (S.Y.)
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Hangzhou 311300, China
- Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, Hangzhou 311300, China
| | - Shiwei Zhong
- School of Landscape Architecture, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China; (Y.D.); (Y.M.); (L.H.); (H.Z.); (W.L.); (W.Z.); (S.Y.)
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Hangzhou 311300, China
- Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, Hangzhou 311300, China
| |
Collapse
|
28
|
Pastor-Andreu P, Moreno-Romero J, Urdin-Bravo M, Palau-Rodriguez J, Paulisic S, Kastanaki E, Vives-Peris V, Gomez-Cadenas A, Esteve-Codina A, Martín-Mur B, Rodríguez-Villalón A, Martínez-García JF. Temporal and spatial frameworks supporting plant responses to vegetation proximity. PLANT PHYSIOLOGY 2024; 196:2048-2063. [PMID: 39140970 PMCID: PMC11531833 DOI: 10.1093/plphys/kiae417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 07/03/2024] [Accepted: 07/07/2024] [Indexed: 08/15/2024]
Abstract
After the perception of vegetation proximity by phytochrome photoreceptors, shade-avoider plants initiate a set of responses known as the shade avoidance syndrome (SAS). Shade perception by the phytochrome B (phyB) photoreceptor unleashes the PHYTOCHROME INTERACTING FACTORs and initiates SAS responses. In Arabidopsis (Arabidopsis thaliana) seedlings, shade perception involves rapid and massive changes in gene expression, increases auxin production, and promotes hypocotyl elongation. Other components, such as phyA and ELONGATED HYPOCOTYL 5, also participate in the shade regulation of the hypocotyl elongation response by repressing it. However, why and how so many regulators with either positive or negative activities modulate the same response remains unclear. Our physiological, genetic, cellular, and transcriptomic analyses showed that (i) these components are organized into 2 main branches or modules and (ii) the connection between them is dynamic and changes with the time of shade exposure. We propose a model for the regulation of shade-induced hypocotyl elongation in which the temporal and spatial functional importance of the various SAS regulators analyzed here helps to explain the coexistence of differentiated regulatory branches with overlapping activities.
Collapse
Affiliation(s)
- Pedro Pastor-Andreu
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Barcelona 08193, Spain
| | - Jordi Moreno-Romero
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Barcelona 08193, Spain
- Institute for Plant Molecular and Cell Biology (IBMCP), CSIC-UPV, València 46022, Spain
- Departament de Bioquimica I Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona 08193, Spain
| | - Mikel Urdin-Bravo
- Institute for Plant Molecular and Cell Biology (IBMCP), CSIC-UPV, València 46022, Spain
| | - Julia Palau-Rodriguez
- Institute for Plant Molecular and Cell Biology (IBMCP), CSIC-UPV, València 46022, Spain
| | - Sandi Paulisic
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Barcelona 08193, Spain
| | - Elizabeth Kastanaki
- Group of Plant Vascular Development, Swiss Federal Institute of Technology (ETH) Zurich, Zurich CH-8092, Switzerland
| | - Vicente Vives-Peris
- Departament de Biologia, Bioquimica I Ciències Naturals, Universitat Jaume I, Castelló de la Plana 12071, Spain
| | - Aurelio Gomez-Cadenas
- Departament de Biologia, Bioquimica I Ciències Naturals, Universitat Jaume I, Castelló de la Plana 12071, Spain
| | - Anna Esteve-Codina
- Functional Genomics Team, Centro Nacional de Análisis Genómico (CNAG), Universitat de Barcelona, Barcelona 08028, Spain
| | - Beatriz Martín-Mur
- Functional Genomics Team, Centro Nacional de Análisis Genómico (CNAG), Universitat de Barcelona, Barcelona 08028, Spain
| | - Antía Rodríguez-Villalón
- Group of Plant Vascular Development, Swiss Federal Institute of Technology (ETH) Zurich, Zurich CH-8092, Switzerland
| | - Jaume F Martínez-García
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Barcelona 08193, Spain
- Institute for Plant Molecular and Cell Biology (IBMCP), CSIC-UPV, València 46022, Spain
| |
Collapse
|
29
|
El Arbi N, Nardeli SM, Šimura J, Ljung K, Schmid M. The Arabidopsis splicing factor PORCUPINE/SmE1 orchestrates temperature-dependent root development via auxin homeostasis maintenance. THE NEW PHYTOLOGIST 2024; 244:1408-1421. [PMID: 39327913 DOI: 10.1111/nph.20153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 08/24/2024] [Indexed: 09/28/2024]
Abstract
Appropriate abiotic stress response is pivotal for plant survival and makes use of multiple signaling molecules and phytohormones to achieve specific and fast molecular adjustments. A multitude of studies has highlighted the role of alternative splicing in response to abiotic stress, including temperature, emphasizing the role of transcriptional regulation for stress response. Here we investigated the role of the core-splicing factor PORCUPINE (PCP) on temperature-dependent root development. We used marker lines and transcriptomic analyses to study the expression profiles of meristematic regulators and mitotic markers, and chemical treatments, as well as root hormone profiling to assess the effect of auxin signaling. The loss of PCP significantly alters RAM architecture in a temperature-dependent manner. Our results indicate that PCP modulates the expression of central meristematic regulators and is required to maintain appropriate levels of auxin in the RAM. We conclude that alternative pre-mRNA splicing is sensitive to moderate temperature fluctuations and contributes to root meristem maintenance, possibly through the regulation of phytohormone homeostasis and meristematic activity.
Collapse
Affiliation(s)
- Nabila El Arbi
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, SE-901 87, Umeå, Sweden
| | - Sarah Muniz Nardeli
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, SE-901 87, Umeå, Sweden
- Department of Plant Biology, Linnean Center for Plant Biology, Swedish University of Agricultural Sciences, S-75007, Uppsala, Sweden
| | - Jan Šimura
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, SE-901 83, Umeå, Sweden
| | - Karin Ljung
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, SE-901 83, Umeå, Sweden
| | - Markus Schmid
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, SE-901 87, Umeå, Sweden
- Department of Plant Biology, Linnean Center for Plant Biology, Swedish University of Agricultural Sciences, S-75007, Uppsala, Sweden
| |
Collapse
|
30
|
Szparaga A, Czerwińska E, Kapusta I, Piepiórka-Stepuk J, Zaguła G, Szparaga Ł, Caruso G, Erlichowska B, Deszcz E. The insights into the activity of the extracts from Polygonum aviculare L. and Pseudomonas fluorescens for enhancing and modeling seed germination and seedling growth of Melilotus officinalis L. Lam. SOUTH AFRICAN JOURNAL OF BOTANY 2024; 174:510-524. [DOI: 10.1016/j.sajb.2024.09.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
31
|
Singh D, Zhao H, Gupta SK, Kumar Y, Kim J, Pawar PAM. Characterization of Arabidopsis eskimo1 reveals a metabolic link between xylan O-acetylation and aliphatic glucosinolate metabolism. PHYSIOLOGIA PLANTARUM 2024; 176:e14618. [PMID: 39542838 DOI: 10.1111/ppl.14618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/16/2024] [Accepted: 10/15/2024] [Indexed: 11/17/2024]
Abstract
Glucuronoxylan is present mainly in the dicot of the secondary cell walls, often O-acetylated, which stabilizes cell structure by maintaining interaction with cellulose and other cell wall components. Some members of the Golgi localized Trichome Birefringence-Like (TBL) family function as xylan O-acetyl transferase (XOAT). The primary XOAT in the stem of Arabidopsis is ESKIMO1/TBL29, and its disruption results in decreased xylan acetylation, stunted plant growth, and collapsed xylem vessels. To elucidate the effect on metabolic reprogramming and identify the underlying cause of the stunted growth in eskimo1, we performed transcriptomic, targeted, and untargeted metabolome analysis, mainly in the inflorescence stem tissue. RNA sequencing analysis revealed that the genes involved in the biosynthesis, regulation, and transport of aliphatic glucosinolates (GSLs) were upregulated, whereas those responsible for indolic GSL metabolism were unaffected in the eskimo1 inflorescence stem. Consistently, aliphatic GSLs, such as 4-methylsulfinylbutyl (4MSOB), were increased in stem tissues and seeds. This shift in the profile of aliphatic GSLs in eskimo1 was further supported by the quantification of the soluble acetate, decrease in accumulation of GSL precursor, i.e., methionine, and increase in the level of jasmonic acid.
Collapse
Affiliation(s)
- Deepika Singh
- Laboratory of Plant Cell Wall Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana, India
| | - Haohao Zhao
- Horticultural Sciences Department, University of Florida, Gainesville, FL, USA
| | - Sonu Kumar Gupta
- Non-Communicable Diseases Division, Translational Health Science and Technology Institute, Faridabad, India
| | - Yashwant Kumar
- Non-Communicable Diseases Division, Translational Health Science and Technology Institute, Faridabad, India
| | - Jeongim Kim
- Horticultural Sciences Department, University of Florida, Gainesville, FL, USA
| | - Prashant Anupama-Mohan Pawar
- Laboratory of Plant Cell Wall Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana, India
| |
Collapse
|
32
|
Wei B, Cao S, Zhang G, Wang H, Cao Z, Chen Q, Niu C. Citrus Fruits Produce Direct Defense Responses against Oviposition by Bactrocera minax (Diptera: Tephritidae). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:23736-23746. [PMID: 39257316 DOI: 10.1021/acs.jafc.4c05871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Plants perceive and orchestrate defense responses when herbivorous insects are ovipositing. Fruits, as a crucial reproductive organ in plants, have rarely been researched on the responses to insect eggs. Here, we found that oviposition by the specialist insect Bactrocera minax in navel oranges activated the lignin synthesis pathway and cell division, causing mechanical pressure that crushed the eggs. Transcriptome and metabolome analyses revealed an enrichment of oviposition-induced genes and metabolites within the lignin synthesis pathway, which was confirmed by histochemical staining. Furthermore, hydrogen peroxide (H2O2) accumulation was observed at the oviposition sites. Plant defense-related hormones jasmonic acid (JA) and salicylic acid (SA) exhibited rapid induction after oviposition, while indole-3-acetic acid (IAA) activation occurred in the later stages of oviposition. Additionally, secondary metabolites induced by prior egg deposition were found to influence larval performance. Our studies provide molecular evidence that host fruits have evolved defense mechanisms against insect eggs and pave the way for future development of insect-resistant citrus varieties.
Collapse
Affiliation(s)
- Bingbing Wei
- Hubei Key Laboratory of Insect Resource Application and Sustainable Pest Control, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Shuai Cao
- Hubei Key Laboratory of Insect Resource Application and Sustainable Pest Control, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Guijian Zhang
- Hubei Key Laboratory of Insect Resource Application and Sustainable Pest Control, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Haoran Wang
- Hubei Key Laboratory of Insect Resource Application and Sustainable Pest Control, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhen Cao
- Hubei Key Laboratory of Insect Resource Application and Sustainable Pest Control, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiaoran Chen
- Hubei Key Laboratory of Insect Resource Application and Sustainable Pest Control, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Changying Niu
- Hubei Key Laboratory of Insect Resource Application and Sustainable Pest Control, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
33
|
Sun Z, Yuan L, Wang Y, Fang R, Lin X, Li H, Chen L, Wu Y, Huang X, Kong F, Liu B, Lu S, Kong L. Post-Flowering Photoperiod Sensitivity of Soybean in Pod-Setting Responses. BIOLOGY 2024; 13:868. [PMID: 39596823 PMCID: PMC11592272 DOI: 10.3390/biology13110868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/09/2024] [Accepted: 10/19/2024] [Indexed: 11/29/2024]
Abstract
The development of soybean (Glycine max) is regulated by the photoperiod, with genes related to photoperiod sensitivity primarily focused on the flowering time. However, their roles in post-flowering reproductive development and the mechanisms by which the photoperiod affects them are not yet determined. In this study, we found that pod formation is sensitive to the photoperiod. Long-day conditions tended to extend the time from flowering to pod formation, and the first wave of flowers tended to fall off. Additionally, the photoperiod affected the pistil morphology; under short-day conditions, the stigma had a curved hook-like structure that facilitated better interaction with the filaments when pollen was released, ultimately influencing the timing of pod formation. Photoperiod-insensitive mutants, lacking E1 family and Evening Complex (EC) genes, showed no difference in the pod formation time under long-day or short-day conditions. Hormone content analysis and transcriptome data analysis indicated that various hormones, reactive oxygen species (ROS) burst pathway signals, and the application of sucrose solution in vitro might influence floral organ abscission.
Collapse
Affiliation(s)
- Zhihui Sun
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Limei Yuan
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Yulin Wang
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Ran Fang
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Xiaoya Lin
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Haiyang Li
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Liyu Chen
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Yichun Wu
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Xin Huang
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Fanjiang Kong
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Baohui Liu
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Sijia Lu
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Lingping Kong
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| |
Collapse
|
34
|
Ma R, Zhang Y, Zhao J, Zheng Y, Xue L, Lei J. A systematic regulatory network related to bulbil formation in Lilium lancifolium based on metabolome and transcriptome analyses. BMC PLANT BIOLOGY 2024; 24:969. [PMID: 39407139 PMCID: PMC11481762 DOI: 10.1186/s12870-024-05654-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 09/30/2024] [Indexed: 10/19/2024]
Abstract
BACKGROUND Lilium lancifolium is a special wild triploid species native to China and can produce abundant bulbils on its stem under natural conditions, which is very valuable to study bulbil organogenesis in plants. Although similar to the lateral and tillering principles, the molecular mechanism underlying bulbil formation has remained incompletely understood. RESULTS The metabolome and transcriptome of L. lancifolium bulbils across four development stages were analyzed. The pairwise comparison of metabolomes across the four stages identified 17 differential hormones, predominantly auxin (IAA), cytokinin (CK), and jasmonic acid (JA). Short Time-series Expression Miner (STEM) trend analysis of differential genes revealed four significant trends across these stages. The KEGG enrichment analysis of the four clusters highlighted pathways, such as plant hormone signal transduction, which were speculated to play a crucial role in development stages. these pathways were speculated to play a crucial role in development stages. To explore the key differential expressed genes and transcription factors associated with bulbil occurrence, two periods were focused on: Ll_UN and Ll_DN, which represented the stages with and without bulbils, respectively. Through correlation analysis and qRT-PCR analysis, 11 candidate differentially expressed genes and 27 candidate transcription factors were selected. By spraying exogenous hormones to validate these candidates, LlbHLH128, LlTIFY10A, LlbHLH93, and LlMYB108, were identified as the key genes for L. lancifolium bulbils. CONCLUSION A regulatory network of L. lancifolium bulbil development was predicted. LlTIFY10A and LlbHLH93 might be involved in the JA and auxin signal transduction pathways, which jointly formed a regulatory network to affect the occurrence of L. lancifolium bulbil. This study not only provided more information about the differentially expressed genes and metabolites through transcriptome and metabolomics analyses, but also provided a clearer understanding of the effect of hormones on bulbil formation in lily.
Collapse
Affiliation(s)
- Ruiyi Ma
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
| | - Yan Zhang
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
| | - Jun Zhao
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
| | - Yang Zheng
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
| | - Li Xue
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China.
| | - Jiajun Lei
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China.
| |
Collapse
|
35
|
Vrobel O, Ćavar Zeljković S, Dehner J, Spíchal L, De Diego N, Tarkowski P. Multi-class plant hormone HILIC-MS/MS analysis coupled with high-throughput phenotyping to investigate plant-environment interactions. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:818-832. [PMID: 39222478 DOI: 10.1111/tpj.17010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/31/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
Plant hormones are chemical signals governing almost every aspect of a plant's life cycle and responses to environmental cues. They are enmeshed within complex signaling networks that can only be deciphered by using broad-scale analytical methods to capture information about several plant hormone classes simultaneously. Methods used for this purpose are all based on reversed-phase (RP) liquid chromatography and mass spectrometric detection. Hydrophilic interaction chromatography (HILIC) is an alternative chromatographic method that performs well in analyses of biological samples. We therefore developed and validated a HILIC method for broad-scale plant hormone analysis including a rapid sample preparation procedure; moreover, derivatization or fractionation is not required. The method enables plant hormone screening focused on polar and moderately polar analytes including cytokinins, auxins, jasmonates, abscisic acid and its metabolites, salicylates, indoleamines (melatonin), and 1-aminocyclopropane-1-carboxylic acid (ACC), for a total of 45 analytes. Importantly, the major pitfalls of ACC analysis have been addressed. Furthermore, HILIC provides orthogonal selectivity to conventional RP methods and displays greater sensitivity, resulting in lower limits of quantification. However, it is less robust, so procedures to increase its reproducibility were established. The method's potential is demonstrated in a case study by employing an approach combining hormonal analysis with phenomics to examine responses of three Arabidopsis ecotypes toward three abiotic stress treatments: salinity, low nutrient availability, and their combination. The case study showcases the value of the simultaneous determination of several plant hormone classes coupled with phenomics data when unraveling processes involving complex cross-talk under diverse plant-environment interactions.
Collapse
Affiliation(s)
- Ondřej Vrobel
- Department of Biochemistry, Faculty of Science, Palacky University, Šlechtitelů 27, Olomouc, CZ-779 00, Czechia
- Czech Advanced Technology and Research Institute-CATRIN, Palacky University, Šlechtitelů 27, Olomouc, CZ-779 00, Czechia
- Department of Genetic Resources for Vegetables, Medicinal and Special Plants, Crop Research Institute, Šlechtitelů 29, Olomouc, CZ-779 00, Czechia
| | - Sanja Ćavar Zeljković
- Czech Advanced Technology and Research Institute-CATRIN, Palacky University, Šlechtitelů 27, Olomouc, CZ-779 00, Czechia
- Department of Genetic Resources for Vegetables, Medicinal and Special Plants, Crop Research Institute, Šlechtitelů 29, Olomouc, CZ-779 00, Czechia
| | - Jan Dehner
- Czech Advanced Technology and Research Institute-CATRIN, Palacky University, Šlechtitelů 27, Olomouc, CZ-779 00, Czechia
| | - Lukáš Spíchal
- Czech Advanced Technology and Research Institute-CATRIN, Palacky University, Šlechtitelů 27, Olomouc, CZ-779 00, Czechia
| | - Nuria De Diego
- Czech Advanced Technology and Research Institute-CATRIN, Palacky University, Šlechtitelů 27, Olomouc, CZ-779 00, Czechia
| | - Petr Tarkowski
- Czech Advanced Technology and Research Institute-CATRIN, Palacky University, Šlechtitelů 27, Olomouc, CZ-779 00, Czechia
- Department of Genetic Resources for Vegetables, Medicinal and Special Plants, Crop Research Institute, Šlechtitelů 29, Olomouc, CZ-779 00, Czechia
| |
Collapse
|
36
|
Wang J, Song Y, Wang G, Shi L, Shen Y, Liu W, Xu Y, Lou X, Jia W, Zhang M, Shang W, He S, Wang Z. PoARRO-1 regulates adventitious rooting through interaction with PoIAA27b in Paeonia ostii. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 347:112204. [PMID: 39059631 DOI: 10.1016/j.plantsci.2024.112204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/18/2024] [Accepted: 07/23/2024] [Indexed: 07/28/2024]
Abstract
Adventitious root (AR) formation is a limiting factor in the vegetative propagation of tree peony (Paeonia suffruticosa Andr.). PoARRO-1, which encodes an auxin oxidase involved in AR formation, plays a role in the root development of P. ostii, but its associated molecular regulatory mechanisms are not yet understood. In this study, we examined the role of PoARRO-1 in AR formation in P. ostii. The overexpression of PoARRO-1 in P. ostii test-tube plantlets led to a notable enhancement in both the rooting rate and the average number of ARs in vitro, as well as increased activities of peroxidase (POD), superoxide dismutase (SOD), and indoleacetic acid oxidase (IAAO). PoARRO-1 was involved in the conversion of IAA-Asp and IAA-Glu to OxIAA and promoted IAA oxidation. RNA sequencing analysis revealed that PoARRO-1 overexpression led to upregulation of enzyme activity, auxin metabolism related genes. Further analyses showed that PoARRO-1 interacted with the 1-175 aa position of PoIAA27b to regulate the formation of ARs. We therefore propose that PoARRO-1 interacts with PoIAA27b to promote AR formation, and it may be useful targets for enhancing the in vitro propagation of P. ostii.
Collapse
Affiliation(s)
- Jiange Wang
- College of Landscape Architecture and Art, Henan Agricultural University, Zhengzhou 450002, China
| | - Yinglong Song
- College of Landscape Architecture and Art, Henan Agricultural University, Zhengzhou 450002, China
| | - Guiqing Wang
- College of Landscape Architecture and Art, Henan Agricultural University, Zhengzhou 450002, China
| | - Liyun Shi
- College of Landscape Architecture and Art, Henan Agricultural University, Zhengzhou 450002, China
| | - Yuxiao Shen
- College of Landscape Architecture and Art, Henan Agricultural University, Zhengzhou 450002, China
| | - Weichao Liu
- College of Landscape Architecture and Art, Henan Agricultural University, Zhengzhou 450002, China
| | - Yufeng Xu
- College of Landscape Architecture and Art, Henan Agricultural University, Zhengzhou 450002, China
| | - Xueyuan Lou
- College of Horticulture, Henan Agricultural University, Zhengzhou 450002, China
| | - Wenqing Jia
- School of Horticulture Landscape Architecture, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Minhuan Zhang
- College of Landscape Architecture, Central South University of Forestry and Technology, Changsha 410004, China
| | - Wenqian Shang
- College of Landscape Architecture and Art, Henan Agricultural University, Zhengzhou 450002, China.
| | - Songlin He
- College of Landscape Architecture and Art, Henan Agricultural University, Zhengzhou 450002, China.
| | - Zheng Wang
- College of Landscape Architecture and Art, Henan Agricultural University, Zhengzhou 450002, China.
| |
Collapse
|
37
|
Chen JC, Lin HY, Novák O, Strnad M, Lee YI, Fang SC. Diverse geotropic responses in the orchid family. PLANT, CELL & ENVIRONMENT 2024; 47:3828-3845. [PMID: 38809156 DOI: 10.1111/pce.14975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/28/2024] [Accepted: 05/14/2024] [Indexed: 05/30/2024]
Abstract
In epiphytes, aerial roots are important to combat water-deficient, nutrient-poor, and high-irradiance microhabitats. However, whether aerial roots can respond to gravity and whether auxin plays a role in regulating aerial root development remain open-ended questions. Here, we investigated the gravitropic response of the epiphytic orchid Phalaenopsis aphrodite. Our data showed that aerial roots of P. aphrodite failed to respond to gravity, and this was correlated with a lack of starch granules/statolith sedimentation in the roots and the absence of the auxin efflux carrier PIN2 gene. Using an established auxin reporter, we discovered that auxin maximum was absent in the quiescent center of aerial roots of P. aphrodite. Also, gravity failed to trigger auxin redistribution in the root caps. Hence, loss of gravity sensing and gravity-dependent auxin redistribution may be the genetic factors contributing to aerial root development. Moreover, the architectural and functional innovations that achieve fast gravitropism in the flowering plants appear to be lost in both terrestrial and epiphytic orchids, but are present in the early diverged orchid subfamilies. Taken together, our findings provide physiological and molecular evidence to support the notion that epiphytic orchids lack gravitropism and suggest diverse geotropic responses in the orchid family.
Collapse
Affiliation(s)
- Jhun-Chen Chen
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan, Taiwan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Hsiang-Yin Lin
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan, Taiwan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Ondřej Novák
- Laboratory of Growth Regulators, Institute of Experimental Botany of the Czech Academy of Science, Faculty of Science of Palacký University, Olomouc, Czech Republic
| | - Miroslav Strnad
- Laboratory of Growth Regulators, Institute of Experimental Botany of the Czech Academy of Science, Faculty of Science of Palacký University, Olomouc, Czech Republic
| | - Yung-I Lee
- Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Su-Chiung Fang
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan, Taiwan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
38
|
Ning R, Li C, Fan T, Ji T, Xu W. Metabolite and Transcriptomic Changes Reveal the Cold Stratification Process in Sinopodophyllum hexandrum Seeds. PLANTS (BASEL, SWITZERLAND) 2024; 13:2693. [PMID: 39409563 PMCID: PMC11479046 DOI: 10.3390/plants13192693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/18/2024] [Accepted: 09/23/2024] [Indexed: 10/20/2024]
Abstract
Sinopodophyllum hexandrum (Royle) Ying, an endangered perennial medicinal herb, exhibits morpho-physiological dormancy in its seeds, requiring cold stratification for germination. However, the precise molecular mechanisms underlying this transition from dormancy to germination remain unclear. This study integrates transcriptome and plant hormone-targeted metabolomics techniques to unravel these intricate molecular regulatory mechanisms during cold stratification in S. hexandrum seeds. Significant alterations in the physicochemical properties (starch, soluble sugars, soluble proteins) and enzyme activities (PK, SDH, G-6-PDH) within the seeds occur during stratification. To characterize and monitor the formation and transformation of plant hormones throughout this process, extracts from S. hexandrum seeds at five stratification stages of 0 days (S0), 30 days (S1), 60 days (S2), 90 days (S3), and 120 days (S4) were analyzed using UPLC-MS/MS, revealing a total of 37 differential metabolites belonging to seven major classes of plant hormones. To investigate the biosynthetic and conversion processes of plant hormones related to seed dormancy and germination, the transcriptome of S. hexandrum seeds was monitored via RNA-seq, revealing 65,372 differentially expressed genes associated with plant hormone synthesis and signaling. Notably, cytokinins (CKs) and gibberellins (GAs) exhibited synergistic effects, while abscisic acid (ABA) displayed antagonistic effects. Furthermore, key hub genes were identified through integrated network analysis. In this rigorous scientific study, we systematically elucidate the intricate dynamic molecular regulatory mechanisms that govern the transition from dormancy to germination in S. hexandrum seeds during stratification. By meticulously examining these mechanisms, we establish a solid foundation of knowledge that serves as a scientific basis for facilitating large-scale breeding programs and advancing the artificial cultivation of this highly valued medicinal plant.
Collapse
Affiliation(s)
- Rongchun Ning
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810001, China; (R.N.)
- Qinghai Key Laboratory of Qinghai-Tibet Plateau Biological Resources, Xining 810008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Caixia Li
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810001, China; (R.N.)
| | - Tingting Fan
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810001, China; (R.N.)
- Qinghai Key Laboratory of Qinghai-Tibet Plateau Biological Resources, Xining 810008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tingting Ji
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810001, China; (R.N.)
| | - Wenhua Xu
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810001, China; (R.N.)
- Qinghai Key Laboratory of Qinghai-Tibet Plateau Biological Resources, Xining 810008, China
| |
Collapse
|
39
|
Chaisupa P, Rahman MM, Hildreth SB, Moseley S, Gatling C, Bryant MR, Helm RF, Wright RC. Genetically Encoded, Noise-Tolerant, Auxin Biosensors in Yeast. ACS Synth Biol 2024; 13:2804-2819. [PMID: 39197086 PMCID: PMC11421217 DOI: 10.1021/acssynbio.4c00186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2024]
Abstract
Auxins are crucial signaling molecules that regulate the growth, metabolism, and behavior of various organisms, most notably plants but also bacteria, fungi, and animals. Many microbes synthesize and perceive auxins, primarily indole-3-acetic acid (IAA, referred to as auxin herein), the most prevalent natural auxin, which influences their ability to colonize plants and animals. Understanding auxin biosynthesis and signaling in fungi may allow us to better control interkingdom relationships and microbiomes from agricultural soils to the human gut. Despite this importance, a biological tool for measuring auxin with high spatial and temporal resolution has not been engineered in fungi. In this study, we present a suite of genetically encoded, ratiometric, protein-based auxin biosensors designed for the model yeast Saccharomyces cerevisiae. Inspired by auxin signaling in plants, the ratiometric nature of these biosensors enhances the precision of auxin concentration measurements by minimizing clonal and growth phase variation. We used these biosensors to measure auxin production across diverse growth conditions and phases in yeast cultures and calibrated their responses to physiologically relevant levels of auxin. Future work will aim to improve the fold change and reversibility of these biosensors. These genetically encoded auxin biosensors are valuable tools for investigating auxin biosynthesis and signaling in S. cerevisiae and potentially other yeast and fungi and will also advance quantitative functional studies of the plant auxin perception machinery, from which they are built.
Collapse
Affiliation(s)
- Patarasuda Chaisupa
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Md Mahbubur Rahman
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Sherry B Hildreth
- Fralin Life Sciences Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Saede Moseley
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Chauncey Gatling
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Matthew R Bryant
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Richard F Helm
- Fralin Life Sciences Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - R Clay Wright
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
- Fralin Life Sciences Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
- The Translational Plant Sciences Center (TPSC), Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
40
|
Chen Z, Yan T, Abbas F, Yang M, Wang X, Deng H, Zhang H, Hu F. Targeted Metabolites and Transcriptome Analysis Uncover the Putative Role of Auxin in Floral Sex Determination in Litchi chinensis Sonn. PLANTS (BASEL, SWITZERLAND) 2024; 13:2592. [PMID: 39339567 PMCID: PMC11435090 DOI: 10.3390/plants13182592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/12/2024] [Accepted: 09/14/2024] [Indexed: 09/30/2024]
Abstract
Litchi exhibits a large number of flowers, many flowering batches, and an inconsistent ratio of male and female flowers, frequently leading to a low fruit-setting rate. Floral sexual differentiation is a crucial phase in perennial trees to ensure optimal fruit production. However, the mechanism behind floral differentiation remains unclear. The objective of the study was to identify the role of auxin in floral differentiation at the transcriptional level. The results showed that the ratio of female flowers treated with naphthalene acetic acid (NAA) was significantly lower than that of the control stage (M0/F0). The levels of endogenous auxin and auxin metabolites were measured in male and female flowers at different stages of development. It was found that the levels of IAA, IAA-Glu, IAA-Asp, and IAA-Ala were significantly higher in male flowers compared to female flowers. Next-generation sequencing and modeling were employed to perform an in-depth transcriptome analysis on all flower buds in litchi 'Feizixiao' cultivars (Litchi chinensis Sonn.). Plant hormones were found to exert a significant impact on the litchi flowering process and flower proliferation. Specifically, a majority of differentially expressed genes (DEGs) related to the auxin pathway were noticeably increased during male flower bud differentiation. The current findings will enhance our comprehension of the process and control mechanism of litchi floral sexual differentiation. It also offers a theoretical foundation for implementing strategies to regulate flowering and enhance fruit production in litchi cultivation.
Collapse
Affiliation(s)
- Zhe Chen
- Institute of Tropical Fruit Trees, Hainan Academy of Agricultural Sciences/Key Laboratory of Genetic Resources Evaluation and Utilization of Tropical Fruits and Vegetables (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs/Key Laboratory of Tropical Fruit Tree Biology of Hainan Province, Haikou 571100, China
- Sanya Research Institute, Hainan Academy of Agricultural Sciences, Sanya 572025, China
| | - Tingting Yan
- Institute of Tropical Fruit Trees, Hainan Academy of Agricultural Sciences/Key Laboratory of Genetic Resources Evaluation and Utilization of Tropical Fruits and Vegetables (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs/Key Laboratory of Tropical Fruit Tree Biology of Hainan Province, Haikou 571100, China
| | - Farhat Abbas
- Institute of Tropical Fruit Trees, Hainan Academy of Agricultural Sciences/Key Laboratory of Genetic Resources Evaluation and Utilization of Tropical Fruits and Vegetables (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs/Key Laboratory of Tropical Fruit Tree Biology of Hainan Province, Haikou 571100, China
| | - Mingchao Yang
- Institute of Tropical Fruit Trees, Hainan Academy of Agricultural Sciences/Key Laboratory of Genetic Resources Evaluation and Utilization of Tropical Fruits and Vegetables (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs/Key Laboratory of Tropical Fruit Tree Biology of Hainan Province, Haikou 571100, China
| | - Xianghe Wang
- Institute of Tropical Fruit Trees, Hainan Academy of Agricultural Sciences/Key Laboratory of Genetic Resources Evaluation and Utilization of Tropical Fruits and Vegetables (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs/Key Laboratory of Tropical Fruit Tree Biology of Hainan Province, Haikou 571100, China
- Sanya Research Institute, Hainan Academy of Agricultural Sciences, Sanya 572025, China
| | - Hao Deng
- Institute of Agro-Products Processing and Design, Hainan Academy of Agricultural Sciences/Key Laboratory of Tropical Fruit and Vegetable Cold-Chain of Hainan Province, Haikou 571100, China
| | - Hongna Zhang
- Hainan Provincial Key Laboratory of Quality Control of Tropical Horticultural Crops, School of Tropical Agriculture and Forestry, Hainan University, Danzhou 571737, China
| | - Fuchu Hu
- Institute of Tropical Fruit Trees, Hainan Academy of Agricultural Sciences/Key Laboratory of Genetic Resources Evaluation and Utilization of Tropical Fruits and Vegetables (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs/Key Laboratory of Tropical Fruit Tree Biology of Hainan Province, Haikou 571100, China
- Sanya Research Institute, Hainan Academy of Agricultural Sciences, Sanya 572025, China
| |
Collapse
|
41
|
Yan N, Cao J, Wang J, Zou X, Yu X, Zhang X, Si T. Seed priming with graphene oxide improves salinity tolerance and increases productivity of peanut through modulating multiple physiological processes. J Nanobiotechnology 2024; 22:565. [PMID: 39272089 PMCID: PMC11401308 DOI: 10.1186/s12951-024-02832-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 09/02/2024] [Indexed: 09/15/2024] Open
Abstract
Graphene oxide (GO), beyond its specialized industrial applications, is rapidly gaining prominence as a nanomaterial for modern agriculture. However, its specific effects on seed priming for salinity tolerance and yield formation in crops remain elusive. Under both pot-grown and field-grown conditions, this study combined physiological indices with transcriptomics and metabolomics to investigate how GO affects seed germination, seedling salinity tolerance, and peanut pod yield. Peanut seeds were firstly treated with 400 mg L⁻¹ GO (termed GO priming). At seed germination stage, GO-primed seeds exhibited higher germination rate and percentage of seeds with radicals breaking through the testa. Meanwhile, omics analyses revealed significant enrichment in pathways associated with carbon and nitrogen metabolisms in GO-primed seeds. At seedling stage, GO priming contributed to strengthening plant growth, enhancing photosynthesis, maintaining the integrity of plasma membrane, and promoting the nutrient accumulation in peanut seedlings under 200 mM NaCl stress. Moreover, GO priming increased the activities of antioxidant enzymes, along with reduced the accumulation of reactive oxygen species (ROS) in response to salinity stress. Furthermore, the differentially expressed genes (DEGs) and differentially accumulated metabolites (DAMs) of peanut seedlings under GO priming were mainly related to photosynthesis, phytohormones, antioxidant system, and carbon and nitrogen metabolisms in response to soil salinity. At maturity, GO priming showed an average increase in peanut pod yield by 12.91% compared with non-primed control. Collectively, our findings demonstrated that GO plays distinguish roles in enhancing seed germination, mitigating salinity stress, and boosting pod yield in peanut plants via modulating multiple physiological processes.
Collapse
Affiliation(s)
- Ning Yan
- Shandong Provincial Key Laboratory of Dryland Farming Technology, College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, P.R. China
| | - Junfeng Cao
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, 999077, P.R. China.
| | - Jie Wang
- Shandong Provincial Key Laboratory of Dryland Farming Technology, College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, P.R. China
| | - Xiaoxia Zou
- Shandong Provincial Key Laboratory of Dryland Farming Technology, College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, P.R. China
| | - Xiaona Yu
- Shandong Provincial Key Laboratory of Dryland Farming Technology, College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, P.R. China
| | - Xiaojun Zhang
- Shandong Provincial Key Laboratory of Dryland Farming Technology, College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, P.R. China
| | - Tong Si
- Shandong Provincial Key Laboratory of Dryland Farming Technology, College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, P.R. China.
| |
Collapse
|
42
|
Petřík I, Hladík P, Zhang C, Pěnčík A, Novák O. Spatio-temporal plant hormonomics: from tissue to subcellular resolution. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:5295-5311. [PMID: 38938164 DOI: 10.1093/jxb/erae267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 06/26/2024] [Indexed: 06/29/2024]
Abstract
Due to technological advances in mass spectrometry, significant progress has been achieved recently in plant hormone research. Nowadays, plant hormonomics is well established as a fully integrated scientific field focused on the analysis of phytohormones, mainly on their isolation, identification, and spatiotemporal quantification in plants. This review represents a comprehensive meta-study of the advances in the phytohormone analysis by mass spectrometry over the past decade. To address current trends and future perspectives, Web of Science data were systematically collected and key features such as mass spectrometry-based analyses were evaluated using multivariate data analysis methods. Our findings showed that plant hormonomics is currently divided into targeted and untargeted approaches. Both aim to miniaturize the sample, allowing high-resolution quantification to be covered in plant organs as well as subcellular compartments. Therefore, we can study plant hormone biosynthesis, metabolism, and signalling at a spatio-temporal resolution. Moreover, this trend has recently been accelerated by technological advances such as fluorescence-activated cell sorting or mass spectrometry imaging.
Collapse
Affiliation(s)
- Ivan Petřík
- Laboratory of Growth Regulators, Faculty of Science, Palacký University & Institute of Experimental Botany, The Czech Academy of Sciences, Šlechtitelů 27, CZ-78371, Olomouc, Czech Republic
| | - Pavel Hladík
- Laboratory of Growth Regulators, Faculty of Science, Palacký University & Institute of Experimental Botany, The Czech Academy of Sciences, Šlechtitelů 27, CZ-78371, Olomouc, Czech Republic
| | - Chao Zhang
- Laboratory of Growth Regulators, Faculty of Science, Palacký University & Institute of Experimental Botany, The Czech Academy of Sciences, Šlechtitelů 27, CZ-78371, Olomouc, Czech Republic
| | - Aleš Pěnčík
- Laboratory of Growth Regulators, Faculty of Science, Palacký University & Institute of Experimental Botany, The Czech Academy of Sciences, Šlechtitelů 27, CZ-78371, Olomouc, Czech Republic
| | - Ondřej Novák
- Laboratory of Growth Regulators, Faculty of Science, Palacký University & Institute of Experimental Botany, The Czech Academy of Sciences, Šlechtitelů 27, CZ-78371, Olomouc, Czech Republic
| |
Collapse
|
43
|
Ćavar Zeljković S, De Diego N, Drašar L, Nisler J, Havlíček L, Spíchal L, Tarkowski P. Comprehensive LC-MS/MS analysis of nitrogen-related plant metabolites. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:5390-5411. [PMID: 38526483 PMCID: PMC11389842 DOI: 10.1093/jxb/erae129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/23/2024] [Indexed: 03/26/2024]
Abstract
We have developed and validated a novel LC-MS/MS method for simultaneously analyzing amino acids, biogenic amines, and their acetylated and methylated derivatives in plants. This method involves a one-step extraction of 2-5 mg of lyophilized plant material followed by fractionation of different biogenic amine forms, and exploits an efficient combination of hydrophilic interaction liquid chromatography (HILIC), reversed phase (RP) chromatography with pre-column derivatization, and tandem mass spectrometry (MS). This approach enables high-throughput processing of plant samples, significantly reducing the time needed for analysis and its cost. We also present a new synthetic route for deuterium-labeled polyamines. The LC-MS/MS method was rigorously validated by quantifying levels of nitrogen-related metabolites in seedlings of seven plant species, including Arabidopsis, maize, and barley, all of which are commonly used model organisms in plant science research. Our results revealed substantial variations in the abundance of these metabolites between species, developmental stages, and growth conditions, particularly for the acetylated and methylated derivatives and the various polyamine fractions. However, the biological relevance of these plant metabolites is currently unclear. Overall, this work contributes significantly to plant science by providing a powerful analytical tool and setting the stage for future investigations into the functions of these nitrogen-related metabolites in plants.
Collapse
Affiliation(s)
- Sanja Ćavar Zeljković
- Czech Advanced Technology and Research Institute, Palacky University, Šlechtitelů 27, 78371 Olomouc, Czech Republic
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Genetic Resources for Vegetables, Medicinal and Special Plants, Crop Research Institute, Šlechtitelů 29, 78371 Olomouc, Czech Republic
| | - Nuria De Diego
- Czech Advanced Technology and Research Institute, Palacky University, Šlechtitelů 27, 78371 Olomouc, Czech Republic
| | - Lukáš Drašar
- Czech Advanced Technology and Research Institute, Palacky University, Šlechtitelů 27, 78371 Olomouc, Czech Republic
- Isotope Laboratory, Institute of Experimental Botany, The Czech Academy of Sciences, Vídeňská 1083, CZ-14220, Prague, Czech Republic
| | - Jaroslav Nisler
- Czech Advanced Technology and Research Institute, Palacky University, Šlechtitelů 27, 78371 Olomouc, Czech Republic
| | - Libor Havlíček
- Isotope Laboratory, Institute of Experimental Botany, The Czech Academy of Sciences, Vídeňská 1083, CZ-14220, Prague, Czech Republic
| | - Lukáš Spíchal
- Czech Advanced Technology and Research Institute, Palacky University, Šlechtitelů 27, 78371 Olomouc, Czech Republic
| | - Petr Tarkowski
- Czech Advanced Technology and Research Institute, Palacky University, Šlechtitelů 27, 78371 Olomouc, Czech Republic
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Genetic Resources for Vegetables, Medicinal and Special Plants, Crop Research Institute, Šlechtitelů 29, 78371 Olomouc, Czech Republic
| |
Collapse
|
44
|
Sun S, Yang Y, Hao S, Liu Y, Zhang X, Yang P, Zhang X, Luo Y. Comparison of transcriptome and metabolome analysis revealed cold-resistant metabolic pathways in cucumber roots under low-temperature stress in root zone. FRONTIERS IN PLANT SCIENCE 2024; 15:1413716. [PMID: 39315370 PMCID: PMC11416975 DOI: 10.3389/fpls.2024.1413716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 06/10/2024] [Indexed: 09/25/2024]
Abstract
Introduction Low ground temperature is a major factor limiting overwintering in cucumber cultivation facilities in northern alpine regions. Lower temperatures in the root zone directly affect the physiological function of the root system, which in turn affects the normal physiological activity of plants. However, the importance of the ground temperature in facilities has not attracted sufficient attention. Methods Therefore, this study tested the cucumber variety Jinyou 35 under three root zone temperatures (room temperature, 20-22°C; suboptimal temperature, 13- 15°C; and low temperature, 8-10°C) to investigated possible cold resistance mechanisms in the root of cucumber seedlings through hormone, metabolomics, and transcriptomics analyses. Results and discussion The results showed that cucumber roots were subjected to chilling stress at different temperatures. Hormone analysis indicated that auxin content was highest in the roots. Jasmonic acid and strigolactone participated in the low-temperature stress response. Auxin and jasmonate are key hormones that regulate the response of cucumber roots to low temperatures. Phenolic acid was the most abundant metabolite in cucumber roots under chilling stress. Additionally, triterpenes may play an important role in chilling resistance. Differentially expressed genes and metabolites were significantly enriched in benzoxazinoid biosynthesis in the room temperature vs. suboptimal temperature groups and the room temperature vs. low temperature groups. Most differentially expressed transcription factor genes in AP2/ERF were strongly induced in cucumber roots by both suboptimal and low-temperature stress conditions. These results provide guidance for the cultivation of cucumber in facilities.
Collapse
Affiliation(s)
- Shijun Sun
- Hetao College, Department of Agronomy, Bayannur, China
- Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai, China
- Hetao Green Agricultural Product Safety Production and Warning Control Laboratory, Hetao College, Bayannur, China
| | - Yan Yang
- Urat Middle Banner Green Industry Development Center, Bayannur, China
| | - Shuiyuan Hao
- Hetao College, Department of Agronomy, Bayannur, China
- Hetao Green Agricultural Product Safety Production and Warning Control Laboratory, Hetao College, Bayannur, China
| | - Ye Liu
- Hetao College, Department of Agronomy, Bayannur, China
- Hetao Green Agricultural Product Safety Production and Warning Control Laboratory, Hetao College, Bayannur, China
| | - Xin Zhang
- Hetao College, Department of Agronomy, Bayannur, China
- Hetao Green Agricultural Product Safety Production and Warning Control Laboratory, Hetao College, Bayannur, China
| | - Pudi Yang
- Hetao College, Department of Agronomy, Bayannur, China
- Hetao Green Agricultural Product Safety Production and Warning Control Laboratory, Hetao College, Bayannur, China
| | - Xudong Zhang
- Hetao College, Department of Agronomy, Bayannur, China
- Hetao Green Agricultural Product Safety Production and Warning Control Laboratory, Hetao College, Bayannur, China
| | - Yusong Luo
- Department of Horticulture, Hunan Agricultural University, Changsha, Hunan, China
| |
Collapse
|
45
|
Chen X, Chen Z, Fiorentino A, Kuess M, Tharayil N, Kumar R, Leonard E, Noorai R, Hu Q, Luo H. MicroRNA169 integrates multiple factors to modulate plant growth and abiotic stress responses. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:2541-2557. [PMID: 38715250 PMCID: PMC11331800 DOI: 10.1111/pbi.14367] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/05/2024] [Accepted: 04/11/2024] [Indexed: 08/20/2024]
Abstract
MicroRNA169 (miR169) has been implicated in multi-stress regulation in annual species such as Arabidopsis, maize and rice. However, there is a lack of experimental functional and mechanistic studies of miR169 in plants, especially in perennial species, and its impact on plant growth and development remains unexplored. Creeping bentgrass (Agrostis stolonifera L.) is a C3 cool-season perennial turfgrass of significant environmental and economic importance. In this study, we generated both miR169 overexpression and knockdown transgenic creeping bentgrass lines. We found that miR169 acts as a positive regulator in abiotic stress responses but is negatively associated with plant growth and development, playing multiple critical roles in the growth and environmental adaptation of creeping bentgrass. These roles include differentiated spatial hormone accumulation patterns associated with growth and stress accommodation, elevated antioxidant activity that alleviates oxidative damage induced by stress, ion-channelling membrane components for maintaining homeostasis under saline conditions, and potential cross-talks with stress-regulating transcription factors such as AsHsfA and AsWRKYs. Our results unravel the role of miR169 in modulating plant development and stress responses in perennial grass species. This underlines the potential of manipulating miR169 to generate crop cultivars with desirable traits to meet diverse agricultural demands.
Collapse
Affiliation(s)
- Xiaotong Chen
- Department of Genetics and BiochemistryClemson UniversityClemsonSouth CarolinaUSA
| | - Zhaohui Chen
- Department of Genetics and BiochemistryClemson UniversityClemsonSouth CarolinaUSA
| | - Andrew Fiorentino
- Department of Genetics and BiochemistryClemson UniversityClemsonSouth CarolinaUSA
| | - Morgan Kuess
- Department of Genetics and BiochemistryClemson UniversityClemsonSouth CarolinaUSA
| | - Nishanth Tharayil
- Department of Plant and Environmental SciencesClemson UniversityClemsonSouth CarolinaUSA
| | - Rohit Kumar
- Department of Plant and Environmental SciencesClemson UniversityClemsonSouth CarolinaUSA
| | - Elizabeth Leonard
- Department of Plant and Environmental SciencesClemson UniversityClemsonSouth CarolinaUSA
| | - Rooksana Noorai
- Department of Genetics and BiochemistryClemson UniversityClemsonSouth CarolinaUSA
| | - Qian Hu
- Department of Genetics and BiochemistryClemson UniversityClemsonSouth CarolinaUSA
| | - Hong Luo
- Department of Genetics and BiochemistryClemson UniversityClemsonSouth CarolinaUSA
| |
Collapse
|
46
|
Liu Y, Zhu C, Yue X, Lin Z, Li H, Di X, Wang J, Gao Z. Evolutionary relationship of moso bamboo forms and a multihormone regulatory cascade involving culm shape variation. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:2578-2592. [PMID: 38743918 PMCID: PMC11331781 DOI: 10.1111/pbi.14370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 04/01/2024] [Accepted: 04/22/2024] [Indexed: 05/16/2024]
Abstract
Moso bamboo (Phyllostachys edulis) known as Mao Zhu (MZ) in Chinese exhibits various forms with distinct morphological characteristics. However, the evolutionary relationship among MZ forms and the mechanisms of culm shape variation are still lacking. Here, the main differences among MZ forms were identified as culm shape variation, which were confirmed by analysing MZ forms (799 bamboo culms) and MZ (458 bamboo culms) populations. To unravel the genetic basis underlying the morphological variations, 20 MZ forms were subjected to whole-genome resequencing. Further analysis yielded 3 230 107 high-quality SNPs and uncovered low genetic diversity and high genotype heterozygosity associated with MZ forms' formation. By integrating the SNP data of 427 MZ individuals representing 15 geographic regions, the origins of eight MZ forms were successfully traced using the phylogenetic tree and the identified common heterozygous loci. Meanwhile, transcriptomic analysis was performed using shoots from MZ and its two forms with culm shape variation. The results, combined with genomic analyses, demonstrated that hormone signalling related genes played crucial roles in culm variation. Co-expression network analysis uncovered genes associated with multiple plant hormone signal transduction, especially auxin and cytokinin were involved in culm shape variation. Furthermore, the regulatory relationships of a specific transcription factor and their target genes associated with auxin and ethylene signalling were validated by yeast one-hybrid, electrophoretic mobility shift assays, and dual-luciferase reporter. Overall, this study provides important insights into the culm shape variation formation in bamboo, which facilitates to breed new varieties with novel culms.
Collapse
Affiliation(s)
- Yan Liu
- Key Laboratory of State Forestry and Grassland Administration/Beijing on Bamboo and Rattan Science and TechnologyBeijingChina
- Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Center for Bamboo and RattanBeijingChina
| | - Chenglei Zhu
- Key Laboratory of State Forestry and Grassland Administration/Beijing on Bamboo and Rattan Science and TechnologyBeijingChina
- Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Center for Bamboo and RattanBeijingChina
| | - Xianghua Yue
- Key Laboratory of State Forestry and Grassland Administration/Beijing on Bamboo and Rattan Science and TechnologyBeijingChina
- Sanya Research Base, International Centre for Bamboo and RattanSanyaChina
| | - Zeming Lin
- Key Laboratory of State Forestry and Grassland Administration/Beijing on Bamboo and Rattan Science and TechnologyBeijingChina
- Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Center for Bamboo and RattanBeijingChina
| | - Hui Li
- Key Laboratory of State Forestry and Grassland Administration/Beijing on Bamboo and Rattan Science and TechnologyBeijingChina
- Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Center for Bamboo and RattanBeijingChina
| | - Xiaolin Di
- Key Laboratory of State Forestry and Grassland Administration/Beijing on Bamboo and Rattan Science and TechnologyBeijingChina
- Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Center for Bamboo and RattanBeijingChina
| | - Jiangfei Wang
- Key Laboratory of State Forestry and Grassland Administration/Beijing on Bamboo and Rattan Science and TechnologyBeijingChina
- Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Center for Bamboo and RattanBeijingChina
| | - Zhimin Gao
- Key Laboratory of State Forestry and Grassland Administration/Beijing on Bamboo and Rattan Science and TechnologyBeijingChina
- Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Center for Bamboo and RattanBeijingChina
| |
Collapse
|
47
|
Moeinfar M, Ghiasvand A, Khaleghi E. Chemical bonding of cross-linked glutaraldehyde/chitosan on the surface of a titanium wire to prepare a robust biocompatible SPME fiber for analysis of phytohormones in plants. Food Chem 2024; 449:139168. [PMID: 38574521 DOI: 10.1016/j.foodchem.2024.139168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/09/2024] [Accepted: 03/26/2024] [Indexed: 04/06/2024]
Abstract
A robust biocompatible solid-phase microextraction (SPME) fiber, so-called Ti/APTS/GA/CS, was prepared by chemical bonding of cross-linked glutaraldehyde-chitosan to the surface of a titanium wire using APTS. The fiber was applied for sampling of phytohormones in plant tissues, followed by HPLC-UV analysis. The structure and morphology of the fiber coating was investigated by FT-IR, SEM, EDX, XRD, and TGA techniques. A Box-Behnken design was implemented to optimize the experimental variables. The calibration graphs were linear over a wide linear range (0.5-200 μg L-1) with LODs over the range of 0.01-0.06 μg L-1. The intra-day and inter-day precisions were found to be 1.3-6.3% and 4.3-7.3%, respectively. The matrix effect values ranged from 86.5% to 111.7%, indicating that the complex sample matrices had an insignificant effect on the determination of phytohormones. The fiber was successfully employed for the direct-immersion SPME (DI-SPME-HPLC) analysis of the phytohormones in cucumber, tomato, date palm, and calendula samples.
Collapse
Affiliation(s)
- Marjan Moeinfar
- Department of Chemistry, Faculty of Science, Lorestan University, Khorramabad, Iran
| | - Alireza Ghiasvand
- Department of Chemistry, Faculty of Science, Lorestan University, Khorramabad, Iran.
| | - Esmaeil Khaleghi
- Department of Horticultural Science, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| |
Collapse
|
48
|
Cao D, Depaepe T, Sanchez-Muñoz R, Janssens H, Lemière F, Willems T, Winne J, Prinsen E, Van Der Straeten D. A UPLC-MS/MS method for quantification of metabolites in the ethylene biosynthesis pathway and its biological validation in Arabidopsis. THE NEW PHYTOLOGIST 2024; 243:1262-1275. [PMID: 38849316 DOI: 10.1111/nph.19878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 05/14/2024] [Indexed: 06/09/2024]
Abstract
The plant hormone ethylene is of vital importance in the regulation of plant development and stress responses. Recent studies revealed that 1-aminocyclopropane-1-carboxylic acid (ACC) plays a role beyond its function as an ethylene precursor. However, the absence of reliable methods to quantify ACC and its conjugates malonyl-ACC (MACC), glutamyl-ACC (GACC), and jasmonyl-ACC (JA-ACC) hinders related research. Combining synthetic and analytical chemistry, we present the first, validated methodology to rapidly extract and quantify ACC and its conjugates using ultra-high-performance liquid chromatography coupled to tandem mass spectrometry (UPLC-MS/MS). Its relevance was confirmed by application to Arabidopsis mutants with altered ACC metabolism and wild-type plants under stress. Pharmacological and genetic suppression of ACC synthesis resulted in decreased ACC and MACC content, whereas induction led to elevated levels. Salt, wounding, and submergence stress enhanced ACC and MACC production. GACC and JA-ACC were undetectable in vivo; however, GACC was identified in vitro, underscoring the broad applicability of the method. This method provides an efficient tool to study individual functions of ACC and its conjugates, paving the road toward exploration of novel avenues in ACC and ethylene metabolism, and revisiting ethylene literature in view of the recent discovery of an ethylene-independent role of ACC.
Collapse
Affiliation(s)
- Da Cao
- Laboratory of Functional Plant Biology, Department of Biology, Faculty of Sciences, Ghent University, 9000, Ghent, Belgium
| | - Thomas Depaepe
- Laboratory of Functional Plant Biology, Department of Biology, Faculty of Sciences, Ghent University, 9000, Ghent, Belgium
| | - Raul Sanchez-Muñoz
- Laboratory of Functional Plant Biology, Department of Biology, Faculty of Sciences, Ghent University, 9000, Ghent, Belgium
| | - Hilde Janssens
- Department of Organic Chemistry, Polymer Chemistry Research Group and Laboratory for Organic Synthesis, Ghent University, 9000, Ghent, Belgium
| | - Filip Lemière
- Department of Chemistry, Biomolecular and Analytical Mass Spectrometry, University of Antwerp, 2020, Antwerp, Belgium
| | - Tim Willems
- Integrated Molecular Plant Physiology Research, Department of Biology, University of Antwerp, 2020, Antwerp, Belgium
| | - Johan Winne
- Department of Organic Chemistry, Polymer Chemistry Research Group and Laboratory for Organic Synthesis, Ghent University, 9000, Ghent, Belgium
| | - Els Prinsen
- Integrated Molecular Plant Physiology Research, Department of Biology, University of Antwerp, 2020, Antwerp, Belgium
| | - Dominique Van Der Straeten
- Laboratory of Functional Plant Biology, Department of Biology, Faculty of Sciences, Ghent University, 9000, Ghent, Belgium
| |
Collapse
|
49
|
Frank S, Saeid Nia M, Schäfer A, Desel C, Mulisch M, Voigt U, Nowara D, Tandron Moya YA, von Wiren N, Bilger W, Hensel G, Krupinska K. Over-accumulation of chloroplast-nucleus located WHIRLY1 in barley leads to a decrease in growth and an enhanced stress resistance. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:1210-1225. [PMID: 38843114 DOI: 10.1111/tpj.16819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 03/24/2024] [Accepted: 05/03/2024] [Indexed: 08/15/2024]
Abstract
WHIRLY1 is a chloroplast-nucleus located DNA/RNA-binding protein with functions in development and stress tolerance. By overexpression of HvWHIRLY1 in barley, one line with a 10-fold and two lines with a 50-fold accumulation of the protein were obtained. In these lines, the relative abundance of the nuclear form exceeded that of the chloroplast form. Growth of the plants was shown to be compromised in a WHIRLY1 abundance-dependent manner. Over-accumulation of WHIRLY1 in chloroplasts had neither an evident impact on nucleoid morphology nor on the composition of the photosynthetic apparatus. Nevertheless, oeW1 plants were found to be compromised in the light reactions of photosynthesis as well as in carbon fixation. The reduction in growth and photosynthesis was shown to be accompanied by a decrease in the levels of cytokinins and an increase in the level of jasmonic acid. Gene expression analyses revealed that in nonstress conditions the oeW1 plants had enhanced levels of pathogen response (PR) gene expression indicating activation of constitutive defense. During growth in continuous light of high irradiance PR gene expression increased indicating that under stress conditions oeW1 are capable to further enhance defense.
Collapse
Affiliation(s)
- Susann Frank
- Institute of Botany, Christian-Albrechts-University (CAU), Kiel, Germany
| | - Monireh Saeid Nia
- Institute of Botany, Christian-Albrechts-University (CAU), Kiel, Germany
| | - Anke Schäfer
- Institute of Botany, Christian-Albrechts-University (CAU), Kiel, Germany
| | - Christine Desel
- Institute of Botany, Christian-Albrechts-University (CAU), Kiel, Germany
| | - Maria Mulisch
- Central Microscopy of the Center of Biology, CAU, Kiel, Germany
| | - Ulrike Voigt
- Institute of Botany, Christian-Albrechts-University (CAU), Kiel, Germany
| | - Daniela Nowara
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, OT Gatersleben, Germany
| | | | - Nicolaus von Wiren
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, OT Gatersleben, Germany
| | - Wolfgang Bilger
- Institute of Botany, Christian-Albrechts-University (CAU), Kiel, Germany
| | - Götz Hensel
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, OT Gatersleben, Germany
| | - Karin Krupinska
- Institute of Botany, Christian-Albrechts-University (CAU), Kiel, Germany
| |
Collapse
|
50
|
Jia M, Chen Y, Zhang Q, Wang Y, Li M, Pang X, Hong L, Lin S, Jia X, Ye J, Wang H. Changes in the growth and physiological property of tea tree after aviation mutagenesis and screening and functional verification of its characteristic hormones. FRONTIERS IN PLANT SCIENCE 2024; 15:1402451. [PMID: 39114474 PMCID: PMC11303228 DOI: 10.3389/fpls.2024.1402451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 07/03/2024] [Indexed: 08/10/2024]
Abstract
Aerospace breeding is a breeding technique that utilizes a spacecraft to position plants in a space environment for mutagenesis, which is conducive to rapid mutagenesis for the screening of superior plant varieties. In this study, tea trees with aviation mutagenesis (TM) and those without aviation mutagenesis (CK) were selected as research subjects to analyze the effects of aviation mutagenesis on the growth, physiological properties, and hormone metabolism of tea trees, and to further screen the characteristic hormones and validate their functions. The results showed that the leaf length, leaf width, and leaf area of TM tea trees were significantly larger than those of CK. The growth indexes, the photosynthetic physiological indexes (i.e., chlorophyll content, intercellular CO2 concentration, stomatal conductance, transpiration rate, and photosynthetic rate), and the resistance physiological indexes (i.e., superoxide dismutase, peroxidase, catalase, and soluble sugar) were significantly higher in TM than in CK. Hormone metabolome analysis showed that four characteristic hormones distinguished CK from TM, namely, l-tryptophan, indole, salicylic acid, and salicylic acid 2-O-β-glucoside, all of which were significantly more abundant in TM than in CK. These four characteristic hormones were significantly and positively correlated with the growth indexes, tea yield, and the photosynthetic and resistance physiological indexes of tea trees. The leaf area, chlorophyll content, photosynthetic rate, and superoxide dismutase activity of tea tree seedlings after spraying with the four characteristic hormones were significantly increased, in which salicylic acid and salicylic acid 2-O-β-glucoside were more favorable to increase the leaf area and superoxide dismutase activity, while l-tryptophan and indole were more favorable to increase the leaf chlorophyll content and photosynthetic rate. It can be observed that aviation mutagenesis improves the accumulation of the characteristic hormones of tea trees, enhances their photosynthetic capacity, improves their resistance, promotes their growth, and then improves the tea yield.
Collapse
Affiliation(s)
- Miao Jia
- College of Tea and Food, Wuyi University, Wuyishan, China
| | - Yiling Chen
- College of Life Science, Longyan University, Longyan, China
| | - Qi Zhang
- College of Tea and Food, Wuyi University, Wuyishan, China
| | - Yuhua Wang
- College of JunCao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Mingzhe Li
- College of Life Science, Longyan University, Longyan, China
| | - Xiaomin Pang
- College of Tea and Food, Wuyi University, Wuyishan, China
| | - Lei Hong
- College of Life Science, Longyan University, Longyan, China
- College of JunCao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shaoxiong Lin
- College of Life Science, Longyan University, Longyan, China
| | - Xiaoli Jia
- College of Tea and Food, Wuyi University, Wuyishan, China
| | - Jianghua Ye
- College of Tea and Food, Wuyi University, Wuyishan, China
| | - Haibin Wang
- College of Tea and Food, Wuyi University, Wuyishan, China
- College of Life Science, Longyan University, Longyan, China
| |
Collapse
|