1
|
Singh A, Khare S, Niharika, Gupta P. Sulfur and phosphorus transporters in plants: Integrating mechanisms for optimized nutrient supply. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 224:109918. [PMID: 40239245 DOI: 10.1016/j.plaphy.2025.109918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 03/11/2025] [Accepted: 04/11/2025] [Indexed: 04/18/2025]
Abstract
In recent years, advancements in molecular techniques have considerably deepened the understanding of mechanisms governing sulfur and phosphorus metabolism and transport in plants. These macronutrients play essential roles in regulating plant growth, development, and stress responses. Plants absorb sulfur and phosphorus through their roots in the form of inorganic sulfate (SO42-) and phosphate (H2PO4- or HPO42-or PO42-) ions through specialized sulfate (SULTR) and phosphate (PHT) transporter families, respectively. The molecular characterization and regulatory control of these transporter genes, along with insights into their cellular localization, offer promising strategies for improving nutrient use efficiency in crops. Additionally, plants have evolved intricate signalling networks that integrate nutrient sensing, uptake, and homeostasis, with feedback mechanisms to regulate transporter activity in response to nutrient deficiencies. This review provides a comprehensive analysis of the molecular mechanisms underlying distribution, functional dynamics, and regulatory pathways for sulfur and phosphorus transporters in plants. It also highlights their crucial role in plant adaptation to environmental stresses, emphasizing their integration with stress signalling networks. Furthermore, the critical role of phytohormones in coordinating sulfur and phosphorus homeostasis to enhance abiotic stress tolerance is critically described.
Collapse
Affiliation(s)
- Ajey Singh
- Department of Botany, University of Lucknow, Lucknow, 226007, U.P., India
| | - Shubhra Khare
- Department of Applied Sciences and Humanities, Invertis University, Bareilly, 243123, U.P., India
| | - Niharika
- Department of Botany, University of Lucknow, Lucknow, 226007, U.P., India
| | - Praveen Gupta
- Department of Botany, University of Lucknow, Lucknow, 226007, U.P., India.
| |
Collapse
|
2
|
Wang Z, Xia M, Ma R, Zheng Z. Physiological and transcriptional analyses of Arabidopsis primary root growth in response to phosphate starvation under light and dark conditions. FRONTIERS IN PLANT SCIENCE 2025; 16:1557118. [PMID: 40276718 PMCID: PMC12018419 DOI: 10.3389/fpls.2025.1557118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 03/19/2025] [Indexed: 04/26/2025]
Abstract
Plants cope with Pi deficiency by triggering an array of adaptive responses, including the remodeling of root system architecture (RSA). Arabidopsis thaliana grown on a Pi-deficient (-Pi) medium in transparent Petri dishes exhibits an inhibition of primary root (PR) growth. Previous work has shown that direct illumination on roots by blue light is both required and sufficient for the Pi deficiency-induced inhibition of PR growth. However, whether light illumination on shoots of seedlings contributes to the inhibition of PR growth under -Pi condition and whether light signaling pathway is involved in this process remain largely unknown. In addition to Pi deficiency-induced inhibition of PR growth, how light affects the transcriptomic changes under -Pi also remains elusive. Here, we found that the inhibition of PR growth under -Pi condition is determined by light illumination on roots instead of shoots. Further experiments revealed that blue light receptors CRY1/CRY2 and key regulator in blue light signaling pathway HY5 play minor roles in this process. Finally, we evaluated the light effects on the transcriptomic changes during the inhibition of PR growth under -Pi condition. We found that light promotes the expression of many genes involved in stress and phytohormones-related processes and has both upregulated and downregulated effects on the expression of typical phosphate starvation-induced (PSI) genes. Taken together, our work further demonstrates our previous hypothesis that the inhibition of PR growth under -Pi condition is caused by blue light-triggered chemical reactions, rather than blue light signaling pathways. Apart from the inhibition of PR growth under -Pi, light exposure also results in substantial alterations of transcriptome under -Pi condition, encouraging us to carefully evaluate the phenotype under illuminated, transparent Petri dishes.
Collapse
Affiliation(s)
- Zhen Wang
- School of Agriculture, Forestry and Medicine, The Open University of China, Beijing, China
| | - Mingzhe Xia
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
| | - Rui Ma
- Ministry of Education Key Laboratory of Bioinformatics, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Zai Zheng
- National Key Laboratory of Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology and Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Hainan, China
| |
Collapse
|
3
|
Li X, Wang Y, Zhang C, Lu J, Sun H, Liu S, Li J, Zhang Z. FvPHR1 Improves the Quality of Woodland Strawberry Fruit by Up-Regulating the Expression of FvPHT1;7 and FvSWEET9. PLANT, CELL & ENVIRONMENT 2025; 48:2821-2834. [PMID: 39806917 DOI: 10.1111/pce.15378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 11/27/2024] [Accepted: 12/29/2024] [Indexed: 01/16/2025]
Abstract
Phosphorus (P) is vital for plant growth, and continuous P fertiliser application is necessary to increase yield and quality, but it can cause environmental pollution. Plants maintain a steady phosphate (Pi) supply through complex signalling pathways. Phosphate starvation response 1 (PHR1), a key regulator of Pi starvation signals in plants, enables plants to maintain a sufficient Pi level. However, the role of PHR1 in fruit quality remains unclear. In this study, we determined the function of PHR1 in Fragaria vesca (FvPHR1) by overexpressing the FvPHR1 gene. We identified and validated two downstream genes of FvPHR1 by investigating plant phenotypes and analysing RNA-Seq data. FvPHR1 directly enhanced the expression of phosphate transporter 1;7 (FvPHT1;7), increasing Pi uptake and improving photosynthesis efficiency. Additionally, FvPHR1 upregulated the expression of sugar will eventually be exported transporter 9 (FvSWEET9), which encodes a sugar transporter that facilitates sugar transport from leaves to fruit. FvPHR1 can enhance photosynthetic products in a source via the phosphate signalling pathway and facilitate sugar transport to a sink through FvSWEET9. FvPHR1 plays a complicated role in improving fruit quality, providing a molecular foundation for developing strawberry cultivars with highly efficient Pi utilisation processes and high sugar content.
Collapse
Affiliation(s)
- Xue Li
- Liaoning Key Laboratory of Strawberry Breeding and Cultivation, College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning province, China
| | - Yan Wang
- Liaoning Key Laboratory of Strawberry Breeding and Cultivation, College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning province, China
| | - Chao Zhang
- Liaoning Key Laboratory of Strawberry Breeding and Cultivation, College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning province, China
| | - Jie Lu
- Liaoning Key Laboratory of Strawberry Breeding and Cultivation, College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning province, China
| | - Hongying Sun
- Liaoning Key Laboratory of Strawberry Breeding and Cultivation, College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning province, China
| | - Shuang Liu
- Liaoning Key Laboratory of Strawberry Breeding and Cultivation, College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning province, China
| | - Jiqi Li
- Liaoning Key Laboratory of Strawberry Breeding and Cultivation, College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning province, China
| | - Zhihong Zhang
- Liaoning Key Laboratory of Strawberry Breeding and Cultivation, College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning province, China
| |
Collapse
|
4
|
Zhao S, Lu R, Feng L, Zheng M, Zhang H, Yin Y, Zheng L. Functional Characterization of Pomegranate CAMTA3 in Cold Stress Responses. PLANTS (BASEL, SWITZERLAND) 2025; 14:813. [PMID: 40094823 PMCID: PMC11901912 DOI: 10.3390/plants14050813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Revised: 02/28/2025] [Accepted: 03/04/2025] [Indexed: 03/19/2025]
Abstract
Cold stress is a significant factor limiting plant growth and development. Pomegranate is particularly susceptible to low temperatures. Calmodulin-binding transcriptional activators (CAMTAs) are key regulators of cold stress tolerance in plants. In this study, we conducted a comprehensive analysis of the CAMTA family proteins across 12 species, including Punica granatum (pomegranate), using bioinformatic methods. Pomegranate CAMTA3 (PgCAMTA3) was isolated and characterized, and it demonstrated enhanced cold tolerance when expressed in Arabidopsis thaliana. Quantitative real-time PCR (qRT-PCR) analysis showed that the expression of PgCAMTA3 was up-regulated under cold and ABA treatments in pomegranates. Two A. thaliana transgenic lines, OE1 and OE2, which overexpress PgCAMTA3, were generated through genetic transformation. The overexpression of PgCAMTA3 enhanced the cold stress tolerance in transgenic A. thaliana. OE1 and OE2 exhibited higher survival rates under cold stress. Furthermore, enzymatic activity assays revealed enhanced peroxidase (POD), catalase (CAT), and superoxide dismutase (SOD) in OE lines. These antioxidant enzymatic activities collectively contribute to better cold stress tolerance by providing more effective reactive oxygen species (ROS) scavenging and cellular protection mechanisms, which was confirmed by lower levels of malondialdehyde (MDA) and ROS production. In addition, the overexpression of PgCAMTA3 led to the upregulation of the expression levels of AtCBF2, AtNCED3, and AtWRKY22, which were modulated by CAMTA3. In summary, we report the significant role of PgCAMTA3 in plant cold tolerance. Our findings provide valuable insights into the CAMATA family in plants and offer new perspectives on the molecular mechanisms underlying cold tolerance in pomegranates.
Collapse
Affiliation(s)
- Shuangshuang Zhao
- Shandong Provincial Key Laboratory of Plant Stress, Life Science College, Shandong Normal University, Jinan 250014, China; (S.Z.); (R.L.); (M.Z.); (H.Z.)
| | - Rui Lu
- Shandong Provincial Key Laboratory of Plant Stress, Life Science College, Shandong Normal University, Jinan 250014, China; (S.Z.); (R.L.); (M.Z.); (H.Z.)
| | - Lijuan Feng
- Shandong Institute of Pomology, Taian 271000, China; (L.F.); (Y.Y.)
| | - Mengyu Zheng
- Shandong Provincial Key Laboratory of Plant Stress, Life Science College, Shandong Normal University, Jinan 250014, China; (S.Z.); (R.L.); (M.Z.); (H.Z.)
| | - Han Zhang
- Shandong Provincial Key Laboratory of Plant Stress, Life Science College, Shandong Normal University, Jinan 250014, China; (S.Z.); (R.L.); (M.Z.); (H.Z.)
| | - Yanlei Yin
- Shandong Institute of Pomology, Taian 271000, China; (L.F.); (Y.Y.)
| | - Ling Zheng
- Shandong Provincial Key Laboratory of Plant Stress, Life Science College, Shandong Normal University, Jinan 250014, China; (S.Z.); (R.L.); (M.Z.); (H.Z.)
| |
Collapse
|
5
|
Guo HL, Tian MZ, Ri X, Chen YF. Phosphorus acquisition, translocation, and redistribution in maize. J Genet Genomics 2025; 52:287-296. [PMID: 39389460 DOI: 10.1016/j.jgg.2024.09.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/27/2024] [Accepted: 09/27/2024] [Indexed: 10/12/2024]
Abstract
Phosphorus (P) is an essential nutrient for crop growth, making it important for maintaining food security as the global population continues to increase. Plants acquire P primarily via the uptake of inorganic phosphate (Pi) in soil through their roots. Pi, which is usually sequestered in soils, is not easily absorbed by plants and represses plant growth. Plants have developed a series of mechanisms to cope with P deficiency. Moreover, P fertilizer applications are critical for maximizing crop yield. Maize is a major cereal crop cultivated worldwide. Increasing its P-use efficiency is important for optimizing maize production. Over the past two decades, considerable progresses have been achieved in studies aimed at adapting maize varieties to changes in environmental P supply. Here, we present an overview of the morphological, physiological, and molecular mechanisms involved in P acquisition, translocation, and redistribution in maize and combine the advances in Arabidopsis and rice, to better elucidate the progress of P nutrition. Additionally, we summarize the correlation between P and abiotic stress responses. Clarifying the mechanisms relevant to improving P absorption and use in maize can guide future research on sustainable agriculture.
Collapse
Affiliation(s)
- Hui-Ling Guo
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding (MOE), Center for Maize Functional Genomics and Molecular Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Meng-Zhi Tian
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding (MOE), Center for Maize Functional Genomics and Molecular Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xian Ri
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding (MOE), Center for Maize Functional Genomics and Molecular Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yi-Fang Chen
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding (MOE), Center for Maize Functional Genomics and Molecular Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
6
|
Jost R, Berkowitz O, Pegg A, Hurgobin B, Tamiru-Oli M, Welling MT, Deseo MA, Noorda H, Brugliera F, Lewsey MG, Doblin MS, Bacic A, Whelan J. Sink strength, nutrient allocation, cannabinoid yield, and associated transcript profiles vary in two drug-type Cannabis chemovars. JOURNAL OF EXPERIMENTAL BOTANY 2025; 76:152-174. [PMID: 39225376 PMCID: PMC11659186 DOI: 10.1093/jxb/erae367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 09/05/2024] [Indexed: 09/04/2024]
Abstract
Cannabis sativa L. is one of the oldest domesticated crops. Hemp-type cultivars, which predominantly produce non-intoxicating cannabidiol (CBD), have been selected for their fast growth, seed, and fibre production, while drug-type chemovars were bred for high accumulation of tetrahydrocannabinol (THC). We investigated how the generation of CBD-dominant chemovars by introgression of hemp- into drug-type Cannabis impacted plant performance. The THC-dominant chemovar showed superior sink strength, higher flower biomass, and demand-driven control of nutrient uptake. By contrast, the CBD-dominant chemovar hyperaccumulated phosphate in sink organs leading to reduced carbon and nitrogen assimilation in leaves, which limited flower biomass and cannabinoid yield. RNA-seq analyses determined organ- and chemovar-specific differences in expression of genes associated with nitrate and phosphate homeostasis as well as growth-regulating transcription factors that were correlated with measured traits. Among these were genes positively selected for during Cannabis domestication encoding an inhibitor of the phosphate starvation response, SPX DOMAIN GENE3, nitrate reductase, and two nitrate transporters. Altered nutrient sensing, acquisition, or distribution are likely a consequence of adaption to growth on marginal, low-nutrient-input lands in hemp. Our data provide evidence that such ancestral traits may become detrimental for female flower development and consequently overall CBD yield in protected cropping environments.
Collapse
Affiliation(s)
- Ricarda Jost
- Australian Research Council Research Hub for Medicinal Agriculture, Department of Animal, Plant and Soil Sciences, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC 3086, Australia
- La Trobe Institute for Sustainable Agriculture and Food, La Trobe University, Bundoora, VIC 3086, Australia
| | - Oliver Berkowitz
- Australian Research Council Research Hub for Medicinal Agriculture, Department of Animal, Plant and Soil Sciences, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC 3086, Australia
- La Trobe Institute for Sustainable Agriculture and Food, La Trobe University, Bundoora, VIC 3086, Australia
| | - Amelia Pegg
- Australian Research Council Research Hub for Medicinal Agriculture, Department of Animal, Plant and Soil Sciences, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC 3086, Australia
- La Trobe Institute for Sustainable Agriculture and Food, La Trobe University, Bundoora, VIC 3086, Australia
| | - Bhavna Hurgobin
- Australian Research Council Research Hub for Medicinal Agriculture, Department of Animal, Plant and Soil Sciences, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC 3086, Australia
- La Trobe Institute for Sustainable Agriculture and Food, La Trobe University, Bundoora, VIC 3086, Australia
| | - Muluneh Tamiru-Oli
- Australian Research Council Research Hub for Medicinal Agriculture, Department of Animal, Plant and Soil Sciences, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC 3086, Australia
- La Trobe Institute for Sustainable Agriculture and Food, La Trobe University, Bundoora, VIC 3086, Australia
| | - Matthew T Welling
- Australian Research Council Research Hub for Medicinal Agriculture, Department of Animal, Plant and Soil Sciences, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC 3086, Australia
- La Trobe Institute for Sustainable Agriculture and Food, La Trobe University, Bundoora, VIC 3086, Australia
| | - Myrna A Deseo
- Australian Research Council Research Hub for Medicinal Agriculture, Department of Animal, Plant and Soil Sciences, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC 3086, Australia
- La Trobe Institute for Sustainable Agriculture and Food, La Trobe University, Bundoora, VIC 3086, Australia
| | - Hannah Noorda
- Cann Group Limited, Port Melbourne, VIC 3207, Australia
| | | | - Mathew G Lewsey
- Australian Research Council Research Hub for Medicinal Agriculture, Department of Animal, Plant and Soil Sciences, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC 3086, Australia
- La Trobe Institute for Sustainable Agriculture and Food, La Trobe University, Bundoora, VIC 3086, Australia
- Australian Research Council Centre of Excellence in Plants for Space, La Trobe University, Bundoora, VIC, Australia
| | - Monika S Doblin
- Australian Research Council Research Hub for Medicinal Agriculture, Department of Animal, Plant and Soil Sciences, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC 3086, Australia
- La Trobe Institute for Sustainable Agriculture and Food, La Trobe University, Bundoora, VIC 3086, Australia
| | - Antony Bacic
- Australian Research Council Research Hub for Medicinal Agriculture, Department of Animal, Plant and Soil Sciences, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC 3086, Australia
- La Trobe Institute for Sustainable Agriculture and Food, La Trobe University, Bundoora, VIC 3086, Australia
| | - James Whelan
- Australian Research Council Research Hub for Medicinal Agriculture, Department of Animal, Plant and Soil Sciences, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC 3086, Australia
| |
Collapse
|
7
|
Chen L, He J, Wang X, Zhang S, Pan J, Peng J, Mo B, Liu L. miR827 orchestrates the regulation of SPX-MFS1 and SPX-MFS5 with the assistance of lncRNA767 to enhance phosphate starvation tolerance and maize development. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:3489-3504. [PMID: 39284226 PMCID: PMC11606416 DOI: 10.1111/pbi.14469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 08/05/2024] [Accepted: 08/23/2024] [Indexed: 11/27/2024]
Abstract
MicroRNA827 (miR827) is functionally conserved among different plant species and displays species-specific characteristics, but the mechanisms by which miR827 regulates phosphate (Pi) starvation tolerance and maize development remain elusive. We found that miR827 selectively targets the Pi transporter genes SPX-MFS1 and SPX-MFS5. miR827 overexpression improved the Pi starvation tolerance, plant architecture and grain yield and quality, whereas miR827 suppression yielded a contrasting phenotype. In addition, we identified a specific long noncoding RNA (lncRNA767) that serves as a direct target and a facilitator of miR827 and can stabilize the SPX-MFS1 and SPX-MFS5 transcripts, leading to their translation inhibition. The orchestrated regulation of SPX-MFS1 and SPX-MFS5 modulates PHR1; 1 and PHR1; 2, which are critical transcription factors in Pi signalling, and thereby affects the expression of downstream Pi starvation-induced genes. Together, these findings demonstrate that miR827, assisted by lncRNA767, enhances SPX-MFS1 and SPX-MFS5 suppression and thus exerts a significant impact on Pi homeostasis and several essential agronomic traits of maize.
Collapse
Affiliation(s)
- Lei Chen
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Bioindustry and Innovation Research Institute, College of Life Sciences and OceanographyShenzhen UniversityShenzhenChina
- Key Laboratory of Optoelectronic Devices and Systems of the Ministry of Education and Guangdong Province, College of Optoelectronic EngineeringShenzhen UniversityShenzhenChina
| | - Juan He
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Bioindustry and Innovation Research Institute, College of Life Sciences and OceanographyShenzhen UniversityShenzhenChina
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Center for Excellence in Molecular Plant Sciences, School of Life Sciences, Division of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiChina
| | - Xufeng Wang
- School of Life Sciences, Peking‐Tsinghua Joint Center for Life SciencesPeking UniversityBeijingChina
| | - Shiru Zhang
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Bioindustry and Innovation Research Institute, College of Life Sciences and OceanographyShenzhen UniversityShenzhenChina
| | - Jinkang Pan
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Bioindustry and Innovation Research Institute, College of Life Sciences and OceanographyShenzhen UniversityShenzhenChina
| | | | - Beixin Mo
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Bioindustry and Innovation Research Institute, College of Life Sciences and OceanographyShenzhen UniversityShenzhenChina
| | - Lin Liu
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Bioindustry and Innovation Research Institute, College of Life Sciences and OceanographyShenzhen UniversityShenzhenChina
| |
Collapse
|
8
|
Liu Z, Huang S, Zhu L, Li C, Zhang D, Chen M, Liu Y, Zhang Y. PHR1 negatively regulates nitrate reductase activity by directly inhibiting the transcription of NIA1 in Arabidopsis. JOURNAL OF PLANT PHYSIOLOGY 2024; 303:154382. [PMID: 39581121 DOI: 10.1016/j.jplph.2024.154382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 11/04/2024] [Accepted: 11/18/2024] [Indexed: 11/26/2024]
Abstract
Nitrogen (N) and phosphorus (P), as indispensable mineral elements, both play pivotal roles in plant growth and development. Despite the intimate association between nitrate signaling and inorganic phosphate (Pi) signaling, the regulatory function of Pi in N metabolism remains poorly understood. In this study, we observed that Pi deficiency leads to a reduction in the activity of nitrate reductase (NR), an essential enzyme involved in N metabolism. Furthermore, PHOSPHATE STARVATION RESPONSE 1 (PHR1), a key regulator of Pi signaling, exerts a negative impact on both NR activity and the expression of its coding gene NIA1. Importantly, our analysis utilizing yeast one-hybrid (Y1H) and electrophoretic mobility shift assay (EMSA) techniques reveals the direct binding of PHR1 to the NIA1 promoter via the P1BS motifs. Subsequent transient transcription expression assay (TTEA) demonstrates PHR1 as a transcriptional suppressor of NIA1. In addition, it was also observed that the SPX (SYG1/Pho81/XPR1) proteins SPX1 and SPX4 can attenuate the transcriptional inhibition of NIA1 by PHR1. Collectively, these findings reveal a mechanism through which PHR1-mediated Pi signal governs N metabolism, thus offering evidence for the precise modulation of plant growth and development via N-P interaction.
Collapse
Affiliation(s)
- Zhongjuan Liu
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of JunCao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province Universities, Fuzhou, 350002, China; College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Shaoxuan Huang
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of JunCao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Lin Zhu
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of JunCao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Chengquan Li
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of JunCao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Duanmei Zhang
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of JunCao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Mingxue Chen
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of JunCao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yanan Liu
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of JunCao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yongqiang Zhang
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of JunCao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province Universities, Fuzhou, 350002, China; College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
9
|
Tian M, Wang H, Tian Y, Hao J, Guo H, Chen L, Wei Y, Zhan S, Yu H, Chen Y. ZmPHR1 contributes to drought resistance by modulating phosphate homeostasis in maize. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:3085-3098. [PMID: 39037027 PMCID: PMC11500998 DOI: 10.1111/pbi.14431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/16/2024] [Accepted: 06/27/2024] [Indexed: 07/23/2024]
Abstract
As an essential macronutrient, phosphorus (P) is often a limiting nutrient because of its low availability and mobility in soils. Drought is a major environmental stress that reduces crop yield. How plants balance and combine P-starvation responses (PSRs) and drought resistance is unclear. In this study, we identified the transcription factor ZmPHR1 as a major regulator of PSRs that modulates phosphate (Pi) signaling and homeostasis. We found that maize zmphr1 mutants had reduced P concentration and were sensitive to Pi starvation, whereas ZmPHR1-OE lines displayed elevated Pi concentration and yields. In addition, 57% of PSR genes and nearly 70% of ZmPHR1-regulated PSR genes in leaves were transcriptionally responsive to drought. Under moderate and early drought conditions, the Pi concentration of maize decreased, and PSR genes were up-regulated before drought-responsive genes. The ZmPHR1-OE lines exhibited drought-resistant phenotypes and reduced stomatal apertures, whereas the opposite was true of the zmphr1 mutants. ZmPT7-OE lines and zmspx3 mutants, which had elevated Pi concentration, also exhibited drought resistance, but zmpt7 mutants were sensitive to drought. Our results suggest that ZmPHR1 plays a central role in integrating Pi and drought signals and that Pi homeostasis improves the ability of maize to combat drought.
Collapse
Affiliation(s)
- Meng‐Zhi Tian
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding (MOE), Center for Maize Functional Genomics and Molecular BreedingCollege of Biological Sciences, China Agricultural UniversityBeijingChina
| | - Hai‐Feng Wang
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding (MOE), Center for Maize Functional Genomics and Molecular BreedingCollege of Biological Sciences, China Agricultural UniversityBeijingChina
| | - Yan Tian
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding (MOE), Center for Maize Functional Genomics and Molecular BreedingCollege of Biological Sciences, China Agricultural UniversityBeijingChina
| | - Jie Hao
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding (MOE), Center for Maize Functional Genomics and Molecular BreedingCollege of Biological Sciences, China Agricultural UniversityBeijingChina
| | - Hui‐Ling Guo
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding (MOE), Center for Maize Functional Genomics and Molecular BreedingCollege of Biological Sciences, China Agricultural UniversityBeijingChina
| | - Li‐Mei Chen
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding (MOE), Center for Maize Functional Genomics and Molecular BreedingCollege of Biological Sciences, China Agricultural UniversityBeijingChina
| | - Ya‐Kang Wei
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding (MOE), Center for Maize Functional Genomics and Molecular BreedingCollege of Biological Sciences, China Agricultural UniversityBeijingChina
| | - Shi‐Hao Zhan
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding (MOE), Center for Maize Functional Genomics and Molecular BreedingCollege of Biological Sciences, China Agricultural UniversityBeijingChina
| | - Hong‐Tao Yu
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding (MOE), Center for Maize Functional Genomics and Molecular BreedingCollege of Biological Sciences, China Agricultural UniversityBeijingChina
| | - Yi‐Fang Chen
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding (MOE), Center for Maize Functional Genomics and Molecular BreedingCollege of Biological Sciences, China Agricultural UniversityBeijingChina
| |
Collapse
|
10
|
Hu H, Wang Y, Zhong H, Li B, Qi J, Wang Y, Liu J, Zhang S, Zhang H, Luo B, Zhang X, Nie Z, Zhang H, Gao D, Gao S, Liu D, Wu L, Gao S. Functional analysis of ZmPHR1 and ZmPHR2 under low-phosphate stress in maize. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2024; 44:69. [PMID: 39359407 PMCID: PMC11442720 DOI: 10.1007/s11032-024-01508-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 09/24/2024] [Indexed: 10/04/2024]
Abstract
The PHOSPHATE STARVATION RESPONSE REGULATOR (PHR) plays a crucial regulatory role in plants during the process of responding to phosphate starvation. In this study, we combined reverse genetics and biotechnology to investigate the function of ZmPHR1 and ZmPHR2, including proteins containing the Myb_DNA_banding and Myb_CC-LHEQLE structural domains, in maize seedlings. Phylogenetic analysis revealed that ZmPHR1 and ZmPHR2 have high homology with AtPHR1 and OsPHR2, and share the characteristic features of nuclear localisation and transcriptional self-activation. Real-time quantitative PCR analysis showed that low phosphate (Pi) stress significantly induced the expression of ZmPHR1 and ZmPHR2 in maize seedling stage, and candidate gene association analysis further revealed the close association of these two genes with root traits under Pi stress conditions. Transgenic plants overexpressing ZmPHR1 and ZmPHR2 in Arabidopsis show a significant increase in lateral root number, fresh weight and total phosphorus accumulation under low-Pi stress. Besides, CHIP-PCR experiments identified target genes involved in hormone regulation, metal ion transport and homeostasis, phosphatase encoding, and photosynthesis, providing new insights into the biological functions of ZmPHR1 and ZmPHR2. Furthermore, our study showed that ZmPHR1 interacts with six SPX domain-only proteins (ZmSPXs) in maize, while ZmPHR2 interacts with five of these proteins. ZmPHR1 and ZmPHR2 expression was repressed in low Pi conditions, but was up-regulated in ZmSPX1 knockout material, according to our study of transgenic seedlings overexpressing ZmSPX1 in maize. We identified downstream target genes involved in the phosphorus signaling pathway, which are mainly involved in plant-pathogen interactions, ascorbic acid and arabinose metabolism, and ABC transporter proteins, by RNA-seq analysis of transgenic seedlings grown under low Pi stress for 7 days. Collectively, these results provide important clues to elucidate the role and functional significance of ZmPHR1 and ZmPHR2 under low Pi stress and also provide insights into understand the molecular mechanism of phosphorus homeostasis in maize. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-024-01508-2.
Collapse
Affiliation(s)
- Hongmei Hu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan China
- Maize Research Institute, Sichuan Agricultural University, Chengdu, Sichuan China
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu 611130, Sichuan, China
| | - Yikai Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan China
- Maize Research Institute, Sichuan Agricultural University, Chengdu, Sichuan China
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu 611130, Sichuan, China
| | - Haixu Zhong
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan China
- Maize Research Institute, Sichuan Agricultural University, Chengdu, Sichuan China
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu 611130, Sichuan, China
| | - Binyang Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan China
- Maize Research Institute, Sichuan Agricultural University, Chengdu, Sichuan China
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu 611130, Sichuan, China
| | - Jingxiao Qi
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan China
- Maize Research Institute, Sichuan Agricultural University, Chengdu, Sichuan China
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu 611130, Sichuan, China
| | - Yarong Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan China
- Maize Research Institute, Sichuan Agricultural University, Chengdu, Sichuan China
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu 611130, Sichuan, China
| | - Jin Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan China
- Maize Research Institute, Sichuan Agricultural University, Chengdu, Sichuan China
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu 611130, Sichuan, China
| | - Shuhao Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan China
- Maize Research Institute, Sichuan Agricultural University, Chengdu, Sichuan China
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu 611130, Sichuan, China
| | - Haiying Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan China
- Maize Research Institute, Sichuan Agricultural University, Chengdu, Sichuan China
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu 611130, Sichuan, China
| | - Bowen Luo
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan China
- Maize Research Institute, Sichuan Agricultural University, Chengdu, Sichuan China
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu 611130, Sichuan, China
| | - Xiao Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan China
- Maize Research Institute, Sichuan Agricultural University, Chengdu, Sichuan China
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu 611130, Sichuan, China
| | - Zhi Nie
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan China
| | - Hongkai Zhang
- Sichuan University of Science and Engineering, Yibin, Sichuan China
| | - Duojiang Gao
- Maize Research Institute, Sichuan Agricultural University, Chengdu, Sichuan China
| | - Shiqiang Gao
- Maize Research Institute, Sichuan Agricultural University, Chengdu, Sichuan China
| | - Dan Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan China
- Maize Research Institute, Sichuan Agricultural University, Chengdu, Sichuan China
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu 611130, Sichuan, China
| | - Ling Wu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan China
- Maize Research Institute, Sichuan Agricultural University, Chengdu, Sichuan China
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu 611130, Sichuan, China
| | - Shibin Gao
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan China
- Maize Research Institute, Sichuan Agricultural University, Chengdu, Sichuan China
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu 611130, Sichuan, China
| |
Collapse
|
11
|
Yang Y, Liang Y, Wang C, Wang Y. MicroRNAs as potent regulators in nitrogen and phosphorus signaling transduction and their applications. STRESS BIOLOGY 2024; 4:38. [PMID: 39264517 PMCID: PMC11393275 DOI: 10.1007/s44154-024-00181-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 06/18/2024] [Indexed: 09/13/2024]
Abstract
Nitrogen (N) and phosphorus (Pi) are essential macronutrients that affect plant growth and development by influencing the molecular, metabolic, biochemical, and physiological responses at the local and whole levels in plants. N and Pi stresses suppress the physiological activities of plants, resulting in agricultural productivity losses and severely threatening food security. Accordingly, plants have elaborated diverse strategies to cope with N and Pi stresses through maintaining N and Pi homeostasis. MicroRNAs (miRNAs) as potent regulators fine-tune N and Pi signaling transduction that are distinct and indivisible from each other. Specific signals, such as noncoding RNAs (ncRNAs), interact with miRNAs and add to the complexity of regulation. Elucidation of the mechanisms by which miRNAs regulate N and Pi signaling transduction aids in the breeding of plants with strong tolerance to N and Pi stresses and high N and Pi use efficiency by fine-tuning MIR genes or miRNAs. However, to date, there has been no detailed and systematic introduction and comparison of the functions of miRNAs in N and Pi signaling transduction from the perspective of miRNAs and their applications. Here, we summarized and discussed current advances in the involvement of miRNAs in N and Pi signaling transduction and highlighted that fine-tuning the MIR genes or miRNAs involved in maintaining N and Pi homeostasis might provide valuable sights for sustainable agriculture.
Collapse
Affiliation(s)
- Yuzhang Yang
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Yanting Liang
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Chun Wang
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Yanwei Wang
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
12
|
Somoza SC, Bonfante P, Giovannetti M. Breaking barriers: improving time and space resolution of arbuscular mycorrhizal symbiosis with single-cell sequencing approaches. Biol Direct 2024; 19:67. [PMID: 39154166 PMCID: PMC11330620 DOI: 10.1186/s13062-024-00501-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 07/11/2024] [Indexed: 08/19/2024] Open
Abstract
The cell and molecular bases of arbuscular mycorrhizal (AM) symbiosis, a crucial plant-fungal interaction for nutrient acquisition, have been extensively investigated by coupling traditional RNA sequencing techniques of roots sampled in bulk, with methods to capture subsets of cells such as laser microdissection. These approaches have revealed central regulators of this complex relationship, yet the requisite level of detail to effectively untangle the intricacies of temporal and spatial development remains elusive.The recent adoption of single-cell RNA sequencing (scRNA-seq) techniques in plant research is revolutionizing our ability to dissect the intricate transcriptional profiles of plant-microbe interactions, offering unparalleled insights into the diversity and dynamics of individual cells during symbiosis. The isolation of plant cells is particularly challenging due to the presence of cell walls, leading plant researchers to widely adopt nuclei isolation methods. Despite the increased resolution that single-cell analyses offer, it also comes at the cost of spatial perspective, hence, it is necessary the integration of these approaches with spatial transcriptomics to obtain a comprehensive overview.To date, few single-cell studies on plant-microbe interactions have been published, most of which provide high-resolution cell atlases that will become crucial for fully deciphering symbiotic interactions and addressing future questions. In AM symbiosis research, key processes such as the mutual recognition of partners during arbuscule development within cortical cells, or arbuscule senescence and degeneration, remain poorly understood, and these advancements are expected to shed light on these processes and contribute to a deeper understanding of this plant-fungal interaction.
Collapse
Affiliation(s)
| | - Paola Bonfante
- Department of Life Sciences and Systems Biology, University of Torino, Torino, 10125, Italy
| | - Marco Giovannetti
- Department of Biology, University of Padova, Padova, 35131, Italy.
- Department of Life Sciences and Systems Biology, University of Torino, Torino, 10125, Italy.
| |
Collapse
|
13
|
Li L, Zhang X, Li D, Su H, He Y, Xu Z, Zhao Y, Hong Y, Li Q, Xu P, Hong G. CsPHRs-CsJAZ3 incorporates phosphate signaling and jasmonate pathway to regulate catechin biosynthesis in Camellia sinensis. HORTICULTURE RESEARCH 2024; 11:uhae178. [PMID: 39161738 PMCID: PMC11331543 DOI: 10.1093/hr/uhae178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 06/19/2024] [Indexed: 08/21/2024]
Abstract
Catechins constitute abundant metabolites in tea and have potential health benefits and high economic value. Intensive study has shown that the biosynthesis of tea catechins is regulated by environmental factors and hormonal signals. However, little is known about the coordination of phosphate (Pi) signaling and the jasmonic acid (JA) pathway on biosynthesis of tea catechins. We found that Pi deficiency caused changes in the content of catechins and modulated the expression levels of genes involved in catechin biosynthesis. Herein, we identified two transcription factors of phosphate signaling in tea, named CsPHR1 and CsPHR2, respectively. Both regulated catechin biosynthesis by activating the transcription of CsANR1 and CsMYB5c. We further demonstrated CsSPX1, a Pi pathway repressor, suppressing the activation by CsPHR1/2 of CsANR1 and CsMYB5c. JA, one of the endogenous plant hormones, has been reported to be involved in the regulation of secondary metabolism. Our work demonstrated that the JA signaling repressor CsJAZ3 negatively regulated catechin biosynthesis via physical interaction with CsPHR1 and CsPHR2. Thus, the CsPHRs-CsJAZ3 module bridges the nutrition and hormone signals, contributing to targeted cultivation of high-quality tea cultivars with high fertilizer efficiency.
Collapse
Affiliation(s)
- Linying Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, No. 198 Shiqiao Road, Shangcheng District, Hangzhou 310021, China
| | - Xueying Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, No. 198 Shiqiao Road, Shangcheng District, Hangzhou 310021, China
| | - Da Li
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, No. 198 Shiqiao Road, Shangcheng District, Hangzhou 310021, China
| | - Hui Su
- Department of Tea Science, Zhejiang University, No. 886 Yuhangtang Road, Xihu District, Hangzhou 310058, China
- Department of Tea Science, College of Horticulture, Henan Agricultural University, No.15 Longzihu University Area, Zhengdong New District, Zhengzhou 450046, China
| | - Yuqing He
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, No. 198 Shiqiao Road, Shangcheng District, Hangzhou 310021, China
| | - Zelong Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, No. 198 Shiqiao Road, Shangcheng District, Hangzhou 310021, China
| | - Yao Zhao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, No. 198 Shiqiao Road, Shangcheng District, Hangzhou 310021, China
| | - Yiyi Hong
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, No. 198 Shiqiao Road, Shangcheng District, Hangzhou 310021, China
| | - Qingsheng Li
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, No. 198 Shiqiao Road, Shangcheng District, Hangzhou 310021, China
| | - Ping Xu
- Department of Tea Science, Zhejiang University, No. 886 Yuhangtang Road, Xihu District, Hangzhou 310058, China
| | - Gaojie Hong
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, No. 198 Shiqiao Road, Shangcheng District, Hangzhou 310021, China
| |
Collapse
|
14
|
Luo B, Sahito JH, Zhang H, Zhao J, Yang G, Wang W, Guo J, Zhang S, Ma P, Nie Z, Zhang X, Liu D, Wu L, Gao D, Gao S, Su S, Gishkori ZGN, Gao S. SPX family response to low phosphorus stress and the involvement of ZmSPX1 in phosphorus homeostasis in maize. FRONTIERS IN PLANT SCIENCE 2024; 15:1385977. [PMID: 39040504 PMCID: PMC11260721 DOI: 10.3389/fpls.2024.1385977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 06/17/2024] [Indexed: 07/24/2024]
Abstract
Phosphorus (P) is a crucial macronutrient for plant growth and development, and low-Pi stress poses a significant limitation to maize production. While the role of the SPX domain in encoding proteins involved in phosphate (Pi) homeostasis and signaling transduction has been extensively studied in other model plants, the molecular and functional characteristics of the SPX gene family members in maize remain largely unexplored. In this study, we identified six SPX members, and the phylogenetic analysis of ZmSPXs revealed a close relationship with SPX genes in rice. The promoter regions of ZmSPXs were abundant in biotic and abiotic stress-related elements, particularly associated with various hormone signaling pathways, indicating potential intersections between Pi signaling and hormone signaling pathways. Additionally, ZmSPXs displayed tissue-specific expression patterns, with significant and differential induction in anthers and roots, and were localized to the nucleus and cytoplasm. The interaction between ZmSPXs and ZmPHRs was established via yeast two-hybrid assays. Furthermore, overexpression of ZmSPX1 enhanced root sensitivity to Pi deficiency and high-Pi conditions in Arabidopsis thaliana. Phenotypic identification of the maize transgenic lines demonstrated the negative regulatory effect on the P concentration of stems and leaves as well as yield. Notably, polymorphic sites including 34 single-nucleotide polymorphisms (SNPs) and seven insertions/deletions (InDels) in ZmSPX1 were significantly associated with 16 traits of low-Pi tolerance index. Furthermore, significant sites were classified into five haplotypes, and haplotype5 can enhance biomass production by promoting root development. Taken together, our results suggested that ZmSPX family members possibly play a pivotal role in Pi stress signaling in plants by interacting with ZmPHRs. Significantly, ZmSPX1 was involved in the Pi-deficiency response verified in transgenic Arabidopsis and can affect the Pi concentration of maize tissues and yield. This work lays the groundwork for deeper exploration of the maize SPX family and could inform the development of maize varieties with improved Pi efficiency.
Collapse
Affiliation(s)
- Bowen Luo
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, Sichuan, China
- Maize Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, Sichuan, China
| | - Javed Hussain Sahito
- Maize Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henen Agricultural University, Zhengzhou, China
| | - Haiying Zhang
- Maize Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, Sichuan, China
| | - Jin Zhao
- Maize Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, Sichuan, China
| | - Guohui Yang
- Maize Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, Sichuan, China
| | - Wei Wang
- Maize Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, Sichuan, China
| | - Jianyong Guo
- Maize Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, Sichuan, China
| | - Shuhao Zhang
- Maize Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, Sichuan, China
| | - Peng Ma
- Maize Research Institute, Mianyang Academy of Agricultural Sciences, Mianyang, Sichuan, China
| | - Zhi Nie
- Sichuan Academy of Agricultural Sciences, Biotechnology and Nuclear Technology Research Institute, Chengdu, Sichuan, China
| | - Xiao Zhang
- Maize Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, Sichuan, China
| | - Dan Liu
- Maize Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, Sichuan, China
| | - Ling Wu
- Maize Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, Sichuan, China
| | - Duojiang Gao
- Maize Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, Sichuan, China
| | - Shiqiang Gao
- Maize Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, Sichuan, China
| | - Shunzong Su
- College of Resources, Sichuan Agricultural University, Chengdu, Sichuan, China
| | | | - Shibin Gao
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, Sichuan, China
- Maize Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, Sichuan, China
| |
Collapse
|
15
|
Zhang X, Zhang Q, Gao N, Liu M, Zhang C, Luo J, Sun Y, Feng Y. Nitrate transporters and mechanisms of nitrate signal transduction in Arabidopsis and rice. PHYSIOLOGIA PLANTARUM 2024; 176:e14486. [PMID: 39187436 DOI: 10.1111/ppl.14486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/04/2024] [Accepted: 07/09/2024] [Indexed: 08/28/2024]
Abstract
Nitrate (NO3 -) is a significant inorganic nitrogen source in soil, playing a crucial role in influencing crop productivity. As sessile organisms, plants have evolved complex mechanisms for nitrate uptake and response to varying soil levels. Recent advancements have enhanced our understanding of nitrate uptake and signaling pathways. This mini-review offers a comparative analysis of nitrate uptake mechanisms in Arabidopsis and rice. It also examines nitrate signal transduction, highlighting the roles of AtNRT1.1 and AtNLP7 as nitrate receptors and elucidating the OsNRT1.1B-OsSPX4-OsNLP3 cascade. Additionally, it investigates nuclear transcriptional networks that regulate nitrate-responsive genes, controlled by various transcription factors (TFs) crucial for plant development. By integrating these findings, we highlight mechanisms that may help to enhance crop nitrogen utilization.
Collapse
Affiliation(s)
- Xiaojia Zhang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning Province, China
| | - Qian Zhang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning Province, China
| | - Na Gao
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning Province, China
| | - Mingchao Liu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning Province, China
| | - Chang Zhang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning Province, China
| | - Jiajun Luo
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning Province, China
| | - Yibo Sun
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning Province, China
| | - Yulong Feng
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning Province, China
| |
Collapse
|
16
|
Jing Y, Yang Z, Yang Z, Bai W, Yang R, Zhang Y, Zhang K, Zhang Y, Sun J. Sequential activation of strigolactone and salicylate biosynthesis promotes leaf senescence. THE NEW PHYTOLOGIST 2024; 242:2524-2540. [PMID: 38641854 DOI: 10.1111/nph.19760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 03/22/2024] [Indexed: 04/21/2024]
Abstract
Leaf senescence is a complex process strictly regulated by various external and endogenous factors. However, the key signaling pathway mediating leaf senescence remains unknown. Here, we show that Arabidopsis SPX1/2 negatively regulate leaf senescence genetically downstream of the strigolactone (SL) pathway. We demonstrate that the SL receptor AtD14 and MAX2 mediate the age-dependent degradation of SPX1/2. Intriguingly, we uncover an age-dependent accumulation of SLs in leaves via transcriptional activation of SL biosynthetic genes by the transcription factors (TFs) SPL9/15. Furthermore, we reveal that SPX1/2 interact with the WRKY75 subclade TFs to inhibit their DNA-binding ability and thus repress transcriptional activation of salicylic acid (SA) biosynthetic gene SA Induction-Deficient 2, gating the age-dependent SA accumulation in leaves at the leaf senescence onset stage. Collectively, our new findings reveal a signaling pathway mediating sequential activation of SL and salicylate biosynthesis for the onset of leaf senescence in Arabidopsis.
Collapse
Affiliation(s)
- Yexing Jing
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Ziyi Yang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zongju Yang
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| | - Wanqing Bai
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Ruizhen Yang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yanjun Zhang
- Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, College of Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang, 321004, China
| | - Kewei Zhang
- Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, College of Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang, 321004, China
| | - Yunwei Zhang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jiaqiang Sun
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| |
Collapse
|
17
|
Tao H, Gao F, Linying Li, He Y, Zhang X, Wang M, Wei J, Zhao Y, Zhang C, Wang Q, Hong G. WRKY33 negatively regulates anthocyanin biosynthesis and cooperates with PHR1 to mediate acclimation to phosphate starvation. PLANT COMMUNICATIONS 2024; 5:100821. [PMID: 38229439 PMCID: PMC11121177 DOI: 10.1016/j.xplc.2024.100821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 01/03/2024] [Accepted: 01/11/2024] [Indexed: 01/18/2024]
Abstract
Anthocyanin accumulation is acknowledged as a phenotypic indicator of phosphate (Pi) starvation. However, negative regulators of this process and their molecular mechanisms remain largely unexplored. In this study, we demonstrate that WRKY33 acts as a negative regulator of phosphorus-status-dependent anthocyanin biosynthesis. WRKY33 regulates the expression of the gene encoding dihydroflavonol 4-reductase (DFR), a rate-limiting enzyme in anthocyanin production, both directly and indirectly. WRKY33 binds directly to the DFR promoter to repress its expression and also interferes with the MBW complex through interacting with PAP1 to indirectly influence DFR transcriptional activation. Under -Pi conditions, PHR1 interacts with WRKY33, and the protein level of WRKY33 decreases; the repression of DFR expression by WRKY33 is thus attenuated, leading to anthocyanin accumulation in Arabidopsis. Further genetic and biochemical assays suggest that PHR1 is also involved in regulating factors that affect WRKY33 protein turnover. Taken together, our findings reveal that Pi starvation represses WRKY33, a repressor of anthocyanin biosynthesis, to finely tune anthocyanin biosynthesis. This "double-negative logic" regulation of phosphorus-status-dependent anthocyanin biosynthesis is required for the maintenance of plant metabolic homeostasis during acclimation to Pi starvation.
Collapse
Affiliation(s)
- Han Tao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of the MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; State Key Laboratory of Subtropical Silviculture, Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Fei Gao
- State Key Laboratory of Subtropical Silviculture, Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Linying Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of the MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Yuqing He
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of the MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xueying Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of the MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Mengyu Wang
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou, Zhejiang, China
| | - Jia Wei
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou 310000, China
| | - Yao Zhao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of the MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Chi Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of the MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Qiaomei Wang
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou, Zhejiang, China.
| | - Gaojie Hong
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of the MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| |
Collapse
|
18
|
Marathe S, Grotewold E, Otegui MS. Should I stay or should I go? Trafficking of plant extra-nuclear transcription factors. THE PLANT CELL 2024; 36:1524-1539. [PMID: 38163635 PMCID: PMC11062434 DOI: 10.1093/plcell/koad277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/21/2023] [Indexed: 01/03/2024]
Abstract
At the heart of all biological processes lies the control of nuclear gene expression, which is primarily achieved through the action of transcription factors (TFs) that generally contain a nuclear localization signal (NLS) to facilitate their transport into the nucleus. However, some TFs reside in the cytoplasm in a transcriptionally inactive state and only enter the nucleus in response to specific signals, which in plants include biotic or abiotic stresses. These extra-nuclear TFs can be found in the cytosol or associated with various membrane systems, including the endoplasmic reticulum and plasma membrane. They may be integral proteins with transmembrane domains or associate peripherally with the lipid bilayer via acylation or membrane-binding domains. Although over 30 plant TFs, most of them involved in stress responses, have been experimentally shown to reside outside the nucleus, computational predictions suggest that this number is much larger. Understanding how extra-nuclear TFs are trafficked into the nucleus is essential for reconstructing transcriptional regulatory networks that govern major cellular pathways in response to biotic and abiotic signals. Here, we provide a perspective on what is known on plant extranuclear-nuclear TF retention, nuclear trafficking, and the post-translational modifications that ultimately enable them to regulate gene expression upon entering the nucleus.
Collapse
Affiliation(s)
- Sarika Marathe
- Department of Botany, University of Wisconsin-Madison, Madison, WI 53706, USA
- Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Erich Grotewold
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824-6473, USA
| | - Marisa S Otegui
- Department of Botany, University of Wisconsin-Madison, Madison, WI 53706, USA
- Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
19
|
Wang Z, Zheng Z, Liu D. Comparative functional analyses of PHR1, PHL1, and PHL4 transcription factors in regulating Arabidopsis responses to phosphate starvation. FRONTIERS IN PLANT SCIENCE 2024; 15:1379562. [PMID: 38708390 PMCID: PMC11066281 DOI: 10.3389/fpls.2024.1379562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/05/2024] [Indexed: 05/07/2024]
Abstract
To cope with phosphate (Pi) starvation, plants trigger an array of adaptive responses to sustain their growth and development. These responses are largely controlled at transcriptional levels. In Arabidopsis (Arabidopsis thaliana), PHOSPHATE RESPONSE 1 (PHR1) is a key regulator of plant physiological and transcriptional responses to Pi starvation. PHR1 belongs to a MYB-CC-type transcription factor family which contains 15 members. In this PHR1 family, PHR1/PHR1-like 1(PHL1) and PHL2/PHL3 form two distinct modules in regulating plant development and transcriptional responses to Pi starvation. PHL4 is the most closely related member to PHR1. Previously, using the phr1phl4 mutant, we showed that PHL4 is also involved in regulating plant Pi responses. However, the precise roles of PHL1 and PHL4 in regulating plant Pi responses and their functional relationships with PHR1 have not been clearly defined. In this work, we further used the phl1phl4 and phr1phl1phl4 mutants to perform comparative phenotypic and transcriptomic analyses with phr1, phr1phl1, and phr1phl4. The results showed that both PHL1 and PHL4 act redundantly and equally with PHR1 to regulate leaf senescence, Pi starvation induced-inhibition of primary root growth, and accumulation of anthocyanins in shoots. Unlike PHR1 and PHL1, however, the role of PHL4 in maintaining Pi homeostasis is negligible. In regulating transcriptional responses to Pi starvation at genomic levels, both PHL1 and PHL4 play minor roles when acts alone, however, they act synergistically with PHR1. In regulating Pi starvation-responsive genes, PHL4 also function less than PHL1 in terms of the number of the genes it regulates and the magnitude of gene transcription it affects. Furthermore, no synergistic interaction was found between PHL1 and PHL4 in regulating plant response to Pi starvation. Therefore, our results clarified the roles of PHL1 and PHL4 in regulating plant responses to Pi starvation. In addition, this work revealed a new function of these three transcription factors in regulating flowering time.
Collapse
Affiliation(s)
- Zhen Wang
- Faculty of Agriculture, Forestry and Medicine, The Open University of China, Beijing, China
- Ministry of Education Key Laboratory of Bioinformatics, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Zai Zheng
- Ministry of Education Key Laboratory of Bioinformatics, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, Hainan, China
| | - Dong Liu
- Ministry of Education Key Laboratory of Bioinformatics, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
| |
Collapse
|
20
|
Collins E, Shou H, Mao C, Whelan J, Jost R. Dynamic interactions between SPX proteins, the ubiquitination machinery, and signalling molecules for stress adaptation at a whole-plant level. Biochem J 2024; 481:363-385. [PMID: 38421035 DOI: 10.1042/bcj20230163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/31/2024] [Accepted: 02/01/2024] [Indexed: 03/02/2024]
Abstract
The plant macronutrient phosphorus is a scarce resource and plant-available phosphate is limiting in most soil types. Generally, a gene regulatory module called the phosphate starvation response (PSR) enables efficient phosphate acquisition by roots and translocation to other organs. Plants growing on moderate to nutrient-rich soils need to co-ordinate availability of different nutrients and repress the highly efficient PSR to adjust phosphate acquisition to the availability of other macro- and micronutrients, and in particular nitrogen. PSR repression is mediated by a small family of single SYG1/Pho81/XPR1 (SPX) domain proteins. The SPX domain binds higher order inositol pyrophosphates that signal cellular phosphorus status and modulate SPX protein interaction with PHOSPHATE STARVATION RESPONSE1 (PHR1), the central transcriptional regulator of PSR. Sequestration by SPX repressors restricts PHR1 access to PSR gene promoters. Here we focus on SPX4 that primarily acts in shoots and sequesters many transcription factors other than PHR1 in the cytosol to control processes beyond the classical PSR, such as nitrate, auxin, and jasmonic acid signalling. Unlike SPX1 and SPX2, SPX4 is subject to proteasomal degradation not only by singular E3 ligases, but also by SCF-CRL complexes. Emerging models for these different layers of control and their consequences for plant acclimation to the environment will be discussed.
Collapse
Affiliation(s)
- Emma Collins
- Department of Animal, Plant and Soil Sciences, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC 3086, Australia
| | - Huixia Shou
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China
- Hainan Institute, Zhejiang University, Sanya 572025, China
- The Provincial International Science and Technology Cooperation Base on Engineering Biology, International Campus of Zhejiang University, Haining, Zhejiang 314400, China
| | - Chuanzao Mao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China
| | - James Whelan
- Department of Animal, Plant and Soil Sciences, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC 3086, Australia
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China
- The Provincial International Science and Technology Cooperation Base on Engineering Biology, International Campus of Zhejiang University, Haining, Zhejiang 314400, China
| | - Ricarda Jost
- Department of Animal, Plant and Soil Sciences, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC 3086, Australia
- La Trobe Institute for Sustainable Agriculture and Food, La Trobe University, Bundoora, VIC 3086, Australia
| |
Collapse
|
21
|
Liu Y, Li C, Zhang D, Huang S, Wang Y, Wang E, Zhu L, Chen M, Zhang X, Yuan R, Zhang L, Wang W, Jia Q, Liu Z, Zhang Y. SlPHL1 positively modulates acid phosphatase in response to phosphate starvation by directly activating the genes SlPAP10b and SlPAP15 in tomato. PHYSIOLOGIA PLANTARUM 2024; 176:e14197. [PMID: 38344855 DOI: 10.1111/ppl.14197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 01/19/2024] [Indexed: 02/15/2024]
Abstract
Increased acid phosphatase (APase) activity is a prominent feature of tomato (Solanum lycopersicum) responses to inorganic phosphate (Pi) restriction. SlPHL1, a phosphate starvation response (PHR) transcription factor, has been identified as a positive regulator of low Pi (LP)-induced APase activity in tomato. However, the molecular mechanism underlying this regulation remains to be elucidated. Here, SlPHL1 was found to positively regulate the LP-induced expression of five potential purple acid phosphatase (PAP) genes, namely SlPAP7, SlPAP10b, SlPAP12, SlPAP15, and SlPAP17b. Furthermore, we provide evidence that SlPHL1 can stimulate transcription of these five genes by binding directly to the PHR1 binding sequence (P1BS) located on their promoters. The P1BS mutation notably weakened SlPHL1 binding to the promoters of SlPAP7, SlPAP12, and SlPAP17b but almost completely abolished SlPHL1 binding to the promoters of SlPAP10b and SlPAP15. As a result, the transcriptional activation of SlPHL1 on SlPAP10b and SlPAP15 was substantially diminished. In addition, not only did transient overexpression of either SlPAP10b or SlPAP15 in tobacco leaves increase APase activity, but overexpression of SlPAP15 in Arabidopsis and tomato also increased APase activity and promoted plant growth. Subsequently, two SPX proteins, SlSPX1 and SlSPX4, were shown to physically interact with SlPHL1. Moreover, SlSPX1 inhibited the transcriptional activation of SlPHL1 on SlPAP10b and SlPAP15 and negatively regulated the activity of APase. Taken together, these results demonstrate that SlPHL1-mediated LP signaling promotes APase activity by activating the transcription of SlPAP10b and SlPAP15, which may provide valuable insights into the mechanisms of tomato response to Pi-limited stress.
Collapse
Affiliation(s)
- Yanan Liu
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of JunCao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province Universities, Fuzhou, China
| | - Chengquan Li
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of JunCao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Duanmei Zhang
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of JunCao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shaoxuan Huang
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of JunCao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yi Wang
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Enhui Wang
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Lin Zhu
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of JunCao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Mingxue Chen
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of JunCao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xinyao Zhang
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Rui Yuan
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Lang Zhang
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of JunCao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wei Wang
- College of Life Sciences, Ningde Normal University, Ningde, China
| | - Qi Jia
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhongjuan Liu
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of JunCao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province Universities, Fuzhou, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yongqiang Zhang
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of JunCao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province Universities, Fuzhou, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
22
|
Liu N, Shang W, Guan M, Xiao J, Tian G, Ma B, Shang W, Li X, Zhao S, Li C, Cheng K, Zheng W. Phosphate deficiency responsive TaSPX3 is involved in the regulation of shoot phosphorus in Arabidopsis plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 206:108215. [PMID: 38029619 DOI: 10.1016/j.plaphy.2023.108215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 11/20/2023] [Indexed: 12/01/2023]
Abstract
SPX (SYG/PHO81/XPR1) domain genes have been reported to play vital roles in the Phosphorus (Pi) signaling network in Arabidopsis thaliana and rice. However, the functions of SPX proteins in wheat remain largely unknown. In this study, the full-length cDNA sequence of the TaSPX3 gene was cloned from the common wheat variety Zhengmai9023. The expression of TaSPX3 was up-regulated in eight different genotypes of wheat under low phosphorus (LP) stress, indicating that TaSPX3 responds to Pi limitation in multiple wheat genotypes. The transcription level of TaSPX3 was also detected in the absence of seven different elements, showing certain specificity for Pi deficiency in wheat. Over expressing TaSPX3 in Arabidopsis can alleviate Pi deficiency symptoms at the seedling stage and promote the growth of plant, and advance the flowering period at the adult stage. The expression of 7 genes associated with the Pi starvation signal pathways was analyzed using qRT-PCR. The results showed that TaSPX3, along with AtSPX1, AtRNS1, AtIPS1, AtPAP2, AtPAP17 and AtAT4, were all induced by Pi deficiency. This study reveals that the TaSPX3 gene in wheat is involved in the response to phosphorus stress and may affect shoot phosphorus levels through AT4 or PAPs-related pathways. Overall, our study provides new insights into the regulation of plant response under LP conditions and the molecular mechanism underlying the role of the wheat SPX gene in coping with LP stress.
Collapse
Affiliation(s)
- Na Liu
- State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, 450002, Zhengzhou, China
| | - Wenyan Shang
- State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, 450002, Zhengzhou, China
| | - Mengxin Guan
- State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, 450002, Zhengzhou, China
| | - Jibin Xiao
- State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, 450002, Zhengzhou, China
| | - Guangxiang Tian
- State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, 450002, Zhengzhou, China
| | - Baozhan Ma
- State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, 450002, Zhengzhou, China
| | - Wenjing Shang
- State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, 450002, Zhengzhou, China
| | - Xu Li
- State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, 450002, Zhengzhou, China
| | - Shijia Zhao
- State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, 450002, Zhengzhou, China
| | - Chuang Li
- State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, 450002, Zhengzhou, China
| | - Kun Cheng
- State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, 450002, Zhengzhou, China.
| | - Wenming Zheng
- State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, 450002, Zhengzhou, China.
| |
Collapse
|
23
|
Madison I, Gillan L, Peace J, Gabrieli F, Van den Broeck L, Jones JL, Sozzani R. Phosphate starvation: response mechanisms and solutions. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:6417-6430. [PMID: 37611151 DOI: 10.1093/jxb/erad326] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 08/21/2023] [Indexed: 08/25/2023]
Abstract
Phosphorus is essential to plant growth and agricultural crop yields, yet the challenges associated with phosphorus fertilization in agriculture, such as aquatic runoff pollution and poor phosphorus bioavailability, are increasingly difficult to manage. Comprehensively understanding the dynamics of phosphorus uptake and signaling mechanisms will inform the development of strategies to address these issues. This review describes regulatory mechanisms used by specific tissues in the root apical meristem to sense and take up phosphate from the rhizosphere. The major regulatory mechanisms and related hormone crosstalk underpinning phosphate starvation responses, cellular phosphate homeostasis, and plant adaptations to phosphate starvation are also discussed, along with an overview of the major mechanism of plant systemic phosphate starvation responses. Finally, this review discusses recent promising genetic engineering strategies for improving crop phosphorus use and computational approaches that may help further design strategies for improved plant phosphate acquisition. The mechanisms and approaches presented include a wide variety of species including not only Arabidopsis but also crop species such as Oryza sativa (rice), Glycine max (soybean), and Triticum aestivum (wheat) to address both general and species-specific mechanisms and strategies. The aspects of phosphorus deficiency responses and recently employed strategies of improving phosphate acquisition that are detailed in this review may provide insights into the mechanisms or phenotypes that may be targeted in efforts to improve crop phosphorus content and plant growth in low phosphorus soils.
Collapse
Affiliation(s)
- Imani Madison
- Plant and Microbial Biology Department and NC Plant Sciences Initiative, North Carolina State University, Raleigh, NC 27695, USA
| | - Lydia Gillan
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Jasmine Peace
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Flavio Gabrieli
- Dipartimento di Ingegneria Industriale (DII), Università degli studi di Padova, Padova, Italy
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali (DSA3), Università degli Studi di Perugia, Perugia, Italy
| | - Lisa Van den Broeck
- Plant and Microbial Biology Department and NC Plant Sciences Initiative, North Carolina State University, Raleigh, NC 27695, USA
| | - Jacob L Jones
- Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Rosangela Sozzani
- Plant and Microbial Biology Department and NC Plant Sciences Initiative, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
24
|
Liu F, Cai S, Dai L, Zhou B. Two PHOSPHATE-TRANSPORTER1 genes in cotton enhance tolerance to phosphorus starvation. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 204:108128. [PMID: 39492164 DOI: 10.1016/j.plaphy.2023.108128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 11/05/2024]
Abstract
Phosphorus is an essential macronutrient element for productivity of crop ecosystems. But orthophosphate (Pi), the direct uptake form by plants, is found in low solubility in soil, leading to plants often suffer from Pi starvation when they grow. High-affinity Pi transporters (PTs) play roles in Pi starvation response (PSR), and they are the main Pi influx machinery. Like most sessile plants, cotton is also threatened by Pi deficiency and has developed sophisticated PSR systems to cope with phosphorus deficiency. However, the regulation mechanism of Pi homeostasis is largely unknown in cotton. Here, we identified that two cotton PHOSPHATE-TRANSPORTER1 family genes, GhPHT1;4 and GhPHT1;5, were mainly responsible for Pi uptake under Pi-starvation conditions in cotton. Their promoter activities were significantly activated by Pi deficiency and the overexpression of two genes enhanced the Pi uptake under Pi-deficiency and Pi-normal conditions. Furthermore, we found that PHT1;4 and PHT1;5 participated in modifying root architecture during Pi-starvation, as well as affecting the PSR in plant. Thus, we identified that two cotton Pi transporters functioned in Pi homeostasis, which would provide new gene resources for sustainable agriculture.
Collapse
Affiliation(s)
- Fujie Liu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Collaborative Innovation Center for Modern Crop Production Co-sponsored by Province and Ministry, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Sheng Cai
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Collaborative Innovation Center for Modern Crop Production Co-sponsored by Province and Ministry, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China; Nanjing Forestry University, 159 Longpan Road, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Lingjun Dai
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Collaborative Innovation Center for Modern Crop Production Co-sponsored by Province and Ministry, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Baoliang Zhou
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Collaborative Innovation Center for Modern Crop Production Co-sponsored by Province and Ministry, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China.
| |
Collapse
|
25
|
Cuyas L, David P, de Craieye D, Ng S, Arkoun M, Plassard C, Faharidine M, Hourcade D, Degan F, Pluchon S, Nussaume L. Identification and interest of molecular markers to monitor plant Pi status. BMC PLANT BIOLOGY 2023; 23:401. [PMID: 37612632 PMCID: PMC10463364 DOI: 10.1186/s12870-023-04411-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/14/2023] [Indexed: 08/25/2023]
Abstract
BACKGROUND Inorganic phosphate (Pi) is the sole source of phosphorus for plants. It is a limiting factor for plant yield in most soils worldwide. Due to economic and environmental constraints, the use of Pi fertilizer is and will be more and more limited. Unfortunately, evaluation of Pi bioavailability or Pi starvation traits remains a tedious task, which often does not inform us about the real Pi plant status. RESULTS Here, we identified by transcriptomic studies carried out in the plant model Arabidopsis thaliana, early roots- or leaves-conserved molecular markers for Pi starvation, exhibiting fast response to modifications of phosphate nutritional status. We identified their homologues in three crops (wheat, rapeseed, and maize) and demonstrated that they offer a reliable opportunity to monitor the actual plant internal Pi status. They turn out to be very sensitive in the concentration range of 0-50 µM which is the most common case in the vast majority of soils and situations where Pi hardly accumulates in plants. Besides in vitro conditions, they could also be validated for plants growing in the greenhouse or in open field conditions. CONCLUSION These markers provide valuable physiological tools for plant physiologists and breeders to assess phosphate bio-availability impact on plant growth in their studies. This also offers the opportunity to cope with the rising economical (shortage) and societal problems (pollution) resulting from the management of this critical natural resource.
Collapse
Affiliation(s)
- Laura Cuyas
- TIMAC AGRO, Laboratoire de Nutrition Végétale, AgroInnovation International, 18 Avenue Franklin Roosevelt, 35400, Saint‑Malo, France
| | - Pascale David
- Aix Marseille Univ, CEA, CNRS, BIAM, UMR7265, EBMP, 13115, Saint-Paul Lez Durance, France
| | - Damien de Craieye
- Aix Marseille Univ, CEA, CNRS, BIAM, UMR7265, EBMP, 13115, Saint-Paul Lez Durance, France
| | - Sophia Ng
- Aix Marseille Univ, CEA, CNRS, BIAM, UMR7265, EBMP, 13115, Saint-Paul Lez Durance, France
- Centre for AgriBioscience, La Trobe University, 5 Ring Road Bundoora, Victoria, 3086, Australia
| | - Mustapha Arkoun
- TIMAC AGRO, Laboratoire de Nutrition Végétale, AgroInnovation International, 18 Avenue Franklin Roosevelt, 35400, Saint‑Malo, France
| | - Claude Plassard
- INRAE, CIRAD, IRD, Univ Montpellier, Eco&Sols, Institut Agro, 34060, Montpellier, France
| | | | - Delphine Hourcade
- Arvalis, Institut du Végétal, Station Expérimentale, Boigneville, France
| | - Francesca Degan
- Arvalis, Institut du Végétal, Station Expérimentale, Boigneville, France
| | - Sylvain Pluchon
- TIMAC AGRO, Laboratoire de Nutrition Végétale, AgroInnovation International, 18 Avenue Franklin Roosevelt, 35400, Saint‑Malo, France
| | - Laurent Nussaume
- Aix Marseille Univ, CEA, CNRS, BIAM, UMR7265, EBMP, 13115, Saint-Paul Lez Durance, France.
| |
Collapse
|
26
|
Zhao Y, Huang S, Wei L, Li M, Cai T, Ma X, Shuai P. ClNAC100 Is a NAC Transcription Factor of Chinese Fir in Response to Phosphate Starvation. Int J Mol Sci 2023; 24:10486. [PMID: 37445664 DOI: 10.3390/ijms241310486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 07/15/2023] Open
Abstract
Phosphate (Pi) deficiency is one of the most limiting factors for Chinese fir growth and production. Moreover, continuous cultivation of Chinese fir for multiple generations led to the reduction of soil nutrients, which hindered the yield of Chinese fir in southern China. Although NAC (NAM, ATAF, and CUC) transcription factors (TFs) play critical roles in plant development and abiotic stress resistance, it is still unclear how they regulate the response of Chinese fir to phosphate (Pi) starvation. Based on Pi-deficient transcriptome data of Chinses fir root, we identified a NAC transcription factor with increased expression under Pi deficiency, which was obtained by PCR and named ClNAC100. RT-qPCR confirmed that the expression of ClNAC100 in the root of Chinese fir was induced by phosphate deficiency and showed a dynamic change with time. It was positively regulated by ABA and negatively regulated by JA, and ClNAC100 was highly expressed in the roots and leaves of Chinese fir. Transcriptional activation assay confirmed that ClNAC100 was a transcriptional activator. The promoter of ClNAC100 was obtained by genome walking, which was predicted to contain a large number of stress, hormone, and growth-related cis-elements. Tobacco infection was used to verify the activity of the promoter, and the core promoter was located between -1519 bp and -589 bp. We identified 18 proteins bound to the ClNAC100 promoter and 5 ClNAC100 interacting proteins by yeast one-hybrid and yeast two-hybrid, respectively. We speculated that AHL and TIFY family transcription factors, calmodulin, and E3 ubiquitin ligase in these proteins might be important phosphorus-related proteins. These results provide a basis for the further study of the regulatory mechanism and pathways of ClNAC100 under Pi starvation.
Collapse
Affiliation(s)
- Yuxuan Zhao
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Chinese Fir Engineering Technology Research Center of the State Forestry and Grassland Administration, Fuzhou 350002, China
| | - Shuotian Huang
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Chinese Fir Engineering Technology Research Center of the State Forestry and Grassland Administration, Fuzhou 350002, China
| | - Lihui Wei
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Chinese Fir Engineering Technology Research Center of the State Forestry and Grassland Administration, Fuzhou 350002, China
| | - Meng Li
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Chinese Fir Engineering Technology Research Center of the State Forestry and Grassland Administration, Fuzhou 350002, China
| | - Tingting Cai
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Chinese Fir Engineering Technology Research Center of the State Forestry and Grassland Administration, Fuzhou 350002, China
| | - Xiangqing Ma
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Chinese Fir Engineering Technology Research Center of the State Forestry and Grassland Administration, Fuzhou 350002, China
| | - Peng Shuai
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Chinese Fir Engineering Technology Research Center of the State Forestry and Grassland Administration, Fuzhou 350002, China
| |
Collapse
|
27
|
He K, Du J, Han X, Li H, Kui M, Zhang J, Huang Z, Fu Q, Jiang Y, Hu Y. PHOSPHATE STARVATION RESPONSE1 (PHR1) interacts with JASMONATE ZIM-DOMAIN (JAZ) and MYC2 to modulate phosphate deficiency-induced jasmonate signaling in Arabidopsis. THE PLANT CELL 2023; 35:2132-2156. [PMID: 36856677 PMCID: PMC10226604 DOI: 10.1093/plcell/koad057] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 12/21/2022] [Accepted: 02/03/2023] [Indexed: 05/30/2023]
Abstract
Phosphorus (P) is a macronutrient necessary for plant growth and development. Inorganic phosphate (Pi) deficiency modulates the signaling pathway of the phytohormone jasmonate in Arabidopsis thaliana, but the underlying molecular mechanism currently remains elusive. Here, we confirmed that jasmonate signaling was enhanced under low Pi conditions, and the CORONATINE INSENSITIVE1 (COI1)-mediated pathway is critical for this process. A mechanistic investigation revealed that several JASMONATE ZIM-DOMAIN (JAZ) repressors physically interacted with the Pi signaling-related core transcription factors PHOSPHATE STARVATION RESPONSE1 (PHR1), PHR1-LIKE2 (PHL2), and PHL3. Phenotypic analyses showed that PHR1 and its homologs positively regulated jasmonate-induced anthocyanin accumulation and root growth inhibition. PHR1 stimulated the expression of several jasmonate-responsive genes, whereas JAZ proteins interfered with its transcriptional function. Furthermore, PHR1 physically associated with the basic helix-loop-helix (bHLH) transcription factors MYC2, MYC3, and MYC4. Genetic analyses and biochemical assays indicated that PHR1 and MYC2 synergistically increased the transcription of downstream jasmonate-responsive genes and enhanced the responses to jasmonate. Collectively, our study reveals the crucial regulatory roles of PHR1 in modulating jasmonate responses and provides a mechanistic understanding of how PHR1 functions together with JAZ and MYC2 to maintain the appropriate level of jasmonate signaling under conditions of Pi deficiency.
Collapse
Affiliation(s)
- Kunrong He
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiancan Du
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Xiao Han
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Huiqiong Li
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Mengyi Kui
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Juping Zhang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhichong Huang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Qiantang Fu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Yanjuan Jiang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Yanru Hu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| |
Collapse
|
28
|
Roychowdhury A, Srivastava R, Akash, Shukla G, Zehirov G, Mishev K, Kumar R. Metabolic footprints in phosphate-starved plants. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2023; 29:755-767. [PMID: 37363416 PMCID: PMC10284745 DOI: 10.1007/s12298-023-01319-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/26/2023] [Accepted: 05/29/2023] [Indexed: 06/28/2023]
Abstract
Plants' requirement of Phosphorus (P) as an essential macronutrient is obligatory for their normal growth and metabolism. Besides restricting plants' primary growth, P depletion affects both primary and secondary metabolism and leads to altered levels of sugars, metabolites, amino acids, and other secondary compounds. Such metabolic shifts help plants optimize their metabolism and growth under P limited conditions. Under P deprivation, both sugar levels and their mobilization change that influences the expression of Pi starvation-inducible genes. Increased sugar repartitioning from shoot to root help root growth and organic acids secretion that in turn promotes phosphate (Pi) uptake from the soil. Other metabolic changes such as lipid remodeling or P reallocation from older to younger leaves release the P from its bound forms in the cell. In this review, we summarize the metabolic footprinting of Pi-starved plants with respect to the benefits offered by such metabolic changes to intracellular Pi homeostasis.
Collapse
Affiliation(s)
- Abhishek Roychowdhury
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana 500046 India
| | - Rajat Srivastava
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana 500046 India
| | - Akash
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana 500046 India
| | - Gyanesh Shukla
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana 500046 India
| | - Grigor Zehirov
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Kiril Mishev
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Rahul Kumar
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana 500046 India
| |
Collapse
|
29
|
Luo J, Liu Z, Yan J, Shi W, Ying Y. Genome-Wide Identification of SPX Family Genes and Functional Characterization of PeSPX6 and PeSPX-MFS2 in Response to Low Phosphorus in Phyllostachys edulis. PLANTS (BASEL, SWITZERLAND) 2023; 12:1496. [PMID: 37050121 PMCID: PMC10096891 DOI: 10.3390/plants12071496] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/10/2023] [Accepted: 03/14/2023] [Indexed: 06/19/2023]
Abstract
Moso bamboo (Phyllostachys edulis) is the most widely distributed bamboo species in the subtropical regions of China. Due to the fast-growing characteristics of P. edulis, its growth requires high nutrients, including phosphorus. Previous studies have shown that SPX proteins play key roles in phosphorus signaling and homeostasis. However, the systematic identification, molecular characterization, and functional characterization of the SPX gene family have rarely been reported in P. edulis. In this study, 23 SPXs were identified and phylogenetic analysis showed that they were classified into three groups and distributed on 13 chromosomes. The analysis of conserved domains indicated that there was a high similarity between PeSPXs among SPX proteins in other species. RNA sequencing and qRT-PCR analysis indicated that PeSPX6 and PeSPX-MFS2, which were highly expressed in roots, were clearly upregulated under low phosphorus. Co-expression network analysis and a dual luciferase experiment in tobacco showed that PeWRKY6 positively regulated the PeSPX6 expression, while PeCIGR1-2, PeMYB20, PeWRKY6, and PeWRKY53 positively regulated the PeSPX-MFS2 expression. Overall, these results provide a basis for the identification of SPX genes in P. edulis and further exploration of their functions in mediating low phosphorus responses.
Collapse
|
30
|
Wang Z, Zheng Z, Zhu Y, Kong S, Liu D. PHOSPHATE RESPONSE 1 family members act distinctly to regulate transcriptional responses to phosphate starvation. PLANT PHYSIOLOGY 2023; 191:1324-1343. [PMID: 36417239 PMCID: PMC9922430 DOI: 10.1093/plphys/kiac521] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 11/18/2022] [Indexed: 06/01/2023]
Abstract
To sustain growth when facing phosphate (Pi) starvation, plants trigger an array of adaptive responses that are largely controlled at transcriptional levels. In Arabidopsis (Arabidopsis thaliana), the four transcription factors of the PHOSPHATE RESPONSE 1 (PHR1) family, PHR1 and its homologs PHR1-like 1 (PHL1), PHL2, and PHL3 form the central regulatory system that controls the expression of Pi starvation-responsive (PSR) genes. However, how each of these four proteins function in regulating the transcription of PSR genes remains largely unknown. In this work, we performed comparative phenotypic and transcriptomic analyses using Arabidopsis mutants with various combinations of mutations in these four genes. The results showed that PHR1/PHL1 and PHL2/PHL3 do not physically interact with each other and function as two distinct modules in regulating plant development and transcriptional responses to Pi starvation. In the PHR1/PHL1 module, PHR1 plays a dominant role, whereas, in the PHL2/PHL3 module, PHL2 and PHL3 contribute similarly to the regulation of PSR gene transcription. By analyzing their common and specific targets, we showed that these PHR proteins could function as both positive and negative regulators of PSR gene expression depending on their targets. Some interactions between PHR1 and PHL2/PHL3 in regulating PSR gene expression were also observed. In addition, we identified a large set of defense-related genes whose expression is not affected in wild-type plants but is altered in the mutant plants under Pi starvation. These results increase our understanding of the molecular mechanism underlying plant transcriptional responses to Pi starvation.
Collapse
Affiliation(s)
- Zhen Wang
- MOE Key Laboratory of Bioinformatics, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Zai Zheng
- MOE Key Laboratory of Bioinformatics, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yumin Zhu
- MOE Key Laboratory of Bioinformatics, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Shuyao Kong
- MOE Key Laboratory of Bioinformatics, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Dong Liu
- MOE Key Laboratory of Bioinformatics, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
31
|
Li Y, Li Y, Yao X, Wen Y, Zhou Z, Lei W, Zhang D, Lin H. Nitrogen-inducible GLK1 modulates phosphate starvation response via the PHR1-dependent pathway. THE NEW PHYTOLOGIST 2022; 236:1871-1887. [PMID: 36111350 DOI: 10.1111/nph.18499] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 08/24/2022] [Indexed: 06/15/2023]
Abstract
Phosphorus (P) is a limiting nutrient for plant growth and productivity. Thus, a deep understanding of the molecular mechanisms of plants' response to phosphate starvation is significant when breeding crops with higher phosphorus-use efficiency. Here, we found that GARP-type transcription factor GLK1 acted as a positive regulator for phosphate-starvation response (PSR) via the PHR1-dependent pathway in Arabidopsis thaliana. GLK1 increased the transcription activity of PHR1 through the direct physical interaction and regulated the multiple responses to inorganic orthophosphate (Pi) starvation. Nitrogen (N) is a key factor in the regulation of PSR. We also found that the N status controlled the function of the GLK1-PHR1 signaling module under Pi-deficient (LP) conditions by regulating the accumulation of GLK1 and PHR1. Ultimately, we showed that the presence of GLK1 effectively promoted the protein accumulation of PHR1 at low N concentrations, and this action was helpful to maintain the activation of PSR. According to these findings, we establish the working model for GLK1 in PSR and propose that GLK1 mediates the interaction between N and P by influencing the effect of N on PHR1 in Arabidopsis thaliana.
Collapse
Affiliation(s)
- Yan Li
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610064, China
| | - Yanling Li
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610064, China
| | - Xiuhong Yao
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610064, China
| | - Yu Wen
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610064, China
| | - Zuxu Zhou
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610064, China
| | - Wei Lei
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610064, China
| | - Dawei Zhang
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610064, China
| | - Honghui Lin
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610064, China
| |
Collapse
|
32
|
Hua YP, Wu PJ, Zhang TY, Song HL, Zhang YF, Chen JF, Yue CP, Huang JY, Sun T, Zhou T. Genome-Scale Investigation of GARP Family Genes Reveals Their Pivotal Roles in Nutrient Stress Resistance in Allotetraploid Rapeseed. Int J Mol Sci 2022; 23:ijms232214484. [PMID: 36430962 PMCID: PMC9698747 DOI: 10.3390/ijms232214484] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/14/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022] Open
Abstract
The GARP genes are plant-specific transcription factors (TFs) and play key roles in regulating plant development and abiotic stress resistance. However, few systematic analyses of GARPs have been reported in allotetraploid rapeseed (Brassica napus L.) yet. In the present study, a total of 146 BnaGARP members were identified from the rapeseed genome based on the sequence signature. The BnaGARP TFs were divided into five subfamilies: ARR, GLK, NIGT1/HRS1/HHO, KAN, and PHL subfamilies, and the members within the same subfamilies shared similar exon-intron structures and conserved motif configuration. Analyses of the Ka/Ks ratios indicated that the GARP family principally underwent purifying selection. Several cis-acting regulatory elements, essential for plant growth and diverse biotic and abiotic stresses, were identified in the promoter regions of BnaGARPs. Further, 29 putative miRNAs were identified to be targeting BnaGARPs. Differential expression of BnaGARPs under low nitrate, ammonium toxicity, limited phosphate, deficient boron, salt stress, and cadmium toxicity conditions indicated their potential involvement in diverse nutrient stress responses. Notably, BnaA9.HHO1 and BnaA1.HHO5 were simultaneously transcriptionally responsive to these nutrient stresses in both hoots and roots, which indicated that BnaA9.HHO1 and BnaA1.HHO5 might play a core role in regulating rapeseed resistance to nutrient stresses. Therefore, this study would enrich our understanding of molecular characteristics of the rapeseed GARPs and will provide valuable candidate genes for further in-depth study of the GARP-mediated nutrient stress resistance in rapeseed.
Collapse
Affiliation(s)
- Ying-Peng Hua
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Peng-Jia Wu
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Tian-Yu Zhang
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Hai-Li Song
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Yi-Fan Zhang
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Jun-Fan Chen
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Cai-Peng Yue
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Jin-Yong Huang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Tao Sun
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
- Correspondence: (T.S.); (T.Z.); Tel.: +86-187-0271-0749 (T.Z.)
| | - Ting Zhou
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
- Correspondence: (T.S.); (T.Z.); Tel.: +86-187-0271-0749 (T.Z.)
| |
Collapse
|
33
|
Han B, Wang C, Wu T, Yan J, Jiang A, Liu Y, Luo Y, Cai H, Ding G, Dong X, White PJ, Xu F, Wang S, Shi L. Identification of vacuolar phosphate influx transporters in Brassica napus. PLANT, CELL & ENVIRONMENT 2022; 45:3338-3353. [PMID: 35986580 DOI: 10.1111/pce.14423] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 06/15/2023]
Abstract
Recent progress has shown that vacuolar Pi transporters (VPTs) are important for cellular Pi homoeostasis in Arabidopsis thaliana and Oryza sativa under fluctuating external Pi supply, but the identity and involvement of VPTs in cellular Pi homoeostasis in Brassica napus is poorly understood. Here, we identified two vacuolar Pi influx transporters B. napus, BnA09PHT5;1b and BnCnPHT5;1b, and uncovered their necessity for cellular Pi homoeostasis through functional analysis. Both Brassica proteins are homologs of Arabidopsis AtPHT5;1 with a similar sequence, structure, tonoplast localization, and VPT activity. Brassica pht5;1b double mutants had smaller shoots and larger shoot cellular Pi concentrations than wild-type B. napus, which contrasts with a previous study of the Arabidopsis pht5;1 mutant, suggesting that PHT5;1-VPTs play different roles in cellular Pi homoeostasis in seedlings of B. napus and A. thaliana. Disruption of BnPHT5;1b genes also caused Pi toxicity in floral organs, reduced seed yield and impacted seed traits, consistent with the proposed role of AtPHT5;1 in floral Pi homoeostasis in Arabidopsis. Taken together, our studies identified two vacuolar Pi influx transporters in B. napus and revealed the distinct and conserved roles of BnPHT5;1bs in cellular Pi homoeostasis in this plant species.
Collapse
Affiliation(s)
- Bei Han
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| | - Chuang Wang
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| | - Tao Wu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| | - Junjun Yan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Aosheng Jiang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| | - Yu Liu
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Yu Luo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| | - Hongmei Cai
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| | - Guangda Ding
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| | - Xu Dong
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, National Center for Magnetic Resonance at Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Philip J White
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- The James Hutton Institute, Invergowrie, Dundee, UK
| | - Fangsen Xu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| | - Sheliang Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| | - Lei Shi
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
34
|
Liao D, Sun C, Liang H, Wang Y, Bian X, Dong C, Niu X, Yang M, Xu G, Chen A, Wu S. SlSPX1-SlPHR complexes mediate the suppression of arbuscular mycorrhizal symbiosis by phosphate repletion in tomato. THE PLANT CELL 2022; 34:4045-4065. [PMID: 35863053 PMCID: PMC9516199 DOI: 10.1093/plcell/koac212] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 07/14/2022] [Indexed: 05/22/2023]
Abstract
Forming mutualistic symbioses with arbuscular mycorrhizae (AMs) improves the acquisition of mineral nutrients for most terrestrial plants. However, the formation of AM symbiosis usually occurs under phosphate (Pi)-deficient conditions. Here, we identify SlSPX1 (SYG1 (suppressor of yeast GPA1)/Pho81(phosphate 81)/XPR1 (xenotropic and polytropic retrovirus receptor 1) as the major repressor of the AM symbiosis in tomato (Solanum lycopersicum) under phosphate-replete conditions. Loss of SlSPX1 function promotes direct Pi uptake and enhances AM colonization under phosphate-replete conditions. We determine that SlSPX1 integrates Pi signaling and AM symbiosis by directly interacting with a set of arbuscule-induced SlPHR proteins (SlPHR1, SlPHR4, SlPHR10, SlPHR11, and SlPHR12). The association with SlSPX1 represses the ability of SlPHR proteins to activate AM marker genes required for the arbuscular mycorrhizal symbiosis. SlPHR proteins exhibit functional redundancy, and no defective AM symbiosis was detected in the single mutant of SlPHR proteins. However, silencing SlPHR4 in the Slphr1 mutant background led to reduced AM colonization. Therefore, our results support the conclusion that SlSPX1-SlPHRs form a Pi-sensing module to coordinate the AM symbiosis under different Pi-availability conditions.
Collapse
Affiliation(s)
| | | | - Haiyan Liang
- College of Horticulture, College of Life Sciences, FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yang Wang
- College of Horticulture, College of Life Sciences, FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xinxin Bian
- College of Horticulture, College of Life Sciences, FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chaoqun Dong
- College of Horticulture, College of Life Sciences, FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xufang Niu
- College of Horticulture, College of Life Sciences, FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Meina Yang
- College of Horticulture, College of Life Sciences, FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Guohua Xu
- Author for correspondence: (G.X.), (A.C.), (S.W.)
| | - Aiqun Chen
- Author for correspondence: (G.X.), (A.C.), (S.W.)
| | - Shuang Wu
- Author for correspondence: (G.X.), (A.C.), (S.W.)
| |
Collapse
|
35
|
Liu Z, Wu X, Wang E, Liu Y, Wang Y, Zheng Q, Han Y, Chen Z, Zhang Y. PHR1 positively regulates phosphate starvation-induced anthocyanin accumulation through direct upregulation of genes F3'H and LDOX in Arabidopsis. PLANTA 2022; 256:42. [PMID: 35842503 DOI: 10.1007/s00425-022-03952-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
Phosphate deficiency promotes anthocyanin accumulation in Arabidopsis through direct binding of PHR1 to the P1BS motifs on the promoters of F3'H and LDOX and thereby upregulating their expression. Phosphorus is one of the essential elements for plants, and plants mainly absorb inorganic phosphate (Pi) from soil. But Pi deficiency is a common factor limiting plant growth and development. Anthocyanin accumulation in green tissues (such as leaves) is one of the characteristics of many plants in response to Pi starvation. However, little is known about the mechanism by which Pi starvation induces anthocyanin accumulation. Here, we found that the mutation of the gene PHOSPHATE STARVATION RESPONSE1 (PHR1), which encodes a key factor involved in Pi starvation signaling in Arabidopsis, significantly attenuates anthocyanin accumulation under Pi-limiting conditions. Moreover, the expression of several Pi deficiency-upregulated genes that are involved in anthocyanin biosyntheses, such as flavanone 3'-hydroxylase (F3'H), dihydroflavonol 4-reductase (DFR), leucoanthocyanidin dioxygenase (LDOX), and production of anthocyanin pigment 1 (PAP1), was significantly lower in the phr1-1 mutant than in the wild type (WT). Both yeast one-hybrid (Y1H) analysis and chromatin immunoprecipitation quantitative PCR (ChIP-qPCR) showed that PHR1 can interact with the promoters of F3'H and LDOX, but not DFR and PAP1. By electrophoretic mobility shift assay (EMSA), it was further confirmed that the PHR1-binding sequence (P1BS) motifs located on the F3'H and LDOX promoters are required for the PHR1 bindings. Also, in Arabidopsis protoplasts, PHR1 enhanced the transcriptional activity of the F3'H and LDOX promoters, but these effects were markedly impaired when the P1BS motifs were mutated. Taken together, these results indicate that PHR1 positively regulates Pi starvation-induced anthocyanin accumulation in Arabidopsis, at least in part, by directly binding the P1BS motifs located on the promoters to upregulate the transcription of anthocyanin biosynthetic genes F3'H and LDOX.
Collapse
Affiliation(s)
- Zhongjuan Liu
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province Universities, Fuzhou, 350002, People's Republic of China
| | - Xueqian Wu
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China
| | - Enhui Wang
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China
| | - Yanan Liu
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China
| | - Yi Wang
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China
| | - Qinghua Zheng
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China
| | - Yizhen Han
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China
| | - Zhongze Chen
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China
| | - Yongqiang Zhang
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China.
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province Universities, Fuzhou, 350002, People's Republic of China.
| |
Collapse
|
36
|
Liu L, Xiang H, Song J, Shen H, Sun X, Tian L, Fan H. Genome-Wide Analysis of DoSPX Genes and the Function of DoSPX4 in Low Phosphorus Response in Dendrobium officinale. FRONTIERS IN PLANT SCIENCE 2022; 13:943788. [PMID: 35898219 PMCID: PMC9313600 DOI: 10.3389/fpls.2022.943788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 06/06/2022] [Indexed: 06/15/2023]
Abstract
Dendrobium officinale Kimura et Migo is a famous Chinese herb. D. officinale grows on rocks where the available phosphorus is low. The SPX family plays a critical role in maintaining Pi homeostasis in plants. In this paper, 9 SPX family genes were identified in the genome of D. officinale. Bioinformatics and qRT-PCR analysis showed that DoSPXs were involved in response to -Pi stress and had different expression patterns. DoSPX4, which had a unique expression pattern, was clustered with AtSPX4 and OsSPX4. Under -Pi treatment, the expression level of DoSPX4 reached a peak on 5 d in roots, while showing a downward trend in the aboveground parts. DoSPX4 was located on the cell membrane. Overexpression DoSPX4 promoted Pi content in the stem and the expression level of NtPHT1/2 in Nicotiana tabacum. The results of Yeast two-hybrid showed that DoSPX4 could interact with Phosphate High-Affinity Response factor (DoPHR2). These results highlight the role of DoSPX4 in response to low phosphorus, which provides a theoretical basis for further study on the response mechanism of -Pi in D. officinale.
Collapse
|
37
|
Yue C, Chen Q, Hu J, Li C, Luo L, Zeng L. Genome-Wide Identification and Characterization of GARP Transcription Factor Gene Family Members Reveal Their Diverse Functions in Tea Plant ( Camellia sinensis). FRONTIERS IN PLANT SCIENCE 2022; 13:947072. [PMID: 35845671 PMCID: PMC9280663 DOI: 10.3389/fpls.2022.947072] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 06/02/2022] [Indexed: 06/15/2023]
Abstract
Golden2, ARR-B, Psr1 (GARP) proteins are plant-specific transcription factors that play vital and diverse roles in plants. However, systematic research on the GARP gene family in plants, including tea plant (Camellia sinensis), is scarce. In this study, a total of 69 GARP genes were identified and characterized from the tea plant genome based on the B-motif sequence signature. The CsGARP genes were clustered into five subfamilies: PHR1/PHL1, KAN, NIGT1/HRS1/HHO, GLK and ARR-B subfamilies. The phylogenetic relationships, gene structures, chromosomal locations, conserved motifs and regulatory cis-acting elements of the CsGARP family members were comprehensively analyzed. The expansion of CsGARP genes occurred via whole-genome duplication/segmental duplication, proximal duplication, and dispersed duplication under purifying selective pressure. The expression patterns of the CsGARP genes were systematically explored from various perspectives: in different tissues during different seasons; in different leaf color stages of tea plant; under aluminum treatment and nitrogen treatment; and in response to abiotic stresses such as cold, drought and salt and to biotic stress caused by Acaphylla theae. The results demonstrate that CsGARP family genes are ubiquitously expressed and play crucial roles in the regulation of growth and development of tea plant and the responses to environmental stimuli. Collectively, these results not only provide valuable information for further functional investigations of CsGARPs in tea plant but also contribute to broadening our knowledge of the functional diversity of GARP family genes in plants.
Collapse
Affiliation(s)
- Chuan Yue
- College of Food Science, Tea Research Institute, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Speciality Food Co-built by Sichuan and Chongqing, Southwest University, Chongqing, China
| | - Qianqian Chen
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Juan Hu
- Key Laboratory of Tea Science in Universities of Fujian Province, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Congcong Li
- Key Laboratory of Tea Science in Universities of Fujian Province, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Liyong Luo
- College of Food Science, Tea Research Institute, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Speciality Food Co-built by Sichuan and Chongqing, Southwest University, Chongqing, China
| | - Liang Zeng
- College of Food Science, Tea Research Institute, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Speciality Food Co-built by Sichuan and Chongqing, Southwest University, Chongqing, China
| |
Collapse
|
38
|
Cross-Talk between Transcriptome Analysis and Physiological Characterization Identifies the Genes in Response to the Low Phosphorus Stress in Malus mandshurica. Int J Mol Sci 2022; 23:ijms23094896. [PMID: 35563283 PMCID: PMC9105917 DOI: 10.3390/ijms23094896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/26/2022] [Accepted: 04/26/2022] [Indexed: 02/04/2023] Open
Abstract
Phosphorus (Pi) is a macronutrient essential for plant growth, development, and reproduction. However, there is not an efficient available amount of Pi that can be absorbed by plants in the soil. Previously, an elite line, MSDZ 109, selected from Malus mandshurica, was justified for its excellent tolerance to low phosphorus (low−Pi) stress. To date, however, the genes involved in low−Pi stress tolerance have not yet been unraveled in this species. Currently, the physiological responses of this line for different days to low−Pi stress were characterized, and their roots as well as leaves were used to carry out transcriptome analysis, so as to illuminate the potential molecular pathways and identify the genes involved in low−Pi stress−response. After exposure to low−Pi treatment (32 µmol/L KH2PO4) for 20 day after treatment (DAF) the biomass of shoots was significantly reduced in comparison with that of the stress−free (control), and root architecture diversely changed. For example, the root growth parameters e.g., length, surface area, and total volume somewhat increase in comparison with those of the control. The activity of acid phosphatase (ACP) increased with the low−Pi treatment, whereas the photosynthetic rate and biomass were declining. The activity of antioxidant enzymes, e.g., superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT), were substantially elevated in response to low−Pi treatment. Many enzyme−related candidate genes e.g., MmCAT1, MmSOD1 and MmPOD21 were up−regulated to low−Pi treatment. Furthermore, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis indicated that the processes of photosynthesis, plant hormone signal transduction, and MAPK signaling pathway were affected in the low−Pi response. In combination with the physiological characterization, several low−Pi−responsive genes, e.g., PHT, PHO, were identified, and the genes implicated in Pi uptake and transport, such as MmPHT1;5, MmPHO1, MmPAP1, etc., were also obtained since their expression status varied among the exposure times, which probably notifies the candidates involved in low−Pi−responsive tolerance in this line. Interestingly, low−Pi treatment activated the expression of transcription factors including the WRKY family, MYB family, etc. The available evidences will facilitate a better understanding of the roles of this line underlying the high tolerance to low−Pi stress. Additionally, the accessible data are helpful for the use of the apple rootstock M. mandshurica under low−Pi stress.
Collapse
|
39
|
Yang J, Zhao X, Chen Y, Li G, Li X, Xia M, Sun Z, Chen Y, Li Y, Yao L, Hou H. Identification, Structural, and Expression Analyses of SPX Genes in Giant Duckweed (Spirodela polyrhiza) Reveals Its Role in Response to Low Phosphorus and Nitrogen Stresses. Cells 2022; 11:cells11071167. [PMID: 35406731 PMCID: PMC8997716 DOI: 10.3390/cells11071167] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/22/2022] [Accepted: 03/24/2022] [Indexed: 01/25/2023] Open
Abstract
SPX genes play important roles in the coordinated utilization of nitrogen (N) and phosphorus (P) in plants. However, a genome-wide analysis of the SPX family is still lacking. In this study, the gene structure and phylogenetic relationship of 160 SPX genes were systematically analyzed at the genome-wide level. Results revealed that SPX genes were highly conserved in plants. All SPX genes contained the conserved SPX domain containing motifs 2, 3, 4, and 8. The 160 SPX genes were divided into five clades and the SPX genes within the same clade shared a similar motif composition. P1BS cis–elements showed a high frequency in the promoter region of SPXs, indicating that SPX genes could interact with the P signal center regulatory gene Phosphate Starvation Response1 (PHR1) in response to low P stress. Other cis–elements were also involved in plant development and biotic/abiotic stress, suggesting the functional diversity of SPXs. Further studies were conducted on the interaction network of three SpSPXs, revealing that these genes could interact with important components of the P signaling network. The expression profiles showed that SpSPXs responded sensitively to N and P deficiency stresses, thus playing a key regulatory function in P and N metabolism. Furthermore, the expression of SpSPXs under P and N deficiency stresses could be affected by environmental factors such as ABA treatment, osmotic, and LT stresses. Our study suggested that SpSPXs could be good candidates for enhancing the uptake ability of Spirodela polyrhiza for P nutrients in wastewater. These findings could broaden the understanding of the evolution and biological function of the SPX family and offer a foundation to further investigate this family in plants.
Collapse
Affiliation(s)
- Jingjing Yang
- The State Key Laboratory of Freshwater Ecology and Biotechnology, The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (J.Y.); (X.Z.); (Y.C.); (G.L.); (X.L.); (M.X.); (Z.S.); (Y.C.); (Y.L.)
| | - Xuyao Zhao
- The State Key Laboratory of Freshwater Ecology and Biotechnology, The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (J.Y.); (X.Z.); (Y.C.); (G.L.); (X.L.); (M.X.); (Z.S.); (Y.C.); (Y.L.)
| | - Yan Chen
- The State Key Laboratory of Freshwater Ecology and Biotechnology, The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (J.Y.); (X.Z.); (Y.C.); (G.L.); (X.L.); (M.X.); (Z.S.); (Y.C.); (Y.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Gaojie Li
- The State Key Laboratory of Freshwater Ecology and Biotechnology, The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (J.Y.); (X.Z.); (Y.C.); (G.L.); (X.L.); (M.X.); (Z.S.); (Y.C.); (Y.L.)
| | - Xiaozhe Li
- The State Key Laboratory of Freshwater Ecology and Biotechnology, The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (J.Y.); (X.Z.); (Y.C.); (G.L.); (X.L.); (M.X.); (Z.S.); (Y.C.); (Y.L.)
| | - Manli Xia
- The State Key Laboratory of Freshwater Ecology and Biotechnology, The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (J.Y.); (X.Z.); (Y.C.); (G.L.); (X.L.); (M.X.); (Z.S.); (Y.C.); (Y.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zuoliang Sun
- The State Key Laboratory of Freshwater Ecology and Biotechnology, The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (J.Y.); (X.Z.); (Y.C.); (G.L.); (X.L.); (M.X.); (Z.S.); (Y.C.); (Y.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yimeng Chen
- The State Key Laboratory of Freshwater Ecology and Biotechnology, The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (J.Y.); (X.Z.); (Y.C.); (G.L.); (X.L.); (M.X.); (Z.S.); (Y.C.); (Y.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yixian Li
- The State Key Laboratory of Freshwater Ecology and Biotechnology, The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (J.Y.); (X.Z.); (Y.C.); (G.L.); (X.L.); (M.X.); (Z.S.); (Y.C.); (Y.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lunguang Yao
- Henan Key Laboratory of Ecological Security for Water Source Region of Mid-line of South-to-North Diversion Project of Henan Province, Nanyang 473061, China;
- Collaborative Innovation Center of Water Security for Water Source Region of Mid-line of South-to-North Diversion Project of Henan Province, Nanyang Normal University, Nanyang 473061, China
| | - Hongwei Hou
- The State Key Laboratory of Freshwater Ecology and Biotechnology, The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (J.Y.); (X.Z.); (Y.C.); (G.L.); (X.L.); (M.X.); (Z.S.); (Y.C.); (Y.L.)
- Correspondence: ; Tel.: +86-2768788691; Fax: +86-2768780123
| |
Collapse
|
40
|
Prathap V, Kumar A, Maheshwari C, Tyagi A. Phosphorus homeostasis: acquisition, sensing, and long-distance signaling in plants. Mol Biol Rep 2022; 49:8071-8086. [PMID: 35318578 DOI: 10.1007/s11033-022-07354-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 03/09/2022] [Indexed: 12/29/2022]
Abstract
Phosphorus (P), an essential nutrient required by plants often becomes the limiting factor for plant growth and development. Plants employ various mechanisms to sense the continuously changing P content in the soil. Transcription factors, such as SHORT ROOT (SHR), AUXIN RESPONSE FACTOR19 (ARF19), and ETHYLENE-INSENSITIVE3 (EIN3) regulate the growth of primary roots, root hairs, and lateral roots under low P. Crop improvement strategies under low P depend either on improving P acquisition efficiency or increasing P utilization. The various phosphate transporters (PTs) are involved in the uptake and transport of P from the soil to various plant cellular organelles. A plethora of regulatory elements including transcription factors, microRNAs and several proteins play a critical role in the regulation of coordinated cellular P homeostasis. Among these, the well-established P starvation signaling pathway comprising of central transcriptional factor phosphate starvation response (PHR), microRNA399 (miR399) as a long-distance signal molecule, and PHOSPHATE 2 (PHO2), an E2 ubiquitin conjugase is crucial in the regulation of phosphorus starvation responsive genes. Under PHR control, several classes of PHTs, microRNAs, and proteins modulate root architecture, and metabolic processes to enable plants to adapt to low P. Even though sucrose and inositol phosphates are known to influence the phosphorus starvation response genes, the exact mechanism of regulation is still unclear. In this review, a basic understanding of P homeostasis under low P in plants and all the above aspects are discussed.
Collapse
Affiliation(s)
- V Prathap
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Anuj Kumar
- ICAR- Indian Agricultural Statistical Research Institute, New Delhi, India
| | - Chirag Maheshwari
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Aruna Tyagi
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi, India.
| |
Collapse
|
41
|
Satheesh V, Tahir A, Li J, Lei M. Plant phosphate nutrition: sensing the stress. STRESS BIOLOGY 2022; 2:16. [PMID: 37676547 PMCID: PMC10441931 DOI: 10.1007/s44154-022-00039-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 01/31/2022] [Indexed: 09/08/2023]
Abstract
Phosphorus (P) is obtained by plants as phosphate (Pi) from the soil and low Pi levels affects plant growth and development. Adaptation to low Pi condition entails sensing internal and external Pi levels and translating those signals to molecular and morphophysiological changes in the plant. In this review, we present findings related to local and systemin Pi sensing with focus the molecular mechanisms behind root system architectural changes and the impact of hormones and epigenetic mechanisms affecting those changes. We also present some of the recent advances in the Pi sensing and signaling mechanisms focusing on inositol pyrophosphate InsP8 and its interaction with SPX domain proteins to regulate the activity of the central regulator of the Pi starvation response, PHR.
Collapse
Affiliation(s)
- Viswanathan Satheesh
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602 China
| | - Ayesha Tahir
- Department of Biosciences, COMSATS University Islamabad, Park Road, Islamabad, Pakistan
| | - Jinkai Li
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Mingguang Lei
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602 China
| |
Collapse
|
42
|
Li C, You Q, Zhao P. Genome-wide identification and characterization of SPX-domain-containing protein gene family in Solanum lycopersicum. PeerJ 2022; 9:e12689. [PMID: 35036163 PMCID: PMC8710047 DOI: 10.7717/peerj.12689] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 12/03/2021] [Indexed: 01/24/2023] Open
Abstract
The SYG1, PHO81, and XPR1 (SPX) domain is named after the suppressor of yeast gpa1 (Syg1), yeast phosphatase (Pho81) and the human Xenotropic and Polytrophic Retrovirus receptor1 (XPR1). SPX-domain-containing proteins play pivotal roles in maintaining phosphate ions (Pi) homeostasis in plant. This study was to genome-wide identification and analysis of Solanum lycopersicum SPX-domain-containing protein gene family. The Solanum lycopersicum genome contains 19 SPX-domain-containing protein genes. These SPX-domain-containing protein genes were located in seven of the 12 chromosomes. According to the different conserved domains, the proteins encoded by those genes could be divided into four SPX-domain-containing protein families, which included SPX Family, SPX-ERD1/XPR1/SYG1(SPX-EXS) Family, SPX-Major Facilitator Superfamily (SPX-MFS) Family and SPX-Really Interesting New Gene (SPX-RING) Family. Phylogenetic analysis of SPX-domain-containing protein genes in Arabidopsis thaliana, Solanum tuberosum, Capsicum annuum and Solanum lycopersicum classified these genes into eight clades. Expression profiles derived from transcriptome (RNA-seq) data analysis showed 19 SPX-domain-containing protein genes displayed various expression patterns. SPX-domain-containing protein may play different roles in phosphate nutrition of Solanum lycopersicum different tissues and development stages. And, this study can provide the selection of candidate genes for functional research and genome editing in Solanum lycopersicum phosphate ions (Pi) nutrition.
Collapse
Affiliation(s)
- Chunwei Li
- Nanchang Normal University, Nanchang, China
| | - Qiuye You
- Shanghai Center for Plant Stress Biology, Shanghai, China
| | | |
Collapse
|
43
|
Paz-Ares J, Puga MI, Rojas-Triana M, Martinez-Hevia I, Diaz S, Poza-Carrión C, Miñambres M, Leyva A. Plant adaptation to low phosphorus availability: Core signaling, crosstalks, and applied implications. MOLECULAR PLANT 2022; 15:104-124. [PMID: 34954444 DOI: 10.1016/j.molp.2021.12.005] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/11/2021] [Accepted: 12/20/2021] [Indexed: 05/25/2023]
Abstract
Phosphorus (P) is an essential nutrient for plant growth and reproduction. Plants preferentially absorb P as orthophosphate (Pi), an ion that displays low solubility and that is readily fixed in the soil, making P limitation a condition common to many soils and Pi fertilization an inefficient practice. To cope with Pi limitation, plants have evolved a series of developmental and physiological responses, collectively known as the Pi starvation rescue system (PSR), aimed to improve Pi acquisition and use efficiency (PUE) and protect from Pi-starvation-induced stress. Intensive research has been carried out during the last 20 years to unravel the mechanisms underlying the control of the PSR in plants. Here we review the results of this research effort that have led to the identification and characterization of several core Pi starvation signaling components, including sensors, transcription factors, microRNAs (miRNAs) and miRNA inhibitors, kinases, phosphatases, and components of the proteostasis machinery. We also refer to recent results revealing the existence of intricate signaling interplays between Pi and other nutrients and antagonists, N, Fe, Zn, and As, that have changed the initial single-nutrient-centric view to a more integrated view of nutrient homeostasis. Finally, we discuss advances toward improving PUE and future research priorities.
Collapse
Affiliation(s)
- Javier Paz-Ares
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, Campus Universidad Autónoma, 28049 Madrid, Spain.
| | - Maria Isabel Puga
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, Campus Universidad Autónoma, 28049 Madrid, Spain
| | - Monica Rojas-Triana
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, Campus Universidad Autónoma, 28049 Madrid, Spain
| | - Iris Martinez-Hevia
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, Campus Universidad Autónoma, 28049 Madrid, Spain
| | - Sergio Diaz
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, Campus Universidad Autónoma, 28049 Madrid, Spain
| | - Cesar Poza-Carrión
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, Campus Universidad Autónoma, 28049 Madrid, Spain
| | - Miguel Miñambres
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, Campus Universidad Autónoma, 28049 Madrid, Spain
| | - Antonio Leyva
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, Campus Universidad Autónoma, 28049 Madrid, Spain
| |
Collapse
|
44
|
Nezamivand-Chegini M, Ebrahimie E, Tahmasebi A, Moghadam A, Eshghi S, Mohammadi-Dehchesmeh M, Kopriva S, Niazi A. New insights into the evolution of SPX gene family from algae to legumes; a focus on soybean. BMC Genomics 2021; 22:915. [PMID: 34969367 PMCID: PMC8717665 DOI: 10.1186/s12864-021-08242-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 12/09/2021] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND SPX-containing proteins have been known as key players in phosphate signaling and homeostasis. In Arabidopsis and rice, functions of some SPXs have been characterized, but little is known about their function in other plants, especially in the legumes. RESULTS We analyzed SPX gene family evolution in legumes and in a number of key species from algae to angiosperms. We found that SPX harboring proteins showed fluctuations in domain fusions from algae to the angiosperms with, finally, four classes appearing and being retained in the land plants. Despite these fluctuations, Lysine Surface Cluster (KSC), and the third residue of Phosphate Binding Sites (PBS) showed complete conservation in almost all of SPXs except few proteins in Selaginella moellendorffii and Papaver sumniferum, suggesting they might have different ligand preferences. In addition, we found that the WGD/segmentally or dispersed duplication types were the most frequent contributors to the SPX expansion, and that there is a positive correlation between the amount of WGD contribution to the SPX expansion in individual species and its number of EXS genes. We could also reveal that except SPX class genes, other classes lost the collinearity relationships among Arabidopsis and legume genomes. The sub- or neo-functionalization of the duplicated genes in the legumes makes it difficult to find the functional orthologous genes. Therefore, we used two different methods to identify functional orthologs in soybean and Medicago. High variance in the dynamic and spatial expression pattern of GmSPXs proved the new or sub-functionalization in the paralogs. CONCLUSION This comprehensive analysis revealed how SPX gene family evolved from algae to legumes and also discovered several new domains fused to SPX domain in algae. In addition, we hypothesized that there different phosphate sensing mechanisms might occur in S. moellendorffii and P. sumniferum. Finally, we predicted putative functional orthologs of AtSPXs in the legumes, especially, orthologs of AtPHO1, involved in long-distance Pi transportation. These findings help to understand evolution of phosphate signaling and might underpin development of new legume varieties with improved phosphate use efficiency.
Collapse
Affiliation(s)
| | - Esmaeil Ebrahimie
- Institute of biotechnology, Shiraz university, Shiraz, Iran
- La Trobe Genomics Research Platform, School of Life Sciences, College of Science, Health and Engineering, La Trobe University, Melbourne, VIC, 3086, Australia
- School of Animal and Veterinary Sciences, The University of Adelaide, Adelaide, SA, 5371, Australia
| | | | - Ali Moghadam
- Institute of biotechnology, Shiraz university, Shiraz, Iran
| | - Saeid Eshghi
- Department of Horticultural Science, School of Agriculture, Shiraz University, Shiraz, Iran
| | | | - Stanislav Kopriva
- Institute for Plant Sciences, Cluster of Excellence on Plant Sciences, University of Cologne, Cologne, Germany
| | - Ali Niazi
- Institute of biotechnology, Shiraz university, Shiraz, Iran.
| |
Collapse
|
45
|
Wang Z, Kuo HF, Chiou TJ. Intracellular phosphate sensing and regulation of phosphate transport systems in plants. PLANT PHYSIOLOGY 2021; 187:2043-2055. [PMID: 35235674 PMCID: PMC8644344 DOI: 10.1093/plphys/kiab343] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 06/29/2021] [Indexed: 05/04/2023]
Abstract
Recent research on the regulation of cellular phosphate (Pi) homeostasis in eukaryotes has collectively made substantial advances in elucidating inositol pyrophosphates (PP-InsP) as Pi signaling molecules that are perceived by the SPX (Syg1, Pho81, and Xpr1) domains residing in multiple proteins involved in Pi transport and signaling. The PP-InsP-SPX signaling module is evolutionarily conserved across eukaryotes and has been elaborately adopted in plant Pi transport and signaling systems. In this review, we have integrated these advances with prior established knowledge of Pi and PP-InsP metabolism, intracellular Pi sensing, and transcriptional responses according to the dynamics of cellular Pi status in plants. Anticipated challenges and pending questions as well as prospects are also discussed.
Collapse
Affiliation(s)
- Zhengrui Wang
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Hui-Fen Kuo
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Tzyy-Jen Chiou
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan
| |
Collapse
|
46
|
Wang P, Snijders R, Kohlen W, Liu J, Bisseling T, Limpens E. Medicago SPX1 and SPX3 regulate phosphate homeostasis, mycorrhizal colonization, and arbuscule degradation. THE PLANT CELL 2021; 33:3470-3486. [PMID: 34469578 PMCID: PMC8567062 DOI: 10.1093/plcell/koab206] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/12/2021] [Indexed: 05/22/2023]
Abstract
To acquire sufficient mineral nutrients such as phosphate (Pi) from the soil, most plants engage in symbiosis with arbuscular mycorrhizal (AM) fungi. Attracted by plant-secreted strigolactones (SLs), the fungi colonize the roots and form highly branched hyphal structures called arbuscules inside inner cortex cells. The host plant must control the different steps of this interaction to maintain its symbiotic nature. However, how plants sense the amount of Pi obtained from the fungus, and how this determines the arbuscule lifespan, are far from understood. Here, we show that Medicago truncatula SPX-domain containing proteins SPX1 and SPX3 regulate root Pi starvation responses, in part by interacting with PHOSPHATE RESPONSE REGULATOR2, as well as fungal colonization and arbuscule degradation. SPX1 and SPX3 are induced upon Pi starvation but become more restricted to arbuscule-containing cells upon the establishment of symbiosis. This induction in arbuscule-containing cells is associated with the presence of cis-regulatory AW-boxes and transcriptional regulation by the WRINKLED1-like transcription factor WRI5a. Under Pi-limiting conditions, SPX1 and SPX3 facilitate the expression of the SL biosynthesis gene DWARF27, which could help explain the increased fungal branching in response to root exudates. Later, in arbuscule-containing cells, SPX1 and SPX3 redundantly control arbuscule degradation. Thus, SPX proteins play important roles as phosphate sensors to maintain a beneficial AM symbiosis.
Collapse
Affiliation(s)
- Peng Wang
- Laboratory of Molecular Biology, Wageningen University & Research, 6708 PB Wageningen, The Netherlands
| | - Roxane Snijders
- Laboratory of Molecular Biology, Wageningen University & Research, 6708 PB Wageningen, The Netherlands
| | - Wouter Kohlen
- Laboratory of Molecular Biology, Wageningen University & Research, 6708 PB Wageningen, The Netherlands
| | - Jieyu Liu
- Laboratory of Molecular Biology, Wageningen University & Research, 6708 PB Wageningen, The Netherlands
| | - Ton Bisseling
- Laboratory of Molecular Biology, Wageningen University & Research, 6708 PB Wageningen, The Netherlands
| | - Erik Limpens
- Laboratory of Molecular Biology, Wageningen University & Research, 6708 PB Wageningen, The Netherlands
- Author for correspondence:
| |
Collapse
|
47
|
Tian P, Lin Z, Lin D, Dong S, Huang J, Huang T. The pattern of DNA methylation alteration, and its association with the changes of gene expression and alternative splicing during phosphate starvation in tomato. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 108:841-858. [PMID: 34492142 DOI: 10.1111/tpj.15486] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 09/02/2021] [Indexed: 05/20/2023]
Abstract
DNA methylation is changed and associates with gene expression alterations in plant response to phosphate starvation (Pi-), a common stress that impacts plant growth and productivity. However, in the horticultural model species Solanum lycopersicum (tomato), the dynamics of DNA methylation and its relationship with changes in gene transcription and alternative splicing (AS) under Pi- are unknown. Here, we performed integrative methylome and transcriptome analyses of tomato seedlings under Pi-deficient and -sufficient conditions. We found Pi- caused a slight increase in the overall methylation level, with millions of differentially methylated cytosines (DmCs) and a few hundred differentially methylated regions (DMRs). We also identified thousands of differentially expressed (DE) and differential AS (DAS) genes induced by Pi-, and found that DmCs were more abundant in non-expressed genes than in DE or DAS genes. Moreover, DNA methylation alterations weakly correlated with transcription changes but not with DAS events, and hyper-CHH-DMRs overlapping with transposable elements (TEs) were enriched in a subset of Pi starvation response (PSR) genes. We propose that changes in DNA methylation may be associated with the differential expression of some PSR genes, but that most of these changes probably control the expression of nearby TEs, rather than directly affecting the transcription or AS of PSR genes. Besides, the pattern of methylation changes upon Pi- may largely be shaped by TE distributions. Together, our study provides comprehensive insights into the association of DNA methylation with gene transcription and AS under Pi- in tomato and may contribute to unveiling novel roles of epigenetic mechanisms in plant stress response.
Collapse
Affiliation(s)
- Peng Tian
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, 518060, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Zeteng Lin
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Dongbo Lin
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, 518060, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Shuangyu Dong
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, 518060, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Jianzi Huang
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Tengbo Huang
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, 518060, China
| |
Collapse
|
48
|
Jost R. How sensing arsenite helps plants survive on toxic soils. MOLECULAR PLANT 2021; 14:1424-1426. [PMID: 34216832 DOI: 10.1016/j.molp.2021.06.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 06/27/2021] [Accepted: 06/30/2021] [Indexed: 06/13/2023]
Affiliation(s)
- Ricarda Jost
- Department of Animal, Plant and Soil Sciences, Australian Research Council Centre of Excellence in Plant Energy Biology, Australian Research HUB for Medicinal Agriculture, La Trobe Institute for Agriculture and Food (LIAF), La Trobe University, Bundoora, VIC, Australia.
| |
Collapse
|
49
|
Isidra-Arellano MC, Delaux PM, Valdés-López O. The Phosphate Starvation Response System: Its Role in the Regulation of Plant-Microbe Interactions. PLANT & CELL PHYSIOLOGY 2021; 62:392-400. [PMID: 33515263 DOI: 10.1093/pcp/pcab016] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 01/21/2021] [Indexed: 06/12/2023]
Abstract
Phosphate (Pi) deficiency is a major factor limiting plant productivity worldwide. Land plants have evolved different strategies to cope with Pi deficiency. For instance, plants activate the so-called Pi starvation response (PSR) system, which is regulated by the transcription factor Phosphate Starvation Response1 (PHR1), to adjust plant growth and metabolic activity accordingly. Additionally, land plants can also establish mutualistic associations with soil microbes able to solubilize Pi from plant-inaccessible soil complexes and to transfer it to the host plant. A growing body of evidence indicates that PHR1 and the PSR system not only regulate the plant responses to Pi deficiency in an abiotic context, but they are also crucial for plants to properly interact with beneficial soil microbes able to provide them with soluble Pi. Recent evidence indicates that PHR1 and the PSR system contribute to shaping the plant-associated microbiota through the modulation of the plant immune system. The PSR and immune system outputs are tightly integrated by PHR1. Here, we review how plant host Pi status influences the establishment of the mutualistic association with soil microbes. We also highlight the role of PHR1 and the PSR system in shaping both the root microbiome and plant responses to Pi deficiency.
Collapse
Affiliation(s)
- Mariel C Isidra-Arellano
- Laboratorio de Gen�mica Funcional de Leguminosas, Facultad de Estudios Superiores Iztacala, Universidad Nacional Aut�noma de M�xico, Tlalnepantla, Estado de M�xico, 54090, M�xico
- Posgrado en Ciencias Biol�gicas, Universidad Nacional Aut�noma de M�xico, Coyoacan, M�xico City, 04510, M�xico
| | - Pierre-Marc Delaux
- Laboratoire de Recherche en Sciences V�g�tales (LRSV), Universit� de Toulouse, CNRS, UPS Castanet Tolosan, France
| | - Oswaldo Valdés-López
- Laboratorio de Gen�mica Funcional de Leguminosas, Facultad de Estudios Superiores Iztacala, Universidad Nacional Aut�noma de M�xico, Tlalnepantla, Estado de M�xico, 54090, M�xico
| |
Collapse
|
50
|
He Y, Zhang X, Li L, Sun Z, Li J, Chen X, Hong G. SPX4 interacts with both PHR1 and PAP1 to regulate critical steps in phosphorus-status-dependent anthocyanin biosynthesis. THE NEW PHYTOLOGIST 2021; 230:205-217. [PMID: 33617039 DOI: 10.1111/nph.17139] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 11/28/2020] [Indexed: 05/14/2023]
Abstract
Phosphate (Pi) is the plant-accessible form of phosphorus, and its insufficiency limits plant growth. The over-accumulation of anthocyanins in plants is often an indication of Pi starvation. However, whether the two pathways are directly linked and which components are involved in this process await identification. Here, we demonstrate that SPX4, a conserved regulator of the Pi response, transduces the Pi starvation signal to anthocyanin biosynthesis in Arabidopsis. When phr1spx4 plants were grown under low Pi conditions, DFR expression and anthocyanin biosynthesis were induced, which distinguished the plant from the behavior reported in the phr1 mutant. We also provide evidence that SPX4 interacts with PAP1, an MYB transcription factor that controls the anthocyanin biosynthetic pathway, in an inositol polyphosphate-dependent manner. Through a physical interaction, SPX4 prevented PAP1 from binding to its target gene promoter; by contrast, during Pi-deficient conditions, in the absence of inositol polyphosphates, PAP1 was released from SPX to activate anthocyanin biosynthesis. Our results reveal a direct link between Pi deficiency and flavonoid metabolism. This new regulatory module, at least partially independent from PHR1, may contribute to developing a strategy for plants to adapt to Pi starvation.
Collapse
Affiliation(s)
- Yuqing He
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, 198 Shiqiao Road, Hangzhou, 310021, China
| | - Xueying Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, 198 Shiqiao Road, Hangzhou, 310021, China
| | - Linying Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, 198 Shiqiao Road, Hangzhou, 310021, China
| | - Zongtao Sun
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, 198 Shiqiao Road, Hangzhou, 310021, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Junmin Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, 198 Shiqiao Road, Hangzhou, 310021, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Xiaoya Chen
- National Key Laboratory of Plant Molecular Genetics and National Plant Gene Research Center, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai, 200032, China
| | - Gaojie Hong
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, 198 Shiqiao Road, Hangzhou, 310021, China
| |
Collapse
|