1
|
Sun H, Schmidt N, Lawson T, Hagemann M, Timm S. Guard cell-specific glycine decarboxylase manipulation affects Arabidopsis photosynthesis, growth and stomatal behavior. THE NEW PHYTOLOGIST 2025. [PMID: 40219652 DOI: 10.1111/nph.70124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Accepted: 03/18/2025] [Indexed: 04/14/2025]
Abstract
Photorespiration is a mandatory metabolic repair shunt of carbon fixation by the Calvin-Benson cycle in oxygenic phototrophs. Its extent depends mainly on the CO2 : O2 ratio in chloroplasts, which is regulated via stomatal movements. Despite a comprehensive understanding of the role of photorespiration in mesophyll cells, its role in guard cells (GC) is unknown. Therefore, a key enzyme of photorespiration, glycine decarboxylase (GDC), was specifically manipulated by varying glycine decarboxylase H-protein (GDC-H) expression in Arabidopsis GC. Multiple approaches were used to analyze the transgenic lines growth, their gas exchange and Chl fluorescence, alongside metabolomics and microscopic approaches. We observed a positive correlation of GC GDC-H expression with growth, photosynthesis and carbohydrate biosynthesis, suggesting photorespiration is involved in stomatal regulation. Gas exchange measurements support this view, as optimized GC photorespiration improved plant acclimation toward conditions requiring a high photorespiratory capacity. Microscopic analysis revealed that altered photorespiratory flux also affected GC starch accumulation patterns, eventually serving as an underlying mechanism for altered stomatal behavior. Collectively, our data suggest photorespiration is involved in the regulatory circuit that coordinates stomatal movements with CO2 availability. Thus, the manipulation of photorespiration in GC has the potential to engineer crops maintaining growth and photosynthesis under future climates.
Collapse
Affiliation(s)
- Hu Sun
- Plant Physiology Department, University of Rostock, Albert-Einstein-Straße 3, D-18059, Rostock, Germany
| | - Nils Schmidt
- Plant Physiology Department, University of Rostock, Albert-Einstein-Straße 3, D-18059, Rostock, Germany
| | - Tracy Lawson
- University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK
| | - Martin Hagemann
- Plant Physiology Department, University of Rostock, Albert-Einstein-Straße 3, D-18059, Rostock, Germany
| | - Stefan Timm
- Plant Physiology Department, University of Rostock, Albert-Einstein-Straße 3, D-18059, Rostock, Germany
| |
Collapse
|
2
|
Wiesenthal AA, Timm S, Sokolova IM. Osmotolerance reflected in mitochondrial respiration of Mytilus populations from three different habitat salinities. MARINE ENVIRONMENTAL RESEARCH 2025; 205:106968. [PMID: 39883997 DOI: 10.1016/j.marenvres.2025.106968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 01/13/2025] [Accepted: 01/15/2025] [Indexed: 02/01/2025]
Abstract
Mussels from the Mytilus edulis species complex experience a salinity gradient from the North Sea into the Baltic Proper ranging from 32 to 5. As osmoconformers, they adjust their internal osmolarity to match that of their surroundings, which presents a significant challenge to the metabolic machinery, including their mitochondria. We hypothesized that the osmotic optima for the mitochondrial function of mussels matches the prevailing habitat salinity and is accompanied by a population specific metabolite profile. To test this hypothesis, mussels from three populations along the salinity gradient were assessed. We found a population specific shift in the optimal osmolarities for maximal mitochondrial respiration capacity that mirrored the populations' habitat salinity. So, mitochondria from North Sea mussels reached their highest capacity at higher osmotic concentrations than their Baltic Sea congeners. Additionally, Baltic Sea populations appear to have traded off an adaptation to low salinities for a narrower mitochondrial tolerance range resulting in a more specialized mitochondrial phenotype, while North Sea populations have mitochondria with a more general functioning phenotype. The local adaptation to a low salinity habitat was supported by the analysis of gill tissue metabolites via LC-MS/MS. Abundances of metabolites involved in energy generation, osmotic homeostasis or the urea cycle were similar between North Sea and southern Baltic Sea mussels, while northern Baltic Sea mussels seem to follow a different metabolic strategy, which may allow them to inhabit very low salinities. Thus, northern Baltic Sea mussels have adapted to low salinities on a mitochondrial and metabolic level.
Collapse
Affiliation(s)
- Amanda A Wiesenthal
- Marine Biology, Institute for Biological Sciences, University of Rostock, Albert-Einstein-Strasse 3, D - 18059, Rostock, Germany.
| | - Stefan Timm
- Plant Physiology Department, University of Rostock, Albert-Einstein-Strasse 3, D-18059, Rostock, Germany
| | - Inna M Sokolova
- Marine Biology, Institute for Biological Sciences, University of Rostock, Albert-Einstein-Strasse 3, D - 18059, Rostock, Germany; Department of Maritime Systems, Interdisciplinary Faculty, University of Rostock, Albert-Einstein-Strasse 21, D-18059, Rostock, Germany
| |
Collapse
|
3
|
Timm S, Klaas N, Niemann J, Jahnke K, Alseekh S, Zhang Y, Souza PVL, Hou LY, Cosse M, Selinski J, Geigenberger P, Daloso DM, Fernie AR, Hagemann M. Thioredoxins o1 and h2 jointly adjust mitochondrial dihydrolipoamide dehydrogenase-dependent pathways towards changing environments. PLANT, CELL & ENVIRONMENT 2024; 47:2542-2560. [PMID: 38518065 DOI: 10.1111/pce.14899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 03/11/2024] [Accepted: 03/13/2024] [Indexed: 03/24/2024]
Abstract
Thioredoxins (TRXs) are central to redox regulation, modulating enzyme activities to adapt metabolism to environmental changes. Previous research emphasized mitochondrial and microsomal TRX o1 and h2 influence on mitochondrial metabolism, including photorespiration and the tricarboxylic acid (TCA) cycle. Our study aimed to compare TRX-based regulation circuits towards environmental cues mainly affecting photorespiration. Metabolite snapshots, phenotypes and CO2 assimilation were compared among single and multiple TRX mutants in the wild-type and the glycine decarboxylase T-protein knockdown (gldt1) background. Our analyses provided evidence for additive negative effects of combined TRX o1 and h2 deficiency on growth and photosynthesis. Especially metabolite accumulation patterns suggest a shared regulation mechanism mainly on mitochondrial dihydrolipoamide dehydrogenase (mtLPD1)-dependent pathways. Quantification of pyridine nucleotides, in conjunction with 13C-labelling approaches, and biochemical analysis of recombinant mtLPD1 supported this. It also revealed mtLPD1 inhibition by NADH, pointing at an additional measure to fine-tune it's activity. Collectively, we propose that lack of TRX o1 and h2 perturbs the mitochondrial redox state, which impacts on other pathways through shifts in the NADH/NAD+ ratio via mtLPD1. This regulation module might represent a node for simultaneous adjustments of photorespiration, the TCA cycle and branched chain amino acid degradation under fluctuating environmental conditions.
Collapse
Affiliation(s)
- Stefan Timm
- Plant Physiology Department, University of Rostock, Rostock, Germany
| | - Nicole Klaas
- Plant Physiology Department, University of Rostock, Rostock, Germany
| | - Janice Niemann
- Plant Physiology Department, University of Rostock, Rostock, Germany
| | - Kathrin Jahnke
- Plant Physiology Department, University of Rostock, Rostock, Germany
| | - Saleh Alseekh
- Max Planck Institute of Molecular Plant Physiology, Golm, Germany
| | - Youjun Zhang
- Max Planck Institute of Molecular Plant Physiology, Golm, Germany
- Center of Plant System Biology and Biotechnology, Plovdiv, Bulgaria
| | - Paulo V L Souza
- LabPlant, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, Brazil
| | - Liang-Yu Hou
- Department Biology I, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Maike Cosse
- Department of Plant Cell Biology, Botanical Institute, Christian-Albrechts University Kiel, Kiel, Germany
| | - Jennifer Selinski
- Department of Plant Cell Biology, Botanical Institute, Christian-Albrechts University Kiel, Kiel, Germany
| | - Peter Geigenberger
- Department Biology I, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| | - Danilo M Daloso
- LabPlant, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, Brazil
| | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, Golm, Germany
- Center of Plant System Biology and Biotechnology, Plovdiv, Bulgaria
| | - Martin Hagemann
- Plant Physiology Department, University of Rostock, Rostock, Germany
| |
Collapse
|
4
|
Kraus A, Spät P, Timm S, Wilson A, Schumann R, Hagemann M, Maček B, Hess WR. Protein NirP1 regulates nitrite reductase and nitrite excretion in cyanobacteria. Nat Commun 2024; 15:1911. [PMID: 38429292 PMCID: PMC10907346 DOI: 10.1038/s41467-024-46253-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 02/19/2024] [Indexed: 03/03/2024] Open
Abstract
When the supply of inorganic carbon is limiting, photosynthetic cyanobacteria excrete nitrite, a toxic intermediate in the ammonia assimilation pathway from nitrate. It has been hypothesized that the excreted nitrite represents excess nitrogen that cannot be further assimilated due to the missing carbon, but the underlying molecular mechanisms are unclear. Here, we identified a protein that interacts with nitrite reductase, regulates nitrogen metabolism and promotes nitrite excretion. The protein, which we named NirP1, is encoded by an unannotated gene that is upregulated under low carbon conditions and controlled by transcription factor NtcA, a central regulator of nitrogen homeostasis. Ectopic overexpression of nirP1 in Synechocystis sp. PCC 6803 resulted in a chlorotic phenotype, delayed growth, severe changes in amino acid pools, and nitrite excretion. Coimmunoprecipitation experiments indicated that NirP1 interacts with nitrite reductase, a central enzyme in the assimilation of ammonia from nitrate/nitrite. Our results reveal that NirP1 is widely conserved in cyanobacteria and plays a crucial role in the coordination of C/N primary metabolism by targeting nitrite reductase.
Collapse
Affiliation(s)
- Alexander Kraus
- Genetics and Experimental Bioinformatics, Faculty of Biology, Freiburg University, D-79104, Freiburg, Germany
| | - Philipp Spät
- Department of Quantitative Proteomics, Interfaculty Institute for Cell Biology, University of Tübingen, D-72076, Tübingen, Germany
| | - Stefan Timm
- Plant Physiology Department, Institute of Biosciences, University of Rostock, D-18059, Rostock, Germany
| | - Amy Wilson
- Genetics and Experimental Bioinformatics, Faculty of Biology, Freiburg University, D-79104, Freiburg, Germany
| | - Rhena Schumann
- Biological Station Zingst, University of Rostock, D-18374, Zingst, Germany
| | - Martin Hagemann
- Plant Physiology Department, Institute of Biosciences, University of Rostock, D-18059, Rostock, Germany
| | - Boris Maček
- Department of Quantitative Proteomics, Interfaculty Institute for Cell Biology, University of Tübingen, D-72076, Tübingen, Germany
| | - Wolfgang R Hess
- Genetics and Experimental Bioinformatics, Faculty of Biology, Freiburg University, D-79104, Freiburg, Germany.
| |
Collapse
|
5
|
Timm S, Jahnke K, Cosse M, Selinski J. Mitochondrial Dihydrolipoamide Dehydrogenase (mtLPD1): Expression, Purification, Activity, and Redox Regulation. Methods Mol Biol 2024; 2792:51-75. [PMID: 38861078 DOI: 10.1007/978-1-0716-3802-6_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Mitochondrial dihydrolipoamide dehydrogenase (mtLPD1) is a central enzyme in primary carbon metabolism, since its function is required to drive four multienzymes involved in photorespiration, the tricarboxylic acid (TCA) cycle, and the degradation of branched-chain amino acids. However, in illuminated, photosynthesizing tissue a vast amount of mtLPD1 is necessary for glycine decarboxylase (GDC), the key enzyme of photorespiration. In light of the shared role, the functional characterization of mtLPD1 is necessary to understand how the three pathways might interact under different environmental scenarios. This includes the determination of the biochemical properties and all potential regulatory mechanisms, respectively. With regards to the latter, regulation can occur through multiple levels including effector molecules, cofactor availability, or posttranslational modifications (PTM), which in turn decrease or increase the activity of each enzymatic reaction. Gaining a comprehensive overview on all these aspects would ultimately facilitate the interpretation of the metabolic interplay of the pathways within the whole subcellular network or even function as a proof of concept for genetic engineering approaches. Here, we describe the typical workflow how to clone, express, and purify plant mtLPD1 for biochemical characterization and how to analyze potential redox regulatory mechanisms in vitro and in planta.
Collapse
Affiliation(s)
- Stefan Timm
- Plant Physiology Department, University of Rostock, Rostock, Germany.
| | - Kathrin Jahnke
- Plant Physiology Department, University of Rostock, Rostock, Germany
| | - Maike Cosse
- Department of Plant Cell Biology, Botanical Institute, Christian-Albrechts University Kiel, Kiel, Germany
| | - Jennifer Selinski
- Department of Plant Cell Biology, Botanical Institute, Christian-Albrechts University Kiel, Kiel, Germany.
| |
Collapse
|
6
|
Heß D, Heise CM, Schubert H, Hess WR, Hagemann M. The impact of salt stress on the physiology and the transcriptome of the model streptophyte green alga Chara braunii. PHYSIOLOGIA PLANTARUM 2023; 175:e14123. [PMID: 38148211 DOI: 10.1111/ppl.14123] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/29/2023] [Accepted: 12/05/2023] [Indexed: 12/28/2023]
Abstract
Chara braunii is a model for early land plant evolution and terrestrialization. Salt stress has a profound effect on water and ion transport activities, thereby interacting with many other processes, including inorganic carbon acquisition for photosynthesis. In this study, we analyzed the impact of salt stress (5 practical salt units, PSU) on the physiology and gene expression in C. braunii. Photosynthesis was only slightly affected 6 h after salt addition and returned to control levels after 48 h. Several organic compounds such as proline, glutamate, sucrose, and 2-aminobutyrate accumulated in salt-treated thalli and might contribute to osmotic potential acclimation, whereas the amount of K+ decreased. We quantified transcript levels for 17,387 genes, of which 95 were up-regulated and 44 down-regulated after salt addition. Genes encoding proteins of the functional groups ion/solute transport and cell wall synthesis/modulation were enriched among the up-regulated genes 24-48 h after salt stress, indicating their role in osmotic acclimation. However, a homolog to land plant ERD4 osmosensors was transiently upregulated after 6 h, and phylogenetic analyses suggested that these sensors evolved in Charophyceae. Down-regulated genes were mainly related to photosynthesis and carbon metabolism/fixation, consistent with the observed lowered growth after extended cultivation. The changed expression of genes encoding proteins for inorganic carbon acquisition might be related to the impact of salt on ionic relations and inorganic carbon uptake. The results indicate that C. braunii can tolerate enhanced salt concentrations in a defined acclimation process, including distinct gene expression changes to achieve new metabolic homeostasis.
Collapse
Affiliation(s)
- Daniel Heß
- Genetics and Experimental Bioinformatics Group, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Carolin M Heise
- Plant Physiology Department, Faculty of Mathematics and Natural Sciences, University of Rostock, Rostock, Germany
- Aquatic Ecology Department, Faculty of Mathematics and Natural Sciences, University of Rostock, Rostock, Germany
| | - Hendrik Schubert
- Aquatic Ecology Department, Faculty of Mathematics and Natural Sciences, University of Rostock, Rostock, Germany
| | - Wolfgang R Hess
- Genetics and Experimental Bioinformatics Group, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Martin Hagemann
- Plant Physiology Department, Faculty of Mathematics and Natural Sciences, University of Rostock, Rostock, Germany
| |
Collapse
|
7
|
Sousa RH, Carvalho FE, Daloso DM, Lima-Melo Y, Margis-Pinheiro M, Komatsu S, Silveira JA. Impairment in photosynthesis induced by CAT inhibition depends on the intensity of photorespiration and peroxisomal APX expression in rice. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 203:108066. [PMID: 37797384 DOI: 10.1016/j.plaphy.2023.108066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/12/2023] [Accepted: 09/28/2023] [Indexed: 10/07/2023]
Abstract
We have previously shown that rice plants silenced for peroxisomal ascorbate peroxidase (OsAPX4-RNAi) display higher resilience to photosynthesis under oxidative stress and photorespiratory conditions. However, the redox mechanisms underlying that intriguing response remain unknown. Here, we tested the hypothesis that favorable effects triggered by peroxisomal APX deficiency on photosynthesis resilience under CAT inhibition are dependent on the intensity of photorespiration associated with the abundance of photosynthetic and redox proteins. Non-transformed (NT) and OsAPX4-RNAi silenced rice plants were grown under ambient (AC) or high CO2 (HC) conditions and subjected to 3-amino-1,2,4-triazole (3-AT)-mediated CAT activity inhibition. Photosynthetic measurements evidenced that OsAPX4-RNAi plants simultaneously exposed to CAT inhibition and HC lost the previously acquired advantage in photosynthesis resilience displayed under AC. Silenced plants exposed to environment photorespiration and CAT inhibition presented lower photorespiration as indicated by smaller Gly/Ser and Jo/Jc ratios and glycolate oxidase activity. Interestingly, when these silenced plants were exposed to HC and CAT-inhibition, they exhibited an inverse response compared to AC in terms of photorespiration indicators, associated with higher accumulation of proteins. Multivariate and correlation network analyses suggest that the proteomics changes induced by HC combined with CAT inhibition are substantially different between NT and OsAPX4-RNAi plants. Our results suggest that the intensity of photorespiration and peroxisomal APX-mediated redox signaling are tightly regulated under CAT inhibition induced oxidative stress, which can modulate the photosynthetic efficiency, possibly via a coordinated regulation of protein abundance and rearrangement, ultimately triggered by crosstalk involving H2O2 levels related to CAT and APX activities in peroxisomes.
Collapse
Affiliation(s)
- Rachel Hv Sousa
- Center of Agricultural Sciences and Biodiversity, Federal University of Cariri, Brazil
| | - Fabricio El Carvalho
- Colombian Corporation for Agricultural Research (AGROSAVIA), CI La Suiza, Rionegro, Colombia
| | - Danilo M Daloso
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Yugo Lima-Melo
- Department of Botany, Federal University of Rio Grande Do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Marcia Margis-Pinheiro
- Department of Genetics, Federal University of Rio Grande Do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Setsuko Komatsu
- Faculty of Environmental and Information Sciences, Fukui University of Technology, Fukui, Japan
| | - Joaquim Ag Silveira
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Ceará, Brazil.
| |
Collapse
|
8
|
Xu Z, Guo W, Mo B, Pan Q, Lu J, Wang Z, Peng X, Zhang Z. Mitogen-activated protein kinase 2 specifically regulates photorespiration in rice. PLANT PHYSIOLOGY 2023; 193:1381-1394. [PMID: 37437116 DOI: 10.1093/plphys/kiad413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 06/22/2023] [Accepted: 06/22/2023] [Indexed: 07/14/2023]
Abstract
Photorespiration begins with the oxygenation reaction catalyzed by Rubisco and is the second highest metabolic flux in plants after photosynthesis. Although the core biochemical pathway of photorespiration has been well characterized, little is known about the underlying regulatory mechanisms. Some rate-limiting regulation of photorespiration has been suggested to occur at both the transcriptional and posttranslational levels, but experimental evidence is scarce. Here, we found that mitogen-activated protein kinase 2 (MAPK2) interacts with photorespiratory glycolate oxidase and hydroxypyruvate reductase, and the activities of these photorespiratory enzymes were regulated via phosphorylation modifications in rice (Oryza sativa L.). Gas exchange measurements revealed that the photorespiration rate decreased in rice mapk2 mutants under normal growth conditions, without disturbing photosynthesis. Due to decreased photorespiration, the levels of some key photorespiratory metabolites, such as 2-phosphoglycolate, glycine, and glycerate, significantly decreased in mapk2 mutants, but those of photosynthetic metabolites were not altered. Transcriptome assays also revealed that the expression levels of some flux-controlling genes in photorespiration were significantly downregulated in mapk2 mutants. Our findings provide molecular evidence for the association between MAPK2 and photorespiration and suggest that MAPK2 regulates the key enzymes of photorespiration at both the transcriptional and posttranslational phosphorylation levels in rice.
Collapse
Affiliation(s)
- Zheng Xu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Weidong Guo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Benqi Mo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Qing Pan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Jiatian Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Ziwei Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Xinxiang Peng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou 510642, China
| | - Zhisheng Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
9
|
Böhm J, Kauss K, Michl K, Engelhardt L, Brouwer EM, Hagemann M. Impact of the carbon flux regulator protein pirC on ethanol production in engineered cyanobacteria. Front Microbiol 2023; 14:1238737. [PMID: 37649635 PMCID: PMC10465007 DOI: 10.3389/fmicb.2023.1238737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 08/04/2023] [Indexed: 09/01/2023] Open
Abstract
Future sustainable energy production can be achieved using mass cultures of photoautotrophic microorganisms such as cyanobacteria, which are engineered to synthesize valuable products directly from CO2 and sunlight. For example, strains of the model organism Synechocystis sp. PCC 6803 have been generated to produce ethanol. Here, we performed a study to prove the hypothesis that carbon flux in the direction of pyruvate is one bottleneck to achieve high ethanol titers in cyanobacteria. Ethanol-producing strains of the cyanobacterium Synechocystis sp. PCC 6803 were generated that bear mutation in the gene pirC aiming to increase carbon flux towards pyruvate. The strains were cultivated at different nitrogen or carbon conditions and the ethanol production was analysed. Generally, a clear correlation between growth rate and ethanol production was found. The mutation of pirC, however, had only a positive impact on ethanol titers under nitrogen depletion. The increase in ethanol was accompanied by elevated pyruvate and lowered glycogen levels indicating that the absence of pirC indeed increased carbon partitioning towards lower glycolysis. Metabolome analysis revealed that this change in carbon flow had also a marked impact on the overall primary metabolism in Synechocystis sp. PCC 6803. Deletion of pirC improved ethanol production under specific conditions supporting the notion that a better understanding of regulatory mechanisms involved in cyanobacterial carbon partitioning is needed to engineer more productive cyanobacterial strains.
Collapse
Affiliation(s)
- Julien Böhm
- Department Plant Physiology, Institute of Biosciences, University of Rostock, Rostock, Germany
- Department Aquatic Ecology, Institute of Biosciences, University of Rostock, Rostock, Germany
| | - Karsten Kauss
- Department Plant Physiology, Institute of Biosciences, University of Rostock, Rostock, Germany
| | - Klaudia Michl
- Department Plant Physiology, Institute of Biosciences, University of Rostock, Rostock, Germany
| | - Lisa Engelhardt
- Department Microbiology, Institute of Biosciences, University of Rostock, Rostock, Germany
| | - Eva-Maria Brouwer
- Department Plant Physiology, Institute of Biosciences, University of Rostock, Rostock, Germany
| | - Martin Hagemann
- Department Plant Physiology, Institute of Biosciences, University of Rostock, Rostock, Germany
| |
Collapse
|
10
|
Souza PVL, Hou LY, Sun H, Poeker L, Lehman M, Bahadar H, Domingues-Junior AP, Dard A, Bariat L, Reichheld JP, Silveira JAG, Fernie AR, Timm S, Geigenberger P, Daloso DM. Plant NADPH-dependent thioredoxin reductases are crucial for the metabolism of sink leaves and plant acclimation to elevated CO 2. PLANT, CELL & ENVIRONMENT 2023. [PMID: 37267089 DOI: 10.1111/pce.14631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 05/05/2023] [Accepted: 05/13/2023] [Indexed: 06/04/2023]
Abstract
Plants contain three NADPH-thioredoxin reductases (NTR) located in the cytosol/mitochondria (NTRA/B) and the plastid (NTRC) with important metabolic functions. However, mutants deficient in all NTRs remained to be investigated. Here, we generated and characterised the triple Arabidopsis ntrabc mutant alongside with ntrc single and ntrab double mutants under different environmental conditions. Both ntrc and ntrabc mutants showed reduced growth and substantial metabolic alterations, especially in sink leaves and under high CO2 (HC), as compared to the wild type. However, ntrabc showed higher effective quantum yield of PSII under both constant and fluctuating light conditions, altered redox states of NADH/NAD+ and glutathione (GSH/GSSG) and lower potential quantum yield of PSII in sink leaves in ambient but not high CO2 concentrations, as compared to ntrc, suggesting a functional interaction between chloroplastic and extra-chloroplastic NTRs in photosynthesis regulation depending on leaf development and environmental conditions. Our results unveil a previously unknown role of the NTR system in regulating sink leaf metabolism and plant acclimation to HC, while it is not affecting full plant development, indicating that the lack of the NTR system can be compensated, at least to some extent, by other redox mechanisms.
Collapse
Affiliation(s)
- Paulo V L Souza
- LabPlant, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, Brazil
| | - Liang-Yu Hou
- Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| | - Hu Sun
- University of Rostock, Rostock, Germany
| | - Louis Poeker
- Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| | - Martin Lehman
- Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| | - Humaira Bahadar
- LabPlant, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, Brazil
| | | | - Avilien Dard
- Laboratoire Génome et Développement des Plantes, Unité Mixte de Recherche 5096, Centre National de la Recherche Scientifique, Université de Perpignan Via Domitia, Perpignan, France
| | - Laetitia Bariat
- Laboratoire Génome et Développement des Plantes, Unité Mixte de Recherche 5096, Centre National de la Recherche Scientifique, Université de Perpignan Via Domitia, Perpignan, France
| | - Jean-Philippe Reichheld
- Laboratoire Génome et Développement des Plantes, Unité Mixte de Recherche 5096, Centre National de la Recherche Scientifique, Université de Perpignan Via Domitia, Perpignan, France
| | | | | | | | | | - Danilo M Daloso
- LabPlant, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, Brazil
| |
Collapse
|
11
|
Dahmani I, Qin K, Zhang Y, Fernie AR. The formation and function of plant metabolons. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 114:1080-1092. [PMID: 36906885 DOI: 10.1111/tpj.16179] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/26/2023] [Accepted: 03/06/2023] [Indexed: 05/31/2023]
Abstract
Metabolons are temporary structural-functional complexes of sequential enzymes of a metabolic pathway that are distinct from stable multi-enzyme complexes. Here we provide a brief history of the study of enzyme-enzyme assemblies with a particular focus on those that mediate substrate channeling in plants. Large numbers of protein complexes have been proposed for both primary and secondary metabolic pathways in plants. However, to date only four substrate channels have been demonstrated. We provide an overview of current knowledge concerning these four metabolons and explain the methodologies that are currently being applied to unravel their functions. Although the assembly of metabolons has been documented to arise through diverse mechanisms, the physical interaction within the characterized plant metabolons all appear to be driven by interaction with structural elements of the cell. We therefore pose the question as to what methodologies could be brought to bear to enhance our knowledge of plant metabolons that assemble via different mechanisms? In addressing this question, we review recent findings in non-plant systems concerning liquid droplet phase separation and enzyme chemotaxis and propose strategies via which such metabolons could be identified in plants. We additionally discuss the possibilities that could be opened up by novel approaches based on: (i) subcellular-level mass spectral imaging, (ii) proteomics, and (iii) emergent methods in structural and computational biology.
Collapse
Affiliation(s)
- Ismail Dahmani
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Kezhen Qin
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Youjun Zhang
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
- Center of Plant System Biology and Biotechnology, 4000, Plovdiv, Bulgaria
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
- Center of Plant System Biology and Biotechnology, 4000, Plovdiv, Bulgaria
| |
Collapse
|
12
|
Suzuki S, Tanaka D, Miyagi A, Takahara K, Kono M, Noguchi K, Ishikawa T, Nagano M, Yamaguchi M, Kawai-Yamada M. Loss of peroxisomal NAD kinase 3 (NADK3) affects photorespiration metabolism in Arabidopsis. JOURNAL OF PLANT PHYSIOLOGY 2023; 283:153950. [PMID: 36889102 DOI: 10.1016/j.jplph.2023.153950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 01/22/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Nicotinamide adenine dinucleotides (NAD+ and NADP+) are electron mediators involved in various metabolic pathways. NADP(H) are produced by NAD kinase (NADK) through the phosphorylation of NAD(H). The Arabidopsis NADK3 (AtNADK3) is reported to preferentially phosphorylate NADH to NADPH and is localized in the peroxisome. To elucidate the biological function of AtNADK3 in Arabidopsis, we compared metabolites of nadk1, nadk2 and nadk3 Arabidopsis T-DNA inserted mutants. Metabolome analysis revealed that glycine and serine, which are intermediate metabolites of photorespiration, both increased in the nadk3 mutants. Plants grown for 6 weeks under short-day conditions showed increased NAD(H), indicating a decrease in the phosphorylation ratio in the NAD(P)(H) equilibrium. Furthermore, high CO2 (0.15%) treatment induced a decrease in glycine and serine in nadk3 mutants. The nadk3 showed a significant decrease in post-illumination CO2 burst, suggesting that the photorespiratory flux was disrupted in the nadk3 mutant. In addition, an increase in CO2 compensation points and a decrease in CO2 assimilation rate were observed in the nadk3 mutants. These results indicate that the lack of AtNADK3 causes a disruption in the intracellular metabolism, such as in amino acid synthesis and photorespiration.
Collapse
Affiliation(s)
- Shota Suzuki
- Graduate School of Science and Engineering, Saitama University, 225 Shimo-Okubo, Sakura-ku, Saitama-city, Saitama, 338-8570, Japan
| | - Daimu Tanaka
- Graduate School of Science and Engineering, Saitama University, 225 Shimo-Okubo, Sakura-ku, Saitama-city, Saitama, 338-8570, Japan
| | - Atsuko Miyagi
- Graduate School of Science and Engineering, Saitama University, 225 Shimo-Okubo, Sakura-ku, Saitama-city, Saitama, 338-8570, Japan; Faculty of Agriculture, Yamagata University, 1-23 Wakaba-machi, Tsuruoka, Yamagata, 997-8555, Japan
| | - Kentaro Takahara
- Institute of Molecular and Cellular Biosciences, the University of Tokyo, Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan
| | - Masaru Kono
- Graduate School of Science, the University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Ko Noguchi
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1, Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| | - Toshiki Ishikawa
- Graduate School of Science and Engineering, Saitama University, 225 Shimo-Okubo, Sakura-ku, Saitama-city, Saitama, 338-8570, Japan
| | - Minoru Nagano
- College of Life Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga, 525-8577, Japan
| | - Masatoshi Yamaguchi
- Graduate School of Science and Engineering, Saitama University, 225 Shimo-Okubo, Sakura-ku, Saitama-city, Saitama, 338-8570, Japan
| | - Maki Kawai-Yamada
- Graduate School of Science and Engineering, Saitama University, 225 Shimo-Okubo, Sakura-ku, Saitama-city, Saitama, 338-8570, Japan.
| |
Collapse
|
13
|
Walsh CA, Bräutigam A, Roberts MR, Lundgren MR. Evolutionary implications of C2 photosynthesis: how complex biochemical trade-offs may limit C4 evolution. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:707-722. [PMID: 36437625 PMCID: PMC9899418 DOI: 10.1093/jxb/erac465] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 11/22/2022] [Indexed: 06/16/2023]
Abstract
The C2 carbon-concentrating mechanism increases net CO2 assimilation by shuttling photorespiratory CO2 in the form of glycine from mesophyll to bundle sheath cells, where CO2 concentrates and can be re-assimilated. This glycine shuttle also releases NH3 and serine into the bundle sheath, and modelling studies suggest that this influx of NH3 may cause a nitrogen imbalance between the two cell types that selects for the C4 carbon-concentrating mechanism. Here we provide an alternative hypothesis outlining mechanisms by which bundle sheath NH3 and serine play vital roles to not only influence the status of C2 plants along the C3 to C4 evolutionary trajectory, but to also convey stress tolerance to these unique plants. Our hypothesis explains how an optimized bundle sheath nitrogen hub interacts with sulfur and carbon metabolism to mitigate the effects of high photorespiratory conditions. While C2 photosynthesis is typically cited for its intermediary role in C4 photosynthesis evolution, our alternative hypothesis provides a mechanism to explain why some C2 lineages have not made this transition. We propose that stress resilience, coupled with open flux tricarboxylic acid and photorespiration pathways, conveys an advantage to C2 plants in fluctuating environments.
Collapse
Affiliation(s)
- Catherine A Walsh
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
| | - Andrea Bräutigam
- Faculty of Biology, Bielefeld University, Universität str. 27, D-33615 Bielefeld, Germany
| | - Michael R Roberts
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
| | | |
Collapse
|
14
|
Fu X, Walker BJ. Dynamic response of photorespiration in fluctuating light environments. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:600-611. [PMID: 35962786 DOI: 10.1093/jxb/erac335] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 08/09/2022] [Indexed: 06/15/2023]
Abstract
Photorespiration is a dynamic process that is intimately linked to photosynthetic carbon assimilation. There is a growing interest in understanding carbon assimilation during dynamic conditions, but the role of photorespiration under such conditions is unclear. In this review, we discuss recent work relevant to the function of photorespiration under dynamic conditions, with a special focus on light transients. This work reveals that photorespiration is a fundamental component of the light induction of assimilation where variable diffusive processes limit CO2 exchange with the atmosphere. Additionally, metabolic interactions between photorespiration and the C3 cycle may help balance fluxes under dynamic light conditions. We further discuss how the energy demands of photorespiration present special challenges to energy balancing during dynamic conditions. We finish the review with an overview of why regulation of photorespiration may be important under dynamic conditions to maintain appropriate fluxes through metabolic pathways related to photorespiration such as nitrogen and one-carbon metabolism.
Collapse
Affiliation(s)
- Xinyu Fu
- Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
| | - Berkley J Walker
- Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
15
|
Fu X, Gregory LM, Weise SE, Walker BJ. Integrated flux and pool size analysis in plant central metabolism reveals unique roles of glycine and serine during photorespiration. NATURE PLANTS 2023; 9:169-178. [PMID: 36536013 DOI: 10.1038/s41477-022-01294-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 10/28/2022] [Indexed: 06/17/2023]
Abstract
Photorespiration is an essential process juxtaposed between plant carbon and nitrogen metabolism that responds to dynamic environments. Photorespiration recycles inhibitory intermediates arising from oxygenation reactions catalysed by Rubisco back into the C3 cycle, but it is unclear what proportions of its nitrogen-containing intermediates (glycine and serine) are exported into other metabolisms in vivo and how these pool sizes affect net CO2 gas exchange during photorespiratory transients. Here, to address this uncertainty, we measured rates of amino acid export from photorespiration using isotopically non-stationary metabolic flux analysis. This analysis revealed that ~23-41% of the photorespiratory carbon was exported from the pathway as serine under various photorespiratory conditions. Furthermore, we determined that the build-up and relaxation of glycine pools constrained a large portion of photosynthetic acclimation during photorespiratory transients. These results reveal the unique and important roles of glycine and serine in successfully maintaining various photorespiratory fluxes that occur under environmental fluctuations in nature and providing carbon and nitrogen for metabolism.
Collapse
Affiliation(s)
- Xinyu Fu
- Michigan State University-Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, USA
| | - Luke M Gregory
- Michigan State University-Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, USA
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA
| | - Sean E Weise
- Michigan State University-Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, USA
| | - Berkley J Walker
- Michigan State University-Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, USA.
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
16
|
Porto NP, Bret RSC, Souza PVL, Cândido-Sobrinho SA, Medeiros DB, Fernie AR, Daloso DM. Thioredoxins regulate the metabolic fluxes throughout the tricarboxylic acid cycle and associated pathways in a light-independent manner. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 193:36-49. [PMID: 36323196 DOI: 10.1016/j.plaphy.2022.10.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 10/11/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
The metabolic fluxes throughout the tricarboxylic acid cycle (TCAC) are inhibited in the light by the mitochondrial thioredoxin (TRX) system. However, it is unclear how this system orchestrates the fluxes throughout the TCAC and associated pathways in the dark. Here we carried out a13C-HCO3 labelling experiment in Arabidopsis leaves from wild type (WT) and mutants lacking TRX o1 (trxo1), TRX h2 (trxh2), or both NADPH-dependent TRX reductase A and B (ntra ntrb) exposed to 0, 30 and 60 min of dark or light conditions. No 13C-enrichment in TCAC metabolites in illuminated WT leaves was observed. However, increased succinate content was found in parallel to reductions in Ala in the light, suggesting the latter operates as an alternative carbon source for succinate synthesis. By contrast to WT, all mutants showed substantial changes in the content and 13C-enrichment in TCAC metabolites under both dark and light conditions. Increased 13C-enrichment in glutamine in illuminated trxo1 leaves was also observed, strengthening the idea that TRX o1 restricts in vivo carbon fluxes from glycolysis and the TCAC to glutamine. We further demonstrated that both photosynthetic and gluconeogenic fluxes toward glucose are increased in trxo1 and that the phosphoenolpyruvate carboxylase (PEPc)-mediated 13C-incorporation into malate is higher in trxh2 mutants, as compared to WT. Our results collectively provide evidence that TRX h2 and the mitochondrial NTR/TRX system regulate the metabolic fluxes throughout the TCAC and associated pathways, including glycolysis, gluconeogenesis and the synthesis of glutamine in a light-independent manner.
Collapse
Affiliation(s)
- Nicole P Porto
- LabPlant, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, 60451-970, Fortaleza, Ceará, Brazil
| | - Raissa S C Bret
- LabPlant, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, 60451-970, Fortaleza, Ceará, Brazil
| | - Paulo V L Souza
- LabPlant, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, 60451-970, Fortaleza, Ceará, Brazil
| | - Silvio A Cândido-Sobrinho
- LabPlant, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, 60451-970, Fortaleza, Ceará, Brazil
| | - David B Medeiros
- Max-Planck-Institute of Molecular Plant Physiology, 14476, Potsdam-Golm, Germany
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, 14476, Potsdam-Golm, Germany
| | - Danilo M Daloso
- LabPlant, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, 60451-970, Fortaleza, Ceará, Brazil.
| |
Collapse
|
17
|
Mantovani O, Reimann V, Haffner M, Herrmann FP, Selim KA, Forchhammer K, Hess WR, Hagemann M. The impact of the cyanobacterial carbon-regulator protein SbtB and of the second messengers cAMP and c-di-AMP on CO 2 -dependent gene expression. THE NEW PHYTOLOGIST 2022; 234:1801-1816. [PMID: 35285042 DOI: 10.1111/nph.18094] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 03/02/2022] [Indexed: 06/14/2023]
Abstract
The amount of inorganic carbon (Ci ) fluctuates in aquatic environments. Cyanobacteria evolved a Ci -concentrating mechanism (CCM) that is regulated at different levels. The regulator SbtB binds to the second messengers cAMP or c-di-AMP and is involved in acclimation to low Ci (LC) in Synechocystis sp. PCC 6803. Here, we investigated the role of SbtB and of associated second messengers at different Ci conditions. The transcriptome of wild-type (WT) Synechocystis and the ΔsbtB mutant were compared with Δcya1, a mutant defective in cAMP production, and ΔdacA, a mutant defective in generating c-di-AMP. A defined subset of LC-regulated genes in the WT was already changed in ΔsbtB under high Ci (HC) conditions. This response of ΔsbtB correlated with a diminished induction of many CCM-associated genes after LC shift in this mutant. The Δcya1 mutant showed less deviation from WT, whereas ΔdacA induced CCM-associated genes under HC. Metabolome analysis also revealed differences between the strains, whereby ΔsbtB showed slower accumulation of 2-phosphoglycolate and ΔdacA differences among amino acids compared to WT. Collectively, these results indicate that SbtB regulates a subset of LC acclimation genes while c-di-AMP and especially cAMP appear to have a lesser impact on gene expression under different Ci availabilities.
Collapse
Affiliation(s)
- Oliver Mantovani
- Department of Plant Physiology, Institute of Biosciences, University of Rostock, Rostock, D-18059, Germany
| | - Viktoria Reimann
- Genetics and Experimental Bioinformatics, Faculty of Biology, University of Freiburg, Freiburg, D-79104, Germany
| | - Michael Haffner
- Department of Organismic Interactions, Interfaculty Institute of Microbiology and Infection Medicine Tübingen, University of Tübingen, Tübingen, D-72076, Germany
| | - Felix Philipp Herrmann
- Department of Plant Physiology, Institute of Biosciences, University of Rostock, Rostock, D-18059, Germany
| | - Khaled A Selim
- Department of Organismic Interactions, Interfaculty Institute of Microbiology and Infection Medicine Tübingen, University of Tübingen, Tübingen, D-72076, Germany
| | - Karl Forchhammer
- Department of Organismic Interactions, Interfaculty Institute of Microbiology and Infection Medicine Tübingen, University of Tübingen, Tübingen, D-72076, Germany
| | - Wolfgang R Hess
- Genetics and Experimental Bioinformatics, Faculty of Biology, University of Freiburg, Freiburg, D-79104, Germany
| | - Martin Hagemann
- Department of Plant Physiology, Institute of Biosciences, University of Rostock, Rostock, D-18059, Germany
- Department Life, Light and Matter, Interdisciplinary Faculty, University of Rostock, Rostock, D-18059, Germany
| |
Collapse
|
18
|
Wang Z, Wang Y, Wang Y, Li H, Wen Z, Hou X. HPR1 Is Required for High Light Intensity Induced Photorespiration in Arabidopsis thaliana. Int J Mol Sci 2022; 23:ijms23084444. [PMID: 35457261 PMCID: PMC9030206 DOI: 10.3390/ijms23084444] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/15/2022] [Accepted: 04/15/2022] [Indexed: 12/20/2022] Open
Abstract
High light intensity as one of the stresses could lead to generation of large amounts of reactive oxygen species (ROS) in plants, resulting in severe plant growth retardation. The photorespiration metabolism plays an important role in producing and removing a variety of ROS, maintaining the dynamic balance of the redox reaction, and preventing photoinhibition. Arabidopsis hydroxypyruvate reductase 1 (HPR1) is a primary metabolic enzyme in the photorespiration cycle. However, the role of HPR1 in plants response to high light is not clear. Here, we found that the expression of HPR1 could be induced by high light intensity. The growth and photosynthetic capacity of hpr1 mutants are seriously affected under high light intensity. The absence of HPR1 suppresses the rates of photorepair of Photosystem II (PSII), aggravates the production of ROS, and accelerates photorespiration rates. Moreover, the activity of ROS scavenging enzymes in the hpr1 mutants is significantly higher. These results indicate that HPR1 is involved in plant response to high light intensity and is essential for maintaining the dynamic balance of ROS and photorespiration.
Collapse
Affiliation(s)
| | | | | | | | | | - Xin Hou
- Correspondence: ; Tel.: +86-27-6875-6087
| |
Collapse
|
19
|
Wang Y, Chen X, Spengler K, Terberger K, Boehm M, Appel J, Barske T, Timm S, Battchikova N, Hagemann M, Gutekunst K. Pyruvate:ferredoxin oxidoreductase and low abundant ferredoxins support aerobic photomixotrophic growth in cyanobacteria. eLife 2022; 11:71339. [PMID: 35138247 PMCID: PMC8887894 DOI: 10.7554/elife.71339] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 02/06/2022] [Indexed: 11/24/2022] Open
Abstract
The decarboxylation of pyruvate is a central reaction in the carbon metabolism of all organisms. It is catalyzed by the pyruvate:ferredoxin oxidoreductase (PFOR) and the pyruvate dehydrogenase (PDH) complex. Whereas PFOR reduces ferredoxin, the PDH complex utilizes NAD+. Anaerobes rely on PFOR, which was replaced during evolution by the PDH complex found in aerobes. Cyanobacteria possess both enzyme systems. Our data challenge the view that PFOR is exclusively utilized for fermentation. Instead, we show, that the cyanobacterial PFOR is stable in the presence of oxygen in vitro and is required for optimal photomixotrophic growth under aerobic and highly reducing conditions while the PDH complex is inactivated. We found that cells rely on a general shift from utilizing NAD(H)- to ferredoxin-dependent enzymes under these conditions. The utilization of ferredoxins instead of NAD(H) saves a greater share of the Gibbs-free energy, instead of wasting it as heat. This obviously simultaneously decelerates metabolic reactions as they operate closer to their thermodynamic equilibrium. It is common thought that during evolution, ferredoxins were replaced by NAD(P)H due to their higher stability in an oxidizing atmosphere. However, the utilization of NAD(P)H could also have been favored due to a higher competitiveness because of an accelerated metabolism.
Collapse
Affiliation(s)
- Yingying Wang
- Department of Biology, Christian-Albrechts University, Kiel, Germany
| | - Xi Chen
- Department of Biology, Christian-Albrechts University, Kiel, Germany
| | | | | | - Marko Boehm
- Department of Molecular Plant Physiology, University of Kassel, Kassel, Germany
| | - Jens Appel
- Department of Molecular Plant Physiology, University of Kassel, Kassel, Germany
| | - Thomas Barske
- Plant Physiology Department, University of Rostock, Rostock, Germany
| | - Stefan Timm
- Plant Physiology Department, University of Rostock, Rostock, Germany
| | | | - Martin Hagemann
- Plant Physiology Department, University of Rostock, Rostock, Germany
| | - Kirstin Gutekunst
- Department of Molecular Plant Physiology, University of Kassel, Kassel, Germany
| |
Collapse
|
20
|
Przybyla-Toscano J, Maclean AE, Franceschetti M, Liebsch D, Vignols F, Keech O, Rouhier N, Balk J. Protein lipoylation in mitochondria requires Fe-S cluster assembly factors NFU4 and NFU5. PLANT PHYSIOLOGY 2022; 188:997-1013. [PMID: 34718778 PMCID: PMC8825329 DOI: 10.1093/plphys/kiab501] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 09/30/2021] [Indexed: 05/27/2023]
Abstract
Plants have evolutionarily conserved NifU (NFU)-domain proteins that are targeted to plastids or mitochondria. "Plastid-type" NFU1, NFU2, and NFU3 in Arabidopsis (Arabidopsis thaliana) play a role in iron-sulfur (Fe-S) cluster assembly in this organelle, whereas the type-II NFU4 and NFU5 proteins have not been subjected to mutant studies in any plant species to determine their biological role. Here, we confirmed that NFU4 and NFU5 are targeted to the mitochondria. The proteins were constitutively produced in all parts of the plant, suggesting a housekeeping function. Double nfu4 nfu5 knockout mutants were embryonic lethal, and depletion of NFU4 and NFU5 proteins led to growth arrest of young seedlings. Biochemical analyses revealed that NFU4 and NFU5 are required for lipoylation of the H proteins of the glycine decarboxylase complex and the E2 subunits of other mitochondrial dehydrogenases, with little impact on Fe-S cluster-containing respiratory complexes or aconitase. Consequently, the Gly-to-Ser ratio was increased in mutant seedlings and early growth improved with elevated CO2 treatment. In addition, pyruvate, 2-oxoglutarate, and branched-chain amino acids accumulated in nfu4 nfu5 mutants, further supporting defects in the other three mitochondrial lipoate-dependent enzyme complexes. NFU4 and NFU5 interacted with mitochondrial lipoyl synthase (LIP1) in yeast 2-hybrid and bimolecular fluorescence complementation assays. These data indicate that NFU4 and NFU5 have a more specific function than previously thought, most likely providing Fe-S clusters to lipoyl synthase.
Collapse
Affiliation(s)
| | - Andrew E Maclean
- Department of Biological Chemistry, John Innes Centre, Norwich NR4 7UH, UK
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| | | | - Daniela Liebsch
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, S-90187 Umeå, Sweden
| | - Florence Vignols
- BPMP, Université de Montpellier, CNRS, INRAE, SupAgro, F-34060 Montpellier, France
| | - Olivier Keech
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, S-90187 Umeå, Sweden
| | | | - Janneke Balk
- Department of Biological Chemistry, John Innes Centre, Norwich NR4 7UH, UK
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| |
Collapse
|
21
|
Lima VF, Erban A, Daubermann AG, Freire FBS, Porto NP, Cândido-Sobrinho SA, Medeiros DB, Schwarzländer M, Fernie AR, Dos Anjos L, Kopka J, Daloso DM. Establishment of a GC-MS-based 13 C-positional isotopomer approach suitable for investigating metabolic fluxes in plant primary metabolism. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 108:1213-1233. [PMID: 34486764 DOI: 10.1111/tpj.15484] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/20/2021] [Accepted: 08/30/2021] [Indexed: 06/13/2023]
Abstract
13 C-Metabolic flux analysis (13 C-MFA) has greatly contributed to our understanding of plant metabolic regulation. However, the generation of detailed in vivo flux maps remains a major challenge. Flux investigations based on nuclear magnetic resonance have resolved small networks with high accuracy. Mass spectrometry (MS) approaches have broader potential, but have hitherto been limited in their power to deduce flux information due to lack of atomic level position information. Herein we established a gas chromatography (GC) coupled to MS-based approach that provides 13 C-positional labelling information in glucose, malate and glutamate (Glu). A map of electron impact (EI)-mediated MS fragmentation was created and validated by 13 C-positionally labelled references via GC-EI-MS and GC-atmospheric pressure chemical ionization-MS technologies. The power of the approach was revealed by analysing previous 13 C-MFA data from leaves and guard cells, and 13 C-HCO3 labelling of guard cells harvested in the dark and after the dark-to-light transition. We demonstrated that the approach is applicable to established GC-EI-MS-based 13 C-MFA without the need for experimental adjustment, but will benefit in the future from paired analyses by the two GC-MS platforms. We identified specific glucose carbon atoms that are preferentially labelled by photosynthesis and gluconeogenesis, and provide an approach to investigate the phosphoenolpyruvate carboxylase (PEPc)-derived 13 C-incorporation into malate and Glu. Our results suggest that gluconeogenesis and the PEPc-mediated CO2 assimilation into malate are activated in a light-independent manner in guard cells. We further highlight that the fluxes from glycolysis and PEPc toward Glu are restricted by the mitochondrial thioredoxin system in illuminated leaves.
Collapse
Affiliation(s)
- Valéria F Lima
- LabPLant, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza-CE, 60451-970, Brazil
| | - Alexander Erban
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm, D-14476, Germany
| | - André G Daubermann
- Departamento de Biologia, Setor de Fisiologia Vegetal, Universidade Federal de Lavras, Lavras-MG, 37200-900, Brazil
| | - Francisco Bruno S Freire
- LabPLant, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza-CE, 60451-970, Brazil
| | - Nicole P Porto
- LabPLant, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza-CE, 60451-970, Brazil
| | - Silvio A Cândido-Sobrinho
- LabPLant, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza-CE, 60451-970, Brazil
| | - David B Medeiros
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm, D-14476, Germany
| | - Markus Schwarzländer
- Institute of Plant Biology and Biotechnology, Westfälische-Wilhelms-Universität Münster, Münster, D-48143, Germany
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm, D-14476, Germany
| | - Leticia Dos Anjos
- Departamento de Biologia, Setor de Fisiologia Vegetal, Universidade Federal de Lavras, Lavras-MG, 37200-900, Brazil
| | - Joachim Kopka
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm, D-14476, Germany
| | - Danilo M Daloso
- LabPLant, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza-CE, 60451-970, Brazil
| |
Collapse
|
22
|
Zhang Y, Fernie AR. Stable and Temporary Enzyme Complexes and Metabolons Involved in Energy and Redox Metabolism. Antioxid Redox Signal 2021; 35:788-807. [PMID: 32368925 DOI: 10.1089/ars.2019.7981] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Significance: Alongside well-characterized permanent multimeric enzymes and multienzyme complexes, relatively unstable transient enzyme-enzyme assemblies, including metabolons, provide an important mechanism for the regulation of energy and redox metabolism. Critical Issues: Despite the fact that enzyme-enzyme assemblies have been proposed for many decades and experimentally analyzed for at least 40 years, there are very few pathways for which unequivocal evidence for the presence of metabolite channeling, the most frequently evoked reason for their formation, has been provided. Further, in contrast to the stronger, permanent interactions for which a deep understanding of the subunit interface exists, the mechanism(s) underlying transient enzyme-enzyme interactions remain poorly studied. Recent Advances: The widespread adoption of proteomic and cell biological approaches to characterize protein-protein interaction is defining an ever-increasing number of enzyme-enzyme assemblies as well as enzyme-protein interactions that likely identify factors which stabilize such complexes. Moreover, the use of microfluidic technologies provided compelling support of a role for substrate-specific chemotaxis in complex assemblies. Future Directions: Embracing current and developing technologies should render the delineation of metabolons from other enzyme-enzyme complexes more facile. In parallel, attempts to confirm that the findings reported in microfluidic systems are, indeed, representative of the cellular situation will be critical to understanding the physiological circumstances requiring and evoking dynamic changes in the levels of the various transient enzyme-enzyme assemblies of the cell. Antioxid. Redox Signal. 35, 788-807.
Collapse
Affiliation(s)
- Youjun Zhang
- Center of Plant Systems Biology and Biotechnology, Plovdiv, Bulgaria.,Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm, Germany
| | - Alisdair R Fernie
- Center of Plant Systems Biology and Biotechnology, Plovdiv, Bulgaria.,Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm, Germany
| |
Collapse
|
23
|
da Fonseca-Pereira P, Souza PVL, Fernie AR, Timm S, Daloso DM, Araújo WL. Thioredoxin-mediated regulation of (photo)respiration and central metabolism. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:5987-6002. [PMID: 33649770 DOI: 10.1093/jxb/erab098] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 02/24/2021] [Indexed: 06/12/2023]
Abstract
Thioredoxins (TRXs) are ubiquitous proteins engaged in the redox regulation of plant metabolism. Whilst the light-dependent TRX-mediated activation of Calvin-Benson cycle enzymes is well documented, the role of extraplastidial TRXs in the control of the mitochondrial (photo)respiratory metabolism has been revealed relatively recently. Mitochondrially located TRX o1 has been identified as a regulator of alternative oxidase, enzymes of, or associated with, the tricarboxylic acid (TCA) cycle, and the mitochondrial dihydrolipoamide dehydrogenase (mtLPD) involved in photorespiration, the TCA cycle, and the degradation of branched chain amino acids. TRXs are seemingly a major point of metabolic regulation responsible for activating photosynthesis and adjusting mitochondrial photorespiratory metabolism according to the prevailing cellular redox status. Furthermore, TRX-mediated (de)activation of TCA cycle enzymes contributes to explain the non-cyclic flux mode of operation of this cycle in illuminated leaves. Here we provide an overview on the decisive role of TRXs in the coordination of mitochondrial metabolism in the light and provide in silico evidence for other redox-regulated photorespiratory enzymes. We further discuss the consequences of mtLPD regulation beyond photorespiration and provide outstanding questions that should be addressed in future studies to improve our understanding of the role of TRXs in the regulation of central metabolism.
Collapse
Affiliation(s)
| | - Paulo V L Souza
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, Ceará, Brazil
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Stefan Timm
- University of Rostock, Plant Physiology Department, Albert- Einstein-Str. 3, Rostock, Germany
| | - Danilo M Daloso
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, Ceará, Brazil
| | - Wagner L Araújo
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| |
Collapse
|
24
|
The impact of photorespiration on plant primary metabolism through metabolic and redox regulation. Biochem Soc Trans 2021; 48:2495-2504. [PMID: 33300978 DOI: 10.1042/bst20200055] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/17/2020] [Accepted: 11/18/2020] [Indexed: 12/19/2022]
Abstract
Photorespiration is an inevitable trait of all oxygenic phototrophs, being the only known metabolic route that converts the inhibitory side-product of Rubisco's oxygenase activity 2-phosphoglycolate (2PG) back into the Calvin-Benson (CB) cycle's intermediate 3-phosphoglycerate (3PGA). Through this function of metabolite repair, photorespiration is able to protect photosynthetic carbon assimilation from the metabolite intoxication that would occur in the present-day oxygen-rich atmosphere. In recent years, much plant research has provided compelling evidence that photorespiration safeguards photosynthesis and engages in cross-talk with a number of subcellular processes. Moreover, the potential of manipulating photorespiration to increase the photosynthetic yield potential has been demonstrated in several plant species. Considering this multifaceted role, it is tempting to presume photorespiration itself is subject to a suite of regulation mechanisms to eventually exert a regulatory impact on other processes, and vice versa. The identification of potential pathway interactions and underlying regulatory aspects has been facilitated via analysis of the photorespiratory mutant phenotype, accompanied by the emergence of advanced omics' techniques and biochemical approaches. In this mini-review, I focus on the identification of enzymatic steps which control the photorespiratory flux, as well as levels of transcriptional, posttranslational, and metabolic regulation. Most importantly, glycine decarboxylase (GDC) and 2PG are identified as being key photorespiratory determinants capable of controlling photorespiratory flux and communicating with other branches of plant primary metabolism.
Collapse
|
25
|
Diel Variations of Extracellular Microcystin Influence the Subcellular Dynamics of RubisCO in Microcystis aeruginosa PCC 7806. Microorganisms 2021; 9:microorganisms9061265. [PMID: 34200971 PMCID: PMC8230624 DOI: 10.3390/microorganisms9061265] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/03/2021] [Accepted: 06/07/2021] [Indexed: 12/02/2022] Open
Abstract
The ubiquitous freshwater cyanobacterium Microcystis is remarkably successful, showing a high tolerance against fluctuations in environmental conditions. It frequently forms dense blooms which can accumulate significant amounts of the hepatotoxin microcystin, which plays an extracellular role as an infochemical but also acts intracellularly by interacting with proteins of the carbon metabolism, notably with the CO2 fixing enzyme RubisCO. Here we demonstrate a direct link between external microcystin and its intracellular targets. Monitoring liquid cultures of Microcystis in a diel experiment revealed fluctuations in the extracellular microcystin content that correlate with an increase in the binding of microcystin to intracellular proteins. Concomitantly, reversible relocation of RubisCO from the cytoplasm to the cell’s periphery was observed. These variations in RubisCO localization were especially pronounced with cultures grown at higher cell densities. We replicated these effects by adding microcystin externally to cultures grown under continuous light. Thus, we propose that microcystin may be part of a fast response to conditions of high light and low carbon that contribute to the metabolic flexibility and the success of Microcystis in the field.
Collapse
|
26
|
Van Aken O. Mitochondrial redox systems as central hubs in plant metabolism and signaling. PLANT PHYSIOLOGY 2021; 186:36-52. [PMID: 33624829 PMCID: PMC8154082 DOI: 10.1093/plphys/kiab101] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 02/11/2021] [Indexed: 05/06/2023]
Abstract
Plant mitochondria are indispensable for plant metabolism and are tightly integrated into cellular homeostasis. This review provides an update on the latest research concerning the organization and operation of plant mitochondrial redox systems, and how they affect cellular metabolism and signaling, plant development, and stress responses. New insights into the organization and operation of mitochondrial energy systems such as the tricarboxylic acid cycle and mitochondrial electron transport chain (mtETC) are discussed. The mtETC produces reactive oxygen and nitrogen species, which can act as signals or lead to cellular damage, and are thus efficiently removed by mitochondrial antioxidant systems, including Mn-superoxide dismutase, ascorbate-glutathione cycle, and thioredoxin-dependent peroxidases. Plant mitochondria are tightly connected with photosynthesis, photorespiration, and cytosolic metabolism, thereby providing redox-balancing. Mitochondrial proteins are targets of extensive post-translational modifications, but their functional significance and how they are added or removed remains unclear. To operate in sync with the whole cell, mitochondria can communicate their functional status via mitochondrial retrograde signaling to change nuclear gene expression, and several recent breakthroughs here are discussed. At a whole organism level, plant mitochondria thus play crucial roles from the first minutes after seed imbibition, supporting meristem activity, growth, and fertility, until senescence of darkened and aged tissue. Finally, plant mitochondria are tightly integrated with cellular and organismal responses to environmental challenges such as drought, salinity, heat, and submergence, but also threats posed by pathogens. Both the major recent advances and outstanding questions are reviewed, which may help future research efforts on plant mitochondria.
Collapse
Affiliation(s)
- Olivier Van Aken
- Department of Biology, Lund University, Lund, Sweden
- Author for communication:
| |
Collapse
|
27
|
Thioredoxin h2 and o1 Show Different Subcellular Localizations and Redox-Active Functions, and Are Extrachloroplastic Factors Influencing Photosynthetic Performance in Fluctuating Light. Antioxidants (Basel) 2021; 10:antiox10050705. [PMID: 33946819 PMCID: PMC8147087 DOI: 10.3390/antiox10050705] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/26/2021] [Accepted: 04/27/2021] [Indexed: 11/24/2022] Open
Abstract
Arabidopsis contains eight different h-type thioredoxins (Trx) being distributed in different cell organelles. Although Trx h2 is deemed to be confined to mitochondria, its subcellular localization and function are discussed controversially. Here, cell fractionation studies were used to clarify this question, showing Trx h2 protein to be exclusively localized in microsomes rather than mitochondria. Furthermore, Arabidopsis trxo1, trxh2 and trxo1h2 mutants were analyzed to compare the role of Trx h2 with mitochondrial Trx o1. Under medium light, trxo1 and trxo1h2 showed impaired growth, while trxh2 was similar to wild type. In line with this, trxo1 and trxo1h2 clustered differently from wild type with respect to nocturnal metabolite profiles, revealing a decrease in ascorbate and glutathione redox states. Under fluctuating light, these genotypic differences were attenuated. Instead, the trxo1h2 double mutant showed an improved NADPH redox balance, compared to wild type, accompanied by increased photosynthetic efficiency, specifically in the high-light phases. Conclusively, Trx h2 and Trx o1 are differentially localized in microsomes and mitochondria, respectively, which is associated with different redox-active functions and effects on plant growth in constant light, while there is a joint role of both Trxs in regulating NADPH redox balance and photosynthetic performance in fluctuating light.
Collapse
|
28
|
Bolay P, Rozbeh R, Muro-Pastor MI, Timm S, Hagemann M, Florencio FJ, Forchhammer K, Klähn S. The Novel P II-Interacting Protein PirA Controls Flux into the Cyanobacterial Ornithine-Ammonia Cycle. mBio 2021; 12:e00229-21. [PMID: 33758091 PMCID: PMC8092223 DOI: 10.1128/mbio.00229-21] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 02/16/2021] [Indexed: 12/11/2022] Open
Abstract
Among prokaryotes, cyanobacteria have an exclusive position as they perform oxygenic photosynthesis. Cyanobacteria substantially differ from other bacteria in further aspects, e.g., they evolved a plethora of unique regulatory mechanisms to control primary metabolism. This is exemplified by the regulation of glutamine synthetase (GS) via small proteins termed inactivating factors (IFs). Here, we reveal another small protein, encoded by the ssr0692 gene in the model strain Synechocystis sp. PCC 6803, that regulates flux into the ornithine-ammonia cycle (OAC), the key hub of cyanobacterial nitrogen stockpiling and remobilization. This regulation is achieved by the interaction with the central carbon/nitrogen control protein PII, which commonly controls entry into the OAC by activating the key enzyme of arginine synthesis, N-acetyl-l-glutamate kinase (NAGK). In particular, the Ssr0692 protein competes with NAGK for PII binding and thereby prevents NAGK activation, which in turn lowers arginine synthesis. Accordingly, we termed it PII-interacting regulator of arginine synthesis (PirA). Similar to the GS IFs, PirA accumulates in response to ammonium upshift due to relief from repression by the global nitrogen control transcription factor NtcA. Consistent with this, the deletion of pirA affects the balance of metabolite pools of the OAC in response to ammonium shocks. Moreover, the PirA-PII interaction requires ADP and is prevented by PII mutations affecting the T-loop conformation, the major protein interaction surface of this signal processing protein. Thus, we propose that PirA is an integrator determining flux into N storage compounds not only depending on the N availability but also the energy state of the cell.IMPORTANCE Cyanobacteria contribute a significant portion to the annual oxygen yield and play important roles in biogeochemical cycles, e.g., as major primary producers. Due to their photosynthetic lifestyle, cyanobacteria also arouse interest as hosts for the sustainable production of fuel components and high-value chemicals. However, their broad application as microbial cell factories is hampered by limited knowledge about the regulation of metabolic fluxes in these organisms. Our research identified a novel regulatory protein that controls nitrogen flux, in particular arginine synthesis. Besides its role as a proteinogenic amino acid, arginine is a precursor for the cyanobacterial storage compound cyanophycin, which is of potential interest to biotechnology. Therefore, the obtained results will not only enhance our understanding of flux control in these organisms but also help to provide a scientific basis for targeted metabolic engineering and, hence, the design of photosynthesis-driven biotechnological applications.
Collapse
Affiliation(s)
- Paul Bolay
- Helmholtz Centre for Environmental Research, Department of Solar Materials, Leipzig, Germany
| | - Rokhsareh Rozbeh
- Interfaculty Institute for Microbiology and Infection Medicine, Organismic Interactions Department, Tübingen University, Tübingen, Germany
| | - M Isabel Muro-Pastor
- Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC-Universidad de Sevilla, Sevilla, Spain
| | - Stefan Timm
- Department of Plant Physiology, University of Rostock, Rostock, Germany
| | - Martin Hagemann
- Department of Plant Physiology, University of Rostock, Rostock, Germany
| | - Francisco J Florencio
- Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC-Universidad de Sevilla, Sevilla, Spain
| | - Karl Forchhammer
- Interfaculty Institute for Microbiology and Infection Medicine, Organismic Interactions Department, Tübingen University, Tübingen, Germany
| | - Stephan Klähn
- Helmholtz Centre for Environmental Research, Department of Solar Materials, Leipzig, Germany
| |
Collapse
|
29
|
Decreased Levels of Thioredoxin o1 Influences Stomatal Development and Aperture but Not Photosynthesis under Non-Stress and Saline Conditions. Int J Mol Sci 2021; 22:ijms22031063. [PMID: 33494429 PMCID: PMC7865980 DOI: 10.3390/ijms22031063] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/14/2021] [Accepted: 01/19/2021] [Indexed: 11/17/2022] Open
Abstract
Salinity has a negative impact on plant growth, with photosynthesis being downregulated partially due to osmotic effect and enhanced cellular oxidation. Redox signaling contributes to the plant response playing thioredoxins (TRXs) a central role. In this work we explore the potential contribution of Arabidopsis TRXo1 to the photosynthetic response under salinity analyzing Arabidopsis wild-type (WT) and two Attrxo1 mutant lines in their growth under short photoperiod and higher light intensity than previous reported works. Stomatal development and apertures and the antioxidant, hormonal and metabolic acclimation are also analyzed. In control conditions mutant plants displayed less and larger developed stomata and higher pore size which could underlie their higher stomatal conductance, without being affected in other photosynthetic parameters. Under salinity, all genotypes displayed a general decrease in photosynthesis and the oxidative status in the Attrxo1 mutant lines was altered, with higher levels of H2O2 and NO but also higher ascorbate/glutathione (ASC/GSH) redox states than WT plants. Finally, sugar changes and increases in abscisic acid (ABA) and NO may be involved in the observed higher stomatal response of the TRXo1-altered plants. Therefore, the lack of AtTRXo1 affected stomata development and opening and the mutants modulate their antioxidant, metabolic and hormonal responses to optimize their adaptation to salinity.
Collapse
|
30
|
Phycobilisome breakdown effector NblD is required to maintain the cellular amino acid composition during nitrogen starvation. J Bacteriol 2021; 204:JB0015821. [PMID: 34228497 PMCID: PMC8765419 DOI: 10.1128/jb.00158-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Small proteins are critically involved in the acclimation response of photosynthetic cyanobacteria to nitrogen starvation. NblD is the 66-amino-acid effector of nitrogen-limitation-induced phycobilisome breakdown, which is believed to replenish the cellular amino acid pools. To address the physiological functions of NblD, the concentrations of amino acids, intermediates of the arginine catabolism pathway and several organic acids were measured during the response to nitrogen starvation in the cyanobacterium Synechocystis sp. PCC 6803 wild type and in an nblD deletion strain. A characteristic signature of metabolite pool composition was identified, which shows that NblD-mediated phycobilisome degradation is required to maintain the cellular amino acid and organic acid pools during nitrogen starvation. Specific deviations from the wild type suggest wider-reaching effects that also affect such processes as redox homeostasis via glutathione and tetrapyrrole biosynthesis, both of which are linked to the strongly decreased glutamate pool, and transcriptional reprogramming via an enhanced concentration of 2-oxoglutarate, the metabolite co-regulator of the NtcA transcription factor. The essential role played by NblD in metabolic homeostasis is consistent with the widespread occurrence of NblD throughout the cyanobacterial radiation and the previously observed strong positive selection for the nblD gene under fluctuating nitrogen supply. Importance Cyanobacteria play important roles in the global carbon and nitrogen cycles. In their natural environment, these organisms are exposed to fluctuating nutrient conditions. Nitrogen starvation induces a coordinated nitrogen-saving program that includes the breakdown of nitrogen-rich photosynthetic pigments, particularly phycobiliproteins. The small protein NblD was recently identified as an effector of phycobilisome breakdown in cyanobacteria. In this study, we demonstrate that the NblD-mediated degradation of phycobiliproteins is needed to sustain cellular pools of soluble amino acids and other crucial metabolites. The essential role played by NblD in metabolic homeostasis explains why genes encoding this small protein are conserved in almost all members of cyanobacterial radiation.
Collapse
|
31
|
Meyer AJ, Dreyer A, Ugalde JM, Feitosa-Araujo E, Dietz KJ, Schwarzländer M. Shifting paradigms and novel players in Cys-based redox regulation and ROS signaling in plants - and where to go next. Biol Chem 2020; 402:399-423. [PMID: 33544501 DOI: 10.1515/hsz-2020-0291] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 11/09/2020] [Indexed: 02/06/2023]
Abstract
Cys-based redox regulation was long regarded a major adjustment mechanism of photosynthesis and metabolism in plants, but in the recent years, its scope has broadened to most fundamental processes of plant life. Drivers of the recent surge in new insights into plant redox regulation have been the availability of the genome-scale information combined with technological advances such as quantitative redox proteomics and in vivo biosensing. Several unexpected findings have started to shift paradigms of redox regulation. Here, we elaborate on a selection of recent advancements, and pinpoint emerging areas and questions of redox biology in plants. We highlight the significance of (1) proactive H2O2 generation, (2) the chloroplast as a unique redox site, (3) specificity in thioredoxin complexity, (4) how to oxidize redox switches, (5) governance principles of the redox network, (6) glutathione peroxidase-like proteins, (7) ferroptosis, (8) oxidative protein folding in the ER for phytohormonal regulation, (9) the apoplast as an unchartered redox frontier, (10) redox regulation of respiration, (11) redox transitions in seed germination and (12) the mitochondria as potential new players in reductive stress safeguarding. Our emerging understanding in plants may serve as a blueprint to scrutinize principles of reactive oxygen and Cys-based redox regulation across organisms.
Collapse
Affiliation(s)
- Andreas J Meyer
- Chemical Signalling, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Friedrich-Ebert-Allee 144, D-53113Bonn, Germany
| | - Anna Dreyer
- Biochemistry and Physiology of Plants, Faculty of Biology, W5-134, Bielefeld University, University Street 25, D-33501Bielefeld, Germany
| | - José M Ugalde
- Chemical Signalling, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Friedrich-Ebert-Allee 144, D-53113Bonn, Germany
| | - Elias Feitosa-Araujo
- Plant Energy Biology, Institute of Plant Biology and Biotechnology (IBBP), University of Münster, Schlossplatz 8, D-48143Münster, Germany
| | - Karl-Josef Dietz
- Biochemistry and Physiology of Plants, Faculty of Biology, W5-134, Bielefeld University, University Street 25, D-33501Bielefeld, Germany
| | - Markus Schwarzländer
- Plant Energy Biology, Institute of Plant Biology and Biotechnology (IBBP), University of Münster, Schlossplatz 8, D-48143Münster, Germany
| |
Collapse
|
32
|
Zhang Y, Krahnert I, Bolze A, Gibon Y, Fernie AR. Adenine Nucleotide and Nicotinamide Adenine Dinucleotide Measurements in Plants. ACTA ACUST UNITED AC 2020; 5:e20115. [PMID: 32841544 DOI: 10.1002/cppb.20115] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
As the principal co-factors of many metabolic pathways, the measurement of both adenine nucleotides and nicotinamide adenine dinucleotide provides important information about cellular energy metabolism. However, given their rapid and reversible conversion as well as their relatively low concentration ranges, it is difficult to measure these compounds. Here, we describe a highly sensitive and selective ion-pairing HPLC method with fluorescence detection to quantify adenine nucleotides in plants. In addition, nicotinamide adenine dinucleotide is a crucially important redox-active substrate for multiple catabolic and anabolic reactions with the ratios of NAD+ /NADH and NADP+ /NADPH being suggested as indicators of the general intracellular redox potential and hence metabolic state. Here, we describe highly sensitive enzyme cycling-based colorimetric assays (with a detection limit in the pmol range) performed subsequent to a simple extraction procedure involving acid or base extraction to allow the measurement of the cellular levels of these metabolites. © 2020 The Authors. Basic Protocol 1: Preparation of plant material for the measurement Basic Protocol 2: Measurement of ATP, ADP, and AMP via HPLC Basic Protocol 3: NAD+ /NADP+ measurements Basic Protocol 4: NADH/NADPH measurements Basic Protocol 5: Data analysis and quality control approaches.
Collapse
Affiliation(s)
- Youjun Zhang
- Center of Plant Systems Biology and Biotechnology, Plovdiv, Bulgaria.,Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm, Germany
| | - Ina Krahnert
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm, Germany
| | - Antje Bolze
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm, Germany
| | - Yves Gibon
- Institut National de la Recherche Agronomique (INRAE), University of Bordeaux, Villenave d'Ornon, France
| | - Alisdair R Fernie
- Center of Plant Systems Biology and Biotechnology, Plovdiv, Bulgaria.,Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm, Germany
| |
Collapse
|
33
|
Song S, Timm S, Lindner SN, Reimann V, Hess WR, Hagemann M, Brouwer EM. Expression of Formate-Tetrahydrofolate Ligase Did Not Improve Growth but Interferes With Nitrogen and Carbon Metabolism of Synechocystis sp. PCC 6803. Front Microbiol 2020; 11:1650. [PMID: 32760387 PMCID: PMC7372957 DOI: 10.3389/fmicb.2020.01650] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 06/25/2020] [Indexed: 12/16/2022] Open
Abstract
The introduction of alternative CO2-fixing pathways in photoautotrophic organism may improve the efficiency of biological carbon fixation such as minimizing the carbon loss due to photorespiration. Here, we analyzed the effects of creating a formate entry point into the primary metabolism of the cyanobacterium Synechocystis sp. PCC 6803. The formate-tetrahydrofolate ligase (FTL) from Methylobacterium extorquens AM1 was expressed in Synechocystis to enable formate assimilation and reducing the loss of fixed carbon in the photorespiratory pathway. Transgenic strains accumulated serine and 3-phosphoglycerate, and consumed more 2-phosphoglycolate and glycine, which seemed to reflect an efficient utilization of formate. However, labeling experiments showed that the serine accumulation was not due to the expected incorporation of formate. Subsequent DNA-microarray analysis revealed profound changes in transcript abundance due to ftl expression. Transcriptome changes were observed in relation to serine and glycine metabolism, C1-metabolism and particularly nitrogen assimilation. The data implied that ftl expression interfered with the signaling the carbon/nitrogen ratio in Synechocystis. Our results indicate that the expression of new enzymes could have a severe impact on the cellular regulatory network, which potentially hinders the establishment of newly designed pathways.
Collapse
Affiliation(s)
- Shanshan Song
- Plant Physiology Department, Institute of Biosciences, University of Rostock, Rostock, Germany
| | - Stefan Timm
- Plant Physiology Department, Institute of Biosciences, University of Rostock, Rostock, Germany
| | - Steffen N. Lindner
- Max Planck Institute of Molekular Plant Physiology, Potsdam-Golm, Germany
| | - Viktoria Reimann
- Faculty of Biology, Genetics and Experimental Bioinformatics, University of Freiburg, Freiburg im Breisgau, Germany
| | - Wolfgang R. Hess
- Faculty of Biology, Genetics and Experimental Bioinformatics, University of Freiburg, Freiburg im Breisgau, Germany
| | - Martin Hagemann
- Plant Physiology Department, Institute of Biosciences, University of Rostock, Rostock, Germany
| | - Eva-Maria Brouwer
- Plant Physiology Department, Institute of Biosciences, University of Rostock, Rostock, Germany
| |
Collapse
|
34
|
Timm S, Hagemann M. Photorespiration-how is it regulated and how does it regulate overall plant metabolism? JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:3955-3965. [PMID: 32274517 DOI: 10.1093/jxb/eraa183] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 04/08/2020] [Indexed: 05/03/2023]
Abstract
Under the current atmospheric conditions, oxygenic photosynthesis requires photorespiration to operate. In the presence of low CO2/O2 ratios, ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) performs an oxygenase side reaction, leading to the formation of high amounts of 2-phosphoglycolate during illumination. Given that 2-phosphoglycolate is a potent inhibitor of photosynthetic carbon fixation, it must be immediately removed through photorespiration. The core photorespiratory cycle is orchestrated across three interacting subcellular compartments, namely chloroplasts, peroxisomes, and mitochondria, and thus cross-talks with a multitude of other cellular processes. Over the past years, the metabolic interaction of photorespiration and photosynthetic CO2 fixation has attracted major interest because research has demonstrated the enhancement of C3 photosynthesis and growth through the genetic manipulation of photorespiration. However, to optimize future engineering approaches, it is also essential to improve our current understanding of the regulatory mechanisms of photorespiration. Here, we summarize recent progress regarding the steps that control carbon flux in photorespiration, eventually involving regulatory proteins and metabolites. In this regard, both genetic engineering and the identification of various layers of regulation point to glycine decarboxylase as the key enzyme to regulate and adjust the photorespiratory carbon flow. Potential implications of the regulation of photorespiration for acclimation to environmental changes along with open questions are also discussed.
Collapse
Affiliation(s)
- Stefan Timm
- University of Rostock, Plant Physiology Department, Rostock, Germany
| | - Martin Hagemann
- University of Rostock, Plant Physiology Department, Rostock, Germany
| |
Collapse
|
35
|
Liu Y, Guérard F, Hodges M, Jossier M. Phosphomimetic T335D Mutation of Hydroxypyruvate Reductase 1 Modifies Cofactor Specificity and Impacts Arabidopsis Growth in Air. PLANT PHYSIOLOGY 2020; 183:194-205. [PMID: 32156771 PMCID: PMC7210656 DOI: 10.1104/pp.19.01225] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 02/26/2020] [Indexed: 05/13/2023]
Abstract
Photorespiration is an essential process in oxygenic photosynthetic organisms triggered by the oxygenase activity of Rubisco. In peroxisomes, photorespiratory HYDROXYPYRUVATE REDUCTASE1 (HPR1) catalyzes the conversion of hydroxypyruvate to glycerate together with the oxidation of a pyridine nucleotide cofactor. HPR1 regulation remains poorly understood; however, HPR1 phosphorylation at T335 has been reported. By comparing the kinetic properties of phosphomimetic (T335D), nonphosphorylatable (T335A), and wild-type recombinant Arabidopsis (Arabidopsis thaliana) HPR1, it was found that HPR1-T335D exhibits reduced NADH-dependent hydroxypyruvate reductase activity while showing improved NADPH-dependent activity. Complementation of the Arabidopsis hpr1-1 mutant by either wild-type HPR1 or HPR1-T335A fully complemented the photorespiratory growth phenotype of hpr1-1 in ambient air, whereas HPR1-T335D-containing hpr1-1 plants remained smaller and had lower photosynthetic CO2 assimilation rates. Metabolite analyses indicated that these phenotypes were associated with subtle perturbations in the photorespiratory cycle of HPR1-T335D-complemented hpr1-1 rosettes compared to all other HPR1-containing lines. Therefore, T335 phosphorylation may play a role in the regulation of HPR1 activity in planta, although it was not required for growth under ambient air controlled conditions. Furthermore, improved NADP-dependent HPR1 activities in peroxisomes could not compensate for the reduced NADH-dependent HPR1 activity.
Collapse
Affiliation(s)
- Yanpei Liu
- Institute of Plant Sciences Paris-Saclay, CNRS, Université Paris-Sud, Institut National de la Recherche Agronomique, Université d'Evry, Université Paris-Diderot, Université Paris-Saclay, 91405 Orsay Cedex, France
| | - Florence Guérard
- Institute of Plant Sciences Paris-Saclay, CNRS, Université Paris-Sud, Institut National de la Recherche Agronomique, Université d'Evry, Université Paris-Diderot, Université Paris-Saclay, 91405 Orsay Cedex, France
| | - Michael Hodges
- Institute of Plant Sciences Paris-Saclay, CNRS, Université Paris-Sud, Institut National de la Recherche Agronomique, Université d'Evry, Université Paris-Diderot, Université Paris-Saclay, 91405 Orsay Cedex, France
| | - Mathieu Jossier
- Institute of Plant Sciences Paris-Saclay, CNRS, Université Paris-Sud, Institut National de la Recherche Agronomique, Université d'Evry, Université Paris-Diderot, Université Paris-Saclay, 91405 Orsay Cedex, France
| |
Collapse
|
36
|
Busch FA. Photorespiration in the context of Rubisco biochemistry, CO 2 diffusion and metabolism. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 101:919-939. [PMID: 31910295 DOI: 10.1111/tpj.14674] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 12/20/2019] [Accepted: 01/03/2020] [Indexed: 05/11/2023]
Abstract
Photorespiratory metabolism is essential for plants to maintain functional photosynthesis in an oxygen-containing environment. Because the oxygenation reaction of Rubisco is followed by the loss of previously fixed carbon, photorespiration is often considered a wasteful process and considerable efforts are aimed at minimizing the negative impact of photorespiration on the plant's carbon uptake. However, the photorespiratory pathway has also many positive aspects, as it is well integrated within other metabolic processes, such as nitrogen assimilation and C1 metabolism, and it is important for maintaining the redox balance of the plant. The overall effect of photorespiratory carbon loss on the net CO2 fixation of the plant is also strongly influenced by the physiology of the leaf related to CO2 diffusion. This review outlines the distinction between Rubisco oxygenation and photorespiratory CO2 release as a basis to evaluate the costs and benefits of photorespiration.
Collapse
Affiliation(s)
- Florian A Busch
- Research School of Biology and ARC Centre of Excellence for Translational Photosynthesis, Australian National University, Acton, ACT, 2601, Australia
| |
Collapse
|
37
|
Martí MC, Jiménez A, Sevilla F. Thioredoxin Network in Plant Mitochondria: Cysteine S-Posttranslational Modifications and Stress Conditions. FRONTIERS IN PLANT SCIENCE 2020; 11:571288. [PMID: 33072147 PMCID: PMC7539121 DOI: 10.3389/fpls.2020.571288] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 09/08/2020] [Indexed: 05/12/2023]
Abstract
Plants are sessile organisms presenting different adaptation mechanisms that allow their survival under adverse situations. Among them, reactive oxygen and nitrogen species (ROS, RNS) and H2S are emerging as components not only of cell development and differentiation but of signaling pathways involved in the response to both biotic and abiotic attacks. The study of the posttranslational modifications (PTMs) of proteins produced by those signaling molecules is revealing a modulation on specific targets that are involved in many metabolic pathways in the different cell compartments. These modifications are able to translate the imbalance of the redox state caused by exposure to the stress situation in a cascade of responses that finally allow the plant to cope with the adverse condition. In this review we give a generalized vision of the production of ROS, RNS, and H2S in plant mitochondria. We focus on how the principal mitochondrial processes mainly the electron transport chain, the tricarboxylic acid cycle and photorespiration are affected by PTMs on cysteine residues that are produced by the previously mentioned signaling molecules in the respiratory organelle. These PTMs include S-oxidation, S-glutathionylation, S-nitrosation, and persulfidation under normal and stress conditions. We pay special attention to the mitochondrial Thioredoxin/Peroxiredoxin system in terms of its oxidation-reduction posttranslational targets and its response to environmental stress.
Collapse
|
38
|
da Fonseca-Pereira P, Souza PVL, Hou LY, Schwab S, Geigenberger P, Nunes-Nesi A, Timm S, Fernie AR, Thormählen I, Araújo WL, Daloso DM. Thioredoxin h2 contributes to the redox regulation of mitochondrial photorespiratory metabolism. PLANT, CELL & ENVIRONMENT 2020; 43:188-208. [PMID: 31378951 DOI: 10.1111/pce.13640] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 07/24/2019] [Accepted: 07/31/2019] [Indexed: 05/18/2023]
Abstract
Thioredoxins (TRXs) are important proteins involved in redox regulation of metabolism. In plants, it has been shown that the mitochondrial metabolism is regulated by the mitochondrial TRX system. However, the functional significance of TRX h2, which is found at both cytosol and mitochondria, remains unclear. Arabidopsis plants lacking TRX h2 showed delayed seed germination and reduced respiration alongside impaired stomatal and mesophyll conductance, without impacting photosynthesis under ambient O2 conditions. However, an increase in the stoichiometry of photorespiratory CO2 release was found during O2 -dependent gas exchange measurements in trxh2 mutants. Metabolite profiling of trxh2 leaves revealed alterations in key metabolites of photorespiration and in several metabolites involved in respiration and amino acid metabolism. Decreased abundance of serine hydroxymethyltransferase and glycine decarboxylase (GDC) H and L subunits as well as reduced NADH/NAD+ ratios were also observed in trxh2 mutants. We further demonstrated that the redox status of GDC-L is altered in trxh2 mutants in vivo and that recombinant TRX h2 can deactivate GDC-L in vitro, indicating that this protein is redox regulated by the TRX system. Collectively, our results demonstrate that TRX h2 plays an important role in the redox regulation of mitochondrial photorespiratory metabolism.
Collapse
Affiliation(s)
- Paula da Fonseca-Pereira
- Max-Planck Partner Group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, 36570-900, Brazil
| | - Paulo V L Souza
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, 60451-970, Brazil
| | - Liang-Yu Hou
- Department Biology I, Ludwig-Maximilians-Universität München, Planegg-Martinsried, 82152, Germany
| | - Saskia Schwab
- Plant Physiology Department, University of Rostock, Rostock, D-18051, Germany
| | - Peter Geigenberger
- Department Biology I, Ludwig-Maximilians-Universität München, Planegg-Martinsried, 82152, Germany
| | - Adriano Nunes-Nesi
- Max-Planck Partner Group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, 36570-900, Brazil
| | - Stefan Timm
- Plant Physiology Department, University of Rostock, Rostock, D-18051, Germany
| | - Alisdair R Fernie
- Department Willmitzer, Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
| | - Ina Thormählen
- Department Biology I, Ludwig-Maximilians-Universität München, Planegg-Martinsried, 82152, Germany
| | - Wagner L Araújo
- Max-Planck Partner Group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, 36570-900, Brazil
| | - Danilo M Daloso
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, 60451-970, Brazil
| |
Collapse
|
39
|
Jossier M, Liu Y, Massot S, Hodges M. Enzymatic Properties of Recombinant Phospho-Mimetic Photorespiratory Glycolate Oxidases from Arabidopsis thaliana and Zea mays. PLANTS (BASEL, SWITZERLAND) 2019; 9:plants9010027. [PMID: 31878154 PMCID: PMC7020226 DOI: 10.3390/plants9010027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 12/19/2019] [Accepted: 12/21/2019] [Indexed: 06/10/2023]
Abstract
In photosynthetic organisms, the photorespiratory cycle is an essential pathway leading to the recycling of 2-phosphoglycolate, produced by the oxygenase activity of ribulose-1,5-bisphosphate carboxylase/oxygenase, to 3-phosphoglycerate. Although photorespiration is a widely studied process, its regulation remains poorly understood. In this context, phosphoproteomics studies have detected six phosphorylation sites associated with photorespiratory glycolate oxidases from Arabidopsis thaliana (AtGOX1 and AtGOX2). Phosphorylation sites at T4, T158, S212 and T265 were selected and studied using Arabidopsis and maize recombinant glycolate oxidase (GOX) proteins mutated to produce either phospho-dead or phospho-mimetic enzymes in order to compare their kinetic parameters. Phospho-mimetic mutations (T4D, T158D and T265D) led to a severe inhibition of GOX activity without altering the KM glycolate. In two cases (T4D and T158D), this was associated with the loss of the cofactor, flavin mononucleotide. Phospho-dead versions exhibited different modifications according to the phospho-site and/or the GOX mutated. Indeed, all T4V and T265A enzymes had kinetic parameters similar to wild-type GOX and all T158V proteins showed low activities while S212A and S212D mutations had no effect on AtGOX1 activity and AtGOX2/ZmGO1 activities were 50% reduced. Taken together, our results suggest that GOX phosphorylation has the potential to modulate GOX activity.
Collapse
|
40
|
Redox-mediated kick-start of mitochondrial energy metabolism drives resource-efficient seed germination. Proc Natl Acad Sci U S A 2019; 117:741-751. [PMID: 31871212 DOI: 10.1073/pnas.1910501117] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Seeds preserve a far developed plant embryo in a quiescent state. Seed metabolism relies on stored resources and is reactivated to drive germination when the external conditions are favorable. Since the switchover from quiescence to reactivation provides a remarkable case of a cell physiological transition we investigated the earliest events in energy and redox metabolism of Arabidopsis seeds at imbibition. By developing fluorescent protein biosensing in intact seeds, we observed ATP accumulation and oxygen uptake within minutes, indicating rapid activation of mitochondrial respiration, which coincided with a sharp transition from an oxidizing to a more reducing thiol redox environment in the mitochondrial matrix. To identify individual operational protein thiol switches, we captured the fast release of metabolic quiescence in organello and devised quantitative iodoacetyl tandem mass tag (iodoTMT)-based thiol redox proteomics. The redox state across all Cys peptides was shifted toward reduction from 27.1% down to 13.0% oxidized thiol. A large number of Cys peptides (412) were redox switched, representing central pathways of mitochondrial energy metabolism, including the respiratory chain and each enzymatic step of the tricarboxylic acid (TCA) cycle. Active site Cys peptides of glutathione reductase 2, NADPH-thioredoxin reductase a/b, and thioredoxin-o1 showed the strongest responses. Germination of seeds lacking those redox proteins was associated with markedly enhanced respiration and deregulated TCA cycle dynamics suggesting decreased resource efficiency of energy metabolism. Germination in aged seeds was strongly impaired. We identify a global operation of thiol redox switches that is required for optimal usage of energy stores by the mitochondria to drive efficient germination.
Collapse
|
41
|
Timm S, Woitschach F, Heise C, Hagemann M, Bauwe H. Faster Removal of 2-Phosphoglycolate through Photorespiration Improves Abiotic Stress Tolerance of Arabidopsis. PLANTS 2019; 8:plants8120563. [PMID: 31810232 PMCID: PMC6963629 DOI: 10.3390/plants8120563] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 11/27/2019] [Accepted: 11/29/2019] [Indexed: 02/06/2023]
Abstract
Photorespiration metabolizes 2-phosphoglyolate (2-PG) to avoid inhibition of carbon assimilation and allocation. In addition to 2-PG removal, photorespiration has been shown to play a role in stress protection. Here, we studied the impact of faster 2-PG degradation through overexpression of 2-PG phosphatase (PGLP) on the abiotic stress-response of Arabidopsis thaliana (Arabidopsis). Two transgenic lines and the wild type were subjected to short-time high light and elevated temperature stress during gas exchange measurements. Furthermore, the same lines were exposed to long-term water shortage and elevated temperature stresses. Faster 2-PG degradation allowed maintenance of photosynthesis at combined light and temperatures stress and under water-limiting conditions. The PGLP-overexpressing lines also showed higher photosynthesis compared to the wild type if grown in high temperatures, which also led to increased starch accumulation and shifts in soluble sugar contents. However, only minor effects were detected on amino and organic acid levels. The wild type responded to elevated temperatures with elevated mRNA and protein levels of photorespiratory enzymes, while the transgenic lines displayed only minor changes. Collectively, these results strengthen our previous hypothesis that a faster photorespiratory metabolism improves tolerance against unfavorable environmental conditions, such as high light intensity and temperature as well as drought. In case of PGLP, the likely mechanism is alleviation of inhibitory feedback of 2-PG onto the Calvin–Benson cycle, facilitating carbon assimilation and accumulation of transitory starch.
Collapse
Affiliation(s)
- Stefan Timm
- Plant Physiology Department, University of Rostock, Albert-Einstein-Straße 3, D-18051 Rostock, Germany; (F.W.); (C.H.); (M.H.); (H.B.)
- Correspondence: ; Tel.: +49-(0)381-4986115; Fax: +49-(0)381-4986112
| | - Franziska Woitschach
- Plant Physiology Department, University of Rostock, Albert-Einstein-Straße 3, D-18051 Rostock, Germany; (F.W.); (C.H.); (M.H.); (H.B.)
- Division of Tropical Medicine and Infectious Diseases, Center of Internal Medicine II, University Medical Center Rostock, Ernst-Heydemann-Str.6, D-18057 Rostock, Germany
| | - Carolin Heise
- Plant Physiology Department, University of Rostock, Albert-Einstein-Straße 3, D-18051 Rostock, Germany; (F.W.); (C.H.); (M.H.); (H.B.)
| | - Martin Hagemann
- Plant Physiology Department, University of Rostock, Albert-Einstein-Straße 3, D-18051 Rostock, Germany; (F.W.); (C.H.); (M.H.); (H.B.)
| | - Hermann Bauwe
- Plant Physiology Department, University of Rostock, Albert-Einstein-Straße 3, D-18051 Rostock, Germany; (F.W.); (C.H.); (M.H.); (H.B.)
| |
Collapse
|
42
|
Reinholdt O, Bauwe H, Hagemann M, Timm S. Redox-regulation of mitochondrial metabolism through thioredoxin o1 facilitates light induction of photosynthesis. PLANT SIGNALING & BEHAVIOR 2019; 14:1674607. [PMID: 31589099 PMCID: PMC6866678 DOI: 10.1080/15592324.2019.1674607] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Despite the well-known biochemistry of the major pathways involved in central carbon and amino acid metabolism, there are still gaps regarding their regulation or regulatory interactions. Recent research demonstrated the physiological significance of the mitochondrial redox machinery, particularly thioredoxin o1 (TRXo1), for proper regulation of the tricarboxylic acid cycle, components of the mitochondrial electron transport chain and photorespiration. These findings imply that TRXo1 regulation contributes to the metabolic acclimation toward changes in the prevailing environmental conditions. Here, we analyzed if TRXo1 is involved in the light induction of photosynthesis. Our results show that the trxo1 mutant activates CO2 assimilation rates to a significantly lower extend than wild type in response to short-term light/dark changes. Metabolite analysis suggests that activation of glycine-to-serine conversion catalyzed through glycine decarboxylase in conjunction with serine hydroxymethyltransferase in trxo1 is slowed down at onset of illumination. We propose that redox regulation via TRXo1 is necessary to allow the rapid induction of mitochondrial steps of the photorespiratory cycle and, in turn, to facilitate light-induction of photosynthesis.
Collapse
Affiliation(s)
- Ole Reinholdt
- Plant Physiology Department, University of Rostock, Rostock, Germany
| | - Hermann Bauwe
- Plant Physiology Department, University of Rostock, Rostock, Germany
| | - Martin Hagemann
- Plant Physiology Department, University of Rostock, Rostock, Germany
| | - Stefan Timm
- Plant Physiology Department, University of Rostock, Rostock, Germany
- CONTACT Stefan Timm Plant Physiology Department, University of Rostock, Rostock, Germany
| |
Collapse
|